当前位置: 仪器信息网 > 行业主题 > >

全直径岩心核磁共振成像分析系统

仪器信息网全直径岩心核磁共振成像分析系统专题为您提供2024年最新全直径岩心核磁共振成像分析系统价格报价、厂家品牌的相关信息, 包括全直径岩心核磁共振成像分析系统参数、型号等,不管是国产,还是进口品牌的全直径岩心核磁共振成像分析系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合全直径岩心核磁共振成像分析系统相关的耗材配件、试剂标物,还有全直径岩心核磁共振成像分析系统相关的最新资讯、资料,以及全直径岩心核磁共振成像分析系统相关的解决方案。

全直径岩心核磁共振成像分析系统相关的论坛

  • 【转帖】关于核磁共振成像的问题

    关于核磁共振成像的原因,关于核磁共振成像的相关知识。核磁共振成像(Nuclear Magnetic Resonance Imaging‎ ,简称NMRI‎ ),又称自旋成像(spin imaging‎ ),也称磁共振成像(Magnetic Resonance Imaging‎ ,简称MRI‎ ),台湾又称磁振造影,是利用核磁共振(nuclear magnetic resonnance‎ ,简称NMR‎ )原理,依据所释放的能量在物质内部不同结构环境中不同的衰减,通过外加梯度磁场检测所发射出的电磁波,即可得知构成这一物体原子核的位置和种类,据此可以绘制成物体内部的结构图像。

  • 【求助】关于核磁共振成像

    听说医学核磁共振成像检验前需要对被测者注射造影剂(貌似含顺磁性物质钆),请问作用何在?是必须的吗?谢谢。

  • 【讨论】核磁共振成像技术

    现在核磁共振成像技术已经是一种重要的临床医学诊断手段,我想知道这种诊断技术会对人体造成一定的损害么?如果有的话具体的危害体现在什么方面?是由什么原因引起的?怎么可以尽量减少这些可能存在的危害呢?谢谢~

  • 核磁共振_岩心孔隙结构分析_孔隙度

    应用背景岩样中所有孔隙空间体积之和与该岩样体积的比值,称为该岩石(岩心)的总孔隙度,以百分数表示。储集层的总孔隙度越大,说明岩石(岩心)中孔隙空间越大。从实用出发,只有那些互相连通的孔隙才有实际意义,因为它们不仅能储存油气,而且可以允许油气在其中渗滤。因此在生产实践中,提出看了有效孔隙度的概念。有效孔隙度是指那些互相连通的,在一般压力条件下,允许流体在其中流动的孔隙体积之和与岩样总体积的比值,以百分数表示。显然,同一岩石(岩心)有效孔隙度小于其总孔隙度。孔隙度是储层评价的重要参数之一.核磁共振(NMR)可检测到岩心内孔隙流体的信号,且具有无损快速准确等特点,在确定地层孔隙度方面具有其他测井方法无法比拟的优势,因此,在石油勘探和开发领域,核磁共振(NMR)技术在岩心分析 、地球化学和地球物理测井等方面的应用日益引人注目。核磁共振在石油岩心领域的功能 :1)常规岩心孔隙结构,孔径分布及流体饱和度;2) 非常规岩心(致密岩心,泥岩,页岩)孔隙结构,孔径分布及流体饱和度;3) 岩心样品含油含水分布、油水含量测试;应用举例一:玻璃珠孔隙模型测试(不同饱和度下T2弛豫图谱分析)http://i1292.photobucket.com/albums/b570/niumagnmr/niumagnmr/ball.jpg应用举例二:常规岩心孔渗饱测试http://pic.yupoo.com/niumagnmr_v/EqwZXDb3/KysOx.jpg图2.砂岩T2谱及累积T2谱样品的微分谱中可以看出来,饱锰样中加入锰使水的弛豫时间变短,采集不到水的信号,只能采集到油的信号。从饱水样的弛豫谱中可以得到孔隙度,束缚流体饱和度、自由流体饱和度,结合原始样和饱锰样弛豫谱可以得到含油饱和度和含水饱和度。

  • 将核磁共振成像技术提高到微米级别

    [color=#333333]每年都有数百万的磁共振成像(MRI)扫描来诊断健康状况并进行生物医学研究。我们身体的不同组织对磁场的反应是多种多样的,这使得解剖图像得以生成。但是这些图像的分辨率是有限制的——一般来说,医生可以看到小到半毫米大小的器官的细节,而不是小得多。根据医生们的观察试图推断出组织中细胞的情况。Mikhail Shapiro,化学工程的助理教授,想要在MRI图像和在组织中发生的事情之间建立一个联系,它的规模很小,只有一微米——这比现在的可能性小了500倍。[/color][color=#333333][/color]Schlinger学者和传统医学研究所的研究员夏皮罗说:当你看一幅splotchy MRI图片时,你可能想知道在某个黑点发生了什么、现在很难说出比半毫米还小的尺度上发生了什么。在最近发表在《自然通讯》(Nature Communications)杂志上的一项研究中,夏皮罗和他的同事们提出了一种方法,将组织中的磁场模式(在微米尺度上发生)与MRI图像的更大、毫米级特征相关联。最终该方法将允许医生解释MRI图像,并更好地诊断各种情况。例如,医学研究人员可以利用核磁共振成像技术,将被称为巨噬细胞的免疫细胞图像,在患者体内的炎症组织的位置形象化,这些细胞被标记为磁性铁粒子。巨噬细胞将铁粒子注入患者的血液中,然后转移到炎症部位。由于核磁共振信号受到这些铁粒子的影响,因此产生的图像显示了不健康组织的位置。然而准确的MRI对比度取决于细胞如何吸收和储存在微米尺度上的铁粒子,这在MRI图像中是看不到的。这项新技术可以让我们了解不同的铁分布对MRI的影响,而这反过来又能更好地了解炎症的范围。这项研究由加州理工学院的研究生亨特戴维斯和Pradeep Ramesh领导。

  • 关于核磁共振成像

    好像并不是化学范畴的问题,但是很好奇核磁成像是怎么将共振信号转化为图像的?是利用已知的不同环境下会有不同信号,再由信号逆推该处的细胞组织分布?

  • 核磁共振原理简单介绍

    核磁共振(MRI)又叫核磁共振成像技术。是继CT后医学影像学的又一重大进步。自80年代应用以来,它以极快的速度得到发展。其基本原理:是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接受器收录,经电子计算机处理获得图像,这就叫做核磁共振成像。 核磁共振(MRI)又叫核磁共振成像技术。核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。  核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。为了避免与核医学中放射成像混淆,把它称为核磁共振成像术(MR)。  MR是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显示图像。  MR提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术,因此,它对疾病的诊断具有很大的潜在优越性。它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。MR对检测脑内血肿、脑外血肿、脑肿瘤、颅内动脉瘤、动静脉血管畸形、脑缺血、椎管内肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。

  • 诺贝尔奖与核磁共振的不解之缘

    http://www.china.org.cn/chinese/zhuanti/2003nbrj/431244.htm2002年,世界各地的医生进行了超过6千万次的核磁共振成像检测。这使得劳特布尔和曼斯菲尔德的获奖成为自然而然的事情 2003年10月6日,瑞典卡罗林斯卡医学院宣布74岁的美国科学家保罗劳特布尔和70岁的英国科学家彼得曼斯菲尔德为本届诺贝尔医学奖的得主,这两位科学家的研究成果终于得到了认可。 诺贝尔奖对这二人的垂青绝非一时兴起。自从上个世纪70年代起,劳特布尔和曼斯菲尔德就各自独立地工作,为将一项初生的、仍然很麻烦的关于高能磁场和电磁波的研究技术,最终转换成实际应用的无痛诊断仪器——核磁共振成像仪奠定了基础。 据统计,仅仅在过去的一年中,世界各地的医生就进行了超过6千万次的核磁共振成像检测。 而在接受《纽约时报》采访时,劳特布尔坦言,尽管自己也是众多接受过核磁共振成像检测的患者中的一员,但他并没有对技师说过他是这项技术的发明者。 梯形磁场的贡献 中国科学院电工学院研究员张一鸣介绍,所谓核磁共振(Nuclear Magnetic Resonance),就是处于某个静磁场中的自旋核系统受到相应频率的射频磁场作用时,在它们的磁能级之间发生的共振现象。简而言之,磁场的强度和方向决定了原子核旋转的频率和方向,在磁场中旋转时,原子核可以吸收频率与其旋转频率相同的电磁波,使自身的能量增加。而一旦恢复原状,原子核又会把多余的能量以电磁波的形式释放出来。 核磁共振在生物学领域特别有用,因为它能非常精确地记录水分子中氢原子内的原子核的行动。水占了人体体重的2/3,而不同组织中水的百分比组成各有不同。核磁共振成像可以探测器官与器官之间、甚至是一个器官的不同部分之间的分界。哪怕是疾病造成的水量的1%的变动,都能轻易被核磁共振成像检测到。 但是核磁共振本身不能展示样体的内部结构。要得到内部的图像,就要将不同梯度的磁场加以结合,即改变穿过样本的磁场强度。这样就有无数二维的图像,彼此重叠后就得到样本内部空间的三维图像。 这正是劳特布尔和曼斯菲尔德的研究成果:把物体放置在一个稳定的磁场中,再加上一个不均匀的磁场(即有梯度的磁场),用适当的电磁波照射物体,这样根据物体释放出的电磁波就可以绘制出内部图像了。 对人体无创伤无辐射的检测工具 当诺贝尔医学奖揭晓时,相信《自然》杂志要为30年前险些犯下的大错而捏一把汗。1973年,在劳特布尔发表关于核磁共振成像技术的重要论文之初,《自然》杂志完全没有将这一成果当一回事儿,多亏劳特布尔花了很大的功夫说服编者,才好不容易使他们同意将这一成果发表。 作为对探测外科手术的安全替代,核磁共振成像仪在今天特别受欢迎,已经被用于扫描关节、脑部和其它重要器官。与将人体暴露在电离辐射的潜在危险下的X光检测(即CT)不同,核磁共振成像只通过磁场和电磁波脉冲研究人体,在生物学上是无害的。此外,X射线虽然能提供极好的骨骼和牙齿图片,但却在检测身体其它部位遇到麻烦,相比之下,核磁共振成像能提供包括脑部和脊髓在内的软组织的高清晰度的图像,这些组织均藏在头骨和脊椎骨以及位于关节内表面的软骨下。 目前核磁共振成像仪在全世界得到初步普及。2002年,全球使用的核磁共振成像仪共有2.2万台。而在北京天坛医院——最早引起核磁共振成像仪的单位之一,已从最初的一台,发展到现在拥有4台成像仪的规模。天坛医院的神经影像中心主任高培毅指出,目前核磁共振成像仪的需求量很大,每天平均接受诊断的患者大概有80人左右。而在早些年,甚至曾经出现过患者为了接受核磁共振成像检测而等1个月的情况。 曾经让《自然》杂志不屑一顾的核磁共振成像技术,如今展现出了不容小觑的发展潜力。 面临成本过高的困境 在越来越多的人受益于核磁共振成像检测的同时,潜在的问题也逐渐表现出来。在张一鸣看来,核磁共振成像仪面临着进一步普及的难题。 一方面是由于核磁共振成像仪的造价过高。张一鸣为此专门做了相关的统计,全球各大公司所生产的医用核磁共振成像仪中,价格最高的要达到1900万元,最便宜的,也要360万元。 而核磁共振成像仪的产量也相当有限。据统计,1996年的产量为1450台,1999年,全球新装核磁共振成像仪产量也仅为2170台,所增长的数量相当有限。 而目前在我国,共有500多台核磁共振成像仪,局限于省级三甲以上级别的医院。张一鸣认为,这远远无法满足目前国内的实际需要。 对于相当一部分人来说,接受一次核磁共振成像检测,仍然是一件颇为奢侈的事情。据高培毅介绍,目前按照统一的医药标准,患者接受一次核磁共振成像检查,从拍片、上药到出片子,最少要花费1400元左右。而相比之下,做一次CT检查,平均花费不过几百元而已。(陈静)《新闻周刊》2003年10月29日

  • 核磁共振成像清晰显示太阳热量传输过程 太阳黑子和磁场产生的现存解释受到挑战

    中国科技网讯 据物理学家组织网7月9日报道,一个联合科研团队创建了有关太阳内部等离子体运动的核磁共振成像(MRI),清晰地显示了太阳如何将内部深处的热量传输至表面。相关研究报告发表在近期出版的美国《国家科学院学报》上,其颠覆了我们对太阳热量如何向外传送的固有理解,并向有关太阳黑子和磁场产生的现存解释发起了挑战。 这一研究由美国纽约大学、普林斯顿大学、德国马克斯·普朗克研究所以及美国国家航空航天局(NASA)共同进行。科学家表示,太阳的热量由核心的核聚变产生,通过外部三分之一区域的对流进行传送。然而我们对于这一过程的理解很大程度上十分理论化:太阳并非透明,因此对流不能被直接观察到,因而我们依赖于所知的液体流动相关理论,并将这一理论应用于太阳。 通过显影来理解对流对了解一系列现象极其重要,其中包括太阳黑子的形成,它的温度比太阳表面其他部分的温度要低;也包括太阳磁场,其由太阳内部的等离子体运动所创建。 为给太阳等离子体流拍摄MRI,研究人员检查了由NASA太阳动力学天文台所携带的日震与磁成像仪(HMI)拍摄到的高分辨率太阳表面图像。利用1600万像素的照相机,HMI能够测量由对流引发的太阳表面运动。而一旦科学家捕获到太阳表面精确的运动波,就能计算出无法观测到的等离子体运动。 这些对流运动一般被认为能够支撑太阳外部三分之一区域的大规模环流,从而产生太阳磁场。然而科研人员此次发现,与现存理论相差甚远,太阳的等离子体运动速度约比之前预计的要慢100倍。如果这些对流运动的速度确实如此之慢,那广为接受的太阳磁场产生理论将被打破,不再有强有力的理论能够解释这种磁场为何产生,而我们对于太阳内部物理现象的理解也需得到彻底修正。(张巍巍) 《科技日报》(2012-07-11 二版)

  • 小麦叶片衰老态势核磁共振分析

    背景简介小麦灌浆期叶片的持绿功能期对籽粒产量具有重要意义,是小麦育种专家极为重视的表型特征,目前小麦叶片衰老态势主要通过叶色、绿叶相对面积以及叶绿素荧光等方法来评价前两种方法受观测者的主观感受影响,后者则受太阳辐射等因素影响,且叶室夹具容易对叶片造成损伤低场核磁共振以1H 为探针,可用于探测植物水分生理状态。比如植物叶片的核磁共振T2弛豫特性( NMR T2 Relaxivity) 与含水率、水分分布、蒸腾活性以及水势等密切相关。与其他技术相比,核磁共振技术具有检测快速、检测方式多样、无损和非接触等优点。利用核磁共振T2弛豫谱技术和磁共振成像技术,建立小麦植株的核磁共振活体检测系统,研究小麦叶片含水率、叶绿素含量与核磁共振T2弛豫谱的关系,并在此基础上评价核磁共振T2弛豫谱和磁共振成像技术反映叶片衰老态势的有效性。http://pic.yupoo.com/niumagqw2/FCKpAOb9/13DK4k.png小麦叶片的T2弛豫谱幅度和含水率随日序的变化如图2 所示。5 月下旬为陕229 灌浆乳熟期,该时期倒2 叶进入降解期,叶色开始变黄,而旗叶亦有衰老迹象,叶色亦开始变淡,但是T2 弛豫谱幅度和含水率并未出现明显变化。6 月上旬陕229 灌浆趋近结束,叶片进入衰亡期,T2弛豫谱幅度和含水率均出现显著减小。http://pic.yupoo.com/niumagqw2/FCKpCldR/DRLQ6.png小麦叶片的平均T2弛豫时间和叶绿素含量的日序变化如图3 所示。叶片在衰老前期( 6 月1 日之前) 平均T2弛豫时间逐渐增大,叶绿素含量逐渐减小,旗叶的叶绿素含量大于倒2 叶,而且旗叶的平均T2弛豫时间相对较小; 6 月4 日选取的陕229 植株均有倒2 叶完全衰亡,其平均T2弛豫时间和叶绿素含量均达到最小值,而旗叶仍保持一定的含水率,虽然其叶绿素含量亦基本达到最小值,但平均T2弛豫时间仍未到衰减阶段。http://pic.yupoo.com/niumagqw2/FCKpCqOU/qLGHx.png同时,核磁共振成像技术可以对活体小麦样品进行成像分析http://pic.yupoo.com/niumagqw2/FCKpCyvo/82VIT.png参考文献:“小麦叶片衰老态势核磁共振分析” 《农业机械学报》2014年4月 第45 卷第4

  • 华南师范大学招聘医学核磁共振(MRI)相关人员

    电气工程、物理及其它相关专业硕士研究生以上1从事核磁共振成像设备(MRI)及相关设备的扫描、管理、维护等工作有核磁共振成像设备的使用、操作经验者优先。计算机技术、应用数学、物理、生物医学工程、图像处理及其它相关专业硕士研究生以上1从事核磁共振成像设备(MRI)扫描、数据管理及后处理等工作1. 熟悉计算机网络软硬件及维护;2. 具有较高水平的计算机使用能力,熟练使用计算机编程语言如C、C++、Matlab等从事数据分析应用程序的编程等;3. 有使用SPM软件或相关软件进行核磁共振数据分析经验者优先。医学影像、生物医学工程或其它医学相关专业硕士研究生以上1从事核磁共振(MRI)扫描及日常管理有独立操作核磁共振成像设备经验者优先。接受现场报名或通过电子邮箱报名。联系人:邓老师电话:020-39310316-20邮箱:xiaoyuandeng@gmail.com

  • 【金秋计划】+nmr核磁共振仪实验用设备

    [font=&][size=16px][color=#191919]nmr核磁共振仪(Nuclear Magnetic Resonance Spectrometer,NMR Spectrometer)是一种用于进行核磁共振实验用的科学仪器。它通过应用强磁场和射频脉冲,对物质中的核自旋进行激发和检测,从而获取样品的核磁共振谱图。[/color][/size][/font] nmr核磁共振仪实验用通常由以下主要组件组成: 1.磁体(Magnet):磁体是核磁共振仪的核心部件,产生强大的恒定磁场。高场核磁共振仪通常使用超导磁体,而低场核磁共振仪可能使用永磁体或传统磁体。 2.射频系统(RF System):射频系统产生射频脉冲,并将其传输到样品中,用于激发和探测样品中的核自旋。它包括射频发生器、射频放大器、射频探头等。 3.梯度线圈(Gradient Coils):梯度线圈用于在空间中创建非均匀磁场,从而实现空间定位和成像功能。梯度线圈通常是用于核磁共振成像(MRI)的核磁共振仪的关键组件。 4.控制系统(Control System):控制系统用于控制和操作核磁共振仪的各个组件,包括磁场控制、射频脉冲控制、数据采集和处理等。 5.计算机系统(Computer System):计算机系统用于数据采集、处理和分析,以及仪器控制和实验参数设置。它通常与核磁共振仪的控制系统紧密集成。 nmr核磁共振技术的优点是具有高灵敏度、无需对样品进行处理、可检测水油含量等,因此在食品、农业、生命科学等领域得到了广泛的应用。不同类型的核磁共振仪具有不同的规格和功能,可根据实验需求和研究领域选择适合的仪器。

  • 【分享】核磁共振技术的医学应用

    核磁共振成像(Nuclear Magnetic Resonance Imaging,NMRI),又称磁共振成像(Magnetic Resonance Imaging,MRI),核磁共振(MRI)又叫核磁共振成像技术。是继CT(CT成像是在X射线的基础上运用计算机技术,使平面重叠的X像可以清晰一个平面一个平面的扫描)后医学影像学的又一重大进步。自80年代应用以来,它以极快的速度得到发展。医学家们发现水分子中的氢原子可以产生核磁共振现象,利用这一现象可以获取人体内水分子分布的信息,从而精确绘制人体内部结构,进而发明了这一技术。其基本原理:是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接受器收录,经电子计算机处理获得图像,这就叫做核磁共振成像。   磁共振成像技术是核磁共振在医学领域的应用。人体内含有非常丰富的水,不同的组织,水的含量也各不相同,如果能够探测到这些水的分布信息,就能够绘制出一幅比较完整的人体内部结构图像,核磁共振成像技术就是通过识别水分子中氢原子信号的分布来推测水分子在人体内的分布,进而探测人体内部结构的技术。与用于鉴定分子结构的核磁共振谱技术不同,核磁共振成像技术改编的是外加磁场的强度,而非射频场的频率。核磁共振成像仪在垂直于主磁场方向会提供两个相互垂直的梯度磁场,这样在人体内磁场的分布就会随着空间位置的变化而变化,每一个位置都会有一个强度不同、方向不同的磁场,这样,位于人体不同部位的氢原子就会对不同的射频场信号产生反应,通过记录这一反应,并加以计算处理,可以获得水分子在空间中分布的信息,从而获得人体内部结构的图像。 自从核磁共振诞生起,它就以自已的卓越的成像能力而在医学检查领域占到一席之位。而且核磁共振技术在医学上的应用范围在不断扩大,检查准确率也在不断提高,发挥着某些不可替代的作用。而且,不同型号的核磁共振仪器正在千万的医院中得以应用,为人类的健康造福。人脑是如何思维的,一直是个谜。而且是科学家们关注的重要课题。而利用MRI的脑功能成像则有助于我们在活体和整体水平上研究人的思维。其中,关于盲童的手能否代替眼睛的研究,是一个很好的样本。正常人能见到蓝天碧水,然后在大脑里构成图像,形成意境,而从未见过世界的盲童,用手也能摸文字,文字告诉他大千世界,盲童是否也能“看”到呢?专家通过功能性MRI,扫描正常和盲童的大脑,发现盲童也会像正常人一样,在大脑的视皮质部有很好的激活区。由此可以初步得出结论,盲童通过认知教育,手是可以代替眼睛“看”到外面世界的。 20世纪中叶至今,信息技术和生命科学是发展最活跃的两个领域,专家相信,作为这两者结合物的MRI技术,继续向微观和功能检查上发展,对揭示生命的奥秘将发挥更大的作用。

  • 【金秋计划】+什么是便携式磁共振成像?

    便携式磁共振成像(Portable Magnetic Resonance Imaging,pMRI)是一种小型化和便携化的磁共振成像技术,可以在实验室之外进行现场或移动应用。它是将传统的大型磁共振成像设备缩小并集成到一个便携式系统中的技术。 传统的磁共振成像(MRI)是一种非侵入性的医学成像技术,利用核磁共振原理来生成人体内部的详细图像。它使用强大的磁场和射频脉冲来激发和探测人体组织中的核自旋信号,然后通过计算和图像重建技术生成具有高空间分辨率的图像。 便携式磁共振成像是对传统MRI的一种创新扩展,旨在解决传统设备在大小、成本和便携性方面的限制。它采用了小型化的磁体、射频线圈和控制系统,以及优化的图像处理算法,从而实现了便携式和即时成像的能力。

  • 锡盟信息港为你介绍核磁共振方面的内容

    核磁共振是我们现在医学中应用的比较多的一项技术,锡盟信息港小编今天想要为大家介绍的就是关于核磁共振方面的内容,希望大家简单的了解一下。  核磁共振是磁矩不为零的原子核,在外磁场作用下自旋能级发生塞曼分裂,共振吸收某一定频率的射频辐射的物理过程。核磁共振波谱学是光谱学的一个分支,其共振频率在射频波段,相应的跃迁是核自旋在核塞曼能级上的跃迁。  核磁共振应用:核磁共振成像(MRI)检查已经成为一种常见的影像检查方式,核磁共振成像作为一种新型的影像检查技术,不会对人体健康有影响,但六类人群不适宜进行核磁共振检查:即使安装心脏起搏器的人、有或疑有眼球内金属异物的人、动脉瘤银夹结扎术的人、体内金属异物存留或金属假体的人、有生命危险的危重病人、幽闭恐惧症患者等。不能把监护仪器、抢救器材等带进核磁共振检查室。另外,怀孕不到3个月的孕妇,最好也不要做核磁共振检查。

  • 《核磁共振原理与实验方法》、《磁共振成像原理》两书数字出版了

    《核磁共振原理与实验方法》、《磁共振成像原理》两书数字出版了

    今天到这里来发布一个消息,对坛里各位师生都有用,版主不要认为是广告帖,高抬贵手啊。《核磁共振原理与实验方法》原书由武汉大学出版社出版,ISBN:9787307059894。出版时间:2008-04-01。大32开本,32个印张,精装版,每本定价95元,该书是核磁共振专著。前5章为核磁共振基础知识;第6章是介绍核磁共振谱仪和操作程序;第7和第8章是理论计算方法和表象理论,很有看点;第9章是该书所特有,如想设计新的实验就有必要一读;第10章一维谱,包括谱仪各种指标测试和13C谱编辑;第11章自旋回波和驰豫时间测量;第12 章双共振,重点讨论各种自旋去偶;第13章二维谱,是读者感兴趣的部分; 第14章多量子跃迁,比较专业;第15章供关心固体高分辨的读者一阅;第16章是书中的重点,分析了84个实用脉冲序列,体现了理论与实验相结合的价值。《核磁共振原理与实验方法》适用于从事核磁共振研究的专业人员,应用核磁共振技术做结构分析的相关工作人员,以及大学教师、研究生、科研人。该书2008年出版,很快售罄,一直未再版。http://ng1.17img.cn/bbsfiles/images/2015/04/201504011326_540416_2995925_3.jpg网上对该书需求度很高。现在,两位老师(高汉宾、张振芳)不顾年事已高,重新整理,与时俱进,以数字出版方式,在武汉大学出版社的天线出版网上正式网络出版,出版号: UDPN 978-7-307-01368-1。http://ng1.17img.cn/bbsfiles/images/2015/04/201504011333_540417_2995925_3.jpg http://ng1.17img.cn/bbsfiles/images/2015/04/201504011334_540418_2995925_3.jpg扫一扫同时,两位老师的另一新作《磁共振成像原理》也以数字出版形式出版,出版号: UDPN 978-7-307-01369-8。该书没有纸质出版,数字出版是唯一形式。http://ng1.17img.cn/bbsfiles/images/2015/04/201504011338_540419_2995925_3.jpg http://ng1.17img.cn/bbsfiles/images/2015/04/201504011339_540420_2995925_3.jpg扫一扫该书简介:随着磁共振成像在临床诊断中普遍应用,磁共振影像已为大众所熟悉,希望了解磁共振成像的人与日俱增,为此,需要一本具有一定深度的普及读物供大家阅读和参考。本书从物理角度论述磁共成像原理,全书共分14章。 第一章 磁共振成像概述 第二章 连续与离散傅里叶变换 第三章 离散采样与傅里叶重建像 第四章 稳态κ空间采样 第五章 稳态快速κ空间采样 第六章 κ空间分区采样和回波平面成像(EPI) 第七章 Bloch方程的解与旋密度、T1、T2 的测量 第八章 分辨率、信噪比、对比度 第九章 化学位移谱成像和抑制脂肪信号 第十章 磁场不均匀对图像的影响 第十一章 随机运动、弛豫与扩散 第十二章 运动伪影和速率补偿 第十三章 磁共振血管成像(MRA) 第十四章 磁化率成像与脑功能成像(FMIR)参考文献

  • 小动物核磁共振应用案例分享

    小动物核磁共振应用案例分享案例一:肺部原位肿瘤观察案例二:肥胖鼠脂肪分布观察案例三:大鼠不同器官部位观察使用仪器:[url=http://www.instrument.com.cn/netshow/SH101422/C166279.htm]小动物核磁共振成像仪NM20-060H-I[/url]其他相关应用:[url=http://www.instrument.com.cn/netshow/SH101422/C221935.htm]MiniQMR核磁共振动物体脂定量分析仪_清醒动物体成分分析仪[/url][url=http://www.instrument.com.cn/netshow/SH101422/C261835.htm]核磁共振造影剂分析仪[/url]

  • 【金秋计划】+便携式磁共振成像哪些特点?

    1. 尺寸和重量:便携式磁共振成像设备相对较小、轻便,可以放置在桌面上或移动到需要的地方进行扫描。这使得它们在移动诊断、野外研究和紧急医疗救援等应用中非常有用。 2. 电源和冷却:便携式磁共振成像设备通常使用可充电电池供电,不需要外部电源。此外,一些设备还采用了先进的冷却技术,如液氦或低温制冷系统。 3. 图像质量和功能:尽管便携式磁共振成像设备的磁场强度和性能可能较传统设备低,但它们仍能够提供可接受的图像质量和基本的功能,如解剖结构显示和病变检测。 4. 操作简便性:便携式磁共振成像设备通常具有简化的操作界面和用户友好的控制系统,使其易于使用和操作。

  • 【金秋计划】+什么是磁共振 体成分技术?

    动物体内的体液、脂肪、瘦肉含量往往可以体现动物的健康状况。在已有的动物身体成分测量方法中,传统的全身化学成分分析法是测量身体成分的金标准,但是这种方法过程长、工作量大,并且需要将动物杀死,因此不能对动物进行反复的测量。 其他测定动物体成分技术,如生物电阻抗分析法、双能x射线吸收法、计算机断层扫描等。这些方法都需要对动物进行麻醉或镇静,使实验动物保持绝对不动的状态,但是麻醉或镇静将会带来动物摄食量减少,体温降低等副作用,并且有死亡的风险。 磁共振 体成分技术可以快速、准确、定量的检测小动物在清醒状态下的脂肪、瘦肉含量等。核磁共振成像能直观的看出脂肪的二维空间分布情况,与定量检测数据相结合,为相关科学研究提供全面、深入的数据支持。 磁共振 体成分技术的优势: 1、测试迅速:测试简单、快速、整个测试过程在1min内; 2、样品无需预处理:样品无须麻醉,无须处死; 3、测试结果:测试结果为脂肪含量,肌肉含量,可靠真实且稳定性高、重复性好; 4、适用性: 活体大鼠、小鼠、兔子等小动物均可测量;

  • 低场核磁共振技术发展与应用论坛圆满召开,科技创新推动纽迈走向全球领先品牌

    [b][size=18px]仪器信息网讯 [/size][/b][font=arial, helvetica, sans-serif][size=18px]4月19日,在第十七届中国科学仪器发展年会(ACCSI2024)上,低场核磁共振技术发展与应用论坛在苏州狮山国际会议中心隆重举行。本次论坛的主办方为苏州纽迈分析仪器股份有限公司、中国仪器仪表学会分析仪器分会核磁共振仪器专家组、仪器信息网。论坛汇聚了来自各地的专家学者,共同探讨低场核磁共振技术在各领域的最新研究成果和应用前景。其中,多位业界学者发表了精彩的演讲,分享了他们在各自领域的科研成果和实践经验。[/size][/font][align=center][img=,800,533]https://img1.17img.cn/17img/images/202404/uepic/ffd23a24-256e-4839-8384-2ee98aeccd66.jpg[/img][/align][align=center][img=,800,533]https://img1.17img.cn/17img/images/202404/uepic/6c808254-2e4b-49dd-93b4-d58515e62f72.jpg[/img][/align][align=center][b]主持人:燕军博士(苏州纽迈分析博士后工作站站长/苏州泰纽测试服务有限公司总经理)[/b][/align][align=center][img=,800,533]https://img1.17img.cn/17img/images/202404/uepic/0039802d-7853-4007-a10d-7c7befd2fd1e.jpg[/img][/align][align=center][b]苏州纽迈分析仪器股份有限公司总经理 李向红[/b][/align][align=center][img=,800,533]https://img1.17img.cn/17img/images/202404/uepic/67887e95-dc59-4116-92c5-d070ff126d71.jpg[/img][/align][align=center][b]姚叶锋(华东师范大学上海市磁共振重点实验室主任/研究员)[/b][/align][align=center][b]报告题目:低场核磁共振技术在高分子材料研究中的一些应用[/b][/align][size=18px]姚叶峰研究员分享到,低场核磁虽然场强低,但是能力不低,可以做很多高场核磁做不了的事情。第一,可研究高分子材料非晶/结晶界面的精细相的结构变化,可以通过自旋扩散过程,实现对固体聚乙烯中非晶/结晶界面相信号的选择性观测。第二,还可以通过[font=等线][sup][size=13px]1[/size][/sup][/font]H NMR区分出与无机材料有不同相互作用的材料。第三,低场核磁还可以观测高分子交联密度。高分子网络结构缺乏有效观测手段,相对于流变技术,通过[font=等线][sup][size=13px]1[/size][/sup][/font]H CPMG研究高分子缠结和交联。变回波[font=等线][sup][size=13px]1[/size][/sup][/font]H CPMG序列克服传统CPMG的缺点。第四,[font=等线][sup][size=13px]1[/size][/sup][/font]H DQ NMR可观测高分子缠结。姚博士指出,核磁共振技术在高分子结构分析和检测方面能发挥重要作用,还有更多应用有待开发,而且,低场核磁共振的发展方向应该是以特定应用为导向:便携、易用、灵敏。[/size][align=center][img=,800,533]https://img1.17img.cn/17img/images/202404/uepic/88b41a66-cc89-47f7-9168-78e9995f5e3a.jpg[/img][/align][align=center][b]朱峰(中国石化石油勘探开发研究院无锡石油地质研究所副主任/助理研究员)[/b][/align][align=center][b]报告题目:低场核磁共振技术在非常规油气储层评价中的应用研究[/b][/align][size=18px]朱峰博士阐述了低场核磁共振技术在非常规油气藏勘探开发中的重要作用,尤其是在提高采收率、降低开采成本等方面的优势。[/size][size=18px]朱博士表示,针对实验室泥页岩二维核磁共振定量分析,优选谱图划分方案,对泥页岩中油、水同时实现快速无损定量评价,应用在四川盆地侏罗系等页岩含油性评价中,和现有油、水定量方法结果具有较好的可对比性。应用超临界二氧化碳驱替与NMR组合的实验方法评价页岩油可动性,并结合地化参数初步建立了相关可动性评价指标。[/size][align=center][img=,800,533]https://img1.17img.cn/17img/images/202404/uepic/8d9a5a07-fab5-44b2-a5dd-df7a220d37d6.jpg[/img][/align][align=center][b]张通博士(安徽理工大学副教授)[/b][/align][align=center][b]报告题目:考虑原位应力对油饱和煤中动态孔隙-裂缝演变和多相渗流影响的实验研究[/b][/align][font=arial, helvetica, sans-serif][size=18px]张通博士分享到,煤层气的产出涉及气体在多尺度孔裂隙结构裂隙中的解吸、传输和迁移,以及气/液两相流体与孔裂隙结构相互作用等影响。在这项研究中,基于自行开发的LF-NMR三轴加载系统,对饱油煤中的孔隙-裂隙演变和气-液流动进行了定量研究。[b]通过横向弛豫谱(T 2)和核磁共振成像(NMRI)分析了应力扰动下的动态裂隙孔隙发育和气-液两相流体迁移与分布特征。这些发现为煤层气排水领域的模型开发和工程实践提供了基本参考。[/b][/size][/font][align=center][img=,800,533]https://img1.17img.cn/17img/images/202404/uepic/c724a322-3b7b-4062-bff0-66ab6dbb1611.jpg[/img][/align][align=center][b]徐吉钊博士(中国矿业大学副教授)[/b][/align][align=center][b]报告题目:低场核磁共振技术在煤矿领域应用的研究进展[/b][/align][size=18px]现有煤体孔隙表征手段有压汞法、N[font=等线][sub][size=13px]2[/size][/sub][/font]/CO[font=等线][sub][size=13px]2[/size][/sub][/font]吸附法、SEM、CT扫描和核磁共振NMR等,在可重复性、样本尺寸、测孔范围、测试精度和测试时间等方面各有特点。NMR更好地适用于较大尺寸试样的孔隙表征,且具有测试速度快、精度高、定量无损的优势。弛豫信号与H质子含量的定量关系可反映岩石孔隙度、渗透率和润湿性等[/size][size=18px]徐博士还分享了七个测试案例,比如,甲烷吸附及注气置换吸附:低场核磁共振技术可以动态监测甲烷在煤样中的运移和分布,相较于传统体积法,对甲烷吸附/解吸的测试更加精细。受仪器测试精度影响,部分弛豫时间0.1ms的吸附甲烷不被检测到 煤中的原始水分信号会对测试结果产生干扰 当甲烷信号量较少时,核磁成像精度受限。[/size][size=18px]徐博士还列举了一些应用展望:[/size][size=18px](1)二维核磁共振在流体识别方面独具优势,通过二维核磁共振提升对含瓦斯、水煤的流体识别。利用大数据和机器学习的核磁数据深度分析是测井领域的研究热点,值得在煤物性表征方面推广,提高数据的精确度和分析效率。[/size][size=18px](2)目前大多数的核磁测试都是常温常压条件,煤样不受载,与深部煤层的高温高压环境相差较远,测试结果必然存在较大误差 对低场核磁共振分析仪配套温压加载、流体注入装置和电磁兼容设计,通过实时测试与成像动态监测煤样在三轴应力、高温条件下致裂损伤过程的孔隙结构演化,实现煤体内部流体运移可视化。[/size][size=18px](3)煤矿井下有大量的钻孔,取钻屑简单方便,利用钻屑和煤心T?谱的相似性,取合适粒径的钻屑在煤矿现场进行快速测试,可以获取大量丰富的煤层物理性质信息。[/size][size=18px](4)开发微型核磁共振分析仪,在煤矿井下对钻屑进行快速测试分析,甚至在煤层钻孔中实时采集水或者瓦斯分布信息。[/size][align=center][img=,800,533]https://img1.17img.cn/17img/images/202404/uepic/5db77b00-7490-4af3-a8fb-5d61670cc234.jpg[/img][/align][align=center][b]赵新礼博士(常州大学石油与天然气工程学院讲师)[/b][/align][align=center][b]报告题目:基于分层核磁技术的多孔介质精细化表征及重构建模方法研究[/b][/align][size=18px]赵博士介绍到,核磁测试技术能够快速高效地实现对多孔介质储集和渗流特性信息的捕捉,其中SE-SPI(Spin-Echo SPI)序列将岩心划分为多层,并通过编码方式获取各层的T2分布谱。[/size][size=18px]赵博士利用spatially resolved T2 distributions measurement,结合分形统计模型,提出了一种新的用于重构多孔介质的精细化表征建模方法。[/size][size=18px]通过REV-LBM对重构的精细化多孔介质模型进行了相关的流动模拟,模拟结果证明了这一新方法生成的多孔介质模型能够在较小的误差范围内复现出原始样品的宏观储集和渗流参数,这一误差远远小于现有数字岩心技术重构模型所产生的误差。[/size][size=18px]新的多孔介质精细化表征及重构建模方法大大缩短了现有多孔介质重构方法(图像分析及数字岩心)的实验测试周期,降低了相应的实验成本。此外,由于新方法依托于核磁测试技术,因而操作简便,易于实现,具有广阔的发展前景。[/size][align=center][img=,800,533]https://img1.17img.cn/17img/images/202404/uepic/76aba701-2110-414c-8c3d-0851d960b38b.jpg[/img][/align][align=center][b]吴飞(苏州纽迈分析仪器研发经理)[/b][/align][align=center][b]报告题目:多孔介质核磁共振岩石物理技术发展现状[/b][/align][size=18px]最后,吴飞博士作为企业代表,在会上详细梳理了NMR测井仪器发展时间线。从他的分享中可以看到,2001年,核磁钻井仪就已经出现,2008年,纽迈科技开始商业化推广国产MicroMR系列NMR岩心分析仪,2017年,纽迈科技新一代NMR岩心分析仪开始商业化销售。[/size][size=18px]此次论坛的成功举办,不仅促进了学术交流,也为低场核磁共振技术的发展注入了新的活力。线上线下与会者纷纷提问,显示对低场核磁共振技术及其应用场景和前景的浓厚兴趣,此次论坛将深化产学研合作,促进低场核磁共振技术的进步与发展。我们相信,在不久的将来,这一技术将在更多领域展现其独特魅力,在各个领域给科研和应用者带来更多惊喜和福祉。[/size][b][size=18px]论坛主办方苏州纽迈分析仪器股份有限公司简介:[/size][/b][size=18px]纽迈成立于2003年,专注于“低场核磁共振”技术开发及应用推广,具备强大的自主研发能力、卓越的生产服务水平和完备成熟的运营体系,是国家高新技术企业。经过二十多年的发展,纽迈分析独立自主开发的多款低场核磁共振仪器打破了国外进口设备的垄断,已成功的应用于能源岩土、食品农业、生命科学、材料与教学等领域,获得业界的一致认可,取得多项国家奖项和资质认证。[/size][size=18px]据悉,低场核磁共振技术,目前真正投入巨资来展开研发的,不是布鲁克,也不是牛津,而是纽迈科技。纽迈公司产品在与强大有力的对手竞争的时候,主要依靠性价比来获取竞争优势,根据用户需求定制产品,能够及时提供原厂级的现场快速维修,并人性化地提供用户应用培训服务,与进口仪器价格差异不大的同类型仪器,通过多提供用户一些分析测试应用功能,增强仪器的功能,由此提高性价比以获取竞争优势;目前纽迈的愿景是成为低场核磁共振领域全球领先的品牌。[/size][b][size=18px]拓展阅读:[/size][/b][size=18px]祝贺!纽迈分析仪器董事长杨培强荣获“2023年度科学仪器行业研发特别贡献奖”,2024年[/size][url]https://www.instrument.com.cn/news/20240418/714362.shtml[/url][size=18px]以“磁共振+”敲开工业市场大门——视频访苏州纽迈分析仪器股份有限公司董事长杨培强,2019年[/size][url]https://www.instrument.com.cn/news/20190513/485103.shtml[/url][size=18px]纽迈分析与低场核磁技术的“共振”——访苏州纽迈分析仪器股份有限公司董事长杨培强,2018年[/size][url]https://www.instrument.com.cn/news/20180628/466646.shtml[/url][来源:仪器信息网] 未经授权不得转载[align=right][/align]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制