当前位置: 仪器信息网 > 行业主题 > >

动态机

仪器信息网动态机专题为您提供2024年最新动态机价格报价、厂家品牌的相关信息, 包括动态机参数、型号等,不管是国产,还是进口品牌的动态机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合动态机相关的耗材配件、试剂标物,还有动态机相关的最新资讯、资料,以及动态机相关的解决方案。

动态机相关的资讯

  • 政策/市场动态篇|​2022流式朋友圈大事记(中)
    仪器信息网特别盘点了2022年中国流式细胞仪市场新产品、新技术等行业动态信息,分为上、中、下篇,以飨读者。本期将回顾盘点【流式政策、企业/市场动态】部分。回顾查看:年度盘点|2022流式朋友圈大事记(上):新产品新技术篇——企业市场动态篇——(收并购投融资)2022年11月|自主研发流式细胞仪|泛肽生物获数千万元A轮融资,欲加速打破流式垄断市场格局泛肽生物科技(浙江)有限公司(以下简称“泛肽生物”)近日宣布完成数千万元A轮融资,由元生创投独家投资,取势资本担任独家财务顾问。本轮融资所募资金将主要用于公司在流式细胞技术平台的持续研发与市场拓展,为临床患者提供免疫功能精准评估综合解决方案。泛肽生物经过5年时间的研发,最终成功开发出可以同时检测免疫细胞数量和活性的核心原材料和算法软件,可实现更精准的免疫功能评估。该产品已于2022年6月成功获批国内首张免疫细胞线粒体检测IVD证书,泛肽生物希望通过以该产品为代表的多种独家创新型流式检测产品,来打破被进口产品长期垄断的流式市场僵局,本轮融资将支持公司加速这一进程。2022年11月|苏州四正柏和美国流式CRO公司达成战略合作协议苏州四正柏生物科技有限公司(简称“苏州四正柏”)近日和美国Masterpiece Flow Cytometry Services LLC (“MPFCS”)及其创始人签署了全方位的战略合作协议。在该战略合作协议下,苏州四正柏将和MPFCS以及其创始人紧密合作,充分发挥双方的企业优势,加速MPFCS的CRO服务布局和业务规模,MPFCS本身会获得苏州四正柏的产品代理权并且优先使用和推广苏州四正柏的产品,也可以为苏州四正柏从技术培训、组合设计等方面赋能。2022年9月|凌视科技“超高速流式细胞成像分析项目”入围中关村前沿科技TOP109月14日下午,2022中关村国际前沿科技创新大赛国际赛道生物健康领域决赛在中关村国际孵化器举办。本次大赛由教育部科学技术与信息化司,科技部成果转化与区域创新司,科学技术部火炬高技术产业开发中心,中国科学院科技促进发展局,中国科学院科技创新发展中心,中国科协科技传播中心,北京市科委、中关村管委会等单位联合指导。最终凌视科技公司“超高速流式细胞成像分析项目”成功入围2022年中关村国际前沿科技创新大赛国际赛道生物健康领域TOP10。2022年08月|宸安生物与欧易/鹿明生物达成战略合作,推进质谱流式细胞技术发展与应用7月29日,上海鹿明生物科技有限公司(简称“鹿明生物”)与上海宸安生物科技有限公司(简称“宸安生物”)在宸安生物上海总部正式完成战略合作签约仪式。此次战略合作致力于推进以质谱流式细胞技术为核心的单细胞蛋白质组学科研技术服务及临床诊断平台布局,运用优势系统加速临床诊断研究及创新药物研究,本次鹿明生物与宸安生物合作也将进一步联合助力临床专家和创新药企研发。2022年08月|在体流式生产商光域生物医学完成数千万天使轮融资光域生物医学(Light Dimension BioMed)宣布完成天使轮融资,由专业医疗投资机构苇渡创投独家投资,资金主要用于研发投入和临床技术创新。光域生物医学的研发管线以“在体免抽血光学技术”为中心,应用方向包括检测(无标记泛瘤种CTC、免疫细胞、干细胞、血小板、药物分子、脂类分子、纳米粒等)和治疗(光捕获CTC、光治疗帕金森症等),为基础科学研究和临床应用提供全新的光学仪器和解决方案。光域生物医学近期将在国内知名三家医院启动在体检测技术相关的临床研究项目,并在此基础上开展产品临床试验和产品型式试验,申报医疗器械注册证。2022年07月|层浪生物获数千万A轮融资|IDG资本投资层浪生物完成数千万元A轮融资。本轮融资由IDG资本投资,资金将用于公司流式细胞产品的研发和市场推广。点击查看层浪生物在线展位 层浪生物聚焦流式细胞领域,致力于实现流式技术自动化、常规化,应用分析傻瓜化、智能化,已经推出多款流式产品。目前主营产品2激光8色流式细胞仪MateCyte™于2021年1月成功获得NMPA注册证,高端产品3激光14色流式细胞仪LongCyte™ 26种型号均已经获得CE认证,正在申请NMPA注册证。下半年将陆续推出流式样本制备仪FA3000L,流式检测抗体等试剂。2022年07月|普罗亭质谱流式检测实验室获得全球首个CNAS认可证书!中国合格评定国家认可委员会(CNAS)正式向浙江普罗亭健康科技有限公司检测中心颁发了实验室认可证书(注册号:CNAS L16635),这标志着CNAS肯定普罗亭检测实验室的管理水平以及检测能力达到了“中国认可、国际互认”的要求。2022年02月|碧迪生物拓展癌症术后检测诊断领域,收购流式企业Cytognos近期,碧迪生物(纽约证券交易所:BDX)宣布已完成对Cytognos的收购。Cytognos专门从事血癌诊断的流式细胞术、血液疾病的MRD和免疫监测研究以及临床信息学,加速了BD扩大其血癌诊断、免疫监测研究和信息学产品组合以解决患者问题的战略,临床医生和护理人员需要更好地了解免疫系统、免疫反应和 MRD。2022年01月|招商健康领投,唯公科技完成数亿元B+轮融资2022年1月,唯公科技完成数亿元B+轮融资。本轮融资由招商健康领投,老股东全球生命科学龙头企业旗下的中国创新基金、同创伟业跟投。这是唯公科技在2021年获得首届全国颠覆性技术创新大赛生物技术领域赛优胜项目奖后,再次受到资本的青睐。2022年1月|苏州医工所转让流式细胞仪、数字PCR成果 将由江苏天瑞完成产业转化1月11日下午,苏州医工所与江苏天瑞仪器举行“双激光流式细胞仪”和“数字PCR分析系统”两项成果转化协议签约。江苏天瑞仪器董事长刘召贵,医学检验仪器研发中心负责人余正东,苏州医工所所长唐玉国,苏州国科医工集团总经理刘俊秋等出席签约仪式。签约仪式由苏州国科医工集团副总经理刘宇主持。 ——政策标准/指南共识篇——2022年09月-12月| 政府贴息医疗贷款新基建政策|流式企业纷纷推出解决方案(点击查看)2022年11月|国家卫健委发布《临床血液与体液检验基本技术标准》推荐性卫生行业标准,事关流式细胞仪性能验证!规定了医学实验室在临床血液与体液检验领域的基本技术要求,包括血液一般检验、血栓与 止血检验、流式细胞分析、体液检验常用检测项目的基本技术要求。 该标准适用于开展血液与体液检验的医学实验室。文中针对从事流式分析的专业技术人员要求、对于流式细胞分析的常用检测项目中抗体选择要求、对流式细胞分析仪的性能验证内容等均做阐述。2022年11月|国家卫生健康委办公厅发布了国家检验医学中心设置标准,流式细胞仪在列11月7日,国家卫生健康委办公厅发布了国家检验医学中心设置标准(点击查看 )。利用流式细胞技术开展的项目【免疫功能检测】被列入必备检验项目清单中;检测技术平台包括:流式平台,并开展检测项目≥50 项。2022年08月|流式细胞术在嵌合抗原受体-T细胞免疫治疗相关检验中的应用专家共识发表在中华检验医学杂志的《流式细胞术在嵌合抗原受体-T细胞免疫治疗相关检验中的应用专家共识》介绍了流式细胞术在CAR-T细胞免疫治疗中的应用场景。——产业动态——2022年07月|填补国内空白 |“高性能流式细胞分选仪”国家重点研发计划项目启动会顺利召开7月22日,由中科院苏州医工所牵头,清华大学、季华实验室、济南国科医工科技发展有限公司、机械工业仪器仪表综合技术经济研究所、苏州大学、吉林大学、中国科学院长春应用化学研究所参与的科技部国家重点研发计划“高性能流式细胞分选仪”项目启动会在苏州医工所正式召开。会议由苏州医工所计划与质量处处长郭智慧主持。以上就是2022年度流式相关的政策、企业市场动态大事记的回顾盘点。下期,我们将为广大用户盘点回顾2022年度流式技术成果动态、线上线下重点会议等,敬请持续关注。回顾查看:年度盘点|2022流式朋友圈大事记(上):新产品新技术篇
  • 动态表面张力测量在药剂学中广阔的应用前景
    点击蓝字关注我们表面张力分为静态(平衡)表面张力和动态表面张力(dynamic surface tension, DST)。静态表面张力是指表面活性剂在界面达到吸附平衡时的最低表面张力,而DST是指表面活性剂在达到平衡吸附前某一时刻的表面张力,是一个变化的值。当研究的液体吸附过程在快速、持续进行, 且短时间内无法达到平衡时, 对液体DST的研究比静态表面张力更有意义。如在农药喷洒、喷墨印刷、织物快速润湿, 以及摄影用薄胶片制备中。图1对比了近10年 (2008~2018年) 国内外发表的以DST为主要考察项的论文数。数据显示国内在DST方面的研究较少且总体波动不大,而国外则呈持续上升趋势。图1 2008~2018 年国内外发表的DST 文章数量对比图研究液体在药物制剂过程中的DST, 可挖掘DST与制剂过程、制剂产品之间的关系, 进而优化制剂过程、改进工艺参数。一、动态表面张力的测定由于对DST时间范围界定的不同,可运用的测量手段也有所不同。王建坤等认为,在达到静态表面张力前的表面张力变化都可算是DST,这个时间范围以几毫秒到几小时计。可用Wilhelmy吊片法、DuNouy吊环法、滴重法、滴体积法、悬滴法、最大气泡压力法测定DST。图2 不同的DST 测定方法的适用时间范围示意图根据Rosen描述的动态吸附过程可知在新表面形成后1 s内,是表面吸附的关键期,体系的DST变化迅速。中药水提液的表面张力在5~100 ms内具有较大变化,大多数在1 s内都已达到平衡。因此,用于测量DST的方法应具有连续、精确、快速测量1 s内数据能力。二、最大气泡压力法通过毛细管将气体注入到待测液体中时,在毛细管的端部重复形成气泡,根据气泡压力的最大值和毛细管半径,计算得到表面张力。通过改变气流流速控制气泡的年龄,可测量不同时间尺度的表面张力。目前实验室中多用KRüSS公司的BP100气泡压力张力仪测定1 s内DST。三、DST 在药物制剂领域的潜在应用价值近10年,DST已受到化工、涂料、印染等领域的广泛关注。药物制剂领域也有很多液体瞬时运动的过程,如喷雾干燥雾化,流化床制粒的粘合剂雾化,关注DST在液体雾化及扩散润湿过程中的作用,是精细控制制剂工艺的手段之一。1DST在雾化过程中的作用雾化是将液体通过雾化器(在一定压力下)喷射进入气体介质中,使之分散并碎裂成小液滴(雾滴)的过程。赵辉等考察了相同条件下,农药药液在不同时间点(0.023、0.124、0.483和0.998 s)的DST与雾滴体积中径(D50)的关系;发现D50随着喷雾液的DST值的降低而降低,二者呈线性相关,但二者的相关系数k 随DST 测定时间的延后而变差。0.023 s时的DST与D50相关系数高达0.9848,时间>1 s后,只有0.7135。利用动态表面张力仪测试了66种常见中药的水提液,发现所有提取液的DST在1 s内均有下降,但下降程度不同,且提取液雾滴粒径D50与94 ms时测得的DST存在一定相关关系,该结论还在进一步实验确证中。2DST在扩散润湿过程中的作用DST不仅影响药物制剂领域的雾化过程,对扩散润湿过程同样有显著的影响。喷雾干燥与流化床制粒过程中,液体雾化后雾滴在接触相表面的扩散润湿受两大因素影响:一是雾滴的性质,二是接触相的性质。在喷雾干燥黏壁问题中,从DST角度分析,半湿性黏壁现象是由于雾滴与干燥塔壁接触后迅速出现自发润湿,经塔壁的高温干燥后出现黏壁。因此,可从两方面促使雾滴与干燥塔接触后出现快速回缩以改善此黏壁现象。一是增大雾滴DST,二要选择合适的喷雾干燥塔内侧材料。从待喷液分析,应适当降低待测液浓度、进液温度,以增大雾滴DST,或添加疏水性辅料促使快速回缩的发生以改善干燥塔半湿性黏壁。四、 结语综上所述,DST作为一项重要的物理参数,在细微之处影响着药物制剂的品质与生产。关注DST对制剂过程的影响,拓展固有的药剂研究思路是十分必要的。参考文献施晓虹,李佳璇,洪燕龙,赵立杰,冯怡,王优杰. 动态表面张力在药剂学研究中的应用前景[J].国际药学研究杂志,2019.
  • 动态法与静态法对小比表面积的样品测试精度分析
    p style=" text-align: justify text-indent: 2em " 对于小比表面积样品,如电池材料、有机材料、生物材料、金属粉体、磨料等空隙度微小的材料,由于吸附量微小,静态法测试的结果较含有风热助脱装置和检测器恒温装置的高精度动态法仪器误差大。对静态法为什么在小比表面样品测试方面精度难以保证,原因如下: /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp & nbsp & nbsp 以比表面积1m2/g的样品为例,该样品0.5g对氮气的吸附量在BET分压范围内在标况下约0.1ml,在测试过程中的吸附环境液氮温度下的体积约0.03ml;样品管装样部分的剩余体积(也就是背景体积)约在3-5ml左右,要在3-5ml的样品管体积中准确定量出0.03ml的总吸附量且保证精度达到3%以内,可以算出要求压力传感器的精度要达到0.03%以上;但目前进口最好的压力传感器的精度只有0.1%,而且通常比表面及孔径分析仪用的压力传感器精度为0.15%,也就是说目前最高精度的压力传感器,即使温度场理想测定,液氮面理想恒定,环境温度理想准确条件下,对吸附量确定量的不确定度也只能达到0.003ml,即不确定度达到10%;若对于比表面再小或堆积密度小也就是装样量也难以很大的样品,其准确度就可想而知了。 但对于中大比表面样品,一般吸附量不会那么微小,静态法的精度很容易保证在2%甚至1%以内便不是问题; /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp & nbsp & nbsp 所以在小比表面样品的测试方面,静态法只能通过增加装样量来降低误差,常见的是静态一般都会为小比表面积样品配备大容量样品管,但由于背景体积(吸附腔体积)也随之增大,所以准确度提高也是有限的;而有些厂家宣称静态法小比表面测试下限可以达到0.0001m2/g,是不负责任的; /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp & nbsp & nbsp 对具有风热助脱、检测器恒温、低温冷阱的高精度动态法仪器,其相对不具有该装置的标准动态法比表面仪,其精度得到明显提高;动态法比表面仪,与其它分析仪器类似,其精度和灵敏度& nbsp 大小主要取决于信噪比;也就是要提高精度和灵敏度,就需要从提高信号强度、抑制背景噪声、消除外界干扰三方面来控制。增加信号强度的方法一般有增加称样量、增加检测器电流,但增加& nbsp 检测器电流一般噪声也会同时增大,所以检测器电流会有个最佳范围;所以在抑制噪声、消除外界干扰方面可做的工作就比较多了;其源于仪器自身的误差来源主要有:检测器温漂,信号锐度& nbsp ;以检测器恒温装置来抑制温漂,风热助脱装置可以提高信号锐度,其对于比表面1m2/g的样品0.5g对氮气的吸附量在分压0.2左右时脱附峰面积与背景可以保证在2%以内的误差; /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp & nbsp & nbsp 所以对于小比表面样品,对具有风热助脱、检测器恒温、低温冷阱的动态法仪器,其灵敏度和分辨率的优势就体现出来了;但对中大比表面样品,由于信号强,普通动态法比表面积仪和静态& nbsp 法比表面积仪都可以保证精度;这点就像万分之一分析天平和千分之一天平的区别; /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp & nbsp & nbsp 但绝大多数含有微孔、介孔等空隙的材料,比表面不会很小;要是很小比表面的材料,其空隙度的研究价值就有限了; /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp & nbsp & nbsp 综上: /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp & nbsp & nbsp 一、对于小比表面样品(10m2/g以下)优先选择采具有风热助脱及检测器恒温装置的用动态色谱法比表面仪器,利用其分辨率、灵敏度高的优势; /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp & nbsp & nbsp 二、对于中大比表面样品,若只测试比表面积,动态法和静态法没有明显的优劣势,动态法由于具有固体标样参比法,具有快速测定比表面的优势,静态法具有BET多点法较省时液氮消耗 小的优势; /p p style=" text-align: justify text-indent: 2em " 三、需要测比表面及孔径分布的样品,建议采用静态容量法的比表面及孔径分析仪。 /p
  • 微电子所在硅基氮化镓横向功率器件的动态可靠性研究方面取得进展
    硅基氮化镓横向功率器件因其低比导通电阻、高电流密度、高击穿电压和高开关速度等特性,已成为下一代高密度电力系统的主流器件之一,而且在电子消费产品中得到大规模应用。由于硅基氮化镓横向功率器件电气可靠性十分有限,主要表现在硬开关工作环境中的动态电阻退化效应,这给其在寿命要求较长的领域(如数据中心、基站等电源系统)应用带来了挑战,阻碍了其在ICT电源等大功率领域中的大规模应用。提升硅基氮化镓横向功率器件可靠性的难点在于如何准确测试出器件在长期高压大电流应力工作下的安全工作区,如何保证器件在固定失效率下的寿命。硅基氮化镓横向功率器件在高压大电流场景下的“可恢复退化”与“不可恢复退化”一直以来很难区分,这给器件安全工作区的识别和寿命评估带来了极大挑战。针对上述问题,中国科学院微电子研究所研究员刘新宇团队基于自主搭建的硅基氮化镓横向功率器件动态可靠性测试系统,从物理角度提出了硅基氮化镓横向功率器件开关安全工作区的新定义及表征方法。该技术能够表征硅基氮化镓横向功率器件开发中动态电阻增大的问题及其开发的硅基氮化镓横向功率器件对应的材料缺陷问题。相关研究成果以Characterization of Electrical Switching Safe Operation Area On Schottky-Type p-GaN Gate HEMTs为题发表在《IEEE电力电子学汇刊》(IEEE Transactions on Power Electronics)上 。研究工作得到国家重点研发计划、国家自然科学基金、中国科学院前沿科学重点研究项目以及北京市科学技术委员会项目等的支持。图 (a) 团队自主搭建的自动化硅基氮化镓横向功率器件动态可靠性研究平台;(b) 基于器件是否生成新陷阱的角度区分硅基氮化镓横向功率器件的“可恢复退化”与“不可恢复退化;。(c) 提出一种检测器件发生不可恢复退化的边界的测试方法,以此测试序列表征器件开关安全工作区;(d) 所测试的硅基氮化镓横向功率器件的开关安全工作区。
  • 于兆斌先生:动态断裂仪器化冲击技术在材料测试及新品种开发中的应用
    仪器信息网讯 为提高广大试验机用户的应用水平,并促进用专家、用户、厂商之间的相互交流,2012年5月16日,在CISILE 2012召开期间,由中国仪器仪表行业协会试验机分会与仪器信息网主办、北京材料分析测试服务联盟与我要测网协办的“第一届中国试验机技术论坛”在中国国际展览中心综合楼二楼204会议室成功举办。   如下为钢研纳克检测技术有限公司试验机产品经理于兆斌先生所作报告的精彩内容:   钢研纳克检测技术有限公司试验机产品经理于兆斌先生   报告题目:动态断裂仪器化冲击技术在材料测试及新品种开发中的应用   报告伊始,于兆斌先生介绍到,北京纳克分析仪器有限公司是中国钢研集团全资子公司,注册资金6000万人民币,是一家以冶金和材料检测仪器、标准样品的研制和销售为主的专业公司,在2012年1月正式更名为钢研纳克检测技术有限公司。其产品涉及试验机系列、硬度仪系列、金属原位分析仪、火花光谱仪、ICP光谱、碳硫氧氮氢分析仪、飞行时间质谱炉气分析系统、无损检测仪、在线检测系统和标准样品等。   此外,于兆斌先生还非常自豪地说到,钢研纳克在国内已经设有27个办事处,服务网络几乎遍及全国;钢研纳克作为主要起草单位,已参与制定了8个与试验机相关的标准;十一五期间,钢研纳克取得14项科研成果,获得了14个奖项与11项专利,制修订4项国际标准;此外,钢研纳克在永丰还建立了产业基地,设有仪器化冲击试验机生产车间、光谱调试车间、气体调试车间等。   目前,钢研纳克公司推出基于光学引伸计的新型微机控制材料试验机,该产品采用CCD动态摄像方式,实现了非接触式实时测量微小形变与全程测量,同时还可测量轴向和横向变形、自动计算材料延伸率等。这台新型微机控制材料试验机完全符合最新拉伸标准GB228-2010,解决了细丝、薄带、脆性等样品试验中形变测量不准确的技术难题。   接下来,于兆斌先生着重介绍了动态断裂仪器化冲击技术在材料测试及新品种开发中的应用。最后指出,要发展我国重要工程的相关规范,包括动态断裂分析在内的安全评估至关重要。因为普通冲击试验不能反映断裂过程,不能满足工程需要,而仪器化冲击试验机则能够完整地反映试样的断裂过程,如钢研纳克推出的NI系列冲击试验机产品便是可供用户选择的产品之一。   会议现场
  • 国家科技部重大科仪专项电液伺服动态疲劳试验机完美亮相第十七届全国疲劳与断裂学术会议
    三十四年,对于一个行业而言可能意味着时代的更迭,然而对于连续举办了十七届的全国疲劳与断裂学术会议而言,则代表着它在学术会议上已攀上了新的巅峰。 2014年8月22-24日,在“山水甲天下”的中国桂林,由中国腐蚀与防护学会、中国机械工程学会、中国材料研究学会、中国航空学会、中国金属学会、中国力学学会联合主办的“第十七届全国疲劳与断裂学术会议 ”隆重举行 ,六百余人如数参加会议,其影响力早已声名远播,成为屹立业界之巅、众人瞩目的一场盛会。三思纵横展会情况(1)三思纵横展会情况(2) 深圳三思纵横科技股份有限公司无可争辩地成为此次会议的最佳赞助商,在主会厅背景板、报到处背景板、论文光盘封面、论文集内页、《腐蚀防护之友》专刊等均能看到三思纵横LOGO展示和广告宣传。不仅如此,三思纵横还在会议前厅处设立了客户洽谈区和设备展示区两个展台,携国家科技部重大科仪专项电液伺服动态疲劳试验机成功助力此次会议,成为动态疲劳行业领域的唯一展出商,其企业发展态势和动态产品的推陈出新获得与会嘉宾们的广泛关注!客户参观电液伺服动态疲劳试验机 三思纵横的动态疲劳试验机的现场展出获得了大量专家学者的关注。来自全国各地一线院校力学专业和质检机构的参会代表们就设备的稳定性和可靠性与技术研发人员进行了充分的交流。他们看到,三思纵横电液伺服动态疲劳系统的关键单元和元件均采用当今国际领先技术制造,整个试验系统的整体性能与国际水平相当,可广泛应用于各类材料、结构件和部件的动态性能、疲劳以及静态力学性能试验。 部分专家表示,疲劳领域依然具有国内很多试验机企业难以攻克的技术难关,三思纵横能大力亮相此次会议,充分说明了对设备的专业水平具备十足的信心,希望三思纵横以技术实力填补动态疲劳产品的产品供应空缺,真正给广大试验机用户带去福音! 总工程师钱正国和621所副总工程师陶春虎留影 董事长黄志方和中航工业主任何玉怀留影 在董事长黄志方和总工程师钱正国的陪同下,中航工业首席专家、北京621所副总工程师陶春虎和中国航空工业集团北京航空材料研究院的著名教授何玉怀亲临动态疲劳试验机展台现场,亲临动态疲劳试验机展台现场,两位专家通过对金属疲劳试验数据展示的简单分析,对设备性能给予了高度评价。作为此次会议的分会场报告主席,两位专家表示:三思纵横通过此次会议的设备展示,让全国的疲劳学者专家们都了解了国家科技部重大科仪专项动态疲劳试验机的整体情况,并相信在三思纵横的努力研发下定能获得成功。此外,北京航空材料研究院也表示大力支持三思纵横的技术研究和产品推广,希望能够携手共谋未来发展!董事长黄志方作晚宴致辞 黄志方董事长在23号的主宴会厅作了简短扼要的晚宴致辞。他并没有在5分钟的讲话时间里高谈阔论,仅以简短的1分钟讲话,获得了全场人的掌声和认同。他说:三思纵横此次携电液伺服动态疲劳试验机亮相此次会议,承担着国家科技部重大专项的荣耀,也肩负着科技部部长万钢的殷切期待,更有着北京航空材料研究院的全力支持。在今后,我们将一如既往地为中国试验机用户提供更为优质的产品和服务! 简短的几句话,透露着一个企业家的信心和实力。优秀的产品和企业不仅需要市场的推广和带动,更需要市场的检阅和用户的口碑。在此次会议上,我们相信,电液伺服动态疲劳试验机的亮相足以证明一切,这是三思人不懈前行的信心,更是我们坚定“以质取胜”的信念!大会留影 两天的会议获得圆满成功,三思纵横也在此次会议中对品牌和产品作了一次完美的展现。作为中国领先的材料试验设备和材料试验解决方案的服务商,每一次技术革新都代表着三思纵横在试验机领域的进步和发展,每一次客户的认可和信任都带给三思纵横不断前进和追逐的动力。三思纵横也将不断努力,为用户提供更稳定、更精准、更可靠的试验机产品和服务,打造世界级材料力学性能测试领域的领导品牌! 三思纵横,从未止步!
  • 深圳三思纵横|电液伺服动态疲劳试验机:双立柱落地式SUNS 890
    三思纵横电液伺服动态疲劳试验机(双立柱落地式)SUNS 890系列是高度集成化的动静力学测试系统,既能进行高周疲劳、低周疲劳、高低周疲劳,断裂力学:疲劳裂纹扩展、断裂韧性、裂纹扩展、KIc、JIc,零部件强度和耐久性、热机械疲劳。也能进行静态的恒速率、恒应变、恒应力控制下的拉伸、压缩、弯曲等试验,是测试医疗设备、减震器等各种零部件以及测试塑料、弹性体、铝、复合材料、钢、超级合金等各种材料的理想解决方案。广泛用于航空航天、船舰、军工、高等教育、原子能等领域。三思纵横电液伺服动态疲劳试验机(双立柱落地式)SUNS 890系列可根据用户的具体试验要求来进行配置,选择主机载荷框架(集成安装了作动缸和伺服阀)、液压油源、DOLI控制系统(DOLI控制系统系统包含三部分:在计算机上的DOLI系统软件,数字控制器和手动控制面板)、夹具和附件。通过这些功能组件的协同工作即可实现试验的高度自动控制,满足试验需求的性能优化。本文深圳三思纵横小编就来给大家讲讲这款产品的优势吧!一、三思纵横电液伺服动态疲劳试验机(双立柱落地式)1、产品型号:SUNS 890系列;2、产品主要用途:动态疲劳试验机的应用涵盖了航空、航天、核能、车辆、舰船、质检和科学院所等各种领域,是所有与材料疲劳性能评价相关领域的常用设备。二、三思纵横电液伺服动态疲劳试验机(双立柱落地式)的技术参数1、最大试验力:10-500KN(可选);2、试验力示值精度:0.5%;3、有效测量范围:1-100%;4、作动器最大振幅:±75 mm(或根据用户需求定制),示值精度2%起±1%FS;5、变形测量精度:示值精度2%起,±0.5%;6、频率范围:10~100HZ;7、主要试验波形:正弦波、三角波、方波、锯齿波、随机波、静态加载斜波(主要由控制器支持);8、疲劳次数:1×109次(任意设置);9、恒压伺服泵站规格:21Mpa;10、可选试验夹具(可根据客户要求选配或定制夹具):拉拉疲劳液压夹具、压压疲劳压缩夹具、KIC试验夹具、JIC试验夹具;11、可选试验附件:动态引伸计、COD规、高低温箱、高温炉等。三、三思纵横电液伺服动态疲劳试验机(双立柱落地式)的应用场景通常用于材料和结构的疲劳性能测试。这种设备可以模拟实际工作条件下的载荷,对材料或零部件进行长期疲劳试验,以评估其在不断加载和卸载循环中的耐久性能。应用场景包括但不限于:1、材料研发:用于评估新材料的疲劳寿命和性能表现,帮助研发人员选择最适合特定应用的材料;2、零部件测试:对汽车、航空航天、机械设备等领域的零部件进行疲劳试验,以验证其设计寿命和安全性能;3、结构健康监测:用于模拟结构在实际使用中受到的动态载荷,评估其在疲劳加载下的表现,对工程结构的健康状态进行监测;4、质量控制:在生产过程中对材料和产品进行疲劳寿命测试,确保产品质量符合相关标准和规定。四、三思纵横电液伺服动态疲劳试验机(双立柱落地式)的适用标准1、ISO 1099(金属材料疲劳试验的轴向力控制的方法);2、ISO 12106(金属材料疲劳试验的轴向应变控制法);3、ASTM e606(应变控制的疲劳试验的标准实施规程);4、HB 7705金属材料疲劳小裂纹扩展速率试验方法;5、ISO 12135金属材料-断裂韧度统一测定试验;6、ASTM E399金属材料线弹性平面应变断裂韧度Kic标准试验方法;7、ASTM 1290测量裂缝尖端开口位移(CTOD)裂缝韧性的试验方法;8、ASTME1820断裂韧性测量的标准试验方法。综上所述,三思纵横电液伺服动态疲劳试验机(双立柱落地式)SUNS 890系列结构设计先进合理,关键部件均为国际先进的主流品牌,试验过程中噪音小,不易漏油,设备稳定性及可靠性高,售后服务有保障,可以满足要求较高的检测及科研需求,是值得用户信赖的选择。
  • 146万!天津大学环境学院激光粒子动态分析仪等采购项目
    项目编号:TDZC2022J0267项目名称:天津大学环境学院激光粒子动态分析仪、激光粒子处理器采购方式:竞争性磋商预算金额:146.5000000 万元(人民币)采购需求:激光粒子动态分析仪、激光粒子处理器:1套。本项目接受进口产品参与磋商,具体要求详见本项目用户需求书。本项目不接受联合体磋商并不得分包转包。合同履行期限:合同签订后180天内交货及完成安装调试并具备验收条件等。(特殊情况以合同为准)。本项目( 不接受 )联合体投标。
  • 《光栅尺静动态特性研究及动态检测装置研制》通过验收
    近日,广东省计量院承担的原省质监局科技计划项目《光栅尺静动态特性研究及动态检测装置研制》顺利通过省市场监督管理局组织的专家组验收。   《光栅尺静动态特性研究及动态检测装置研制》项目由广东省计量院计量科研部牵头完成。该项目针对现有光栅尺检测装置静态校准检测方法不能满足光栅尺运行速度、加速度等实际工况运行需求,研制了一套基于精密气浮导轨的光栅尺静动态误差检测装置,可模拟光栅尺不同的运行速度、加速度工况,研究了几何参数、运行速度、加速度等因素对光栅尺测量精度的影响。项目获授权发明专利、实用新型专利各1件,发表科技论文2篇。项目产品经第三方机构校准,主要技术指标满足任务书(合同)要求。   目前,该项目成果已应用于广东光栅数显技术有限公司、苏州必力信光电有限公司等光栅设备生产、经销企业,使用效果良好,获得较好评价。
  • 注意看!生物制剂研究人员必备宝典-DLS动态光散射技术指南
    什么是DLS动态光散射技术?NanoTemper Technology动态光散射(DLS)是一种强大的技术,是一种测量颗粒大小、低聚化和分散性,以及环境变化(如药物偶联物的添加或储存缓冲液的变化)对它们的影响的方法。可提供有关生物制剂制备物的纯度和聚集状态的信息,并增加对候选物稳定性的更深入了解。提问 DLS技术能提供生物制品的哪些信息1粒径2样品质量3自相互作用无论是早期阶段的目标蛋白分离还是临床前的药物制剂,DLS技术对于生物制品研发流程的每一个阶段都可提供重要价值。DLS技术可轻松提供额外的稳定性参数,并与其他稳定性分析方法同时进行,无需额外的时间或材料要求。将DLS信息添加到稳定性评估中会发现其他技术遗漏的细节,因此,可以在早期开发阶段缩小最终候选生物制剂的挑选范围。在实验工作中,生物制品研发人员通常需要面对的是非常复杂的分子,而在漫长的研发流程中样品稳定性、质量和功能都十分重要。通过DLS技术,使研究人员能够仅从这一种方法中就获取以上所有信息,它可以分析候选药物在应对一系列环境变化时的表现,而了解这些药物在应对变化时的表现对于生物制品的工作流程至关重要。这其中包括了从确定哪些药物值得开发,到提高药物质量以实现规模化生产和交付。无论是异构体筛选、制剂、放大生产还是储存及有效性分析阶段,因此,DLS技术在生物制品研发流程的每个阶段都是极具价值的工具。https://www.instrument.com.cn/netshow/SH104108/down_1145387.htm阅读DLS技术指南电子书,了解其工作原理,以及它如何帮助您优化候选药物的筛选过程。我们介绍了在整个生物制药流程中,DLS技术如何帮助您改善每一个决策,同时也提供了一些设计DLS实验的实用技巧。在本书中,您将了解到:1什么是生物制品,它们为什么如此重要?2DLS技术如何提供您的样品相关的数据信息,这些数据的含义是什么?3设计您自己的DLS实验时的一些小提示和注意事项愿景 关于NanoTemperNanoTemper公司的使命是为科研人员创造强大的生物物理学工具,以解决表征中最具挑战性的难题。我们非常兴奋能够同致力于改变世界的药物研发或与基础研究科学家合作,为实现公司愿景-创造一个任何疾病都可以被治疗的世界而不断前行。如果您在亲和力筛选、分子相作、蛋白稳定性或蛋白生产等方面遇到挑战,欢迎随时联系我们。
  • 自然通讯成果|非变性纳米蛋白质组学捕获内源性心肌肌钙蛋白复合物的结构和动态性信息
    大家好,本周为大家分享一篇发表在Nat. Commun.上的文章:Structure and dynamics of endogenous cardiac troponin complex in human heart tissue captured by native nanoproteomics ,文章的通讯作者是威斯康星大学麦迪逊分校的葛瑛教授。  蛋白质大多都是通过组装成蛋白复合物来执行特定的生物功能,因而表征内源性蛋白复合物的结构和动力学将有助于生命过程的理解。蛋白复合物在其组装、翻译后修饰(Post-translational modifications,PTMs)和非共价结合等方面是高度动态的,在native状态下通常以低丰度存在,这给研究其结构和动态性的传统结构生物学技术(如X-ray和NMR)带来了巨大的挑战。非变性Top-down质谱(nTDMS)结合了非变性质谱和Top-down蛋白组学的优势,目前已发展成蛋白复合物结构表征的有力工具,可以保留蛋白质亚基-配体间的非共价作用和PTMs等重要信息。然而,由于内源性蛋白复合物自身的低丰度特性,导致对其的分离纯化和检测非常困难,所以nTDMS目前仅限用于过表达的重组或高丰度蛋白质的表征。在本研究中,作者开发了一种非变性纳米蛋白质组学(Native nanoproteomics)技术平台,通过使用表面功能化的超顺磁性纳米颗粒(Nanoparticles,NPs)直接富集组织中的蛋白复合物,然后再利用高分辨质谱表征其结构和动态性。这里选用心肌肌钙蛋白(Cardiac troponin,cTn)异源三聚体复合物(~77 kDa)作为研究对象。cTn三聚体复合物是调节横纹肌肌动蛋白收缩的Ca2+离子调节蛋白,由TnC、cTnI和cTnT这3个亚基组成。其中,TnC是Ca2+结合亚基,cTnI是抑制肌动蛋白-肌球蛋白相互作用的亚基,而cTnT细丝锚定亚基。TnC与Ca2+的结合,以及cTnI 亚基的磷酸化,会共同引起细丝上的分子级联事件,诱导心肌收缩所必需的肌动蛋白-肌球蛋白交叉桥的形成。传统结构生物学技术不能有效捕获cTn复合物高度动态的构象变化,并且先前研究用的cTn复合物是由原核细胞表达的,缺乏PTMs的信息。因此,作者开发了native纳米蛋白组学的方法,以实现对人内源性cTn复合物结构和动力学的全面表征。作者首先使用肽功能化的超顺磁性氧化铁NPs富集了人心脏的内源性cTn复合物,同时优化了非变性蛋白提取缓冲液(高离子强度LiCl溶液,生理pH)。富集到的cTn复合物中的3种亚基的含量比例为1:1:1,真实反应了肌节cTn异源三聚体复合物的组成。作者也发现含有750 mM L-Arg,750 mM咪唑和50 mM L-Glu(pH 7.5)的溶液对蛋白复合物的洗脱效果最好,并且不会破坏亚基间的相互作用。该富集方法具有很好的重现性,proteoforms信息得到很好保留,且可以直接用于化学计量分析。总的实验流程如图1所示,洗脱后的cTn复合物经体积排阻色谱(Sze-exclusion chromatography,SEC)除盐和交换至醋酸铵溶液中,随后对cTn复合物进行多种nTDMS分析:1)在线SEC监测复合物 2)超高分辨傅里叶变换离子回旋共振质谱(FTICR-MS)表征复合物的化学计量比和proteoforms 3)捕获离子淌度质谱(TIMS-MS)解析调控复合物构象变化中的非共价作用的结构动态性。  图1. 用于表征人心脏中内源性cTn复合物的native纳米蛋白组学平台。  为了全面表征内源性cTn复合物,作者使用FTICR-MS进行proteoforms测序和复合物表征。图2展示了native状态下检测丰度最高的cTn复合物的电荷态(19+),其中包含了4种独特的proteoforms,这些复合物主要带有单磷酸化的cTnT、单磷酸化和双磷酸化的cTnI,以及结合了3个Ca2+的TnC。这些结果表明人cTn复合物在肌节中以结构多样化的分子组成存在,具有高度异质的共价和非共价修饰,可产生一系列不同的完整复合物。  图2. FTICR-MS分析展示的cTn复合物状态。红色方框中是最高丰度电荷态(19+)的放大谱图,理论同位素分布(红色圆圈)可以与谱图很好叠加,说明结果具有高质量精度(质量偏差在2 ppm 以内)。  作者接着对cTn复合物进行complex-up分析,以研究复合物的化学计量比及其组成。图3a~3b分别显示的是完整cTn三聚体复合物,以及经CAD碎裂后的蛋白亚基谱图。但这里没有检测到cTnI单体,可能是因为cTnI和TnC在native状态下的亲和力很强,且cTnI单体带的电荷不多,导致其在高m/z区域出峰,所以不易被检测到.随后,作者又对解离出的亚基进行complex-down分析。图3c展示了检测到的cTnT的多种proteoforms:未磷酸化的 cTnT、单磷酸化的cTnT(p cTnT)和 C 端 Lys 截断的磷酸化cTnT(pcTnT [aa 1-286]),CAD碎裂谱图也发现cTnT的C端较N端更易暴露在外界溶剂中。图3e则是cTn(I-C)二聚体的谱图,共检测到6种具有不同数量Ca2+结合和磷酸化的proteoforms。二级谱图可将cTnI的两个磷酸化位点准确定位在Ser22和Ser23,同时发现cTnI序列两端都较内部区域更易暴露于溶剂中。但还无法通过nTDMS准确推断Ca2+结合和磷酸化是如何影响cTn复合物的稳定性。作者在此也没有优化FTICR-MS在非常高m/z范围的离子检测,所以也会遗漏带少量电荷的cTn复合物信息。  图3.nTDMS表征人心脏来源的cTn复合物。(a~b)完整cTn复合物和经CAD碎裂后的亚基谱图 (c~d)cTnT单体及其代表性的CAD碎裂谱图 (e~f)cTn(I-C)二聚体及其代表性的CAD碎裂谱图。  人TnC蛋白含有3个钙结合EF-hand基序(结构域 II~IV)。结构域 II与Ca2+结合的亲和力较低,是触发心肌收缩的调控域。结构域 III 和 IV则与Ca2+具有强的亲和力,在心肌舒张和收缩时均始终保持与Ca2+充分结合,但结构域 II只有在收缩时才被Ca2+占据。这里观察到了TnC分别与0、1、2和3个Ca2+结合的情况,通过CAD碎裂也进一步定位了TnC与Ca2+结合的具体氨基酸序列(图4)。研究发现结构域 II的骨架最容易发生碎裂,而结构域 III的骨架最难碎裂。目前结构域 II~IV的序列在UniprotKb中分别对应65DEDGSGTVDFDE76、105DKNADGYIDLDE116和141DKNNDGRIDY152。这里分别将与1、2和3个Ca2+结合的TnC隔离出来进行CAD碎裂(m/z分别为2312、2316和2321),可以更准确地将结构域 III、II和IV的序列分别定位到113DLD115、141DKNND145和73DFDE76(图4c),表明非变性纳米蛋白组学方法在定位非共价金属结合方面具有高分辨能力。  图4.nTDMS定位 TnC与Ca2+结合的结构域。(a)FTICR-MS隔离与不同数量Ca2+结合的TnC单体 (b~c)与两个Ca2+结合的TnC的CAD碎裂谱图,蓝色、红色和黄色方框分别对应结构域 II 、III和IV。  Ca2+与TnC的结合会对cTn复合物的功能和构象有着很大影响。cTn复合物的核心区维持着构象的稳定,但当Ca2+与TnC发生结合时,其柔性区会经历广泛的构象变化,复合物结构会从“closed”状态转变成“opened”状态,这会促进肌动蛋白和肌球蛋白间的相互作用,最终导致心肌收缩。然而,传统结构生物学技术很难捕获cTn复合物与Ca2+结合时的构象变化。因此,作者使用离子淌度质谱来分析cTn复合物的构象变化。TnC亚基和与Ca2+结合的cTn(I-C)二聚体的淌度分离谱图如图5所示。与0~3个Ca2+结合的TnC的碰撞截面(Collision Cross-Section,CCS)值分别为1853、1849、1829和1844 Å2(图5a~5b),TnC构象比IMPACT预测的更为紧凑,但cTn(I-C)二聚体的CCS值与预测的非常接近(图5c~5d)。作者推测TnC与两个Ca2+结合会形成更致密的构象,是因为在静息舒张时Ca2+与结构域 III 和 IV充分结合。当第三个 Ca2+与结构域II结合时,TnC转变为“opened”构象,使其N端与cTnI的C端相结合,进而引发心肌收缩(图5e)。cTn(I-C)二聚体与Ca2+结合时的构象变化也是如此(图5f)。  图5.TnC单体(a~b)和与Ca2+结合的cTn(I-C)二聚体(c~d)的离子淌度分离谱图 (e~f)TnC和cTn(I-C)二聚体与Ca2+结合时的构象变化。  最后,作者通过添加EGTA来剥离cTn复合物中的Ca2+,以进一步研究Ca2+在维持复合物结构稳定性上的作用。图6b~6c是没有EGTA孵育时的cTn复合物的TIMS-MS谱图。cTn复合物的CCS值与理论预测值非常符合。随着EGTA孵育浓度的增加(25、50和100mM),Ca2+逐渐被螯合,cTn复合物的结构也越来越舒展,体现在平均电荷态逐渐增加,以及逐渐在较低m/z范围内出峰,这表明cTn复合物构象的稳定性丢失与EGTA浓度的增加相关(图6d~6f)。虽然100mM EGTA孵育也不敢保证Ca2+的完全剥离,并且cTnI的存在又会增强TnC与Ca2+的结合,但TIMS-MS为我们研究cTn复合物与Ca2+结合时的构象变化提供了一种切实可行的分析手段。  图6.cTn复合物与EGTA孵育时的构象变化。(a)cTn复合物的构象随EGTA孵育浓度的增加发生改变 (b~c)cTn复合物的TIMS-MS谱图 (d~f)cTn复合物与不同浓度EGTA(25、50和100mM)孵育的谱图和CCS分析。  总的来说,本研究开发了一种可用于内源性蛋白复合物富集和结构表征的非变性纳米蛋白组学方法,以获取其组装、proteoforms异质性和动态非共价结合等方面的生物信息。本文采用的功能化NPs可被灵活设计成选择性结合特定的靶蛋白,在富集和洗脱过程中可以很好保持其近似生理条件下的存在状态。更为重要的是,功能化NPs与nTDMS的整合可以作为一种强有力的结构生物学工具,可以作为传统技术的补充,用于内源性蛋白复合物的表征。  撰稿:陈昌明 编辑:李惠琳文章引用:Structure and dynamics of endogenous cardiac troponin complex in human heart tissue captured by native nanoproteomics  参考文献  Chapman EA,Roberts DS, Tiambeng TN, et al. Structure and dynamics of endogenous cardiac troponin complex in human heart tissue captured by native nanoproteomics. Nat Commun. 2023 14(1):8400. Published 2023 Dec 18. doi:10.1038/s41467-023-43321-z
  • 免费网络课程 | 6月23日卫生级动态称重在先进工业包装系统中的应用
    培训内容动态称重技术在现代食品、药品及其他包装系统中被广泛应用。随着市场和监管的日益严苛,卫生级的称重产品也越来越受重视。本次讲解将介绍HBM卫生级称重传感器、变送器和全新的过程化控制软件界面,通过实例的演示让听众直观地获得对全新HBM产品的印象。培训时间6月23日(周三)下午14:00-15:00课程对象从事食品药品包装机械的研发技术人员,其他包装类设备生产厂家的技术人员等。费用:免费备注培训将通过网络授课的方式进行,请自备具备上网条件的电脑或手机。报名方式:关注HBM测试与测量微信公众号,点击会员中心-会议中心,进入会员中心-点击课程,即刻报名。* 注册报名后,您可以点击HBM微信公众号菜单栏【会员中心】-【注册/登陆】,进入个人中心,找到您报名的所有课程。
  • 动态粘度和运动粘度之间的区别
    液体的粘度是影响液体流动性能的重要物理性能。高粘度液体更容易因应力而变形,并且不易流动。低粘度液体更易于流动,抗应力性较差。测量粘度的两种主要方法是动态粘度和运动粘度。这些指标相互关联,但用途不同。 粘度是指液体的内部摩擦,代表分子之间的电阻大小。 运动粘度是在相同温度下流体的动态粘度与流体的密度ρ之比。它是在重力作用下流体流动阻力的量度。运动粘度的单位为(m ^ 2)/ s。运动粘度ν=μ/ρ,μ表示液体的动态粘度,ρ表示液体的密度。 动态粘度是指使用单位距离的液体层的单位面积来产生单位流量所需的力。在单位制中,动态粘度的单位是pa.s。用于计算液体的动态粘度的公式为:μ=τ/(du / dy),其中τ是液体流每单位面积的内部摩擦阻力,而du / dy是速度梯度。 运动粘度和动态粘度是评价润滑油粘度的两个指标。动态粘度越小,低温流动性越好。相反,润滑油的低温流动性越差。运动粘度越低,润滑油粘度越低,运动粘度越大,润滑油粘度越高。运动粘度测定仪适应标准:GB/T265-88应用领域:1、电力、石油、化工、环保及科研部门 2、需测定石油产品运动特性的油品。3、对油品的运动粘度粘数常规使用注意事项和特性粘数的测试。 运动粘度测定仪适用于测定液体石油产品的运动粘度。运动粘度表示液体在重力作用下流动时内摩擦力的量度,其值为相同温度下的动力粘度与其密度之比。是对油品等级及质量鉴别的重要理化性能指标之一。在实际应用中,选择合适粘度的润滑油品,可以保证机械设备正常、可靠地工作。仪器特点1、电脑控温、计时、恒温、水浴等部分组成。 恒温浴为小缸体圆缸、双层、浴内温度分布均匀,控温效果优良。2、液晶屏幕中文显示,人机对话界面,对预置温度、试验时间等参数,菜单提示式输入,执行元件采用 SSR,其特点无触点,无动作噪声,无火花,耐振动,长寿命。3、加热器及导流筒等浴内部件采用不锈钢制作,耐腐耐用。4、采用有光源,光线亮度好,节能寿命长。5、自动计算毛细管常数与测试时间平均值的乘积;控温精度高,准确度好。6、可以计时试样运动时间,自动计算运动粘度的最终结果。技术参数测量范围:0~10000mm2/s控温设置:室温~99.9℃任意设置装卡毛细管数量:4 支恒温精度:±0.1℃试样量:10ml 加热器功率:800W工作电源:AC220V±10% 50Hz环境温度:室温~35℃重 量: 25k
  • 【激光成像】AM:从蓝色至近红外的碳点激光用于彩色无散斑激光成像与动态全息显示
    背景介绍随着可溶液加工激光增益材料的不断发展与改进,该类型的激光器在生物医学治疗、柔性可穿戴设备、通信及军事设备等领域的应用也在不断突破。然而,增益材料的毒性、成本和稳定性问题日益显著,这些问题是增益材料在微/纳激光领域可持续发展的主要障碍。因此,寻找低毒、低成本、高稳定性的激光材料成为该领域内的重要的任务。研究出发点碳点(CDs)作为一种环境友好、稳定性优良、制备成本低及荧光性能优异的碳基纳米材料,近年来引起了人们广泛的研究兴趣。基于CDs激光增益介质的研究不断被报道,并且逐渐走向实际应用。虽然这些早期的研究促进了CDs激光的发展,并证明了CDs是一种优异的激光增益介质。然而,跨度广的全彩色激光,尤其是近红外激光器,一直难以实现。考虑到近红外激光器在空间光通信、激光雷达、夜视,特别是临床成像和治疗等方面的广阔应用前景,开发高性能的近红外CDs激光具有重要意义。此外,CDs激光缺乏系统性的研究,这些研究可以指导CD激光材料的开发,并有助于推动其实际应用的发展。全文速览在此背景下,郑州大学卢思宇课题组合成了具有明亮蓝色、绿色、黄色、红色、深红色和近红外荧光(分别标记为B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs)的全色CDs(FC-CDs)的制备,其PL峰值波长范围为431至714 nm。CDs的低含量sp3杂化碳、高PLQY和短荧光寿命是影响其激光性能的重要因素。结果表明,这些FC-CDs的半高宽明显较窄,在44 ~ 76 nm之间;同时,辐射跃迁速率KR为0.54 ~ 1.74 × 108 s−1,与普通有机激光材料相当,表明FC-CDs具有良好的增益潜力。激光泵浦实验证实了这一点,成功实现了从467.3到705.1 nm宽范围(238 nm)可调的CDs激光出射,覆盖了国家电视标准委员会(NTSC)色域面积的140%。结果表明,CDs具有较高的Q因子、可观的增益系数和较好的稳定性。最后,利用这些FC-CDs激光作为光源,实现了高质量的彩色无散斑激光成像和动态全息显示。此项工作不仅扩大了CDs激光的发射范围,而且为实现多色激光显示和成像提供了有益的参考,是推动CDs激光发展和实际应用的重要一步。文章以“Carbon Dots with Blue-to-Near-Infrared Lasing for Colorful Speckle-Free Laser Imaging and Dynamical Holographic Display”为题发表在Advanced Materials上,第一作者为张永强博士。图文解析图1a-f为其透射电子显微镜照片,显示出B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs为球形或准球形颗粒,平均粒径分别为3.09、3.24、3.76、3.25、4.25和5.98 nm。高分辨率透射电镜(HRTEM)显示,所有CDs的面内晶格间距为0.21 nm,这可归因于石墨烯的(100)面。值得注意的是,NIR-CDs是由单分散CD聚集而成的。B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的X射线衍射(XRD)峰分别位于20°、22°、22.8°、27°、23°和23.5°。这些值近似于石墨(002)平面25°和层间距(0.34 nm)处的衍射峰。通常,对于脂肪族前驱体,制备的CDs的XRD峰在21°左右,晶格间距比0.34 nm更宽这是因为脂肪族前体在炭化过程中更容易将含氧和含氮杂原子基团引入共轭面,从而扩大了面内间距。R-CDs在27°处有一个清晰的尖锐衍射峰,表明两步溶剂热处理产生了良好的结晶度。此外,NIR-CDs在31.7°和45.5°处有两个尖峰,这两个峰属于NIR-CDs中残留的离子液体(IL),IL具有聚集单分散CDs的功能,有助于形成聚集的颗粒。傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)进一步收集了的结构成分信息(图1h和i)。光谱在3425和3230 cm−1附近显示出广泛的吸收特征,证实了-OH和-NH2的存在。1710和1630 cm−1附近的强信号与C=O拉伸振动有关,1570、1386、1215和1145 cm−1处的峰是由C=C、C-N和C-O- C拉伸振动引起的。这些结果表明,所有的FC-CDs都是由sp2/sp3杂化芳香结构形成的,这些杂化芳香结构在表面被含有杂原子(O和N)的极性基团修饰,这些基团使CDs在极性溶剂中具有良好的溶解性。图1中完整的XPS扫描显示,FC-CDs主要含有碳、氮和氧。高分辨率C 1s在C=C、C-N/C-O/(C-S)和C=O分别为284.6、286.6和288.3 eV处呈现出三个峰。N 1s分别在399.0、399.9和401.4 eV处显示吡啶、吡啶和石墨的N掺杂。O 1s光谱中C=O和C-O基团的峰分别位于531.4 eV和533 eV左右。这些XPS结果与FTIR分析一致。图1 形貌与化学成分表征。(a)B-CDs,(b)G-CDs,(c)Y-CDs, (d)R-CDs,(e)DR-CDs和(f)NIR-CDs;右上方的插图是相应的粒径分布,右下方的插图是单个颗粒的高分辨率TEM(HRTEM)图像。(g)XRD图谱,(h)FTIR谱,(i)XPS全扫描谱图。图2a-f显示了紫外照射下FC-CDs的亮蓝色、绿色、黄色、红色、深红色和近红外荧光,其发射峰分别位于431、526、572、605、665和714 nm。这些PL谱都表现出独立于激发波长的行为。它们的PLQY分别为64.9%、91.2%、41.2%、51.6%、28.3%和37.9%。此外,对于B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs,其PL光谱的半高全宽(FWHM)分别为0.46、0.19、0.18、0.24、0.20和0.14 eV。XPS分析sp3杂化碳含量分别为17.09%、9.01%、11.78%、16.78%、6.26%和11.41%。Yan等人的第一性原理计算表明,C-N、C-O和C-S基团可以导致局域化电子态,并在n -π*间隙中产生许多新的能级。这些sp3杂化碳相关激发能级的密度与C-N、C-O和C-S基团的含量呈正相关,决定了PL光谱的FWHMs。因此,CDs的PL光谱FWHMs可以通过sp3杂化碳的含量来控制。这些CDs的紫外-可见吸收峰存在于高、低两个不同的能带区,分别归因于芳香sp2结构域C=C的π -π*跃迁和CDs表面与C=O相关的不同表面态的n -π*跃迁。图2g显示了FC-CDs溶液的PL光谱的CIE坐标覆盖了NTSC标准色域面积的97.2%,意味着FC-CDs在显示中的具有良好的应用潜力。FC-CDs的时间分辨PL(TRPL)谱显示其荧光寿命分别为12.09、5.24、3.60、3.87、2.43和2.44 ns(图2h)。这些高PLQY、窄发射带和快速的PL衰减寿命的特性都有利于受激辐射(SE)。为了评估CDs的激光增益能力,结合公式(1)和(2)计算了ASE的相关参数。ASE阈值与爱因斯坦系数B和SE截面(σem)成反比:KR = φ / τ, (1) σem(λ)= λ4g(λ)/ 8πn2cτ, (2)B ∝ (c3/8πhν03)KR, (3)其中φ为PLQY,τ为平均荧光寿命,λ为发射波长,n为折射率,c为光速,g(λ)是自发辐射的线性函数,表示为g(λ)dλ = φ,h 为普朗克常数,ν0 为光频率,c 为光速。因此,KR值分别为0.54、1.74、1.14、1.33、1.16和1.55 × 108 s−1(图2i)。计算得到的最大的σem分别为1.46、16.59、13.38、15.45、19.51和38.66 × 10−17 cm2(图2i)。这些值与普通有机激光材料的值相似,表明这些CDs具有优良的增益潜力。基于上述分析,我们认为实现CDs激光有两个重要的因素。首先,需要集中的激发态能级来收集大量的具有相同能量的激发态电子,这有利于粒子数反转。其次,处于激发态能级的电子需要在高KR下跃迁回基态,这样统一的快速过程有利于光放大。这两个因素都可以通过精准的合成来控制:通过减少CDs中sp3杂化碳的含量来获得集中的激发能级,通过增加CDs的PLQY同时降低荧光寿命来获得高KR。 图2 光学表征。(a)B-CDs、(b)G-CDs、(c)Y-CDs、(d)R-CDs、(e)DR-CDs和(f)NIR-CDs的吸收光谱和PL发射光谱,插图为对应CDs溶液在紫外灯照射下的光学图片,,线标签表示激发波长,单位为nm。(g)CDs发光光谱的CIE色坐标。(h)FC-CDs的TRPL光谱和(i)KR和最大σem。采用激光泵浦对FC-CDs的激光性能进行了表征。图3a、c、e、g、i和k分别为不同泵浦强度下的B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的发射光谱,显示出在467.3、533.5、577.4、616.3、653.5和705.1 nm处的出现尖峰;输出在可见光区域的跨度为238 nm(图3m)。在垂直于泵浦激光器和比色皿端面的方向上观察到这些FC-CDs产生的远场激光光斑(图4a、c、e、g、i和k的插图),表明激光发射的产生。随着泵浦影响的增加,FWHMs从大约60 nm急剧下降到~5 nm。这些发射光谱表明,泵浦强度的增加使发射强度急剧增加,峰的FWHM迅速窄化。为了明确发射峰强度、FWHMs和泵浦强度之间的量化关系,图3b、d、f、h、j和l绘制了相关曲线。它们都表现出明显的拐点:对于拐点以下的泵浦强度,FWHMs和输出发射强度的强度变化不明显,但在拐点以上增加泵浦能量,FWHMs急剧窄化,发射峰值强度急剧增加,其斜率与拐点以下大不相同。拐点表示激光的阈值,B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的激光阈值分别为319.84、35.89、53.31、11.10、43.90和17.88 mJ cm−2。考虑到这种激光泵浦中无反光镜体系,这些阈值也是合理的。为了评估FC-CDs的激光阈值水平,我们还使用相同的激光泵浦设置测量了罗丹明6G (Rh6G),其激光阈值为32 mJ cm−2,表明FC-CDs具有与常用激光染料相近的激光阈值。为了评估全色激光器的性能和商业化潜力,研究了其CIE颜色坐标、Q因子、增益系数(g)和稳定性。B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的激光光谱对应的CIE色坐标分别为(0.131,0.047)、(0.178,0.822)、(0.494,0.505)、(0.684,0.315)、(0.728,0.272)和(0.735,0.265)(图3n)。所形成的封闭区域可以达到NTSC色域面积的140%,表明FC-CDs在全彩色激光显示中的巨大潜力。对于B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs,各自的激光线宽分别为0.17、0.13、0.11、0.21、0.21和0.34 nm,相应的Q因子(Q = λp/∆λp,其中λp为激光峰波长,∆λp为激光线宽)分别为2748.8、4103.8、5249.1、2920.5、3111.9和2073.8,这些值目前位于可溶液加工激光器中的前列。这些发现表明,我们的FC-CDs的激光器在激光质量上具有相当大的优势,这有利于其实际应用。光学增益系数量化了荧光材料实现激光发射的能力,可以用变条纹长度法来计算光学增益系数。激光输出强度可表示为:I(l) = (IsA/g) [exp(gl)-1], (4)其中I(l)为从样品边缘监测到的发射强度,IsA描述了与泵浦能量成正比的自发发射,在固定的泵浦能量下为常数,l为泵浦条纹的长度,g为净增益系数。图3p显示了在2倍激光阈值下,输出发射强度与激发条纹长度的关系。B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的增益系数分别为8.9、24.7、17.1、16.0、13.5和21.5 cm−1。这些结果与大多数有机激光材料相当甚至更优,表明这些FC-CDs具有良好的增益特性。稳定性也是评估激光器时的一个重要考虑因素。在2倍激光阈值下连续泵浦FC-CDs激光,G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs连续工作7、7、5.5、5.5和4 h后,激光强度分别为初始激光强度的0.97、0.97、1、0.98、1.03倍(图4)。在CDs的2倍激光阈值下,将相近激光波长的常用商用激光染料与相应的CDs进行了稳定性比较。香豆素153 (541 nm)、Rh6G (568 nm)、RhB (610 nm)、Rh640 (652 nm)和尼罗蓝690 (695 nm)的激光强度分别下降到初始强度的0.60、0.84、0.89、0.76和0.73倍。对于B-CDs,激光阈值大约比其他CDs高一个数量级;在泵浦的0.6 h时,激光输出逐渐降至零。相比之下,香豆素461 (465 nm)的激光在0.2 h的操作时间内消失。与以往的文献相比,本工作对CDs激光进行了更全面的研究,该激光器具有从蓝色覆盖到近红外区域的宽可调激光范围、高增益系数、高Q因子、良好的辐射跃迁率、可观的增益系数和优异的稳定性。这些参数都处于CDs激光的前沿。图3 激光稳定性。(a)B-CDs、(b)G-CDs、(c)Y-CDs、(d)R-CDs、(e)DR-CDs和(f)NIR-CDs与具有相近激光波长的商用有机激光染料在相应CDs的两倍激光阈值下的稳定性对比。FC-CDs的上述独特激光特性使其能够实现比传统热光源更亮的照明和色域更宽的全色激光成像。图4a-f分别为以B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs激光为光源对分辨率板(1951USAF)照射后的光学成像。利用互补金属氧化物半导体(CMOS)相机观测到的图像强度分布均匀、清晰、无散斑。作为对比,我们也使用商用激光器作为成像光源,使用波长为532 nm的连续波激光器和脉冲(7 ns, 10 Hz)激光器分别产生如图4g和h所示的光学图像,具有明显的激光散斑。从根本上说,这是由于图像质量受到激光高相干性带来的斑点的限制。我们进一步展示了这些CDs激光在全息显示中的潜在适用性,全息显示被认为是在3D空间中重建光学图像的最现实的方法之一,并且作为下一代显示平台为用户提供更深入的沉浸式体验而受到广泛关注。图4i为其实验设置。将CDs激光作为照明源照射到空间光调制器(SLM)上,在SLM上加载不同相位掩模(全息图)以重建全息显示所需的图案,在本例中为郑州大学的徽标。徽标分为三个部分,每个部分都可以使用B-CDs、G-CDs、和R-CDs出射的激光进行全息成像(图4j)。第一行是设计好相位掩模并输入SLM的原始图像。第二到第四行分别是CMOS相机在B-CDs、G-CDs、和R-CDs激光照射下拍摄的光学图像。第一列显示了会徽作为一个整体,并被分成几个部分。不同的组件可以简单地组合起来,以获得完整的彩色徽标(图4k)。这些静态图像具有高分辨率和高对比度,为了更接近实际应用,我们制作了一系列不同运动姿势的人物彩色全息图像,以获得彩色动态人物视频。图4l中的第一行给出了这些运动姿势的原始图片。第二至第四行分别显示了在B-CDs、G-CDs、和R-CDs激光照射下每个运动姿势不同部位的独立全息图像。然后将每个运动姿势的不同颜色部分合并到图41的第五行中。然后以每秒3帧的速度将从左到右依次输出,从而实现动态全息显示。虽然成像质量和显示方案还需改进,但我们的实验证明了未来基于CDs的激光成像的可行性。图4 基于FC-CDs激光的无散斑全彩色激光成像和彩色全息显示。(a)B-CDs、(b)G-CDs、(c)Y-CDs、(d)R-CDs、(e)DR-CDs和(f)NIR-CDs激光,以及(g)连续波激光器(532 nm)和(h)脉冲激光器(7 ns, 10 Hz,532 nm)的商用激光源下的1951USAF的光学图像,标尺均为100 μm。(i)以CDs激光为光源的全息显示器实验装置(S1、S2、A、P分别为狭缝1、狭缝2、衰减器和偏振器;L1-L4分别为焦距40、100、100、50 mm的镜头 圆柱透镜的焦距为100 mm)。(j)郑州大学校徽全息静态展示。(k)为(j)中部分成像合并后的彩色徽标。(l)运动角色的全息动态显示。全息显示器中的比例尺都是1 mm。总结与展望综上所述,在无反光镜体系的光泵浦中,FC-CDs实现了467.3、533.5、577.4、616.3、653.5和705.1 nm的波长可调谐随机激光发射,从蓝色到近红外区跨越238 nm,覆盖了NTSC色域的140%。sp3杂化碳的低含量在n -π*隙中引入了集中的激发态能级,从而实现了较窄的FWHMs和粒子数反转,高KR(高PLQY和小寿命)有利于光放大。这两个因素决定了FC-CDs的激光增益特性,在CDs激光阈值的2倍能量泵浦下,FC-CDs也表现出高Q因子、可观的增益系数和比普通商业有机染料更好的稳定性。最后,我们成功地演示了使用这些FC-CDs激光作为光源的彩色无散斑激光成像和高质量的动态全息显示。我们的研究结果扩展了CDs激光的波长范围,提供了对其激光性能的全面评估,并为全彩色激光成像和显示应用打开了大门,从而显著促进了可溶液加工的CDs基激光器的实际应用和发展。文献链接:https://doi.org/10.1002/adma.202302536
  • 华电智控发布动态校准仪动态稀释仪标定稀释仪新品
    产品描述:DC4210-N 动态校准仪是华电智控根据现有气体在线监测行业的需求自主研发的一款高精度气体校准仪,设备通过质量流量计控制输出不同比例的流量,实现配置不同的气体浓度,主要应用于VOCs在线监测设备、环境空气监测设备的标定与气体质量控制。产品特点:? 高精度进口质量流量计控制配比,可靠性高,重复性好,零漂小;? 7寸触摸屏显示,菜单式结构,操作简单方便;? 稀释范围广,可实现1:1000的样气稀释比例;? 支持多种气体同时稀释,响应速度快,满足现场标定需要;? 全过程软件自动控制,实时监控气体流量和气体浓度值;? 具有自动清洗功能,根据程序设定自动执行管路清洗;? 具有开机自检功能,设备异常时发出报警提示;? 所有气路采用惰性化材料,维护量少,维护费用低。技术参数:? 环境温度:5℃~50℃? 精度保证温度:15~35℃? 相对湿度:<85%RH? 电源:AC220V±22V,50Hz? 外形尺寸:标准4U结构? 重量:6Kg? 响应时间:10s? 稀释比例:1:1000(可扩展)? 精度:±1.0%S.P.( ≥30%F.S.)? ±0.3% F.S. ( 创新点:U相结构设计,体积小,重量轻 进口质量流量计,精度高,控制稳定 可进行多气体稀释 可与CEMS设备VOC设备同步联用,实现在线稀释、连续标定 动态校准仪动态稀释仪标定稀释仪
  • 梅特勒托利多2018第二季度全球新品动态
    梅特勒-托利多2018第二季度全球新品动态梅特勒-托利多过程分析事业部推出针对酿酒行业的新产品线过程分析事业部即将面向不断扩大的啤酒生产领域推出新仪器。我们的便携式光学法溶氧仪为在线安装的氧气传感器提供自动校准,能够节省操作人员的时间。这对精酿啤酒厂非常重要,因为这款仪器采用了更先进的技术。 便携式溶氧仪和新型浊度传感器 我们的新型浊度传感器显著提高了性能,色度测量范围更广,可以分析更多品牌的啤酒,并增强了产品监控过滤器穿透和控制质量的能力。凭借拓展产品组合,我们能够提供更全面的解决方案,从而能够更好地服务酿酒厂客户。 梅特勒-托利多产品检测事业部推出新的X射线和 ProdX 支持智能工厂方案食品生产商越来越多地转向智能系统,以改善其工厂内的自动化和追溯能力,而我们的产品检测部门的产品定位就是充分利用这一趋势。 X34 是三款先进的 X射线解决方案中的一款我们的新型 X34 X射线系统结合了我们最新的 X 射线检测软件和可优化功率的发射器,能够确保良好的检测灵敏度以及最大程度地降低误剔率。该解决方案能够实现全自动产品设置和转换,减少用户人为错误,确保正常运行时间和易于使用。先进的检测机能够精确检测到微小、不易发现的有形污染物。 ProdX 连接所有生产检测设备 我们还推出了 ProdX 的下一个版本,基于 PC 端的客户端服务器解决方案。ProdX 无缝连接所有产品检测设备以及监控和管理智能工厂网络中的所有数据的特有功能,为我们的产品组合增添了巨大价值,并为我们的客户在质量控制、合规性和生产优化方面带来了巨大的好处。该版本提供诸多强大功能,以应对客户挑战,并支持关键客户对生产检测流程进行标准化改造,以便在全球范围内跟踪食品安全合规性。 梅特勒托利多工业称重事业部新的服务产品使高效校准料罐成为可能我们食品和制药客户正在面临的一大挑战是如何精确、安全和高效地校准大料罐。使用砝码对料罐进行校准非常麻烦,并且存在危险,而诸如使用流量计等方法既耗时又会污染料罐内容物。为了应对这些挑战,我们推出了一款利用液压装置和参考称重传感器以精确校准罐秤的创新型工业服务产品。 “Force Calibration”应用于料罐校准 我们的新产品“Force Calibration”能够高效地按全容量校准料罐,而不会污染内容物。“Force Calibration”比目前市场上的任何校准方法在速度上提升三倍、成本降低两倍。
  • 用户动态|高速精确实现在体诊断——新型双色受激拉曼散射成像技术
    供稿 | 李一鸣校对 | 贺若愚在外科手术中,对肿瘤边界进行快速病理成像被认为是精准切除的关键。受激拉曼散射(SRS)成像作为一种无须标记的新型显微术,避免了传统染色处理对组织的破坏,从而有望实现在体诊断。与单色SRS相比,双色SRS由于利用组织中两种成分的化学衬度叠加成像,从而可获得与H&E标准染色类似的诊断结果。然而,当前双色SRS较低的成像速度严重制约了其在实时组织学成像中的应用。基于以上背景,复旦大学应用表面物理国家重点实验室的季敏标教授等人对双色SRS显微镜光路进行了重新设计,开发出了一种速度显著提高的光路装置,并成功实现了多种组织的实时成像。图1. (a) 双色SRS显微镜的光路设计图;(b) 光谱聚焦装置中泵浦光(蓝色)和两束斯托克斯光(橙色)的时间分布示意图;(c) 调制后两束斯托克斯光脉冲(S1和S2)的相位差异。在课题组设计的光路图中,基于飞秒光谱聚焦的受激拉曼成像方法,通过延时线DL1改变泵浦与斯托克斯脉冲的时间间隔以实现两种拉曼频率(Ω1和Ω2)的选择,通过延时线DL2调节S1与S2的时间间隔以调节二者的调制相位差为π/2,由此使泵浦光的两通道受激拉曼损失(SRL)信号分别被锁相放大器的同相(X)和正交(Y)通道同时探测,从而实现双色同步成像。实验中自发拉曼光谱的采集采用了HORIBA iHR320光谱仪与液氮制冷Symphony CCD,拉曼数据分析采用了LabSpec软件。图2. 串行和并行双色SRS成像的运动伪影研究。(a)和(b)分别为仅采用S1,通过顺序调节DL1的延时进行两种拉曼频率(2848 cm-1和2926 cm-1)的串行成像策略(灰线)及对应成像图;(c)和(d)分别为本研究对两种拉曼频率(2848 cm-1和2926 cm-1)的并行成像策略(灰线)及对应成像图。对该成像装置,作者通过实验验证了两束斯托克斯光束间对于拉曼频移相差约35cm-1以上的双色成像时,不存在干涉问题,锁相放大器的X和Y通道信号的串扰也可以忽略,显示出成像的高分辨率。另外与之前的双色成像通常采用串行成像,即对两种组分进行顺序成像必定造成组织活动的伪像相比,该研究光路的并行特性赋予的同步特征杜绝了该类伪像,则显示出动态成像的高精确性。更进一步地,该研究光路中的双通道同步探测还大大节约了顺序成像时波长调谐所耗费的时间,即成像速度大幅提升。作者通过对小鼠脑冠状切片的双色成像实验表明该装置的成像时间较之前的串行成像装置减少了50%以上。图3. 活体生物的在体双色SRS显微图像。(a)和(b)分别为斑马鱼胚胎的心脏和大鼠耳朵的透过模式图像,其中红色和青色区域分别代表血红素和蛋白质;(c)为大鼠耳下60μm深度处皮下脂肪细胞的反射模式图像,其中绿色和蓝色区域分别代表脂类和蛋白质;(d)为反射模式图像的信号串扰随成像深度增加的强度变化。在本研究中,作者成功采用透过和背向散射两种模式进行了不同活体生物的在体成像实验。包括对斑马鱼跳动的心脏和小鼠毛细血管中流动的血细胞的实时双色成像。特别对背向散射模式,通过添加背向散射光电探测器,使该光学装置可实现对组织的不同深度成像,且信号串扰在深度增加过程中始终小于4%,从而显示出其在外科手术过程中进行实时成像与诊断的大潜力。此项研究工作得到了国家重点研发计划“数字诊疗装备”专项、上海市青年科技启明星计划、上海市科技创新行动计划以及国家自然科学基金面上项目等的基金支持;相关成果近期以封面文章发表在美国光学学会的旗舰杂志《Optica》上:Ruoyu He, Yongkui Xu, Lili Zhang, Shenghong Ma, Xu Wang, Dan Ye, Minbiao Ji, “Dual-phase stimulated Raman scattering microscopy for real-time two-color imaging”. Optica 2017, 4 (1), 44-47.HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 南方科大郑智平/杨烽/张新瑜Adv. Sci.:原位环境电镜揭密液态金属与单原子催化剂动态演化
    南方科技大学杨烽团队与郑智平讲席教授/张新瑜团队展开合作,利用环境球差透射电子显微镜(ETEM)耦合原位谱学的方法,在高温反应环境中,从原子层次上揭示了过渡金属单原子和多孔碳载体的起源和动态演化过程,阐明了液态金属作为重要中间物种,在形成单原子催化剂和刻蚀多孔碳结构中起到的关键作用。从原子尺度研究催化剂在反应环境中的表/界面结构及其动态演变对合理设计催化剂和揭示反应机理具有重要意义。在金属催化剂合成过程中原位揭示金属物种的演化过程、认识金属在载体表面的行为是催化剂结构精确控制的关键。高温热解是一种常用来制备金属单原子催化剂的方法。然而,在高温(500-1000 ℃)以及含碳环境中,相比于贵金属(Pt、Rh、Ag等),非贵金属过渡金属(Fe、Co、Ni)纳米颗粒表现出更加复杂的动态行为,如:熔融、碳扩散、团聚、结构演化等,从而对理解和揭示这一类单原子催化剂制备过程中的结构控制机理带来挑战。另一方面,在高温(500-1000 ℃)过程中原子层次的原位表征也存在较大困难。原位环境球差透射电子显微镜(ETEM)可以从原子尺度研究工况条件下催化剂的结构和演化等过程,尤其是适合于组成、结构不均一体系的局域表征;耦合原位电子能量损失谱(EELS),还可以提供物种价态变化等信息;此外,具有原子分辨的原位球差暗场电镜也非常适合于热场环境中金属单原子的研究。作者利用原位ETEM,在200-1000℃追踪了金属有机框架化合物前驱体(Co/Zn-ZIF)热解产生Co单原子的过程。研究发现热解过程中Co金属物种表现为团聚、分散、再团聚、升华的动态过程(图1)。耦合原位EELS监测了该过程中元素的化学演变(图2),发现升温至500℃时金属Zn已经升华消失;框架中的C逐渐转化为石墨化碳;在700 ℃,碳载体中原子级均匀分散的Co与C相互作用,形成类似Co 2 C的配位结构。而这种Co-C相互作用相对较弱,在更高温度850℃重新团聚成金属Co纳米颗粒(图3)。ETEM研究表明在850℃金属Co纳米颗粒熔化,并在载体中流动、扩散,刻蚀出多孔/缺陷碳结构,同时与碳载体发生反应生成碳化物(CoC x )(如下式);Co (l) + C (ZIF) → CoC x + C 1−x (defect∕porous structure)在这一液态金属扩散过程中,伴随着金属Co原子被刻蚀后的C-N缺陷位点锚定,形成单原子结构(图3)。原位HAADF-STEM和非原位XAFS表征进一步证实了上述过程,研究发现单原子Co在多孔CN x 载体上具有良好的稳定性,而剩余的CoC x 颗粒在高温1000 ℃逐渐升华(图4)。这类单原子Co催化剂在乙基苯选择性氧化模型反应中展示出优异的催化性能和稳定循环性。该工作近期在线发表在 Advanced Science ,并被选入Hot Topic: Carbon, Graphite, and Graphene。论文第一作者是南方科技大学研究助理张璐瑶,共同第一作者是博士研究生李岩岩、博士后张蕾;通讯作者是南方科技大学的郑智平讲席教授、杨烽助理教授、张新瑜研究助理教授。原位电镜数据在南方科技大学皮米中心收集,XAFS数据在北京同步辐射光源收集。该工作得到了国家自然科学基金、北京分子科学国家研究中心、科技部重点研发计划、广东省和深圳市项目的资助。图1. 原位ETEM表征Co/Zn-ZIF在200-1000 ℃的热解过程和金属物种行为。图2. 室温-1000 ℃原位EELS表征前驱体热解形成金属单原子过程中的化学变化图3. 原位ETEM表征熔融Co纳米颗粒扩散和刻蚀碳载体形成多孔结构,单原子锚定示意图图4. 1000 ℃原位HAADF-STEM表征金属团簇升华与单原子的稳定性。WILEY论文信息:Direct Visualization of the Evolution of a Single-Atomic Cobalt Catalyst from Melting Nanoparticles with Carbon DissolutionLuyao Zhang#, Yanyan Li#, Lei Zhang#, Kun Wang, Yingbo Li, Lei Wang, Xinyu Zhang*, Feng Yang*, Zhiping Zheng*Advanced Science
  • 大连化物所揭示固体氧化物电解器阴极动态重构和CO2电解反应机制
    近日,大连化物所催化基础国家重点实验室包信和院士、汪国雄研究员与吕厚甫博士团队在高温CO2电解研究中取得新进展,通过电化学原位表征研究,揭示了固体氧化物电解器阴极动态重构和CO2电解反应机制。   固体氧化物电解器(Solid Oxide Electrolysis Cell,SOEC)在高温条件下利用可再生能源将CO2高效电解还原为CO,是一种极具工业应用潜力的负碳技术。然而,在CO2电解过程中,对SOEC阴极催化活性位点原位动态重构及CO2吸附活化机理认识仍然不足。本工作中,研究团队借助高温原位电化学X射线衍射(XRD)、近环境压力X射线光电子能谱(NAP-XPS)和原位X射线吸收光谱(XAS)等表征方法,深入研究了Ir掺杂的Sr2Fe1.45Ir0.05Mo0.5O6-δ(SFIrM)钙钛矿催化剂的动态电化学重构特性以及CO2吸附活化机制。研究发现,SFIrM钙钛矿阴极在CO2电解过程中表面偏析溶出高分散、高密度IrFe合金纳米颗粒(粒径约1.0nm,密度高于80000μm-2);并且IrFe合金纳米颗粒表现出随电压施加和停止相应形成和消失的特征,阐明了电压作为主要驱动力在CO2电解过程中原位促使IrFe合金纳米颗粒在钙钛矿表面溶出的机制。   此外,碳酸盐物种作为CO2吸附和活化反应中间体在原位NAP-XPS中被观测到,其强度随IrFe@SFIrM界面的形成与消失而相应变化。相对于未发生表面溶出的Sr2Fe1.5Mo0.5O6-δ电极,SFIrM电极具有更高的碳酸盐/CO2面积比,证明IrFe@SFIrM界面作为CO2电解反应中的催化活性位点,表现出更高的CO2吸附活化能力。IrFe合金纳米颗粒可通过短暂氧化实现再分散,进一步提高了SOEC中CO2电解稳定性。   本研究阐明了SFIrM阴极的表面重构过程和催化作用机制,有助于深入研究认识SOEC中CO2电解过程。   相关工作以“In situ electrochemical reconstruction of Sr2Fe1.45Ir0.05Mo0.5O6-δ perovskite cathode for CO2 electrolysis in solid oxide electrolysis cells” 为题,发表在《国家科学评论》(National Science Review)上。该工作第一作者是我所502组博士研究生沈俞翔和刘天夫博士。该工作得到国家重点研发计划、国家自然科学基金等项目的支持。
  • 动态表面张力在半导体行业的应用
    5G、人工智能、智慧交通等消费电子、汽车电子、计算机等应用领域的发展,对芯片的性能提出更高的要求,加快了芯片制程升级,从而带动了半导体行业的发展。半导体晶圆制造工艺包括清洗、曝光、显影、刻蚀、CMP(化学机械抛光)、切片等环节,需要用到各种特殊的液体,如显影液,清洗液,抛光液等等,这些液体中表面活性剂的浓度对工艺质量效果产生深刻的影响。动态表面张力在半导体晶圆清洗工艺的应用半导体晶圆清洗工艺要求芯片制造技术的进步驱动半导体清洗技术快速发展。在单晶硅片制造中,光刻,刻蚀,沉积等工艺后均设置了清洗工艺,清洗工艺在芯片制造进程中占比最大,随着芯片技术节点不断提升,对晶圆表面污染物的控制要求也越来越高。为了满足这些高的清洁度要求,在其中部分需要化学清洗的工序,清洗剂的浓度一定要保持在适当的浓度范围之内,成功的清洗工艺有两个条件:1. 为了达成所需的清洁效果,清洗剂的浓度需要在规定范围内。2. 在最后的漂洗过程后,须避免表面活性剂在硅晶圆上残留,残留的表面活性剂对后面的处理工艺会造成不利影响。清洗工艺的好坏直接影响下一道工序,甚至影响器件的成品率和可靠性,然而在清洗工艺过程中,工人往往疏于监控清洗和漂洗工序中表面活性剂的浓度,表面活性剂经常过量,而为了消除表面活性剂过量带来的不利影响,又往往要费时费力地增加漂洗工序阶段的成本。德国析塔SITA动态表面张力仪监控晶圆清洗工艺中清洗剂的添加德国析塔SITA动态表面张力仪通过动态表面张力的测试,建立清洗槽液的表面张力值与表面活性剂浓度关系曲线,进而实现通过监控晶圆清洗工艺中表清洗剂表面张力的变化来调整清洗剂的添加量,从而优化晶圆清洗工艺。动态表面张力在半导体晶圆切片工艺的应用半导体晶圆切片和CMP工艺要求晶圆切片工艺是在“后端”装配工艺中的第一步。该工艺将晶圆分成单个的芯片,用于随后的芯片接合(die bonding)、引线接合(wire bonding)和测试工序。在芯片的分割期间,金刚石刀片碾碎基础材料(晶圆),同时去掉所产生的碎片。在切割晶圆时某一种特殊的处理液会用于冷却工作时的刀片,这种处理液中会加入某种表面活性剂,以此来润滑刀片并移除切割过程中产生的碎片,改善切割品质、延长刀片寿命。在半导体晶圆CMP工艺中,利用机械力作用于晶圆片表面,同时研磨液中的化学物质与晶圆片表面材料发生化学反应来增加其研磨速率。抛光液是 CMP 技术中的决定性因素之一,其性能直接影响被加工工件表面的质量以及抛光加工的效率。在CMP抛光液中,一般使用水基抛光液作为加工介质,以去离子水作为溶剂,加入磨料(如 SiO2、ZrO2 纳米粒子等)、分散剂、pH 调节剂以及氧化剂等组分,每个组分都具有相应的功能,对化学机械抛光过程起到不同的作用。磨料通过抛光液输送到抛光垫表面后,在抛光垫和被加工表面之间同时受到压力作用以及相对运动的带动,通过对被加工表面形成极细微的切削、划擦以及滚压作用,对表面材料进行微量去除。磨料的形状、硬度、颗粒大小对化学机械抛光都具有重要的影响。分散剂是一种兼具亲水性与亲油性的界面活性剂,能够均匀分散一些不溶于液体的固体颗粒,对于抛光液而言,分散剂能够减少抛光液中磨料颗粒的团聚,提高抛光液中磨料的分散稳定性。德国析塔SITA动态表面张力仪监控晶圆切片和CMP工艺种特殊处理液和抛光液的添加目前在晶圆切片和CMP工艺中,监测切片过程中的特殊处理液和研磨液表面活性剂浓度往往容易出现问题,如果将样品送到第三方实验室进行检测,成本高,且有一定时差,无法快速矫正表面活性剂浓度。德国析塔SITA动态表面张力仪,可以建立液体表面张力值与表面活性剂浓度关系曲线。在几分钟内完成特殊处理液和研磨液动态表面张力的测量,进而可以量化数据呈现液体表面活性剂浓度,帮助工人迅速将实际值与期望值作比较,及时调整表面活性剂浓度。动态表面张力在半导体晶圆光刻工艺的应用半导体晶圆在光刻工艺中使用显影剂溶解光刻胶,将光刻胶上的图形精确复制到晶圆片上。四甲基氢氧化铵(TMAH)溶液是常用的显影剂,人们往往在四甲基氢氧化铵(TMAH)溶液中添加表面活性剂,以降低表面张力,改善光刻工艺中光刻胶的粘附性,改善光刻显影液对硅片涂胶面的润湿,使溶液更易亲和晶圆表面,确保一个稳定且不与表面几何形状相关的蚀刻过程。德国析塔SITA动态表面张力仪监控TMAH溶液表面活性剂浓度德国析塔SITA动态表面张力仪,可以建立TMAH溶液表面张力值与表面活性剂浓度关系曲线。通过快速连续监控TMAH溶液表面张力,并在设定的范围内自动比较数据,使用工人可以在表面活性剂浓度超出限定值后,短时间迅速反应采取相关措施。同时析塔SITA动态表面张力仪可对MAH溶液的润湿性能进行简便快捷的分析。操作简单、无需任何专业经验。动态表面张力在半导体晶圆蚀刻工艺中的应用在太阳能电池生产过程中,需要对晶圆进行蚀刻工艺,将显影后的简要蚀刻区域的保护膜去除,在蚀刻时接触化学溶液,达到溶解腐蚀的作用,形成凹凸或者镂空成型的效果,使用工人往往在蚀刻液中添加异丙醇IPA,以降低蚀刻液表面张力。晶圆蚀刻工艺中容易存在的问题是:蚀刻过程的对流会引起异丙醇的快速蒸发,蚀刻液表面张力增加,蚀刻工艺质量下降。因此需要将蚀刻液中异丙醇浓度控制在规定范围内。德国析塔SITA动态表面张力仪监控蚀刻液中异丙醇浓度德国析塔SITA动态表面张力仪可以精确快速测量蚀刻液动态表面张力,使用工人可以将测量值与实际所需值进行对比,得出异丙醇浓度是否在规定范围内,如超出限定值后,则可以在短时间内快速采取相应措施,达到高质量的蚀刻工艺和避免异丙醇过量,节省成本。 析塔SITA动态表面张力仪在半导体行业的客户案例德国析塔SITA动态表面张力仪介绍德国析塔SITA动态表面张力仪采用气泡压力法测量液体动态及静态表面张力,通过智能控制气泡寿命,测出液体中表面活性剂分子迁移到界面过程中表面张力的变化过程,即连续的一系列动态表面张力值以及静态表面张力值。德国析塔SITA动态表面张力仪,共有4种型号。附录(英文原文)●Monitoring of wetting characteristics of etchants and developers●Monitoring the surfactant concentration of TMAH-solutions●Monitoring the surfactant concentration in wafer cleaning processes翁开尔是德国析塔SITA中国独家代理,如需了解各种关于析塔表面张力仪信息以及应用,欢迎致电【400-6808-138】咨询。
  • 输电线路动态增容技术在智能电网中的应用
    输电线路动态增容技术在智能电网中的应用1. 前言 向可持续和环境友好型能源供应过渡对社会和工业都是一个挑战,而电网正成为一个瓶颈。同时,随着社会经济持续快速增长,用电负荷增长迅速,而输电线路的输送容量受到热稳定限额的制约,远不能满足实际需求。然而,扩建电网既费时又费钱。但实际上,已经有可能通过依赖天气的架空线路运行来提高现有容量的利用率,简而言之:输电线路动态增容(DLR— Dynamic Line Rating)。 输电线路动态增容技术是在保证系统稳定、设备安全的前提下,通过对线路的运行状况和外界环境进行实时监测和分析,实时计算出满足热稳定限额的最大输送容量,并根据计算结果进行实时调整输送容量,充分利用线路客观存在的隐性容量,提高输电线路的输送能力,同时减少输电设备的投资。动态增容技术在不突破现行技术规程规定的条件下,可保证系统稳定和设备安全运行,因此有很强的实用性,对满足社会经济快速增长有着积极的作用。2. 影响输送容量的因素 输送容量由载流量决定。载流量是在规定条件下,导体能够连续承载而不致使其稳定温度超过规定值的最大电流。导线温度的变化受发热功率和散热功率决定,发热功率包括:太阳光照射吸热、电流作用热、磁滞损耗等,散热功率主要包括有空气流动引起的热量流失、导线自身向外界辐射的热量等。综上,导线实际输送容量或载流量主要与 2 个因素有关:Ø 自然因素o 风速风向、温湿度、太阳总辐射,导线温度等Ø 导线的物理性能。o 导线的吸收系数、辐射系数、最大允许温度、导线直径、阻抗等 图1 影响线路载流量的环境因素 导线的物理性能不在本文的讨论范畴。导线随着温度的升高而膨胀,线路下垂,产生弧垂现象,垂度同时受到线路的电流负荷和线路周围的小气候的影响。为了更好地监控弧垂和净距控制,需要对线路周围的小气候进行智能可靠的监测,监测因素包括:大气温度、光辐射、风速等。下面展示了几个要素对输送容量的影响程度:Ø 大气温度F 2 ℃的波动 – 约±2% 容量F 10 ℃的下降 – 约+11% 容量Ø 光辐射F 云遮挡 – 比较小F 日食 – +18% 容量Ø 风速提高1m/sF 45゜ – 约 18% 容量F 90゜ – 约 23% 容量 图2风速对等电流线路温升的影响 图3风对线路的影响 从图2可以看出,风速越大,线路的温升越小;反之,风速越小,温升越大。图3直观的展示了受风影响的一段线路,温度较低,线会更加紧绷;相反,在无风或弱风状态下的线路,温度更高,线会变得更松弛,弧垂越严重。3. 输电线路动态增容的概念 在有利的天气条件下,导体能承受高达约150%的电流负荷增加或更高。为了保证极端条件下的安全运行,德国电网运营商根据所谓的标准仲夏天气条件计算了很长一段时间,即:在静态环境下,温度35°C(95°F),风速0.6米/秒的弱风和900瓦/平方米的强太阳辐射。在中欧地区,这种情况在一年中的只有几天而已。因此,在所有其他时间里,线路可以承受更大的电流负荷。输电线路动态增容的目标是使用这些以前未使用的容量,在不突破现行技术规程规定的条件下或不超过静态容量前提下,来提高传输容量,充分利用传输线路。 图3 输电线路动态增容的示意图 从图3很清晰地看出,一个比较长的时间段里(如:1年), 可以利用的未使用的容量是非常巨大的。在使用过程中需要注意以下几点:一、实时地确定可以利用的真实动态容量;二、提高系统的可靠性;三、优化电网的时效。4. 动态增容监测系统的系统结构 输电线路动态增容实时在线监测系统,就是利用传感器采集这些自然因素,结合导线的物理性能 计算出导线的实时载流量,分析并计算出输电线路的隐性容量。动态增容在线监测系统,共包括 3部 分:采集终端、动态增容主站和数据存储服务器。其中,采集终端包括:机箱、供电、数采、传输模块、各类传感器和摄像头。 5. 气象要素监测解决方案 导体温度直接接触测量固然是一种方案,但是受外界强电磁干扰等因素,测量难度大。外界环境因素测量是对导体温度直接测量的补充,同时,优化动态容量实时调整提供数据支撑。OTT Hydromet公司是一家专业的气象水文系统解决方案服务商,以下产品可以很好的服务于电网动态增容系统里。Ø 气象传感器Lufft WS501,集成度高,用于测量温度、湿度、气压、太阳辐射、风速和风向Ø 安装在桅杆上,尽可能精确地测量导线上的主要条件;Ø 用于可靠数据收集和存储的Sutron XLink 500数据记录器; Ø 电源和通信由专门设计的OTT 机柜提供,由太阳能电池板供电;
  • 用动态粉末测试方法优化湿法造粒工艺
    湿法造粒是口服固体制剂生产经常采用的加工工艺,目标是将通常细而粘的活性成分和辅料加工成更均匀、自由流动的颗粒,方便下游加工。 具有理想特性的颗粒可以有效改善加工性能,包括提高生产量,赋予片剂所需的关键属性等。但是,这意味着湿法造粒制成的粒子通常只是半成品,而非最终产品,从而产生了一个问题,即:如何控制造粒工艺,获得最终能生产出良好片剂的粒子?在第一种情况下,有必要确定潮湿颗粒可测定的参数,以便用来量化粒子属性的差异。 本文描述了全球粉末表征技术领先企业富瑞曼科技和制药加工解决方案主要供应商GEA Group(基伊埃集团)公司双方进行的联合实验研究。本实验采用了基伊埃的ConsiGma? 1连续高剪切湿法造粒及干燥系统,用于造粒,并运用富瑞曼科技的FT4粉末流变仪?进行动态粉体测试。所获得的结果显示了如何根据动态测定潮湿颗粒的结果,来预测成品片剂的属性。研究结果突出表明,动态粉体测试作为一种有价值的工具,可用于加速优化湿法造粒工艺、改善对加工的认识和控制,并对连续加工方法的开发提供支持。湿法造粒的目的和挑战 湿法造粒通常用来改善压片混合工艺的特性,使得粒子在压片过程中拥有优化的加工属性,赋予片剂所需的优点。目的是形成均匀的颗粒,提高压片产量,并使片剂拥有所需的关键品质属性,如重量、硬度以及崩解性能等。 在湿法造粒时,配混料的活性成分、辅料组份和水混合在一起,形成均匀的颗粒。然后,这些均聚体或者粒子得到干燥、研磨、润滑等进一步加工,形成压片机所需的理想喂入材料。这些喂入材料的特性可以通过调节各种加工参数,包括水的含量、粉末喂入速度、螺杆速度等有可能产生影响的造粒等环节来进行控制。通过调节一个或者更多的变量,调节粒子属性,确保粒子在压片机中处于理想的性能状态。 但是,要生产出具有规定属性的粒子,需要认识这些关键的加工参数会对粒子产生何种影响,同时还必须认识粒子属性和最终片剂之间的关系。通过以下实验,可以看出动态粉末测试将如何帮助实现这些目标。动态粉末测试概述 动态粉末测试是对运动中的粉体而非静态粉体进行测量, 并直接测定了松体的流动特性,这有助于在非常接近真实加工环境的状态下对粉体进行表征。可以测得经混合、处于低应力状态、充气甚至呈流体状态下粉体样本的动态特性,以精确模拟加工环境,获得给定工艺条件下直接相关的数据。 当刀片沿着规定路径旋转通过粉体样本时,测量作用于刀片上的扭矩及力,以衡量动态粉末特性。当刀片向下穿过样本时,测得基本流动能(BFE)。它反映了粉体穿过挤出机或喂料机时,在受力状态下的流动特性。比能(SE)测量的则是刀片向上运动时粉体的特性,直接反映了低压环境下,如粉体在重力状态下自由流经模具时的行为特征。加工参数对湿法造粒粒子特性影响的研究 富瑞曼科技和基伊埃集团进行了一项研究,用以确定湿法造粒粒子的动态流动特性是否与片剂的硬度的特性相关。通常情况下,片剂硬度对片剂质量起关键作用。试验采用了基于ConsiGma 25连续高剪切粒子和干燥原理的实验室设备ConsiGma1。 这套系统包含具有专利的连续高剪切造粒及干燥机,可以加工几十克至五公斤、甚至更多的样本。 在该系统上进行的研究有利于促进高效的产品和工艺开发,系统停留时间少于30秒。用ConsiGma1生产的潮湿、干燥的粒子由FT4粉体流变仪进行了表征。 实验项目的第一阶段,对不同造粒条件,如不同含水率、粉体喂入速度和造粒机螺杆速度等状态下的粒子属性进行了评估测试,测试的是基于乙酰氨基酚(APAP)及磷酸氢钙(磷酸二钙)这两种粉体配方的模型。系统地改变了加工参数,并测量了所得到的潮湿粒子的BFE。图2显示的是以不同螺杆速率生产出来的APAP配方粒子的BFE随含水量变化的关系。 收集到的APAP配方数据显示,如果螺杆速度保持不变,则随着含水量增加,BFE也升高。当含水率相同时,低螺杆速度同时会产生高BFE的粒子。两种趋势都会出现,因为高含水量、低螺杆速度,造成喂料多,可能生产出更大、密度更高、粘结性更强、对刀片运动阻力相对更高的粒子。数据同样显示,当含水率为11%、 螺杆速度为600rpm时,所生产的粒子的BFE与采用螺杆速度为450rpm、含水率为8%的粒子的BFE相当。这项发现非常重要,因为它表示,具有相似特性的粒子可以采用不同加工条件获得。 图3显示,含水量和螺杆速度分别保持15%和 600rpm不变,当干燥粉末喂入造粒机的速度降低时,DCP配方制成的粒子的BFE显著增加。 其它数据表明,可以通过降低喂入速率,以更低的含水率得到相同BFE的粒子。如,含水15%、螺杆速度约为 18kg/小时的粒子的特性与含水25%、喂入速度为25kg/小时的粒子相近。结合APAP配混料的研究,结果显示,可以通过加工条件的不同组合来得到具有相同特性的特定粉体。 表1列出了,生产具有不同属性的两组粒子所采用的不同工艺参数。条件1和条件2获得的潮湿颗粒的BFE值约为2200mJ,而条件3和条件4获得的BFE值约为3200mJ。 在下列加工工艺,包括干燥、研磨、润滑等阶段的每一步都测量了粒子的BFE,以改善加工性能。本研究中所采用的流动助剂是硬脂酸镁。在所有这些阶段,不同组的相对BFE值保持不变,第3、4组的BFE值一直高于1、2。 图4模拟了加工过程每一阶段的粒子流动特性。条件3和4显示,干燥后的BFE值有所上升,因为,与条件1和2状态下的粒子相比,条件3和4状态下的粒子相对尺寸大、密度高、机械强度高。 研磨后,尽管粒子密度、形状和韧度差异依然存在,但尺寸更为接近。这也使得BFE的观察结果显得有理可据。这些差别在润滑后保持不变,状态1、2和3、4之间的差别明显。 这些结果清楚表明,可以在各种不同的加工条件下,加工出用BFE衡量的、具有特定流动特性的粒子。这些测试显示,BFE值可用于湿法造粒加工产品和工艺的开发, 但同时也会产生问题,即BFE值是否可以进一步用以预测压片机内的粒子行为,以及,更重要的是,BFE是否可以与片剂关键品质属性直接相关。在粒子动态特性与片剂质量之间建立相关性 采用相同的工艺参数,在压片机中对四批潮湿粒子进行了干燥、研磨、润滑。然后测量了片剂的硬度。图5 为片剂硬度与不同阶段粒子流动性的关系。 结果显示,BFE和片剂的硬度与湿态和干燥的粒子有关,而且与它们的变化极其有关。与潮湿粒子和润滑粒子有关是比较容易理解的。尽管两者的相关性不如它与干燥、研磨过的粒子来得明显。所观察到的润滑过的粒子之间差异性和相关性差应归因于硬脂酸镁的整体影响。 这个数据综合反映了粒子在不同加工阶段的流动性(用BFE进行表征)与最终粒子关键质量属性(此处指硬度)之间存在的直接关系。这意味着,一旦特定的BFE与更理想的片剂硬度相关,就可用于推动对湿法造粒工艺进行的优化。结果表明,假如潮湿粒子能够获得目标BFE,最终以硬度衡量的片剂质量就可得到保障。这为提高产品和工艺开发效率,并且,不管是分批还是连续造粒工艺,都能获得更好的工艺控制路径,创造了机会。面向未来今天,采用传统的批次加工方法依然占支配地位,但业内很多人预期,未来大量的产品会采用连续加工。本文中,富瑞曼科技和基伊埃集团共同为将这一理想变成现实向前迈进了一大步。文章揭示了通过采用不同的工艺条件,有望获得特定的片剂属性,并且指出,动态粉末特性如流动性与最终产品的特性直接相关。 本文最初于2014年3月刊登于《医药制造》杂志。结束 图 图1:FT4粉末流变仪?的基本工作原理。测量刀片(或叶片)在穿过样本时遭遇的阻力,量化所测量粒子或粉末松体的流动特性。图2:为APAP配方制备的粒子的BEF随着含水量的增加以及螺杆速度的下降而增加。图3:为DCP配方制备的粒子的BFE随着喂入速率的下降而显著上升。图4:在造粒的不同阶段BFE变化明显,但不同组的粒子之间会存在明显差异。Figure 5: A strong correlation is found between the BFE of the granules and final tablet hardness图5:粒子BFE和最终片剂硬度之间存在很强的关联度Table 1: Four different processing conditions used to make two distinct groups of granules表1:两组明显不同的粒子采用的4种不同加工条件
  • 科研人员在高动态压缩感知成像技术研究中取得进展
    压缩感知成像作为一种计算成像技术,具有突破奈奎斯特采样极限、高通量测量、单像素成像等优势,在对地遥感、激光雷达、生物医学等领域具有重要应用价值。然而,传统压缩感知成像在空间、时间动态范围上与普通成像相比均存在不足。一方面,压缩感知成像对探测器提出了过高的动态范围要求,导致在有限探测器位数条件下的成像质量较低;另一方面,由于压缩感知成像需要多次调制与测量获取信息,因此难以满足实时成像的应用需求。针对空间、时间高动态压缩感知成像的实际需求,中国科学院国家空间科学中心复杂航天系统电子信息技术重点实验室的刘雪峰团队开展了一系列研究工作,并不断取得新进展。在空间高动态成像方面,该研究团队提出了一种稀疏测量结合并行抖动的压缩感知成像方法,利用稀疏调制降低待测信号动态范围,并以叠加随机抖动信号的多像素探测提升光学测量的有效动态范围,显著提高了探测器位数受限时的压缩感知成像质量,并将对探测器的动态范围需求降低至1比特(图1)。相关工作发表在光学领域国际学术期刊Optics Express(IF:3.833)上,并于近日被全球工程领域著名科技网站Advances in Engineering(AIE)遴选为关键科学文章进行专题报道。在时间高动态成像方面,该研究团队与北京理工大学量子技术研究中心合作开展了并行压缩感知成像技术的研究,提出基于并行调制采样的系统标定与图像重建方法,使压缩感知成像达到实时成像速度,同时具备像素超分辨成像能力。基于此原理,研制高分辨率中红外成像样机,可利用320×256像素中波红外探测器实现1280×1024分辨率实时成像(图2),该技术对于解决高性能红外传感器分辨率不足对红外成像设备发展的制约具有重要意义。相关工作发表在光学领域国际学术期刊Optics and Laser Technology(IF:4.939)上。图1. 不同探测器动态范围条件下的压缩感知成像结果对比图2. (a) 中红外像素超分辨成像样机示意图 (b) 对分辨率靶标及远距离目标的超分辨成像结果
  • 技术解读 | 动态色谱法和静态容量法比较
    动态色谱法和静态容量法都是常用的比表面测试方法,目的都是确定吸附质气体的吸附量。吸附质气体的吸附量确定后,就可以由该吸附质分子的吸附量来计算待测粉体的比表面了。动态色谱法是将待测粉体样品装在样品管内(一般为U型,国仪精测具备专利直管技术,中国实用新型专利,专利号:ZL202120620155.0),通入一定比例的载气(He)和吸附质气体(N2)的混合气体,待混合气体流过样品后,根据吸附前后气体浓度变化,得到待测样品吸附量。静态容量法是将待测粉体样品装在一定体积的一段封闭的试管状样品管内,向样品管内注入一定压力的吸附质气体,根据吸附前后的压力或重量变化来确定被测样品对吸附质分子(N2)的吸附量。两种方法比较而言1、动态法的优点是适合快速比表面积测试,如电池材料、有机材料、金属粉体等的生产监控,分析速度快,分辨率高,重复性好;缺点是由于通过浓度变化来测试吸附量,当浓度为1的情况下吸附前后将没有浓度变化,所以只能测试较低的分压范围,使得孔径测试受限;动态法是相对测量,其结果的准确性受标样与待测样吸附行为异同的影响。2、静态容量法的优点是氮气分压可以实现从极低真空到接近饱和蒸汽压范围的连续且精准的控制(国仪精测已实现分压比低至10-9的极限测量),所以静态容量法可以实现比表面积及孔径的全面分析,尤其适合中大比表面和孔隙发达的样品,例如催化剂、分子筛、碳材料等样品的比表面及孔径分布分析测试。在多点BET法比表面分析方面,静态法无需液氮杯升降来吸附脱附,所以测试过程相对动态法省时;但静态法需要有抽真空、暖自由体积和冷自由体积标定的过程,加上部分样品吸附平衡过程较慢等因素,所以测试效率并不是该方法的优势。但静态法是绝对测量,其测试结果不受标样影响,在准确性上更能得到研究者的青睐;且随着真空系统和压力传感器的硬件技术发展,静态容量法在分辨率、稳定性方面都得到了很好的发展,是目前比表面积及孔径分析的主流技术。欢迎扫码咨询!
  • 瑞士华嘉动态颗粒图像分析技术问世
    2009年,新年伊始,挪威安娜泰克有限公司(AnaTec AS,Norway)发布了其最新的动态颗粒图像分析技术,三维图像动态识别专利(3D images),并携带其主打产品,FPA颗粒图像分析仪及DustMon粉尘浓度测量仪,在中国各主要城市进行了为期一周的巡回展示,得到了相关应用领域专家的一致好评。   Mr. Terje Jorgensen,安娜泰克有限公司执行总裁,全程参与了瑞士华嘉有限公司为该产品在中国首发的一系列市场活动。作为一种全新的动态颗粒图像分析技术,安娜泰克公司采用了比常规动态图像分析方法更为先进的3D images(三维图像动态识别)专利,能实时区分同一颗粒在不同影像位置时的几何形态,配合多种高效快捷的全自动取/进样器,被测样品量大,能真正得到极具代表性的颗粒图像分析结果。   二十多年来,挪威安娜泰克有限公司一直致力于在线及实验室用颗粒图像分析技术的研究与生产,开发出一系列针对不同应用领域的高性能图像分析仪器。前身为Norsk Hydro集团(全球500强公司之一)的研发机构,安娜泰克以其在诸多工业应用领域成熟的技术平台,能够为终端客户量身定制,提供颗粒图像分析的全套解决方案,包括硬件配置,软件设计,系统安装,技术支持及反馈。安娜泰克的所有产品结构牢固,操作简单(兼容LIMS系统),在建筑材料,食品工业,矿物加工,制药原料,石油石化等领域有着广泛的应用前景。
  • 我国成功研制疲劳试验机动态力校准装置
    我国成功研制疲劳试验机动态力校准装置让材料可靠性测试更精准 日前,由中国计量科学研究院自主研制的疲劳试验机动态力校准装置通过专家鉴定。经鉴定,该装置主要技术指标达到国际先进水平,并填补了国内疲劳试验机动态力校准方法研究方面的空白。 疲劳是指材料在重复或交变应力作用下,所受应力远小于其抗拉强度时,经多次循环后,在无显著外观变形情况下而发生的断裂现象。这种断裂一旦发生,往往将导致灾难性的设备或人身伤亡事故。据了解,汽车零部件的破坏中85%由疲劳引起的,航空工程中有60%~80%的断裂是由结构材料的疲劳破坏引起的。为保证产品、工程质量和人身安全,相关行业主要通过疲劳试验机来测量试件材料的疲劳极限和疲劳寿命等性能指标。 该装置的成功研制,为疲劳试验机校准、检定和定型鉴定提供了高准确度的计量标准和科学合理的装置和方法。为航空航天、汽车、船舶、冶金、建筑等行业的材料可靠性与使用寿命测试提供了有力的技术支撑,并为材料计量提供了强有力的量值溯源保障,具有较大的社会效益和经济效益。
  • 动态光谱成像:化工安全监测的“火眼金睛”
    历时近3年,完成“看见并定位”气体泄漏的创新之举,丰富安全预警监测手段… … 在前不久落幕的全国大学生课外学术科技作品“挑战杯”上,由南京大学电子科学与工程学院教授曹汛带领的科研团队,凭借项目“化工气体泄漏智能眼——光谱视频相机及预警系统”荣获主体赛道一等奖。指导老师曹汛年轻有为,他不仅是最年轻的国家科技三大奖一等奖完成人之一、“80后”国家重大仪器项目负责人,还是今年“中国青年五四奖章”获得者。“从实验室阶段的技术路径调研、原理验证与光学系统搭建,到样机阶段设计完善硬件、进行算法研发,最后对系统进行测试与优化,历时近3年。最终,在曹汛老师的悉心指导下,团队成员们攻坚克难,完成了‘看见并定位’气体泄漏的创新之举。”信息与通信工程专业博一学生周凯来是南大计算成像实验室成员之一,从研究生阶段便跟着曹汛从事光谱成像领域的科学研究。“永远保持兴趣和热爱,凡事只要热爱,就不会觉得太苦闷。”这是曹汛对学生最常说的话。也正是凭着自己对科研的热爱,为了攻克动态光谱成像“卡脖子”难题,他甘坐“冷板凳”,始终保持专注,钻研处于空白地带的动态高光谱成像技术,推动光谱成像由“静”至“动”跨越,引领动态高光谱成像国际科技前沿。这项研究成果不仅得到诺贝尔奖得主的积极关注和引用,还被多个国际权威机构评价为该领域数十年以来的“革命性进展”。对于普通大众来说,动态光谱成像是个完全陌生的新名词,然而在化工企业领域,这项技术却扮演着化工安全监测“智能眼”的重要角色。气体泄漏是化工企业火灾爆炸事故的基本原因之一,传统监测技术存在易受环境影响、监测范围小、报警滞后等问题,新兴的光谱视频监测技术也面临着被国外所垄断的困境。气体监测最大的困难在于要监测的泄漏气体看不见、摸不着,形状在不断变化,也没有清晰的边界和颜色特征,所以比传统目标的监测难度大大增加。“经过不断试验打磨,我们针对常见的化工泄漏气体,专门设计了光谱智能预警监控系统,实现气体泄漏的快速感知、实时监测与及时预警,优先防范和化解化工生产和环境污染的重大危险源。”在很长一段时间里,曹汛和团队成员马不停蹄,跑遍了全国上百个化工生产园区,“目前该系统已成功应用于全国10余个省市的大型化工园区和重点企业,大大降低了各类化工安全生产重大事故的发生。”在课题组成员眼里,曹汛是他们的“科研领路人”,而在曹汛的科研探索道路上,也有一位令他印象深刻的“人生导师”——南大校友、“两弹一星”元勋程开甲院士。“作为南京大学的一名教师,程院士第一次踏入罗布泊后,把一生中最好的20多年时光献给了茫茫戈壁,为科研倾注了全部的心血和才智。如何做一个纯粹的青年科技工作者,在所在领域作出成绩,程院士就是最好的榜样。”曹汛说,除了科研,他最喜欢做的事便是和学生们一起,未来还将带领他们将个人发展与国家需求相结合,在科研领域继续“追光之旅”。
  • 动态力学性能分析的利器— DMA Eplexor
    p style=" text-align: center " 耐驰科学仪器商贸(上海)有限公司 /p p   Gabo 公司是全球领先的大力值动态热机械分析仪器供应商,有40 多年的仪器设计及应用经验,其产品广泛用于轮胎、橡胶行业,是行业测试的标杆仪器。为了拓展产品应用领域,开拓更广泛的市场,Gabo公司于2015年与Netzsch合并,隶属Netzsch热分析业务部,主要产品有Eplexor系列(大力值、高温DMA)、Gabometer(压缩生热测试)和Gabotack(粘接强度测试),其中Eplexor 系列应用最为广泛,涉及橡胶、聚合物、陶瓷、玻璃、金属、复合材料等领域,本文主要介绍了其原理、结构及应用。 /p p span style=" font-size: 20px " strong 原理 /strong /span /p p   Eplexor系列是大力值DMA 仪器,可以在动态或静态载荷的情况下对材料进行表征: /p p   1、动态载荷测试,是在样品上施加一定频率的周期应力,分析应变大小及施加的动态力与样品形变间的相位差,由此得到材料的动态性能,如刚度(弹性模量,E’)和阻尼(损耗模量,E’’)。为了模拟材料在实际工况下的受力方式,动态应力可以是正弦波、三角波,也可以是方波等。图1所示为正弦波应力作用下的应力(红色)和应变(蓝色)曲线,应力与应变的比值为复数模量,二者的相位差为δ,反应了材料变形的滞后程度。 /p p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/3a83b8ed-d1aa-4af3-beaf-3f8672727b69.jpg" / /p p style=" text-align: center " 图1、动态载荷下的应力应变曲线 /p p   在复数坐标内,复数模量与x轴的夹角即为δ,储能模量(E’)和损耗模量(E’’)分别是复数模量在实轴和虚轴的投影,tanδ为损耗因子,数值上等于E’/E’’,代表了材料的损耗特性。图2 显示了不同材料的相位差分布,金属材料最低,高聚物次之,液体、油类较高。 /p p style=" text-align: center " img title=" 2.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/e0683e76-1d39-488f-8a4a-ffb9dddafaf5.jpg" / /p p style=" text-align: center " 图2、不同材料的相位差分布 /p p   2、静态载荷测试,是在样品上施加静态的应力/应变,分析样品尺寸/力随时间的变化,得到材料的蠕变/松弛性能或模量、强度等参数。 /p p span style=" font-size: 20px " strong 结构 /strong /span /p p   图3为Eplexor传感器结构示意图,与传统小力值DMA 相比,其最大的特点是静态力和动态力可以分别单独驱动,静态力通过伺服电机驱动,动态力通过电动振荡器产生,这样动态力和静态力可同时实现全量程加载(最大可达± 8000N),在更宽广的载荷作用下研究材料的力学性能。为了保证不同载荷下的力值精度,可配备多个量程的力传感器,用户可自行更换。 /p p style=" text-align: center " img title=" 3.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/880e5240-e070-4759-a4c2-5a1ab72ac702.jpg" / /p p style=" text-align: center " 图3、Eplexor结构 /p p   为了满足不同样品多种变形方式的要求,Eplexor配备了多种支架,测试可在压缩、拉伸、三点弯曲、四点弯曲、剪切、悬臂等多种模式下进行。此外,可以通过配置扩展附件,实现DEA与DMA 联用,得到力学性能的同时得到材料的介电性能 通过配置湿度附件,可以研究吸水对材料性能的影响 或通过浸入式容器,研究样品与水或油的接触导致的老化或增塑剂效应 通过配置UV 附件,研究材料的光老化或光固化反应。还可以配置自动进样器,提高测试效率。 /p p span style=" font-size: 20px " strong 应用 /strong /span /p p   Eplexor的应用覆盖众多领域,其中橡胶行业应用是其传统强项,发表的相关研究结果很多,本文对此不作过多展开,而主要侧重该仪器在复合材料、合金、陶瓷等领域的独特应用。作为一种新型的结构功能材料,纤维增强复合材料以其高强度、低密度的特性,得到越来越广泛应用。图4 所示为纤维增强材料的常规DMA 测试结果,可以看出在157.6 度前,材料的模量为140GMPa左右,与钛合金相当,在温度要求不高的领域可以取代传统金属。 /p p style=" text-align: center " img title=" 4.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/e3aeff96-ea7a-4b23-8bb4-ec22fea71cb2.jpg" / /p p style=" text-align: center " 图4、纤维复合材料常规DMA 测试 /p p   但与金属类材料不同的是,复合材料在其弹性变形范围内,应力与应变之间不一定呈线性关系,而复合材料在工况过程中通常需要在有一定预载荷作用的情况下,再承受额外的动态交变载荷,如桥梁、飞机、汽车等,所以非常有必要对此类材料在不同动/静载荷作用下的性能进行研究。图5所示为对碳纤维复合材料进行动/静载荷扫描的三维结果,可以看出,材料的模量对载荷有非常明显的依赖性,静态载荷不变的情况下,模量随动态载荷增大而降低,而动态载荷不变的情况下,模量随静态载荷增大而增大,这可能是动/静载荷作用对复合材料内部变形机制的影响不同。 /p p style=" text-align: center " img title=" 5.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/ce078cac-b6e3-4c53-843d-ad5c64065dff.jpg" / /p p style=" text-align: center " 图5、碳纤维复合材料的非线性力学行为 /p p   形状记忆合金,是一种加热到一定温度时低温下产生的形变会消除,并恢复到其原始形状的材料。由于其特殊的形状恢复功能,已被广泛应用于航空航天、医疗器械、机械电子等领域。此类材料在应用时,需要知道其发生形状转变的温度,而研究发现转变温度对载荷有一定的依赖性,因此有必要对工况载荷下的转变温度进行测试。图6为在不同预载荷作用下,对同一材料进行温度扫描的结果,测试采用拉伸模式,升温速率2K/min,频率10Hz,动态载荷保持20MPa不变,静态载荷从25MPa增大到250MPa,依次进行测试。静态载荷小于75MPa时,样品没有表现出明显转变,载荷超过100MPa时,随静态载荷增大,转变越来越明显,且转变温度逐渐提高,说明预加载荷会诱发相变,且可能导致合金微观结构上的变化,从而推迟转变温度。 /p p style=" text-align: center " img title=" 6.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/acd9834f-582a-481a-87bb-6d32243c5b32.jpg" / /p p style=" text-align: center " 图6、预载荷对形状记忆合金转变温度的影响 /p p   金属陶瓷类样品通常的工况温度较高(如1000 度以上),且承受的载荷较大,传统的DMA 由于温度和力受限,无法检测材料在高温区的力学性能,采用Eplexor 的高温炉即可以轻松实现。图7 为金属陶瓷复合材料在三点弯曲模式下进行的温度扫描测试,红色和蓝色曲线分别代表样品尺寸和静态应变随温度的变化,可以看出在50N静态载荷作用下,1400℃左右样品尺寸发生明显变化,可能是材料内部金属组分的熔融导致样品软化,此在载荷下,材料无法应用于更高温度。若增大或减小载荷,可能会使软化点提前或延后。 /p p style=" text-align: center " img title=" 7.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/56b176c9-9aca-4b87-b755-6c3cd845b241.jpg" / /p p style=" text-align: center " 图7、金属陶瓷复合材料的耐温性测试 /p p   综上,Eplexor是一款配置灵活、功能强大的动态热机械分析仪,可以在宽广的温度和载荷范围内满足各类材料的力学性能测试要求。 /p
  • 济南微纳创新基金项目“基于动态光散射原理的光子相关纳米粒度仪”完成验收
    2013年12月11日,山东省济南市科技局邀请有关专家组成验收组,对济南微纳颗粒仪器股份有限公司承担的科技型中小企业技术创新基金项目“基于动态光散射原理的光子相关纳米粒度仪”进行了验收。验收期间,专家组听取了有关报告,审查了相关资料,对项目开发的Winner801光子相关纳米粒度仪进行了现场考察,经山东省计量科学研究院测试,该项目主要性能指标优于粒度分析国家标准要求,用户使用效果良好。最终经质询、评议,鉴定委员会认为该项目成果整体达到国际先进水平。此次项目验收评定,是对微纳仪器综合性能的肯定,是国家权威部门对微纳多年来不懈努力所取得成绩的认可。济南微纳将不负所望,秉承自身作为中国颗粒测试技术的领航者的职责,为广大用户提供优异的仪器与满意的服务,继续为中国粒度测试技术赶超世界一流水平做出不懈努力。微纳销售热线0531-88873312
  • 第二届“动态计量测试技术及应用”学术交流会(第二轮)
    各有关单位:动态计量测试技术是衡量一个国家科技水平和工业发展程度重要标志之一。我国经过几十年的发展,动态计量技术已经初见成效。但由于工程动态测量的复杂性,现有计量技术在理论框架、计量特性表征、工程测量应用等方面表现出其局限性,其未来发展方向是一个值得研究探讨的问题。为追踪行业前沿,探讨动态计量测试技术及应用的发展趋势和热点问题,推进动态计量测试技术发展,促进行业内技术交流,共享技术进步最新成果,由中国航空学会、中国计量测试学会、中国振动工程学会指导,“计量与校准技术”国家级重点实验室、“动态测试与校准技术”航空科技重点实验室、中国航空学会计量技术分会联合主办的“第二届动态计量测试技术及应用学术交流会”定于2024年9月24日—27日在苏州召开。本届大会将通过大会特邀报告、分会场专题报告等活动,为我国动态计量测试技术的发展提供交流与合作平台,凝聚相关方向的研究力量,促进多学科的交叉与融合,推动动态计量测试技术得到广泛应用。我们诚挚邀请全国相关领域科研院所、高校和机构的专家、学者及技术人员莅临本次大会。会议时间地点会议时间:2024年9月24日-27日(9月24日报到)会议地点:苏州王府金科大酒店(苏州新区滨河路1969号)会议组织机构指导单位:中国航空学会中国计量测试学会中国振动工程学会主办单位:“计量与校准技术”国家级重点实验室“动态测试与校准技术”航空科技重点实验室中国航空学会计量技术分会承办单位:中国航空工业集团公司北京长城计量测试技术研究所协办单位:中国计量协会智能传感器专业委员会《计测技术》杂志社会议特邀专家及报告主题中国工程院院士报告题目:待定吴希明 中国航空研究院 副院长 研究员报告题目:空地融合,协同发展--低空经济下航空测量监控发展的认识和设想蔡小斌 中国航空工业集团 科技委副秘书长 研究员报告题目:航空发动机试验测试关键技术张力 航空工业计量所 研究员报告题目:力学量动态计量体系关键技术及应用张方 南京航天航天大学 教授报告题目:动载荷识别技术的动态标定及其关键技术王斌团 航空工业一飞院 研究员报告题目:飞机试验测试相关徐立军 北京航空航天大学 院长 教授报告题目:基于激光诱导荧光及吸收光谱融合的瞬态燃烧场定量测量装置孔德仁 南京理工大学 教授报告题目:待定龙桂鲁 清华大学 教授报告题目:用量子说悄悄话韩桂来 中国科学院力学研究所 研究员报告题目:高超声速飞行器复杂干扰区气动加热动态测量技术谭秋林 中北大学 副院长 教授报告题目:耐高温MEMS传感器技术研究进展郑龙席 西北工业大学 教授报告题目:吸气式脉冲爆震发动机非稳态参数测试技术衷洪杰 航空工业气动院 研究员报告题目:动态压敏涂层测试校准技术及应用黄相华 航天科工三院 研究员报告题目:具身智能驱动下的武器装备动态测试计量挑战刘桂祥 核动力院二所 研究员报告题目:核反应堆一回路系统振动控制技术及应用杨亦春 航空工业计量所 研究员报告题目:跨波长随机声阵列测量技术及其应用发展张大治 航空工业计量所 研究员报告题目:面向工程的激光测振技术研究进展参观交流会议将组织与会代表前往苏州高新区深入优秀企业参观交流。会议费用9月13日前汇款的人员 2000 元/人;9月13日后汇款的人员 2500 元/人;会议现场可提供银行卡、微信等缴费方式。会议期间食宿统一安排,住宿费用自理。具体汇款信息如下:户 名:中国航空工业集团公司北京长城计量测试技术研究所开户行:工行海淀西区支行账 号:020000 450900 3500979备 注:“动态计量会议”企业宣传为方便参会代表更深入地了解企业最新技术产品信息,主办方确定,本次会议的企业宣传费用标准做如下分类,企业可根据需要进行选择。宣传套餐费用标准类别费用(元)服务内容备注A档80000协办单位+公司参观+会场展位+播放宣传片 + 专题报告(9月26日分论坛)+ 资料发放此档仅限于苏州本地公司。B档30000会场展位 + 专题报告(9月26日分论坛)+ 资料发放C档20000专题报告(9月26日分论坛) + 资料发放D档20000会场展位 + 资料发放E档10000会场资料发放报名方式1.请填写本通知所附第二届“动态计量测试技术及应用”学术交流会回执,并在9月20日之前将回执(Word版)发送至会议联系人电子邮箱。2.线上报名。拟参会人员请扫描下方二维码进行报名。会议联系人张云霞 15201680897zhangyunxia@cimm.com.cn 张馨元 18518169533zhangxy633@avic.com 李金玲 18801025132lijl113@avic.com“计量与校准技术”国家级重点实验室“动态测试与校准技术”航空科技重点实验室中国航空学会计量技术分会中国航空工业集团公司北京长城计量测试技术研究所中国计量协会智能传感器专业委员会 《计测技术》编辑部 2024年8月27日
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制