当前位置: 仪器信息网 > 行业主题 > >

工业废气挥发性气体在线监测系统

仪器信息网工业废气挥发性气体在线监测系统专题为您提供2024年最新工业废气挥发性气体在线监测系统价格报价、厂家品牌的相关信息, 包括工业废气挥发性气体在线监测系统参数、型号等,不管是国产,还是进口品牌的工业废气挥发性气体在线监测系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合工业废气挥发性气体在线监测系统相关的耗材配件、试剂标物,还有工业废气挥发性气体在线监测系统相关的最新资讯、资料,以及工业废气挥发性气体在线监测系统相关的解决方案。

工业废气挥发性气体在线监测系统相关的资讯

  • 内蒙古自治区固定污染源废气挥发性有机物检查监测工作方案
    p   内蒙古自治区环境保护厅近日印发了 《内蒙古自治区固定污染源废气挥发性有机物检查监测工作方案》,方案中不仅规定了内蒙古自治区固定污染源VOCs检查监测工作安排,还对不同行业不同点位监测项目、监测标准、监测技术等进行了详细规定。 /p p style=" text-align: center " 内蒙古自治区固定污染源废气挥发性有机物检查监测工作方案 /p p   为贯彻落实《“十三五”生态环境保护规划》、《“十三五”节能减排综合工作方案》、《“十三五”挥发性有机物污染防治工作方案》和环保部办公厅《关于加强固定污染源废气挥发性有机物监测工作的通知》(环办监测函〔2018〕123号)相关工作要求,全面推动我区固定污染源废气挥发性有机物检查监测工作,特制定本工作方案。 /p p   一、总体要求 /p p   以改善环境空气质量为核心,以重点行业和重点污染物为主要控制对象,全面加强固定污染源废气挥发性有机物监测,进一步掌握VOCs排放及治理情况,切实加强VOCs排污单位监督管理,为实现2020年建立健全以改善环境空气质量为核心的VOCs污染防治管理体系夯实基础。 /p p   二、工作原则 /p p   ----属地管理原则。各级环境保护部门要落实环境质量属地管理的要求,对VOCs排污单位履行监管职责,统筹规划,稳步推进。 /p p   ----“谁污染、谁监测、谁治理”原则。VOCs排污单位严格履行主体责任,认真按照要求开展VOCs自行监测并对相关信息进行公开。 /p p   ----双随机原则。各级环境保护部门按照抽查时间随机、抽查对象随机的原则,对VOCs排污单位污染物排放情况开 展日常抽查,对照已出台的污染物排放标准开展检查监测。 /p p   三、主要工作内容 /p p   (一)强化排污单位自行监测 /p p   排污单位要按照环境保护法的要求,严格落实主体责任,将VOCs指标纳入自行监测方案,对污染物排放口及周边环境质量状况开展自行监测,并主动公开污染物排放、治污设施建设及运行情况等环境信息。没有监测能力的要委托有资质的第三方开展监测。 /p p   (二)加强工业园区监测监控 /p p   园区管理部门要对园区周界及内部VOCs开展监测,具备条件的园区要建设VOCs环境风险预警体系,及时了解园区周边的VOCs污染情况,建立环境风险预警和应急响应机制,建成“早发现、早报告、早预警”的预警体系。 /p p   (三)建立VOCs排污单位名录库 /p p   各盟市环保部门要根据本行政区域内VOCs排放源的种类、分布、产排污特点,筛查确定VOCs排污单位,作为日常监管和监测的重要依据。VOCs排污单位应覆盖石化、化工、工业涂装、包装印刷、电子信息、合成材料、纺织印染等行业。 /p p   (四)开展VOCs专项检查监测 /p p   各盟市环境保护部门要按照抽查时间随机、抽查对象随机的原则,对VOCs排污单位污染物排放情况开展日常抽查,对照已出台的污染物排放标准开展检查监测。 /p p   1.检查要求 /p p   重点检查排污单位自行监测开展情况、监测信息公开情况及VOCs达标排放情况,详见附件1。 /p p   2. 监测要求 /p p   (1)监测范围:火电及锅炉、氮肥、电池、纺织印染、钢铁、工业炉窑、合成革与人造革、焦化、铝工业、农药、排放恶臭气体单位及垃圾堆场、石化、水泥、橡胶制品、制糖、制药行业及其他产生VOCs的排污单位。 /p p   (2)监测内容:废气挥发性有机物有组织排放浓度,一般有固定的排气系统。废气的无组织排放浓度,一般为厂界,储油罐及法兰、阀门、泵压缩机等连接装置的无组织排放源。 /p p   (3)监测时间和频次 /p p   各盟市环境保护部门按照时间随机、抽查对象随机的“双随机原则”对所有VOCs排污单位进行随机抽测,重点行业不得少于2家。 /p p   (4)任务分工 /p p   盟市环境监测站负责承担本地区内挥发性有机物排污单位的抽测工作。确不具备监测能力的可以委托有资质的第三方监测机构开展抽测工作。自治区环境监测中心站组织开展对盟市、旗县级VOCs监测人员的培训工作,承担重点行业、重点排污单位挥发性有机物排污单位的检查性抽测工作。 /p p   具体监测要求详见附件2。 /p p   四、工作进度 /p p   2018年3月31日前,各盟市环境保护部门完成VOCs排污单位筛查工作,形成VOCs排污单位名录,报自治区环境监测中心站。 /p p   2018年5月1日前,石化、化工行业VOCs排污单位完成自行监测工作。 /p p   2018年5月15日前,完成石化、化工行业VOCs排污单位检查监测工作,并将检查监测结果报自治区环保厅。 /p p   2018年11月1日前,所有行业VOCs排污单位完成自行监测工作。 /p p   2018年11月15日前,完成所有行业VOCs检查监测工作,并将检查监测结果报自治区环保厅。 /p p   自治区环保厅将于2018年11月30日前,完成对VOCs排污单位的检查性抽测工作,并将检查结果上报环保部。 /p p   2019年起,将VOCs排污单位污染物排放检查监测工作纳入监测计划,按照抽查时间随机、抽查对象随机的原则开展检查监测,并于每季度第1个月15前将检查监测报告报自治区监测中心站。 /p p   五、保障措施 /p p   (一)提高认识,切实加强组织领导 /p p   VOCs是导致臭氧污染的重要前体物,对二次PM2.5生成具有重要影响。各级环境保护部门要充分认识加强VOCs排放监测的重要意义,切实加强组织领导,督促企业严格落实主体责任,按要求开展自行监测并对环境信息进行公开 组织开展本地区检查监测工作 指导园区管理部门对园区周界及内部开展VOCs检查监测 建立本地区VOCs排污单位名录库,并通过全面加强VOCs检查监测,为VOCs污染防治工作打下坚实基础。 /p p   (二)落实责任,扎实推进各项工作 /p p   排污单位是污染治理的责任主体,要切实履行责任,按照要求,按时开展VOCs污染物自行监测并及时公开相关信息 各盟市环保部门要按照属地管理要求,履行监管职责,通过排查筛选、建立名录库、日常检查、随机抽测深入推进VOCs检查监测工作,全面了解掌握本地区VOCs排污单位分布、排放和治理情况,切实加强环境监管。 /p p   (三)加强能力建设,强化VOCs监测管理能力水平 /p p   我区各盟市VOCs监测能力较薄弱。各盟市环境保护部门要切实保障VOCs监测所需人员、工作经费和工作条件。加强监测人员的培训,强化人才队伍培养,切实提高VOCs监测能力水平。 /p p   (四)强化质控,保证VOCs监测工作质量 /p p   自治区环境监测中心站负责对承担抽测工作的监测(检测)机构开展技术指导、技术监督和质控检查。质控检查包括被检查单位的污染源监测质控管理、有关技术人员上岗资质、实验室质量管理、监测原始记录和监测报告等内容。根据需要开展实验室内比对监测。 /p p   承担抽测工作的各级监测(检测)机构要对本单位出具的所有监测数据和报告质量负责,严格按照环境监测相关质量控制的要求进行监测,不得弄虚作假。 /p p   各级监测(检测)机构发现监测结果超标时,要及时向同级环保主管部门和监察机构汇报。 /p p   (五)落实信息公开制度,引导公众参与 /p p   排污单位应主动通过各种便于公众知晓的方式公开污染物排放、治污设施建设及运行情况的环境信息,加大宣传力度,鼓励、引导公众主动参与VOCs减排。 /p p   附件1 /p p   固定污染源废气挥发性有机物检查监测要点 /p p   为掌握固定污染源废气挥发性有机物排放情况,指导地方做好对挥发性有机物重点排污单位的VOCs专项监测工作制定本要点。企业开展自行监测和自查可参照本要点。 /p p   一、检查要点 /p p   (一)企业自行监测开展情况 /p p   检查监测人员可通过查阅企业自行监测方案,污染防治设施运行台账,自行监测数据结果报告,实验室质控管理制度等,检查企业自行监测执行情况。重点检查企业自行监测方案是否完整,自行监测指标是否与方案一致。 /p p   (二)企业监测信息公开情况 /p p   检查监测人员可询问企业信息公开途径,并通过现场检查证实。重点检查公开信息是否完整,公开监测数据是否与实际数据一致。 /p p   (三)VOCs污染因子达标情况 /p p   检查监测人员可在企业现场,选取多个主要VOCs污染源开展现场监测,监测因子主要包括非甲烷总烃、苯、甲苯、二甲苯、臭气浓度等VOCs特征污染物。重点检查企业主要VOCs污染源的达标排放情况。 /p p   二、监测要点 /p p   环保部门开展的VOCs专项检查监测,按照“双随机”原则,可随机抽取企业监测点位和监测项目开展监测。各行业不同点位的监测项目和监测依据等见附表。 /p p style=" line-height: 16px "   附件: img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a href=" http://img1.17img.cn/17img/files/201803/ueattachment/e5e28fb0-6759-4fc9-94c6-0c393c051bb3.docx" 内蒙古自治区固定污染源废气挥发性有机物检查监测工作方案.docx /a /p p br/ /p
  • 【精品巡礼】系列报道之一:工业园区大气挥发性有机物在线分析系统
    挥发性有机物(VOCs)是造成灰霾和臭氧超标的主要前体物之一,对环境空气质量和人们身体健康带来非常严重的危害。我国政府高度对此高度重视,在新修订的《环保法》中,首次将挥发性有机物列入监管对象;《“十三五”挥发性有机物污染防治工作方案》明确主要目标是到2020年,建立健全以改善环境空气质量为核心的VOCs 污染防治管理体系,实施重点地区、重点行业VOCs 污染减排,排放总量下降10%以上。通过与NOx 等污染物的协同控制,实现环境空气质量持续改善。VOCs怎么治先河环保针对挥发性有机物(VOCs)种类多、组分复杂、无组织排放特征明显和监管难度高等突出特点,充分利用网格化监测理念,构建点、面、域全覆盖/测、管、治一体化的工业园区VOCs综合整治解决方案,确保VOCs排放测得准、说得清、管得好;打造智能、高效和便捷的VOCs监管平台,为管理部门核算VOCs排放量,制定VOCs排污和收费政策,减排效果评估,污染预警与溯源和环境执法等提供关键数据和技术支撑。XH VOC6000大气挥发性有机物在线分析仪本期为您介绍先河环保XHVOC6000大气挥发性有机物在线分析仪,适用于工业园区或环境空气中全组分挥发性有机物浓度的在线监测,可实现污染来源追踪及溯源。产品概述针对国内环境空气中挥发性有机物成分复杂多变和部分地区空气湿度较大等特点,结合环保管理部门对环境监测仪器自动化和智能化运行的监测需求,先河环保开发了XHVOC6000型挥发性有机物在线监测系统,该监测系统具有定性可靠、测量精度高和扩展性强等特点,可实现环境空气中VOCs全分析,数据无盲点,真正实时反应环境空气中VOCs的类型和变化。适用于工业园区或环境空气中挥发性有机物浓度的在线监测。XHVOC6000型挥发性有机物在线监测系统利用二级脱附与电子制冷技术采集+富集+聚焦VOCs技术进样,由气质联用仪(或气相色谱)进行定性定量分析。该产品可一次采样监测100多种VOCs,其中包括C2-C12碳氢化合物、苯系物、卤代烃、氯苯类、含氧有机物、硫化物等挥发性有机物及部分半挥发性有机物。性能特点1) 所有流路经过惰性化处理。避免有机物在系统中粘附、反应,能用于活性较高的挥发性有机物的检测2) 全流路保温。将冷点减少到了最低,避免有机物在流路中冷凝损失3) 可测量组分多,可扩展性强。目前应用已完成100种以上物质的监测,并且可在一个程序中完成。可根据实际工作需要开发新的分析方法,可扩展测定半挥发性有机物4) 具备干吹功能。能在分析实际样品时有效降低水分的吸附,防止聚焦管出现的吸水“结冰”现象,从而保证流路通畅与捕集效率,保证样品分析时的准确度5) 定性能力强。系统的专利技术与整体优化,使得质谱检测器能够满足C2~C12的监测,其质谱自带的谱图库和检索能力,能够最大限度地保证定性的准确性;最大限度降低假阳性结果的产生和误报,并能对难分离的非同分异构体准确定量6) 识别未知组分的能力强,当出现未知组分时,通过质谱扫描,可实现及时定性;特别适用于未知挥发性气体的监测,满足应急监测的需要7) 仪器性能稳定,保留时间的稳定性强,测量结果可靠,校正工作量较小8) 可连接真空罐、采气袋,完成异地采样的分析9) 可以自动实现样品加标或添加替代物,考察基底效应与系统的稳定性技术指标
  • 上海市环保局印发《上海市固定污染源废气挥发性有机物监测工作方案》
    p   为落实《“十三五”生态环境保护规划》《“十三五”节能减排工作方案》《“十三五”挥发性有机物污染防治工作方案》相关要求,全面加强固定污染源废气挥发性有机物(VOCs)污染防治,强化VOCs排放控制与治理,促进环境空气质量持续改善。2018年1月生态环境部办公厅印发了《关于加强固定污染源废气挥发性有机物监测工作的通知》(环办监测函〔2018〕123号,以下简称《通知》),明确要求各地生态环境部门加强组织领导,全面推进VOCs的监管与监测工作。 /p p   上海市环境保护局高度重视,认真贯彻落实《通知》要求,充分认识VOCs监测工作的重要性,一是结合当地排污许可证发放情况和VOCs排放源的种类、分布及产排污特点,对VOCs排污单位进行排查筛选,确定了上海市VOCs排污单位名录 二是加强组织实施,在落实排污单位环境保护主体责任的前提下,根据市、区两级监管职责分工,明确了市环境保护局总量处、办公室、监测中心、监察总队共同参与、分工负责的工作机制和区环境保护局属地监管的工作原则 三是明确工作时间节点,建立按季度定期调度机制 四是建立保障机制,在保障VOCs监测所需人员、工作经费和工作条件基础上,同时将各区VOCs监测人员培训一并纳入年度监测工作计划 五是探索建立园区VOCs监控体系,建立健全环境风险预警和应急响应机制。 /p p   《上海市固定污染源废气挥发性有机物监测工作方案》全文见附件: /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201805/ueattachment/cd432abd-3997-4c0c-9af7-1fea7da6dbae.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " strong span style=" color: rgb(0, 112, 192) " 《上海市固定污染源废气挥发性有机物监测工作方案》.pdf /span /strong /a /p
  • 中国挥发性有机物污染防治政策及对监测技术的管理需求
    本文通过梳理现行的挥发性有机物污染防治政策法规和方法标准,结合国外经验,提出了现阶段挥发性有机物污染防治政策体系。尽管起步较晚,但陆续实施的挥发性有机物排污收费和总量控制机制,已经对污染物监测提出了明确的管理需求。虽然离线检测技术具有良好的灵敏度和响应度,但使用FID和NDIR法的在线和便携仪器响应时间短、数据连续,可以实现对挥发性有机物污染的实时追踪,更好地满足污染预警、应急执法等环境管理新需求。  挥发性有机物是一类物质的总称。环境保护部2014年发布的《大气挥发性有机物源排放清单编制技术指南(试行)》对挥发性有机物的定义是:在标准状态下饱和蒸气压较高(标准状态下大于13.33Pa)、沸点较低、分子量小、常温状态下易挥发的有机化合物。《大气挥发性有机物源排放清单编制技术指南》将挥发性有机物的主要贡献源划分为生物质燃烧源、化石燃料燃烧源、工业过程源、溶剂使用源和移动源。大气中的细颗粒物约50%来自挥发性有机物等气态污染物经过复杂化学反应形成的二次粒子。不仅如此,挥发性有机物中的脂肪烃、氯化烃、芳香烃、氯代烃、酮类、脂类以及乙二醇醚及其酯类还具有神经毒性、血液毒性、肝肾毒性和生殖遗传毒性,并会刺激皮肤黏膜。  尽管如此,“十二五”时期中国大气污染控制的重点仍聚焦在二氧化硫、氮氧化物和工业烟粉尘三种污染物上。在当前各级政府全面实施对挥发性有机物进行管控,改善城市大气环境质量,保障公众健康的背景下,本文对挥发性有机物相关政策法规和标准方法进行了系统的梳理,提出中国挥发性有机物污染防治政策体系,并据此分析出环境管理对实验室和在线/便携监测技术的应用需求。  1挥发性有机物污染防治的国外经验  发达国家对挥发性有机物的管控基本延续大气污染防治的传统思路(表1),主要包括出台相关法律法规提升政策措施的法律效力,从污染源清单入手针对本地的产业结构和排放特征出台行业排放标准,规范企业的排污行为,并通过总量控制等环境管理手段推动企业减排。此外,美国、欧盟和日本还从各自的管理需求出发,出台了不同的监测方法标准,为挥发性有机物的污染防治提供数据支撑。  综上,美国、欧盟以及日本等发达国家对大气VOCs污染的防控机制总体上以多级管理为主,在中央或联邦出台相关法规政策下,各地方或各成员国根据当地的产业特点、地理和气象条件、社会人口等因素制定符合当地情况的大气VOCs污染防控管理机制。值得注意的是,由于各国针对大气VOCs污染防控的起步时间不一致,对各VOCs排放行业的适用性略有不同。总体上,通过对以上发达国家对大气VOCs污染防控经验的梳理,针对大气VOCs污染防控的多级管理模式对中国有一定的参考意义。  2中国挥发性有机物污染防治政策体系  自2012年年底国务院发布《重点区域大气污染防治“十二五”规划》,对京津冀等重点区域重点行业现役源挥发性有机物提出削减比例指标要求以来,国家陆续出台了一系列相关的政策法规和标准方法。在国家层面,该体系主要由大气污染防治法、国务院出台的行动计划、大气污染物防治规划、技术政策、行业污染治理方案、排污收费方法、检测方法标准构成(表2和表3)。  在法律层面,该体系由第十二届全国人大常委会第十六次会议制定的《中华人民共和国大气污染防治法》(简称《大气污染防治法》)主导。《大气污染防治法》总则中提出推行区域大气污染联合防治,并提出对常规大气污染物、氨、挥发性有机物和温室气体实施协同控制。同时,制定含挥发性有机物产品的质量标准,并规定在生产、进口、销售和使用含挥发性有机物的原材料和产品时应当符合质量标准或要求。除针对VOCs标准规范类法规外,《大气污染防治法》还规定了一系列针对VOCs产品生产的鼓励和处罚措施,如对生产、销售VOCs含量不符合质量标准或要求的原材料和产品的,由县级以上地方人民政府进行监管,没收原材料、产品和违法所得,并处货值金额一倍以上三倍以下的罚款。  在行政法规层面,国务院在2013年9月出台了《大气污染防治行动计划》,提出在石化、有机化工、表面涂装、包装印刷等行业实施挥发性有机物综合整治,完成油气回收治理,完善含挥发性有机物产品的相关限值标准,并鼓励生产、销售和使用低挥发性有机溶剂。此外,《大气污染防治行动计划》还鼓励企业加强挥发性有机物控制的相关技术研发及改造。在行业准入方面,将挥发性有机物是否符合总量控制要求作为建设项目环境影响评价审批的前置条件之一。同时,还提出将VOCs纳入排污费征收范围内。  在部门规章层面,环保部、国家发改委、财政部、工信部等部委相继出台了有针对性的VOCs污染防治相关文件。2012年9月,由环保部、国家发改委和财政部共同发布的《重点区域大气污染防治“十二五”规划》中提出在新建排放VOCs的项目中实行污染排放减量替代,提高VOCs排放类项目建设要求,开展重点行业治理,制定相关行业的VOCs排放标准等工作 2013年,环保部发布了《挥发性有机物防治技术政策》,该技术政策作为指导性文件,提出了生产VOCs物料和含VOCs产品的生产、储存运输销售、使用、消费各环节的污染防治策略和方法 2014年环保部发布了《石化行业挥发性有机物综合整治方案》,该方案提出到2017年全国石化行业的排放量削减目标,并提出开展VOCs污染源排查、严格建设项目环境准入、完善VOCs监管体系、实施VOCs全过程控制、建立VOCs管理体系等任务 2015年,工信部、财政部联合发布《重点行业挥发性有机物削减行动计划》,该计划制定了到2018年的VOCs削减目标,并提出实施原料替代工程、工艺技术改造工程、回收及综合治理工程等任务 2015年6月,由财政部、国家发改委、环保部发布的《挥发性有机物排污收费试点办法》规定了石油化工行业和包装印刷行业VOCs排污费的征收、使用和管理办法。  虽然中国对挥发性有机物的管控起步较晚,但目前形成的政策体系既包括上位法支撑,又涵盖对具体管理机制的规范要求,配套了部分技术政策和环境经济政策,为挥发性有机物污染的防治工作提供了有力的法律支撑和政策保障。此外,北京市、天津市和广东省还结合地方实际,提出了针对印刷、制鞋、汽车表面涂装、家具制造等行业的挥发性有机物排放标准,为企业控制污染物排放和环保部门执法提供了明确的依据。  3中国挥发性有机物污染防治对监测技术的管理需求  3.1排污收费和总量控制机制对监测的需求  挥发性有机物污染防治政策体系对污染物监测提出了明确的管理需求。其中,新出台的《挥发性有机物排污收费试点办法》要求试点征收排污费的石化和包装印刷行业企业,通过物料平衡等核算的方法确定污染物排放量。但由于每家企业使用的原辅材料和采用的工艺不同,实际监测得出的挥发性有机物排放量更为准确。新出台的《大气污染防治法》要求“产生含挥发性有机物废气的生产和服务活动,应当在密闭空间或者设备中进行”,这也将有利于企业统一收集废气,实现挥发性有机物的准确测定。  此外,目前已经实施的《石化行业挥发性有机物综合整治方案》提出,工艺废气、燃烧烟气、挥发性有机物处理设施排放废气和火炬系统等有组织废气排放的企业应逐步安装在线连续监控系统。而上海市已经率先要求石油化工、工业涂装、包装印刷等行业的重点企业安装配有氢火焰离子检测器(FID)的在线监测设备。天津市实施的《工业企业挥发性有机物排放控制标准》也要求“排放筒VOCs排放速率(包括等效排气筒等效排放速率)大于2.5kg/h或排气量大于60000m3/h时须配套建设VOCs在线监测设备”。因此可以预见,排污收费机制将逐渐过渡到依据实际监测数据确定排放量并作为收费依据的阶段,环境管理机制对挥发性有机物监测技术的需求将更加明确。  除排污收费机制外,《大气污染防治行动计划》提出要“将挥发性有机物排放是否符合总量控制要求作为建设项目环境影响评价审批的前置条件”。鉴于目前对氮氧化物和二氧化硫的总量控制和限期治理等机制(如《京津冀及周边地区重点行业大气污染限期治理方案》)已经开始要求重点企业在烟气排放口安装污染物连续在线监测系统,对挥发性有机物的总量控制预计也将延续该思路,通过污染源在线监测为减排核算提供数据支撑,实现精细化管理。  3.2环境风险预警和污染监管  监测技术不仅可以满足排污收费和总量控制的数据核定需求,还可以为污染源的环境风险管理提供有力支撑。由于工业过程和溶剂使用等挥发性有机物主要贡献源易出现无组织排放,且泄露的成分可能存在毒性,企业可以在石化、涂装等典型污染企业的厂界、集中地或园区设置无组织排放监控点,安装在线监测设备或配备移动监测车,对大气中的污染物浓度水平和变化趋势进行实时追踪,为环境风险预警和环境污染事故防控提供可靠依据。  另外,上海市已经出台政策,要求将挥发性有机物排放重点单位纳入区县环保部门重点监管范围,开展日常监察并加强监督性监测,对处理设施运行不正常、偷排漏排等违法行为严格执法。目前各地开展的大气污染物监督性监测等仍主要采用现场采样加实验室分析,但使用便携式的监测设备可以快速测定和判断企业厂界和周边大气中的污染物是否超过控制限值,实现现场监察,增加灵活性。例如,台湾桃园的环保执法部门在征收固定污染源空气污染防治费时,除了通过3D光学雷达技术精准定位污染企业,还携带红外线热显像分析仪在现场快速测定空气中的挥发性有机物浓度,对偷排企业现场开具罚单,追缴排污费。  便携式的监测设备还可以满足环境突发事件的现场应急监测需求。在传感器、大数据和物联网等技术快速发展的背景下,基于便携和在线监测技术的环境风险预警、应急处置和现场执法将为环境管理机制提供重要的决策支撑。综上所述,虽然中国对挥发性有机物的管控起步较晚,但现行的污染防治政策体系已经对污染物监测提出了明确的管理需求。  4挥发性有机物的常见监测技术  挥发性有机物常见监测技术主要包括离线和在线/便携两种,在分析前均需要对污染物进行采样、预浓缩和分离。相比于其他气态污染物,挥发性有机物组分复杂、源项多、排放浓度和工况差异大,精确测定难度高。  4.1离线监测技术  在《重点区域大气污染防治“十二五”规划》提出“加快制定完善环境空气和固定污染源挥发性有机物测定方法标准、监测技术规范以及监测仪器标准”的背景下,环保部自2013年起陆续颁布了多项挥发性有机物的采样和测定方法标准,对固定污染源废气和环境空气中挥发性有机物的采样和实验室测定方法做出了详尽的规定(表2)。  其中,气相色谱-质谱(GS/MS)技术是目前的主流测定法,可在较短的时间内对多组分混合物进行定性分析,分离效果好且灵敏度高,可以为排污收费、浓度达标监管、总量减排和环境统计等环境管理机制的有效运行提供规范化的监测技术和数据支撑。但气相色谱-质谱技术对操作温度和条件的要求高、检测周期长、费用高,因此排污企业和大部分省市级以下的监测机构不具备使用条件。  4.2在线/便携监测技术  科技部和环保部牵头组织和实施的国家重大科学仪器设备开发专项分别将空气中挥发性有机物在线监测设备和固定污染源废气中挥发性有机物在线和便携监测设备的开发作为研发和产业化重点。  相较于离线检测分析时间长、数据结果滞后的缺点,在线/便携式监测设备响应时间短、数据连续,主流方法使用氢火焰离子化检测器(FID)或催化氧化-非分散红外线技术(NDIR)。其中,NDIR法对非燃烧工艺固定污染源废气中的总挥发性有机物(TVOC)进行测定的技术已经于2012年被国际标准化组织正式认定为国际标准ISO/FDIS13199—2012。  为对比FID和NDIR两种主流方法在应用中的优缺点,本文对相关文献[9-14]进行了调研,并参考日本环境技术协会开展“固定发生源挥发性有机化合物测定仪的调查”(表3)。该调查于2003年实施,旨在对比日本市场上销售的连续测定型总烃测定仪对芳香烃类、乙醇类、醛类、酮类、酯类、醚类、含卤化合物、含氮化合物、氟利昂类等挥发性有机物主要成分的响应度和灵敏度。  虽然以FID法为主的在线监测设备越来越多地出现在国内监测市场,但挥发性有机物防治体系中各管理机制的目标污染物不一致。例如,行业排放标准主要针对非甲烷总烃和行业特征污染物,而试行中的收费制度针对石化和包装印刷行业的总挥发性有机物。由于挥发性有机物不同成分的最佳检测方法不同,污染表征和监管对象的不确定性将是在线监测技术应用的最大阻碍之一。  另外,除石化行业的“三桶油”外,大部分挥发性有机物污染排放企业规模小、产值低,在当前经济下行的压力下,企业缺乏安装在线监测设备的动力。这一方面需要环保部门出台奖惩政策提高企业违法成本,为安装在线监测设备的企业提供补贴 监测厂商也需要拓展服务模式,为污染企业提供设备租赁和第三方监测等解决方案。  大气污染监测的新趋势是将在线设备通过互联网与远端监控中心连接。对挥发性有机物的监测也必将延续该思路,实现基于物联网和大数据的污染源和空气质量实时监控,满足公众、企业和政府的多方需求。  5结论  本文从总结欧、美、日对挥发性有机物的管控经验出发,首先梳理了国家层面和地方层面发布的政策法规和标准方法,并提出了中国挥发性有机物污染防治政策体系。虽然仍需完善,但该体系为管控废气和空气中的挥发性有机物提供了有力的法律和政策支撑,排污收费和总量控制机制、环境风险预警和现场执法对污染物监测技术提出了明确的管理需求。  目前主流的气相色谱-质谱(GS/MS)技术虽然具有良好的灵敏度和相应度,但对操作温度和条件的要求高、检测周期长、费用高。而采用FID和NDIR的在线和便携监测仪器响应时间短、数据连续,是发达国家对污染源废气和大气中挥发性有机物含量进行实时追踪的主流技术,可以更好地满足环境风险预警、应急处置和现场执法等管理需求。  尽管如此,当前的污染防治体系尚未统一挥发性有机物的表征物,经济下行的压力也使企业缺乏安装在线监测设备的动力,这些都给行业的发展增加了不确定性。为此,环保部门应出台相应的奖惩政策,监测厂商应开拓服务模式、提供更多样化的解决方案,从供需两侧促进挥发性有机物监测行业的发展,满足日益明确的环境管理需求。
  • 固定污染源废气中的挥发性有机物现场测试方案-便携式气相色谱柱质谱法(上)-北京博赛德
    前言:大气污染治理重要的一环是控制污染源,通过对污染源废气的监测,分析废气的组成,为污染治理工作提供数据依据。和环境空气中挥发性有机物的分析不同,污染源中挥发性有机物的种类繁多,且浓度普遍偏高,对质谱定性能力和耐污染能力要求较高;污染源的现场环境条件复杂,高温、高湿和粉尘等会对挥发性有机物的分析产生巨大的影响。北京博赛德公司除提供完备的实验室分析方案,详见《真空瓶采样-热脱附气相色谱-质谱法测定固定污染源废气中挥发性有机物方案》,还推出现场分析检测方案。结合2020年3月25日生态环境部推出的《固定污染源废气 挥发性有机物的测定 便携式气相色谱-质谱法(征求意见稿)》,以及污染源废气高湿、高浓度等因素,推荐通过气袋(或真空瓶)采集固定污染源废气样品,稀释后使用HAPSITE便携式气质联用仪经吸附管富集、热脱附后分析检测。相比小体积定量环采样分析,此方案采样量更具代表性,且通过稀释,降低了样品浓度和湿度,从而减小对仪器的污染。本文将介绍气袋采样、HAPSITE分析检测固定污染源废气中的挥发性有机物的操作流程,分别从前期准备、样品采集与稀释、空白测试、样品分析、结果计算和附件来详细介绍。前期准备1.1配件(1)满电的内置电池或SuperPower便携式电池及连接线缆;(2)满瓶内置载气和内标气;(3)高纯氮气:纯度≥99.999%,用于空白测试、样品稀释;(4)无本底的干净气袋;(5)气袋采样系统:符合HJ732的相关规定;(6)注射器:用于样品稀释,玻璃材质;(7)标准气体:质控或现场单点校准。1.2预制校准曲线预先制作校准曲线,分别制作低浓度系列和高浓度系列校准曲线,参考如下:低浓度系列为 2.0 nmol/mol、5.0 nmol/mol、10.0 nmol/mol、25.0 nmol/mol、50.0 nmol/mol;高浓度系列为 50.0 nmol/mol、100 nmol/mol、200 nmol/mol、400 nmol/mol、600 nmol/mol。依次从低浓度到高浓度进行测定,绘制校准曲线。未完待续
  • 固定污染源废气中的挥发性有机物现场测试方案-便携式气相色谱柱质谱法(中)-北京博赛德
    在 固定污染源废气中的挥发性有机物现场测试方案-便携式气相色谱柱质谱法(上)我们介绍了气袋采样、HAPSITE分析检测固定污染源废气中的挥发性有机物的前期准备:配件和预制校准曲线工作事项。今天我们继续介绍样品的采集与稀释、空白测试以及样品分析工作过程。2.样品采集和稀释2.1样品采集使用气袋法采样系统进行样品采集,参考HJ732。图1 气袋采样系统 2.2样品稀释样品稀释步骤如下:(1)使用气袋采样系统进行样品采集;(2)使用玻璃注射器取体积为 Vn的氮气,注入干净的气袋中;(3)使用玻璃注射器取体积为 Vs 的样品气,注入同一气袋中;(4)使样品气与氮气充分混合均匀,并尽快分析。稀释倍数按公式(1)计算: f=Vs+Vn/Vs 公式(1)式中:f ——稀释倍数;Vs——样品气体积,ml;Vn ——氮气或洁净空气体积,ml。注:若条件允许,使用气体稀释装置进行稀释。3.空白测试将高纯氮气冲入气袋并连接BCT仪器,做空白测试。4.样品分析4.1预调查和预检测预调查:在测试前,应事先调查污染源情况,如行业排放标准所列的常见挥发性有机污染物等。预检测:开启SURVEY速查方法,运行20~30s空白作基线;将装有样品的气袋连接BCT仪器,响应值上升,并稳定下来(约持续10~20s即可)后,移走样品;再运行10~20s使响应值回归到基线。通过TIC响应值来预估样品浓度,并衡量稀释倍数。 图2 Survey实时谱图 4.2样品测试根据预调查和预检测,按照2中的方法进行样品采集和稀释后选合适的方法进行测试。按以下两种情况进行:速查结果谱图的TIC_MAX≥500万,选择高浓度系列方法;TIC_MAX<500万,选择低浓度系列方法。 未完待续
  • 浙江省生态环境监测协会发布《化工园区 无组织废气挥发性有机物的测定》《机动车排放外观检验方法和技术要求》两项团体标准征求意见稿
    各有关单位:根据《浙江省生态环境监测协会团体标准管理办法(试行)》的相关规定,《化工园区 无组织废气挥发性有机物的测定》《机动车排放外观检验方法和技术要求》两项团体标准已完成征求意见稿,现公开征求相关意见和建议。请各相关单位认真研究,填写《团体标准意见反馈表》,并于12月29日前将盖章书面意见反馈至浙江省生态环境监测协会邮箱,逾期未回复意见的按无异议处理。 联系人:何晓芳、施玉衡电 话:0571-28131682邮 箱:zjema2017@163.com 附件:1.《化工园区 无组织废气挥发性有机物的测定》征求意见稿2.《化工园区 无组织废气挥发性有机物的测定》编制说明3.《机动车排放外观检验方法和技术要求》征求意见稿4.《机动车排放外观检验方法和技术要求》编制说明5. 团体标准征求意见反馈表 浙江省生态环境监测协会2023年11月29日附件1:《化工园区 无组织废气挥发性有机物的测定》(征求意见稿).pdf附件2:《化工园区 无组织废气挥发性有机物的测定》编制说明.pdf附件3:《汽车排放外观测试方法和技术要求》(征求意见稿).pdf附件4:《汽车排放外观测试方法和技术要求》编制说明.pdf附件5:团体标准征求意见反馈表.docx
  • 盘点:大气中挥发性有机物检测技术
    大气中的VOCs不仅是生成光化学烟雾污染物的主要前体物,同时也是大气细粒子中有毒有害有机组分的重要来源,对形成灰霾有重要贡献,且一些VOCs本身具有毒性和致癌性。随着我国大气污染控制的不断深化,VOCs成为继颗粒物、二氧化硫、氮氧化物之后,我国大气污染控制中又一新的关注点。   VOCs定义   VOCs是一类有机化合物的组合,不同组织对其有不同的定义,主要分为两类,一类是学术意义上的定义,一类是环保意义上的定义。   化学意义上的定义主要有五种:1)挥发性有机物污染防治技术政策定义VOCs为熔点低于室温、沸点范围在50℃~260℃之间的有机化合物 2)世界卫生组织将VOCs定义为沸点范围在50-260℃之间,室温下饱和蒸汽压超过133.32Pa,在常温下以蒸汽形式存在于空气中的一类有机物,按挥发性有机物化学结构可进一步分为8类:烷类、芳烃类、烯类、卤烃类、酯类、醇类、酮类和其他化合物 3)ISO 4618/1-1998中VOCs指原则上,在常温常压下,任何能自发挥发的有机液体和/或固体 4)德国DIN55649-2000将VOCs定义为在常温常压下,任何能自发挥发的有机液体和/或固体,在通常压力条件下,沸点或初馏点低于或等于250℃的任何有机化合物 5)我国北京地方标准DB11/447-2007中将VOCs定义在20℃条件下蒸汽压大于或等于0.01kPa,或者特定适用条件下具有相应挥发性的全部有机化合物的统称。   环保意义上的定义主要有两种:1)美国EPA对VOCs的定义为除CO、CO2、H2CO3、金属碳化物、金属碳酸盐和碳酸铵外,任何参加大气光化学反应的碳化合物 2)美国ASTM D3960-98中VOCs指任何能参加大气光化学反应的有机化合物。   我国大气污染防治相关政策和标准中,还没有大气中VOCs的明确定义,而VOCs的定义关系到检测方法制定、治理措施等问题。   VOCs标准   我国VOCs检测标准有《HJ 732-2014固定污染源废气 挥发性有机物的采样 气袋法》、《HJ 733-2014泄漏和敞开液面排放的挥发性有机物检测技术导则》、《HJ 734-2014固定污染源废气 挥发性有机物的测定 固相吸附-热脱附/气相色谱-质谱法》、《HJ 644-2013 环境空气 挥发性有机物的测定 吸附管采样-热脱附 气相色谱-质谱法》以及《GB 21902-2008 合成革与人造革工业污染物排放标准》附录C,均采用色谱法进行分析。   VOCs排放标准国家还没有相关规定,但是上海、天津、广东等地区针对不同行业制定了一些地区标准,如《DB12/524-2014 工业企业挥发性有机物排放控制标准(天津)》、《DB44/814-2010家具制造行业挥发性有机化合物排放标准(广东)》、《DB44/815-2010印刷行业挥发性有机化合物排放标准(广东)》、《DB44/816-2010表面涂装(汽车制造业)挥发性有机化合物排放标准(广东)》、《DB44/817-2010制鞋行业挥发性有机化合物排放标准(广东)》、《DB31/374-2006半导体行业污染物排放标准(上海)》。   美国EPA在上世纪八九十年代制定了一系列大气有毒有机物检测标准,其中涉及VOCs检测的共有6项,均是气相色谱法,但可配备不同的采样方法和检测方法。   VOCs检测   我国大气中的VOCs主要来源于石油化工、有机化工、表面涂装、包装印刷、医药、塑料制品等行业。因此大气中VOCs的检测主要应用于三个方面:一大气中VOCs检测 二污染源集中排放VOCs检测 三生产过程VOCs泄露检测。与三种应用场合相适应,VOCs的检测仪器也分为实验室仪器、在线式仪器和便携式仪器三类。   实验室VOCs检测   VOCs实验室分析发展较早,也比较成熟。分析方法为使用采样袋、苏码罐、吸附剂或吸收液将VOCs采集回实验室,再经过热解析、溶剂解析等前处理过程后,利用GC或HPLC分析。   实验室VOCs检测主要难点在于选择合适的采样方法保证可以采集到所有挥发性有机污染物,制定规范的运输方案防止运输过程中VOCs的损失,选择合适的前处理过程保证所有的挥发性有机物进入分析仪器。   实验室分析方法的主要优势是结果准确,主要缺点是时效性差,采样和运输过程中易导致样品损失,影响测定的准确性和可靠性。   在线VOCs检测仪   VOCs在线分析仪主要有在线气相色谱仪、在线质谱仪、在线气质联用仪、在线PID和FID检测器、在线红外光谱仪、在线激光检测仪和在线差分光学吸收光谱仪等。   由于VOCs没有标准的检测方法,而且在线系统用于现场检测,而不同现场的挥发性有机物种类差异较大且相对稳定,故检测需求不同。因此需要根据自身的需求和各种检测仪器的特点选择合适的检测方法。   在线气相色谱仪可检测出已知挥发性有机物的浓度 在线质谱仪可同时实现挥发性有机物的定性和定量检测,但无法区分同分异构体 在线PID和FID检测器可得出VOCs的总量,且仪器体积较小 各种在线光谱仪检测范围宽,可适应各种工业场合应用。   在线VOCs检测仪主要的国内厂家有聚光科技、广州禾信、宝英科技、中科光电、富瞻环保、武汉天虹等,国外厂家有英国Markes、日本亚那科、奥地利IONICON、韩国KNR、德国AMA、法国Chromatotec、美国CerexMS等。   便携式VOCs仪器   便携式VOCs分析仪主要有便携式FID/PID检测器、便携红外分析仪、便携激光光谱仪、便携式气质联用仪等。   最新公布的环保部标准中便携式仪器提到了FID检测器、PID检测器和红外吸收检测器三种。   便携式VOCs检测仪主要的国内厂商有东西分析、崂应、富瞻环保等,国外厂商有美国Inficon、英国SIGNAL、美国雷格沃夫、美国华瑞、日本亚那科、英国科尔康等。     挥发性有机物是一种混合物,由于其定义未明确,因此监测需求也不明确。目前的主要检测方法是气相色谱法、质谱法和光谱法,环保部公布的行业标准中采用的是气质联用法。其中环境空气挥发性有机物(HJ644)标准中测定的是35种目标有机化合物,主要是烷烃、烯烃和苯系物,固定污染源废气挥发性有机物(HJ734)标准中测定的是24种目标有机化合物,主要是酮类、酯类、烯烃类和苯系物。
  • 固定污染源废气中的挥发性有机物现场测试方案-便携式气相色谱柱质谱法(下)-北京博赛德
    在固定污染源废气中的挥发性有机物现场测试方案-便携式气相色谱柱质谱法(中)我们介绍样品的采集与稀释、空白测试以及样品分析工作过程,今天我们来介绍结果计算、设备附件以及该方案的优势。5、结果计算标准状态下目标化合物浓度按照公式(2)计算: ρ=ρx×M/22.4×f/1000 公式(2)式中:ρ——标准状态下样品中目标化合物的浓度,mg/m3;ρx——经校准曲线计算得到的目标化合物的浓度,nmol/mol;M——目标化合物的摩尔质量,g/mol;22.4——标准状态下(273.15 K,101.325 kPa)下气体的摩尔体积,L/mol;f——稀释倍数,无量纲。6.附件针对污染源VOCs采样、分析的种种难题,博赛德推出一套污染源采样稀释系统。采样杆自带加热功能,可以避免污染源废气样品冷凝而导致样品组分丢失;管路采用熔融硅涂覆,系统不易污染或残留,也大大增加了分析数据的真实性;高精度的数字稀释系统,稀释比例易于控制,稀释范围大,单次BCT大稀释倍数100倍,BCT大可稀释BCT500倍。 7.方案优势7.1 样品预调查和预检测时,样品直接进入质谱系统,不经过色谱柱,避免了色谱柱的污染,耐污染能力强。7.2 对于预调查浓度高的样品,采用样品稀释的方式,稀释方式相对于小体积进样,样品的代表性更强,可更有效的评估固定源的排放浓度。7.3 样品稀释过程可任意控制稀释比例,扩大了检测样品浓度范围。7.4结果定性采用国际标准和技术研究所(NIST)与(AMDIS)的质谱库,不采用自定义的其它普库,提高定性结果的准确性和可靠性。7.5 采样袋采样和真空瓶采样两种方式可选择,真空瓶采样方式,整个采样过程无工具连接,真空瓶材质惰性比采样袋更好,耐污染程度高。7.6 真空瓶可重复利用,使用成本低。7.7 真空瓶可提高样品的存储时间,可用于样品备份。BCT此,固定污染源废气中的挥发性有机物现场测试方案介绍完毕,更多精彩,请持续关注我们吧。
  • 130万!辛集市生态环境局辛集市购买挥发性有机气体泄漏检测红外热像仪、本安防爆氢火焰离子法便携式挥发性有机气体分析仪设备项目
    项目编号:ZCHX-2022-0335项目名称:辛集市生态环境局辛集市购买挥发性有机气体泄漏检测红外热像仪、本安防爆氢火焰离子法便携式挥发性有机气体分析仪设备项目预算金额:1300000最高限价(如有):1300000采购需求:购买挥发性有机气体泄漏检测红外热像仪1套、本安防爆型氢火焰离子法便携式挥发性有机气体分析仪1套合同履行期限:交货期:签订合同一个月本项目不接受联合体投标。
  • 关于印发《上海市固定污染源挥发性有机物在线监测体系建设方案》的通知
    p   7月5日上海市环境保护局发布关于印发《上海市固定污染源挥发性有机物在线监测体系建设方案》的通知,内容如下: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/45b659d1-949c-4eae-aeae-5e983777b457.jpg" title=" 上海市环境保护局_副本.jpg" / /p p style=" text-align: center "  关于印发《上海市固定污染源挥发性有机物在线监测体系建设方案》的通知 /p p style=" text-align: center " 沪环保总〔2018201820182018〕231 号 /p p   各区环保局,各有关单位: /p p   根据国家《“十三五”挥发性有机物污染防治工作方案》和本市实施固定污染源排污许可制度的有关要求,在完成试点工作的基础上,我局制定了《上海市固定污染源挥发性有机物在线监测体系建设方案》。现印发给你们,请遵照执行。 /p p style=" text-align: right "   上海市环境保护局 /p p style=" text-align: right "   2018年7月4日 /p p   抄送:上海化工区管委会 /p p   附件: /p p style=" text-align: center " 上海市固定污染源挥发性有机物在线监测体系建设方案 /p p   根据国家《“十三五”挥发性有机物污染防治工作方案》和本市实施固定污染源排污许可制度的有关要求,制定本方案。 /p p   一、实施范围本市固定污染源挥发性有机物(VOCs)在线监测体系的实施范围,包括以下排污单位涉及VOCs排放的排口: /p p   (一)纳入排污许可证管理的排污单位 /p p   (二)大气环境重点排污单位 /p p   (三)国家和本市规定应当实施在线监测的排污单位。 /p p   二、安装要求 /p p   (一)安装范围。纳入排污许可证管理的排污单位的主要排口 重点排污单位处理设施设计风量大于10000立方米/小时的排口。受监测技术及设备限制,处理设施进口和火炬系统排口暂不纳入安装范围,待相关技术要求出台后另行规定。 /p p   (二)安装位置。涉及VOCs排放的排口或烟道。 /p p   (三)安装设备。采取非燃烧方式治理VOCs的,在排口直接安装非甲烷总烃在线监测设备,包含非甲烷总烃、烟气温度、烟气压力、烟气流速或流量、烟气含湿量等监控项目 采取燃烧方式治理VOCs的,除上述监控项目外,还需在排口同时加装氮氧化物在线监测设备。 /p p   针对《石油化学工业污染物排放标准》(GB 31571-2015)、《石油炼制工业污染物排放标准》(GB 31570-2015)以及其他行业标准有明确排放限值的VOCs单项指标,排污单位还应选择重点排口试点开展重点指标的在线监测工作。 /p p   三、工作要求 /p p   (一)建设进度。已核发排污许可证的企业在2018年12月31日前完成设备的建设、联网和备案 其他排污单位应当于纳入挥发性有机物在线监测体系实施范围之日起的6个月内完成设备的建设、联网和备案。 /p p   (二)运行维护。依据《上海市固定污染源非甲烷总烃在线监测系统安装及联网技术要求(试行)》和《上海市固定污染源非甲烷总烃在线监测系统验收及运行技术要求(试行)》,以及《固定污染源烟气(SO2、NOX、颗粒物)排放连续监测技术规范》(HJ 75-2017)开展运行维护。 /p p   (三)其他监管要求。本市固定污染源挥发性有机物在线监测体系建设的其他监管要求,按照《上海市固定污染源自动监测建设、联网、运维和管理有关规定》(沪环规〔2017〕9号)执行。 /p
  • 静守一方碧水清流——EXPEC 2100系列 水中挥发性有机物在线监测系统
    EXPEC 2100系列 水中挥发性有机物在线监测系统(以下简称EXPEC 2100),可在无人监守下进行连续性在线监测,监测水中VOCs的浓度,主要应用于河流断面水质监测、湖泊、水库水质监测、饮用水源水质监测、自来水厂原水的在线监测等领域。系 统 组 成 EXPEC 2100由EXPEC 240全自动吹扫捕集进样器和EXPEC 2000-MS在线GC-MS组成,主要包括在线采样、吹扫捕集、GC-MS分析三部分。 EXEPC 240是配合在线GC-MS分析的前处理设备,具有自动加入内标的功能,通过连续的采水、吹扫捕集和解吸,将获得的样品送至在线GC-MS进行实时的在线分析,得到准确的定性、定量结果。系 统 特 点定性能力强 EXPEC 2100采用吹扫捕集—气质联用法的标准分析方法,用保留时间结合化合物的指纹质谱图来鉴定组分,其定性远比GC方法可靠。 质谱作为检测器,既是一种通用型检测器,又是有选择性的检测器。它通过检测离子质荷比(m/z),从而获得化合物质谱图,解决气相色谱定性的局限性问题;针对不同化合物,GC-MS具有全扫描、选择离子、二级质谱等多种检测模式。在应用时,因优于其他色谱检测器,通常被作为最终确证方法。 质谱不但能对目标化合物进行准确的定性定量分析,还能对未知化合物进行定性半定量监测,有效实现水中挥发性有机物的监测预警。定量精度高 GC方法中常用的只有FID和TCD是通用检测器,其余都是选择性检测器,与检测样品中的元素或官能团有关。 与GC利用总离子流峰面积定量不同,GC-MS常用提取离子峰面积进行定量,这样可以较大限度地去除其他组分干扰,使得GC-MS的定量精度和灵敏度优于GC。 此外,还可以利用质谱分离在色谱图上无法分离的色谱峰,如1,1,1,2-四氯乙烷和氯苯在常见的DB-1色谱柱上因保留时间相同无法分离,但在质谱上可将二者分离开。自动化程度高 可灵活设置采水周期,进行自动取水分析; 分析时自动加入内标物,确保监测数据的稳定性; 智能监控仪器及系统运行状态,实时将监测数据上传至指定平台; 整套系统不使用附加溶剂,仅需定期更换载气; 搭配自动稀释仪,可实现标液的自动分析; 较大程度降低了运维人员的工作难度和工作强度。流路分析图系 统 应 用《地表水环境质量标准》分析应用 EXPEC 2100分析GB 3838-2002《地表水环境质量标准》中常见的24种VOCs,相关方法学数据如下:检测结果: 24种组分在一定浓度范围五点标曲线性良好,线性相关系数R2在0.9955~0.9999之间; 标样重复进样6次,各组分含量RSD在3.56~9.86%之间; 对实际水样进行加标回收实验,24种VOCs回收率在94.2~118.7%之间; 标样连续进样7次,求得方法检出限在0.028~0.088μg/L之间。 各项性能指标均符合GB 3838-2002标准要求,适用于地表水、海水、工业废水等各类水体的在线监测。满足HJ 639-2012方法 EXPEC 2100不仅能检测GB 3838-2002中常见的24种VOCs,也能满足HJ 639-2012《水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法》中的56种VOCs的检测需求。
  • 580万!海南省生态环境监测中心挥发性有机物在线自动监测等设备购置项目
    项目编号:HFGC20222114H招标编号:HFGC20222114H政府采购计划编号:HFGC20222114H采购计划备案文号:项目名称:挥发性有机物在线自动监测等设备购置项目预算金额:5800000元最高限价:挥发性有机物在线自动监测等设备购置项目(HFGC20222114H):无采购需求:环境空气挥发性有机物(VOCs)自动监测系统(116种VOCs组分+非甲烷总烃,含三年运维服务)、环境空气挥发性有机物(VOCs)自动监测系统(57种PAMS物质+非甲烷总烃,含三年运维服务)等仪器设备一批。合同履行期限:挥发性有机物在线自动监测等设备购置项目(HFGC20222114H): 合同签订后60个日历日内全部货物需达到采购人指定地点,90个日历日内需全部安装调试完毕是否允许联合体投标:挥发性有机物在线自动监测等设备购置项目:否
  • 《石化企业泄漏检测与修复工作指南》与《工业企业挥发性有机物泄漏检测与修复技术指南》技术对比
    《石化企业泄漏检测与修复工作指南》与《工业企业挥发性有机物泄漏检测与修复技术指南》技术对比自2022年4月1日起《工业企业挥发性有机物泄漏检测与修复技术指南》正式实施以来,已经历时3个多月。经过多方调研发现,对于新规有些地区已经开始实施并主动布局,但更多行业人士持被动观望态度。这仅有两字之差的两份文件,究竟有何区别,又代表着什么样的意义?自2015年开始,石化以及煤化工、制药、炼焦等行业已按照《石化企业泄漏检测与修复工作指南》持续开展了多轮次LDAR工作。随着国家对VOCs管控力度持续加强,LDAR工作已逐渐从上述行业推广到各个行业,凡企业内涉VOCs密封点数量超过2000个均应开展LDAR工作,按照《打赢蓝天保卫战三年行动计划》中关于“出台泄漏检测与修复标准”的要求,《工业企业挥发性有机物泄漏检测与修复技术指南》(HJ 1230-2021)应运而生。鉴于在此之前石化企业LDAR指南是当前从事LDAR的工作的重要依据甚至可以说是唯一依据,业内苦于LDAR低行业进入门槛,近几年LDAR行业低价竞争、造假现象普遍,究其原因:监管覆盖有限、企业主观意识不积极、第三方检测受制与低价市场竞争、监管处罚双重压力。而如今《工业企业挥发性有机物泄漏检测与修复技术指南》的出台,能否助推行业变革,成为关注的重点。本文主要对比分析了一些石化指南和工业企业指南的异同,帮助你可以快速了解。不同点1、适用范围石化指南和工业企业指南均对LDAR工作的项目建立、现场检测、泄漏维修和质量保证与控制提出了技术要求,但工业企业指南相比与石化指南,其对LDAR报告也提出了技术要求。在适用性方面,石化指南主要适用于石油炼制工业、石油化学工业,煤化工等其他行业可参照执行;工业企业指南适用于所有涉VOCs密封点的工业企业,同时明确了企业废气收集系统输送管道组件也需要纳入LDAR工作,此要求也与《挥发性有机物无组织排放控制标准》(GB37822-2019)10.2.3中对废气收集系统正压输送管线应开展泄漏检测的要求相吻合。2、项目建立在项目建立方面,石化指南和工业企业指南均从资料收集、装置适合性分析、物料状态辨识与边界划分、密封点分类与计数以及台账建立提出了要求,具体内容基本无原则性不同。3、工作流程石化指南对各项目建立、现场检测、泄漏维修各流程进行详细说明,工业企业指南同样进行说明,后者与前者在流程上没变化,即沿用了之前的工作流程。但是新标准增加了人员作业符合企业相关作业制度,穿戴符合GB/T11651要求及相关的个体防护装备。维修前应对人员、设备及工作过程进行安全评估,新标准对工作过程的人员安全及工作安全进行完善补充。4、设备及管线适合性分析在设备适合性分析方面,区别主要体现在豁免条件。针对豁免条件,石化指南和工业企业指南均在工作条件方面提出豁免原则,即工作状态处于负压或年接触VOCs物料时间不超过15天的设备可进行豁免。工业企业指南则更加精细,是从设备选型及管控措施方面提出了豁免原则,设备选型豁免条件包括选用本质低泄漏设备(如屏蔽类、磁力类、隔膜类的泵、压缩机、搅拌器等)或密封隔离液压力高于工艺压力的设备,管控措施豁免条件包括设备配备失效检测和报警或车间内安装VOCs废气收集系统等。简而言之即对于采用密封填料压力大于内压的高效密封设备可以豁免。最关键的是车间内安装VOCs废气收集处理系统,可捕集、输送动静密封泄漏的车间可以不用做LDAR,比如密闭收集的制药车间、精细化工车间等今后可不用做LDAR检测。强化了LDAR检测的针对性,主要是对直接外排大气的动静密封点进行检测。5、现场检测在现场检测方面,石化指南与工业企业指南在检测仪器、仪器耗材、响应因子、示值检查、异常处理、检测频次等方面均提出了具体要求,但两者的具体要求有所差异,具体对比如下表所示: 6、术语定义关键性定义,如涉VOCs物料、不可达密封点等均为明显变化。7、密封点现场信息采集工业企业指南去掉了密封点工艺描述和位置描述。8、现场检测及仪器要求仪器要求没有变化,但校准气体浓度要求不同,石化指南标气浓度为泄漏限值的75%-85%,工业企业指南为泄漏限值的1倍-1.1倍。9、检测与读数检测要求基本一致,但工业企业指南增加了“动密封(泵、压缩机、搅拌器等) 检测,采样探头距轴封不超过 1 cm”10、泄漏认定检测频次工业企业指南进一步明确。 重点,全年检测频次不变!11、质量控制(1)管理系统石化指南要求建立LDAR管理系统,工业企业指南进一步明确“企业应建立LDAR管理体系,对LDAR实施及检测数据进行系统化管理,并定期对实施情况进行内部审核,保证实施质量。”(2)资料审核石化指南规定审核内容,工业企业指南进一步要求审核记录“企业应组织审核物料平衡表、PFD、P&ID等资料,并留有记录。审核记录应保存不少于3年。(3)人员要求工业企业指南明确“密封点台账宜由现场信息采集人员为主建立,现场信息采集人员应熟悉装置设备及工艺,能够准确识别物料状态,并掌握密封点分类与计数、不可达密封点辨识等工作要点。”12 、记录要求石化指南永久保存,工业企业指南保存时间为3年,记录的内容更清晰,特别是增加内审记录,进一步明确LDAR的主体责任是排污企业。13、群组信息工业企业指南去掉了群组内密封点数量统计。 相同点1、密封点分类、不可达密封点辨别、计数两者没有变化2、密封点台账群组划分、群组编码无变化,即为:6位字符+8位数字,如:XXXZL2-00-00-0005,3、响应因子及修正无变化4、泄漏修复要求前后一致5、报告两者一致 重点归纳综上所述,其实不难发现,《工业企业挥发性有机物泄漏检测与修复技术指南》是《石化企业泄漏检测与修复工作指南》的升级版,但是大的原则、工作方式、技术要求没有本质变化。总结下来,新标准的主要意义为以下4点:1、新标准对豁免清单、人员要求、内审进一步明确,能进一步促进LDAR工作质量。2、新标准的LDAR的主体责任进一步明确,特别是内审环节,避免企业将工作扔给检测公司,撒手不管。3、新标准对室内车间豁免的条件进行明确说明,能减少部分企业的LDAR成本,同时也使LDAR工作更具针对性。4、对检测频次进一步细化。强化企业连续性检测重点延伸工业企业指南已经涉及到所有涉VOCs密封点的工业企业,不再仅局限于石油炼制工业、石油化学工业,煤化工等行业,范围更广,要求更明确,不仅会对LDAR检测行业有很大的促进作用,也会对VOCs污染控制力度得到进一步加强。具体体现在以下几个方面:1、对人员的要求更高,特别是建档环节要求分析记录的内容具备一定的专业性。2、加强企业主体责任后,企业自检和LDAR本地化将成加速形成,特别是检测周期上,如果外地公司,受地域、时间、工期安排以及疫情的情况下,很难对多省市的客户按周期完成。3、LDAR因行业特点,装置多、密封点多,现场检测记录数值,其工作性质并不适用实验室的管理流程,其质量控制要求和传统的实验室检查质量控制要求差别太大,同时在加强企业主体责任的前提下,企业自主安排时间灵活检查的操作性更强,LDAR检测公司的工作量将进一步萎缩,但业务范围更广。4、FID的仪器生产厂商将迎来爆发期,FID设备将成为有一定规模的公司的必配设备。
  • 2项国家生态环境标准意见发出,涉及挥发性有机物、非甲烷总烃检测方法
    为规范生态环境监测工作,生态环境部组织编制了《固定污染源废气 挥发性有机物的采样 气袋法》等2项国家生态环境标准征求意见稿,现公开征求意见,截止时间至9月26日。(一)固定污染源废气 挥发性有机物的采样 气袋法本标准规定了固定污染源废气中挥发性有机物的气袋采样法。 本标准适用于固定污染源废气中非甲烷总烃和挥发性有机物组分的现场采样。适用于本方法的挥发性有机物应满足在方法规定的分析时效内气袋保存回收率不低于70%的要求。非甲烷总烃和部分挥发性有机物组分的气袋保存回收率参见附录 A。本标准是对《固定污染源废气 挥发性有机物的采样 气袋法》(HJ 732-2014)的修订。原标准《固定污染源废气 挥发性有机物的采样 气袋法》(HJ 732-2014)首次发布于2014年,起草单位为上海市环境监测中心、同济大学、中国环境监测总站。本次为第一次修订,主要修订内容如下: ——修订适用范围,删除废气温度须低于 150 ℃的限制; ——修改完善“方法原理”; ——增加“试剂和材料”章节,完善气袋质量要求,增加辅助气体要求;——在“仪器和设备”中,增加稀释采样法采样系统,在直接采样法采样系统中增加冷凝(除湿)装置的可选项; ——在“采样”中增加采样前准备,以及空白样品制备等要求;——在“质量保证和质量控制”中增加采样系统检查和清洁保养、气袋质量检查要求和方法、气袋保存回收率试验要求,以及采样系统稀释比核查要求等内容;——增加“注意事项”章节; ——修改完善附录 A; ——增加附录 B 和附录 C。本标准自实施之日起,《固定污染源废气 挥发性有机物的采样 气袋法》(HJ 732-2014)废止。 本标准主要起草单位:上海市环境监测中心、中国环境监测总站、江苏省南京环境监测中心。编制组主要成员:王向明、裴冰、宋钊、周守毅、吴迓名、敬红、秦承华、刘通浩、谢馨、许磊(二)环境空气非甲烷总烃连续自动监测系统技术要求及检测方法本标准规定了环境空气非甲烷总烃连续自动监测系统的原理和组成、技术要求、性能指标和检测方法。 本标准为首次发布。本标准主要起草单位:中国环境监测总站、北京市生态环境监测中心和上海市环境监测中心。本标准规定了环境空气非甲烷总烃连续自动监测系统的原理和组成、技术要求、性能指标和检测方法。 本标准适用于环境空气非甲烷总烃连续自动监测系统的设计、生产和检测。 针对应用于不同目的、场合的监测,本标准规定了相应的测量范围和性能指标要求。用于环境空气的监测系统称为Ⅰ型监测系统,用于无组织排放监控点空气的监测系统称为Ⅱ型监测系统。编制组主要成员:张杨、钟琪、薛瑞、王强、赵瑞峰附:固定污染源废气 挥发性有机物的采样 气袋法(征求意见稿).pdf《固定污染源废气 挥发性有机物的采样 气袋法(征求意见稿)》编制说明.pdf环境空气非甲烷总烃连续自动监测系统技术要求及检测方法(征求意见稿).pdf《环境空气非甲烷总烃连续自动监测系统技术要求及检测方法(征求意见稿)》编制说明.pdf
  • 挥发性有机物泄漏检测与修复(LDAR)解决方案
    2022年4月1日起实施的HJ1230-2021《工业企业挥发性有机物泄漏检测与修复技术指南》(以下简称“HJ1230-2021”),再次将LDAR送上“热搜”! LDAR是什么?为何要进行LDAR?LDAR工作如何开展?LDAR检测技术与设备有哪些?如果你也有这些疑问,不妨花3分钟一起来学习一下。PART01 什么是LDAR? LDAR即泄漏检测与修复(leak detection and repair),是目前国际上通用的一种无组织VOCs控制技术,可广泛应用于石化等行业中设备泄漏环节的VOCs减排。说白了就是采用固定或移动监测设备,监测石化、化工企业各类反应釜、原料输送管路、泵、压缩机、阀门、法兰等易产生VOCs的泄漏处,并修复超过一定浓度的泄漏处,从而达到控制原料泄漏对环境造成污染,是目前国际上较先进的化工废气检测技术。PART02 为何要进行LDAR?可以降低污染物排放,减少环境污染。保障员工的生命安全,提高设备的安全性。让企业有效减少因泄露造成的生产成本,提高经济效益。PART03 LDAR工作如何开展? 根据HJ1230-2021标准要求,LDAR工作步骤如下图所示: 除了上述LDAR工作步骤以外,HJ1230-2021中还进一步明确了LDAR质量管理体系的建立: 工业企业的各类设备与管线组件往往十分复杂,阀门、法兰等易产生VOCs的泄漏处数目庞大,如果靠人力手工记录每一个检测点的检测和修复情况,不仅工作量巨大,工作效率低,而且极易出现纰漏。针对这一管理难题,崂应推出了“LDAR泄漏检测与修复管理平台”,可以与崂应3033型便携式挥发性有机物气体检测仪搭配使用,轻松实现LDAR全流程智能化管理。 总而言之,无论何时开展LDAR工作,现场检测环节都是必不可少的重要一环,如何选择合适的检测技术与设备更是绝大多数客户的痛点所在。 接下来我们就结合HJ1230-2021标准内容和相关检测设备要求,为您梳理LADR工作解决方案如下:PART04 LADR工作解决方案HJ1230-2021中现场检测步骤分为“常规检测”和“非常规检测”:Routine detection(一)常 规 检 测 如图所示,HJ1230-2021中要求开展常规检测应配备氢火焰离子化检测仪,推荐使用崂应3033型便携式挥发性有机物气体检测仪作为常规检测仪器,它是专为VOCs无组织排放检测开发的快速检测设备,主要采用FID技术对各类管阀件、排泄口和设施密闭系统的泄漏点进行快速监测和精准识别,符合HJ1230-2021中检测仪器性能要求。Unconventional testing(二)非 常 规 检 测如图所示,HJ1230-2021中非常规检测分为日常巡检和LDAR周期性检查。日常巡检主要以目视检查为主,而周期性检查方法主要包括光学检查、超声检查、皂液检查、其他仪器检测等。其中“光学检查”方法是指“根据受控设备中VOCs物料组分和含量,选择合适的光学仪器(如光学气体成像仪、傅里叶红外成像光谱仪等)。发现有明显来自密封点的烟羽,则该密封垫为疑似泄漏点。”光学检查推荐使用崂应3233型 气体泄漏红外热像仪,它是采用高精度制冷型红外探测器,实现远程非接触式红外成像,帮助快速发现、排查泄漏点。“其他仪器检测”方法是指“可以使用其他任何对VOCs有响应的仪器(包括催化燃烧式可燃气体检测仪、光离子化检测仪等)辅助检测”。光离子化检测仪推荐使用崂应2026型手持式单气体检测仪(PID)或崂应3033型 便携式挥发性有机物气体检测仪(选配PID模块),采用PID技术对泄漏点进行快速检测,帮助用户及时发现泄漏点,以进行修复。
  • 强化监测治理技术 协同挥发性有机物减排
    “十二五”期间,我国环境污染物新增量涨幅进入收窄期。但是,国家经济战略布局性的污染由点到面扩张,叠加明显,环境承载能力已经达到或基本接近上限,环境污染已经进入堆积爆发期。  今年入冬以来,全国“三区十群”大范围、高频度、长时间处于灰霾重度污染天气。根据大气环境质量监测数据,颗粒物(PM2.5/PM10)是造成重度污染灰霾天气的真凶,而附着在颗粒物上的挥发性有机物(VOCs)是造成大气环境复合污染和人身重大危害的最主要元凶之一。  清华大学环境学院环境管理与政策教研所所长常杪教授在2016(第二届)国际VOCs监测与治理合作论坛的报告中指出:目前,我国十六个省份出台了VOCs排污收费的政策,继SO2和NOx两大约束性因子之后,VOCs成为下阶段废气重点管控因子。对于VOCs减排的管理和市场需求,需要排污方的源头控制和服务方的检测与监测、治理、咨询和运维两方协同,才能达到有效治理的目的。监测技术是排污收费的基础和治理结果的评价依据,所以,监测布点的科学性和有效性、监测设备的自动化和智能化以及对监测数据的处理利用至关重要。  VOCs来源分散,只有构建覆盖重要排放源和敏感点的监测网络,才能为政府管理决策和末端治理提供科学依据。  聚光科技(杭州)股份有限公司(以下简称“聚光科技”)是目前鲜有提出针对VOCs“监测、管理、治理”三位联动体系,并且是国际上唯一一家具备点源/面源/移动监测设备、环境信息化平台、治理技术和LDAR等综合能力的服务商。董事长叶华俊在本届VOCs论坛上,介绍了主要针对园区的VOCs从“监控、预警”到“诊断、治理、评估、决策”的全方位一体化管理思路,对于全面提升区域风险监控预警和防控能力,提高靶向整治效率具有非常大的积极作用。  论坛同期,聚光科技推介了2015年底起承建的如东沿海经济开发区环境监控预警和风险应急管理平台项目(投资金额3.1亿),主要围绕特征污染物(VOCs),建立开发区监控、预警、应急、调控一体化平台,实现点源VOCs及恶臭在线监控、面源有毒有害气体在线监测和泄漏检测与修复服务,摸清开发区企业特征污染排放状况和区域环境质量现状;建立开发区污染风险监控预警和应急防控体系,实现污染物浓度时空分布变化趋势预测、重污染预警和应急响应;建立开发区污染排放源清单,通过特征污染物数据分析,实现污染排放源追踪,靶向治理。  在当前人人都开始谈论和埋怨灰霾天气的“十三五”伊始,环境污染防治已经进入了“攻坚期”。VOCs形势严峻,必须要做到管理协同、区域协同和技术协同,才能缩短周期,提高效益。而监测的协同,在VOCs整个减排周期,尤其在初期,是最关键的一环。
  • 谱育科技水中挥发性有机物在线监测系统获得中国环境保护产品证书
    近日,聚光科技自孵化子公司谱育科技自主研发的EXPEC 2100水中挥发性有机物在线监测系统在环境保护部环境监测仪器质量监督检验中心顺利完成适用性检测,并获得中国环境保护产品认证证书(CCEP),为改善国家水生态环境质量构建现代生态环境监测体系提供了有力保障。针对目前水生态环境质量自动监测仪器覆盖率低、智能化程度低、监测因子少,尤其不能覆盖低含量VOCs等的现状,谱育科技突破多项关键技术成功开发了EXPEC 2100水中挥发性有机物在线质谱监测系统,可连续监测水中痕量级VOCs组分,监测因子多达120种以上,一经推出便荣获2021年环境科技进步二等奖。EXPEC 2100水中挥发性有机物在线监测系统采用吹扫捕集-气相色谱质谱联用技术。吹扫捕集针对水中VOCs种类繁多、浓度极低、多相共存的特点,具备富集效率高、受基体干扰小等优点,是水中VOCs优质的前处理方式。气相色谱是分离复杂化合物的首选,但是一根色谱柱很难分离所有的化合物,多组分分离时会发生共流出现象,使用常规检测器如FID、ECD、MAID进行检测时很容易导致误判。 并且在定量方面FID对水中常见卤代烃等消毒产物的响应较差,ECD和MAID是选择性检测器,仅对电负性化合物和电离能低于11.8eV的化合物有响应,因此很难兼顾痕量VOCs多组分同时检测,并且两种检测器均含有放射源(Ni-63),操作和维护需小心谨慎注意排风。采用质谱作为气相色谱的检测器,不仅灵敏度优于常规检测器,同时可采集到化合物的质谱图信息兼顾了定性和定量。即使化合物共流出也可依据化合物自身的特征离子进行准确的定性和定量,同时针对非目标库化合物可依靠解卷积和NIST谱库进行快速定性筛查,不仅满足水中痕量VOCs多组分同时监测,还能对未知物快速筛查和准确定性定量,满足应急监测和精准控制,为环境污染泄漏提供有效预警及数据支持。
  • 2017大气挥发性有机物应急、在线监测及治理技术研讨会召开
    p & nbsp & nbsp & nbsp 近年来,我国多个城市和区域频繁发生大范围、持续多日的大气污染天气。一些主要城市大气细颗粒物(PM2.5)和臭氧(O3)超标严重,污染影响范围广、持续时间长,严重影响空气质量和人体健康,引起了社会的广泛关注。挥发性有机物(VOCs)是PM2.5和O3的重要前躯体,对空气质量有很大的影响。目前,VOCs污染防控已成为我国生态文明建设的重要任务,受到国家的高度重视,“十三五”期间,国家把16个省份纳入了VOCs减排约束性考核。 br/ & nbsp & nbsp & nbsp 为了集中分享大气挥发性有机物(VOCs)的应急、在线监测和治理技术的最新进展,探讨技术发展过程中的问题及未来发展方向,由暨南大学质谱仪器与大气环境研究所(以下简称大气所)主办,广州禾信仪器股份有限公司(以下简称禾信仪器)协办的“2017年大气挥发性有机物应急、在线监测及治理技术研讨会”于2017年5月24日-26日在上海新晖大酒店成功举办,吸引了来自全国各地环境管理部门、科研院所及环保相关企业单位的170多名专家和技术人员参会。 /p p style=" text-align: center " img width=" 600" height=" 337" title=" 1.png" style=" width: 600px height: 337px " src=" http://img1.17img.cn/17img/images/201706/insimg/f75300e2-dc54-4b08-8c67-ae140385e8ac.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p & nbsp & nbsp & nbsp 会议伊始,暨南大学质谱仪器与大气环境研究所所长周振教授作大会致辞,周振介绍了举办此次研讨会的初衷,同时介绍了暨南大学大气所团队和禾信仪器团队,并承诺会继续努力,不断推出新技术和新方法,为我国的环境监测事业做出新的贡献。& nbsp /p p style=" text-align: center " img title=" 2.jpg" src=" http://img1.17img.cn/17img/images/201706/insimg/66f01e96-bf9b-4529-9281-2eab09f44f02.jpg" / /p p style=" text-align: center " 暨南大学质谱仪器与大气环境研究所所长周振 /p p style=" text-align: left " & nbsp & nbsp & nbsp 此次会议共邀请了15位VOCs领域的专家做专题报告,包括中国环境科学研究院研究员柴发合,华南理工大学环境与能源学院院长叶代启,中国环境监测总站质检室梁宵博士,北京市环境监测中心王琴博士,上海市环境监测中心大气室副主任高松,浙江省环境监测中心副总工程师田旭东,浙江省环境保护科学设计研究院大气所所长吴健,上海市环境监测中心高级工程师崔虎雄,中国石化上海石油化工股份有限公司安环部高级工程师杨自然,宁东能源化工基地管委会环保局科长温雪山,广州禾信仪器股份有限公司VOCs产品总监燕志奇等。 /p p style=" text-align: center " & nbsp img title=" 3.png" src=" http://img1.17img.cn/17img/images/201706/insimg/ef75cc17-a102-4730-87d7-4a183dbf3141.jpg" / /p p style=" text-align: center " 中国环境科学研究院研究员柴发合 br/ 专题报告:蓝天保卫战,大气污染综合防治 br/ /p p style=" text-align: center " img title=" 4.png" src=" http://img1.17img.cn/17img/images/201706/insimg/f6a8c11f-0b8a-4149-a765-bc55df34aac3.jpg" / & nbsp br/ 华南理工大学环境与能源学院院长叶代启 br/ 专题报告:“十三五”期间挥发性有机物的排放与控制& nbsp /p p style=" text-align: center " img title=" 5.png" src=" http://img1.17img.cn/17img/images/201706/insimg/2003525d-b15c-4445-b9ed-da872148e6d9.jpg" / /p p style=" text-align: center " 上海市环境监测中心大气室副主任高松 br/ 专题报告:VOCs在线监测关键技术研究及应用 br/ /p p style=" text-align: center " img width=" 600" height=" 392" title=" 6.png" style=" width: 600px height: 392px " src=" http://img1.17img.cn/17img/images/201706/insimg/ad8085cd-c0d8-4894-8971-4ce0a3741d79.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " 北京市环境监测中心王琴博士 br/ 专题报告:北京市大气环境VOCs监测研究与应用& nbsp /p p style=" text-align: center " img title=" 7.png" src=" http://img1.17img.cn/17img/images/201706/insimg/ace1d64b-bb24-47eb-9716-293326876739.jpg" / /p p style=" text-align: center " 浙江省环境保护科学设计研究院大气所所长吴健 br/ 专题报告:浙江省大气污染源(含VOCs)排放清单的建设 /p p style=" text-align: center " img title=" 8.png" src=" http://img1.17img.cn/17img/images/201706/insimg/7e5d55ce-8a22-42c2-8f32-ea54cbae5305.jpg" / & nbsp /p p style=" text-align: center " 广州禾信仪器股份有限公司VOCs产品总监燕志奇 br/ 专题报告:VOCs在线监测全面解决方案& nbsp /p p style=" text-align: center " img title=" 9.png" src=" http://img1.17img.cn/17img/images/201706/insimg/e76f7101-c3af-4e0a-874b-9780261e0654.jpg" / /p p style=" text-align: center " 中国环境监测总站质检室梁宵博士 br/ 专题报告:环境空气VOCs采样等相关问题探讨 /p p style=" text-align: center " img title=" 10.png" src=" http://img1.17img.cn/17img/images/201706/insimg/fa41b426-c92c-44d2-93fa-2be7d9be9999.jpg" / & nbsp /p p style=" text-align: center " 上海市环境监测中心高级工程师崔虎雄 br/ 专题报告:上海空气VOCs自动监测管理及应用的探索及思考 br/ /p p style=" text-align: center " img title=" 11.png" src=" http://img1.17img.cn/17img/images/201706/insimg/dc7f9cf1-f920-4163-9cfa-1cf1069281fa.jpg" / & nbsp br/ 浙江省环境监测中心副总工程师田旭东 br/ 专题报告:G20峰会光化学监测应用及启示 /p p style=" text-align: center " img title=" 12.png" src=" http://img1.17img.cn/17img/images/201706/insimg/7d8e08b2-ed51-40b9-a162-f1c1068fd222.jpg" / & nbsp br/ 中国石化上海石油化工股份有限公司安环部高级工程师杨自然 br/ 专题报告:石油石化行业VOCs监测与治理的思考和设想& nbsp /p p style=" text-align: center " img title=" 13.png" src=" http://img1.17img.cn/17img/images/201706/insimg/2258245a-a877-4720-bf1a-5f67b74c56c3.jpg" / /p p style=" text-align: center " 宁东能源化工基地管委会环保局科长温雪山 br/ 专题报告:在线VOCs质谱在宁东能源化工基地监测及溯源中的应用 /p p style=" text-align: center " img title=" 14.png" src=" http://img1.17img.cn/17img/images/201706/insimg/1641e108-ea41-48f6-bba3-0fab8656f044.jpg" / & nbsp br/ 广州同胜环保科技有限公司总经理张卫 br/ 专题报告:不同工况下的VOCs处理技术简介 br/ /p p style=" text-align: center " img title=" 15.png" src=" http://img1.17img.cn/17img/images/201706/insimg/43d25bf3-8ed3-4e6e-ad4b-2da8fbd93e6e.jpg" / & nbsp br/ 南京创蓝环保科技有限公司周德荣博士 br/ 专题报告:箱模式、拉格朗日模式及欧拉模式在VOCs和O3溯源中的应用 /p p style=" text-align: center " img title=" 16.png" src=" http://img1.17img.cn/17img/images/201706/insimg/a55597d1-74a4-4141-a6c0-681314cc08ac.jpg" / /p p style=" text-align: center " 中科弘清(北京)科技有限公司技术部经理高明君 br/ 专题报告:VOCs组分清单开发与基于反应活性的控制对策研究 br/ /p p style=" text-align: center " img title=" 17.png" src=" http://img1.17img.cn/17img/images/201706/insimg/60e57b60-a316-4249-a657-bbc1b7236658.jpg" / & nbsp br/ 广州禾信仪器股份有限公司高级工程师王冠男 br/ 专题报告:在线VOCs质谱在镇江新材料产业园环境管理中的应用 /p p & nbsp & nbsp & nbsp & nbsp 会议期间,广州禾信仪器股份有限公司在会场展出了大气挥发性有机物吸附浓缩在线监测系统(AC-GCMS 1000)、化工园区大气挥发性有机物在线监测系统(SPI-MS 2000)以及便携式数字离子阱质谱系统(DT-100),受到了与会者的高度关注。 /p p style=" text-align: center " img title=" 18.png" src=" http://img1.17img.cn/17img/images/201706/insimg/48de158f-5563-462f-8442-a833100d9aea.jpg" / /p p style=" text-align: center " 大气挥发性有机物吸附浓缩在线监测系统(AC-GCMS 1000) /p p style=" text-align: center " img title=" 19.png" src=" http://img1.17img.cn/17img/images/201706/insimg/6f395ea2-b752-4f23-be30-f9d07194a8e7.jpg" / & nbsp br/ 化工园区大气挥发性有机物在线监测系统(SPI-MS 2000)& nbsp /p p style=" text-align: center " img title=" 20.png" src=" http://img1.17img.cn/17img/images/201706/insimg/7029d155-5288-4476-a5a7-f2d851aa55d4.jpg" / /p p style=" text-align: center " 便携式数字离子阱质谱系统(DT-100) /p
  • 华电智控发布环境空气挥发性有机物便携监测仪VOC组分监测仪新品
    产品简介 GC4310-E-I便携式气相色谱仪采用国标FID检测原理,可用于现场检测环境总烃、非甲烷总烃、苯系物的浓度。该仪器符合国家HJ1012-2018 《环境空气和废气 总烃、甲烷和非甲烷总烃便携式监测仪技术要求及检测方法》标准要求,设备体积小,重量轻,携带方便,是一款真正意义上的便携式分析仪。可广泛应用于企业自主监测、环境执法部门监督监测、第三方检测现场比对监测。 功能特点 □工业平板电脑显示与操作,平板可与设备分离,方便户外使用与操作 □内置气瓶和电池,一体化设计,无需另配采样设备 □采用EPC控制气体流量,保障检测精度 □采用低压储氢瓶,可采用氢气发生器反复多次充气使用 □可同时对非甲烷总烃、苯系物进行监测,特殊监测因子可定制 □关键器件选用进口品牌,保障设备长期使用寿命 □内置微型打印机,可支持数据实时现场打印 □含富集功能的组分检测设备,满足环境空气低浓度VOC组分的检测需求 产品参数 □测量量程:0-10000 mg/m3 (可调) □检出限:<0.01 mg/m3 □分析周期:≤2 min(NMHC),≤15min(苯系物) □线性误差:≤±2% F.S. □重复性:≤2% □供电电源:AC 220V/DC 16V □环境温度:-20-40 ℃ 创新点:可测量环境空气挥发性有机物 可测ppb级别的挥发性有机物成分 带有浓缩富集、解析模块,集成一体 可进行需求那个纸 环境空气挥发性有机物便携监测仪VOC组分监测仪
  • 赛默飞发布6000型固定污染源挥发性有机物排放连续监测系统新品
    Thermo Scientific 6000型固定污染源挥发性有机物排放连续监测系统挥发性有机物监测装置:测量CH4/NMHC、苯、甲苯、二甲苯等苯系物,定制化组分VOCs烟气参数监测装置:测量流速、温度、压力、湿度、氧量(根据需求)辅助气体装置:供应氢气、零气、氮气、标气等系统控制及数据采集装置直接抽取法(热-湿式)采样系统采样探头为了适应不同的装置及工况,赛默飞固定污染源挥发性有机物排放连续监测系统选定可以根据需要设置加热温度的采样探头,并在满足HJ 1013要求的情况下,减少过渡加热造成组分变化。取样探头带有标准的防护罩。电加热取样探头可以控制加热到最高200℃。温度控制系统除恒温控制整个取样探头外,在探头掉电或温度过低时可以输出报警信号给系统。探头最高可以应含尘量≤10g/m3。不锈钢伴热管线从取样探头抽出的样气通过电伴热取样管线进入样品预处理系统。取样管线是恒功率加热式的,并采用温控器对管线温度进行控制,加热温度可以设定为120-180℃,以保证样气在传输过程中不发生冷凝或组分变化。取样管线的材质为不锈钢,可以避免Telfon材质在高温下析出挥发性有机物造成测量误差。样气预处理系统挥发性有机物的物质种类繁多,部分溶于水。为避免此情况导致测量不准确,系统不设置制冷器,高温加热的样气直接进入分析仪(可接受的样气最高温度为220℃)。预处理单元能够对颗粒物、焦油等进行滤除。系统内过滤精度高达0.5μm。6000型固定污染源挥发性有机物排放连续监测系统特点:1. 升级版的FID提升仪器的灵敏度,增加抗噪性,耐震性,使仪器在不同环境温度下保持稳定2. EPC压力准确度应用领域:1. 石化2. 电子半导体3. 印刷电路板4. 医药5. 橡胶/塑料制品6. 涂料与油墨7. 汽车制造与维修8. 印刷与包装印刷9. 家具制造10. 表面涂装12. 黑色冶金创新点:1. 结合Thermo Scientific几十年的色谱分析经验,重新构建的新一代FID检测器,可获得优于国标要求的基线噪声和检测限值;检测器采用集成模块化设计,提高了维护便利性和性能稳定性。 2. 专有技术改进FID气路结构设计,从源头解决氧气影响问题,复杂样气组分分析无忧。 3. 全新优化改进的样品管路,可以进一步保证样品真实性,减少干扰,提高测量精度。 4. 全面检测优选的样品采集传输材料,全程使用脱油脱脂316L不锈钢材质,保证样品真实性,减少样品采集传输损失和干扰。 5. 双级采样泵设计,可在保证优于国标要求的响应时间同时,减少样品压力波动对测量的影响。 6. 四级不锈钢烧结样品过滤,保证样品的过滤精度,减少样品传输压力损失,提高测量准确性,减少系统维护量。 7. 优于国标要求的供电元件的选型和设计,保证仪器稳定运行的同时,保障使用者的人身安全。 8. 冗余式设计,预留后期客户增加监测项目的空间,并预留部分通讯接口,便于客户对数据的有效利用。 9. 国际知名品牌的PLC+工控机组成的DAS系统,保证系统长期稳定运行,提供长期数据存储,符合国标数据报表要求。 10. 原装进口的氢气安全切断阀,可保证7x24连续运行的性能稳定性。 11. 灵活的系统接口,可以兼容多种辅助设备信号接入。 12. 手动/自动的全面配置,可以减少维护人员投入,也可以手动快速操作。 6000型固定污染源挥发性有机物排放连续监测系统
  • 北京博赛德科技参加山东省挥发性有机物监测技术培训班
    2018年3月26日BCT27日,山东环境监测中心站在济南举办了山东省环境空气与废气挥发性有机物监测技术培训班。主要内容包括挥发性有机物现场采样技术、实验室分析测试技术、恶臭与沥青烟监测技术,以及实验室现场教学等。全省17个市监测站70余名专业技术人员参加了培训。 北京博赛德科技有限公司受邀出席了本次会议,并在山东环境监测中心站实验室为参会人员详细的介绍和解释了VOCs采样及分析方案。 实验室现场教学过程中,北京博赛德技术人员向大家展示了几种不同的大气罐采样方案,包含手动采样和自动采样,以及污染源VOCs采样等,并详细介绍了各种不同采样方案的使用方法、质控措施等。 针对污染源VOCs,从采样、进样、分析,北京博赛德提供一整套解决方案。首先针对不同的污染源,通过加热/稀释采样杆将污染源样品正确采集到罐子、真空瓶、解析管以及Tedlar袋内,然后通过7032/7650-L20自动进样器将罐子/真空瓶/解析管/Tedlar袋内的样品自动进样到GC/GCMS中进行分析。这套方案获得了现场各位参会专家及老师的认可。 北京博赛德科技有限公司长期专注于VOCs整体解决方案的提供,从采样、前处理、预浓缩、到分析检测,从实验室,在线监测,到应急响应,从污染源到环境大气,均有一整套成熟的解决方案,我们希望通过我们的努力,让VOC的监测数据更加准确全面,从而为我国的环境治理贡献一份自己的力量! 污染源VOCs方案简介 针对污染源烟囱采样,北京博赛德提供了一整套解决方案,通过采用加热/稀释采样杆把污染源的样品气正确合适地采集到采样罐/真空瓶/解析管或Tedlar袋内,然后通过7650-L20多功能自动进样器自动定量进样到GC/GCMS中进行分析。进样分析时,采样袋、真空瓶,以及真空采样罐都可以模拟采样时的状况,对样品进行加热再进样分析。 大气VOC解决方案简介实验室手工监测方案:北京博赛德提供多种采样方式:单罐人工采样、单罐或双罐远程或定时自动采样、多罐远程或编程自动采样。手工VOC监测方案中,采样质控非常重要,是否到规定的地点进行采样?是否在需要的时间进行采样?采样流速是否能够得到保证?采样如何和分析数据一一对应?北京博赛德的解决方案中软硬件相结合,加入采样质控措施,确保数据的真实性和完整性。 使用苏码罐系统,还有一个很重要的环节关系到BCT终分析数据的准确性,那BCT是配气系统,配气系统可能带来的误差甚BCT高达20%以上。我们推荐使用4700高精度稀释仪,它摒弃了质量流量计(MFC),消除了MFC测量带来的各种误差,尤其是低流速时的测量误差以及不同MFC通道之间的误差;同时也避免了因为MFC平衡造成的标气的大量浪费。整套系统可以BCT配合,可以一次进样直接分析117种VOCs,包含13种醛酮类物质: 大气自动站在线自动监测方案大气自动监测方案不同于实验室方案,它要求设备更加稳定、可靠、少维护和少消耗。为此北京博赛德特推出BCT-7800A PLUS挥发性有机物在线监测系统,这套系统采用BCT先进的3级多层毛细柱捕集技术对样品进行浓缩,精确地将大气中C2BCTC18范围内的挥发性化学物质进行捕集、浓缩并自动进样到GCMS中进行检测、分析。整个过程无需复杂的液氮或电子制冷,使得系统更加稳定、可靠,便于维护,同时也大大降低了维护成本。
  • 【精品巡礼】系列报道之二:XHVOCMS3000空气挥发性有机物监测系统
    跟着小编涨姿势敲黑板,划重点。上一期小编给大家介绍了先河环保XHVOC6000大气挥发性有机物在线分析仪,本期小编将继续为大家介绍先河环保针对工业园区整体的监测系统。在整体系统中,XHVOCMS3000大气挥发性有机物监测系统是重要核心产品之一。该系统是一款用于对环境空气中挥发性有机物进行实时监测的在线设备,该设备可应用于石化、半导体、制药、印刷等多个行业的大气挥发性有机物排放监测,并已在工业园区无组织排放监测、厂界监测及敏感点臭氧解析中提供了有效的技术支撑。系统简介该系统可对环境空气中的VOCs进行实时、在线监测,以此来反应环境大气中挥发性有机物的浓度。系统由挥发性有机物监测仪、挥发性有机物校准仪、氢气发生器、零气发生器等组成,所有控制和计算都由计算机自动完成。在分析NMHC的基础上,该仪器可以扩展到同时分析三苯、六苯等苯系物,还可针对特定的VOCs进行监测。测量原理分析仪采用灵敏的GC-FID技术对挥发性有机物进行定性和定量,配有双路色谱柱,一路定量总烃,一路采用分离反吹技术定量甲烷,此技术可在实验室中采用差分法(HJ-T38-1999)测非甲烷总烃在在线分析仪上的成效。分析仪内部全气路EPC电子流量控制,实现自动采样、分析,不间断的监测大气中的总烃(THC)和非甲烷总烃(NMHC)。系统特点基于国标(HJ-T38-1999)在线气相色谱技术; 全自动运行,无人值守;全路电子流量控制(EPC),自适应压力变化,运行稳定可靠;宽量程FID检测器,无需选择量程;专用色谱软件,方便可靠;方便扩展到三苯、六苯等方案;系统装有内部样品采样泵、定量管、进样阀和色谱柱,所有计算都由内部计算机完成;仪器外部I/O还可以控制多路样品通道的切换分析; 软件会将仪器的所有数据记录在内置计算机上,同时客户可方便的执行更改浓度单位、查看趋势图、批处理数据、查看积分结果等动作;系统组成系统由XHVOC3000挥发性有机物监测仪、XHD3000挥发性有机物校准仪、XHHG3000氢气发生器、XHZG3000氢气发生器及XHDAS2000数据采集仪组成;1. XHVOC3000挥发性有机物监测仪技术指标:分析方法:气相色谱火焰离子检测法量程:0~100ppm(NMHC以甲烷计)、0~5000ppm(可扩展) 量程:0~10ppm(BTEX以甲苯计)、0~100ppm(可扩展) 检出限:0.05ppm(非甲烷总烃)、0.01ppm(苯)示值误差:±1%F.S(环保认证测试指标)重复性:RSD≤1%(环保认证测试指标)零点漂移:±1% F.S./周跨度漂移:±1% F.S./周测量周期:2分钟(NMHC)、20分钟(BTEX)校正周期:每天/每周或自定义2. XHDG3000挥发性有机物校准仪技术指标:稀释比:1:10~1:2500;流量线性误差:±0.5%FS;流量量程精密度:±1%FS;流量控制重复性:±0.2%FS;3. XHHG3000氢气发生器技术指标: 氢气流量:500ml/min氢气纯度:99.999%以上 氢气压力:0.4MPa 氢气压力稳定度:4.XHZG3000零气发生器技术指标:输出零气流量:0-5000ml/min 输出零气烃类含量: 输出零气露点:
  • 河北发布《固定污染源挥发性有机物核查与监测 技术指南》
    作为PM2.5和O3的主要前体物质,VOCs的减排与控制成为当前阶段我国大气污染治理的重中之重,VOCs治理工作当前进入精细化深入治理的关键阶段,国家和河北省将挥发性有机物排放作为重点污染防治和监控监测对象。目前,已发布实施的国家固定污染源排放与控制相关标准中含挥发性有机物含量限量标准共85项,其中涉挥发性有机排放与控制的标准为43项,占总标准数量51%。目前,针对固定污染源挥发性有机物排放的管理、控制、监测和标准、技术规范不断完善提高,但是,现有国家及地方对固定污染源挥发性有机物排放的监督管理,还没有贯通对涉及VOCs排放控制的现有固定污染源的VOCs排放控制管理,制订《固定污染源挥发性有机物排放核查与监测技术规范》是国家相关技术规范与标准的补充、完善和具体化,是对固定污染源挥发性有机物排放核查与监测具体实施的规范。近日,河北省地方标准《固定污染源挥发性有机物核查与监测 技术指南》发布,该标准由河北省生态环境厅提出并归口,起草单位为河北省生态环境监测中心、河北上善若水智慧水务有限公司和河北华测检测服务有限公司。该标准于2022年3月31正式实施。标准规定了固定污染源挥发性有机物(VOCs)核查与监测的基本要求、工作阶段、工作准备、 具体要求及方法,以及核查与监测报告的要求。适用于固定污染源VOCs排放控制管理。在附件A中对各类固定污染源挥发性有机物的监测方法进行了总结,涉及气相色谱法、高效液相色谱法、离子色谱法、气/液相质谱法和分光光度法等监测方法。标准中挥发性有机物的监测方法标准如下:—— GB/T 3186 色漆、清漆和色漆与清漆用原材料 取样—— GB/T 8017 石油产品蒸气压的测定 雷德法—— GB/T 14676 空气质量 三甲胺的测定 气相色谱法—— GB/T 14678 空气质量 硫化氢 甲硫醇甲硫醚 二甲二硫的测定 气相色谱法—— GB/T 15432 环境空气 总悬浮颗粒物的测定 重量法—— GB/T 15439 环境空气 苯并(a)芘的测定 高效液相色谱法—— GB/T 15501 空气质量 硝基苯类(一硝基和二硝基化合物)的测定 锌还原-盐酸萘乙二胺 分光光度法—— GB/T 15502 空气质量 苯胺类的测定 盐酸萘乙二胺分光光度法 —— GB/T 15516 空气质量 甲醛的测定 乙酰丙酮分光光度法—— GB/T 16157 固定污染源排气中颗粒物测定与气态污染物采样方法—— GB/T 23984 色漆和清漆.低 VOC 乳胶漆中挥发性有机化合物(罐内 VOC)含量的测定—— GB/T 23985 色漆和清漆.挥发性有机化合物(VOC)含量的测定.差值法—— GB/T 23986 色漆和清漆.挥发性有机化合物(VOC)含量的测定.气相色谱法—— GB/T 34675 辐射固化涂料中挥发性有机化合物(VOC)含量的测定—— GB/T 34682 含有活性稀释剂的涂料中挥发性有机化合物(VOC)含量的测定—— GB/T 37884 涂料中挥发性有机化合物(VOC)释放量的测定—— GB/T 38608 油墨中可挥发性有机化合物(VOCs)含量的测定方法—— GBZ/T 160.62 工作场所空气有毒物质测定 酰胺类化合物—— HJ/T 28 固定污染源排气中氰化氢的测定 异烟酸-吡唑啉酮分光光度法—— HJ/T 31 固定污染源排气中光气的测定 苯胺紫外分光光度法—— HJ/T 32 固定污染源排气中酚类化合物的测定 4-氨基安替比林分光光度法—— HJ/T 33 固定污染源排气中甲醇的测定 气相色谱法—— HJ/T 34 固定污染源排气中氯乙烯的测定 气相色谱法—— HJ/T 35 固定污染源排气中乙醛的测定 气相色谱法—— HJ/T 36 固定污染源排气中丙烯醛的测定 气相色谱法—— HJ/T 37 固定污染源排气中丙烯腈的测定 气相色谱法—— HJ 38 固定污染源废气 总烃、甲烷和非甲烷总烃的测定 气相色谱法—— HJ/T 39 固定污染源排气中氯苯类的测定 气相色谱法—— HJ/T 40 固定污染源排气中苯并(a)芘的测定 高效液相色谱法—— HJ/T 66 大气固定污染源 氯苯类化合物的测定 气相色谱法—— HJ/T 68 大气固定污染源 苯胺类的测定 气相色谱法—— HJ 77.2 环境空气和废气 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法—— HJ 583 环境空气 苯系物的测定 固体吸附/热脱附-气相色谱法—— HJ 584 环境空气 苯系物的测定活性炭吸附/二硫化碳解析-气相色谱法——HJ 604 环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱法—— HJ 605 土壤和沉积物 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法—— HJ 639 水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法—— HJ 642 土壤和沉积物 挥发性有机物的测定 顶空/气相色谱-质谱法—— HJ 643 工业固体废物 挥发性有机物的测定 顶空/气相色谱-质谱法—— HJ 644 环境空气 挥发性有机物的测定 吸附管采样-热脱附/气相色谱-质谱法—— HJ 645 环境空气 挥发性卤代烃的测定 活性炭吸附-二硫化碳解析/气相色谱法—— HJ 646 环境空气和废气 气相和颗粒物中多环芳烃的测定气相色谱-质谱法—— HJ 647 环境空气和废气 气相和颗粒物中多环芳烃的测定 高效液相色谱法—— HJ 683 环境空气 醛、酮类化合物的测定 高效液相色谱法—— HJ 686 水质 挥发性有机物的测定 吹扫捕集/气相色谱法—— HJ 695 土壤 有机碳的测定 燃烧氧化-非分散红外法—— HJ 703 土壤和沉积物 酚类化合物的测定 气相色谱法—— HJ 713 工业固体废物 挥发性卤代烃的测定 吹扫捕集/气相色谱-质谱法—— HJ 714 工业固体废物 挥发性卤代烃的测定 顶空/气相色谱-质谱法—— HJ 732 固定污染源废气 挥发性有机物的采样 气袋法—— HJ 734 固定污染源废气 挥发性有机物的测定 固定相吸附-热脱附/气相色谱-质谱法—— HJ 735 土壤和沉积物 挥发性卤代烃的测定 吹扫捕集/气相色谱-质谱法—— HJ 736 土壤和沉积物 挥发性卤代烃的测定 顶空/气相色谱-质谱法—— HJ 738 环境空气 硝基苯类化合物的测定 气相色谱法—— HJ 739 环境空气 硝基苯类化合物的测定 气相色谱-质谱法—— HJ 741 土壤和沉积物 挥发性有机物的测定 顶空/气相色谱法—— HJ 742 土壤和沉积物 挥发性芳香烃的测定 顶空/气相色谱法—— HJ 759 环境空气 挥发性有机物的测定 罐采样/气相色谱-质谱法—— HJ 760 工业固体废物 挥发性有机物的测定 顶空-气相色谱法—— HJ 784 土壤和沉积物 多环芳烃的测定 高效液相色谱法—— HJ 801 环境空气和废气 酰胺类化合物的测定 液相色谱法 —— HJ 810 水质 挥发性有机物的测定 顶空/气相色谱-质谱法—— HJ 834 土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法—— HJ 912 工业固体废物 有机氯农药的测定 气相色谱-质谱法—— HJ 914 百草枯和杀草快的测定 固相萃取-高效液相色谱法—— HJ 919 环境空气 挥发性有机物的测定 便携式傅里叶红外法—— HJ 950 工业固体废物 多环芳烃的测定 气相色谱-质谱法—— HJ 951 工业固体废物 半挥发性有机物的测定 气相色谱-质谱法—— HJ 975 工业固体废物 苯系统的测定 顶空-气相色谱法—— HJ 976 工业固体废物 苯系统的测定 顶空/气相色谱-质谱法—— HJ 1016 固定污染源废气 挥发性卤代烃的测定 气袋采样-气相色谱法—— HJ 1020 土壤和沉积物 石油烃(C6-C9)的测定 吹扫捕集/气相色谱法—— HJ 1021 土壤和沉积物 石油烃(C10-C40)的测定 气相色谱法—— HJ 1041 固定污染源废气 三甲胺的测定 抑制型离子色谱法—— HJ 1042 环境空气和废气 三甲胺的测定 溶液吸收-顶空/气相色谱法—— HJ 1048 水质 17 种苯胺类化合物的测定 液相色谱-三重四极杆质谱法—— HJ 1049 水质 4 种硝基酚类化合物的测定 液相色谱-三重四极杆质谱法—— HJ 1050 水质 氯酸盐、亚氯酸盐、溴酸盐、二氯乙酸和三氯乙酸的测定 离子色谱法 —— HJ 1051 土壤 石油类的测定 红外分光光度法—— HJ 1058 硬质聚氨酯泡沫和组合聚醚中 CFC-12、HCFC-22 CFC-11 和 HCFC-141b等消耗臭氧 层物质的测定 便携式顶空/气相色谱-质谱法—— HJ 1067 水质 苯系物的测定 顶空/气相色谱法—— HJ 1070 水质 15 种氯代除草剂的测定 气相色谱法—— HJ 1072 水质 吡啶的测定 顶空/气相色谱法—— HJ 1073 水质 萘酚的测定 高效液相色谱法—— HJ 1076 环境空气 氨、甲胺、二甲胺和三甲胺的测定 离子色谱法—— HJ 1077 固定污染源废气 油烟和油雾的测定 红外分光光度法—— HJ 1078 固定污染源废气 甲硫醇等 8 种含硫有机化合物的测定 气袋采样-预浓缩/气相色 谱-质谱法—— HJ 1079 固定污染源废气 氯苯类化合物的测定 气相色谱法—— HJ 1153 固定污染源废气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法—— HJ 1154 环境空气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法—— DB 11/T 1367 固定污染源废气 甲烷/总烃/非甲烷总烃的测定 便携式氢火焰离子化检测器法 点击下载原文:DB13_T5500-2022固定污染源挥发性有机物核查与监测技术指南.pdfDB13_T5500-2022说明.doc
  • 挥发性有机物污染监测有新规
    p   2016年5月26日,由天津市环境监测中心承担的《固定污染源挥发性有机物连续监测系统安装联网技术规范(试行)》,通过了中国环境监测总站、北京市环境保护监测中心、上海市环境监测中心等单位组成的专家组论证。 /p p   据介绍,该技术规范规定了固定污染源挥发性有机物连续监测系统的组成、安装要求和联网要求,对推进和规范天津固定源挥发性有机物连续监测系统的建设具有重要意义。挥发性有机化合物是指沸点在50℃—260℃之间,常温常压下蒸气压大于13.332pa,分子量范围约在16amu~250amu的有机化合物的总称,其成分包括烃类、含氧烃、卤代烃、低沸点多环芳烃等多种类型,是环境空气主要污染物之一(简称VOCs)。据了解,本市已出台地方标准《DB12/524-2014工业企业挥发性有机物排放控制标准》,对石油化工、医药制造、橡胶制造、涂料制造、电子工业等多个行业的VOCs排放限值及在线监测方法进行了详细要求,监测因子主要包括非甲烷总烃、苯、甲苯和二甲苯等。目前国家标准正在起草当中。 /p
  • 新品上市 | 谱育科技 EXPEC 3050手持式挥发性有机气体分析仪 VOCs监测新利器
    谱育科技EXPEC 3050 手持式挥发性有机气体分析仪基于FID原理仅2kg,单手可拎持可拓展为FID+PID版本VOCs监察执法新利器■ 不同于业界现有手持VOCs分析仪采用PID检测器的情况,EXPEC 3050 手持式挥发性有机气体分析仪是一款基于FID原理的手持式VOCs分析仪,仪器还可以拓展为FID+PID的版本。■ 仪器符合《挥发性有机物无组织排放控制标准》(GB37822-2019)、《泄漏和敞开液面排放的挥发性有机物检测技术导则》(HJ733-2014)、《地块土壤和地下水中挥发性有机物采样技术导则》(HJ1019-2019)等标准。# 仪器特色 #01FID原理在检测总烃时,FID检测器相较于PID检测器更加准确。FID对所有VOCs有响应,响应和碳成正比;PID仅对部分VOCs有些响应,且对无机物也有响应。02更轻巧首次将FID原理仪器的重量降低到2kg,约同类型的50%。03更方便采用氢气发生器充气,解决找不到氢气源的烦恼。04更简单仅需2步即可出结果,并且用户能够通过面板进行检测数据查看、校准和参数设置等功能。05更安全氢气采用小型的储氢合金,仪器运输和存放更安全。# 应用领域 #固定污染源VOCs快速检测无组织现场VOCs快速检测土壤中VOCs快速筛查加油站、储油库及油品运输的VOCs检测VOCs治理设施的效果评估各种场合VOCs泄漏检测......
  • 冷杉精密仪器发布冷杉环境空气挥发性有机物连续监测系统新品
    冷杉4000解决方案使用VOCs在线监测系统分析厂界/厂区中非甲烷总烃、苯系物(总烃、甲烷、非甲烷总烃、苯、甲苯、乙苯、对二甲苯、间二甲苯、异丙苯、邻二甲苯、1,3,5-三甲苯、1,2,4-三甲苯、1,2,3-三甲苯)含量,结合气象参数在监测系统的上位机形成报表,通过数采仪以标准HJ 212协议上传至环保平台,满足环保监管部门监控要求。同时数据可传送至园区或厂区DCS系统,便于中控室监控厂区各监测点实时浓度。选择性配备冷杉自主研发的云平台,可实现短信通知设备故障信息和超标报警信息、登录及操作记录、自动多点校准、气体欠压及缺液报警等功能。集安全性设计、自动化监测、智能化监管、快速及时报警于一体。VOCs监测系统满足国家标准和行业标准对厂区、厂界及周边大气污染物的监测要求。系统主要由采样总管、预处理单元、分析仪表、氢气发生器、零气发生器、空压机、气象参数、数采仪、稀释仪、电控单元组成。为保证测量的长期准确性,系统配备氮气、标气和零气,定期对系统进行零点和量程标定。n技术参数项目非甲烷总烃苯系物检测能力总烃、甲烷、非甲烷总烃苯、甲苯、乙苯、二甲苯、苯乙烯、异丙苯量程10~10000 ppb(可选) 0.01~300 ppb(可选)检出限≤ 10 ppb0.01 ppb(甲苯)重复性1 min ~3 min(可选)≤15 min(可选)n应用行业?环境空气自动监控 ?居民区大气污染自动监控 ?企业边界大气污染自动监控?职业环境空气污染自动监控 ?重点产业园区空气污染自动监控 ?工作场所空气污染自动监控n系统特点?标准化设计 • 符合国家标准规范要求 • 结构设计合理,可实现连续自动监测 ?运行稳定安全,数 据真实可靠 • 采样管线选用聚四氟乙烯、硼硅酸盐玻璃或耐腐蚀、惰性化材质,减少管路吸附造成的损失 • 全管路保温伴热,避免高沸点烃类物质冷凝及部件腐蚀 ?无人值守、操作方便 • 具有自我保护功能,气源供应不足时,火焰熄灭,关闭氢气空气 • 自动恢复运行功能,开机、气源供应恢复或意外断电恢复后自动运行 • 具备自动校准功能,实现无人值守创新点: 1、配备高性能的气体控制模块 对于气相色谱技术,国内外最大的差距就是对气体精度和稳定性的控制,有感于此,为了突破国外品牌的垄断地位,冷杉投入大量研发力量和超过1000万的研发经费,历史3年时间狠抓科技攻关,独立研发出国内独有的高精度压力、流量控制模块,其中压力精度0.001Psi,另外,独有的动态PID补偿算法和机制保证了长期使用的稳定性。在第三方检测结构和大量客户现场的应用中证明,冷杉的气体控制模块已经达到国际领先水平。 2、自主灵活、可实现全自动化控制的软件系统 在软件架构上,我们打破了市场上基于传统的单体式软件架构,开发了基于微服务的软件架构,将业务上的多种功能模块,比如预处理模块、前处理模块,仪表控制模块,数据采集模块,数据分析模块,数据汇总模块,数据上传模块等都封装城一个个小型的、单独的、易扩展的微服务程序。而每个服务程序都对外提供各种丰富的接口,用户可以根据具体的业务场景来自主的、灵活的配置这些服务程序的工作流程来适应各个实际的业务场景。 3、高效自动的色谱算法 全新开发的强大可靠的色谱峰积分算法,在色谱峰去噪、色谱峰特征点识别和色谱峰面积积分等算法上可以与市场知名进口仪器的软件的效果相媲美。同时可实现自动寻峰算法、定量定性算法和数据库管理,能自动匹配样品种类从而简化人工审核。针对复杂多组分样品分析中,有的组分可能间隔不大,保留时间漂移可能造成峰识别错误从而造成测量错误的情况,应用自回归相关性算法及特征峰匹配技术开发了保留时间校正(RTC)功能,有效校正因温度、气压、柱效的波动造成的保留时间漂移问题,大大提高数据有效率和监测数据质量。 冷杉环境空气挥发性有机物连续监测系统
  • 中国环境监测总站:关于开展挥发性有机物在线监测设备比对测试的通知
    p   日前,中国环境监测总站印发关于开展挥发性有机物在线监测设备比对测试的通知。全文如下: p style=" TEXT-ALIGN: center" 关于开展挥发性有机物在线监测设备比对测试的通知 p & nbsp & nbsp & nbsp & nbsp 各有关单位:为进一步促进挥发性有机物(VOCs)在线监测设备在环境空气质量监测中的应用,保障监测数据的可比性与准确性,我站拟对VOCs在线监测设备开展比对测试。比对测试采取自愿报名的方式。有关事项通知如下: p 一、报名条件 p & nbsp & nbsp & nbsp & nbsp (一)参与测试的生产商或集成商须提供至少2台生产定型的同类型VOCs在线监测设备。 p & nbsp & nbsp & nbsp & nbsp (二)保证比对测试期间VOCs在线监测设备的正常运行。 p 二、报名时间和方式 p & nbsp & nbsp & nbsp & nbsp 请有意向参与本次比对测试的厂商于2017年4月12日前将报名表(附件)及相关产品资料发至邮箱: a href=" mailto:quality@cnemc.cn" quality@cnemc.cn /a 。 p 三、联系方式 p & nbsp & nbsp & nbsp & nbsp 联系人:杨楠、师耀龙 p & nbsp & nbsp & nbsp & nbsp 电话:(010)84949039、(010)84943292 p style=" TEXT-ALIGN: right" 中国环境监测总站 p style=" TEXT-ALIGN: right" 2017年4月6日 center img title=" 报名.jpg" src=" http://img1.17img.cn/17img/images/201704/noimg/6bb6ef5a-1462-4d75-85cc-34e00846eb34.jpg" / /center /p /p /p /p /p /p /p /p /p /p /p /p /p
  • 这份详细的挥发性有机物监测解决方案千万别错过!
    挥发性有机物概要 挥发性有机物是形成细颗粒物(PM2.5)和臭氧(O?)的重要前体物,相对于颗粒物、二氧化硫、氮氧化物污染控制, 我国挥发性有机物管理基础薄弱,已成为大气环境管理短板。为打赢蓝天保卫战、进一步改善环境空气质量,挥发性有机物的治理迫在眉睫。挥发性有机物时事播报 2019年06月26日,生态环境部印发了《重点行业挥发性有机物综合治理方案》。计划到2020年,建立健全VOCs污染防治管理体系,重点区域、重点行业VOCs治理取得明显成效,完成“十三五”规划确定的VOCs排放量下降10%的目标任务。 2019年5月24日,生态环境部发布了《挥发性有机物无组织排放控制标准》(GB 37822—2019),并于2019年07月01日起实施。 该标准规定了VOCs物料储存无组织排放控制要求、VOCs物料转移和输送无组织排放控制要求、工艺过程VOCs无组织排放控制要求、设备与管线组件VOCs泄漏控制要求、敞开液面VOCs无组织排放控制要求,以及VOCs无组织排放废气收集处理系统要求、企业厂区内及周边污染监控要求。 2019年4月14日,环境部印发了《2019年地级及以上城市环境空气挥发性有机物监测方案》。方案要求,2019年,全国337个地级及以上城市均要开展环境空气非甲烷总烃(NMHC)和VOCs组分指标监测工作。 2018年12月29日发布了《环境空气和废气总烃、甲烷和非甲烷总烃便携式监测仪技术要求及检测方法》(HJ1012-2018),并于2019年07月01日起实施。 标准规定了总烃、甲烷和非甲烷总烃便携式监测仪的主要技术要求、检测项目和检测方法。挥发性有机物监测解决方案 很多用户都有挥发性有机物监测需求,却又感觉无从下手。嘿,别担心!崂应教你三步轻松解决。 第一步,根据行业排放标准,明确需要监测的成分。每个行业都有相应的排放标准要求,根据所属行业排放标准,可以明确需要监测的成分。只有明确需求,才能对症下药。 第二步,根据监测成分和工况,查阅对应的执行标准。同一种监测成分在不同的工况中可能执行不同的标准,或者是相同的执行标准中不同的采样方法,因此根据工况查阅对应的标准,并且认真学习和执行标准对工作的开展也具有十分重要的意义。 第三步,根据执行标准要求,选择合适的监测仪器。仪器选对了,监测工作就能事半功倍。既然思路已经明确,那么接下来这份详细的挥发性有机物监测解决方案,你千万不要错过!哇塞!重点来了!!!
  • “大气及水体挥发性有机物连续在线监测设备开发及应用示范”项目启动会在京召开
    2012年12月3日,环境保护部在北京召开“国家重大科学仪器设备开发专项”2011年项目年度进展汇报暨2012年立项项目启动会,标志着2012年度环保领域中的4项国家科学仪器设备开发专项项目全面正式开始。武汉市天虹仪表公司“国家重大科学仪器设备开发专项牵头“大气及水体挥发性有机物连续在线监测设备开发及应用示范”项目,和参与“环境大气中细粒子(PM2.5)监测设备开发与应用”,任务十分艰巨而又光荣。武汉市天虹仪表公司董事长兼总经理李虹杰、副总经理范新峰、北京公司总经理王澎蛟及课题组其他人员都参加了会议。   启动会上,董事长兼总经理李虹杰作为项目负责人汇报了我公司承担的 “大气及水体挥发性有机物连续在线监测设备开发及应用示范”项目的实施方案和工作计划。此项目有8项分解任务,主要参加单位有:北京大学、广州市环境保护科学研究院、聚光科技(杭州)股份有限公司、中日友好环境保护中心、武汉市环境监测中心站、常州市环境监测中心和中国疾病预防控制中心环境与健康相关产品安全所。项目的立项充分体现了我公司的科研创新实力和项目组织管理能力。项目的实施将提升我公司高端环境科学仪器的研制能力和水平,促进和带动我国环境科学仪器产业发展,提高改善环境质量及环境应急与处置的科技支撑能力,并将产生良好的经济效益、社会效益和环境效益。     科技部条财司副司长吴学梯、环保部科技标准司刘志全副司长等领导作出了重要指示,要求各项目承担单位要深刻理解“十八”精神,协同创新、资源整合,实行创新驱动发展战略,加强组织、认真实施、严格经费使用、严格质量控制,以市场为导向,将重大仪器专项打造成精品工程,并就项目实施过程中的每个关键环节均提出了详细的要求。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制