当前位置: 仪器信息网 > 行业主题 > >

超高性价比大面积共聚焦成像系统

仪器信息网超高性价比大面积共聚焦成像系统专题为您提供2024年最新超高性价比大面积共聚焦成像系统价格报价、厂家品牌的相关信息, 包括超高性价比大面积共聚焦成像系统参数、型号等,不管是国产,还是进口品牌的超高性价比大面积共聚焦成像系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超高性价比大面积共聚焦成像系统相关的耗材配件、试剂标物,还有超高性价比大面积共聚焦成像系统相关的最新资讯、资料,以及超高性价比大面积共聚焦成像系统相关的解决方案。

超高性价比大面积共聚焦成像系统相关的论坛

  • 脑切片共聚焦显微镜

    [url=http://www.f-lab.cn/microscopes-system/rs-g4.html][b]脑切片共聚焦显微镜[/b][/url]是专业为大脑研究设计的[b]脑切片共聚焦成像显微镜[/b],非常适合大面积[b]脑切片共聚焦成像[/b],具有[b]共聚焦反射成像[/b]CRM和[b]共聚焦荧光成像[/b]CFM模式,[color=#333333][color=#333333]方便获得活体组织共聚焦图像.[/color][/color]脑切片共聚焦显微镜采用全球领先的图像缝合技术和条带图像镶嵌技术,快速创建亚像素精度的细胞尺度图像,并能够快速从脑切片图像中定位某个区域.脑切片共聚焦显微镜还可以用于动物研究,得益于其较大的成像视场,能够快速获得动物各个生长阶段的共聚焦图像和荧光细胞突出的图像,成像面积覆盖微米分辨率到30x30mm,实现微观成像和宏观成像.脑切片共聚焦显微镜还提供785nm和830nm激光,用于动物活体成像,成像传统深度高达250微米.脑切片共聚焦显微镜可广泛用于病理学研究,提供共聚焦反射成像CRM和共聚焦荧光成像CFM,有效获得活体组织图像.[img=脑切片共聚焦显微镜]http://www.f-lab.cn/Upload/RS-G4.jpg[/img][img=脑切片共聚焦显微镜]http://www.f-lab.cn/Upload/rsg4brain-section-.JPG[/img]脑切片共聚焦显微镜:[url=http://www.f-lab.cn/microscopes-system/rs-g4.html][b]http://www.f-lab.cn/microscopes-system/rs-g4.html[/b][/url]

  • 【网络讲座】共聚焦光片成像技术(举行时间:2016-11-17 14:00)

    【网络讲座】共聚焦光片成像技术(举行时间:2016-11-17 14:00)

    讲座名称:共聚焦光片成像技术——让荧光成像速度更快,光毒性更低,光操作更容易  主讲老师:易海英  徕卡显微系统生命科学产品应用专家,2014年毕业于华中科技大学生命科学与技术学院,研究生期间的主要研究方向为力学微环境对肿瘤干细胞及其转移的影响,以及力学信号对胚胎干细胞分化及发育的影响,在激光共聚焦和超高分辨率成像领域积累了丰富经验,参与的文章发表在Nature Communications等杂志期刊上。  主要内容:2014年,光片荧光显微技术(light-sheet fluorescence microscopy)被《Nature Methods》评选为年度技术(Method of the Year 2014)。光片(light sheet)技术简单来说即使用一薄层光束从侧面激发荧光样品,随后从样本的上部或下部检测所产生的荧光信号,即检测方向与照射方向相垂直。该技术能够以很高的三维分辨率对不同大小的固定样品或活样品进行三维成像,快速地捕捉细胞或亚细胞水平上的动态变化。其高速、低毒性、低漂白等优势使得光片技术在生命科学领域开始流行起来。光片荧光显微技术的概念其实早在一百多年前就已经被提出来了,但此后很长时间都没有什么进展,直到近年来才活跃起来,其中徕卡创造性地以其成熟的激光扫描共聚焦系统为平台,直接搭载上光片系统,得到既可以实现光片成像,又可以进行常规单光子成像,还可以将光片与单光子、多光子联合使用以实现和开创更为丰富多样的可能性的系统——Leica TCS SP8 DLS!光片荧光显微技术在细胞生物学、发育生物学、微生物学、植物学等多个领域都有广泛的应用,本次Webinar将着重介绍徕卡共聚焦光片系统DLS在生物学研究领域的应用。 举行时间:2016-11-17 14:00    报名链接:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/2178http://ng1.17img.cn/bbsfiles/images/2017/01/201701191701_669464_2507958_3.jpg手机扫描二维码,报名参会http://exmail.qq.com/cgi-bin/viewfile?type=signature&picid=ZX0717-9QlCeoL%7EVb5UZDdhPeiRO6f&uin=1407973628

  • 【网络讲座】共聚焦光片成像技术(举行时间:2016-11-17 14:00)

    【网络讲座】共聚焦光片成像技术(举行时间:2016-11-17 14:00)

    讲座名称:共聚焦光片成像技术——让荧光成像速度更快,光毒性更低,光操作更容易  主讲老师:易海英  徕卡显微系统生命科学产品应用专家,2014年毕业于华中科技大学生命科学与技术学院,研究生期间的主要研究方向为力学微环境对肿瘤干细胞及其转移的影响,以及力学信号对胚胎干细胞分化及发育的影响,在激光共聚焦和超高分辨率成像领域积累了丰富经验,参与的文章发表在Nature Communications等杂志期刊上。  主要内容:2014年,光片荧光显微技术(light-sheet fluorescence microscopy)被《Nature Methods》评选为年度技术(Method of the Year 2014)。光片(light sheet)技术简单来说即使用一薄层光束从侧面激发荧光样品,随后从样本的上部或下部检测所产生的荧光信号,即检测方向与照射方向相垂直。该技术能够以很高的三维分辨率对不同大小的固定样品或活样品进行三维成像,快速地捕捉细胞或亚细胞水平上的动态变化。其高速、低毒性、低漂白等优势使得光片技术在生命科学领域开始流行起来。光片荧光显微技术的概念其实早在一百多年前就已经被提出来了,但此后很长时间都没有什么进展,直到近年来才活跃起来,其中徕卡创造性地以其成熟的激光扫描共聚焦系统为平台,直接搭载上光片系统,得到既可以实现光片成像,又可以进行常规单光子成像,还可以将光片与单光子、多光子联合使用以实现和开创更为丰富多样的可能性的系统——Leica TCS SP8 DLS!光片荧光显微技术在细胞生物学、发育生物学、微生物学、植物学等多个领域都有广泛的应用,本次Webinar将着重介绍徕卡共聚焦光片系统DLS在生物学研究领域的应用。 举行时间:2016-11-17 14:00    报名链接:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/2178http://ng1.17img.cn/bbsfiles/images/2017/01/201701191701_669468_2507958_3.jpg手机扫描二维码,报名参会http://exmail.qq.com/cgi-bin/viewfile?type=signature&picid=ZX0717-9QlCeoL%7EVb5UZDdhPeiRO6f&uin=1407973628

  • 【网络讲座】共聚焦光片成像技术(举行时间:2016-11-17 14:00)

    【网络讲座】共聚焦光片成像技术(举行时间:2016-11-17 14:00)

    讲座名称:共聚焦光片成像技术——让荧光成像速度更快,光毒性更低,光操作更容易  主讲老师:易海英  徕卡显微系统生命科学产品应用专家,2014年毕业于华中科技大学生命科学与技术学院,研究生期间的主要研究方向为力学微环境对肿瘤干细胞及其转移的影响,以及力学信号对胚胎干细胞分化及发育的影响,在激光共聚焦和超高分辨率成像领域积累了丰富经验,参与的文章发表在Nature Communications等杂志期刊上。  主要内容:2014年,光片荧光显微技术(light-sheet fluorescence microscopy)被《Nature Methods》评选为年度技术(Method of the Year 2014)。光片(light sheet)技术简单来说即使用一薄层光束从侧面激发荧光样品,随后从样本的上部或下部检测所产生的荧光信号,即检测方向与照射方向相垂直。该技术能够以很高的三维分辨率对不同大小的固定样品或活样品进行三维成像,快速地捕捉细胞或亚细胞水平上的动态变化。其高速、低毒性、低漂白等优势使得光片技术在生命科学领域开始流行起来。光片荧光显微技术的概念其实早在一百多年前就已经被提出来了,但此后很长时间都没有什么进展,直到近年来才活跃起来,其中徕卡创造性地以其成熟的激光扫描共聚焦系统为平台,直接搭载上光片系统,得到既可以实现光片成像,又可以进行常规单光子成像,还可以将光片与单光子、多光子联合使用以实现和开创更为丰富多样的可能性的系统——Leica TCS SP8 DLS!光片荧光显微技术在细胞生物学、发育生物学、微生物学、植物学等多个领域都有广泛的应用,本次Webinar将着重介绍徕卡共聚焦光片系统DLS在生物学研究领域的应用。 举行时间:2016-11-17 14:00    报名链接:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/2178http://ng1.17img.cn/bbsfiles/images/2017/01/201701191701_669462_2507958_3.jpg手机扫描二维码,报名参会http://exmail.qq.com/cgi-bin/viewfile?type=signature&picid=ZX0717-9QlCeoL%7EVb5UZDdhPeiRO6f&uin=1407973628

  • 【网络讲座】共聚焦光片成像技术(举行时间:2016-11-17 14:00)

    【网络讲座】共聚焦光片成像技术(举行时间:2016-11-17 14:00)

    讲座名称:共聚焦光片成像技术——让荧光成像速度更快,光毒性更低,光操作更容易  主讲老师:易海英  徕卡显微系统生命科学产品应用专家,2014年毕业于华中科技大学生命科学与技术学院,研究生期间的主要研究方向为力学微环境对肿瘤干细胞及其转移的影响,以及力学信号对胚胎干细胞分化及发育的影响,在激光共聚焦和超高分辨率成像领域积累了丰富经验,参与的文章发表在Nature Communications等杂志期刊上。  主要内容:2014年,光片荧光显微技术(light-sheet fluorescence microscopy)被《Nature Methods》评选为年度技术(Method of the Year 2014)。光片(light sheet)技术简单来说即使用一薄层光束从侧面激发荧光样品,随后从样本的上部或下部检测所产生的荧光信号,即检测方向与照射方向相垂直。该技术能够以很高的三维分辨率对不同大小的固定样品或活样品进行三维成像,快速地捕捉细胞或亚细胞水平上的动态变化。其高速、低毒性、低漂白等优势使得光片技术在生命科学领域开始流行起来。光片荧光显微技术的概念其实早在一百多年前就已经被提出来了,但此后很长时间都没有什么进展,直到近年来才活跃起来,其中徕卡创造性地以其成熟的激光扫描共聚焦系统为平台,直接搭载上光片系统,得到既可以实现光片成像,又可以进行常规单光子成像,还可以将光片与单光子、多光子联合使用以实现和开创更为丰富多样的可能性的系统——Leica TCS SP8 DLS!光片荧光显微技术在细胞生物学、发育生物学、微生物学、植物学等多个领域都有广泛的应用,本次Webinar将着重介绍徕卡共聚焦光片系统DLS在生物学研究领域的应用。 举行时间:2016-11-17 14:00    报名链接:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/2178http://ng1.17img.cn/bbsfiles/images/2016/10/201610281713_615330_0_3.jpg手机扫描二维码,报名参会http://exmail.qq.com/cgi-bin/viewfile?type=signature&picid=ZX0717-9QlCeoL%7EVb5UZDdhPeiRO6f&uin=1407973628

  • 共聚焦高速扫描与成像系统研究

    [b][font=宋体][color=black]【序号】:1[/color][/font][font='微软雅黑',sans-serif][color=black][/color][/font]【作者】:[b]单峡[/b][/b][font=&]【题名】:[b][b]共聚焦高速扫描与成像系统研究[/b][/b][/font][font=&]【期刊】:cnki[/font][b][color=#545454]【链接]: [url=https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CDFD&dbname=CDFDLAST2016&filename=1015712320.nh&uniplatform=NZKPT&v=g8fPyqfSNBIZFLi6JV5IjwK9gKCSBCEvUuN3dTxvKpYlXKEQlXfSHL3OoehSZY07]共聚焦高速扫描与成像系统研究 - 中国知网 (cnki.net)[/url][/color][/b]

  • 能谱及EBSD的超大面积面分布分析-最新应用

    能谱及EBSD的超大面积面分布分析-最新应用

    牛津仪器最新推出的AZtecLAM(Large Area Mapping )可以无需人工干预,自动移动样品台,获得高分辨率下的超大面积EDS及EBSD图像。可以应用在多个领域,包括:地质样品需要在大面积内寻找特殊元素或结构的样品需要低倍检测,但同时需要高分辨率的样品(纳米材料)技术参数:AZtecLAM可以一次采集超过1000个视场,且保证每个视场的分辨率高达4k x 4k,若同时采集能谱及EBSD分辨率可达2k x 2k,采集数据点超过10亿。优势明显:每个视场采集后,系统会做自动拼接,且自动优化亮度及对比度,使整体画面一致,若灯丝突然发生强烈变化或由于外界震动导致画面失真的等情况出现时,可以手动删除其中一个或多个视场,系统会自动回到该位置做重新采集。如下所示的例子是:辉长岩的超大面积能谱采集,总采集面积0.9mm*1.7mm,共采集168个视场。12k * 10k 图像,获得AutoPhaseMaps相分布。可以看出主相几乎是mm级尺度。而放大细微处,发现样品中同时存在微米级组织,分辨率足够高,各个相清晰可辨。http://ng1.17img.cn/bbsfiles/images/2013/10/201310111258_470393_2512186_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/10/201310111258_470394_2512186_3.jpg

  • 海葵过后暴发大面积赤潮

    象山港大面积赤潮,赤潮仍将持续  8月12日,象山港海洋环境监测站发现,浙江船厂邻近海域一带,暴发了面积约170平方公里,水体呈红色的赤潮。 海水浑浊不堪,整片海水呈褐色  8月14日,赤潮面积扩大至整个象山港海域,面积高达390平方公里,水体颜色呈深褐色。 讨论造成大面积赤潮原因及危害.

  • 激光共聚焦显微镜系统的原理和应用

    激光共聚焦显微镜系统的原理和应用激光扫描共聚焦显微镜是二十世纪80年代发展起来的一项具有划时代的高科技产品,它是在荧光显微镜成像基础上加装了激光扫描装置,利用计算机进行图像处理,把光学成像的分辨率提高了30%--40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察诸如Ca2+ 、PH值,膜电位等生理信号及细胞形态的变化,成为形态学,分子生物学,神经科学,药理学,遗传学等领域中新一代强有力的研究工具。激光共聚焦成像系统能够用于观察各种染色、非染色和荧光标记的组织和细胞等,观察研究组织切片,细胞活体的生长发育特征,研究测定细胞内物质运输和能量转换。能够进行活体细胞中离子和PH值变化研究(RATIO),神经递质研究,微分干涉及荧光的断层扫描,多重荧光的断层扫描及重叠,荧光光谱分析荧光各项指标定量分析荧光样品的时间延迟扫描及动态构件组织与细胞的三维动态结构构件,荧光共振能量的转移的分析,荧光原位杂交研究(FISH),细胞骨架研究,基因定位研究,原位实时PCR产物分析,荧光漂白恢复研究(FRAP),胞间通讯研究,蛋白质间研究,膜电位与膜流动性等研究,完成图像分析和三维重建等分析。一.激光共聚焦显微镜系统应用领域:涉及医学、动植物科研、生物化学、细菌学、细胞生物学、组织胚胎、食品科学、遗传、药理、生理、光学、病理、植物学、神经科学、海洋生物学、材料学、电子科学、力学、石油地质学、矿产学。二.基本原理传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共聚焦显微镜利用激光束经照明针孔形成点光源对标本内焦平面的每一点扫描,标本上的被照射点,在探测针孔处成像,由探测针孔后的光点倍增管(PMT)或冷电耦器件(cCCD)逐点或逐线接收,迅速在计算机监视器屏幕上形成荧光图像。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点不会在探测针孔处成像,这样得到的共聚焦图像是标本的光学横断面,克服了普通显微镜图像模糊的缺点。三.应用范围:细胞形态学分析(观察细胞或组织内部微细结构,如:细胞内线粒体、内质网、高尔基体、微管、微丝、细胞桥、染色体等亚细胞结构的形态特征;半定量免疫荧光分析);荧光原位杂交研究;基因定位研究及三维重建分析。1.细胞生物学:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化2.生物化学:酶、核酸、FISH(荧光原位杂交)、受体分析3.药理学:药物对细胞的作用及其动力学4.生理学:膜受体、离子通道、细胞内离子含量、分布、动态5.神经生物学:神经细胞结构、神经递质的成分、运输和传递、递质受体、离子内外流、神经组织结构、细胞分布6.微生物学和寄生虫学:细菌、寄生虫形态结构7.病理学及临床应用:活检标本诊断、肿瘤诊断、自身免疫性疾病诊断、HIV等8.遗传学和组胚学:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断四.激光共聚焦显微镜在医学领域中的应用A.在细胞及分子生物学中的应用1.细胞、组织的三维观察和定量测量2.活细胞生理信号的动态监测3.粘附细胞的分选4.细胞激光显微外科和光陷阱功能5.光漂白后的荧光恢复6.在细胞凋亡研究中的应用B.在神经科学中的应用1.定量荧光测定2.细胞内离子的测定3.神经细胞的形态观察C.在耳鼻喉科学中的应用1.在内耳毛细胞亚细胞结构研究上的应用2.激光扫描共聚焦显微镜的荧光测钙技术在内耳毛细胞研究中的应用3.激光扫描共聚焦显微镜在内耳毛细胞离子通道研究上的应用4.激光扫描共聚焦显微镜在嗅觉研究中的应用D.在肿瘤研究中的应用1. 定量免疫荧光测定2. 细胞内离子分析3. 图像分析:肿瘤细胞的二维图像分析4. 三维重建 E.激光扫描共聚焦显微镜在内分泌领域的应用1. 细胞内钙离子的测定2. 免疫荧光定位及免疫细胞化学研究3. 细胞形态学研究:利用激光扫描共聚焦显微镜 F.在血液病研究中的应用1. 在血细胞形态及功能研究方面的应用2. 在细胞凋亡研究中的应用 G.在眼科研究中的应用1. 利用激光扫描共聚焦显微镜观察组织、细胞结构2. 集合特殊的荧光染色在活体上观察角膜外伤修复中细胞移行及成纤维细胞的出现3. 利用激光扫描共聚焦显微镜观察视网膜中视神经细胞的分布以及神经原的树枝状形态4. 三维重建H. 激光扫描共聚焦显微镜在肾脏病中的应用可以系统观察正常人肾小球系膜细胞的断层扫描影像及三维立体影像水平,使图像更加清晰,从计算机分析系统可从外观到内在结构,从平面到立体,从静态到动态,从形态到功能几个方面对系膜细胞的认识得到提高。

  • 激光共聚焦显微镜系统的原理和应用(光学)

    激光共聚焦显微镜系统的原理和应用激光扫描共聚焦显微镜是二十世纪80年代发展起来的一项具有划时代的高科技产品,它是在荧光显微镜成像基础上加装了激光扫描装置,利用计算机进行图像处理,把光学成像的分辨率提高了30%--40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察诸如Ca2+ 、PH值,膜电位等生理信号及细胞形态的变化,成为形态学,分子生物学,神经科学,药理学,遗传学等领域中新一代强有力的研究工具。激光共聚焦成像系统能够用于观察各种染色、非染色和荧光标记的组织和细胞等,观察研究组织切片,细胞活体的生长发育特征,研究测定细胞内物质运输和能量转换。能够进行活体细胞中离子和PH值变化研究(RATIO),神经递质研究,微分干涉及荧光的断层扫描,多重荧光的断层扫描及重叠,荧光光谱分析荧光各项指标定量分析荧光样品的时间延迟扫描及动态构件组织与细胞的三维动态结构构件,荧光共振能量的转移的分析,荧光原位杂交研究(FISH),细胞骨架研究,基因定位研究,原位实时PCR产物分析,荧光漂白恢复研究(FRAP),胞间通讯研究,蛋白质间研究,膜电位与膜流动性等研究,完成图像分析和三维重建等分析。一.激光共聚焦显微镜系统应用领域:涉及医学、动植物科研、生物化学、细菌学、细胞生物学、组织胚胎、食品科学、遗传、药理、生理、光学、病理、植物学、神经科学、海洋生物学、材料学、电子科学、力学、石油地质学、矿产学。二.基本原理传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共聚焦显微镜利用激光束经照明针孔形成点光源对标本内焦平面的每一点扫描,标本上的被照射点,在探测针孔处成像,由探测针孔后的光点倍增管(PMT)或冷电耦器件(cCCD)逐点或逐线接收,迅速在计算机监视器屏幕上形成荧光图像。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点不会在探测针孔处成像,这样得到的共聚焦图像是标本的光学横断面,克服了普通显微镜图像模糊的缺点。三.应用范围:细胞形态学分析(观察细胞或组织内部微细结构,如:细胞内线粒体、内质网、高尔基体、微管、微丝、细胞桥、染色体等亚细胞结构的形态特征;半定量免疫荧光分析);荧光原位杂交研究;基因定位研究及三维重建分析。1.细胞生物学:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化2.生物化学:酶、核酸、FISH(荧光原位杂交)、受体分析3.药理学:药物对细胞的作用及其动力学4.生理学:膜受体、离子通道、细胞内离子含量、分布、动态5.神经生物学:神经细胞结构、神经递质的成分、运输和传递、递质受体、离子内外流、神经组织结构、细胞分布6.微生物学和寄生虫学:细菌、寄生虫形态结构7.病理学及临床应用:活检标本诊断、肿瘤诊断、自身免疫性疾病诊断、HIV等8.遗传学和组胚学:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断四.激光共聚焦显微镜在医学领域中的应用A.在细胞及分子生物学中的应用1. 细胞、组织的三维观察和定量测量2. 活细胞生理信号的动态监测3. 粘附细胞的分选4. 细胞激光显微外科和光陷阱功能5. 光漂白后的荧光恢复6. 在细胞凋亡研究中的应用B.在神经科学中的应用1. 定量荧光测定2. 细胞内离子的测定3. 神经细胞的形态观察C.在耳鼻喉科学中的应用1. 在内耳毛细胞亚细胞结构研究上的应用2. 激光扫描共聚焦显微镜的荧光测钙技术在内耳毛细胞研究中的应用3. 激光扫描共聚焦显微镜在内耳毛细胞离子通道研究上的应用4. 激光扫描共聚焦显微镜在嗅觉研究中的应用D.在肿瘤研究中的应用1. 定量免疫荧光测定2. 细胞内离子分析3. 图像分析:肿瘤细胞的二维图像分析4. 三维重建 E.激光扫描共聚焦显微镜在内分泌领域的应用1. 细胞内钙离子的测定2. 免疫荧光定位及免疫细胞化学研究3. 细胞形态学研究:利用激光扫描共聚焦显微镜 F.在血液病研究中的应用1. 在血细胞形态及功能研究方面的应用2. 在细胞凋亡研究中的应用 G.在眼科研究中的应用1. 利用激光扫描共聚焦显微镜观察组织、细胞结构2. 集合特殊的荧光染色在活体上观察角膜外伤修复中细胞移行及成纤维细胞的出现3. 利用激光扫描共聚焦显微镜观察视网膜中视神经细胞的分布以及神经原的树枝状形态4. 三维重建H. 激光扫描共聚焦显微镜在肾脏病中的应用可以系统观察正常人肾小球系膜细胞的断层扫描影像及三维立体影像水平,使图像更加清晰,从计算机分析系统可从外观到内在结构,从平面到立体,从静态到动态,从形态到功能几个方面对系膜细胞的认识得到提高。北京中科研域科技有限公司(蔡司显微镜代理商)地址:北京市朝阳区建国路15号院甲1号北岸1292,一号楼406室联系人:张辉13911188977 邮编:100024电话:010-57126588 传真:010-85376588E-mail:[email=zhs_8000@126.com][color=#0365bf]zhs_8000@126.com[/color][/email]

  • 【转帖】msn不能登录的原因:六条海底光缆中断,网络大面积故障!

    12月27日凌晨开始,搜狐网友举报称MSN、雅虎通等国外媒体、即时通工具均无法登录,涉及江苏、山东、湖北等全国各地。上午9点45分,有网友向搜狐IT爆料,称网络发生故障的原因是海底光缆大面积中断,而引起海底光缆中断的原因是26日晚上20点25分左右发生的7.2级地震。   据爆料称,众多路由经过台湾的海光缆系统陆续发生中断,其中有亚太一号、亚太二号、中美、亚欧三号、Flag、C2C等。其中,与中国电信相关的海底光缆的中断情况为:  1. 中美海缆于12月26日20:25 距离台湾枋山登陆站,9.7公里左右发生中断;  2. 亚欧三号海缆于12月26日20:25 距离台湾枋山登陆站 9.7公里左右发生中断;  3. 亚太二号海缆S7于12月27日00:06距离台湾淡水登陆站904公里左右发生中断;  4. 亚太二号海缆S3于12月27日02:00距离崇明登陆站2100公里左右(靠近台湾处)发生中断;  5. Flag光缆亚太系统于12月26日20:43在韩国到香港段中断;  6. Flag光缆亚欧段于12月27日04:56在香港到上海段中断。  这些线路的中断使中国电信到北美、台湾等方向的互联网电路大量中断,到欧洲、亚太等方向的专线、话音电路部分中断。

  • 共聚焦激光扫描光学显微成像关键技术研究

    [b][font='Microsoft YaHei', 宋体, sans-serif]【序号】:1[/font]【作者】:[/b][font=&][size=12px][color=#1c1d1e][b][b]魏通达[/b][/b][/color][/size][/font][font='Microsoft YaHei', 宋体, sans-serif][b][b][/b][/b][/font][font=&]【题名】:[/font][b][b][color=#333333][b][font=&][color=#032d2c][b]共聚焦激光扫描光学显微成像关键技术研究[/b][/color][/font][/b][/color][/b][/b][font=&]【期刊】:[/font][font=Arial][font=&][size=12px]CNKI[/size][/font][/font][font='Microsoft YaHei', 宋体, sans-serif][color=#545454][b]【链接】:[url=https://link.springer.com/book/10.1007/978-0-387-45524-2]共聚焦激光扫描光学显微成像关键技术研究 - 中国知网 (cnki.net)[/url][/b][/color][/font]

  • 简谈激光共聚焦显微镜

    [url=http://www.leica-microsystems.com/cn/%E4%BA%A7%E5%93%81/%E5%85%B1%E8%81%9A%E7%84%A6%E6%98%BE%E5%BE%AE%E9%95%9C/]激光共聚焦显微镜[/url]用于对样品(如贴片细胞)进行荧光成像,一般具有几条不同波长的激光作为激发光,研究人员可根据自身不同的实验需要来选择合适的激光进行荧光成像。共聚焦显微镜相对于传统的荧光显微镜具有极大的优势。首先,激光共聚焦显微镜具有极高的层切能力,可以对样品进行三维成像。与普通荧光显微镜不同,共聚焦显微镜可以对待观察样品的某一平面清晰成像,通过改变样品的垂直位置对样品的不同平面进行依次成像,还可对样品的特定平面进行实时动态成像。其次,共聚焦显微镜相对于传统的荧光显微镜具有极高的分辨率,基本达到了光学显微镜分辨率的理论极限。再次,由于激光共聚焦显微镜基于单点扫描的成像模式,因此可以在此基础上开发出其他传统荧光显微镜不能达成的技术,如荧光漂白恢复技术,荧光相关光谱技术等。共聚焦显微镜在生物学和化学领域具有极其广阔的应用,如对样品的荧光信号进行定性定量分析,对组织样品进行三维结构观察等。

  • 【讨论】旱灾是否与大面积种植速生桉有关?

    [img]http://ng1.17img.cn/bbsfiles/images/2010/04/201004010843_209330_1611705_3.gif[/img]广西、云南和贵州等省区,去冬今春以来,遭遇了百年未遇的旱灾,百姓生活用水、农业生产、牲畜饮水受到严重威胁,并且旱情至今没有任何缓解的迹象。当政府、社会团体和广大百姓在积极投入抗灾之时,笔者想向所有民众问询一个问题,那就是这场旱灾是否与这几个省区近年来生态林大规模被砍伐,然后大面积种上速生桉,是否有无联系?这几个省区近年来为了发展经济,相继引进了金光和斯道拉恩索纸业巨头,而这两家公司为了保证纸业生产所需的原材料,大力在广西、云南、贵州等西南省区发展和种植速生桉,这些地区原有的生态林遭到大规模的破坏。金光集团和斯道拉恩索两家公司在全球破坏生态林的行为,已经遭到众多国际组织的谴责,可谓臭名昭著。这两家企业为了自身的发展,就把目光瞄准了只顾经济发展,不惜牺牲环境的中国。在当地政府的默认和保护下,这两家企业在中国南方大面积推广和种植速生桉。大面积种植速生桉,一般对环境会产生如下危害:[b]1、速生桉是“抽水机”[/b]速生桉对土壤的水分需求极大,大面积种植会导致地下水位下降,保持水的能力很差,土地表面板结,还出现土地沙化现象。据报道,广州市花都区赤坭镇10年前种植了大量速生桉。10年过去,树间流淌的小溪流接二连三地干涸了,山脚下的水井越取越深;一些村子里以往甘甜的泉水还变得苦涩了。[b]2、速生桉是“抽肥机” [/b]速生桉对土壤的肥料和养分需求极大,凡种植了速生桉的地方,土地肥力下降乃至枯竭,原始植被因为得不到足够的肥料和养分而受到严重破坏,引发土地退化,水土保持情况恶化,土地贫瘠,以后再引进种植其他植物根本无法存活。土壤强度侵蚀比例逐年升高,山体滑坡和洪涝灾害增多。[b]3、速生桉是“霸王树”[/b]速生桉对当地乡土的原产、原生物种具有极大的抑制性。它生长了,其他物种就会慢慢地萎缩,最后造成速生桉种植地都是地表光秃秃的,地上没有草、灌木,也没有小乔木及各种中草药材等。速生桉林中动物十分稀少甚至绝迹,生物多样性水平极低,生物食物链断裂,生态十分脆弱,缺少天敌对虫害进行控制,很易感染虫灾,容易导致小气候变化等严重的生态危机。[b]4、速生桉施用的化工产品毒性强、毒效长[/b]种植速生桉时施用某些毒性、毒效长的化工产品,该产品一旦施加在土地里,将很难清除干净,对水质污染极大。另外,速生桉发出的气味对人体有刺激和毒害作用。虽然目前对速生按是否危害生态环境还众说纷纭,未有定论,但可以肯定的是大规模发展速生桉的确存在潜在危险。正如第4条所讲,“虽然目前对速生按是否危害生态环境还众说纷纭,未有定论,但可以肯定的是大规模发展速生桉的确存在潜在危险。”官方对于西南省区的旱灾至今没有说明形成的原因,但这些地区生态林遭到严重破坏和大规模种植速生桉是不争的事实。速生桉对于植被和水源的破坏,已经是获得了一致的共识,在诸如日本、澳大利亚和越南、柬埔寨这样的小国,都禁止大规模、大面积种植速生桉,避免由此而引起的环境灾难和生态灾难。笔者对于这次旱灾诱发的原因,仅仅也是基于生态林被破坏和大规模种植速生桉的一种猜测。一个地方追求经济的发展是没有错,但是在追求经济发展的同时,一定要评估这些产业是否产生严重的后果,不要为了眼前的二两猪肉钱,放弃了长远的子孙利益。任何事物都必须遵循自然规律这一法则,一旦违背这一规则,必将受到自然界的严惩。————————————————————————————————————————————————————————————————————————进入2010年,西南地区的人们陷入与干旱的鏖战中。持续高温少雨天气,导致云南、贵州、四川、广西、重庆的旱情持续加重。云南大部分地区干旱等级升至百年以上一遇。近日,记者深入云南旱灾最严重的地方之一文山州,今年以来,文山平均降雨量只有4.6毫米。砚山县是文山州旱情最重的四个县之一。在那里,河水枯竭、水井见底、土地龟裂,灾情触目惊心。[b]水成最珍贵的礼物 [/b]位于群山顶峰、海拔1800米的文山州砚山县阿猛镇水塘村大榔树组,是云南最干旱的村落之一。山山相连,峰峰相接是砚山县阿猛镇的地理概貌。阿猛镇地处广西和云南两地三县交界处的边缘地带,是一个苗族、壮族、白族等少数民族聚集的乡镇。和众多山脚下的村落不同,大榔树组居民简陋的黑瓦土房都修建在山顶,稀稀落落散布着。87户居民中,50户为苗族,37户为白族。因距离阿猛镇40公里,且不通公路,当地政府的“爱心水”一度无法送到这里。断水20多天后,村领导徒步半天来到镇里汇报灾情,方才引起重视。3月18日是水塘村村支书李少中的母亲50岁生日,李少中的大姐夫用牛车拉了100公斤水给岳母祝寿。因送水有功,大姐夫被安排坐在上席。李少中为表示对大姐夫的感激之情,特意敬了一杯酒。“现在谁家办红白喜事,水是最珍贵的礼物。”大榔树组小组长李振勇这样说。[b]一周洗一次碗筷节水 [/b]60岁的彭文仙,看到几个陌生人来到自家门前,有些激动。“感谢你们呀,不是你们我们都要渴死了。”老人误把记者当做送水的乡镇干部。在她背后,是3个10岁左右的男孩。见到陌生人,孩子们有些局促地躲在老人身后,黑乎乎的脸和乱糟糟的头发,表明他们已经很久没有洗脸和洗头了。“洗澡?”听到记者询问,老人不好意思地笑起来。村支书李少中说,为了节约用水,村民几乎一周洗一次脸,洗一次衣服,洗一次碗筷。记者在一个村子里看到一位大妈在洗衣服,晾衣绳上挂了二三十件衣服。“我们家快一个月没洗衣服了,衣服都是穿脏了就在太阳下面晒晒,然后再穿,再脏再晒,一般穿了三遍我们才洗一次,这样就攒了这么一大堆。”[b]3个月没吃到新鲜蔬菜 [/b]干旱让蔬菜成了奢侈品。村民李大友开始从山上采野菜“饿羊菜”吃,这是羊饿急了才肯吃的植物,需要用水泡六七天才能除掉菜里的涩味。除了“饿羊菜”,李大友家的一日三餐就是盐水伴着干菜下饭。“3个月没有新鲜蔬菜了,很多村民都到山里去找一点野菜。”村干部说,因为天旱,找到一点野菜先留给孩子和老人,壮劳力吃腌肉凑合。文山州翁达村村民林光德也说,家里不怎么吃青菜,只有每星期一次的集市上可以买点。但是很贵,以前两三毛钱一斤,现在都要一块多。这里的人一星期能吃上一次青菜就很了不起了。平时都是吃咸菜、腐乳来下饭,差不多忘记青菜的味道了。[b]村支书哭劝村民外出打工 [/b]“连吃的水都没有,哪来的水种庄稼。”几个月来,水塘村村支书李少中最主要的工作就是帮助村民找水源,但在多次努力失败后,他失去了耐心,开始一家一户上门,劝村民外出打工,要不投靠亲戚渡过难关。“出去吧,难道在这里等着渴死吗?”李少中和村干部这样劝村民。在大榔树组,目前除了几个村干部坚守外,其他村民都外出寻找生路去了。其中外出打工的有50多人,占到村里人口的六分之一。“我对他们说,你们出去吧。家里剩下老人和孩子,我们帮着照看。”李少中说。不少村民有些犹豫,他甚至哭着劝他们离开。

  • 新课发布!激光共聚焦显微镜技术应用!

    新课发布!激光共聚焦显微镜技术应用!

    [img=,550,310]https://ng1.17img.cn/bbsfiles/images/2023/10/202310171819522461_4148_5659437_3.png!w550x310.jpg[/img][size=14px]课程兼顾理论与实践的结合,由吴老师[/size][size=14px][color=#3daad6][b]根据自己多年的教学及科研经验[/b][/color][/size][size=14px],组织和整理本次课程内容从共聚焦显微镜的背景、结构、基本操作及注意事项、各类扫描模式及应用等方面展开详细讲解,让我们拒绝做一名只会机械操作,不懂原理的实验工具人![/size][size=14px][img=,128,128]https://ng1.17img.cn/bbsfiles/images/2023/10/202310171820520008_9055_5659437_3.png!w128x128.jpg[/img]原价:[/size][size=14px][b]599[/b][/size][size=14px][b]元[/b][/size][size=14px]课程[b]限时:39元[/b][/size][b][size=16px]讲师介绍[/size][/b][img=,690,812]https://ng1.17img.cn/bbsfiles/images/2023/10/202310171821243917_661_5659437_3.png!w690x812.jpg[/img][color=#3daad6][b][size=14px]吴晶,北京大学医药卫生分析中心教师,助理研究员[/size][/b][/color][size=14px]2013-2015年北京大学神经科学研究所从事博士后研究工作,出站后加入北京大学医药卫生分析中心生物成像与分析实验室,致力于成像技术的研发和创新,掌握多种成像技术如双光子、超高分辨、单分子检测等,支持发表高水平文章如Cell Research, Advanced Materials等多篇。[/size][size=14px]参与多项基金,近5年以一作身份发表SCI文章6篇,专利2项。[/size][size=14px]多次获北京大学实验技术成果奖,中国分析测试协会科学技术奖。撰写的“激光扫描共聚焦显微镜的检测模式及其在生物医学领域的应用”获第十五届科学仪器网络原创作品大赛三等奖,并收录于《科研仪器案例库》。[/size][size=14px]多次获北京大学实验技术成果奖,中国分析测试协会科学技术奖,及第一届“信立方杯”高校分析测试技术培训微课大赛最受欢迎主讲老师。[/size][b][size=16px]课程预览[/size][/b] [size=14px]详细介绍了激光扫描共聚焦显微镜的结构、原理、功能及应用,基本操作流程与日常操作中的注意事项等,可帮助初学者快速掌握全面的掌握仪器基本知识。详细介绍了激光扫描共聚焦显微镜的结构、原理、功能及应用,基本操作流程与日常操作中的注意事项等,可帮助初学者快速掌握全面的掌握仪器基本知识。[/size][b][size=16px]这门课,你将获得什么?[/size][/b][size=14px]激光共聚焦显微镜背景、结构、原理介绍[/size][size=14px]激光共聚焦显微镜基本操作及注意事项[/size][size=14px]激[/size][size=14px]光共聚焦显微镜的扫描模式[/size][color=#3daad6][b][size=14px][/size][/b][/color][size=14px]激[/size][size=14px]光共聚焦显微镜的实际应用[/size][size=16px][b]课程获取[img=,128,128]https://ng1.17img.cn/bbsfiles/images/2023/10/202310171820520008_9055_5659437_3.png!w128x128.jpg[/img][/b][/size][size=14px]原价:[/size][size=14px][b]599[/b][/size][size=14px][b]元[/b][/size][size=14px]课程[/size][size=14px][color=#ff4c00][b]限时:69元[/b][/color][/size][size=16px][b]报名须知[/b][/size]1、本课程为精品课程,无考试无证书,课程有效期内全部学习完可以在线申请培训证明。2、课程为虚拟产品,购买后不支持退换。3、购买时可申请增值税电子普通发票,如需专票请联系客服。4、课程有效期为购买后的360天内,课程有效期内可不限次数学习观看。

  • 【原创】X-Max----超大面积SDD电制冷能谱是个啥子东西?

    谁知道 X-Max----超大面积SDD电制冷能谱是个啥子东西?我们目前用的是液氮冷却的普通EDS,看一些资料都说SDD如何的好,但它也应该有自己的不足,请专家指点一二,看看新型的SDD能谱仪到底好在哪里呢?记得几年前曾经就SDD探头有过激烈的争论,不知到现在这个技术又有什么新的进展了。

  • 【原创】奥林巴斯品牌激光共聚焦显微镜你们了解多少?

    共聚焦显微系统(LSCM)诞生至今,短短二十多年里,已经成为了科学研究的重要工具。在我国生命科学研究领域,也发挥着巨大的作用。如何更好利用激光共聚焦技术,推动生命科学研究,受到了学术界的广泛关注。 激光共聚焦显微镜作为光学显微镜的重大改进,与传统场式(widefield)照明显微镜相比有许多独特的优点, 它可以控制焦深、照明强度,降低非焦平面光线噪音干扰,从一定厚度标本中获取光学切片。可以在不改变普通荧光显微镜的制片方法的前提下,观察到非常清晰的高质量图像,并且通过共聚焦显微镜可以十分方便的观察活的细胞或组织。 它的诞生,大大提高了科学研究的效率。目前共聚焦显微镜在国内的应用已经相当广泛,在越来越多的国家级科研院所与高校实验室,都能看到科研工作者忙碌在共聚焦显微镜前的身影。以下为奥林巴斯品牌类显微镜:智能激光扫描共聚焦显微镜——FV10iFV1000MPE:只关注多光子荧光成像FluoView™ FV1000共聚焦显微镜DSU转盘扫描显微镜奥林巴斯FluoView™ FV300(已停产)大家了解多少?欢迎讨论用后感想。

  • 【原创】日本这次核泄漏真的能大面积污染海水吗?

    今天惊悉,国内有传言,说海水被日本核污染,于是乎大家开始疯抢食盐,于是乎政府也开始出来辟谣,可怜的广大老百姓啊,为啥不动动脑筋呢?海洋那么大,一点点核泄漏合一污染那么大面积的海洋吗?中国的沿海所路径的洋流是从日本来的吗?海盐的加工工序那么多,即使沿海的海水有污染,最终在食盐里的有多少呢?为什么呀,可怜的广大老百姓,要被奸商的一些谣言所迷惑,疯狂抢购食盐?!把自己辛辛苦苦挣在口袋那点银子奉献给奸商啊?!

  • 【资料】激光共聚焦扫描显微镜一些介绍

    激光共聚焦扫描显微镜简介一、 激光共聚焦显微镜的基本组成激光扫描共聚焦显微镜(laser scanning confocal microscope LSCM)是20世纪80年代发展起来的一项具有划时代意义的高科技新产品,是当今世界最先进的细胞生物学分析仪器。激光共聚焦显微镜利用激光作为光源,在传统光学显微镜基础上采用共轭聚焦的原理和装置,以及通过针孔的选择和PMT的收集,并带有一套对其所观察到的对象进行数字图像分析处理的系统软件。与传统光学显微镜相比,它具有更高的分辨率,实现多重荧光的同时观察并可形成清晰的三维图象等优点。所以它问世以来在生物学的研究领域中得到了广泛应用。激光共聚焦显微镜主要有四部分组成:1、显微镜光学系统。2、扫描装置。3、激光光源。4、检测系统。整套仪器由计算机控制,各部件之间的操作切换都可在计算机操作平台界面中方便灵活地进行。1.1 显微镜光学系统  显微镜是LSCM的主要组件,它关系到系统的成象质量。显微镜光路以无限远光学系统可方便地在其中插人光学选件而不影响成象质量和测量精度。物镜应选取大数值孔径平场复消色 差物镜,有利于荧光的采集和成象的清晰。物镜组的转换,滤色片组的选取,载物台的移动调节,焦平面的记忆锁定都应由计算机自动控制。1.2 扫描装置  LSCM使用的扫描装置在生物领域一般为镜扫描。由于转镜只需偏转很小角度就能涉及很大的扫描范围,图象采集速度大大提高,512×512画面每秒可达4帧以上,有利于那些寿命短的离子作荧光测定。扫描系统的工作程序由计算机自动控制。1.3 激光光源  LSCM使用的激光光源有单激光和多激光系统。多激光器系统在可见光范围使用多谱线氩离子激光器,发射波长为457nm、488nm和514nm的蓝绿光,氦氖绿激光器提供发射波长为543nm的绿光,氦氖红激光器发射波长为633nm的红光,新的405nm半导体激光器的出现可以提供近紫外谱线,但是小巧便宜而且维护简单。1.4 检测系统  LSCM为多通道荧光采集系统,一般有三个荧光通道和一个透射光通道,能升级到四个荧光通道,可对物体进行多谱线激光激发,样品发射荧光的探测器为感光灵敏度高的光电倍增管PMT,配有高速12位A/D转换器,可以做光子计数。PMT前设置针孔,由计算机软件调节针孔大小,光路中设有能自动切换的滤色片组,满足不同测量的需要,也有通过光栅或棱镜分光后进行光谱扫描功能的设置。二、激光共聚焦显微镜的特点以及在生物领域的应用传统光学显微镜相比,激光共聚焦显微镜具有更高的分辨率,实现多重荧光的同时观察并可形成清晰的三维图象等优点,在对生物样品的观察中,激光共聚焦显微镜有如下优越性:1、对活细胞和组织或细胞切片进行连续扫描,可获得精细的细胞骨架、染色体、细胞器和细胞膜系统的三维图像。2、 可以得到比普通荧光显微镜更高对比度、高解析度图象、同时具有高灵敏度、杰出样品保护。3、***图象的获得,如7 维图象(XYZaλIt): xyt 、xzt 和xt 扫描,时间序列扫描旋转扫描、区域扫描、光谱扫描、同时方便进行图像处理。 4、细胞内离子荧光标记,单标记或多标记,检测细胞内如PH和钠、钙、镁等离子浓度的比率测定及动态变化。5、荧光标记探头标记的活细胞或切片标本的活细胞生物物质,膜标记、免疫物质、免疫反应、受体或配体,核酸等观察;可以在同一张样品上进行同时多重物质标记,同时观察; 6、对细胞检测无损伤、精确、准确、可靠和优良重复性;数据图像可及时输出或长期储存。 由于共聚焦显微镜的以上优点,激光共聚焦显微镜在以下研究领域中应用较为广泛:1、细胞生物学:如:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化、细胞凋亡机制;各种细胞器、结构性蛋白、DNA、RNA、酶和受体分子等细胞特异性结构的含量、组分及分布进行定量分析;DNA、RNA含量、利用特定的抗体对紫外线引起的DNA损伤进行观察和定量;分析正常细胞和癌细胞细胞骨架与核改变之间的关系;细胞黏附行为等 2、生物化学:如:酶、核酸、受体分析、荧光原位杂交、杂色体基因定位等,利用共聚焦技术可以取代传统的核酸印迹染交等技术,进行基因的表达检测,使基因的转录、翻译等检测变的更加简单、准确。3、药理学:如:药物对细胞的作用及其动力学;药物进入细胞的动态过程、定位分布及定量 4、生理学、发育生物学:如:膜受体、离子通道、离子含量、分布、动态;动物发育以及胚胎的形成,骨髓干细胞的分化行为;细胞膜电位的测量.荧光漂白恢复(FRAP)、荧光漂白丢失(FLIP)的测量等。 5、遗传学和组胚学:如:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断; 6、神经生物学:如:神经细胞结构、神经递质的成分、运输和传递; 7、微生物学和寄生虫学:如:细菌、寄生虫形态结构; 8、病理学及病理学临床应用:如:活检标本的快速诊断、肿瘤诊断、自身免疫性疾病的诊断; 9、免疫学、环境医学和营养学。如:免疫荧光标记(单标、双标或三标)的定位,细胞膜受体或抗原的分布,微丝、微管的分布、两种或三种蛋白的共存与共定位、蛋白与细胞器的共定位;对活细胞中的蛋白质进行准确定位及动态观察可实时原位跟踪特定蛋白在细胞生长、分裂、分化过程中的时空表达,荧光能量共转移(FRET)。

  • 基于3D打印技术的共聚焦小皿结构改进与应用

    在双光子成像系统中,如何保证活体动物/大块离体组织的待观察部位与长工作距离水镜间能很好的贴合以及锁水问题,一直是困扰成像效果的难题。通过使用3D打印技术,对传统共聚焦小皿的结构进行改进,开发出分别可应用

  • 【转帖】珠三角土壤未全被污染 发现大面积"抗癌"土壤

    在花都建起省内首个地热能开发利用示范点,在珠三角地区发现大面积“抗癌”土壤……记者昨日从广东省地质学会举办的纪念世界地球日信息发布会上获悉,除继续加强资源矿藏的找矿力度外,广东省正加大科学利用地质的力度,全方位拓展服务地方经济社会发展的产业链条,包括寻找城市应急水源、调查珠三角土壤污染程度等。 广东重启铀矿勘查 4月22日将迎来第41个世界地球日,“珍惜地球资源,转变发展方式,倡导低碳生活”是今年我国纪念世界地球日主题,作为清洁能源的代表,核电站成为今后广东能源战略的重要内容。据了解,2020年全国核电发电量将达到4000万千瓦时,而广东将达到2400万千瓦时,占全国总量的六成。 “广东既没有煤,又没有石油,为了适应广东发展低碳经济,加速核电站建设显得极为迫切。”广东省地质学会常务副理事长、广东省地质局总工程师杜海燕告诉记者,我国第一颗爆炸的原子弹其中的铀原料就取自广东,为了发展清洁能源,广东重新启动了铀矿资源的勘查工作,目前已发现和圈定了具有找矿前景的区段和铀矿化异常带。 另外,广东还是地热资源大省,已发现热泉点(地热田)超过300处,并有三分之一得到开发利用。杜海燕表示,广东将继续加大地热资源的勘查力度,除一批商业地热勘查项目外,省地质部门正对东莞深部地热资源、粤北地热资源等展开勘查,并在新丰县侵入花岗岩地区成功勘探出可观的隐伏地热资源。同时,省地质部门还在花都建成了省内第一个浅层地热能开发利用示范点。“与以往地热多用作旅游资源所不同的是,花都的这个示范点的地热将被作为资源应用于制冷、发电等。 除探寻低碳能源外,杜海燕还透露,省地质部门有专家正着手对地质储碳展开研究,在降低碳排放的同时,研究如何通过碳存储的形式降低大气碳浓度。 部分城市已找到应急水源 由于降雨的减少,水资源原本较为丰富的西南三省今年发生严重旱情,如果发生类似的自然灾害,广东如何应对?对此杜海燕表示,省地质部门已经未雨绸缪,即使天上不下雨,珠三角的百姓也不必为此担心。 杜海燕告诉记者,虽然广东是水资源大省,但为预防自然灾害和战争等特发应急情况,大城市必须有大型应急地下水源地确保供水不断,为此省地质部门近几年已经先后开展了粤北岩溶石山地区和雷州半岛地区地下水资源、珠江三角洲经济区应急水源地地下水资源的勘查工作,在广州花都、佛山等发现了多个可供应急使用的大型地下水水源地,在粤北乳源长期干旱缺水地区找到了可观的地下饮用水资源。 珠三角土壤并没有全被污染 杜海燕透露,省地质部门还对珠江三角洲经济农业地质与生态地球化学展开调查,澄清了以往人们认为珠三角大部分土壤都已被污染、不适宜农业种植的错误观念。“以前的调查只是针对部分受污染土壤展开,通过这次对4.2万平方公里的整个珠三角区域的普查,既圈定了部分土壤受污染严重的地区,也找到了可以发展绿色农业、种植无公害农产品的地区。”杜海燕表示,该项调查成果还可以为今后城市发展和土地规划提供参考依据。 据了解,在调查中地质部门在珠江三角洲经济区和韩江三角洲经济区发现了大面积的富硒土壤,而富含硒元素的食品有“抗癌之王”之称。地质部门在对台山该种土壤种植的大米和茶叶的调查中发现,其中硒元素含量明显高于普通作物,具有较高的商业价值,对开发特色特效农业有指导意义。 据介绍,硒是人体必需的微量元素,被称之为人体微量元素中的“防癌之王”。调查资料显示,一个地区的食物和土壤中的硒含量高,癌症的发病率和死亡率就低;反之,这个地区的癌症发病率和死亡率就高。然而摄入硒过量会导致指甲变厚、毛发脱落,肢端麻木,偏瘫;硒缺乏又会发生克山病,大骨节病,导致未老先衰,严重的会引发心肌病及心肌衰竭。中国营养学会推荐的成人摄入量为每日50-250微克,而我国2/3地区硒摄入量低于最低推荐值。 国内19条成矿带3条在广东 随着经济社会的发展,资源日益短缺,找矿显得格外重要。据了解,目前国内共有19条国家级重点成矿带,其中广东就占了3条。记者从会上了解到,近几年省地质局先后在粤西找到一个潜在价值达1000亿元的大型铜钼矿床和一处银铅锌多金属矿床;在粤北危机矿山接替资源勘查中,又找到两个达大型以上规模的多金属矿床,其中新增铅锌资源量超过80万吨,新增钼钨资源量超过30万吨,远景可达100万吨。去年以来,该局又发现一批可望达到中至大型规模的金属和非金属矿产地。

  • 【分享】德国研制出超薄显微镜 可对大面积进行一次成像

    德国夫琅禾费应用光学与精密工程研究所最近研制出一种厚度仅5.3毫米、分辨率达5微米的超薄显微镜,其未来用途可包括皮肤癌变检查和鉴别文件真伪。  这家研究所日前发表的新闻公报说,达到同样分辨率的传统显微镜要么只能一次观察一片很小的区域,要么就是对观察对象进行多次扫描,最后组合成图像,费时费力。这种新型显微镜可以对火柴盒大小的观察面积一次成像,成像速度快到即使医生手持这种超薄显微镜,其观察到的影像也不会模糊,对于观察皮肤病变非常实用。  达到这种观察效果的奥秘在于该显微镜用于成像的部分由无数紧密排列的微小透镜组成,每个透镜仅对观察对象的局部成像,每个局部的面积只有0.09平方毫米,与此同时显微镜内的软件能将这些微小局部组合成整体图像。这些微小透镜由特殊模具对高分子材料加工制成,可以批量生产,因而成本相对低廉。  目前德国研究人员已研制出这种超薄显微镜的样品,但批量生产至少还需一两年时间。(转载自科技日报)

  • 关于穿透管比样品管在最后出现一个大面积峰原因

    关于穿透管比样品管在最后出现一个大面积峰原因

    下面两幅图第一张是样品管,第二张是链接在样品管后的穿透管。不知道为什么穿透管在做样最后出现了一个120万面积的巨大峰,比样品管任何一个峰都大,样品管最大面积峰为34万。请教各位。[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/12/201912191017079649_6080_2692940_3.png[/img][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/12/201912191017085220_7863_2692940_3.png[/img]

  • 德国WITec公司网络报告:生物细胞组织和医药学的3D共聚焦拉曼成像检测

    德国WITec公司网络报告:生物细胞组织和医药学的3D共聚焦拉曼成像检测报告内容:着重介绍高分辨3D共聚焦拉曼成像在生物细胞组织和医药学的重要应用,例如生物细胞组织的表征,癌化细胞的鉴定,细胞对药物吞噬过程及药物反应过程的监测。。。报告时间:2014 年3月 26日晚上11:00(北京时间)具体内容请查看以下网址:http://www.witec.de/events/onlineseminars请登录以下网页注册:http://www.microscopy-analysis.com/witecwebinars期待与大家见面!

  • 【讨论】关于激光共聚焦显微镜的3D成像噪声控制

    【讨论】关于激光共聚焦显微镜的3D成像噪声控制

    [em09503]关于激光共聚焦显微镜的3D成像噪声控制,高手进来讨论一下。1 噪声产生的原理?2 激光的强度、补偿以及针孔直径对噪声的影响有什么规律?3 采用更大的分辨率和更慢的激光扫描速率以及多次平均扫描能否更好的控制噪声?4 还有什么其他有效的方法?[em09511]附几张带有噪声的图片,有兴趣的我可以提供原始文件(ZEISS的LSM格式)。[img]http://ng1.17img.cn/bbsfiles/images/2017/01/201701191651_625647_1633980_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/05/200905301042_152604_1633980_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/05/200905301042_152605_1633980_3.jpg[/img]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制