我国是以煤炭为主要一次能源的国家,一次能源消费中煤炭的占比达到62%。但我国的煤炭利用技术总体上是落后的,在煤炭的转化利用过程中普遍存在效率低、污染严重等问题。随着能源问题的日益突出,洁净煤技术越来越多地应用于实际生产过程中,其中大规模煤气化、煤气化多联产技术成为了煤炭综合应用的主要方向之一。“十一五”期间,煤气化属于国家鼓励项目,其中明确指出新型煤化工领域将重点开发和实施煤的焦化技术、大型煤气化技术和以煤气化为核心的“多联产”技术。2. 煤气化原理煤炭气化是指煤在特定的设备内,在一定温度及压力下使煤中有机质与气化剂(如蒸汽/空气或氧气等)发生一系列化学反应,将固体煤转化为含有CO、H2、CH4等可燃气体和CO2、N2等非可燃气体的过程。气化过程发生的反应包括煤的热解、气化和燃烧反应。煤的热解是指煤从固相变为气、固、液三相产物的过程。煤的气化和燃烧反应则包括两种反应类型,即非均相气-固反应和均相的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]反应。煤炭气化时,必须具备三个条件,即气化炉、气化剂、供给热量,三者缺一不可。煤气化工艺根据气化炉内煤料与气化剂的接触方式不同可区分为固定床(移动床)、流化床、气流床,此外还有地下煤气化工艺。3. 煤气分析仪的原理和技术特点近年来红外煤气分析仪越来越多地应用于实际煤气化煤气分析当中。 红外煤气分析仪采用红外传感器测量煤气成分中的CO、CO2、CH4、CnHm的浓度,使用热导传感器测量H2的浓度,使用电化学传感器测量O2浓度,同时根据测量成分的浓度,计算得到煤气的理论热值。红外煤气分析仪取代了奥氏气体分析仪的人工取样和人工分析环节,可实现自动化测量,避免了人工误差;同时预处理系统和仪器相对燃烧法热值仪具有结构简单,操作维护方便的特点,更加适合煤气化实时在线的分析要求。红外煤气分析仪具备H2测量补偿功能,保证了H2浓度的准确测量。热导传感器用于测量多种混合气体时,必然要考虑到煤气中其他气体的影响因素。煤气主要成分中CO、O2 与背景气N2的热导系数相当,对H2的测量结果影响不大,但是CO2 、CH4 对H2测量影响明显。通过理论分析及实验表明,如果气体成分中含有CO2,会使H2的测量读数偏低;如果气体成分中含有CH4,会使H2的测量读数偏高。因此为了得到准确的H2含量,应对H2浓度进行CO2 、CH4的浓度校正。煤气分析仪对煤气的各气体成分进行分析,并将各种气体的相互影响进行了浓度修正和补偿,消除煤气中其他成分对H2的影响,保证了H2测量值的准确性。此外 煤气分析仪采用了旁流扩散式的热导检测池,流量在0.3―1.5L/min的范围内变化对热导的测量没有影响,减少了因流量波动造成H2测量的误差影响。煤气化过程中产生的煤气中的碳氢化合物除了CH4外,还有少量的CnHm,大多数红外分析仪仅以CH4为测试对象,折合成碳氢化合物总量计算热值。根据红外吸收原理,如图1,乙烷等碳氢化合物在甲烷的特征波长3.3um左右有明显吸收干扰。当煤气中其他碳氢化合物含量较大时,CH4的测试值会明显偏大,导致热值测试不准,其热值测试值也无法保证精度。甲烷、乙烷、丙烷、丁烷的红外吸收光谱图1:甲烷、乙烷、丙烷、丁烷的红外吸收光谱红外煤气分析仪采用了特殊的气体滤波技术,可实现无干扰的CH4测量,准确反应混合煤气中CH4和CnHm成分的实际变化,有利于热值的准确分析。4. 煤气分析仪在煤气化中的应用根据煤气化应用领域的不同,煤气分析仪可实现煤气热值分析和煤气成分分析两种用途。通常的应用如下:4.1 工业燃气应用作为工业燃气,一般热值要求为1100-1350大卡热的煤气,可采用常压固定床气化炉、流化床气化炉均可制得。主要用于钢铁、机械、卫生、建材、轻纺、食品等部门,用以加热各种炉、窑,或直接加热产品或半成品。实际应用中通常需要控制加热温度,以达到工艺或质量控制目的,燃气的热值稳定性就尤为重要。红外煤气分析仪针对H2和CH4的测量采用了测量补偿技术,可保证实际热值测试结果的准确性,为燃气的燃烧测控提供了有效有力的数据依据。4.2 民用煤气应用民用煤气的热值一般在3000-3500大卡,同时还要求CO小于10%,除焦炉煤气外,用直接气化也可得到,采用鲁奇炉较为适用。与直接燃煤相比,民用煤气不仅可以明显提高用煤效率和减轻环境污染,而且能够极大地方便人民生活,具有良好的社会效益与环境效益。出于安全、环保及经济等因素的考虑,要求民用煤气中的H2、CH4、及其它烃类可燃气体含量应尽量高,以提高煤气的热值;而CO有毒其含量应尽量低。 红外煤气分析仪测试煤气热值可知道气化站的煤气混合,保证燃气热值;同时可测得CO、H2、CH4的实际浓度,有效控制CO浓度,保证燃气安全。4.3 冶金还原气应用煤气中的CO和H2具有很强的还原作用。在冶金工业中,利用还原气可直接将铁矿石还原成海棉铁;在有色金属工业中,镍、铜、钨、镁等金属氧化物也可用还原气来冶炼。因此,冶金还原气对煤气中的CO含量有要求。 红外煤气分析仪可实时有效测量CO或H2浓度,指导调整气化工艺,保证产气效率。4.4 化工合成原料气随着新型煤化工产业的发展,以煤气化制取合成气,进而直接合成各种化学品的路线已经成为现代煤化工的基础,主要包括合成氨、合成甲烷、合成甲醇、醋酐、二甲醚等。化工合成气对热值要求不高,主要对煤气中的CO、H2等成分有要求,一般德士古气化炉、Shell气化炉较为合适。目前我国合成氨的甲醇产量的50%以上来自煤炭气化合成工艺。若煤气成分中CO2浓度过高,直接会影响合成工序压缩机的运行效率(一般降低10%左右),必然造成电耗和压缩机维修费用增加。红外煤气分析仪用于CO、CO2、H2等气体的浓度测量,用于指导合成气工艺控制,可保证化工产品的产量和质量,同时可达到节能的目的。4.5 煤制氢应用氢气广泛的用于电子、冶金、玻璃生产、化工合成、航空航天、煤炭直接液化及氢能电池等领域,目前世界上96%的氢气来源于化石燃料转化。而煤炭气化制氢起着很重要的作用,一般是将煤炭转化成CO和H2,然后通过变换反应将CO转换成H2和H2O,将富氢气体经过低温分离或变压吸附及膜分离技术,即可获得氢气。实际应用中由于CO含量的增加,必然会导致变换工序中变换炉的负荷增加。它不但会使催化剂的使用寿命缩短,而且使变换炉蒸汽消耗增加。红外煤气分析仪用于煤气成分分析,提供煤气中各气体成分的浓度数据,指导气化和转换工艺的控制,可起到节能增效的作用。此外, 红外煤气分析仪还可在煤气化多联产的应用中提高化工生产效率,提供清洁能源,改进工艺过程,以达到效益大化,有助于提升产业技术水平。5. 结论随着煤气化技术在国内的应用和发展,对于煤气化过程的监测和控制提出了更高的要求。 红外煤气分析仪集成了红外、热导和电化学三种气体传感器技术,可实现对煤气的成分分析和热值分析。在实际应用中解决了H2测量补偿和CH4测量抗干扰的问题,更广泛地应用于工业燃气、民用煤气、冶金、化工等行业,可指导工艺控制和改善,并达到节能增效的作用,有利于促进煤气化技术的提升。
最近一直接触煤气化,有懂得煤气化装置分析仪配置的吗?需要这方面的资料。
煤气化废水萃取脱酚能够实施的关键在于先选择合适的萃取剂,从而再确定合理的废水脱酚工艺流程、有机物回收和萃取剂再生方法以及合适的萃取设备等。本章先对煤气化废水进行水质分析,以确定废水中污染物的种类、总酚浓度和挥发酚浓度等。根据煤气化废水水质的特点,针对性的选择几种脱酚效果较好的溶剂作为萃取剂,通过综合考虑它们的萃取脱酚的效果、溶剂回收能耗和溶剂的经济性等方面,选定一种合适溶剂作为煤气化废水的脱酚萃取剂。在确定了煤气化废水的脱酚萃取剂之后,本章将对萃取温度、pH值和萃取相比等影响萃取脱酚效果的因素进行研究,以确定最佳的萃取脱酚条件。最后本章研究了煤气化废水三级错流萃取脱酚的效果,为煤气化废水萃取脱酚工艺流程的设计提供参考。 实验试剂及仪器 实验试剂 本论文研究所用的化学药品和分析试剂如表2-1所示。实验时所用的水均为蒸馏水。表1 实验化学药品和分析试剂Table 1The experimental chemical and analytical reagents 试剂和药品名称 生产商或供应商 规格、纯度 注释 甲基叔丁基醚 国药集团化学试剂有限公司 化学纯 实验所用化学药品未经进一步提纯处理,其质量纯度用气相色谱归一化法确认。 苯酚 广州化学试剂厂 分析纯 对苯二酚 天津市科密欧化学试剂有限公司 分析纯 溴酸钾 汕头市光华化学厂 分析纯 碘酸钾 天津市元立化工有限公司 基准试剂 硫代硫酸钠 广州化学试剂厂 分析纯 溴化钾 广州化学试剂厂 分析纯 可溶性淀粉 宜兴市第二化学试剂厂 生化试剂 重铬酸钾 汕头市光华试剂厂 基准试剂 硫酸亚铁铵 广州化学试剂厂 分析纯 1,10-菲啰啉 广州化学试剂厂 分析纯 硫酸银 天津市科密欧化学试剂有限公司 分析纯 硫酸 广州市东红化工厂 98%分析纯 氢氧化钠 广州化学试剂厂 分析纯 实验仪器 本论文研究所用的实验仪器设备在表2-2中列出表2主要实验仪器Table 2The experimental apparatus and instruments 仪器设备名称 型号、规格 生产商或代理商 带恒温夹套的平衡釜 100 mI 自制 分析天平 FA2104N 上海精密科学仪器有限公司 pH酸度计 pHS-25 上海精密科学仪器有限公司 [
用于煤气化合成氨的安捷伦7890A的相关配置问题标签:合成氨 ,7890A ,如何配置 ,H2、N2、NH3、H2S、COS、CO我最近在做合成氨项目中央化验室的组建工作,关于气相色谱仪有些问题,我们想选购安捷伦的7890A,但不知道到底需要哪些配件,进样混合气体包括H2、N2、NH3、CO、COS、CO2、H2S,对于六通阀是需要耐腐蚀性的么。我们主要做生产控制,硫化物的中低微含量都有(涉及到ppm级别),其他气体都是高中低含量,望哪位高手能提供给我一份完整的配置计划!在下感激不尽帮人转帖!谢谢
煤气化后的残渣中,有没有残留的砷?(也就是说砷会不会与某种矿物质结合而留在渣中啊?)
终于传上了!![em53][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=16349]煤气化[/url]
有谁知道煤气化含水合成气在P-N柱中的出峰顺序吗?麻烦告诉下,谢谢!!!
[font=楷体_GB2312][size=21px]【关键词】[/size][/font][font=仿宋_GB2312][size=21px]民事公益诉讼 大气污染 依法全面整改 生态环境损害责任[/size][/font][font=楷体_GB2312][size=21px]【要 旨】[/size][/font][font=仿宋_GB2312][size=21px]针对企业违法排污损害生态环境问题,检察机关可以通过检察建议督促行政机关依法全面履行监管职责。行政机关履职后仍难以达到恢复公益效果时,检察机关应当依法提起民事公益诉讼,追究违法主体生态环境损害责任。[/size][/font][font=楷体_GB2312][size=21px]【基本案情】[/size][/font][font=仿宋_GB2312][size=21px]2021年5月,第二轮中央生态环境保护督察发现,山西省晋中市太谷区某煤气化公司长期将约一半的焦炉烟气通过私开焦炉旁路挡板的方式直排,焦炉烟气脱硫设施长期不正常运行,导致粉尘污染、大气污染和周围环境污染。[/size][/font][font=楷体_GB2312][size=21px]【调查和诉讼】[/size][/font][font=仿宋_GB2312][size=21px]本案线索由中央生态环境保护督察办公室向最高人民检察院移送。最高人民检察院将该案逐级交由山西省晋中市太谷区人民检察院(以下简称太谷区院)办理。太谷区院经初步调查认为,某煤气化公司的行为违反《中华人民共和国大气污染防治法》的相关规定,负有监管职责的晋中市生态环境局太谷分局(以下简称太谷环境局)未依法全面履职。太谷区院于2021年5月19日以行政公益诉讼立案,并于5月24日向太谷环境局发出检察建议,督促该局依法履职。7月5日,太谷环境局书面回复已推动解决非法排污问题,并对该煤气化公司污染环境的行为处以罚款共计162.5万元,该公司已全部缴纳。[/size][/font][font=仿宋_GB2312][size=21px]鉴于行政机关依法履职后,该煤气化公司违法排污造成的生态环境损害尚未修复,太谷区院于2021年7月29日以民事公益诉讼立案,同年7月30日发布诉前公告。太谷区院通过走访相关行政机关、调取执法卷宗、询问企业相关人员、现场勘查等方式收集该公司违法排污损害生态环境的证据。经委托鉴定,2019年10月1日至2021年4月8日,该公司非法排放二氧化硫约142吨、氮氧化物约90吨,造成环境空气损害数额约为359.76万元。[/size][/font][font=仿宋_GB2312][size=21px]2021年9月18日,太谷区院将该案移送晋中市人民检察院(以下简称晋中市院)审查起诉。同年11月8日,晋中市院向晋中市中级人民法院提起民事公益诉讼。诉讼过程中,该公司主动将生态环境损害赔偿金359.76万元和鉴定费38万元交至晋中市太谷区国库中心。因诉讼请求全部实现,同年12月15日,晋中市院撤回起诉。[/size][/font][font=楷体_GB2312][size=21px]【典型意义】[/size][/font][font=仿宋_GB2312][size=21px]大气污染防治是深入打好污染防治攻坚战的重要内容。中央生态环境保护督察指出问题后,检察机关及时跟进,针对行政机关履职不到位的问题,依法发出检察建议,推动其有效解决案涉企业非法排污问题。同时,依据民法典等追究违法企业的生态环境损害赔偿责任,将最严格制度最严密法治落到实处。[/size][/font]
那位高手能设计或制作小型实验室用秸秆流化床 要求: 物料尺寸:2-4mm 能同时用两种气化气氛 外部电加热 有兴趣的请联系:15940443185
[align=center][size=16px][b]流化床在线设备改造[/b][/size][/align]常规的顶喷式制粒流化床的主要组成系统分为温度控制系统、喷雾系统以及其他控制系统等。主要的结构有底锅、喷嘴、空气进出口、滤袋、取样口等,需要调整的工艺参数比较少,因此操作比较简单。在制粒过程中,粘合剂在蠕动泵和压缩空气的作用下经过喷嘴喷到处于流化状态的物料上,使得粉末在粘合剂的作用下和周围粉末聚并成粒子核,粒子核与粒子核之间慢慢形成比较大的颗粒。继续向流化床内部喷入粘合剂,使得颗粒和颗粒之间,颗粒与粒子核之间发生聚并作用形成更大的颗粒。同样,粘合剂喷入量过少,在进风量和温度等工艺参数的影响下,聚并的颗粒也会破碎,变成小颗粒和小的粒子核。颗粒生长过程如下。[img]https://ng1.17img.cn/bbsfiles/images/2020/09/202009031750279617_8904_3890113_3.jpeg[/img]本实验采用的是山东新马制药装备有限公司的实验型流化床(LGL 002),设备实物图如上图。此流化床设备操作简单方便,但是缺乏信息采集装置,不能及时准确地得到颗粒的水分含量,而且制粒过程中需要进行操作的实时工艺参数数据也不能够及时记录,这样就无法对每一时刻的工艺参数数据与颗粒的水分含量进行关联分析,影响颗粒水分含量的关键工艺参数不能掌握,对制粒工艺也就不能有更为充分的理解。为了及时获取相关的颗粒水分信息和工艺参数信息,需要对流化床进行改造。安装[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]为了获得流化床制粒过程中颗粒的实时水分数据,需要在流化床设备上添加[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]用于实时在线获取颗粒的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]数据。NIRS在线分析光谱采集方式主要有接触式和非接触式两种,非接触式主要通过从流化床的视镜进行对颗粒的采谱,接触式是将近红外探头安装到流化床底锅内部,直接与颗粒接触进行采谱。本文选用微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url](MicroNIR PAT-U)在流化床制粒过程中采集颗粒的光谱数据进行水分含量的在线监测。与传统的近红外仪器相比,MicroNIR PAT-U体积较小、方便携带、质量较轻,对生产过程不会产生太大影响,因此在实际生产中适合用来对颗粒进行监测。温度对近红外仪器具有较显著的影响[50],同一个仪器在不同的温度条件下采集到的光谱也会所差异。流化床内温度比较高,并且随着实验过程物料温度在不断变化,如果直接将近红外探头与物料进行接触,采集到的光谱会有较大的误差,对实验结果的准确性也会产生影响。因此,为了尽可能地减少温度对近红外仪器的影响,将MicroNIR PAT-U外接探头,让近红外仪器不与物料直接接触,从而可以采集到较为稳定和准确的光谱数据。MicroNIR PAT-U与探头的连接方式为螺纹连接,在距离探头顶端与底锅厚度相同的地方安装材料为聚四氟乙烯的密封圈,保证采集光谱过程中的密封性与可靠性。MicroNIR PAT-U和探头的整体安装图如下图所示。为了采集颗粒的光谱,要将近红外探头伸入流化床内部,这就需要在流化床的底锅上进行打孔,孔的直径要比探头的直径大0.2~0.3mm,使得生产过程中探头不会发生晃动,保证光谱采集位置的一致性。孔的位置要尽量与取样口保持在同一条水平线上,这样可以减小近红外仪器采集的光谱数据与物料离线测量的数据在外部环境条件下的差异,尽可能减少采集数据的误差。探头具体的安装位置如下图所示。近红外探头吹扫装置在物料未成粒之前,粉末状的物料具有很强的粘附性,随着实验的进行,粉末会粘附在近红外探头上,从而对光谱的正确性产生严重的影响。这就要求在制粒过程中及时地清除掉粘附在探头上的粉末以消除这种不利影响。然而,频繁地把探头拿出来手动擦净不但会影响探头地使用寿命,而且由于光谱地采集是一个连续的过程,这样做反而会更加影响光谱数据的准确性。因此,流化床上安装近红外探头吹扫装置是非常有必要的。上节已经提到,近红外探头伸入流化床的长度与底锅的厚度一样,因此,近红外探头与底锅内壁是平行的。在近红外探头孔内径的下方孔壁上开一个直径为5mm的小孔,设计一个端部带螺纹的空心装置,外部接上吹入压缩空气的橡胶管,用于在制粒过程中对探头的吹扫,使物料尽量少的粘附在探头上。吹扫装置的原理示意图及安装实物图如图所示。吹扫装置要设置适当的吹扫频率和吹扫时间,并不是频率越快、时间越长越好。吹扫频率太快,每次吹扫时间过长,可能在探头采集光谱的时间段,刚好物料被吹扫装置吹跑,使得近红外探头实际采集的为空气的光谱,这会对结果造成较大的误差。近红外探头采集光谱的时间大约在2s左右,因此设置吹扫装置的脉冲频率设置在15s吹一次,每次吹1s为最适宜频率。工艺参数采集装置流化床制粒过程中使用的工艺参数比较少,因此每个工艺参数都对颗粒质量属性产生重要的影响。在制粒过程中,流化床的主要工艺参数有雾化压力、蠕动泵流量、进风温度、排风温度、进风量和物料温度。为了获取这些工艺参数数据,需要在流化床的相应位置上安装风量传感器、温度传感器、流速计、压力表等。流化床工艺参数采集装置的原理示意图如下图所示。进风温度、排风温度、风量的传感器,流量计和压力表都是安装在流化床系统内部,只有物料温度传感器需要在制粒的过程中将传感器加入到流化床内部。物料温度传感器采用热电偶式,为了测量流化床制粒过程中物料的温度,也需要在底锅上进行打孔,使温度传感器伸入到流化床内部,通过与物料直接接触的方式感受物料的温度并转换成可用于输出的信号。传感器孔的位置尽可能与近红外测量的位置在同一水平线上,保证测量的物料温度与近红外探头测量的物料是同一状态下的。物料温度传感器如下图所示。 [img]https://ng1.17img.cn/bbsfiles/images/2020/09/202009031750281516_7229_3890113_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2020/09/202009031750284280_7065_3890113_3.png[/img]物料温度传感器暴露在外部,容易受外部环境的影响。为了确保传感器的稳定性和可靠性,保证在制粒过程中传感器不会发生晃动,需要对物料温度传感器增加固定装置。采用管夹作为温度传感器的增固装置,如上图所示。
公司用的壳牌气化炉来生产粗煤气,里面杂质挺多,很多的焦油和粉尘,进6890N前应该怎么进行预处理呢? 请大家指教
循环流化床锅炉(CFB)具有高效、低污染、煤种适应性广、负荷调节性好、不易灭火、灰渣可利用等特点,采用洁净燃烧技术,符合国家环保产业政策,再加上其较好的煤种适应性,在我国得到迅速推广,配套机组在向300MW及以上方向发展。 循环流化床锅炉由于其结构的特殊性,所安装的热工仪表测量、保护仪表与常规煤粉炉相比,有许多类似之处也有明显的区别。CFB锅炉汽水系统的测点及其作用与普通煤粉炉相同,烟风系统增加了一些为CFB锅炉专设的风机风道的压力、温度和流量的测点,其测量方法也同普通煤粉锅炉相同。CFB锅炉在参数测量方面的特别之处在于对炉膛、分离器、回料阀和冷渣器等固体流道参数的检测。 一、循环流化床锅炉的运行特点 CFB锅炉在运行过程中特别要注重对床温、分离器入口温度、风煤比以及床压的监测、调节及控制,注重对影响物料流化、循环及燃烧的各种风量的监控,确保建立一个平稳、足够的热物料循环,从而完成锅炉燃烧的燃料燃烧及热量传递过程。 按照循环流化床锅炉的特点,设置炉膛温度、床温、床料高度及其它有关测量仪表测点,以保证机组的安全、经济运行。压力测点应提供接口和防堵设施,温度测点要求留有热电偶插座,对有防磨要求的温度测点应加装防磨装置。 二、主要热工参数的作用和意义 2.1床温 床温是CFB锅炉的重要运行参数。所谓床温主要是指燃烧密相区内流化物料的料层温度,床温值是由锅炉结构、灰熔点、排放物指标(因煤种不同而有所区别)等综合因素决定的,通过调节流经布风板的一次风量和直接进入炉膛的二次风量之比来维持床温,同时注意控制给煤量,保证温度在850-925℃,使其处于最佳燃烧状态,并有利于炉内石灰石脱硫。床温过高或过低将造成锅炉结焦灭火。影响床温的因素主要有煤种、给煤量、一/二次风量、返料量及冷灰循环。在循环倍率一定时,主要与煤量和风量有关,其中一次风量起主要作用。 以一台480t/h容量的东锅锅炉为例,它设置了2层床温测点,下层24个测点,上层24个测点,左右侧分为四列三排。它们均在二次风口以下,密相区之内,每层测点沿炉膛前中后三排均匀、对称布置,每层测点的输出送入平均值计算回路,以计算床温平均值。同时各测点均进入DCS显示。当有点与平均温度相差150度时,判断此为坏点。 2.2床压 床压是料层高度的反映。运行中通常通过调整排渣量的多少控制床压的高低。床料多、床压高,对于稳定燃烧、减小短时间断煤波动的影响、减少排渣可燃物含量有利;但同时床压高会增大一次风压头,电耗增加,同时也大大增加了启动点火阶段加热床料的时间,降低运行经济性。床料薄、床压低,易造成布风不均匀,引起结焦。 床压一般是指密相区的床压,床压测孔一般布置在距布风板上端面250mm处,左侧3个,右侧3个,将3个压力测量值通过3取中逻辑判断后送至显示及报警回路;3者取平均值作为床压调节系统的反馈信号。控制床压的方法,通过控制排渣系统来维持炉膛床压恒定,也即确保炉内的灰平衡和床料构成。 2.3风量 循环流化床锅炉的运行基于流态化的高温物料悬浮燃烧。燃烧风量是运行人员调整燃烧的的重要依据,其测量的准确性直接影响到锅炉的经济安全运行。在机组安装完成后,调试运行前,应当对一、二次风机性能进行测定,并对风量的标定,主要是鉴定风机的出口风量、风压能否达到设计要求,能否满足燃烧需要,并且校正测量装置的准确性。有效的测量风量,有利于一二次风比例的调整,能改善炉内风、煤、灰的混合程度,达到最佳的燃料、供风混合方式。 2.4点火风道温度 由于CFB锅炉的炉膛密相区和旋风分离器等多个部位设有较厚的耐磨耐火材料,因此,在启动过程中必须严格控制加热升温速度,以防止这些非金属材料因受热不均而爆裂脱落。这就要求CFB锅炉的启动燃烧器设计既要位置合理又要有较宽的调节比,而且操作灵活,可控性高。 CFB锅炉的启动燃烧器一般有3类,即布置在布风板上的床上启动燃烧器、床枪和布置在布风板下的热烟发生器。东锅早期设计的流化床采用床上加床下点火器,但后来的产品仅仅保存了床下燃烧器,床下燃烧器的风温是个重要的监测参数。 在DG490/13.8-II2型锅炉,设计有风室温度和点火风道温度各二支,分为左右侧。在点火时,通过调整燃烧将床下油点火器出口烟气温度控制在980℃以下,且风室温度在870℃以下,在此期间,温升率建议不超过28/每20~30分钟。 三、运行情况与改进措施 由于CFB锅炉内进行固体燃料的循环燃烧,流动的物料极容易堵塞压力测点和测压管线,同时对测温元件产生强烈的磨蚀,用常规手段难以进行准确可靠的连续测量,床温和床压测量元件均采用耐热防磨及防堵措施使所测数据准确、可靠。而床温、床压等参数对保证CFB锅炉的安全经济运行至关重要,因此必须采用特殊的防堵、防磨测量手段。 3.1床温测量的改进 东锅的循环流化床炉膛床温元件通常是采用多点铠装热电偶,在布风板的前、中、后三个位置横向各安装8套铠装热电偶,每套热电偶由伸出布风板的距离为300mm,由耐磨保护套管保护;每套热电偶有双只铠装热电偶组成,一点测上床温,一点测下床温。热电偶安装方式为由前后墙平插入风室,经90°直角向上穿过并固定在布风板上的耐磨保护套管内。中间的测温元件从前墙插入。在机组启动调试期间,由于温度元件在风室内的部分太长,在一次风力作用下晃动太大,首批安装的24套热电偶全部损坏。经分析:床温元件在风室内的部分太长且不能很好固定,床温元件容易被风室内的高温风冲刷,造成损坏。后虽经过采取增加不锈钢保护套管、用耐磨浇筑料及钢丝网包裹、用耐火砖固定等方法进行处理,使床温元件的工作条件有所改善,但仍然没有从根本上解决问题。 因此,在大修期间我们建议对床温元件进行改造,安装方式均为炉底直插向上穿过布风板方式,同时加装耐磨保护套管,在套管外侧再增加耐磨浇筑料。如图所示,这种方式不但能有效保护测温元件,而且能够实现温度元件的在线更换。 3.2床压测量的改进 在国内440t的流化床锅炉在运行过程中,床层差压,床层密度,床层压力等几个测点经常结焦。在最初的安装中,测点取样与炉壁成45度向上,加装风烟自动分离器。但是使用时间较长后,依然会堵塞。后经改进后,采用自动吹扫装置,向测孔引入一股恒压吹扫空气,通过调节取样管与吹扫管的距离,实现自动补偿,解决了既要取压防堵又要测量准确的问题。如图所示,通过前后调节吹扫管在取样装置锥口的位置,实现自动吹扫补偿。 在吹扫口的吹扫气源上,特别且加装了调压稳压器,完全解决了电厂气源不稳的问题,确保了流量控制器的正常运行。 3.3点火风道温度的改进 在运行过程中,点火风道温度元件插入深度过长,被高温风吹刷,以致于保护管和热电偶同时损坏。经检查,热电偶保护管已穿过浇筑料80MM,测量的已不是壁温,而是烟温。后将热电偶保护管调整,露出浇筑料10-20MM,同时在测量元件对侧又加装一个测温点,构成A、B二点,即保证测量的灵敏度,又提高元件应用的可靠性,有利用缩短启动时间,为经济运行提供基础。 3.4风量测量元件的改进 风量对于流化床锅炉来说,无疑是一个重要参数,无论是设计还是调试、运行人员,都希望表计的读数能真实的反应实际的工状。一、二次风机性能的测定和风量的标定,主要是鉴定风机的出口风量、风压能否达到设计要求,能否满足燃烧需要,并且校正测量装置的准确性。在测量中应注意,虽然一般都采用标准的测风装置进行风量测量(目前最普遍的是采用机翼型测风装置)。 但是在实际施工中,设计的安装在锅炉风道上的风量测量装置,往往由于锅炉风道截面大,直管段长度短,弯头多,按厂家要求管道直段不能满足测量,在加上装置加工误差等原因使流量系数偏离设计值,因此必须对其进行标定。由于流量与风温、差压、风压的关系较大,有的采用了三种取样元件分别测量其参数,造成测量装置折线系数公式相当繁琐,其故障自检能力也基本没有。因此当然,有必要采用先进的测量元件器可以减少测量误差。 在实际应有中,我们选用了热式质量流量计,经过一年多的运行,相比于其它测量风量的元件相比,具有性能优良、可靠性高的特点。该产品基于热扩散技术,其典型传感元件包括两个热电阻,当这两个热电阻被置于流体中时,其中一个被加热,另一个用于感应过程温度。两个热电阻之间的温差与过程流速及过程介质的性质有关,保持该温差恒定,则电子单元加热热电阻的能量与质量流量成一定的比例,我们就能推算出风量。 3.5给煤系统的改进 在锅炉试运过程中出现最频繁的问题是煤仓堵煤,为保证正常运行,在煤仓开设人工捅煤孔,有一次断煤时,就地观察员工打开捅煤孔捅煤,破坏了给煤机的压力平衡,炉内烟气反窜到给煤机,造成一台给煤机皮带及其它部件烧损。给煤机厂家对此进行了改造,在给煤机进煤口安装了测温元件,信号送入DCS作为是否超温的判断条件,同时联锁快关阀。当炉内有热烟气反窜到给煤机时,通过温度信号使快关阀迅速关闭。原来的电接点双金属温度计作为给煤机就地控制柜的报警信号。 通过调试,对电厂运行人员建议:六台给煤机尽量采用对称投运和两侧炉膛给煤量比
水煤气是通过炽热的焦炭而生成的气体,主要成份是一氧化碳 ,氢气 ,燃烧后排放水和二氧化碳,有微量CO、HC和NOX。燃烧速度是汽油的7.5倍,抗爆性好,据国外研究和的报导压缩比可达12.5。热效率提高20-40%、功率提高15%、燃耗降低30%,尾气净化近欧IV标准 ,还可用微量的铂催化剂净化。比醇、醚简化制造和减少设备,成本和投资更低。压缩或液化与氢[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]近,但不用脱除CO,建站投资较低。还可用减少的成本和投资部分补偿压缩(制醇醚也要压缩)或液化的投资和成本。有毒,工业上用作燃料,又是化工原料。制作方法 将水蒸气通过炽热的煤层可制得较洁净的水煤气(主要成分是CO和H2),现象为火焰腾起更高,而且变为淡蓝色(氢气和CO燃烧的颜色)。化学方程式为C+H2O===(△)CO+H2。这就是湿煤比干煤燃烧更旺的原因。 煤气厂常在家用水煤气中特意掺入少量难闻气味的气体,目的是CO和H2为无色无味气体,当煤气泄漏时能闻到及时发现。甲烷和水也可制 水煤气化学方程式为CH4+H2O===CO+3H2另: 一种低热值煤气。由蒸汽与灼热的无烟煤或焦炭作用而得。主要成分为氢气和一氧化碳,也含有少量二氧化碳、氮气和甲烷等组分;各组分的含量取决于所用原料及气化条件。主要用作合成氨、合成液体燃料等的原料,或作为工业燃料气的补充来源。 工业上,水煤气的生产一般采用间歇周期式固定床生产技术。炉子结构采用UGI气化炉的型式。在气化炉中,碳与蒸汽主要发生如下的水煤气反应: C+H2O===(高温)CO+H2 C+2H2O===(高温)CO2+2H2以上反应均为吸热反应,因此必须向气化炉内供热。通常,先送空气入炉,烧掉部分燃料,将热量蓄存在燃料层和蓄热室里,然后将蒸汽通入灼热的燃料层进行反应。由于反应吸热,燃料层及蓄热室温度下降至一定温度时,又重新送空气入炉升温,如此循环。当目的是生产燃料气时,为了提高煤气热值,有时提高出炉煤气温度,借以向热煤气中喷入油类,使油类裂解,即得所谓增热水煤气。用途 气体燃料的一种。主要成分是氢和一氧化碳。由水蒸气和赤热的无烟煤或焦炭作用而得。工业上大多用蒸气和空气轮流吹风的间歇法,或用蒸气和氧一起吹风的连续法。热值约为10500千焦/标准立方米。此外,尚有用蒸气和空气一起吹风所得的“半水煤气”。可作为燃料,或用作合成氨、合成石油、有机合成、氢气制造等的原料。安全隐患 但水煤气存在着许多隐患,水煤气发生炉长期运行后极易产生大量硫化氢、焦油、酚水等污染物,影响半径达500米,对农作物、空气环境和人体等都有较大的损害。它产生的多种废气和恶臭,会引起人头痛、头晕,居民根本受不了。此外,由于水煤气主要由一氧化碳、氢气等易燃气体组成,一旦泄漏,则极可能发生爆炸和中毒,造成群死群伤事件。 对于水煤气中的硫化氢,在其后煤气燃烧后会转化为二氧化硫和水,因此,在燃煤气的炉窑中燃烧后尾气中有二氧化硫,需要脱硫处理,但是目前使用的较少。另: 一种低热值煤气。由蒸汽与灼热的无烟煤或焦炭作用而得。主要成分为氢气和一氧化碳,也含有少量二氧化碳、氮气和甲烷等组分;各组分的含量取决于所用原料及气化条件。主要用作台成氨、合成液体燃料等的原料,或作为工业燃料气的补充来源。 工业上,水煤气的生产一般采用间歇周期式固定床生产技术。炉子结构采用UGI气化炉的型式。在气化炉中,碳与蒸汽主要发生如下的水煤气反应: C+H2O===(高温)CO+H2 C+2H2O===(高温)CO2+2H2 以上反应均为吸热反应,因此必须向气化炉内供热。通常,先送空气入炉,烧掉部分燃料,将热量蓄存在燃料层和蓄热室里,然后将蒸汽通入灼热的燃料层进行反应。由于反应吸热,燃料层及蓄热室温度下降至一定温度时,又重新送空气入炉升温,如此循环。当目的是生产燃料气时,为了提高煤气热值,有时提高出炉煤气温度,借以向热煤气中喷入油类,使油类裂解,即得所谓增热水煤气。
[align=center][size=16px][b]流化床制粒[/b][/size][size=16px][b]发展现状[/b][/size][/align]药品是人们常备的不可或缺的日常用品。近年来,随着国民生活水平的提高,人们对药品质量和药物安全问题广泛关注,制药领域也随之越来越多的进入到我们的视野中。长期以来,制药行业都采用传统的方式进行生产,无论是自动化、信息化水平还是认知观念水平都与其他行业存在着一定的差距。“十三五”规划以来,国家大力发展智能制造,制药行业作为制造业的一部分,需要紧跟发展潮流,朝着信息化、智能化方向发展。固体制剂是目前最常见的剂种之一,其生产过程是将原料通过一系列操作包括粉碎、混合、制粒、包衣及压片等过程转化成药物制剂。无论是制作胶囊还是压片,制粒都是非常重要的关键步骤。制粒是将药物粉末与相关的辅料进行混合,待混合均匀后再喷入润湿剂或者粘合剂,在设备中制成具有颗粒形态的过程。干法制粒和湿法制粒是目前固体制粒中最常用的两种方法[font='calibri'][size=13px][1][/size][/font]。干法制粒不需要使用粘合剂,常用于对水分比较敏感的制剂;湿法制粒是常用的制粒方法,在混合均匀的粉末中喷入粘合剂,将粉末表面打湿,粉末通过粘合剂的媒介作用聚结在一起可以慢慢形成颗粒。流化床制粒是常见的湿法制粒方法之一。流化床制粒过程中使用的工艺参数较少、且操作方法简单,广泛应用于固体制粒中。然而,目前的流化床制粒大多依靠于人工经验,对于制粒过程中颗粒的质量属性的变化都是离线进行分析,严重滞后于生产过程。制粒过程信息不透明,对制粒过程影响因素不能准确把握,容易导致药物疗效达不到预期甚至造成制粒批次的失败。随着计算机信息技术、人工智能、传感器技术的发展,及时获取流化床制粒过程工艺参数与颗粒的关键质量属性,通过数据挖掘出工艺参数变化对于流化床制粒过程的影响,通过质量属性的变化及时调整工艺参数,从而可以大大提高制粒成功率,打破国外技术封锁,实现连续化、智能化生产的目标。针对流化床制粒信息化、自动化水平低,数据采集困难等问题,合理改造设备以及通过机器学习等人工智能算法了解工艺参数的内部机理,达到准确调控,对流化床制粒连续化、智能化生产具有重要指导意义。流化床制粒技术只在一个腔体中就可以完成整个制粒过程。药物粉末和辅料等一次性的投入到密封的腔体中,在腔体内进行混合,直至腔体内的各种物料都混合均匀,接着从底部通入热空气,药物粉末在从下方而来的热空气作用下能够保持悬浮,从而达到理想的流化状态。接着将按照一定比例配成的黏合剂液体在蠕动泵和一定压力的压缩空气作用下,以雾化的形式从喷枪中向流化层喷入,使药物粉末聚结成颗粒。在整个制粒过程中,颗粒只受到流化床内部气流的作用,上下流动,因此形成的颗粒之间的粘合度较低,颗粒密度比较小,粒度比较均匀,并且有较好的可压缩性和流动性。流化床制粒设备的整体情况都大同小异,主要的不同在于雾化的粘合剂喷入的方式。按照喷嘴所在位置的不同,可以大体将流化床分为顶喷式、底喷式和流化床三类,这三类流化床的示意图如下图1-1所示。顶喷式流化床是将喷枪从腔体外部伸入到制粒室中,从流化层的上方自上而下进行喷液。颗粒通过气流的作用上升至喷嘴的位置,雾化的粘合剂从喷嘴喷出并将颗粒包裹起来,颗粒上升到一定的高度后回落,如此往复,顶喷式流化床一般用于制粒。底喷式流化床是喷枪中粘合剂的喷洒方向与进风气流的方向一致,侧喷式流化床的喷嘴安装在制粒室的内壁上,最明显的特点是在其底部安装有布风板,底喷式流化床和侧喷式流化床一般用于包衣。[align=center][font='times new roman']图[/font][font='times new roman']1-[/font][font='times new roman']1 [/font][font='times new roman']制粒[/font][font='times new roman']流化床[/font][font='times new roman']分类[/font][/align][font='times new roman'][size=16px][b]流化床制粒技术研究现状[/b][/size][/font]1959年,美国的Wurst首先提出了流化床技术,该技术以其工艺简单,操作时间短,劳动强度低等特点广泛应用于固体制药领域。我国于上世纪八十年代才引入流化床制粒设备,相对于国外来说起步较晚,因此对于流化床制粒技术的研究也相对较少。石海涛[font='calibri'][size=13px][3][/size][/font]等人使用流化床制粒技术解决了采用传统的湿法制粒批次间颗粒质量属性差异大,制粒终点难以把握的缺点,制出崩解性能良好的甲磺酸吉米沙星片。申楼[font='calibri'][size=13px][4][/size][/font]等人把颗粒的流动性、表面性状和崩解时限作为衡量颗粒质量的标准,采用正交试验的方法确定出流化床制粒的最佳工艺参数。东北大学的王正松[font='calibri'][size=13px][5][/size][/font]以颗粒的粒度为研究对象,建立并验证了流化床制粒最终颗粒粒度的机理模型,并且建立了预测颗粒粒度的回归模型。浙江大学的周家辉[font='calibri'][size=13px][6][/size][/font]针对流化床制粒室温度难以控制的问题,分析了流化床制粒温度影响因素,对流化床进行了热力学分析,并且设计了温度控制器。在国外近几年的研究中,Neugebauer[font='calibri'][size=13px][7][/size][/font]等人针对流化床分层制粒过程中颗粒形成干燥区的问题,提出了一种用于研究各种工艺参数对粒子动力学和工艺稳定性的影响的模型。Hayashi[font='calibri'][size=13px][8][/size][/font]等人对流化床造粒过程中颗粒生长和破碎的机理进行了研究,提出了一种基于离散元法和计算流体动力学相结合的粒子碰撞频率函数的粒子平衡模型。Heidari[font='calibri'][size=13px][9][/size][/font]等人考虑液滴蒸发过程引起的体积变化等因素,综合考虑粘合剂粘性与液滴表面张力的平衡力,建立了流化床制粒过程中液滴蒸发的力学模型,利用该模型研究了不同温度、蒸汽压力、接触角和液滴直径条件下蒸发速率对液滴扩散时间的影响。Teixeira[font='calibri'][size=13px][10][/size][/font]等人研究了提高姜黄素溶解度的多种策略并且以姜黄素为原料,采用流化床制粒法,制备姜黄素颗粒。国外的流化床技术已经取得了一定的成就,然而国内的流化床制粒领域中相关的文献报道却比较少,这种现状对于我们来说既是机遇也是挑战。通过文献可以看出,越来越多的学者都针对流化床制粒工艺进行研究,这也必将会是未来研究流化床制粒技术的一个趋势。
想在实验室搭建一套水煤气发生装置,但先前没有人做过类似方向,所以对实验所需装置不是很清楚。 目前是想做催化甲烷和水蒸气制水煤气,实验室目前已有气-固反应床,需要接通气体的装置,但现在不清楚该选用什么配件如何连接。请问有没有做过类似方向的朋友能给下建议。如果能给一个完整的反应装置图,就更加感激不尽了[img]http://simg.instrument.com.cn/bbs/images/default/em09505.gif[/img]
[size=14px][color=#cc0000] 摘要:本文介绍了合肥等离子体所研发的微波等离子高温热处理装置,并针对热处理装置中真空压力精确控制这一关键技术,介绍了上海依阳公司为解决这一关键技术所采用的真空压力下游控制模式及其装置,介绍了引入真空压力控制装置后微波等离子高温热处理过程中的真空压力控制实测结果,实现了等离子体热处理工艺参数的稳定控制,验证了替代进口真空控制装置的有效性。[/color][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][color=#cc0000][b]1. 问题的提出[/b][/color][size=14px] 各种纤维材料做为纤维复合材料的增强体在军用与民用工业领域中发挥着巨大作用,例如碳纤维、陶瓷纤维和玻璃纤维等,而高温热处理是提高这些纤维材料性能的有效手段,通过高温可去除杂质原子,提高主要元素含量,可以得到性能更加优良的纤维材料,因此纤维材料高温热处理的关键是方法与设备。[/size][size=14px] 低温等离子体技术做为一种高温热处理的新型工艺方法,气体在加热或强电磁场作用下电离产生的等离子体可在室温条件下快速达到2000℃以上的高温条件。目前已有研究人员利用高温热等离子体、直流电弧等离子体、射频等离子体等技术对纤维材料进行高温热处理。低温等离子体具有工作气压宽,电子温度高,纯净无污染等优势,且在利用微波等离子体对纤维材料进行高温处理时,可利用某些纤维材料对电磁波吸收以及辐射作用,通过产生的微波等离子体、电磁波以及等离子体产生的光能等多种加热方式,将大量能量作用于纤维材料上,实现快速且有效的高温热处理。同时,通过调节反应条件,可将多种反应处理一次性完成,大大降低生产成本。[/size][size=14px] 中国科学院合肥物质科学研究院等离子体物理研究所对微波等离子体高温热处理工艺进行了大量研究,并取得了突破性进展,在对纤维材料的高温热处理过程中,热处理温度可以在十几秒的时间内从室温快速升高到2000℃以上,研究成果申报了国家发明专利CN110062516A“一种微波等离子体高温热处理丝状材料的装置”,整个热处理装置的原理如图1-1所示。[/size][align=center][size=14px][img=,690,416]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202228157595_5464_3384_3.png!w690x416.jpg[/img][/size][/align][align=center][size=14px][color=#cc0000]图1-1 微波等离子体高温热处理丝状材料的装置原理图[/color][/size][/align][size=14px] 等离子体所研制的这套热处理装置,可通过调节微波功率、真空压力等参数来灵活调节温度区间,可在低气压的情况下获得较高温度,但同时也要求这些参数具有灵活的可调节性和控制稳定性,如为了实现达到设定温度以及温度的稳定性,就需要对热处理装置中的真空压力进行精确控制,这是实现等离子工艺平稳运行的关键技术之一。[/size][size=14px] 为了解决这一关键技术,上海依阳实业有限公司采用新开发的下游真空压力控制装置,为合肥等离子体所的高温热处理装置较好的解决了这一技术难题。[/size][size=14px][b][color=#cc0000]2. 真空压力下游控制模式[/color][/b][/size][size=14px] 针对合肥等离子体所的高温热处理装置,真空腔体内的真空压力采用了下游控制模式,此控制模式的结构如图2-1所示。[/size][align=center][color=#cc0000][size=14px][img=,690,334]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202229013851_5860_3384_3.png!w690x334.jpg[/img][/size][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图2-1 下游控制模式示意图[/color][/align][size=14px] 具体到图1-1所示的微波等离子体高温热处理丝状材料的装置,采用了频率为2.45GHz的微波源,包括微波源系统和上、下转换波导,上转换波导连接真空泵,下转换波导连接微波源系统和样品腔,上、下转换波导间设有同轴双层等离子体反应腔管,双层等离子体反应腔管包括有同轴设置的外层铜管和内层石英玻璃管,内层石英玻璃管内为等离子体放电腔,外层铜管与内层石英玻璃管之间为冷却腔,外层铜管的两端设有分别设有冷媒进口和出口以形成循环冷却。真空泵、样品腔分别与等离子体放电腔连通,样品腔设有进气管,工作气体及待处理丝状材料由样品腔进气管进入等离子体放电腔。微波源系统采用磁控管微波源,磁控管微波源包括有微波电源、磁控管、三销钉及短路活塞,微波由微波电源发出经磁控管产生,磁控管与下转换波导之间设置有矩形波导,矩形波导安装有三销钉,下转换波导另一端连接有短路活塞,通过调节三销钉和短路活塞,得到匹配状态和传输良好的微波。[/size][size=14px] 丝状材料由样品腔进入内层石英层玻璃管,从两端固定拉直,安装完毕后真空泵抽真空并由进气管向等离子体放电腔通入工作气体。微波源系统产生的微波能量经三销钉和短路活塞调节,通过下转换波导由TE10模转为TEM模传输进入等离子体放电腔,在放电腔管内表面形成表面波,激发工作气体产生高密度微波等离子体作用于待处理丝状材料,同时等离子体发出的光以及部分泄露的微波也被待处理丝状材料吸收,实现多种手段同时加热。双层等离子体反应腔管外围环绕设有磁场组件,外加磁场可调节微波在等离子体中的传播模式,同时可以使得丝状材料更好的重结晶,提高处理后的丝状材料质量。[/size][size=14px] 装置可以通过调节微波功率、工作气压调节温度,变化范围为1000℃至5000℃间,同时得到不同长度的微波等离子体。为了进行工作气压的调节,在真空泵和上转换波导的真空管路之间增加一个数字调节阀。当设定一定的进气速率后,调节阀用来控制装置的出气速率由此来控制工作腔室内的真空度,采用薄膜电容真空计来高精度测量绝对真空度,而调节阀的开度则采用24位高精度控制器进行PID控制。[/size][size=14px][b][color=#cc0000]3. 下游控制模式的特点[/color][/b][/size][size=14px] 如图2-1所示,下游控制模式是一种控制真空系统内部真空压力的方法,其中抽气速度是可变的,通常由真空泵和腔室之间的控制阀实现。[/size][size=14px] 下游控制模式是维持真空系统下游的压力,增加抽速以增加真空度,减少流量以减少真空度,因此,这称为直接作用,这种控制器配置通常称为标准真空压力调节器。[/size][size=14px] 在真空压力下游模式控制期间,控制阀将以特定的速率限制真空泵抽出气体,同时还与控制器通信。如果从控制器接收到不正确的输出电压(意味着压力不正确),控制阀将调整抽气流量。压力过高,控制阀会增大开度来增加抽速,压力过低,控制阀会减小开度来降低抽速。[/size][size=14px] 下游模式具有以下特点:[/size][size=14px] (1)下游模式作为目前最常用的控制模式,通常在各种条件下都能很好地工作;[/size][size=14px] (2)但在下游模式控制过程中,其有效性有时可能会受到“外部”因素的挑战,如入口气体流速的突然变化、等离子体事件的开启或关闭使得温度突变而带来内部真空压力的突变。此外,某些流量和压力的组合会迫使控制阀在等于或超过其预期控制范围的极限的位置上运行。在这种情况下,精确或可重复的压力控制都是不可行的。或者,压力控制可能是可行的,但不是以快速有效的方式,结果造成产品的产量和良率受到影响。[/size][size=14px] (3)在下游模式中,会在更换气体或等待腔室内气体沉降时引起延迟。[/size][size=14px][b][color=#cc0000]4. 下游控制用真空压力控制装置及其控制效果[/color][/b][/size][size=14px] 下游控制模式用的真空压力控制装置包括数字式控制阀和24位高精度控制器。[/size][size=14px][color=#cc0000]4.1. 数字式控制阀[/color][/size][size=14px] 数字式控制阀为上海依阳公司生产的LCV-DS-M8型数字式调节阀,如图4-1所示,其技术指标如下:[/size][size=14px] (1)公称通径:快卸:DN10-DN50、活套:DN10-DN200、螺纹:DN10-DN100。[/size][size=14px] (2)适用范围(Pa):快卸法兰(KF)2×10[sup]?5[/sup]~1.3×10[sup]?-6[/sup]/活套法兰6×10[sup]?5[/sup]~1.3×10[sup]?-6[/sup]。[/size][size=14px] (3)动作范围:0~90°;动作时间:小于7秒。[/size][size=14px] (4)阀门漏率(Pa.L/S):≤1.3×10[sup]?-6[/sup]。[/size][size=14px] (5)适用温度:2℃~90℃。[/size][size=14px] (6)阀体材质:不锈钢304或316L。[/size][size=14px] (7)密封件材质:增强聚四氟乙烯。[/size][size=14px] (8)控制信号:DC 0~10V或4~20mA。[/size][size=14px] (9)电源供电:DC 9~24V。[/size][size=14px] (10)阀体可拆卸清洗。[/size][align=center][color=#cc0000][size=14px][img=,315,400]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202231249739_6263_3384_3.png!w315x400.jpg[/img][/size][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图4-1 依阳LCV-DS-M8数字式调节阀[/color][/align][size=14px][color=#cc0000]4.2. 真空压力控制器[/color][/size][size=14px] 真空压力控制器为上海依阳公司生产的EYOUNG2021-VCC型真空压力控制器,如图4-2所示,其技术指标如下:[/size][size=14px] (1)控制周期:50ms/100ms。[/size][size=14px] (2)测量精度:0.1%FS(采用24位AD)。[/size][size=14px] (3)采样速率:20Hz/10Hz。[/size][size=14px] (4)控制输出:直流0~10V、4-20mA和固态继电器。[/size][size=14px] (5)控制程序:支持9条控制程序,每条程序可设定24段程序曲线。[/size][size=14px] (6)PID参数:20组分组PID和分组PID限幅,PID自整定。[/size][size=14px] (7)标准MODBUS RTU 通讯协议。两线制RS485。[/size][size=14px] (8)设备供电: 86~260VAC(47~63HZ)/DC24V。[/size][align=center][size=14px][img=,500,500]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202232157970_4559_3384_3.jpg!w500x500.jpg[/img][/size][/align][align=center][size=14px][color=#cc0000]图4-2 依阳24位真空压力控制器[/color][/size][/align][size=14px][b][color=#cc0000]5. 控制效果[/color][/b][/size][size=14px] 安装了真空压力控制装置后的微波等离子体高温热处理系统如图5-1所示。[/size][align=center][size=14px][color=#cc0000][img=,690,395]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202232573625_5179_3384_3.png!w690x395.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-1 微波等离子体高温热处理系统[/color][/align][size=14px] 在热处理过程中,先开启真空泵和控制阀对样品腔抽真空,并通惰性气体对样品腔进行清洗,然后按照设定流量充入相应的工作气体,并对样品腔内的真空压力进行恒定控制。真空压力恒定后开启等离子源对样品进行热处理,温度控制在2000℃以上,在整个过程中样品腔内的真空压力始终控制在设定值上。整个过程中的真空压力变化如图5-2所示。[/size][align=center][size=14px][color=#cc0000][img=,690,419]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202234216839_5929_3384_3.png!w690x419.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-2 微波等离子体高温热处理过程中的真空压力变化曲线[/color][/align][size=14px] 为了更好的观察热处理过程中真空压力的变化情况,将图5-2中的温度突变处放大显示,如图5-3所示。[/size][align=center][size=14px][color=#cc0000][img=,690,427]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202234347767_4036_3384_3.png!w690x427.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-3 微波等离子体高温热处理过程中温度突变时的真空压力变化[/color][/align][size=14px] 从图5-3所示结果可以看出,在300Torr真空压力恒定控制过程中,真空压力的波动非常小,约为0.5%,由此可见调节阀和控制器工作的准确性。[/size][size=14px] 另外,在激发等离子体后样品表面温度在几秒钟内快速上升到2000℃以上,温度快速上升使得腔体内的气体也随之产生快速膨胀而带来内部气压的升高,但控制器反应极快,并控制调节阀的开度快速增大,这反而造成控制越有超调,使得腔体内的气压反而略有下降,但在十几秒种的时间内很快又恒定在了300Torr。由此可见,这种下游控制模式可以很好的响应外部因素突变造成的真空压力变化情况。[/size][size=14px] 上述控制曲线的纵坐标为真空计输出的与真空度对应的电压值,为了对真空度变化有更直观的了解,按照真空计规定的转换公式,将上述纵坐标的电压值换算为真空度值(如Torr),纵坐标换算后的真空压力变化曲线如图54所示,图中还示出了真空计电压信号与气压的转换公式。[/size][size=14px] 同样,将图5-4纵坐标放大,如图5-5所示,可以直观的观察到温度突变时的真空压力变化情况。从图5-4中的转换公式可以看出,由于存在指数关系,纵坐标转换后的真空压力波动度为6.7%左右。如果采用线性化的薄膜电容式真空计,即真空计的真空压力测量值与电压信号输出值为线性关系,这种现象将不再存在。[/size][align=center][color=#cc0000][size=14px][img=,690,423]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202236297989_3820_3384_3.png!w690x423.jpg[/img][/size][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图5-4 高温热处理过程中温度突变时的真空压力变化(纵坐标为Torr)[/color][/align][align=center][size=14px][img=,690,421]https://ng1.17img.cn/bbsfiles/images/2021/05/202105202236397212_4575_3384_3.png!w690x421.jpg[/img][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-5 高温热处理过程中温度突变时的真空压力变化(纵坐标为Torr)[/color][/align][size=14px][b][color=#cc0000]6. 总结[/color][/b][/size][size=14px] 综上所述,采用了完全国产化的数字式调节阀和高精度控制器,完美验证了真空压力下游控制方式的可靠性和准确性,同时还充分保证了微波等离子体热处理过程中的温度调节、温度稳定性和均温区长度等工艺参数,为微波等离子体热处理工艺的推广应用提供了技术保障。另外,这也是替代真空控制系统进口产品的一次成功尝试。[/size][size=14px] [/size][size=14px][/size][align=center]=======================================================================[/align][size=14px][/size][size=14px][/size]
日本通产省日前发表的“21世纪煤炭技术战略”指出,为了提高煤炭的利用效率,减少煤炭燃烧时产生的二氧化碳等有害气体对环境的污染,日本正在积极开发多种多样的高效率燃煤技术。 目前,日本燃煤技术开发的主要课题包括开发减少二氧化碳、二氧化硫和氮氧化物的排放量,以及提高燃料利用率的技术等。 首先,在减少二氧化碳排放技术的研究方面,发电部门的课题包括加压流化床燃烧(即通过喷出的气体托起煤粉末进行燃烧的方法)技术、高度加压流化床燃烧技术、加压内部循环流化床燃烧技术、喷流床燃烧技术、燃料电池用煤气制造技术、煤炭部分燃烧技术等。一般产业部门的课题包括提高现有锅炉燃烧效率的技术、直接利用煤炭炼铁技术、利用煤炭的金属熔炉系统、高转换率焦炭制造技术、流化床水泥制造技术、二氧化碳固化和分离技术、以及二氧化碳回收型氧气燃烧技术等。 其次,在和硫、氮氧化物排放量方面,研究开发课题有高级排烟处理技术、炉内清除一氧化氮技术、高温燃烧煤炭燃气除尘技术和微量元素的测定与清除技术等。 在提高燃料利用率方面,已经研究开发成功的新技术有煤水混合化(CWM)技术、煤粉罐车系统(CCS)、煤炭液化技术。正在研究开发的还有煤炭加氢气化技术、利用煤炭制取二甲醚技术、完全无灰煤制造技术和高增值技术,其中高增值技术就是在较低温度下对煤炭进行急剧热分解,从中制取燃气、灯油及高价值的化学原料(如优质焦油等)的技术。
[font='times new roman'][size=16px][b]流化[/b][/size][/font][font='times new roman'][size=16px][b]床[/b][/size][/font][font='times new roman'][size=16px][b]生产[/b][/size][/font][font='times new roman'][size=16px][b]工艺影响因素及研究现状[/b][/size][/font][font='times new roman'][size=16px][b] [/b][/size][/font][font='times new roman'][size=16px][b]流化[/b][/size][/font][font='times new roman'][size=16px][b]床生产[/b][/size][/font][font='times new roman'][size=16px][b]工艺影响因素概述[/b][/size][/font]流化床生产过程的内部机理比较复杂,很多因素都会影响制得颗粒的质量属性。其中,设备、工艺、处方等因素通常会对制粒结果有较大影响。设备因素主要是由于流化床本身造成的,不同的流化床制得的颗粒有所不同;工艺因素是与生产过程中实际操作的工艺参数相关;处方因素是指使用的原辅料性质和粘合剂的性质等有关。(一)设备因素在流化床制粒中,容器材料和形状影响比较大,容器的形状会对粒子的运动轨迹产生影响。流化床设备不但要使得物料可以达到流化状态,还要保证不会黏附在容器内壁上,这样可以使得在制粒过程中避免产生不规则的颗粒以及大量的细粉[font='times new roman'][size=16px][11][/size][/font]。流化床锅体的主要形状是圆锥体,上面比较宽,下面部分比较窄,其样式和内部结果如下图所示。[align=center][font='times new roman'][size=16px] [/size][/font][/align][align=center][font='times new roman'][size=16px]图[/size][/font][font='times new roman'][size=16px]1[/size][/font][font='times new roman'][size=16px]流化[/size][/font][font='times new roman'][size=16px]床锅体图[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]图[/size][/font][font='times new roman'][size=16px]1-[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]流化[/size][/font][font='times new roman'][size=16px]床锅体内[/size][/font][font='times new roman'][size=16px]部图[/size][/font][/align]锅体一般是用低碳钢304作为材料,并且在锅体内部进行抛光处理。锅体的最底端是进风口,分流板就安装在进风口处,并且在分流板上固定一层不锈钢筛网。Borne等人提出,分流板不会对物料粉末粒子的运动产生影响。(二)工艺因素流化床的工艺因素主要有进风温度、进风量、雾化压力、粘合剂的流速等。流化床的进风温度要保持在合理的范围内,一般设定在25°C~55°C之间。如果进风温度过低,粘合剂不能够及时蒸发从而使得颗粒湿润过度,这样流化床内壁上就会黏附部分物料粉末,从而不能达到较好的流化状态,粒子容易粘成一团;如果进风温度过高,会使得颗粒上的粘合剂过早的被干燥,颗粒上附着的粘合剂变少,从而达不到良好的制粒效果。流化床的进风量也是一个很重要的影响因素之一,合适的风量可以使得物料能够处于很好的流化状态,对使粉末形成颗粒比较有利,提高进风量有利于大颗粒的形成[font='times new roman'][size=16px][13][/size][/font]。若进风量过大,细小颗粒中的粘合剂挥发过快,不能达到良好的粘合作用,使得颗粒的粒度分布比较宽,细粉相对来说也比较多;若进风量较小,颗粒不能够被很好的吹起来形成流化状态,在粘合剂的作用下容易形成粒径很大的颗粒,从而形成很大的一团,造成塌床。雾化压力可以影响喷雾雾滴的大小,雾化压力过低,形成的喷雾的雾滴变大,喷雾范围变小,造成粘合剂在物料中分布不均匀;雾化压力过高则喷雾的雾滴过小,不利于物料良好的流化状态,不能很好的制粒。粘合剂的流速跟流化床制粒室内的湿度有关系,粘合剂流速过高,颗粒不能够被及时干燥,容易有塌床的风险;流速过低时,喷入的粘合剂过少,则会使颗粒的粒径过小,粉末较多,导致制粒效率低下。(三)处方因素物料主要有疏水性和亲水性两种。疏水性物料一般采用干法制粒;亲水性物料由于亲水性的不同也会产生差异。亲水性越强的物料越不容易被粘合剂润湿,因此成粒难度较大,需要提高粘合剂喷入速度[font='times new roman'][size=16px][14][/size][/font]。粘合剂的种类和浓度也会影响粉末的成粒,是流化床制粒中比较重要的工艺[font='times new roman'][size=16px][15][/size][/font]。合适的粘合剂与物料之间具有较高的粘合力,有利于颗粒的形成。粘合剂浓度较高可以有较高的粘合力,制得的颗粒较大;浓度较低则会使得粘合力不够,导致制粒速度变慢,细粉增多。[font='times new roman'][size=16px][b]流化[/b][/size][/font][font='times new roman'][size=16px][b]床生产[/b][/size][/font][font='times new roman'][size=16px][b]工艺研究现状[/b][/size][/font]质量源于设计(Quality by Desigh, QbD)在药物制剂研究中常用的研究方法,通过对生产工艺的理解来对过程进行控制[font='times new roman'][size=16px][16][/size][/font][font='times new roman'][size=16px][17][/size][/font]。在流化床制粒过程中,如果采用不同的工艺参数,则制备出来的颗粒的尺寸、粒径分布、含水量、流动性、可压性和溶解特性等质量属性都会有所不同,从而影响制成的颗粒的最终品质[font='times new roman'][size=16px][18][/size][/font]。已经有不少国内外学者在流化床制粒工艺方面进行了研究。宋顺宗[font='times new roman'][size=16px][19][/size][/font]等人采用正交试验的方法研究了进风温度、雾化压力和包衣液流速等工艺参数对包衣颗粒完整度、效率和成品率的综合影响。余楚钦[font='times new roman'][size=16px][20][/size][/font]等人以进风温度、进风参数、粘合剂流量、雾化压力为自变量采用正交试验的方法,考察这些工艺参数对颗粒的粒度、流动性、表面性状及崩解时限的影响。比利时布鲁塞尔自由大学的Rambali [font='times new roman'][size=16px][21][/size][/font]等人研究制粒过程的进风温度、进风速度、喷雾速率和进风湿度等工艺参数,确定了颗粒的理论含水率和液滴尺寸的测量方法,并且用这些工艺参数作为变量,建立了与粒径尺寸的回归模型。Aleksić [font='times new roman'][size=16px][22][/size][/font]等人采用响应面分析、多层感知机神经网络和偏最小二乘法对流化床制粒过程进行了数值模型来设计工艺参数的调节范围,研究表明,粘合剂的粘度会在很大程度上影响颗粒的形状。Bellocq[font='times new roman'][size=16px][23][/size][/font]等人研究了流化床制粒在不同工艺条件下对团聚体结构和功能的影响。Ehlersa[font='times new roman'][size=16px][24][/size][/font]等人在粘合剂流速、流量和进风温度恒定的条件下,研究脉冲喷雾和雾化压力在顶喷式流化床中对颗粒粒径大小的影响,结果表明,雾化压力对粒径的影响取决于入口空气的相对湿度,脉冲喷雾的占空比对最终产品的质量至关重要。目前为止,流化床制粒工艺主要依靠工人的经验,具有较强的主观性,缺乏对工艺参数和质量属性之间的深入理解,很少考虑制粒过程中质量属性的变化,缺乏有效的实时监控手段,同时还有很多的不确定性因素。因此,实施过程监控手段,实时测量流化床制粒过程中的关键质量属性对理解工艺参数对颗粒质量属性的影响具有重要作用。
寻求流化床造粒,实验室用,要求与样品接触部分是有机类材料,不能有不锈钢含铁类物质。拜托各位,发布内容有效日期17年12月5日-17年12月30日
以煤为原料加工制得的含有可燃组分的气体。根据加工方法、煤气性质和用途分为:煤气化得到的是水煤气、半水煤气、空气煤气 (或称发生炉煤气) ,这些煤气的发热值较低,故又统称为低热值煤气 煤干馏法中焦化得到的气体称为焦炉煤气,高炉煤气。属于中热值煤气,可供城市作民用燃料。煤气中的一氧化碳和氢气是重要的化工原料。煤气检测仪校准标定原则: 通常情况下可燃气的校准工作由第三方国家计量院来做,但也有委托供货方来作检定.校验气体检测仪需要注意,原则上要采用经计量认证与被检测气体相匹配的尺度样气.相同的被测介质所选的尺度样气不同. 1、异丁烷是气,当被测气体为烃类混合时,其次为丙烷。 2、对于非烃类混合物或爆炸下限浓度的气体燃烧时产生的热量相差较多的烃类混合物。可使用丁烷、异丁烷、丙烷等既易得又稳定的单组分燃料作为样气。此时必需依据一定的检测信号换算关系调整报警器的量程。 3、针对固定式探测器,探头的周围环境应无可燃气体。如果有可燃气体,校验前,要先拆下防雨罩,充入一定量的洁净空气后,再连续通入样气,以保证可燃气体检测仪校验的准确性.
太阳能集热管实验装置技术参数太阳能集热器的集热效率与太阳辐射强度、空气温度、流体工质流速、透明覆盖材料都有很大关系。太阳辐射强度等外界环境对太阳能集热器的集热效率而言为不可控因素,为保证实验结果的准确,太阳能集热管实验装置试验选择在晴朗无风的天气下进行,室外环境均保持一致。无论透明覆盖材料是玻璃、PC板与塑料薄膜,在不同流速情况下,太阳能集热器的集热效率均表现出随太阳辐射强度增强集热效率升高的现象,同时流速越快集热效率越高。在不同太阳辐射条件下,高流速下太阳能集热器集热效率均高于同等太阳辐射条件下低流速状况下的集热效率。在集热过程中,集热器本身既是一个集热装置,同时也是一个散热体,由于周围环境温度较低,集热器本身会向外界环境散热。散热量的大小取决于集热器内外温差,流速大可减小集热器水与室外温度的温差故散热量少,即集热量大。由太阳能集热管实验装置试验结果分析可知,流速影响集热效率的程度在一定条件下要比太阳辐射大,当然这也有可能是由于流速设置梯度较大,太阳辐射设置梯度较小造成了此现象,因此需要进一步试验验证讨论。[img=太阳能集热管实验装置,400,400]https://ng1.17img.cn/bbsfiles/images/2022/04/202204270913027933_1262_4136176_3.jpg!w690x690.jpg[/img]透明覆盖材料主要从两个方面影响太阳能集热器的集热效率,一个是透光率,二个是保温能力。从透光率上来讲,玻璃的透光率较PC板与塑料薄膜好;从保温特性来讲,PC板由于是双层中空材料,保温效果较玻璃与塑料薄膜好。综合两种因素,本试验表现出玻璃与PC板在同等外界环境与流速下,太阳能集热器的集热效率效率相差不大,但均明显高于塑料薄膜太阳能集热器的集热效率。本实验还对不同材料透明板进行了经济性分析,8mm厚钢化玻璃的承压能力、自身抗风压性、抗冲击、弹性好,机械强度高,热稳定性好,碎后不易伤人,透光率为90%以上,使用年限为10年以上,钢化玻璃比PC阳光板抗晒、耐老化;8mm厚PC阳光板具有良好的抗撞击性,重量较轻,透光率约为80%,由于新疆地区紫外线强烈,使用年限超过3年后透光率下降严重;0.2mm的PVC棚膜在低温下易变硬、脆化,高温易软化、松弛,透光率为62%~74%,而且存在老化回收后不能燃烧处理等问题,有效使用寿命4~6个月。但是从费用上来说,钢化玻璃成本为100元/m2,PC阳光板成本为50元/m2,而塑料薄膜成本仅为5元/m2。如果进行折旧计算,玻璃板为10元/m2/年,PC阳光板在有效使用情况下为16.7元/m2/年,塑料薄膜为10元/m2/年左右。综合考虑成本与集热效率,本试验从透明盖板材料使用寿命、透光率、机械性能、投资费用等方面考虑,最佳方案为盖板采用钢化玻璃、水泵档位为3档(0.35L/s),即可获得最好的使用效果。太阳能集热管实验装置构建了由集热板芯、围护结构和透明覆盖材料组成的平板型太阳能集热器。试验结果表明,太阳能集热器的集热效率均随太阳辐射强度的增强以及流速的加快而升高。[img=太阳能集热管实验装置,400,400]https://ng1.17img.cn/bbsfiles/images/2022/04/202204270913256708_1552_4136176_3.jpg!w690x690.jpg[/img]太阳能集热管实验装置通过对比太阳能集热器在不同太阳辐射强度、流速与透明覆盖材料下的集热效率,结合不同材料的经济性分析,从透明盖板材料使用寿命、透光率、机械性能、投资费用等方面考虑,低成本集热器的最佳设计方案为透明盖板采用钢化玻璃、水泵档位为3档(0.35L/s)。研究发现集热器在集热过程中,集热器本身既是一个集热装置,同时也是一个散热体,由于周围环境温度较低,集热器本身会向外界环境散热。散热量的大小取决于集热器内外温差。受试验条件的影响,本试验未能控制室外空气温度变化与水箱内水的温度变化,未分析这两个因素对试验造成的影响。适用于温室应用的集热器应充分测试不同季节的集热效率,受研究经费限制本研究仅开展了秋冬季在晴天条件下的测试,在其他天气条件与季节条件下的集热效率需进一步研究。
高温热胁对Achnanthes sp.光合影响再探 在11月的原创中,我已经对Achnanthes sp.的高温热胁的响应进行了初步分析,感谢各位专家对本人作品的肯定。本文为此作品的续作,仍以春秋季常见的水华种Achnanthes sp.为受试生物,深入研究高温热胁对藻类光系统影响的作用机制(之前没人说是这个影响主要是作用于哪个亚显微结构的)1.实验材料和仪器http://ng1.17img.cn/bbsfiles/images/2012/12/201212311715_417720_1653274_3.jpg Achnanthes sp.(2012.5.4采自宁波某水库),这个是实验用的藻种,纯度在99%以上吧。http://ng1.17img.cn/bbsfiles/images/2012/12/201212311715_417721_1653274_3.jpg PHYYTO-PAM调制叶绿素荧光仪(德国WALZ公司), 光照培养箱(宁波江南仪器厂),用于藻类的扩培和温度光照条件控制。PS:藻液培养条件20℃,2000LX光照强度,光暗比16:8。 ☆还是这台仪器,还是这个藻。培养条件也一致。这样有可比性。2.实验方法: 实验主要以有效光量子产量Fv/Fm’与最大光量子产量Fv/Fm为分析指标,具体的操作步骤我在这里就不赘述了,上一个原创中有图文介绍 废话不说,直接看实验结果吧。3.实验结果与讨论http://ng1.17img.cn/bbsfiles/images/2012/12/201212311715_417723_1653274_3.jpg 如图所示,当温度高于35℃时,实际光量子产量Fv/Fm’与有效光量子产量Fv/Fm存在较大差异,测量Fv/Fm得出的T50要高于Fv/Fm’。 暗适应样品光系统II不受参与Calvin循环的酶被热破坏的影响,因此Fv/Fm反映的是光系统II的状态,而不受整个光合作用影响。测量Fv/Fm得出的T50要高于Fv/Fm’,因为热胁对光合作用的破坏首先发生在暗反应所需的酶,而开始光系统II不受影响。 Ps:T50是实际光量子产量Fv/Fm’[
[align=center][size=21px][b]流化床[/b][/size][size=21px][b]混合环节[/b][/size][size=21px][b]及与[/b][/size][size=21px][b]PAT[/b][/size][size=21px][b]技术的集成[/b][/size][/align][font='times new roman'][size=16px]流化床[/size][/font][font='times new roman'][size=16px]([/size][/font][font='times new roman'][size=16px]fluidized bed[/size][/font][font='times new roman'][size=16px]),指首先[/size][/font][font='times new roman'][size=16px]利用气[/size][/font][font='times new roman'][size=16px]流动使[/size][/font][font='times new roman'][size=16px]物料呈[/size][/font][font='times new roman'][size=16px]沸腾状态,再喷入雾化后的[/size][/font][font='times new roman'][size=16px]粘合剂进行后续的制粒、包衣、成丸等,最后得到干燥的[/size][/font][font='times new roman'][size=16px]颗粒、微丸、[/size][/font][font='times new roman'][size=16px]包衣粉末及包衣微丸[/size][/font][font='times new roman'][size=16px]的制药设备。在流化床制药[/size][/font][font='times new roman'][size=16px]过程中,物料的混合、制粒[/size][/font][font='times new roman'][size=16px]、[/size][/font][font='times new roman'][size=16px]包衣[/size][/font][font='times new roman'][size=16px]和[/size][/font][font='times new roman'][size=16px]干燥[/size][/font][font='times new roman'][size=16px]等[/size][/font][font='times new roman'][size=16px]同时完成。流化床技术是在上世纪五十年代发展起来的,最初设计只是用作干燥设备,以提高干燥效率。[/size][/font][font='times new roman'][size=16px]1964[/size][/font][font='times new roman'][size=16px]年[/size][/font][font='times new roman'][size=16px]Scott[/size][/font][font='times new roman'][size=16px]等将[/size][/font][font='times new roman'][size=16px]Wurster[/size][/font][font='times new roman'][size=16px]方法作了改进并应用于医药工业,我国于上世纪八十年代将流化床引入到口服固体制剂的制备过[/size][/font][font='times new roman'][size=16px]程[/size][/font][font='times new roman'][size=16px]中[/size][/font][font='times new roman'][size=16px][color=#080000][1][/color][/size][/font][font='times new roman'][size=16px]。[/size][/font][font='times new roman'][size=16px]与传统制药工艺相比,流化床工艺设备具有以[/size][/font][font='times new roman'][size=16px]下优[/size][/font][font='times new roman'][size=16px]点[/size][/font][font='times new roman'][size=16px][color=#080000][2, 3][/color][/size][/font][font='times new roman'][size=16px]:([/size][/font][font='times new roman'][size=16px]1[/size][/font][font='times new roman'][size=16px])将固体制剂制备过程中多个生产环节有机结合在一起,生产工艺高效、便捷且提高了自动化程度[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]缩短了工艺周期;([/size][/font][font='times new roman'][size=16px]2[/size][/font][font='times new roman'][size=16px])所得制剂产品有更好的流动性、同质性、可压性;([/size][/font][font='times new roman'][size=16px]3[/size][/font][font='times new roman'][size=16px])生产在密闭环境中进行,无交叉污染;([/size][/font][font='times new roman'][size=16px]4[/size][/font][font='times new roman'][size=16px])为湿热敏感药物的制备提供了良好的解决方案。[/size][/font][font='times new roman'][size=16px]随着制药机械设备的发展,流化床设备发展趋势如下:([/size][/font][font='times new roman'][size=16px]1[/size][/font][font='times new roman'][size=16px])规格越来越齐全,批次处理能力从几升到几千升;([/size][/font][font='times new roman'][size=16px]2[/size][/font][font='times new roman'][size=16px])集成智能传感器,达到对[/size][/font][font='times new roman'][size=16px]生产工艺的全自动化[/size][/font][font='times new roman'][size=16px]监测[/size][/font][font='times new roman'][size=16px]控制[/size][/font][font='times new roman'][size=16px];([/size][/font][font='times new roman'][size=16px]3[/size][/font][font='times new roman'][size=16px])物料无交叉连续化传递,[/size][/font][font='times new roman'][size=16px]整个生产过程[/size][/font][font='times new roman'][size=16px]全密闭、无尘化操作[/size][/font][font='times new roman'][size=16px];([/size][/font][font='times new roman'][size=16px]4[/size][/font][font='times new roman'][size=16px])工艺灵活,通过与其他设备集成形成连续化生产。[/size][/font][align=center][img='']" alt="[/img][/align][align=center][font='times new roman']图[/font][font='times new roman']1-1[/font][font='times new roman'] [/font][font='times new roman']流化床与其他设备结合形成制粒流水线[/font][/align][align=left][font='times new roman'][size=16px][b]流化床混合[/b][/size][/font][/align][font='times new roman'][size=16px]流化床制药[/size][/font][font='times new roman'][size=16px]工艺凭借其无可复制的优点[/size][/font][font='times new roman'][size=16px][color=#080000][4, 5][/color][/size][/font][font='times new roman'][size=16px]在[/size][/font][font='times new roman'][size=16px]固体制[/size][/font][font='times new roman'][size=16px]剂生产过程中得到了广[/size][/font][font='times new roman'][size=16px]泛的应用[/size][/font][font='times new roman'][size=16px][color=#080000][6, 7][/color][/size][/font][font='times new roman'][size=16px]。然而,流化床制药生产过程是一个密闭的过程,物料的流化状态剧烈且不可见,很难获取腔室中物料的状态和理化性质。[/size][/font][font='times new roman'][size=16px][b]PAT[/b][/size][/font][font='times new roman'][size=16px][b]技术的集成[/b][/size][/font][font='times new roman'][size=16px]随着制药设备的发展,流化床设备与其他制药机械设备结合形成固体制剂连续化生产系统[/size][/font][font='times new roman'][size=16px],如[/size][/font][font='times new roman'][size=16px]图[/size][/font][font='times new roman'][size=16px]1-1[/size][/font][font='times new roman'][size=16px]。作为固体制剂生产的上游关键环节,混合过程物料的[/size][/font][font='times new roman'][size=16px]混合[/size][/font][font='times new roman'][size=16px]均匀度会影响到制药过程下游每个环节[/size][/font][font='times new roman'][size=16px]API[/size][/font][font='times new roman'][size=16px]含量的均匀度,[/size][/font][font='times new roman'][size=16px]这[/size][/font][font='times new roman'][size=16px]也是药品质量一致性评价的重点。因此,流化床混合过程粉末共混物中[/size][/font][font='times new roman'][size=16px]API[/size][/font][font='times new roman'][size=16px]含量[/size][/font][font='times new roman'][size=16px]的瞬态干扰检测是一个重要[/size][/font][font='times new roman'][size=16px]的[/size][/font][font='times new roman'][size=16px]研究课题。但目前国内流化床混合过程[/size][/font][font='times new roman'][size=16px]中[/size][/font][font='times new roman'][size=16px]CQAs[/size][/font][font='times new roman'][size=16px]的[/size][/font][font='times new roman'][size=16px]测定多采用离线方法,只有在混合过程的最后,分析人员才能检测产品的[/size][/font][font='times new roman'][size=16px]CQAs[/size][/font][font='times new roman'][size=16px],以决定产品是否达到放行标准。此外,离线分析具有破坏性、昂贵、费时费力的缺点,不能及时反映生产过程物料的真实状态,最终影响产品的质量和安全性。因此,对流化床混合过程[/size][/font][font='times new roman'][size=16px]API[/size][/font][font='times new roman'][size=16px]含量[/size][/font][font='times new roman'][size=16px]进行实时监测研究,能够加深对产品和工艺的理解及后续生产过程的控制,实现精益生产与偏差控制的结合。[/size][/font][font='times new roman'][size=16px]仿制药一致性评价的推行对制药行业提出了更高的要求。固体制剂是目前最重要的给药形式之一,作为固体制剂生产的上游关键环节,混合过程物料的[/size][/font][font='times new roman'][size=16px]均匀度会影响到制药过程下游每个环节[/size][/font][font='times new roman'][size=16px]API[/size][/font][font='times new roman'][size=16px]的含量均匀度,[/size][/font][font='times new roman'][size=16px]也是药品质量一致性评价的重点[/size][/font][font='times new roman'][size=16px]。[/size][/font][font='times new roman'][size=16px]只有实时在线监测产品的质量属性、过程中材料和工艺条件的变化,进一步对药品生产过程加以监测和控制,才能生产出符合要求的产品。但是目前通常采用的检测方法为离线取样检测,不能及时了解过程中物料的状态及理化信息。为此,探索并建立一套及时准确的流化床混合过程智能分析技术非常必要。[/size][/font][font='times new roman'][size=16px]过程分析技术的提出,为实现过程理解提供了技术及设备支持。[/size][/font][font='times new roman'][size=16px]NIRS[/size][/font][font='times new roman'][size=16px]作为重要的[/size][/font][font='times new roman'][size=16px]PAT[/size][/font][font='times new roman'][size=16px]工具,在混合过程中的应用稳步增加。[/size][/font][font='times new roman'][size=16px]将[/size][/font][font='times new roman'][size=16px]NIRS[/size][/font][font='times new roman'][size=16px]引入到流化床混合过程中,对混合过程[/size][/font][font='times new roman'][size=16px]API[/size][/font][font='times new roman'][size=16px]含量进行实时监测,加深对产品和工艺的理解及后续生产过程的控制,实现[/size][/font][font='times new roman'][size=16px]精益生产与偏差控制的结合。同时,获得了[/size][/font][font='times new roman'][size=16px]完整的关键质量参数数据,使产品质量有据可依、有据可查。因此,[/size][/font][font='times new roman'][size=16px]通过对流化床混合过程[/size][/font][font='times new roman'][size=16px]NIRS[/size][/font][font='times new roman'][size=16px]过程分析研究,建立混合过程智能控制关键技术,这将为整个固体制剂药物生产过程质量管理提供借鉴和技术手段。[/size][/font][font='times new roman'][size=16px]在[/size][/font][font='times new roman'][size=16px]流化床[/size][/font][font='times new roman'][size=16px]混合过程中,[/size][/font][font='times new roman'][size=16px]腔室内粉末共混物[/size][/font][font='times new roman'][size=16px]中[/size][/font][font='times new roman'][size=16px]API[/size][/font][font='times new roman'][size=16px]含量[/size][/font][font='times new roman'][size=16px]的瞬态干扰检测是一个重要的研究课题。然而,在实际生产中流化床混合过程具有[/size][/font][font='times new roman'][size=16px]不[/size][/font][font='times new roman'][size=16px]可见性,流化床腔室中物料的化学和物理性质的真实状态无从知晓。所以使用[/size][/font][font='times new roman'][size=16px]PAT[/size][/font][font='times new roman'][size=16px]技术监测混[/size][/font][font='times new roman'][size=16px]合过程[/size][/font][font='times new roman'][size=16px]API[/size][/font][font='times new roman'][size=16px]含量均匀性的价值不言而喻。为了实现流化床混合过程的可视化,[/size][/font][font='times new roman'][size=16px]在实验模拟型流化床上将过程分析技术[/size][/font][font='times new roman'][size=16px]NIRS[/size][/font][font='times new roman'][size=16px]引入到流化床混合过程中,对过程关键质量属性[/size][/font][font='times new roman'][size=16px]—API[/size][/font][font='times new roman'][size=16px]含量进行[/size][/font][font='times new roman'][size=16px]定量[/size][/font][font='times new roman'][size=16px]监测。[/size][/font][font='times new roman'][size=16px]目前,批次混合过程中的一种常见建模方法是使用多个批次的样本建立校准模型,但在生产条件下要收集具有代表性的[/size][/font][font='times new roman'][size=16px]校准[/size][/font][font='times new roman'][size=16px]集需要[/size][/font][font='times new roman'][size=16px]消耗大量的物料,否则会影响后续模型的稳健性。[/size][/font][font='times new roman'][size=16px]在小试实验型流化床中使用有限的原辅料建立校准光谱模型,用于监测流化床混合过程中[/size][/font][font='times new roman'][size=16px]API[/size][/font][font='times new roman'][size=16px]的[/size][/font][font='times new roman'][size=16px]含量[/size][/font][font='times new roman'][size=16px]。[/size][/font][font='times new roman'][size=16px]加之[/size][/font][font='times new roman'][size=16px]研究了光谱预处理和波段选择方法,建立[/size][/font][font='times new roman'][size=16px]PLS[/size][/font][font='times new roman'][size=16px]模型来[/size][/font][font='times new roman'][size=16px]预测[/size][/font][font='times new roman'][size=16px]API[/size][/font][font='times new roman'][size=16px]含量。在有效的光谱预处理和波段选择方法的帮助下,近红外传感器可以准确地测定混合物中[/size][/font][font='times new roman'][size=16px]API[/size][/font][font='times new roman'][size=16px]的含量,从光谱监测的角度[/size][/font][font='times new roman'][size=16px]NIRS[/size][/font][font='times new roman'][size=16px]用于流化床混合过程[/size][/font][font='times new roman'][size=16px]API[/size][/font][font='times new roman'][size=16px]含量均匀性检测的可行性。同时,增加了对工艺过程的了解,从而科学有效地控制生产过程,提高产品质量,保证产品安全。[/size][/font]
煤气(coal gas),分高炉煤气、转炉煤气、焦炉煤气和城市煤气(人工煤气)等,均含有一定量的一氧化碳气体。以煤为原料加工制得的含有可燃组分的气体。根据加工方法、煤气性质和用途分为煤气化得到的是水煤气、半水煤气、空气煤气 (或称发生炉煤气) ,这些煤气的发热值较低,故又统称为低热值煤气;煤干馏法中焦化得到的气体称为焦炉煤气,属于中热值煤气,可供城市作民用燃料。煤气中的一氧化碳和氢气是重要的化工原料,可用于合成氨、合成甲醇等。为此,将用作化工原料的煤气称为合成气,它也可用天然气、轻质油和重质油制得。 产生煤气爆炸的原因: (1)煤气来源中断,管道内压力降低,造成空气吸进,使空气与煤气混合物达到爆炸范围,遇火产生爆炸。 (2)煤气设备检验时,煤气未吹赶干净。又未做化验,急于动火造成爆炸。 (3)堵在设备上的盲板,由于年久腐蚀造成泄露,动火前又未做试验,造成爆炸。 (4)窑炉等设备正压点火。 (5)违章操纵,先送煤气,后点火。 (6)强制供风的窑炉,如鼓风机忽然停电,造成煤气倒流,也会发生爆炸。 (7)焦炉煤气管道胶设备固然已吹扫,并检验合格,假如停留时间长,设备内的积存物受热挥发,特别是萘升华气体与空气混合达到爆炸范围,遇火同样发生爆炸。 (8)烧嘴不严,煤气泄露炉内,点火前未对炉膛进行透风处理。 (9)在停送煤气时,未按规章办事,或者停煤气时,没有把煤气彻底切断,又没有检查就动火。 (10)烧嘴点不着火,再点前对炉膛未作通处理。 (11)煤气设备(管道)引上煤气后,未作爆发试验,急于点火。 为了有效预防煤气爆炸事故,我们需要采用到煤气报警器。煤气报警器一般是通过检测泄漏的一氧化碳气体浓度来作为报警判断的;燃气报警器一般通过检测泄漏的烷烃、烯烃、芳烃等可燃气体浓度作为报警判断,这类气体泄漏达到爆炸极限时,遇火种(打火机、电器开关、静电、高频信号等)则发生瓦斯爆炸(如煤矿通风不好容易发生瓦斯爆炸),造成很大伤害。 人们面对燃气泄漏而造成的种种事故威胁,就真的没有一个彻底的解决办法吗?据有关专家介绍,使用燃气泄漏报警器是对付燃气无形杀手的重要手段之一。燃气专家指出,燃气泄漏或废气排放而大量产生的一氧化碳是燃气中毒事响应的根源,如采有用燃气泄漏报警器就能得到及时的警示。有关部门经长期测试同样得出结论,燃气报警器防止一氧化碳中毒事故发生的有效率达95%以上。
请问有哪位大哥知道,工厂用的振荡流化床的具体使用操作规程吗??发个给我,谢谢我这里用的振荡流化床型号:ZLG6*0.6邮箱:lwj2380@126.com [email]luwj@fenchem[/email].com
[align=center][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术应用于流化床[color=#1d1b11]制粒和包衣[/color]过程的研究进展[/align][b][/b][align=left][b]摘要[/b][/align][align=left]目前流化床制粒、包衣技术在我国制药行业中因其具有制得颗粒流动性、压缩成型性好,微丸包衣厚度均匀等诸多优点而受到广泛应用。随着过程分析技术的推广,针对于关键质量属性的在线分析受到越来越多的关注,以采用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术为代表的过程分析技术可以对流化床制粒、包衣过程进行有效地监测,从而提高产品质量、保证产品安全性。本文针对流化床制粒、包衣过程中水分含量、粒径大小、包衣厚度等关键质量属性,综述了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术在监测流化床制粒、包衣过程的研究进展,表明[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术可以有效的监测流化床生产过程各关键质量属性。通过综述旨在为我国制药行业的流化床制粒、包衣单元实现自动化控制和智能生产提供参考。[/align][align=left] [/align][align=left][b]关键词:[/b][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术;流化床制粒;流化床包衣;过程分析技术;在线监测[/align][b]Abstract[/b][align=left]Thetechnologys of fluidized bed granulation and pellets coating are widely used inpharmaceutical industry. Particles made in a fluidized bed have good liquidity,compressibility, and coating thickness of pellets are homogeneous. Near-infraredspectroscopy can real time monitor in fluidbed granulation and coating process, so it can improve the productquality and ensure product security. This review gives research progress of Near-infraredspectroscopy monitoring in fluid bed granulationand coating process, and gives quantitative analysis model of moisture content, particle size and tablet/pelletthickness to realize in-line monitoring and controling.[/align][b][color=black]Key words[/color]:[/b][color=black]Near infraredspectroscopy [/color]Fluidized bed granulation Fluidized bed coating Process analytical technology In-line monitoring[align=left][b]前言[/b][/align]流化床又称沸腾床,其过程为通过气流将物料呈流态化,再喷入雾状液体对物料进行制粒或包衣。该方法可以集混合、制粒、干燥或包衣于一体,与湿法制粒、熔融制粒、包衣锅滚制等传统方法相比具有以下优点[sup][/sup]:工艺简单,生产效率高;在密闭的环境中生产,防止外界环境对物料的污染;制得的颗粒流动性好,粒度均匀、压缩成型性好;包衣厚度均匀,干燥效率高。近年来流化床技术在我国医药行业已得到广泛应用,但目前国内流化床技术(干燥、制粒、包衣)同样存在许多问题,产品关键参数的测定多依靠经验,传统的离线测定方法具有破坏性、昂贵、费时费力,且离线分析会使得参数的检测滞后于生产,检测结果难以反映生产过程的真实状态,因此产品多出现稳定性、均一性较差的问题,影响了最终产品的质量和安全性。目前一致性评价和连续化生产等对参数的在线优化提出了更高的要求。[align=left]美国FDA于2004年以工业指南的方式颁布了Processanalytical technology(PAT),旨在通过过程分析技术(PAT)提高对药品研发、生产和质量全过程更加科学性的控制[sup][/sup]。为保证产品的安全、有效、稳定、均一,近年来,研究出现多种用于流化床制粒和包衣过程的PAT在线分析仪器,以实现对生产过程的在线监控。[color=black]例如,[/color][color=black]3D[/color][color=black]图像分析技术([/color]3D imaging method)用于流化床制粒过程,在线测定颗粒粒径大小[sup][/sup];在流化床微丸包衣过程中,Mož ina等[sup][/sup]研究了数字成像技术(digital imaging)在线监测微丸包衣厚度以及判断微丸粘连问题的可行性。但应用图像分析技术需把颗粒或微丸当作理想的球体计算,难以准确测量颗粒粒径和包衣厚度。此外,聚焦束反射法(focusedbeam reflectance method,FBRM[color=#231f20])作为一种[/color]PAT工具用于监测因粘合剂溶液过量而产生的颗粒凝聚问题以及用于测定粒径大小[sup][/sup];[color=#231f20]Sheahan[/color][color=#231f20]等应用声波发射([/color]acoustic emissions[color=#231f20],[/color]AE)监测流化床顶喷包衣喷嘴的堵塞问题,且进行了用于监测包衣厚度的研究[sup][/sup]。[color=#231f20]FBRM[/color][color=#231f20]广泛应用于结晶过程,而应用在流化床制粒过程中,目前没有相关文件支持[/color][sup][/sup][color=#231f20];声波发射技术监测包衣厚度的可行性还需更深入的研究。为了克服以上分析方法的弊端,我们需要一种更实用的在线分析技术。[/color][color=#231f20]此外,[/color]Tok等[color=#131413][/color][color=#131413]研究了[/color]FBRM[color=#131413]、[/color]AE以及[color=#131413][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S[/color][color=#131413]三种[/color]PAT技术应用于流化床制粒过程在线监测的可行性,在制粒生产过程中,其中AE技术易于受制粒过程中空气流速以及外界因素的影响;FBRM和[color=#131413][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S[/color][color=#131413]的光纤探头易被样品污染,影响在线数据的采集。但许多研究表明[/color][color=#131413],可以通过安装吹扫装置保持[/color][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S探头的清洁。[/align][align=left]目前[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术(Near-infraredspectroscopy,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S)作为PAT的有力工具,其波长范围为700-2500nm(14286-4000cm[sup]-1[/sup])之间,主要反映含氢基团(如C-H,O-H,N-H、S-H等)振动的倍频和合频吸收[sup][/sup]。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S分析样品含量大于千分之一,这符合一般生产要求,且其以分析速度快、非破坏性、无污染、投资少、操作技术要求低等特点在制药行业的应用日趋广泛。本文综述了在线[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S在流化床干燥、制粒和包衣过程中应用,旨在为我国制药行业的流化床制粒、包衣单元实现自动化控制和智能生产提供参考。[/align][b]1 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]应用于流化床制粒干燥过程[/b][align=left]随着计算机技术、光纤和化学计量学的发展,在制药行业质量要求日趋严格的大环境下,发展以[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S为主的在线监测研究势在必行。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S在线监测流化床制粒干燥过程,连续采集过程中的光谱,可以对过程中颗粒的水分含量、粒径分布以及堆密度等关键参数进行监测[sup][/sup],从而对整个制粒干燥生产过程进行过程控制。[/align][align=left][b]1.1 颗粒的水分含量[/b][/align][align=left]在流化床制粒干燥过程中,颗粒的含水量可影响颗粒的流动性、可压性以及药物的稳定性。且含水量对制粒过程也会产生影响[sup][/sup],若在制粒过程缺少监测控制,易造成物料含水量过高或过低;含水量过高,易结成团块,造成塌床;含水量过低,颗粒的粒径小,会造成颗粒中粉末较多,由此可见,对流化床制粒过程进行过程控制[color=black]是非常重要的。水的[/color]O-H[color=black]伸缩振动一级倍频在[/color]1440 nm[color=black]附近,较强的合频吸收谱带在[/color]1940nm[color=black]附近,在早期,[/color]Rantanen[color=black]等[/color][sup][/sup] [color=black]采用[/color][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S[color=black]对流化床制粒过程中颗粒的含水量进行监测研究,表明测定过程使用与水分相关的波长而去除无关波长信息,可以更准确、更迅速地监测制粒过程中含水量的变化。[/color][/align][align=left][color=black]而且,除了进行水分定量分析监测流化床制粒干燥过程外[/color],还可利用主成分分析(principal component analysis, PCA[color=black])对过程中的多维变量进行降维分析,实现数据的可视化。此外,[/color]Rantanen等还研究了在流化床制粒过程中,利用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S水分测定,结合过程中温度和湿度的测定对制粒过程的含水量进行监测,以实现制粒过程的控制与监测。以上研究中,是[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S漫反射光纤探头透过流化床制粒机上的视镜来监测制粒过程中含水量的变化。[/align][align=left]除此之外,还可将光纤探头安装到流化床内部进行接触式在线采样。Kona等[color=black]在实验室规模流化床制粒机([/color]1-L)中安装一特制的勺状探头,并在探头上端位置安装压力吹扫装置,待光谱采集完毕后,启动吹扫装置,样品返回流化床[color=#231f20]内继续参加制粒,[/color]并在探头[color=red]等同的[/color]位置收集样品进行一级数据的测定。[color=#231f20]结合偏最小二乘[/color](partial least squares,PLS)算法对流化床制粒过程中样品的含水量进行在线监测,并且结合多维主成分分析(multi-way principal component analysis, MPCA)建立多元统计分析控制方法,对异常批次进行判断。同时研究中对制粒过程中的进风温度和湿度、产品的温度和湿度进行在线监测,通过对生产过程中产品的含水量、温度和湿度的监测以实现实时错误诊断和过程控制。与此类似,Peinado等[sup][/sup][color=#231f20]将[/color][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S光纤探头嵌入到流化床中进行光谱采集,通过监测含水量的变化对生产规模流化床(300-L)干燥终点进行判断。研究中采用标准正态变量变换(Standard normal variate , SNV)预处理方法消除表面散射对[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]漫反射光谱的影响,1940nm附近有较强的O-H合频吸收谱带,由此,采用1854-2075 nm波长建立了PLS水分定量模型。为了证明模型的适用性,用外部验证集对模型进行独立验证,并对[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S方法进行方法学验证。与前者的研究相比,后者没有配置吹扫装置,而是通过改变探头的位置和角度保证[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S采集窗口的清洁。[/align][align=left][color=#231f20]此外,[/color][color=#231f20]Mä rk[/color]等[color=#231f20]则通过一旁路系统进行在线[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的采集,由此避免了流化床干燥过程中温度变化对光谱重复性的影响。[/color][/align][align=left] Green等[sup][/sup]研究了探头安装到流化床内进行接触式取样的3种装置对在线[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S水分预测的准确性的影响,颗粒分别在不同规模的流化床干燥器(65-L,300-L,600-L)中进行实验,并研究使用3种不同的取样装置以提高[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S方法的准确性。研究结果表明过程的不均匀性对表面预测的准确度会产生重要影响,此结论适合于易于不均一化的固体颗粒和混悬液系统的在线测量。此外,Heigl等采用实验室规模流化床研究了不同光谱背景和取样方式对PLS回归模型预测准确度的影响。结果显示透过流化床壁(聚甲基丙烯酸甲酯)采集的在线光谱和透过玻璃瓶采集的离线光谱建立的模型,与去除了此两个背景吸收所建立的模型相比,鲁棒性更好;其次,在线光谱建立的模型,与停止设备后取样采集的离线光谱所建立的模型相比,前者的鲁棒性和预测准确度更佳。[/align][align=left][b]1.2 颗粒的粒径大小[/b][/align][align=left][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S不仅包含样品的化学信息(比如水分含量),而且还包含样品的物理信息,比如,颗粒粒径的不同可产生基线偏移。由此,可以根据光谱的基线偏移来检测颗粒粒径的大小。[/align][align=left]在线[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S早期用来监测水分含量,但粒径作为质量控制的关键参数,影响压片过程片重均一性、可压性以及脆碎度等,因此为了进一步保证产品质量,提高生产效率,有必要对粒径进行在线监测。在20世纪90年代,相关研究人员对在线[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S监测颗粒粒径的变化进行了初期探索。Frake等[sup][color=black][/color][/sup][color=black]在生产规模顶喷制粒流化床([/color]40-kg)内安装[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光纤探头,用来连续采集颗粒的光谱信息。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光纤探头安装在偏下流处产品密度较高的位置以保证探头的清洁;研究中用原始光谱信息来表征颗粒粒径的变化,并绘制出2282nm处吸光度值随时间的变化图,其和粒径随时间变化图具有相似性,但由于颗粒变化模型的复杂性,并未能建立[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S粒径定量模型。[color=black]Rantanen[/color][color=black]等[/color][sup][/sup]在流化床制粒机中采用[color=red]四波长检测器[/color][color=black]对不同等级的微晶纤维素进行[/color][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱的采集,其中1740nm和2145nm两波长用于粒径的测定,并利用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S吸光度值区分微晶纤维素的等级。研究中采用激光衍射法测量微晶纤维素的中值粒径,与[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱吸光度值进行关联得到两者的相关性图。[/align][align=left][color=black]Findlay[/color][color=black]等[/color][sup][/sup]在流化床制粒干燥过程中使用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S在线监测颗粒水分含量和粒径大小,并用两者的监测结果结合流化床传质传热特性来判断制粒喷雾终点和颗粒干燥终点。使用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱仪通过流化床上的玻璃窗采集样品光谱,此玻璃窗安装有一个特殊的垫圈以保持窗口的清洁。制粒过程中每隔5 min停机取样进行一级数据的测量,其中用干燥失重法测定样品含水量数据,用图像分析法测量颗粒的粒径大小。此外,样品在湿颗粒状态和干颗粒状态采集的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱存在差异(由于水对[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱的影响),而且在制粒初期的前10min采集窗易被湿粉末污染,由此,与制粒的早期阶段相比,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S在接近喷雾结束和干燥阶段更能获得准确的粒径数据。研究结果表明当样品含水量超过3%([i]w/w[/i])时,需要调整粒径的测量值,使得制粒过程中采用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S测得的数据和通过一级方法测得的数据可以较好地吻合。随后对[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]数据进行电脑编程,可以对流化床制粒过程进行程序化控制。同样,Makoto Otsuka等[sup][color=black] [[/color][/sup][sup]20][/sup][color=black]使[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]透过流化床的玻璃壁采集光谱,并使用定制的橡皮刮刀来保持玻璃壁的清洁,研究了[/color][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S在线监测实验室规模流化床制粒过程粒径和水分的变化。此外,实验分别使用3种不同浓度的粘合剂([color=black]10%[/color][color=black],[/color]8.5%,[color=black]7.5%[/color][color=black]的羟丙基纤维素)溶液,取样后采用筛分法测定样品的[/color]D[sub]50[/sub],用[color=black]PLSR[/color][color=black]方法建立粒径定量模型,结果证明了[/color][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S在流化床混合、制粒和干燥过程预测对乙酰氨基酚配方颗粒水分含量和D[sub]50[/sub]的可行性。[/align][align=left][color=#141314]Nieuwmeyer[/color][color=#141314]等[/color][sup][/sup]用[color=#141314]PLSR[/color][color=#141314]法分别建立了水分含量和粒径的[/color][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]定量模型。采用激光衍射法测得干样品的平均粒径(D[sub]50[/sub])作为一级数据,和干样品的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱数据关联,建立了具有4个主成分因子的平均粒径PLSR定量模型。Makoto Otsuka等[sup][color=black][[/color][/sup][sup]20][/sup]采用实验室规模的流化床制粒机研究[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S监测制粒过程的粒径和水分变化。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱仪透过流化床的玻璃壁采集光谱,使用定制的橡皮刮刀来保持玻璃壁的清洁。研究实验分别使用3种不同浓度的粘合剂([color=black]10%[/color][color=black],[/color]8.5%,[color=black]7.5%[/color][color=black]的羟丙基纤维素)溶液,采用筛分法测定样品的[/color]D[sub]50[/sub],对[color=black][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url][/color][color=black]光谱进行[/color]MSC预处理后,采用[color=black]PLSR[/color][color=black]方法建立粒径定量模型,并对模型进行了外部交叉验证。此研究结果证明了[/color][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S在流化床混合、制粒和干燥过程预测对乙酰氨基酚配方颗粒水分含量和D[sub]50[/sub]的可行性,表明[color=black][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S[/color][color=black]可以作为在线实时监测制粒过程的有力工具。[/color][/align][align=left][b][color=#0d0d0d]1.3 [/color]颗粒的堆密度[/b][/align][align=left]制粒过程中除了颗粒含水量和粒径两个关键参数外,颗粒的堆密度也是判断颗粒质量的重要参数,例如,可以通过测量堆密度大小判断颗粒的流动性和可压性。Manel等[sup][/sup]研究在线[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S在生产规模流化床制粒系统(GLATTWSG300)生产过程中的应用,其不仅在线监测制粒过程中产品水分和粒径的变化,还对颗粒的堆密度进行实时监测。通过[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]反射光纤探头透过流化床制粒机上的玻璃窗采集光谱,采用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱数据建立基于主成分分析的定性多变量分析模型,监测制粒过程,判断制粒的操作环境是否正常以及判断制粒过程是否出现异常。同样,用PLS方法建立了多个定量分析模型来监测制粒过程中各参数的变化(堆密度、含水量、粒径分布),实现了对流化床制粒干燥过程进行实时在线控制。[/align][align=left][b]2 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]应用于流化床包衣过程[/b][/align][align=left][color=black]流化床包衣广泛用于膜缓控释、骨架缓控释胶囊[/color]、丸剂包衣等。通过包衣可以掩盖药物的不良气味,还可以隔绝空气,避光防潮,提高药物的稳定性;[color=black]此外,合适的薄膜包衣厚度可控制膜的渗透性,使所包药物在体内扩散释放,达到定时、定位给药的目的[/color][sup][/sup],因此在流化床包衣过程中,包衣厚度是其质量控制的重要指标,用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S对此过程进行实时在线监测,可以有效判断包衣终点,提高产品质量。[/align][align=left] 早期Kirsch等[sup][/sup]采用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S对片剂的包衣厚度进行了离线分析,验证了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S方法可作为快速、无损检测包衣厚度的有效方法。20世纪初期,Andersson等[sup][/sup]把[color=#231f20][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S[/color][color=#231f20]光纤漫反射探头安装到流化床包衣机上,用于包衣过程中包衣厚度的在线监测。每批实验生产的样品量为[/color]0.5 kg,其中,包衣液材料和丸芯材料的化学组成不同,包衣液为乙基纤维素(具有荧光性),包衣厚度的一级测定方法采用图像分析法,通过包衣材料的荧光特性测定包衣厚度。采用Savitzky-Golay15点平滑和二阶导数对光谱进行预处理,选用1100-1250,[color=#231f20]1300-1450[/color][color=#231f20],以及[/color]1600-1800 nm的波长范围(纤维素类有较强的吸收)建立PLS定量模型,模型结果为R[sup]2[/sup]=0.97[color=#231f20],校正均方根误差为[/color]2.2 μm,可以较准确的判断包衣终点。Lee等[sup][/sup]使用平均聚类的方法建立了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]包衣厚度的动态校正模型,此模型具有较好的预测能力。在流化床包衣过程中在线采集[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱,并间隔一定时间收集样品来测定一级数据(包衣厚度)。为了保证在线光谱的准确性,把对应收集样品时间点的21或[color=#231f20]45[/color][color=#231f20]个光谱取平均,然后与相应的一级数据关联建立[/color]PLS模型,并对模型进行外部验证。结果表明[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]可以作为流化床包衣过程在线监测工具,准确的判断包衣终点。[/align][align=left][color=black]Hudovornik[/color][color=black]等[/color][sup][/sup]采用[color=black][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url][/color][color=black]和空气滤波技术[/color](Spatial Filtering Technique, SFT)[color=black]监测中试流化床底喷包衣过程,建立了[/color][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]水分含量预测模型,并表明[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]实时预测包衣厚度的可能性,此外,评估了两种在线方法判断过程异常(丸芯磨损和沉积)的能力。研究中建立的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]水分含量模型对包衣液的成分非常敏感,需要控制包衣液成分的变化以及采用合适的校正集范围来获得较好的预测结果。采用在线[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱和[color=black]SFT[/color][color=black]数据关联建立了[/color]PLS包衣厚度定量模型,此[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]模型建立的物质基础为药物层的主药成分,随着包衣厚度的增加,主药成分的吸收峰(1670nm处)的强度逐渐降低,所以选择了1600-1751nm的波长范围建立此模型。结果表明采用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]建立的包衣厚度、水分含量定量模型预测能力较好,同样能够实时判断包衣过程的异常状态,因此,表明[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]可以单独作为实时监测包衣过程的在线工具。[/align][align=left][b]3 结论与展望[/b][/align]近年来,随着[color=black]PAT[/color][color=black]在制药行业的推广,[/color][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S技术已被应用到制剂生产的各个过程。流化床制粒和包衣作为制剂的关键环节,对其生产过程进行实时监测,不仅能够优化生产工艺,提高产品质量,还可以节省能源,为制药企业增加效益。本文综述了在线[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S技术监测流化床制粒和包衣过程的研究进展,目前流化床技术在我国制药行业已得到广泛的应用,启示我们可以对流化床工艺进行在线工程化改造,采用在线[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S实现流化床制粒和包衣过程实时监测,实现生产过程的自动化和智能化控制[color=black],保证产品的[/color]安全、有效、稳定、均一[color=black]。[/color][b][/b][align=left][b]参考文献[/b][/align][align=left] 张东利,郝东升,舒安庆,张维蔚.流化床喷雾造粒技术进展 . 化学工业与工程, 2005, 22(4): 289-295.[/align][align=left]宋顺宗,辛聪,宫国华,郭建鹏.利用流化床制备中药包衣颗粒的工艺研究.时珍国医国药,2007, 18(11): -2715.[/align][align=left]U.S. Food and Drug Administra2714tion. Guidance for Industry PAT-A Frameworkfor Innovative Pharmaceutical Development, Manufacturing and Quality Assurance.New Hampshire Avenue: FDA, 2004. [/align][align=left][color=black]Nä rvä nen T, Seppä lä K, Antikainen O, et al. A newrapid on-line imaging method to determine particle size distribution ofgranules, [i]AAPS Pharm Sci Technol, [/i]2008,9: 282-287.[/color][/align][align=left][color=black]Sandler N. Photometric imaging in particle sizemeasurement and surface visualization [/color][color=#231f20].[/color][i][color=black] Int J Pharm,[/color][/i][color=#231f20] 2011, 417: 227-234.[/color][/align][align=left][color=black]Mož ina M, Tomaž evič D, Leben S, et al. Digitalimaging as a process analytical technology tool for fluid-bed pellet coatingprocess[/color][color=#231f20].[/color][i][color=black]Eur J Pharm Sci, [/color][/i][color=black]2010,44: 156-162.[/color][/align][align=left] [color=black]Alshihabi F,Vandamme T, Betz G. Focused beam reflectance method as aninnovative (PAT) tool to monitor in-line granulation process in fluidized bed.[i]Pharm Dev Technol,[/i] 2011:73-84.[/color][/align][align=left] [color=#231f20]Sheahan T, Briens L. [/color]Passive acoustic emissions monitoring of the coating of pellets ina fluidized bed—A feasibility analysis . [i]PowderTechnol,[/i] 2015, 283: 373-379.[/align]褚小立.化学计量学方法与分子光谱分析技术. 北京:化学工业出版社,2011. 259.[align=left] Alcala M, Blanco M, BautistaM,et al. [color=black]On-line monitoring of a granulationprocess by [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url] spectroscopy [/color][color=#231f20].[/color][color=black] [i]J Pharm Sci, [/i]2010,99(01): 336-345.[/color][/align][align=left]刘怡,马怡.流化床制粒影响因素的探讨. 中国医药工业杂志,2004,35(9): 566-568.[/align][align=left][color=black]Kona R, Haibin Qu, Mattes R, et al. Application ofin-line near infrared spectroscopy and multivariate batch modeling for processmonitoring in fluid bed [/color][color=#231f20]granulation . [/color][i][color=black]Int J Pharm,[/color][/i][color=#231f20]2013, 452: 63-72.[/color][/align][align=left][color=black]Rantanen J, [/color]Rasanen E[color=black], [/color]Tenhunen J[color=black], et al.In-line moisture measurement during granulation with a four-wavelength nearinfrared sensor: an evaluation of particle size and binder effects [/color].[color=black] [i]Eur J Pharm Biopharm[/i], 2000, 50: 209-217.[/color][/align][align=left][color=black]Peinado A, Hammond J, Scott A. Development, validationand transfer of a near infrared method to determine in-line the end point of afluidised drying process for commercial production batches of an approved oralsolid dose pharmaceutical product . [i]J Pharm Biomed Anal, [/i]2011,54: 13-20.[/color][/align][align=left] [color=black]Green RL,Thurau G, Pixley NC, et al. In-line monitoring of moisture content in fluid beddryers using near-IR spectroscopy with consideration of sampling effects onmethod accuracy [/color][color=#231f20]. [/color][i][color=black]Anal Chem,[/color][/i] 2005, 77: 4515-4522.[/align][align=left][color=black] Frake P,Greenhalgh D, Grierson SM, et al. Process control and end-point determinationof a fluid bed granulation by application of near infra-red spectroscopy [/color].[i][color=black]Int J Pharm,[/color][/i] 1997,151: 75-80.[/align][align=left][color=black] Rantanen J,Yliruusi J. Determination of particle size in a fluidized bed granulator with anear infrared set-up [/color][color=#231f20].[/color] [i]Pharm Pharmacol Commun[/i],1998,4:73-75.[/align][align=left] Findlay WP, Peck GR, Morris KR. Determination of fluidizedbed granulation end point using near-infrared spectroscopy and phenomenologicalanalysis [color=#231f20]. [/color][i][color=black]J Pharm Sci,[/color][/i] 2005,94: 604-612.[/align][align=left][color=black] NieuwmeyerFJS, Damen M, Gerich A, et al. Granule characterization during fluid bed dryingby development of a near infrared method to determine water content and mediangranule size [/color][color=#231f20]. [/color][i][color=black]Pharm Res[/color][/i], 2007, 24(10): 1854-1861.[/align][align=left] Otsuka M, Koyama A, Hattori Y. Real-time release monitoringfor water content and mean particle size of granules in lab-sized fluid-bedgranulator by near-infrared spectroscopy [color=black]. [i]RSC Adv, [/i]2014, 4: 17461-17468.[/color][/align][align=left] 柯博克[color=black], [/color][color=black]刘雪松[/color], 陈勇[color=black], [/color][color=black]等[/color].[color=black][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]快速测定复方丹参滴丸的包衣厚度[/color][color=black].[/color]复方丹参滴丸论文集[color=black],2005-2010:487-490.[/color][/align][align=left] Kirsch JD, Drennen JK. Near-infrared spectroscopy monitoringof the filming coating process [color=#231f20][/color]. [i]Pharm Res,[/i] 1996,13(02): 234-237.[/align][align=left] [color=#231f20]Andersson M, FolestadS, Gottfries J, et al. Quantitative analysis of film coating in a fluidized bedprocess by in-Line [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url] spectrometry and multivariate batch calibration [/color]. [i]Anal Chem, [/i]2000, 72:2099-2108.[/align][align=left] [color=#231f20]Lee MJ, Park CR, KimAY, et al. Dynamic calibration for the in-Line [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url] monitoring of film thicknessof pharmaceutical tablets processed in a fluid-bed coater . [i]J Pharm Sci,[/i] 2010, 99(01): 325-335.[/color][/align][align=left] [color=#231f20]Lee MJ, [/color]Seo DY, [color=#231f20]Lee HE, etal. In line [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url] quantification of film thickness on pharmaceutical pelletsduring a fluid bed coating process [/color][color=black].[/color][i]Int J Pharm[/i][color=black], 2011, 403:66-72.[/color][/align][align=left] [color=black]Hudovornik G, Korasa K, Vre[/color]č [color=black]er F. [/color]A study on the applicability of in-line measurements in themonitoring of the pellet coating process [color=black]. [i]Eur J Pharm Sci[/i], 2015, 75: 160-168.[/color][/align][align=left][color=black] [/color][/align]
[align=center][size=16px][b]流化床风荷载模拟[/b][/size][size=16px][b]在[/b][/size][size=16px][b]matlab[/b][/size][size=16px][b]中的实现[/b][/size][/align]风是由空气流动形成的,结构处于风场中会受到顺风向力、横风向力及扭风力矩,对于流化床结构主要考虑顺风向风荷载及其作用效应,其风速时程曲线中主要包括长、短周期两种成分,因此可将顺风向风荷载分解为平均风(即稳定风)和脉动风(也称阵脉动风)两种成分。其中,由于风的长周期成分频率一般远小于结构的自振频率即频率比接近于零,所以结构的动力放大系数接近于一,这部分风荷载产生的结构动力效应很小,可以忽略,因此一般等效为静力作用,此部分风荷载的作用效果是使结构产生平均侧移;而脉动风是由湍流引起的,其变化具有随机性,且脉动风周期较短,其中会有一部分与结构的自振周期较为接近,此时结构的动力放大系数较大,产生了不可忽略的动力响应,脉动风部分将使得结构在平均侧移附近摇晃。由上述分析可见风荷载的模拟重点为两个方面,即平均风成分和脉动风成分的模拟。本文根据实验室流化床的设计资料及结构特点,使用 Matlab编制程序,通过基于自回归(Auto-Regressive,AR)模型的线性滤波法模拟了结构所受的风荷载时程,并验证了模拟风荷载的可靠性。与频域分析方法相比,时域分析方法更适用于流化床体系这种结构的分析(结构必然已经进入非线性阶段)。因此,在进行分析之前,首先要正确模拟结构所受到的风荷载时程。目前结构模拟风速时程的常用方法为谐波叠加法、线性滤波法 ,以及小波分析、逆傅立叶变换等,其中,最常用的方法即为谐波叠加法和线性滤波法。与谐波叠加法相比,线性滤波法的突出特点是计算量少,效率高,在脉动风风速的模拟中得到了广泛的应用 。针对这种情况,利用基于数字滤波技术AR 模型的线性滤波法来模拟其风荷载时程。如前文所述,风荷载可分为平均风成分和脉动风成分,因此接下来的风荷载模拟也主要分为这两个部分。根据实测结果,目前平均风速沿高度的变化关系(又称为风剖面)常用指数函数和对数函数来描述。本文采用对数风剖面建立平均风场,选取 ESDU建立的修正对数风剖面,其表达式如下式所示:[img]https://ng1.17img.cn/bbsfiles/images/2020/09/202009031744568784_7101_3890113_3.png[/img]式中, z 为任意一点的高度 ;z0 为地面粗糙长度; k 为 Karman 常数;u 是摩阻风速; p 是 Coriolis 参数,取 p =10 -4 s -1 。视脉动风速时程为平稳高斯随机过程,本文顺风向风速谱按照紊流尺度随高度变化 Kaimal 风速功率谱进行模拟,其谱密度函数如下:[img]https://ng1.17img.cn/bbsfiles/images/2020/09/202009031744570398_6514_3890113_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2020/09/202009031744581558_6648_3890113_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2020/09/202009031744591830_7644_3890113_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2020/09/202009031745000308_6331_3890113_3.png[/img]其中, S 为输电塔的体形系数取值为 2.3; A 为结构沿风速方向的构件投影面积之和。 通过以上算法及公式成功的实现了使用matlab对流化床中风荷载进行模拟探究。
[em09505]煤炭气化开采新技术 -------------------------------------------------------------------------------- 煤炭地下气化是在地下气化炉的条件下进行的。就是将煤层中的气化通道进气孔一端的气化穴煤炭点燃,由进气孔鼓入空气、氧气和水蒸气等气化剂,由辅助孔鼓入氢气。于是,地下煤炭便进行有控制的燃烧,经过对煤的热作用及化学作用,按温度和化学反应的不同,在地下气化通道内形成氧气带、还原带和干馏干燥带,由此生成的粗煤气经过出气孔产出,后经分离、净化等处理,便成为很好的燃料和化工原料。 早在1979年的世界煤炭远景会议上,联合国就已明确提出,实施煤炭地下气化开采,是解决传统的煤炭开采利用所存在问题的重要途径。在煤炭气化技术方面,中国也制定了发展规划、纲要等,而且是世界上煤炭地下气化技术研究较早的国家之一。 随着油气产业的不断发展,石油企业对矿物能源的勘探开发,开始呈现出一定的多样性,并逐步向煤炭领域延伸。煤炭地下气化开采和综合利用项目,逐渐受到石油企业的青睐。中国石油的辽河油田就是国内石油企业中“第一个吃螃蟹的人”。 煤炭地下气化是在地下气化炉的条件下进行的,该技术目前主要有两种类型. 一是巷道式地下气化炉技术。就是在开采或废弃的煤矿井中建地下气化炉,以人工掘进的方式在煤层中建立气化巷道,并在进气孔底部巷道筑一道密闭墙(促使定向燃烧煤层),然后便可将密闭墙前面的煤炭点燃气化. 此种方式中的单套地下气化炉由气化通道进气孔、辅助孔和出气孔组成,气化通道在同一煤层内连通各孔,但由于受煤层地应力和温度制约,因此人工竖井部分深度有限。 二是钻井式地下气化炉技术。即采用常规的油气钻井技术,钻一口普通的长祼眼水平井,与另外的两口直井在同一煤层内连通。单套地下气化炉仍由气化通道、进气孔、辅助孔和出气孔等组成。 施工时,先将进气孔底部的气化穴中的煤炭点燃,鼓入气化剂,连续使煤炭气化,同时由辅助孔鼓入氢气,气化通道内会形成氧化带、还原带和干馏干燥带。国外大多采取此种技术。辽河油田在2005年成功建成了中国首座钻井式地下气化炉。 这种煤炭气化方式,很好地发挥了石油企业的钻井技术优势,免去了巷道式建地下气化炉的条件限制。但因钻井井径受限,制约了单套炉的气化规模,有待进行单套炉多进气孔、多气化通道、多出气孔、大井眼钻进和扩眼完井等技术攻关。 据统计,1953~1989年中国有报废矿井297处,1990~2020年有244处报废,报废资源量到2002年底已超过300亿吨,一般为井工开采(由工人下入井内进行资源开采,与露天开采相对应,井工可采煤炭量仅占煤炭资源储量的11.43%)遗留的煤柱、薄煤层、劣质煤层、高瓦斯煤层等,丰富的深层煤炭资源和浅海地区的煤炭资源也未被开发利用。煤炭地下气化技术的发展应用,为这些资源的有效动用提供了途径。 目前山东、山西、内蒙古、贵州等地都在引入煤炭地下气化技术,以使剩余的煤炭资源得到充分利用。 有关专家介绍,煤炭地下气化技术避免了传统煤炭开采方式对大气带来的污染。地下燃烧产生的高温能使瓦斯气和煤焦油发生剧烈膨胀而被挥发采出。尤其是高温能使褐煤的物性变好,使煤层气被解析,易于产出,其中的灰分留存于地下,还可以减少开采后期地层坍塌的危险。 煤炭地下气化开采还有见效快的特点。点燃后,只需注入气化剂便可连续生产。气化剂由空气、水蒸气、氧气和氢气组成。氧气和氢气可由粗煤气分离获得,水蒸气可由产出的高温粗煤气经降温处理制取,总体工艺具有明显的循环经济特色。 煤炭地下气化开采的产业综合性越强,开采成本下降越明显,获取的综合效益就越大。煤炭地下气化开采产业规模可大可小,可独立经营,更利于大产业经营,投资少,投资回收期短,投资回报率高。 该技术未来发展的重点,主要集中在加大炉型、提高生产能力、提高煤气热值等方面,以便适应1000米以下的深部煤层地下气化开采需要,逐步实现煤炭等矿产资源的循环经济开发。 更多技术设备信息:http://www.hbhwkl.cn
煤炭地下气化是在地下气化炉的条件下进行的。就是将煤层中的气化通道进气孔一端的气化穴煤炭点燃,由进气孔鼓入空气、氧气和水蒸气等气化剂,由辅助孔鼓入氢气。于是,地下煤炭便进行有控制的燃烧,经过对煤的热作用及化学作用,按温度和化学反应的不同,在地下气化通道内形成氧气带、还原带和干馏干燥带,由此生成的粗煤气经过出气孔产出,后经分离、净化等处理,便成为很好的燃料和化工原料。 早在1979年的世界煤炭远景会议上,联合国就已明确提出,实施煤炭地下气化开采,是解决传统的煤炭开采利用所存在问题的重要途径。在煤炭气化技术方面,中国也制定了发展规划、纲要等,而且是世界上煤炭地下气化技术研究较早的国家之一。 随着油气产业的不断发展,石油企业对矿物能源的勘探开发,开始呈现出一定的多样性,并逐步向煤炭领域延伸。煤炭地下气化开采和综合利用项目,逐渐受到石油企业的青睐。中国石油的辽河油田就是国内石油企业中“第一个吃螃蟹的人”。 煤炭地下气化是在地下气化炉的条件下进行的,该技术目前主要有两种类型. 一是巷道式地下气化炉技术。就是在开采或废弃的煤矿井中建地下气化炉,以人工掘进的方式在煤层中建立气化巷道,并在进气孔底部巷道筑一道密闭墙(促使定向燃烧煤层),然后便可将密闭墙前面的煤炭点燃气化. 此种方式中的单套地下气化炉由气化通道进气孔、辅助孔和出气孔组成,气化通道在同一煤层内连通各孔,但由于受煤层地应力和温度制约,因此人工竖井部分深度有限。 二是钻井式地下气化炉技术。即采用常规的油气钻井技术,钻一口普通的长祼眼水平井,与另外的两口直井在同一煤层内连通。单套地下气化炉仍由气化通道、进气孔、辅助孔和出气孔等组成。 施工时,先将进气孔底部的气化穴中的煤炭点燃,鼓入气化剂,连续使煤炭气化,同时由辅助孔鼓入氢气,气化通道内会形成氧化带、还原带和干馏干燥带。国外大多采取此种技术。辽河油田在2005年成功建成了中国首座钻井式地下气化炉。 这种煤炭气化方式,很好地发挥了石油企业的钻井技术优势,免去了巷道式建地下气化炉的条件限制。但因钻井井径受限,制约了单套炉的气化规模,有待进行单套炉多进气孔、多气化通道、多出气孔、大井眼钻进和扩眼完井等技术攻关。 据统计,1953~1989年中国有报废矿井297处,1990~2020年有244处报废,报废资源量到2002年底已超过300亿吨,一般为井工开采(由工人下入井内进行资源开采,与露天开采相对应,井工可采煤炭量仅占煤炭资源储量的11.43%)遗留的煤柱、薄煤层、劣质煤层、高瓦斯煤层等,丰富的深层煤炭资源和浅海地区的煤炭资源也未被开发利用。煤炭地下气化技术的发展应用,为这些资源的有效动用提供了途径。 目前山东、山西、内蒙古、贵州等地都在引入煤炭地下气化技术,以使剩余的煤炭资源得到充分利用。 有关专家介绍,煤炭地下气化技术避免了传统煤炭开采方式对大气带来的污染。地下燃烧产生的高温能使瓦斯气和煤焦油发生剧烈膨胀而被挥发采出。尤其是高温能使褐煤的物性变好,使煤层气被解析,易于产出,其中的灰分留存于地下,还可以减少开采后期地层坍塌的危险。 煤炭地下气化开采还有见效快的特点。点燃后,只需注入气化剂便可连续生产。气化剂由空气、水蒸气、氧气和氢气组成。氧气和氢气可由粗煤气分离获得,水蒸气可由产出的高温粗煤气经降温处理制取,总体工艺具有明显的循环经济特色。 煤炭地下气化开采的产业综合性越强,开采成本下降越明显,获取的综合效益就越大。煤炭地下气化开采产业规模可大可小,可独立经营,更利于大产业经营,投资少,投资回收期短,投资回报率高。 该技术未来发展的重点,主要集中在加大炉型、提高生产能力、提高煤气热值等方面,以便适应1000米以下的深部煤层地下气化开采需要,逐步实现煤炭等矿产资源的循环经济开发。
设备的使用永远都不能忽略自身的安全性,不同的产品都有不同的安全保护装置,下面根据本人对环境试验设备的认识以及客户使用过程出现的事故案例,将心得写出和各位同仁分享探讨。 环境试验设备的主要功能是能够模拟产品的使用气候条件(或是更加恶劣的环境条件),用以检测受测产品的耐候性能。设备的主要参数为温度(包括高温和低温)和湿度(指相对温度下的湿度,但有些产品不需做湿度),实现的方式为加热管实现高温、制冷器实现低温和电热管加热蒸馏水实现湿度。根据实际的设备工作运行情况,要求设备达到以下的安全保护措施,以保障设备的安全运行:1、电路系统的短路、过流、过压保护;2、超温保护:包括测试箱内的超温保护、电器箱超温保护、水箱超温保护;3、压缩机过载保护,冷媒高压保护;4、水箱缺水保护;5、风道停风报警保护;6、故障警告提醒保护系统。