当前位置: 仪器信息网 > 行业主题 > >

非接触型小量程直流扭矩测量传感器

仪器信息网非接触型小量程直流扭矩测量传感器专题为您提供2024年最新非接触型小量程直流扭矩测量传感器价格报价、厂家品牌的相关信息, 包括非接触型小量程直流扭矩测量传感器参数、型号等,不管是国产,还是进口品牌的非接触型小量程直流扭矩测量传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合非接触型小量程直流扭矩测量传感器相关的耗材配件、试剂标物,还有非接触型小量程直流扭矩测量传感器相关的最新资讯、资料,以及非接触型小量程直流扭矩测量传感器相关的解决方案。

非接触型小量程直流扭矩测量传感器相关的资讯

  • 兰光发布C612M全自动瓶盖扭矩测量仪 智能瓶盖扭力计新品
    C612M全自动瓶盖扭矩测量仪 智能瓶盖扭力计瓶装包装产品、吸嘴包装产品、软管包装产品的瓶盖锁紧、开启扭矩值大小,是生产单位离线或在线重点控制的工艺参数之一。瓶盖的扭矩值是否合适,对产品的中间运输以及最终的消费都具有很大的影响。C612M全自动瓶盖扭矩测量仪—— Labthink全新一代“机械手”式全自动扭矩仪,专业测量瓶装产品瓶盖的锁紧、开启扭矩值大小,其测量精度高,稳定性好,是生产过程中不可或缺的试验设备。产品特点:1、双重模式,创新机械手全自动测试:提供开启力和锁紧力双重试验模式创新的机械手全自动夹紧、开启、锁紧专利技术,避免人工操作误差,利于结果的精准度与重复性瓶盖夹持力、锁紧力,瓶盖旋转速度可自由设定调节机械手自动锁紧,锁紧值可自由设定,锁紧偏差<0.01 Nm,远优于人工锁紧过载保护、自动清零、故障提示等智能设计,保障操作安全手动测试、自动测试可自由选择2、超高测试精度,超低测试下限:准确且可重复性的测试0.005 Nm 以下超小扭矩值试样,分辨率高达0.0001 Nm 峰值自动保持,保证测试结果被准确记录峰值自动判断等多种模式,满足任意试样检测需求配件均采用世界知名品牌进口元器件,性能稳定可靠原装进口气动控制系统,具有超低故障率和超长使用寿命,保障测试精度3、全新• 专利• 智能,全触控操作系统:工业级触屏、一键式操作、直观的操作界面,可远程升级与维护中英双语操作界面,满足不同语言要求试验曲线实时显示,数据智能统计,方便快速查看检测结果具有数据自动存储、掉电自动记忆功能,防止数据丢失历史数据可进行快速查看、打印内置数据存储可达1200条,满足大数据量存储的需求全球通用的八种试验单位可自由切换多级用户权限管理,密码登录微型打印机和USB通用数据接口,方便数据输出和传递(可选)符合中国GMP对数据可追溯性的要求,满足医药行业需要(可选)兰光独有的DataShieldTM数据盾系统,方便数据集中管理和对接信息系统(可选)参照标准:GB/T 17876、ASTM D2063、ASTM D3198、ASTM D3474、BB/T 0025、BB/T 0034测试应用:基础应用:瓶装容器——适用于瓶装包装食品、药品(螺纹连接)的瓶盖锁紧、开启的扭矩值测试,如饮料瓶、药瓶等软管包装产品——适用于软管包装食品、药品、化妆品(螺纹连接)的瓶盖锁紧、开启的扭矩值测试,如眼药水瓶、护手霜、鞋油等扩展应用:螺纹锁紧、开启的扭矩值——适用于螺母与螺栓锁紧、开启的扭矩值测试(需特殊定制)保温瓶、保温杯产品——适用于保温瓶、保温杯(螺纹连接)的瓶盖锁紧、开启的扭矩值测试技术参数:传感器规格:5Nm(标配);20Nm、40Nm (可选)扭矩精度:示值±0.5%(传感器规格的10%-100%);±0.05%FS(传感器规格的0%-10%)扭矩分辨率:0.0001 Nm瓶身夹持范围:Φ5 mm~Φ170 mm 瓶盖夹持范围:Φ10 mm~Φ80 mm 瓶身高度:20mm~400mm试样夹持旋转:气动自动最大开启/锁紧扭矩:2 Nm(其他可定制)气源:空气(气源用户自备)气源压力:0.7 MPa(101.5psi)统计数量:0~999件(可任意设定)外形尺寸:550mm(L) x 365mm(W) x 1150mm(H)电源:220VAC±10% 50Hz / 120VAC±10% 60Hz二选一净重:39 kg产品配置:标准配置:主机、夹紧杆(4个)、夹紧块(1对)、标定组件(不含校验砝码)、Ф4mm聚氨酯管(2m)选购:微型打印机、专业软件、空压机GMP计算机系统要求、DataShieldTM数据盾备注:本机气源接口系Ф4mm聚氨酯管;气源用户自备创新点:C612M全自动瓶盖扭矩测量仪——Labthink全新一代“机械手”式全自动扭矩仪,专业测量瓶装产品瓶盖的锁紧、开启扭矩值大小,其测量精度高,稳定性好,是生产过程中不可或缺的试验设备。 (1)双重模式,创新机械手全自动测试——提供开启力和锁紧力双重试验模式;创新的机械手全自动夹紧、开启、锁紧专利技术,避免人工操作误差,利于结果的精准度与重复性; (2)超高测试精度,超低测试下限——准确且可重复性的测试0.005 Nm 以下超小扭矩值试样,分辨率高达0.0001 Nm; (3)全新的全触控操作系统——工业级触屏、一键式操作、直观的操作界面,可远程升级与维护;中英双语操作界面,满足不同语言要求; C612M全自动瓶盖扭矩测量仪 智能瓶盖扭力计
  • “高端装置扭矩速度测量”重大仪器项目启动
    2月28日,国家重大科学仪器设备开发专项&mdash &mdash &ldquo 高端动力装置扭矩和速度测量仪器设备的研发与应用&rdquo 项目启动会,在中国计量科学研究院(以下简称&ldquo 中国计量院&rdquo )召开。会议由国家质检总局科技司主持,科技部条财司副司长吴学梯、国家质检总局科技司副司长王越薇、中国计量院副院长宋淑英等领导及项目监理组、总体组、技术专家委员会、用户委员会和管理办公室等近百人参加了本次启动会。   图1:科技部条财司副司长吴学梯在启动会上讲话   启动会上,科技部条财司副司长吴学梯介绍了国家重大科学仪器设备开发专项的设立背景和目标定位,要求&ldquo 高端动力装置扭矩和速度测量仪器设备的研发与应用&rdquo 项目组瞄准产品开发目标,积极推进产业化 更加关注产品的知识产权 按照项目管理办法,落实好法人负责制的各项要求 严格进行项目经费管理,并希望相关项目参与单位加强协作,潜心开发,实现科学仪器设备自主创新。同时他对该项目利用信息化系统的创新管理方式表示肯定,并希望其能够得到进一步推广运用。   图2:项目总体组组长、中国计量院副院长宋淑英讲话   项目总体组组长、中国计量院副院长宋淑英对与会领导、专家对中国计量院科技事业发展的关心支持和帮助表示感谢。她指出,&ldquo 高端动力装置扭矩和速度测量仪器设备的研发与应用&rdquo 项目是近年来中国计量院在重大仪器方面获得的第3个国家支持项目。作为项目牵头单位,中国计量院将继续做好支持和服务工作,与各项目参与单位团结协作,确保项目顺利实施,为我国摆脱高端测量仪器完全依赖进口的局面作出应有贡献。   图3:项目负责人、中国计量院力学与声学研究所所长张跃汇报项目总体情况   项目负责人、中国计量院力学与声学研究所所长张跃研究员就项目背景、总体目标、任务分解、预期成果及进度和经费安排等相关情况进行了汇报。项目办公室汇报了项目实施管理办法 各任务负责人分别汇报了任务的研究内容、考核指标、实施方案、进度及经费安排等。   与会专家在认真听取汇报的基础上,展开热烈讨论,对项目进行点评,并提出实施意见建议。   高端动力装备在装备制造业中占有举足轻重的地位,是各种重大成套技术装备的核心组成部分,例如,风力发电机组、大型舰船推进系统、高速列车动力系统及转向架、航空发动机、高档数控机床等。高端动力装备对国民经济的发展起着突出的作用,同时也代表了我国先进制造业,特别是装备制造业的能力和水平。   而目前,我国大量的扭矩和速度参数测量系统,包括功率、最大扭矩、最高车速、加速度等,尤其是高端测量仪器依赖进口,并无法在国内溯源,严重制约了我国自主动力扭矩和速度测量仪器的可靠计量、研发与应用,从而制约了我国高技术含量、高国际竞争力的核心工业产品的自主研制和生产,开展具有自主知识产权的高端动力装置扭矩和速度测量仪器设备的研制需求迫切。   该项目总体目标为:开展高端动力装置机械功率关键参数扭矩和速度精密测量技术的研究,攻克扭矩标准装置中高精密空气轴承支撑部件的核心技术及双天线雷达测速收发模块的关键技术。研究建立具有自主知识产权的高端动力装置的扭矩测量仪器(20kNm扭矩标准机)、高端动力装置速度测量仪器(双天线雷达测速仪器)和加速度计动态特性校准装置,填补国内空白,达到高端动力装置扭矩测量和速度测量的国际先进水平。   据介绍,项目研制成果将有望为我国高端动力装备扭矩与速度等功率测量建立可靠的计量溯源体系,并将在仪器开发、产业化示范、节能减排等方面起到重要的推动作用。   图4:启动会现场   该项目的组织实施单位为国家质检总局,由中国计量科学研究院牵头,并负责其中4个任务,任务承担单位还包括清华大学、中国船舶重工集团第七〇四研究所、浙江省计量科学研究院、北京化工大学、辽宁省计量科学研究院、湖南省计量科学研究院、苏州苏试试验仪器股份有限公司与长沙普德利生科技有限公司等8家单位。项目起止时间为2012年10月至于2016年9月。主要包括12个任务:20kNm高准确度扭矩标准装置的研发、高准确度大质量参数测量装置的研制、高精度宽量程多普勒雷达测速技术的研究及其测量装置的研制、加速度计动态特性计量技术的研究与校准装置的建立、空气轴承支撑技术的研发、无扰动质量参数自动测量技术的研发、加速度计动态模型及参数辨识的研究、测速测距雷达测速仪在交通领域的应用研究、空气轴承支撑技术在高准确度扭矩标准机及船舶装配质量控制中的应用、安全气囊加速度计校准装置在汽车行业的应用以及双天线雷达测速仪在高铁行业的应用研究等。
  • “高端动力装置扭矩和速度测量仪器设备的研发与应用”项目启动
    2月28日,国家重大科学仪器设备开发专项——“高端动力装置扭矩和速度测量仪器设备的研发与应用”项目启动会,在中国计量科学研究院(以下简称“中国计量院”)召开。会议由国家质检总局科技司主持,科技部条财司副司长吴学梯、国家质检总局科技司副司长王越薇、中国计量院副院长宋淑英等领导及项目监理组、总体组、技术专家委员会、用户委员会和管理办公室等近百人参加了本次启动会。 科技部条财司副司长吴学梯在启动会上讲话   启动会上,科技部条财司副司长吴学梯介绍了国家重大科学仪器设备开发专项的设立背景和目标定位,要求“高端动力装置扭矩和速度测量仪器设备的研发与应用”项目组瞄准产品开发目标,积极推进产业化 更加关注产品的知识产权 按照项目管理办法,落实好法人负责制的各项要求 严格进行项目经费管理,并希望相关项目参与单位加强协作,潜心开发,实现科学仪器设备自主创新。同时他对该项目利用信息化系统的创新管理方式表示肯定,并希望其能够得到进一步推广运用。   项目总体组组长、中国计量院副院长宋淑英对与会领导、专家对中国计量院科技事业发展的关心支持和帮助表示感谢。她指出,“高端动力装置扭矩和速度测量仪器设备的研发与应用”项目是近年来中国计量院在重大仪器方面获得的第3个国家支持项目。作为项目牵头单位,中国计量院将继续做好支持和服务工作,与各项目参与单位团结协作,确保项目顺利实施,为我国摆脱高端测量仪器完全依赖进口的局面作出应有贡献。   项目负责人、中国计量院力学与声学研究所所长张跃研究员就项目背景、总体目标、任务分解、预期成果及进度和经费安排等相关情况进行了汇报。项目办公室汇报了项目实施管理办法 各任务负责人分别汇报了任务的研究内容、考核指标、实施方案、进度及经费安排等。   与会专家在认真听取汇报的基础上,展开热烈讨论,对项目进行点评,并提出实施意见建议。   高端动力装备在装备制造业中占有举足轻重的地位,是各种重大成套技术装备的核心组成部分,例如,风力发电机组、大型舰船推进系统、高速列车动力系统及转向架、航空发动机、高档数控机床等。高端动力装备对国民经济的发展起着突出的作用,同时也代表了我国先进制造业,特别是装备制造业的能力和水平。   而目前,我国大量的扭矩和速度参数测量系统,包括功率、最大扭矩、最高车速、加速度等,尤其是高端测量仪器依赖进口,并无法在国内溯源,严重制约了我国自主动力扭矩和速度测量仪器的可靠计量、研发与应用,从而制约了我国高技术含量、高国际竞争力的核心工业产品的自主研制和生产,开展具有自主知识产权的高端动力装置扭矩和速度测量仪器设备的研制需求迫切。   国家重大科学仪器设备开发专项“高端动力装置扭矩和速度测量仪器设备的研发与应用”项目总体目标为:开展高端动力装置机械功率关键参数扭矩和速度精密测量技术的研究,攻克扭矩标准装置中高精密空气轴承支撑部件的核心技术及双天线雷达测速收发模块的关键技术。研究建立具有自主知识产权的高端动力装置的扭矩测量仪器(20kNm扭矩标准机)、高端动力装置速度测量仪器(双天线雷达测速仪器)和加速度计动态特性校准装置,填补国内空白,达到高端动力装置扭矩测量和速度测量的国际先进水平。   据介绍,项目研制成果将有望为我国高端动力装备扭矩与速度等功率测量建立可靠的计量溯源体系,并将在仪器开发、产业化示范、节能减排等方面起到重要的推动作用。   该项目的组织实施单位为国家质检总局,由中国计量科学研究院牵头,并负责其中4个任务,任务承担单位还包括清华大学、中国船舶重工集团第七〇四研究所、浙江省计量科学研究院、北京化工大学、辽宁省计量科学研究院、湖南省计量科学研究院、苏州苏试试验仪器股份有限公司与长沙普德利生科技有限公司等8家单位。项目起止时间为2012年10月至于2016年9月。主要包括12个任务:20kNm高准确度扭矩标准装置的研发、高准确度大质量参数测量装置的研制、高精度宽量程多普勒雷达测速技术的研究及其测量装置的研制、加速度计动态特性计量技术的研究与校准装置的建立、空气轴承支撑技术的研发、无扰动质量参数自动测量技术的研发、加速度计动态模型及参数辨识的研究、测速测距雷达测速仪在交通领域的应用研究、空气轴承支撑技术在高准确度扭矩标准机及船舶装配质量控制中的应用、安全气囊加速度计校准装置在汽车行业的应用以及双天线雷达测速仪在高铁行业的应用研究等。
  • 全自动饮料瓶防盗瓶盖扭矩测试仪相较于手动扭矩仪的优势在哪里
    在快速发展的饮品行业中,瓶盖扭矩的精准控制对于保障产品质量和消费者体验至关重要。传统的手动扭矩测试方法不仅效率低下,而且难以保证测试结果的准确性和一致性。因此,全自动饮料瓶防盗瓶盖扭矩测试仪的出现,无疑为行业带来了一场跨越性的升级。相较于传统的手动扭矩测试方法,全自动饮料瓶防盗瓶盖扭矩测试仪具有以下显著优势:提高效率:自动化测试仪可以连续不断地进行测试,无需等待手动操作的间隔时间,显著提高了测试效率。准确性:全自动测试仪通过精密的传感器和控制系统来施加和测量扭矩,减少了人为操作的误差,确保了测试结果的准确性和可重复性。数据记录与分析:全自动测试仪通常配备有数据记录功能,能够自动记录每次测试的结果,便于后续的数据分析和质量控制。减少人力成本:自动化设备减少了对操作人员的依赖,降低了人力成本,特别是在大规模生产和测试中,这一优势尤为明显。标准化测试:全自动测试仪按照预设的程序和标准进行测试,保证了测试过程的一致性,避免了手动测试中可能出现的主观判断和操作差异。提高安全性:自动化设备减少了操作人员与测试样品的直接接触,降低了工伤的风险。易于操作:全自动测试仪通常配备有用户友好的操作界面,简化了操作流程,使得即使是非专业人员也能轻松进行测试。扩展功能:一些全自动测试仪还具备扩展功能,如与计算机连接进行更复杂的数据分析,或者与其他生产线自动化设备集成,实现更高效的生产流程。环境适应性:自动化设备通常设计得更加坚固耐用,能够适应不同的生产环境和条件。维护简便:虽然全自动测试仪的初始投资可能较高,但长期来看,由于减少了人为操作和提高了测试效率,维护成本相对较低。综上所述,全自动饮料瓶防盗瓶盖扭矩测试仪通过其自动化、高精度、易于操作和数据分析等优势,为饮料瓶盖扭矩测试提供了一种高效、可靠的解决方案,有助于提高产品质量和生产效率。
  • 追求完美,我们始终在路上!——PPMS最全测量功能概览
    说起综合物性测量系统-PPMS大家都不陌生,自从1994年台PPMS诞生以来,已经有超过1000台PPMS工作在全球各大实验室。科学领域的许多重要工作背后都有PPMS的贡献。从初的湿式系统到现在的全干式系统,从磁学、电学测量到多领域高精度测量,PPMS诞生以来从未停下过前进的脚步。无论您是我们PPMS的用户还是关注者,可能您尚未了解PPMS的全部功能。今天我们将为您列举目前PPMS所有测量功能,敬请收藏。图1 综合物性测量系统-PPMS一、 主机系统——兼容并蓄、博采众长基于有的快速扫场和连续控温技术(PPMS拥有快速、稳定的变温、扫场技术),PPMS主机已成为性能好的低温磁场平台。但是Quantum Design的追求远不止于此,PPMS的主机系统自从诞生以来不断的根据用户需求进行优化。目前,PPMS DynaCool主机已经集成了高真空和磁屏蔽,全新的CAN式模块结构设计摆脱了系统对电脑的过度依赖。针对LabVIEW预留的开放接口使得PPMS系统兼具了MultiVu的稳定性与LabVIEW的拓展性。为了满足不同需求,PPMS的系统已经包含9T、12T、14T、16T等多种场强以及湿式、Reliquefire、EverCool和DynaCool多种型号。从综合测量系统到好的通用平台,PPMS在雄厚的技术基础上兼容并蓄、博采众长,坚持以市场需求为导向,广泛采纳用户的建议,以开放的胸怀为全球客户打造好的实验平台。图2 完全无液氦综合物性测量系统PPMS® DynaCool™ 二、 磁学功能振动样品磁强计——电磁马达,智能测量PPMS的振动样品磁强计采用磁悬浮马达,完全避免了机械振动马达带来的测量噪音,同时避免了机械磨损。采用高精度的光学编码定位技术使得振幅、振动频率连续可调,并且在测量过程中自动校准中心位置。的设计、智能的软件、先进的算法使得磁矩测量精度能够真正的达到10-7量。VSM高温炉选件——炉火纯青、万分传统的磁性测量设备只能测量样品在室温附近或低温的磁学特性。少有的高温设备要么温度不能太高,要么结构复杂精度太差。Quantum Design专门为磁性测量设计的高温炉选件可以将磁性测量的温度提高到1000K,控温精度可达0.5K,可以快速升降温,轻松测量镍等高Tc材料的居里温度。磁性测量精度优于10-6emu.光诱导磁测量选件——波长可调,洞察秋毫为了研究光敏材料在光激发下磁性的变化,QuantumDesign推出了高精度的光磁测量选件。采用高色温的氙灯光源,利用波片滤波。高性能的光纤样品杆可以轻松将聚焦光引入样品腔。利用该选件可以测量变温、变场环境中,不同波长光激发下样品的磁性变化。这对于研究材料中能带分布对磁性的影响,以及磁性的机理具有重要意义。新型交流磁化率选件——超高灵敏度,频率可调全新的ACMS II采用特的探测线圈和VSM线性磁力驱动马达,一次测量就可以获得实部虚部分开的交流磁化率以及直流磁化强度的信号。采用锁相技术和五点测量模式,有效地消除了温度漂移对测量的影响,一次降温可以同时测量多个频率的磁性。10Hz-10KHz频率范围,15Oe的交流场,高达10-8emu的测量精度使得ACMS II的测量精度可以媲美SQUID。稀释制冷机交流磁化率选件——低温的磁性测量方案低至50mK的限低温、0.002 - 4Oe的交流场幅值、10Hz-10KHz可变频率、10-7emu的灵敏度使得稀释制冷机交流磁化率选件成为上低温的磁性测量方案,更是目前自旋液体等领域的有力测量手段。扭矩磁强计——磁矩与各向异性的测定对磁性材料的研究除了磁矩测量以外对磁各向异性的测量也具有重要意义,特别对于单晶或薄膜材料而言磁各向异性尤为重要。该选件由Quantum Design与IBM联合设计,采用超高灵敏度的压电传感器和平衡电桥来测量样品在磁场中受到的力矩。样品托芯片可产生标准扭矩来校准重力影响和温度漂移产生的影响。扭矩测量时可以进行温度扫描得到扭矩随温度的变化。扭矩磁强计的扭矩精度可达10-9Nm,磁矩灵敏度可达10-8emu,灵敏度可以媲美SQUID。一阶翻转曲线——测量材料磁结构、定量分析材料的组分基于智能化控制技术,Quantum Design全新推出的一阶翻转曲线功能省去了传统人工测量方案的繁琐。高精度的测量数据为后续分析提供了坚实保障。该功能可以定性/定量测量材料的磁翻转机制、计算各磁性翻转相的比例、计算矫顽场与相互作用场的强度分布。对于矿物、混合物、复合相、Vortex等材料的研究具有重要意义。磁性测量高压腔——测量材料高压磁性的利器采用等静压装置在材料上施加稳定的压力,利用PPMS测量样品的磁性。增加了用压力来调控材料特性的维度。是目前较为热门的材料高压特性研究的工具,高压腔采用螺旋式加压、液体传压媒介,可轻松实现1.3GPa或更高的压强。三、 电学功能直流电阻率——使用简单,测量快速直流电阻率是PPMS基本的测量功能之一,以其方便快捷、数据可靠、智能测试深得广大用户的喜爱。与普通的仪表相比,直流电阻率选件以其特有的智能测量方案在测量过程中避免了普通仪表不同量程临界处数据的不连贯和不准确。直流电阻率选件可在μΩ到MΩ范围内自动测量。电输运选件——功能更多,精度更高电输运测量选件(ETO),是专门为精细电学测量而开发的多功能电学测量选件,可以自动测量样品的IV特性曲线、微分电阻、霍尔效应。由于采用高精度的锁相技术,ETO可以测量从nΩ到GΩ量的电阻,电流输出nA-mA。光电测量选件——光场激发,多维调控PPMS采用全波段的氙灯作为光源,利用可调光栅滤波技术测量不同波长光激发下的样品电阻。在温度、磁场调控的基础上加入光激发调控,形成对样品特性的多维度调控和测量。电学测量高压腔——超硬材料,超导材料的研究利器目前在高压下测量材料的电学性能已经成为研究超导材料、超硬材料以及其他特殊材料的常用手段之一。PPMS的电学测量高压腔可以在变场、变温环境中测量不同压强下材料的电学性能。高压腔预留10跟电学引线,方便用户高压下的电学连接。高压腔已集成温度计,测量样品的实时温度。四、 热学测量功能比热测量选件——技术,全球材料的比热是一个重要的物理量,但是在实验上很难测到高质量的比热数据。Quantum Design采用技术的比热测量选件,从诞生起就代表了比热测量的高水准。比热选件采用双τ模型、可对驰豫曲线进行自动拟合计算、系统自动扣除背景比热,得到变温、变场条件下的高质量比热数据,并对每一个测量数据点自动计算和记录德拜温度。专用比热样品托、智能化的测量引导程序,使得初学者也能快速上手操作。完备的数据采集和分析功能使得比热研究更为简单。热输运选件——数据,功能全面热输运选件可以同时测量样品的热传导系数、Seebeck系数(热电势)和交流电阻率,并根据这三个数据计算出热点材料的品质因子。专门的样品托和四点法引线方式可以消除接触电阻和热阻的影响。软件可以的建立动态热流量模型补偿各种可能的系统误差。可在变温过程中自动进行连续测量得到高密度的数据。热输运选件使得热学测量像电学测量一样简单和。五、 低温选件He3制冷机选件——使用方便,智能控制基于PPMS主机系统的He3制冷机具有连续运转和单程两种模式,自动控制程序使得样品可在3小时之内由室温降至0.5K,单程模式可将样品的温度降至0.4K。目前已经在He3制冷机温度下能够进行的测量是电输运(ETO)和比热。He3选件是目前使用方便的He3制冷机。稀释制冷机选件——磁、电、热都能测的稀释制冷机基于PPMS主基系统的稀释制冷机选件可以将样品的温度进一步降低到50mK。该稀释制冷机与传统稀释制冷机的主要区别是具有高度自动化的控制软件和引导式的操作操作界面。即使没有低温工作经验的用户也可以轻松掌握低温物性测量,目前稀释制冷机可以实现比热、电输运、和交流磁化率测量。热去磁电测量选件——灵巧的mK低温选件为小巧的解热去磁电测量选件,不需要任何额外操作可以在3小时以内轻松将样品由室温降到150mK以下。该选件在无需购买较为昂贵的He3和稀释制冷机的情况下可以轻松实现mK量的电学测量,是性价比较高的低温选件。六、 光学测量功能拉曼与荧光光谱测量选件——低温强磁场光谱学突破Quantum Design推出的光谱学系统集拉曼和光致发光测量于一身,利用PPMS的变温和磁场环境可以测量气态、液态、薄膜和块体材料的性质。该选件多种波长光源可选、多维度位移旋转样品台、VHG全息光栅与超窄带滤波系统。高性能的拉曼光谱选件是变温、磁场光谱测量的。利用PPMS的拉曼光谱学选件和软件系统可以更加方便的研究强关联体系材料中自旋-轨道耦合随温度和磁场的变化。七、 拓展功能选件多功能样品杆——重剑无锋,大巧不工看似普通的样品杆却是PPMS拓展性能的又一典范,多功能样品杆为用户提供了集成温度计的样品台和用于立引线的样品杆。样品杆拥有非常高的加工精度,并且具有抗强磁场的能力,预留的部接口可供用户引入各种导线和光纤。用户可根据自己的需求利用多功能样品杆来搭建自己特的实验装置,实现自定义的实验方案。目前,用户已经利用多功能样品杆实现光电测量、强关联体系的光激发、铁电测量、介电测量、铁磁共振等多个领域的测量实验。高精度铁磁共振——锦上添花,如虎添翼图3 高精度铁磁共振仪(FMR)由瑞典NanOsc公司开发的高精度铁磁共振仪,能够对纳米别的磁性薄膜进行高精度的测量。该系统采用高精度波导探测芯片与全自动测量分析软件,可以直接测量得到饱和磁化强度、本征阻尼、非均匀展宽和回磁比。由Quantum Design团队设计的高质量波导样品杆和集成服务为高达40GHz的变温铁磁共振测量提供了雄厚的技术支撑。膨胀测量选件——原子,行业翘楚PPMS的膨胀率测量选件可以测量出0.1埃的尺寸变化,是目前上精密的膨胀率测量选件之一。该选件可以在全温区范围内测量热膨胀和磁致伸缩效应。特殊样品托设计可以测量样品相对磁场成不同角度情况下的磁致伸缩效应。扫描探针显微镜、共聚焦显微镜——秋毫之末,一览无余图4 PPMS- ReliquefierAttocube公司专门为PPMS生产的扫描探针显微镜和共聚焦显微镜可以很好的兼容湿式系统和Reliquefier系统。特有的音叉式AFM在Z方向上的分辨力高达7.6pm。基于低温AFM功能的MFM可以在不同温度、磁场下测量材料的磁畴结构,分辨率优于50nm。系统还可升KPFM、PFM、C-AFM等多种显微镜系统。更有扫描霍尔探针显微镜可以定量材料的测量微区磁场分布。共聚焦显微镜拥有自由光束和光纤两种模式可选择。用户可以将共聚焦显微系统搭配各种光谱仪使用来测量变温、变场环境下样品的多种光谱。开放的PPMS平台与22个测量选件以及时刻不停的研发,Quantum Design始终以开放进取的态度努力打造更好的综合测量系统与通用平台。用户的建议,市场的需求更是我们努力的方向。Quantum Design 希望能够与您携手共创科研辉煌。相关产品及链接:1、 PPMS 综合物性测量系统:https://www.instrument.com.cn/netshow/C17086.htm 2、 完全无液氦综合物性测量系统 DynaCool:https://www.instrument.com.cn/netshow/C18553.htm 3、 高精度铁磁共振仪(FMR):https://www.instrument.com.cn/netshow/C221410.htm 4、 attocube无液氦低温强磁场扫描探针显微镜attoDRY Lab:https://www.instrument.com.cn/netshow/C273802.htm 5、 无液氦低温强磁场共聚焦显微镜attoCFM:https://www.instrument.com.cn/netshow/C159541.htm
  • 泉科瑞达NJY-02H全自动瓶盖扭矩仪支持的最小旋转速度是多少?
    一、产品概述NJY-02H全自动瓶盖扭矩仪是山东泉科瑞达仪器设备有限公司生产的一款专业设备,主要用于测量瓶装产品锁紧、开启扭矩值的大小。该设备广泛应用于瓶装包装产品、吸嘴包装产品、软管包装产品的瓶盖锁紧与开启扭矩值的测定,是生产单位离线或在线重点控制的工艺参数之一。二、旋转速度参数最小旋转速度: NJY-02H全自动瓶盖扭矩仪支持的最小旋转速度为10r/min。这一速度设置确保了测量的精确性和稳定性,同时满足了不同产品的测试需求。三、其他关键技术参数测试量程:设备提供多种量程选择,标配为5N.m,同时可选20N.m和40N.m量程,以满足不同产品的测试需求。精度等级:达到0.5级,确保了测试结果的准确性和可靠性。扭矩分辨率:高达0.001N.m,提供了精细的扭矩值测量能力。瓶身与瓶盖夹持范围:瓶身夹持范围从Ф5mm至Ф170mm(直径),瓶盖夹持范围从Φ10mm至Φ80mm(直径),覆盖了广泛的包装产品。驱动方式:采用双电机+气缸驱动,一只电机上下移动找瓶盖位置,气缸负责夹紧瓶盖,另一只电机负责开启与旋紧,提高了操作的自动化程度。四、产品特征双重试验模式:提供开启力和锁紧力双重试验模式,满足不同的测试需求。高精度与稳定性:采用国际品牌力矩传感器和进口高速采样芯片,确保了测试结果的准确性和重复性。自动化操作:机械手自动锁紧瓶盖,锁紧值可自由设定,且锁紧偏差小于0.01Nm,远优于人工锁紧。智能识别与夹持:仪器配有瓶盖识别传感器,能够自动识别并夹持瓶盖,提高了测试效率。便捷操作:配备5寸触摸屏操作界面,独立菜单设计,操作便捷直观。安全保护:传感器自保护功能,保护力矩可人工设置,确保用户仪器操作安全。五、附加功能数据记录与打印:标配微型打印机,具有数据查询、统计、打印功能,方便用户记录和分析测试结果。专业软件支持:可选配专业GMP计算机软件,提供数据溯源、多级权限管理、审计追踪、电子签名等功能,满足更高层次的数据管理需求。综上所述,泉科瑞达NJY-02H全自动瓶盖扭矩仪以其精准、高效、自动化的特点,在包装产品瓶盖扭矩值测量领域具有显著优势。其支持的最小旋转速度为10r/min,确保了测试的精确性和稳定性。
  • 全自动瓶盖扭矩仪在食品、药品、化妆品行业的应用
    在现代制造业中,产品质量与安全性的保障至关重要,特别是在食品、药品和化妆品这些直接关系到消费者健康的行业中,每一个生产环节都需经过严格的质量控制。全自动瓶盖扭矩仪作为一种先进的检测设备,正逐步成为这些行业不可或缺的重要工具。本文将详细探讨全自动瓶盖扭矩仪在食品、药品、化妆品行业中的具体应用及其重要性。一、食品行业:守护每一份美味与安全1.1 确保包装密封性,防止食品变质在食品行业中,包装的密封性直接关系到产品的保质期和安全性。全自动瓶盖扭矩仪通过精确测量瓶盖的扭矩值,确保瓶盖与瓶身之间的密封性达到标准,有效防止食品在运输和储存过程中因漏气而氧化变质。无论是矿泉水、果汁还是酱料罐头,全自动瓶盖扭矩仪都能提供准确的测量数据,为食品企业的质量控制提供有力支持。1.2 提高生产效率,降低人力成本传统的手动拧紧瓶盖方式不仅效率低下,而且容易出现误差,影响产品质量。全自动瓶盖扭矩仪的引入,实现了瓶盖拧紧的自动化操作,大大提高了生产效率,降低了人力成本。同时,其高精度测量能力确保了每个瓶盖扭矩的一致性,提升了产品的整体品质。1.3 建立质量追溯体系,保障消费者权益全自动瓶盖扭矩仪能够记录每个瓶盖的扭矩数据,为食品企业建立起完善的质量追溯体系。一旦产品出现质量问题,企业可以迅速通过扭矩数据追溯到具体的生产批次和生产环节,及时采取措施进行整改,有效保障消费者的权益。二、药品行业:守护生命健康的每一道防线2.1 确保药品包装密封性,防止污染药品作为特殊商品,其包装密封性要求极高。全自动瓶盖扭矩仪能够精确测量药品包装瓶盖的扭矩值,确保瓶盖紧密贴合瓶身,防止药品在运输和储存过程中受到污染或受潮。这对于保证药品的有效性和安全性具有重要意义。2.2 提高生产效率,保障药品供应在药品生产过程中,高效率的包装环节是保障药品供应的关键。全自动瓶盖扭矩仪的自动化操作不仅提高了包装效率,还减少了人为错误,确保了药品包装的准确性和一致性。这对于药品生产企业来说,是提升产能、保障市场供应的重要手段。2.3 满足严格监管要求,提升企业形象药品行业受到严格的监管,企业需要严格遵守相关法律法规,确保产品质量和安全。全自动瓶盖扭矩仪的应用,使得药品包装的质量控制更加科学和规范,有助于企业满足监管要求,提升企业形象和信誉。三、化妆品行业:守护美丽与安全的双重承诺3.1 保障化妆品密封性,延长保质期化妆品的密封性直接关系到产品的保质期和效果。全自动瓶盖扭矩仪通过精确测量化妆品瓶盖的扭矩值,确保瓶盖紧密贴合瓶身,防止化妆品在储存过程中挥发或变质。这对于维护化妆品的品质和延长保质期具有重要意义。3.2 提升用户体验,增强品牌忠诚度良好的瓶盖开启体验是提升用户满意度的关键。全自动瓶盖扭矩仪的应用,使得化妆品瓶盖的开启力度适中、顺畅,提升了用户的使用体验。这有助于增强消费者对品牌的信任和忠诚度,为企业赢得更多市场份额。3.3 满足多样化需求,推动产品创新随着消费者对化妆品需求的日益多样化,化妆品包装也需不断创新以满足市场需求。全自动瓶盖扭矩仪具备适应性强、测量范围广的特点,能够满足不同规格和类型化妆品瓶盖的扭矩测量需求。这为企业开发新产品、拓展市场提供了有力支持。结语全自动瓶盖扭矩仪在食品、药品、化妆品行业中的广泛应用,不仅提升了产品的质量和安全性,还提高了生产效率和市场竞争力。随着技术的不断进步和完善,相信全自动瓶盖扭矩仪将在更多领域发挥重要作用,为制造业的转型升级和高质量发展贡献更多力量。在未来的发展中,我们期待看到更多创新技术的应用和推广,共同守护消费者的健康和权益。
  • 灵动佳芯发布非接触式红外体温传感器
    随着全球气候变暖,带动各行各业对温度的讨论和关注;人们对健康越来越重视;医疗领域中先进仪器设备的持续引入,温度传感器技术不断升级,不仅在精度、响应速度等方面得到了提高,还出现了更多的类型和功能。近期,苏州灵动佳芯推出一款非接触式红外体温传感器芯片ZT9799,采用量子阱红外光电探测技术,快速探测红外波段的光信号,完成红外波段光信号探测,转换为电信号并通过芯片内部的温度计算单元实现实时温度值计算,精度可以达到±0.1℃以内。产品特点1) 尺寸小,LGA封装 6PIN,仅为1.9mm x 2.3mm x 0.68mm;2) 功耗低:休眠模式在0.76μA,低功耗模式2.56μA@2HZ,高信噪比模式19.71μA;3) 响应速度快:最快可以20ms计算温度值@50HZ;4) 测量精度高:实验室测试校准后测试精度在0.1℃内(高精黑体精度达0.007℃);5) 接口简单:通过I2C接口读取计算后的温度值(±0.1℃),对于功耗要求高的场景,可以通过预设温度值,INT方式唤醒MCU读取温度值。应用场景高精度非接触式人体温度测量(医疗级别)家电产品温度检测应用可穿戴产品温度监控IOT、工业、仓储领域温度监控应用案例| 基于ZT9799温度传感器的耳温枪设计灵动佳芯用ZT9799组装了一个耳温枪DEMO,并进行了包括精度测试,热冲击测试以及真人测试等在内的各种场景测试。耳温枪精度测试灵动佳芯基于上述结构设计考虑,组装成耳温枪DEMO实际测试看测温效果,从实际测试情况来看,在35℃~42℃范围内测量精度在±0.1℃内,在这个温度之外测量精度控制在±0.3℃以内。耳温枪热冲击测试在抗热冲测试具有比较好的表现,能够满足医学红外耳温计标准要求。行业标准要求在60s内达到精度0.2℃,但灵动ZT9799可以在40s内达到精度0.1℃,测试速度及精度远高业内标准。耳温枪真人实际测试数据对比国外知名耳温枪做了对比测试,从测试结果上看,灵动佳芯温感测试温度与国外耳温枪测试结果数据一致,在国内自研自产以及性价比上更具优势!| TWS耳机温度传感器灵动佳芯针对TWS耳机增加温度传感器并进行测试。用高精度黑体作为被测物体,测试温度从35℃到42℃,测试数据显示,灵动ZT9799能保证测量精度在0.1℃范围内,达到医疗级别。| 智能手表温度传感器智能手表越来越普及,在可穿戴产品中,智能手表的佩戴时间相对比较长时间,增加温度传感器来检测人体温度是比较不错的产品类别。灵动佳芯推出的非接触式光学温度传感器,完美的解决了传统接触式温度传感器对测温时长及测温环境的限制,在智能手表上设计相对简单(温感芯片ZT9799 FPC软板固定在手表内壳上,在手表后壳上用硅平片作为光窗),对佩戴要求没那么严格,只要能保证红外温度传感器能对准手腕皮肤就可以实现精准体温测温。灵动佳芯简介苏州灵动佳芯有限公司总部位于江苏省苏州市高新区。以压电陶瓷/化合物有机压电材料开发,芯片设计,算法开发为核心,集材料研发、芯片设计、技术服务、生产于一体,与中科院达成长期技术合作。公司产品包括各类压电传感器,光学传感器整体解决方案。服务于机器人,智能穿戴,消费电子,车载,医疗等相关领域,致力于成为智能传感器解决方案领导者。
  • 强强合作 万测长城共同研发5万牛米高精度扭矩标准机
    秋高气爽,凉风习习,万测集团与北京长城计量测试技术研究所隆重签署合作协议,开展强强合作,共同研发国内首台50000Nm高精度标准扭矩机。50000Nm标准扭矩机主要用于检定和校准扭矩传感器,而扭矩传感器广泛应用于航空、航天、造船等领域中的发动机的监控和管理,双方合作研发的50000Nm标准扭矩机,将达到0.05%的准确度,将对我国在发动机领域赶上国外先进水平做出突出的贡献。
  • 德国成功研发氮原子大小量子传感器 可用于测量微磁场
    p   量子技术为电子元件小型化开辟了新的途径。近日,德国弗劳恩霍夫应用固体物理研究所(IAF)和马普固体研究所发布消息称,其科研人员共同研发出一种量子传感器,未来可用于测量微磁场,如硬盘磁场和人脑电波。 /p p   集成电路越来越复杂,目前一台奔腾处理器可容纳约3000万个晶体管,因而硬盘的磁性结构可识别的范围仅为10至20纳米,比直径为80至120纳米的流感病毒还小,该量级的尺寸规格只有量子物理技术可触及。新研发的量子传感器则可精确测量这类用在未来硬盘上的微小磁场。新型量子传感器仅有氮原子的大小,作为载体物质的是一种人造金刚石。金刚石具有很好的机械和化学稳定性以及超强的导热性能,可通过引入硼、磷等外来原子,将晶体制成半导体,且非常适用于光学电路。 /p p   IAF的研究人员在近几十年中研制并优化出用于生产金刚石的设备,一种专用的椭圆形等离子体反应堆模具。在800-900摄氏度的高温下,在金刚石底物上从导入甲烷气和氢气中可长出金刚石层,再将边长3-8mm的晶体从底物剥离并抛光,最后制造出具备量子物理用途的、仅含碳原子稳定同位素C12的超纯单晶金刚石晶体。所用的甲烷气经锆过滤器净化,氢气经其它手段净化。 /p p   研究人员制做磁场检测器有两种途径:直接植入单个氮原子,或在制造金刚石的最后一步加入氮。之后,在超净室内采用氧等离子体蚀刻法均可制作出类似于原子力显微镜的纤细金刚石尖。关键点是导入的氮原子以及晶格中的相邻空位。该氮空位中心就是实际的传感器,用激光和微波照射时会发光,发出的光可随附近磁场的强度变化而变化。专家们将这项创新与光学探测磁共振(ODMR)相提并论。 /p p   这种传感器不仅能准确检测到纳米级的磁场,还能确定其强度,应用潜力惊人。例如,可监控硬盘质量,检测出密集存储数据中的小错误和发现有缺陷的数据片段,在刻写和读取前即将其去除。因此,可减少随着小型化的加速而迅速增加的废料,降低生产成本。IAF的专家称,这种量子传感器还可用于测量很多微弱磁场,包括脑电波。与目前使用的脑电波传感器相比,不仅更准确,而且在室温下即可使用,无需经液氮冷却。 /p
  • 梅特勒托利多赞助2011亚太测量(质量、力和扭矩)论坛
    2011年9月19-22日,第10届亚太测量(质量、力和扭矩)论坛在西安召开。来自中国、日本、韩国、澳大利亚、印度、泰国、中国香港和台湾等国家和地区近60位计量测试研究领域的专家、学者参加会议。与会代表就近两年来在各自国家进行的有关质量、力值和扭矩方面的量值传递和测量技术的研究成果进行了广泛的讨论和交流。 亚太测量(质量、力和扭矩)论坛由中国计量科学研究院和日本大阪技术研究所于1992年联合创立,每两年一届,在各国轮流举办。除学术报告外,每届论坛都设立&ldquo 优秀青年论文奖&rdquo ,以鼓励专业领域青年人的科技创新。 梅特勒托利多作为全球计量领域最具影响力的设备制造商,在质量测量和研究方面与各国计量检测和校准机构建立了长期良好的合作。梅特勒托利多中国公司赞助了本届论坛,林桂兴总裁出席会议并致辞。
  • 可乐瓶盖开启扭矩仪采用手动还是自动扭矩测试仪精度更高
    在选择可乐瓶盖开启扭矩仪时,用户可能会面临手动和自动扭矩测试仪之间的选择。每种类型的测试仪都有其特定的应用场景和优势,精度也因设备的设计和制造质量而异。手动扭矩测试仪优点:成本效益:通常价格较低,适合预算有限的用户。便携性:手持式设计,便于携带和现场测试。操作简单:易于使用,不需要复杂的设置或编程。缺点:一致性:依赖于操作者的技巧和力量控制,可能导致测试结果的一致性较低。疲劳因素:长时间操作可能导致操作者疲劳,影响测试精度。数据记录:需要手动记录数据,可能存在记录错误的风险。精度考量:手动扭矩测试仪的精度受限于操作者的稳定性和重复性,因此精度可能较低。自动扭矩测试仪优点:重复性:自动设备提供更高的测试一致性和重复性。精度:精密的机械设计和电子测量系统可提供更高的测试精度。自动化:自动完成测试过程,减少人为误差。数据管理:自动记录和分析数据,提高效率并减少错误。缺点:成本:价格通常高于手动测试仪。维护:可能需要专业的维护和校准。精度考量:自动扭矩测试仪通常具有更高的精度,因为它们通过精密的机械和电子系统来控制测试过程。精度比较在选择扭矩测试仪时,精度是关键考虑因素。虽然手动扭矩测试仪具有成本优势和便携性,但自动扭矩测试仪在精度、重复性和数据管理方面具有明显优势。自动设备通过减少人为干预,提供更一致的测试结果,这对于质量控制和产品一致性至关重要。结论如果预算允许,并且需要高精度和自动化程度高的测试结果,自动扭矩测试仪是更好的选择。对于需要频繁进行大量测试的生产环境,自动扭矩测试仪可以提供更高的效率和更可靠的数据。然而,如果测试需求较少,或者预算有限,手动扭矩测试仪也可以满足基本的测试需求。在选择时,应考虑具体的测试需求、预算限制和长期投资回报,以确定最适合的扭矩测试仪类型。
  • 聚焦科技 | QD中国引进石墨烯/二维材料电学性质非接触快速测量全新技术
    西班牙Das-Nano公司成立于2012年,是一家专注研发高安全别打印设备、太赫兹无损检测设备以及个人身份安全验证设备的高科技公司。近日,该公司重磅推出了全球可以实现大面积(8英寸wafer)石墨烯和其他二维材料的100%全区域无损非接触快速电学测量系统-ONYX。石墨烯/二维材料电学性质非接触快速测量系统-ONYX 设备图ONYX采用一体化的反射式太赫兹时域光谱技术(THz-TDS)弥补了传统接触测量方法(如四探针法- Four-probe Method,范德堡法-Van Der Pauw和电阻层析成像法-Electrical Resistance Tomography)及显微方法(原子力显微镜-AFM, 共聚焦拉曼-Raman,扫描电子显微镜-SEM以及透射电子显微镜-TEM)之间的不足和空白。ONYX可以快速测量从0.5 mm2到~m2的石墨烯及其他二维材料的电学特性,为科研和工业化提供了一种颠覆性的检测手段。与其他大面积测试方法(例如四探针方法)相比,ONYX能够测量样品质量的空间分布信息,并且属于无损测试,在实验过程中不会对样品产生任何损伤。与传统显微方法相比,对大面积的样品可以以微米的空间分辨率快速表征,能够大的节约测量时间,提高效率[1,2]。ONYX参数及特点样品大小: 10x10mm-200x200mm 超快测量速度:12cm2/min样品100%全覆盖测量无需样品制备可定制样品测量面积(m2量)高分辨率:50μm非接触快速测量无损快速测量ONYX主要功能→ 直流电导率(σDC)→ 载流子迁移率, μdrift→ 直流电阻率, RDC→ 载流子浓度, Ns→ 载流子散射时间,τsc→ 表面均匀性ONYX应用方向石墨烯光伏薄膜材料半导体薄膜电子器件PEDOT钨纳米线GaN颗粒Ag 纳米线目前,ONYX在国际知名研究机构和工业化领域已经安装多套设备,包括:丹麦技术大学(DTU),牛津仪器,德国BOSH公司,LG化学,3M公司,西班牙Graphenea公司等。Quantum Design中国子公司也于2020年正式将该产品引进中国,为中国客户提供高效的技术支持和解决方案,欢迎广大科研工作者垂询。 参考文献[1] Cultrera, A., Serazio, D., Zurutuza, A. et al. Mapping the conductivity of graphene with Electrical Resistance Tomography. Sci Rep 9, 10655 (2019).[2] Melios, C., Huang, N., Callegaro, L. et al. Towards standardisation of contact and contactless electrical measurements of CVD graphene at themacro-, micro- and nano-scale. Sci Rep 10, 3223 (2020).
  • 【综述】qPlus型非接触原子力显微技术及应用
    p style=" text-indent: 2em " 本文主要介绍了qPlus型非接触原子力显微镜(NC-AFM)的基本工作原理,qPlus NC-AFM的两种工作模式的应用:高分辨成像获得分子内和分子间原子结构和力谱测量获得表面元素及成键力信息,以及NC-AFM在表面在位化学反应、低维材料、三维成像探测、开尔文探针力显微镜(KPFM)等方面的应用。 /p section style=" box-sizing: border-box text-align: justify " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap margin: 10px 0% position: static box-sizing: border-box " section style=" display: inline-block vertical-align: top width: auto min-width: 10% max-width: 100% flex: 0 0 auto height: auto align-self: flex-start border-width: 0px margin: 0px 2px 0px 0px box-sizing: border-box " section style=" text-align: right margin: 0px 0% justify-content: flex-end position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block min-width: 10% max-width: 100% vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none solid border-width: 1px 1px 1px 0px border-radius: 0px border-color: rgba(255, 255, 255, 0) rgb(92, 107, 192) rgb(92, 107, 192) rgb(223, 46, 0) padding: 5px 10px background-color: rgba(255, 255, 255, 0) box-shadow: rgba(255, 255, 255, 0) 0px 0px 0px line-height: 1 letter-spacing: 0px width: auto height: auto box-sizing: border-box " section style=" text-align: justify font-size: 19px color: rgb(92, 107, 192) font-family: Optima-Regular, PingFangTC-light box-sizing: border-box " powered-by=" xiumi.us" p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " strong style=" box-sizing: border-box " 1 /strong /p /section /section /section /section section style=" display: inline-block vertical-align: top width: auto border-width: 1px 0px 0px flex: 100 100 0% align-self: flex-start height: auto border-top-style: solid border-top-left-radius: 0px border-top-color: rgb(92, 107, 192) padding: 0px 10px box-sizing: border-box " section style=" margin: 3px 0% 0px position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" font-size: 17px color: rgb(92, 107, 192) box-sizing: border-box " p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " strong span style=" box-sizing: border-box " NC-AFM工作原理 /span /strong /p /section /section /section /section /section /section p style=" text-align: justify text-indent: 2em " NC-AFM分为振幅调制和频率调制两种工作模式,超高真空体系中基于qPlus传感器的NC-AFM一般使用频率调制模式。频率调制AFM的基本工作原理是针尖悬臂在外力的驱动下以自由共振频率f sub 0 /sub 简谐振动,振幅(A)保持恒定,当针尖逼近样品时,针尖-样品之间的相互作用力梯度发生变化,引起悬臂共振频率的偏移(Δf),利用Δf和针尖高度的关联进行成像。 /p p style=" text-align: justify text-indent: 2em " NC-AFM的信号检测电路(图1A)主要由振幅控制模块和频率测量模块两部分组成。针尖悬臂振动信号经过带通滤波器后分成三路:一路信号进入交流直流转换器,将悬臂振幅转化为直流信号,并与振幅设定值比较(两者的差为能量耗散),通过比例-积分-微分控制器(PID)控制,调整激励信号,使得AFM悬臂保持恒定振幅振动;一路信号输入到相位调节器,经过π/2的相位移后返回激励陶瓷,与交流直流转换器共同组成振幅控制模块(灰色虚线框标记部分);另一路信号经过基于锁相环(PLL)的频率调制解调器后得到频率偏移信号,与控制针尖高度的模块相结合进行不同模式的成像。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/a2bacf3f-6fd9-4827-86ff-9a0eda9e5d52.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: center " strong 图1 非接触原子力显微镜的工作原理 /strong /p p style=" text-align: justify text-indent: 2em " 类比于STM工作模式有恒电流和恒高度两种模式,NC-AFM也具有恒频率偏移和恒高度两种主要成像模式。在恒频率偏移成像模式下,通过振幅反馈回路使音叉悬臂保持恒定振幅,通过频率反馈回路调整针尖和样品间的距离保持频率偏移恒定(Δf),所获得图像为恒定力梯度下的样品表面形貌高度图。在恒高度成像模式下,断开频率偏移控制的反馈回路保持针尖高度恒定,探测扫描过程中的频率偏移变化,所获图像为恒定高度下的样品表面力梯度图。 /p p style=" text-align: justify text-indent: 2em " NC-AFM之所以能够达到亚分子级分辨,甚至亚原子级分辨率,主要原因是qPlus传感器(如图1所示)的引入。qPlus传感器使用高弹性常数(~1800& nbsp N· m sup -1 /sup )的石英音叉作为悬臂代替传统AFM使用的硅悬臂,石英音叉在针尖-样品的作用力可以以非常小的振幅(& lt 100 pm)稳定成像。此外,qPlus传感器还具有以下优势:qPlus传感器使用导电的金属针尖,可以同时获得STM和AFM信号,可以给出更丰富的样品信息;qPlus音叉使用的石英晶体是压电晶体,振动时会产生和振幅成比例的压电信号,属于自检测传感器,不需要激光检测,适用于极低温工作环境;相比于传统硅悬臂,qPlus传感器体积较大,属于宏观物体,易于集成功能化的针尖。 /p p style=" text-align: justify text-indent: 2em " 针尖-样品之间的总作用力是吸引力和排斥力加和,如图1C所示。从作用范围的不同可以分为长程力和短程力:其中长程力包括范德华力、静电力、磁力;短程力包括化学成键力和泡利排斥力。范德华力产生的原因是原子与原子之间的局域瞬时偶极作用;针尖和样品间的电势差,或功函数差可以产生长程的静电力;在微观上长程的静电力的加和可以产生短程的静电力,其大小随距离指数衰减。短程化学力可分为短程化学成键力和短程泡利排斥力:短程化学成键力衰减长度在化学键长度的量级,由于化学键力很大又相对局域,所以在理想的体系中可以获得很高的分辨;短程泡利排斥力来源于量子力学中电子的量子数不能全同导致的短程排斥力,具有最高的空间局域性。相比于长程力,短程力有更大的力梯度,对Δf的贡献也更大,所以降低针尖的振幅可以一方面大大提高短程力的敏感性,另一方面降低振幅还可以大大降低长程力的贡献,消除长程力的背景。目前认为,在单分子内的原子分辨上 起主要贡献的是泡利排斥力。 /p section style=" box-sizing: border-box text-align: justify " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap margin: 10px 0% position: static box-sizing: border-box " section style=" display: inline-block vertical-align: top width: auto min-width: 10% max-width: 100% flex: 0 0 auto height: auto align-self: flex-start border-width: 0px margin: 0px 2px 0px 0px box-sizing: border-box " section style=" text-align: right margin: 0px 0% justify-content: flex-end position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block min-width: 10% max-width: 100% vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none solid border-width: 1px 1px 1px 0px border-radius: 0px border-color: rgba(255, 255, 255, 0) rgb(92, 107, 192) rgb(92, 107, 192) rgb(223, 46, 0) padding: 5px 10px background-color: rgba(255, 255, 255, 0) box-shadow: rgba(255, 255, 255, 0) 0px 0px 0px line-height: 1 letter-spacing: 0px width: auto height: auto box-sizing: border-box " section style=" text-align: justify font-size: 19px color: rgb(92, 107, 192) font-family: Optima-Regular, PingFangTC-light box-sizing: border-box " powered-by=" xiumi.us" p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " strong style=" box-sizing: border-box " 2 /strong /p /section /section /section /section section style=" display: inline-block vertical-align: top width: auto border-width: 1px 0px 0px flex: 100 100 0% align-self: flex-start height: auto border-top-style: solid border-top-left-radius: 0px border-top-color: rgb(92, 107, 192) padding: 0px 10px box-sizing: border-box " section style=" margin: 3px 0% 0px position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" font-size: 17px color: rgb(92, 107, 192) box-sizing: border-box " p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " strong span style=" box-sizing: border-box " qPlus NC-AFM的工作模式 /span /strong /p /section /section /section /section /section /section p style=" text-align: justify text-indent: 2em " strong 2.1 高分辨成像 /strong /p p style=" text-align: justify text-indent: 2em " 实现分子内部单原子的识别是表面显微技术的重要目标。STM可获得原子级的图像,但由于隧穿电流主要探测的是费米面附近的局域电子态密度,因此对于分辨吸附分子内部的原子结构有一定的难度。NC-AFM探测的是针尖与样品原子间的相互作用力,在成像区域起主要贡献的是短程泡利排斥力,其探测的实质为分子内部总电子密度的分布,这使得AFM在理论上具有比STM更高的空间分辨能力。 /p p style=" text-align: justify text-indent: 2em " 为了达到NC-AFM的超高分辨率,针尖需要满足两个条件:一是化学惰性,保证针尖与样品分子之间的弱相互作用力,避免分子被针尖操纵;二是针尖尖端必须尖锐,针尖半径足够小(亚纳米尺度)从而确保可以获得原子级别的分辨,这两个条件保证了针尖可以逼近表面吸附的分子从而达到成像所需的泡利排斥力区域。 /p p style=" text-align: justify text-indent: 2em " 除了能够分辨分子内部的原子结构,NC-AFM技术还被用于化学键键级研究。利用NC-AFM技术识别键级的机制有两种:一是电子密度随键级的增大而增大,在相同高度下高键级区域与针尖之间具有更大的泡利排斥力,因此在AFM图像中呈现更亮的衬度;二是由于化学键长随着键级的增大而减小,结合针尖上修饰的CO分子的偏转作用可以判断其键级大小。由于CO针尖的偏转作用,AFM图像中所有化学键长都被放大,无法利用测量值与理论键长直接进行比较,但可以利用不同位置化学键的测量值进行对比获得其键级信息。 /p p style=" text-align: justify text-indent: 2em " 为了保证针尖及样品的稳定性,大多NC-AFM图像的采集需要在液氦温度,极少数结果在液氮温度下获得。随着技术的进一步发展,德国雷根斯堡大学Giessibl团队于2015年首次在室温下利用qPlus传感器及W针尖获得了苝四甲酸二酐分子的AFM图像。这一成果对于将qPlus NC-AFM技术应用于常温化学反应及分子结构识别等领域具有突破性的意义。 /p p style=" text-align: justify text-indent: 2em " 除了分子内部原子结构和化学键的识别,qPlus NC-AFM也可以识别分子间相互作用。2013年,裘晓辉团队以Cu(111)单晶表面吸附的8-羟基喹啉分子为研究体系,首次利用qPlus NC-AFM技术实现了实空间对分子间氢键的成像。卤键是一种类似氢键的分子间的相互作用,是由卤素原子的亲电位点(称为σ-hole)和另一原子的亲核位点之间形成的非共价相互作用。Cl、Br、I等卤素原子形成卤键的键能逐渐增大,F原子由于难以形成σ- hole,因此F原子之间认为没有卤键存在。 /p p style=" text-align: justify text-indent: 2em " 分子间氢键和卤键被实空间观测对于研究分子间弱相互作用力具有重要意义。氢键之所以能够被NC-AFM观测到,最初的解释是由于氢键的形成增大了该处的电子密度,因此针尖可以探测到增强的泡利排斥力,故而可以获得氢键成像。之后,捷克科学院Hapala团队利用CO针尖建立模型模拟发现,单纯利用针尖尖端CO分子所受范德华力引起的偏转,也可以实现上述结果显示的分子间氢键衬度特征。由于在图像模拟中未考虑分子间电子密度的作用,因此他们认为NC-AFM图像中针尖偏转对分子间作用力成像起了主要作用。随后,芬兰阿尔托大学Liljeroth和荷兰乌特勒支大学Swart等利用二对吡啶基乙炔(BPPA)分子自组装体系对该问题进行了进一步的研究。BPPA分子利用分子间氢键形成四聚体结构(如图3 (G, H)所示),示意图显示上下两个BPPA分子之间未直接形成化学键,但相对的两个N原子之间在NC-AFM图像中出现亮线。利用CO软性针尖进行Lennard-Jones势模拟图像与实验结果相似。因此他们认为针尖偏转在AFM成像上具有重要的影响:一方面使化学键的AFM衬度锐化,易于得到分子内部原子结构,另一方面在相邻非常近但未成键的两原子之间,偏转效应会使图像中出现成键的假象。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/1885fe3a-f255-4b08-972e-86fe121a072d.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: center " strong 图3 分子间化学键高分辨成像 /strong /p p style=" text-align: justify text-indent: 2em " 虽然NC-AFM已经实现了亚原子级别的高分辨成像,但其成像机制在国际上仍具有一定的争议,针尖偏转和电子密度在分子间成像上的贡献孰多孰少,亦或是某一因素起单独作用,目前并没有定论。解决这一问题也是现在NC-AFM技术最重要的目标之一,也是该技术应用于研究分子间成键和弱键相互作用体系的基本前提。 /p p style=" text-align: justify text-indent: 2em " strong 2.2 针尖-样品作用力谱测量 /strong /p p style=" text-align: justify text-indent: 2em " NC-AFM的力谱功能可以定量测量针尖-表面之间的相互作用力和能量,是研究高分辨成像和原子/分子操纵机理的关键。力谱是在特定的位置上记录针尖-样品相互作用力梯度(即Δf)与针尖-表面间距(d)的关系,即Δf(d)曲线,利用Sader和Jarvis提出的转换关系可以将Δf(d)曲线转化为F(d)曲线。当针尖与样品之间距离较远时,其作用力包括宏观尺度的范德华力、针尖尖端与样品的局域范德华力、偶极或带电样品引起的静电力,短程的泡利排斥力在此时可以忽略。针尖与样品之间距离较近进行成像扫描时,泡力排斥力对成像起主导作用,但长程的范德华力和静电力仍有作用(图4A)。因此,定量研究针尖与样品间的短程泡利排斥力时需要在总力谱的基础上扣除长程力背景(图4B)。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/e4d6a009-363d-4afe-92ca-e5ff9242a84a.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p style=" text-align: center " strong 图4 针尖-样品间作用力测量 /strong /p p style=" text-align: justify text-indent: 2em " 2001年,瑞士巴塞尔大学Lantz团队首次在低温下利用力谱技术测量了Si针尖与 Si(111)-(7× 7)表面Si原子悬挂键间形成的共价键力的大小为2.1 nN,如图4(C,D)所示。这一结果是化学成键力测量上的突破性进展。2007年,日本大阪大学Morita团队在室温下利用不同结构的针尖测量了Si基底上沉积Sn分子后针尖与Si原子和Sn原子间的力谱,将每种针尖测得的短程力谱根据Si原子力谱的最大吸引力进行归一化后得到Sn原子和Si原子力谱的最大吸引力比值为0.77 : 1 (图4(E, F))。同样的方法可得到Pb原子和Si原子力谱的最大吸 引力比值为0.59 : 1。基于以上结果,在Si(111)基底上Si、Sn、Pb合金材料上通过区别不同原子与针尖之间吸引力最大值的差别,可以实现Si、Sn、Pb化学元素的识别(图4(G,H))。NC-AFM的成像技术和力谱测量相结合,有利地推进了扫描探针技术对尺度空间和能量空间分辨率的提高,为研究原子或分子间相互作用及化学键的形成具有重要意义。值得注意的是,以上提到的研究结果都早于qPlus传感器的发明,是利用悬臂梁针尖测量所得。 /p section style=" box-sizing: border-box text-align: justify " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap margin: 10px 0% position: static box-sizing: border-box " section style=" display: inline-block vertical-align: top width: auto min-width: 10% max-width: 100% flex: 0 0 auto height: auto align-self: flex-start border-width: 0px margin: 0px 2px 0px 0px box-sizing: border-box " section style=" text-align: right margin: 0px 0% justify-content: flex-end position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block min-width: 10% max-width: 100% vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none solid border-width: 1px 1px 1px 0px border-radius: 0px border-color: rgba(255, 255, 255, 0) rgb(92, 107, 192) rgb(92, 107, 192) rgb(223, 46, 0) padding: 5px 10px background-color: rgba(255, 255, 255, 0) box-shadow: rgba(255, 255, 255, 0) 0px 0px 0px line-height: 1 letter-spacing: 0px width: auto height: auto box-sizing: border-box " section style=" text-align: justify font-size: 19px color: rgb(92, 107, 192) font-family: Optima-Regular, PingFangTC-light box-sizing: border-box " powered-by=" xiumi.us" p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " strong style=" box-sizing: border-box " 3 /strong /p /section /section /section /section section style=" display: inline-block vertical-align: top width: auto border-width: 1px 0px 0px flex: 100 100 0% align-self: flex-start height: auto border-top-style: solid border-top-left-radius: 0px border-top-color: rgb(92, 107, 192) padding: 0px 10px box-sizing: border-box " section style=" margin: 3px 0% 0px position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" font-size: 17px color: rgb(92, 107, 192) box-sizing: border-box " p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " strong span style=" box-sizing: border-box " qPlus NC-AFM的应用 /span /strong /p /section /section /section /section /section /section p style=" text-align: justify text-indent: 2em " strong 3.1 针尖修饰对成像的影响 /strong /p p style=" text-align: justify text-indent: 2em " 在AFM成像研究中,针尖的原子组成和几何结构对成像结果具有重要影响。通常实验中可以通过针尖脉冲,降低扫描高度或撞针的方法进行针尖处理,但这些处理方法获得的针尖重复性不高且难以确定针尖的具体原子结构。而纵向原子/分子操控技术可以高效地将特定的分子或原子从样品表面提取,修饰到针尖尖端,提高AFM成像的分辨率。已经实现可以进行针尖修饰的原子/分子包括H原子、卤素原子(Cl,Br)、惰性气体分子(Ar,Kr,Xe)及小分子如CO、NO、CH4等。 /p p style=" text-align: justify text-indent: 2em " 目前,对于表面吸附分子的结构识别和化学反应研究一般选择CO分子修饰的针尖。修饰步骤如下:首先将CO分子沉积在基底表面,将NC-AFM针尖置于CO分子上方,在针尖方向施加-2.8 V的恒定电压激发CO分子跳到针尖端,若重复扫描图像发现CO分子消失且分辨率得到极大地提高则认为CO分子已修饰到针尖尖端。尖端修饰的CO分子的偏转极大地提高了分子内部原子结构的AFM分辨率,但同时也带来了图像扭曲的问题(图5A)。惰性气体如Xe原子可以在金属基底、NaCl基底或分子自组装网格上吸附并修饰针尖,将针尖置于Xe原子上方,下压0.3 nm,继续扫描发现该处Xe原子消失,且图像分辨率显著提高, /p p style=" text-align: justify text-indent: 2em " 证明Xe原子被修饰在针尖尖端。对同一个分子的成像结果显示Xe针尖的分辨率低于CO针尖,但分子成像的扭曲程度比CO针尖小(图5B)。与CO修饰针尖相比,Xe针尖的一个优点是在STM成像实验中避免CO中O原子p波函数态对分子轨道成像的贡献。Kr针尖的制备方法类似Xe针尖,但稳定性比Xe针尖弱。卤素原子的提取方法与Xe原子类似,Cl原子通常来源于NaCl晶体,Br原子通常来源于从有机分子上断键后的游离Br原子。卤素原子修饰的针尖分辨率比CO针尖低,但是图像扭曲程度也较低,这主要是由于卤素原子的偏转效应比CO分子弱(图5(C, D))。Br原子虽然比Cl原子半径大,但成像分辨率相近。Br针尖的优势在于易于制备,并且可以对NaCl上的DBA单分子进行“pulling”模式的横向操纵,这对于其他修饰针尖来说是比较困难的。 /p p style=" text-align: justify text-indent: 2em " 除了以上提到的可与针尖尖端形成较弱成键的分子和原子外,利用O原子与Cu针尖形成CuO针尖,O原子的存在可减弱Cu针尖与样品之间的作用力,同时具有稳定的原子结构,减少针尖偏转对图像成像的影响。如图5(E, F)所示,利用O针尖获得的二蒄(DCLN)分子的AFM图显示分子外围的C原子呈现比分子内部C原子更亮的AFM衬度,这是由于分子外围C原子上具有更高的电荷密度以及与针尖具有更小的范德华吸引力导致,两种原因所占的比例约为30% : 70%。此外,CO针尖进入排斥力成像区域后具有严重的偏转效应,导致对化学键的成像有30%的放大,而O针尖所引起的成像放大效应几乎可以忽略。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/3234dc8f-eb23-4348-a559-cd7e82fa60e7.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p style=" text-align: center " strong 图5 不同针尖修饰对成像的影响 /strong /p p style=" text-align: justify text-indent: 2em " strong 3.2 对低维纳米材料的研究 /strong /p p style=" text-align: justify text-indent: 2em " 低维材料是材料学科和物理化学研究中的重要研究方向,其中以石墨烯为代表的一维/二维材料的表面原位合成研究至关重要。对于表面低维材料的结构研究多以STM为主,但是对于石墨烯以及石墨烯纳米带(GNRs)这类具有较强电子离域性质的材料来说,STM图像呈现的是材料整体的电子态信息,难以直观地确定材料的原子结构、缺陷和边界结构等。NC-AFM 技术有效地解决了这些问题。由于石墨烯具有化学惰性,且尺寸较大不易被针尖操纵,所以可以直接用金属针尖对石墨烯进行NC-AFM成像。 /p p style=" text-align: justify text-indent: 2em " 图6(A,B)是分别用W针尖和CO针尖对Ir(111)基底上的石墨烯进行成像,可以识别长程的摩尔条纹(周期~2.5 nm)。活性金属针尖扫描时,石墨烯晶格呈现六方对称的点状,在该状态下降低针尖高度,图像会发生反转呈现蜂窝状晶格。而电学非活性的CO针尖扫描时,石墨烯在所有高度下只呈现蜂窝状晶格。对于GNRs、NC-AFM的成像能够提供更为精细的结构信息,图6C左下角是GNRs的STM图像,条带区域呈现均一的电子态。而相对应的利用CO针尖扫描获得的 AFM 图像中可以清晰的观测 GNRs的原子结构。该GNRs是由六排碳原子组成的具有锯齿型边界的纳米带,简称6-ZGNRs (6-zigzag graphene nanoribbons),边界C由H原子终止。对6- ZGNRs进行边界修饰可以得到图6D所示的原子结构,在 6-ZGNRs 的两个锯齿型边界上分别修饰了周期性的荧蒽基团,边界的C原子仍由H原子终止,而不以自由基形式存在。NC-AFM图像还可以分辨GNRs中的掺杂原子,如图6E所示,GNRs span style=" text-indent: 2em " 中衬度较暗的区域是对位的两个B原子掺杂(标记为红点),呈现与C原子差别较大的AFM衬度不仅是由于B原子的缺电子特性导致该位点的电子密度较低,更主要的原因是由于在该结构中B原子在高度上比C原子低30 pm53。此外,NC-AFM还可以研究其他类型的缺陷态,例如图6F所示的两GNRs交界处形成的非完美融合中的五七元环结构等。以上这些结构信息对研究GNRs的物理性质和边界态结构具有重要意义。除了石墨烯、石墨烯纳米带等导电材料,NC-AFM对于氧化物、氮化物等绝缘材料的结构研究也具有一定的优势。 /span /p p style=" text-align: center text-indent: 0em " span style=" text-indent: 2em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/08f77a2e-f030-4be2-8c18-5fefb84c84d2.jpg" title=" 6.jpg" alt=" 6.jpg" / /span /p p style=" text-align: center " strong 图6 q Plus NC-AFM在低维纳米材料中的应用 /strong /p p style=" text-align: justify text-indent: 2em " 利用qPlus NC-AFM研究绝缘材料表面原子结构的工作,大多是基于金属单晶表面的超薄层样品,只有少数研究是基于严格意义上的体相绝缘体材料。从基本原理上分析,qPlus NC-AFM用于研究体相绝缘材料是可行的,但在实际应用中存在一定的困难。首先,体相绝缘材料与针尖之间具有电势差,由于qPlus针尖弹性常数大,工作振幅极小(& lt 100 pm),需要在较小的针尖-样品距离下才能得到成像,而在此状态下,针尖-样品间电势差引起的静电力无法估量;第二,针尖形状和尖端修饰的分子对AFM成像分辨率具有极大的影响,纯绝缘体表面很难对针尖进行原位处理或修饰。因此目前研究的体相绝缘体材料大多是平整度较高的晶体,例如NaCl等。如何克服以上难点将qPlus NC-AFM更广泛地应用于体相绝缘体材料对于一些催化体系的活性位点、燃料电池材料的工作机制的研究具有重要意义。 /p p style=" text-align: justify text-indent: 2em " strong 3.3 表面化学反应研究 /strong /p p style=" text-align: justify text-indent: 2em " 观测化学反应过程中分子和原子的重组对催化机理研究具有重要意义,也是表面物理化学研究中的巨大挑战。2013年,加州大学伯克利分校的Crommie和Fischer等利用NC-AFM首次观测了Ag(100)基底上oligo-(phenylene-1,2-ethynylenes)单分子的内部原子结构以及在该表面的单分子环化反应过程。反应物和产物分子的STM图无法直观解析分子结构(图7A-C),但相对应的NC-AFM图像(图7D-F)可以提供分子内部的原子排列的结构信息。除了分子中原子位置和共价化学键之外,反应物分子中两苯环之间的C≡C键也可以清晰地分辨,这是由于三键区域具有较高的电子密度导致。而分子外围AFM衬度的增强则是由与该处具有较小的范德华吸引力背景,离域π电子体系边缘处的电子密度增强和分子平面的扭曲等因素造成的。产物分子中可以清晰地分辨分子环化反应后形成的四元、五元、六元环以及分子边缘C原子连接的氢原子。通过AFM高分辨图像确定的原子结构证实反应物和多种产物具有同样的分子式,因此该表面环化反应是反应物分子的异构化过程。随后,他们用同样的方法研究了oligo-(E)-1,1′-bi(indenylidene)分子在Au(111)表面的环化和双自由基聚合反应和 1,2- bis(2- ethynyl phenyl) ethyne分子的二聚体偶联和环化过程(图7G-I),并通过反应中间产物确定了该反应的复杂路径,并提出该反应路径不仅决定于表面能量耗散,也取决于反应熵增加。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/1e218ed1-ae02-4059-addd-aad91a26105a.jpg" title=" 7.jpg" alt=" 7.jpg" / /p p style=" text-align: center " strong 图7 q Plus NC-AFM在表面化学反应中的应用 /strong /p p style=" text-align: justify text-indent: 2em " 目前,NC-AFM技术被越来越多的应用到表面化学反应领域,在原子、分子的层次研究化学反应的机制。 /p p style=" text-align: justify text-indent: 2em " strong 3.4 三维成像技术 /strong /p p style=" text-align: justify text-indent: 2em " 由于qPlus NC-AFM成像的主要贡献来源于针尖与样品之间的短程泡利排斥力,因此针尖与样品间工作距离非常近,通常在1 nm以内,这导致qPlus NC-AFM的应用主要局限在平面分子或二维结构表面等起伏较小的材料样品体系。近年来,人们致力于发展qPlus NC-AFM在三维成像上的应用,并拓展了多种不同的方法。 /p p style=" text-align: justify text-indent: 2em " 2015年,德国雷根斯堡大学Albrecht团队利用CO针尖研究了非平面分子二菲并[9,10-b:9′,10′- d]噻吩(DPAT)的表面吸附和环化反应。DPAT分子的两个分支由于空间位阻的作用无法存在于同一平面内,当分子吸附在Cu(111)表面时,一个分支与表面平行,另一分支的两个苯环与表面分别形成10° 和23° 的夹角,如图8B左图。为了能够准确地表征与平面具有一定夹角的分子结构,将扫描平面进行一定的旋转,直至获得非平面区域清晰的原子结构图像。利用这一方法一方面可以有效地得到立体分子原子结构,另一方面可以根据旋转角度确认分子立体部分与平面部分之间的夹角。但对于夹角太大的立体分子不能单纯利用该方法确认分子内部夹角,因为针尖CO的偏转会对成像分析具有一定的影响。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/4f8a208b-efb0-4fd2-aa9c-f3c858367d6e.jpg" title=" 8.jpg" alt=" 8.jpg" / /p p style=" text-align: center " strong 图8 q Plus NC-AFM的三维成像 /strong /p p style=" text-align: justify text-indent: 2em " 对于表面催化或表面在位化学反应,分子在基底上的吸附位点和角度等对催化或反应活性具有重要的影响。由于高度的差异,通常AFM只能够分别分辨吸附分子或基底的原子结构,2015年,日本国家材料科学研究所Moreno团队提出了一种利用多通道AFM同时分辨分子结构和基底结构的方法。首先接通恒Δf反馈回路,对样品表面形貌进行一次AFM扫描(图8D,F),然后断开反馈回路,将针尖沿一次扫描的形貌路径进行二次扫描,但二次扫描需要在针尖上施加高度补偿将针尖置于更靠近样品的位置以保证获得清晰的原子分辨图像(图8E,G),他们利用这一方法同时获得基底锐钛矿(101)和其表面吸附的并五苯分子和C60分子的原子结构。这种方法有望被应用于非平面纳米结构的研究,例如纳米管、纳米颗粒、聚合物和生物分子等。 /p p style=" text-align: justify text-indent: 2em " strong 3.5 表面电荷分布的测量 /strong /p p style=" text-align: justify text-indent: 2em " 通过测量不同电荷状态下针尖与样品的接触势差,即KPFM中的局域功函数差,可以实现对表面分子或原子/离子电荷分布或带电性质的测量。2012年,Mohn团队采用qPlus-AFM的KP-FM成像模式,通过测量萘酞菁分子内部的局域功函数差,获得了分子内的电荷分布的亚分子分辨图像(图9A-C)。具体测量模式为将萘酞菁分子所在的区域分为64 × 64个像素点,在恒高模式下,在每个像素点处做Δf(V)谱(在保持针尖-样品间距离恒定下,频率偏移随针尖和样品间偏压变化曲线),得到分子内不同位点的局域接触势差。这对应于分子内不同位点的带电状态或电荷分布,这种方法可以实现对由于氢原子位置改变引起的分子内电荷分布的识别。通过利用CO分子修饰针尖,可以进一步提高分辨率。 /p p style=" text-align: justify text-indent: 2em " 2009年,Gross团队通过针尖施加电压脉冲,让吸附在NaCl薄层上的金属Au和Ag原子分别得到和失去一个电子,得到Au-和Ag+离子。通过比较在中性原子和带电离子上获得的Δf(V)谱,发现中性原子与带电离子的局域功函数差有约30 mV,且正离子和负离子具有相反的局域功函数差,实现了原子不同带电状态的识别和测量。通过针尖操控,可以实现Au sup - /sup 离子、Au原子和Au sup + /sup 离子的三态电荷调控(图9(D, E))。对于TTF-PYZ2这类自身带有电子给体和受体的双极性分子,利用局域功函数差的测量可以判定分子内电荷转移方向(图9(F-H))。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/685f29b1-7ffe-4236-adcf-e38f614dbfeb.jpg" title=" 9.jpg" alt=" 9.jpg" / /p p style=" text-align: center " strong 图9 表面电荷分布测量 /strong /p section style=" box-sizing: border-box text-align: justify " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: flex flex-flow: row nowrap margin: 10px 0% position: static box-sizing: border-box " section style=" display: inline-block vertical-align: top width: auto min-width: 10% max-width: 100% flex: 0 0 auto height: auto align-self: flex-start border-width: 0px margin: 0px 2px 0px 0px box-sizing: border-box " section style=" text-align: right margin: 0px 0% justify-content: flex-end position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block min-width: 10% max-width: 100% vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none solid border-width: 1px 1px 1px 0px border-radius: 0px border-color: rgba(255, 255, 255, 0) rgb(92, 107, 192) rgb(92, 107, 192) rgb(223, 46, 0) padding: 5px 10px background-color: rgba(255, 255, 255, 0) box-shadow: rgba(255, 255, 255, 0) 0px 0px 0px line-height: 1 letter-spacing: 0px width: auto height: auto box-sizing: border-box " section style=" text-align: justify font-size: 19px color: rgb(92, 107, 192) font-family: Optima-Regular, PingFangTC-light box-sizing: border-box " powered-by=" xiumi.us" p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " strong style=" box-sizing: border-box " 4 /strong /p /section /section /section /section section style=" display: inline-block vertical-align: top width: auto border-width: 1px 0px 0px flex: 100 100 0% align-self: flex-start height: auto border-top-style: solid border-top-left-radius: 0px border-top-color: rgb(92, 107, 192) padding: 0px 10px box-sizing: border-box " section style=" margin: 3px 0% 0px position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" font-size: 17px color: rgb(92, 107, 192) box-sizing: border-box " p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " strong span style=" box-sizing: border-box " 总结 /span /strong /p /section /section /section /section /section /section p style=" text-align: justify text-indent: 2em " 应用qPlus传感器的NC-AFM使得扫描探针技术在空间分辨率上得到了提升,自从2009年Gross团队首次利用NC-AFM技术得到单分子内部原子结构成像后,该技术进一步应用在化学键键级、分子间氢键、卤键、表面纳米结构的研究中,通过3D NC-AFM技术还可以获得非平面分子的内部结构以及同时获得吸附分子和吸附基底的原子结构。NC-AFM技术对于研究表面原位化学反应、表面催化、低维材料等具有极大的优势。根据NC-AFM技术发展的谱学测量可以根据针尖与不同原子之间作用力的差异,实现对样品表面的原子操纵、元素识别、电荷分布测量等,对表面异质结和界面研究具有重要意义。 /p p style=" text-align: justify text-indent: 2em " 尽管基于qPlus传感器的NC-AFM技术已经获得了相当的发展,但在技术以及应用体系上仍面临以下问题和局限:为了保证图片的信噪比和分辨率,扫描速度相对较慢,由此连带产生热漂移问题,热漂移等问题的存在使仪器需要在液氦温度下工作,成本较高,虽然目前在液氮和室温也得到了分子内部结构的图像,但分辨率与液氦温度下的图像相差甚远;由于STM和NC-AFM电极都集成在qPlus传感器上,工作时电流信号会对力信号产生串扰,与此同时电流的存在会在针尖和样品之间引入静电势,影响力信号的测量;对于力谱测量,针尖形状对针尖-样品间作用力影响极大,如何合理地扣除背景力,保留化学成键力成分,建立一套有效的力谱测量和分析标准也是亟待解决的重要问题。此外,对于qPlus NC-AFM的成像机制,尤其是考虑CO针尖偏转效应的前提下,仍具有一定的争议,需要更多的实验探索和发展相应的理论进行分析。 /p p style=" text-align: justify text-indent: 2em " 为解决这些问题,科学家们致力于开发更高频的力传感器,优化传感器电路,发展详尽的NC-AFM力谱测量的理论和成像模拟理论,联合NC-AFM与其它技术(如STM、光谱等),在提高空间分辨率的同时进一步提高时间分辨率。NC-AFM的快速发展为物理、化学、材料等研究领域带来了众多突破性的进展。目前,NC-AFM已能够达到亚原子级分辨率,这对在分子/原子尺度研究催化反应机理、化学成键机制等具有绝对优势,可以应用在分子筛、金属纳米颗粒、金属氧化物表面等催化体系的基础研究。 /p p style=" text-align: justify text-indent: 2em " 在未来发展中,NC-AFM与其它表面分析技术的联用将进一步拓宽其研究领域,例如,NC-AFM与STM模式的联用可以研究样品不同的结构和物理化学特性,是全面而深入地研究原子尺度接触问题不可或缺的工具;NC-AFM与光谱技术联用可以研究分子或材料内部原子结构与能带结构关系、光催化或反应过程的基元步骤;基于NC-AFM技术的KPFM也已经成为一种具有高空间分辨和能量分辨的表征手段,可以在表面构造功能纳米结构,并研究分子内电荷分布、电荷传输路径和化学反应活性等问题,为材料、物理、化学和生命科学研究提供了新的思路。 /p p br/ /p p strong 本文来自: /strong 刘梦溪,李世超,查泽奇,裘晓辉.qPlus型非接触原子力显微技术进展及前沿应用[J].物理化学学报,2017,33(01):183-197. /p
  • 北斗仪器最新款CA600型超高温真空接触角测量仪
    超高温接触角测量仪原理介绍:接触角(Contact angle)是指在气、液、固三相交点处的气-液界面的切线,此切线在液体一方的与固-液交界线之间的夹角θ,是润湿程度的量度,是现今表面性能检测的主要方法。由主体支架、专用光源、远焦镜头、工业成像CCD、高温高真空炉体、水循环冷却系统、真空泵、专用分析软件等组成。超高温接触角测量仪的应用: 在高温真空条件下,通过视频光学原理,测试各种材料的润湿铺展性能;目前已经广泛应用于陶瓷材料研究、金属材料研究、钎焊研究、航空航天材料研究、钢铁冶炼研究、复合材料研究等众多高校院所及企业。研究材料在高温状态下熔体与其相应的基底材料间的接触角变化规律。对于高熔点材料能实现高真空或惰性气体保护气氛下的表界面性能测试,而对于低熔点材料能现实升降温过程中的收缩、变形、融化、润湿、铺展及凝固行为进行图像化、定量化表征。设备性价比高、加热稳定、真空度高、功能全面、可满足各种金属材料科研的需要。1、测量液态金属在高温真空状态下对基材的润湿性能,评估不同材质在高温真空状态下润湿过程及附着性能 2、研究金属与陶瓷复合材料间的润湿性能,测量金属材料在高温真空状态下熔融时,在陶瓷材料上的接触角 3、研究钎焊过程,钎料在基材上的润湿铺展过程,动态分析钎料在高温下的接触角、润湿过程 4、测量金属在不同的高温状态下,以及不同的气体保护环境下,对于不同基材的接触角变化及区别:5、分析涂层与基材的接触角,分析涂层与基材的润湿过程及铺展机理,并研究不同温度及不同气氛下,润湿性能的区别:6、研究液体与固体间的接触角,评估液体与固体的附着粘附性能,分析固体的表面自由能 7、分析焊料与焊接体的接触角值,从而有效地提升焊接强度 8、基于分析接触角及表面张力的基础,控制合理润湿范围,查找有效的去除冶炼过程中炉垢的办法。应用案例超高温接触角测量仪核心参数:型号CA600 腔内环境大气环境/真空/惰性/有氧气氛高温系统温度范围室温~1200℃/室温~1700℃长期使用温度室温~1100℃/室温~1600℃真空下温度1000/1500测温电偶1200°:N型电偶 1700°:B型国际铂铑热电偶测温精度±1℃温度控制30段程序温度设定实现复杂热处理工艺的分析升温速率常温-1000℃≤10℃/min1000℃-1600℃≤5℃/min加热体1200°HRE合金电阻丝/1700度U型硅钼棒恒温区尺寸长200mm加热管尺寸内直径50mm*长度700mm测温系统温度监控,测温材质美国钨铼合金,测量精度±0.1℃,可实时测量加热管内温度。进样方式具有快速样品制备专用工具,以及样品装载专用工具,确保样品快速定位视窗法兰专用同轴双视窗法兰,备双通道惰性保护装置,可同时或单独使用某种工艺气体对内部金属进行保护,带真空系统及保护气体管路、双水冷装置。采用进口石英材质并可快拆更换。炉膛材质1200°C内采用石英,1700°C以上采用高纯刚玉保温材料湿法真空抽滤成型制备的多晶无极氧化铝陶瓷纤维材料样品尺寸5*5*5mm真空系统真空度范围1*10-1Pa采用机械真空泵+数字流量计+真空法兰1*10-3Pa采用分子泵+复合全量程高精度真空计+真空法兰材质两级组合,在高温下达到高真空要求;泵体采用高纯度不锈钢;配置复合真空计;真空系统也可以通保护气体水冷系统温控范围温度范围:5-35℃外形尺寸约460mm(长)*380mm(宽)*590mm(高)水泵流量15L/min冷却系统容量≥11L实测制冷量1520W成像系统镜头Subpixel0.7-4.5倍超高温高清远焦距工业级连续变倍式显微镜、工作距离500mm相机日本SONY原装进口高速工业级芯片(Onsemi行曝光)传感器类型1/2.9 英寸逐行扫描CMOS分辨率1280× 1024镜头控制仰视角度:±10度,精度:1度,前后180mm(微调50mm)*左右200mm(微调50mm)帧率全局曝光高速400帧/s(最快2.5ms采集/次)视频录像功能可录制整个高温润湿过程连续测量测量间隔时间可调、实时记录、连续测量光源系统组合方式采用石英扩散膜与均光板使得亮度更均匀,液滴轮廓更清晰光源进口CCS工业级冷光源(有效避免因光源散发热量蒸发液滴),寿命可达5万小时 亮度调节PWM数字调节功率10W测量软件CA V2.0静/动态接触角测量软件+表面能测量软件操作系统要求windows 10(64位)测量方式自动与手动计算方法自动拟合法(ms级别一键全自动拟合,不存在人工误差)、三点拟合、五点拟合、自动测量(包括圆拟合法/斜圆拟合法(Circle method/ Oblique Circle)、椭圆拟合法/斜椭圆拟合法(Ellipse method /Oblique Ellipse))、凹凸面测量等基线拟合自动与手动角度范围0°<θ<180°精度0.1°分辨率0.001°分析自动计算多组数据中接触角的最大接触角、最小接触角、平均接触角,左右接触角分别计算与比较功能表面能测量方法Fowks法,OWRK法,Zisman法,EOS法,Acid-Base Theory法,Wu harmonic mean法,Extended Fowkes法,得到固体表面能。表面能单位mN/m输入电源220V 50-60Hz仪器尺寸约1500mm(长)*405mm(宽)* 725mm(高)润湿性分析粘附功一键自动分析铺展系数一键自动分析粘附张力一键自动分析精度0.001 mN/m单位mN/m选配件1.机械真空泵,真空度:1*10-1Pa 2. FJ-110分子泵组一套,最大抽气速率110L/s (对空气),真空度:1*10-3Pa 3.惰性气体气氛保护(Ar,N2,He或混合气体)4.冷浴装置:5℃-35°超高温接触角测量仪测试方法
  • 瓶盖全自动扭矩仪较手动扭矩仪可以提高试验效率的检验精确度吗
    在现代工业生产和科研实验中,扭矩测试是不可或缺的一环。无论是瓶盖扭紧度的检测,还是其他机械部件的扭矩测试,精确的扭矩仪都是确保产品质量和性能稳定的关键。近年来,全自动扭矩仪以其高效、精确的特点逐渐取代传统的手动扭矩仪,成为行业的新宠。那么,全自动扭矩仪相比手动扭矩仪,在试验效率和检验精确度方面究竟有哪些提升呢?1. 试验效率的提升:全自动扭矩仪:通过自动化操作,可以连续、快速地进行大量瓶盖的扭矩测试,大大提高了测试效率。它适合于生产线上的在线检测,能够实时监控瓶盖扭矩,确保产品质量的一致性。手动扭矩仪:操作依赖于人工,每次测试都需要手动设置和调整,速度相对较慢,更适合小批量或实验室环境下的测试。2. 检验精确度的提高:全自动扭矩仪:由于其自动化程度高,减少了人为操作误差的可能性,因此通常能够提供更高的测试精确度。它能够精确控制扭矩的大小和测试速度,确保每次测试的一致性。手动扭矩仪:虽然也能提供准确的测试结果,但其精确度受到操作者技能和经验的影响。重复性测试可能会因操作者的不同而有所差异。3. 数据记录和分析:全自动扭矩仪:通常配备有数据记录系统,能够自动记录每次测试的扭矩值,并生成详细的报告。这有助于后续的数据分析和质量控制。手动扭矩仪:可能需要手动记录测试数据,这增加了数据记录的复杂性和出错的可能性。4. 应用场景的适应性:全自动扭矩仪:更适合大规模生产环境,能够与生产线无缝集成,实现连续生产。手动扭矩仪:更适合小规模生产或研发实验室,用于对特定样本进行精确测试。综上所述,瓶盖全自动扭矩仪较手动扭矩仪在试验效率和检验精确度方面有显著优势。它能够快速、连续地进行大量测试,并提供精确的测试结果。然而,选择哪种类型的扭矩仪取决于具体的应用场景和需求。对于需要高效率和精确度的生产环境,全自动扭矩仪是更合适的选择。而对于小规模生产或研发实验室,手动扭矩仪可能更为适用。
  • 国内高端传感器亟需摆脱进口依赖
    传感器是获取自然和生产领域中信息的主要途径与手段。在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。随着科技的发展,人类对各种测量的精度要求越来越高,要测量的数据也越来越多,于是各种各样的测量工具和传感器应运而生。   随着科技水平不断提高,传感器应用领域逐渐广泛,目前在汽车业、自动化工厂、物联网等方面都有应用。   80年代初中国进入测力传感器的研发和生产阶段,已经完全可以自主研发并生产了。由一开始的单点式称重传感器、S型拉压力传感器、轮辐式测力传感器、柱式称重传感器等到现在可以非标定制一些特别外形测力传感器。但无论是从传感器的精度还是寿命等来讲,都落后于欧美等国家,就连我们的邻国日本,他们测力传感器的技术起码也是领先我们15年左右。特别是最近几年,欧美一些老牌测力厂家研发出了一批微型压力传感器、小型称重传感器、小尺寸测力传感器等微型/小型/小尺寸/小体积/小量程的高精度测力传感器。这使得我国传感器在技术水平上进一步被抛在了后面。   据分析,我国传感器行业发展落后,国内传感器需求尤其是高端需求严重依赖进口,国产化缺口巨大,目前传感器进口占比80%,传感器芯片进口占比达90%.国产化需求迫切。   目前民营或合资企业的产品占据了中低端市场,传统技术和装备手段可以满足绝大多数产品的制造要求,市场发展状态良好。除个别厂家在个别品种方面将国外生产的芯片拿到国内封装出相关产品、占据市场较大份额外,其他高端产品均是国外厂商在垄断。   随着物联网等新兴产业的兴起,产业成为世界各国在高新技术发展中争夺的一个重要领域。近年来我国传感器产业快速增长,应用模式也日渐成熟。但由于产业档次偏低、技术创新能力较差,国内传感器产业呈现低端过剩、中高端被国外垄断的市场格局。传感器技术发展滞后已掣肘国内战略性新兴产业的顺利推进。   国有企业发展处于平稳增长状态,总体上跟不上国外最新技术发展的步伐,除少数厂家外,总体差距有扩大的趋势。这是因为传感器技术发展快,工艺和制造设备更新快,许多新设备国内厂商无法制造等原因造成的。并且设备的单台价格少则几十万美元,多则数百万美元,绝大多数厂家靠自身积累很难购买新型设备,致使在许多新技术、新工艺方面无法跟上国外企业飞速发展的步伐。
  • 国家海洋局拟上千万采购海水淡化设备
    招标编号:0701-154160110025采购人名称:国家海洋局天津海水淡化与综合利用研究所采购人地址:天津市南开区科研东路1号采购人联系方式:022-87894686采购代理机构全称:中技国际招标公司采购代理机构地址:北京市丰台区西三环中路90号通用技术大厦采购代理机构联系方式:010-63348447、63348520采购内容:备注:投标必须以包为单位,投标人必须是对所投包号中的所有内容进行投标,不允许拆包投标。以上货物详细技术规格和指标见招标文件第五章。上表中不含税价指投标产品如为进口产品时投标报价中不应包含进口关税和增值税,但应包含除此之外的其他进口环节费用;投标产品如为国产产品时投标报价中应包含所有相关的税费。采购用途:海水淡化研究简要技术要求:第1包:端窗管,长寿命灯丝,不衰减,复合材料铍窗,铍窗厚度 ? 75um 等;第2包:最大采集速率:最高100Hz,分辨率:半峰宽 le 0.7Da等;第3包:测量范围:Psi= 0°–90°,Delta= 0°–360°等;第4包:细胞培养室4个,可同时进行1~4个平行样本实验,每个实验均为独立控制等;第5包:带扭矩测量和控制功能,30-2000rpm,重现性1%,扭矩负荷60Ncm等;第6包:光源:双二极管激光(30mW和70mW)等;第7包:传感器连接方式:1英寸( 25mm )BSPP罗纹连接等;第8包:软件应具备固体处理、浮油、海水处理等物性推导和相关功能模块等;第9包:电流档位:10nA,100nA,1 ? A ,10 ? A ,100 ? A ,1mA,10mA,100mA, 1A 共9档等;第10包:粒径测量范围:直径0.4nm~10,000nm (水动力)等;第11包:测速范围:0~500m/s等;第12包:主机外形尺寸(长×宽×高)不大于:450×400×550(mm)等;第13包: 光谱范围:8,000 – 340 cm-1 等;第14包: 光谱仪主机系统:火焰-石墨炉一体机等;第15包: 粒形(图形)湿法检测范围:0.55 ? m – 2,000 ? m 等;第16包: 电位适合的粒度范围:0.3nm-300 mu m等;第17包: 温度范围:室温~1600℃等;第18包: 裂解方式:热丝裂解等;第19包:垂直扫描干涉测量模式(VSI),相移干涉测量模式(PSI)等;第20包: 测试方式:恒速控制模式及恒压控制模式等;第21包:平面镜电磁驱动,具有10万次以上连续动态调整功能等;第22包:最大输出功率: ge 600W等;招标项目的性质:政府采购投标人的资格条件:(1)投标人应具备《中华人民共和国政府采购法》第二十二条规定;(2) 投标人如不是投标货物的制造商,应具有制造商授予的经销资格或投标授权;(3) 投标产品属于计量仪器的应符合《计量法》规定的相应条件;(4)投标产品可以为进口产品;(5)本次招标不接受联合体投标;(6)投标人应购买本项目招标文件。招标文件发售时间:即日起到2015年7月23日下午16:00止(节假日除外)招标文件发售地点:(1) 本项目招标文件采用网上审批下载方式发放,不向投标人提供纸质招标文件。(2)供应商在中国通用招标网(www.china-tender.com.cn)免费注册后,可在网上浏览招标文件主要内容。如需购买,应按照网上操作流程在线购买。标书款可采用网银在线支付,也可到通用技术大厦标书室现场交款(现金、支票)。采用网银支付的,可即时下载招标文件;采用其他方式支付的,需要由项目负责人确认付款后方可下载招标文件。标书款发票在通用技术大厦标书室领取。(3)通用技术大厦标书室地址:北京市丰台区西三环中路90号通用技术大厦1层。(4)联系电话:网上操作技术支持:010-63348126/8303/8359,联系人:李国梁标书室:010-63348281,联系人:杜庆项目负责人:010-63348447/8520 联系人:姜婧/戴岸彤 传真:010-63348486(5)标书室工作时间:上午9:00-11:00时、下午14:00-16:00时。招标文件售价:300元人民币/包,售后不退投标截止时间/开标时间:2015年8月5日下午15:00(北京时间)递交投标文件地点/开标地点:通用技术大厦3层第一会议室评标方法和标准:综合评分法备注:1、采购代理机构开户行:中国银行总行营业部 账号: 7783500106532 、本次招标公告在《中国政府采购网》上发布。
  • 二锅头瓶盖开启力为3-5NM的扭矩合理吗
    引言在繁华的酒类市场中,二锅头以其独特的口感和亲民的价格赢得了众多消费者的喜爱。其瓶盖的开启力不仅关系到消费者的使用便捷性,还涉及到产品的密封性和防伪特性。扭矩的物理意义扭矩是力与力臂(力的作用点到旋转中心的距离)的乘积,它描述了使物体绕轴旋转的能力。在瓶盖开启力的上下文中,扭矩越大,开启所需的力越大。瓶盖扭矩的考量因素消费者的使用体验:开启力应适中,既不能太紧导致难以开启,也不能太松影响密封性。密封性要求:瓶盖需要提供足够的密封力以保证酒质,防止挥发和污染。防伪特性:适度的开启力可以增加非法开启的难度,起到一定的防伪作用。安全性:过高的扭矩可能导致瓶盖突然弹开,造成意外伤害或酒液浪费。3-5Nm扭矩的合理性分析便利性:3-5Nm的扭矩范围适中,大多数成年消费者可以轻松开启,同时避免了儿童轻易打开的风险。密封性:此扭矩范围内的密封力足以保证二锅头在储存和运输过程中的密封性,减少酒液的挥发。防伪性:适度的扭矩可以增加非法开启的难度,但不会对正常消费者造成困扰。安全性:3-5Nm的扭矩不会导致瓶盖突然弹开,降低了使用过程中的安全隐患。结论综合考虑消费者的使用体验、产品的密封性和防伪需求,以及安全性,二锅头瓶盖开启力设定为3-5Nm的扭矩是合理的。这一扭矩范围既满足了便利性和安全性的要求,又确保了产品的密封性和防伪特性,是平衡多方面因素后的一个理想选择。
  • 传感器的科普知识来啦!
    传感器(Sensor)是一种常见的却又很重要的器件,它是感受规定的被测量的各种量并按一定规律将其转换为有用信号的器件或装置。对于传感器来说,按照输入的状态,输入可以分成静态量和动态量。我们可以根据在各个值的稳定状态下,输出量和输入量的关系得到传感器的静态特性。传感器的静态特性的主要指标有线性度、迟滞、重复性、灵敏度和准确度等。传感器的动态特性则指的是对于输入量随着时间变化的响应特性。动态特性通常采用传递函数等自动控制的模型来描述。通常,传感器接收到的信号都有微弱的低频信号,外界的干扰有的时候的幅度能够超过被测量的信号,因此消除串入的噪声就成为了一项关键的传感器技术。  物理传感器  物理传感器是检测物理量的传感器。它是利用某些物理效应,把被测量的物理量转化成为便于处理的能量形式的信号的装置。其输出的信号和输入的信号有确定的关系。主要的物理传感器有光电式传感器、压电传感器、压阻式传感器、电磁式传感器、热电式传感器、光导纤维传感器等。作为例子,让我们看看比较常用的光电式传感器。这种传感器把光信号转换成为电信号,它直接检测来自物体的辐射信息,也可以转换其他物理量成为光信号。其主要的原理是光电效应:当光照射到物质上的时候,物质上的电效应发生改变,这里的电效应包括电子发射、电导率和电位电流等。显然,能够容易产生这样效应的器件成为光电式传感器的主要部件,比如说光敏电阻。这样,我们知道了光电传感器的主要工作流程就是接受相应的光的照射,通过类似光敏电阻这样的器件把光能转化成为电能,然后通过放大和去噪声的处理,就得到了所需要的输出的电信号。这里的输出电信号和原始的光信号有一定的关系,通常是接近线性的关系,这样计算原始的光信号就不是很复杂了。其它的物理传感器的原理都可以类比于光电式传感器。  物理传感器的应用范围是非常广泛的,我们仅仅就生物医学的角度来看看物理传感器的应用情况,之后不难推测物理传感器在其他的方面也有重要的应用。  比如血压测量是医学测量中的最为常规的一种。我们通常的血压测量都是间接测量,通过体表检测出来的血流和压力之间的关系,从而测出脉管里的血压值。测量血压所需要的传感器通常都包括一个弹性膜片,它将压力信号转变成为膜片的变形,然后再根据膜片的应变或位移转换成为相应的电信号。在电信号的峰值处我们可以检测出来收缩压,在通过反相器和峰值检测器后,种传感器外形我们可以得到舒张压,通过积分器就可以得到平均压。  让我们再看看呼吸测量技术。呼吸测量是临床诊断肺功能的重要依据,在外科手术和病人监护中都是必不可少的。比如在使用用于测量呼吸频率的热敏电阻式传感器时,把传感器的电阻安装在一个夹子前端的外侧,把夹子夹在鼻翼上,当呼吸气流从热敏电阻表面流过时,就可以通过热敏电阻来测量呼吸的频率以及热气的状态。  再比如最常见的体表温度测量过程,虽然看起来很容易,但是却有着复杂的测量机理。体表温度是由局部的血流量、下层组织的导热情况和表皮的散热情况等多种因素决定的,因此测量皮肤温度要考虑到多方面的影响。热电偶式传感器被较多的应用到温度的测量中,通常有杆状热电偶传感器和薄膜热电偶传感器。由于热电偶的尺寸非常小,精度比较高的可做到微米的级别,所以能够比较精确地测量出某一点处的温度,加上后期的分析统计,能够得出比较全面的分析结果。这是传统的水银温度计所不能比拟的,也展示了应用新的技术给科学发展带来的广阔前景。  从以上的介绍可以看出,仅仅在生物医学方面,物理传感器就有着多种多样的应用。传感器的发展方向是多功能、有图像的、有智能的传感器。传感器测量作为数据获得的重要手段,是工业生产乃至家庭生活所必不可少的器件,而物理传感器又是最普通的传感器家族,灵活运用物理传感器必然能够创造出更多的产品,更好的效益。  光纤传感器  近年来,传感器在朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能,绝缘、无感应的电气性能,耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。  光纤传感器是最近几年出现的新技术,可以用来测量多种物理量,比如声场、电场、压力、温度、角速度、加速度等,还可以完成现有测量技术难以完成的测量任务。在狭小的空间里,在强电磁干扰和高电压的环境里,光纤传感器都显示出了独特的能力。目前光纤传感器已经有70多种,大致上分成光纤自身传感器和利用光纤的传感器。  所谓光纤自身的传感器,就是光纤自身直接接收外界的被测量。外接的被测量物理量能够引起测量臂的长度、折射率、直径的变化,从而使得光纤内传输的光在振幅、相位、频率、偏振等方面发生变化。测量臂传输的光与参考臂的参考光互相干涉(比较),使输出的光的相位(或振幅)发生变化,根据这个变化就可检测出被测量的变化。光纤中传输的相位受外界影响的灵敏度很高,利用干涉技术能够检测出10的负4次方弧度的微小相位变化所对应的物理量。利用光纤的绕性和低损耗,能够将很长的光纤盘成直径很小的光纤圈,以增加利用长度,获得更高的灵敏度。  光纤声传感器就是一种利用光纤自身的传感器。当光纤受到一点很微小的外力作用时,就会产生微弯曲,而其传光能力发生很大的变化。声音是一种机械波,它对光纤的作用就是使光纤受力并产生弯曲,通过弯曲就能够得到声音的强弱。光纤陀螺也是光纤自身传感器的一种,与激光陀螺相比,光纤陀螺灵敏度高,体积小,成本低,可以用于飞机、舰船、导弹等的高性能惯性导航系统。如图就是光纤传感器涡轮流量计的原理。  另外一个大类的光纤传感器是利用光纤的传感器。其结构大致如下:传感器位于光纤端部,光纤只是光的传输线,将被测量的物理量变换成为光的振幅,相位或者振幅的变化。在这种传感器系统中,传统的传感器和光纤相结合。光纤的导入使得实现探针化的遥测提供了可能性。这种光纤传输的传感器适用范围广,使用简便,但是精度比第一类传感器稍低。  光纤在传感器家族中是后期之秀,它凭借着光纤的优异性能而得到广泛的应用,是在生产实践中值得注意的一种传感器。  仿生传感器  仿生传感器,是一种采用新的检测原理的新型传感器,它采用固定化的细胞、酶或者其他生物活性物质与换能器相配合组成传感器。这种传感器是近年来生物医学和电子学、工程学相互渗透而发展起来的一种新型的信息技术。这种传感器的特点是机能高、寿命长。在仿生传感器中,比较常用的是生体模拟的传感器。  仿生传感器按照使用的介质可以分为:酶传感器、微生物传感器、细胞器传感器、组织传感器等。在图中我们可以看到,仿生传感器和生物学理论的方方面面都有密切的联系,是生物学理论发展的直接成果。在生体模拟的传感器中,尿素传感器是最近开发出来的一种传感器。下面就以尿素传感器为例子介绍仿生传感器的应用。  尿素传感器,主要是由生体膜及其离子通道两部分构成。生体膜能够感受外部刺激影响,离子通道能够接收生体膜的信息,并进行放大和传送。当膜内的感受部位受到外部刺激物质的影响时,膜的透过性将产生变化,使大量的离子流入细胞内,形成信息的传送。其中起重要作用的是生体膜的组成成分膜蛋白质,它能产生保形网络变化,使膜的透过性发生变化,进行信息的传送及放大。生体膜的离子通道,由氨基酸的聚合体构成,可以用有机化学中容易合成的聚氨酸的聚合物(L一谷氨酸,PLG)为替代物质,它比酶的化学稳定性好。PLG是水溶性的,本不适合电机的修饰,但PLG和聚合物可以合成嵌段共聚物,形成传感器使用的感应膜。  生体膜的离子通道的原理基本上与生体膜一样,在电极上将嵌段共聚膜固定后,如果加感应PLG保性网络变化的物质,就会使膜的透过性发生变化,从而产生电流的变化,由电流的变化,便可以进行对刺激性物质的检测。  尿素传感器经试验证明是稳定性好的一种生体模拟传感器,检测下限为10的负3次方的数量级,还可以检测刺激性物质,但是暂时还不适合生体的计测。  目前,虽然已经发展成功了许多仿生传感器,但仿生传感器的稳定性、再现性和可批量生产性明显不足,所以仿生传感技术尚处于幼年期,因此,以后除继续开发出新系列的仿生传感器和完善现有的系列之外,生物活性膜的固定化技术和仿生传感器的固态化值得进一步研究。  在不久的将来,模拟生体功能的嗅觉、味觉、听觉、触觉仿生传感器将出现,有可能超过人类五官的敏感能力,完善目前机器人的视觉、味觉、触觉和对目的物进行操作的能力。我们能够看到仿生传感器应用的广泛前景,但这些都需要生物技术的进一步发展,我们拭目以待这一天的到来。  红外技术发展到现在,已经为大家所熟知,这种技术已经在现代科技、国防和工农业等领域获得了广泛的应用。红外传感系统是用红外线为介质的测量系统,按照功能能够分成五类:(1)辐射计,用于辐射和光谱测量 (2)搜索和跟踪系统,用于搜索和跟踪红外目标,确定其空间位置并对它的运动进行跟踪 (3)热成像系统,可产生整个目标红外辐射的分布图象 (4)红外测距和通信系统 (5)混合系统,是指以上各类系统中的两个或者多个的组合。  红外系统的核心是红外探测器,按照探测的机理的不同,可以分为热探测器和光子探测器两大类。下面以热探测器为例子来分析探测器的原理。  热探测器是利用辐射热效应,使探测元件接收到辐射能后引起温度升高,进而使探测器中依赖于温度的性能发生变化。检测其中某一性能的变化,便可探测出辐射。多数情况下是通过热电变化来探测辐射的。当元件接收辐射,引起非电量的物理变化时,可以通过适当的变换后测量相应的电量变化。  电磁传感器  磁传感器是最古老的传感器,指南针是磁传感器的最早的一种应用。但是作为现代的传感器,为了便于信号处理,需要磁传感器能将磁信号转化成为电信号输出。应用最早的是根据电磁感应原理制造的磁电式的传感器。这种磁电式传感器曾在工业控制领域作出了杰出的贡献,但是到今天已经被以高性能磁敏感材料为主的新型磁传感器所替代。  在今天所用的电磁效应的传感器中,磁旋转传感器是重要的一种。磁旋转传感器主要由半导体磁阻元件、永久磁铁、固定器、外壳等几个部分组成。典型结构是将一对磁阻元件安装在一个永磁体的刺激上,元件的输入输出端子接到固定器上,然后安装在金属盒中,再用工程塑料密封,形成密闭结构,这个结构就具有良好的可靠性。磁旋转传感器有许多半导体磁阻元件无法比拟一款电磁传感器的外形的优点。除了具备很高的灵敏度和很大的输出信号外,而且有很强的转速检测范围,这是由于电子技术发展的结果。另外,这种传感器还能够应用在很大的温度范围中,有很长的工作寿命、抗灰尘、水和油污的能力强,因此耐受各种环境条件及外部噪声。所以,这种传感器在工业应用中受到广泛的重视。  磁旋转传感器在工厂自动化系统中有广泛的应用,因为这种传感器有着令人满意的特性,同时不需要维护。其主要应用在机床伺服电机的转动检测、工厂自动化的机器人臂的定位、液压冲程的检测、工厂自动化相关设备的位置检测、旋转编码器的检测单元和各种旋转的检测单元等。  现代的磁旋转传感器主要包括有四相传感器和单相传感器。在工作过程中,四相差动旋转传感器用一对检测单元实现差动检测,另一对实现倒差动检测。这样,四相传感器的检测能力是单元件的四倍。而二元件的单相旋转传感器也有自己的优点,也就是小巧可靠的特点,并且输出信号大,能检测低速运动,抗环境影响和抗噪声能力强,成本低。因此单相传感器也将有很好的市场。  磁旋转传感器在家用电器中也有大的应用潜力。在盒式录音机的换向机构中,可用磁阻元件来检测磁带的终点。家用录像机中大多数有变速与高速重放功能,这也可用磁旋转传感器检测主轴速度并进行控制,获得高画面的质量。洗衣机中的电机的正反转和高低速旋转功能都可以通过伺服旋转传感器来实现检测和控制。  这种开关可以感应到进入自己检验区域的金属物体,控制自己内部电路的开或关。开关自己产生磁场,当有金属物体进入到磁场会引起磁场的变化。这种变化通过开关内部电路可以变成电信号。  更加突出电磁传感器是一门应用很广的高新技术,国内、国外都投入了一定的科研力量在进行研究,这种传感器的应用正在渗透入国民经济、国防建设和人们日常生活的各个领域,随着信息社会的到来,其地位和作用必将。  磁光效应传感器  现代电测技术日趋成熟,由于具有精度高、便于微机相连实现自动实时处理等优点,已经广泛应用在电气量和非电气量的测量中。然而电测法容易受到干扰,在交流测量时,频响不够宽及对耐压、绝缘方面有一定要求,在激光技术迅速发展的今天,已经能够解决上述的问题。  磁光效应传感器就是利用激光技术发展而成的高性能传感器。激光,是本世纪六十年代初迅速发展起来的又一新技术,它的出现标志着人们掌握和利用光波进入了一个新的阶段。由于以往普通光源单色度低,故很多重要的应用受到限制,而激光的出现,使无线电技术和光学技术突飞猛进、相互渗透、相互补充。现在,利用激光已经制成了许多传感器,解决了许多以前不能解决的技术难题,使它适用于煤矿、石油、天然气贮存等危险、易燃的场所。  比如说用激光制成的光导纤维传感器,能测量原油喷射、石油大罐龟裂的情况参数。在实测地点,不必电源供电,这对于安全防爆措施要求很严格的石油化工设备群尤为适用,也可用来在大型钢铁厂的某些环节实现光学方法的遥测化学技术。  磁光效应传感器的原理主要是利用光的偏振状态来实现传感器的功能。当一束偏振光通过介质时,若在光束传播方向存在着一个外磁场,那么光通过偏振面将旋转一个角度,这就是磁光效应。也就是可以通过旋转的角度来测量外加的磁场。在特定的试验装置下,偏转的角度和输出的光强成正比,通过输出光照射激光二极管LD,就可以获得数字化的光强,用来测量特定的物理量。  自六十年代末开始,RC Lecraw提出有关磁光效应的研究报告后,引起大家的重视。日本,苏联等国家均开展了研究,国内也有学者进行探索。磁光效应的传感器具有优良的电绝缘性能和抗干扰、频响宽、响应快、安全防爆等特性,因此对一些特殊场合电磁参数的测量,有独特的功效,尤其在电力系统中高压大电流的测量方面、更显示它潜在的优势。同时通过开发处理系统的软件和硬件,也可以实现电焊机和机器人控制系统的自动实时测量。在磁光效应传感器的使用中,最重要的是选择磁光介质和激光器,不同的器件在灵敏度、工作范围方面都有不同的能力。随着近几十年来的高性能激光器和新型的磁光介质的出现,磁光效应传感器的性能越来越强,应用也越来越广泛。  磁光效应传感器做为一种特定用途的传感器,能够在特定的环境中发挥自己的功能,也是一种非常重要的工业传感器。  压力传感器  压力传感器是工业实践中最为常用的一种传感器,而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也称为压电传感器。  我们知道,晶体是各向异性的,非晶体是各向同性的。某些晶体介质,当沿着一定方向受到机械力作用发生变形时,就产生了极化效应 当机械力撤掉之后,又会重新回到不带电的状态,也就是受到压力的时候,某些晶体可能产生出电的效应,这就是所谓的极化效应。科学家就是根据这个效应研制出了压力传感器。  压电传感器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一定的温度范围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的“居里点”)。由于随着应力的变化电场变化微小(也就说压电系数比较低),所以石英逐渐被其他的压电晶体所替代。而酒石酸钾钠具有很大的压电灵敏度和压电系数,但是它只能在室温和湿度比较低的环境下才能够应用。磷酸二氢胺属于人造晶体,能够承受高温和相当高的湿度,所以已经得到了广泛的应用。  在现在压电效应也应用在多晶体上,比如现在的压电陶瓷,包括钛酸钡压电陶瓷、PZT、铌酸盐系压电陶瓷、铌镁酸铅压电陶瓷等等。  压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。  压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别压电传感器的外形是航空和宇航领域中更有它的特殊地位。压电式传感器心乂  也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。  压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。  除了压电传感器之外,还有利用压阻效应制造出来的压阻传感器,利用应变效应的应变式传感器等,这些不同的压力传感器利用不同的效应和不同的材料,在不同的场合能够发挥它们独特的用途。  相关控制系统  继电器控制  继电器是我们生活中常用的一种控制设备,通俗的意义上来说就是开关,在条件满足的情况下关闭或者开启。继电器的开关特性在很多的控制系统尤其是离散的控制系统中得到广泛的应用。从另一个角度来说,由于为某一个用途设计使用的电子电路,最终或多或少都需要和某一些机械设备相交互,所以继电器也起到电子设备和机械设备的接口作用。  最常见的继电器要数热继电器,通常使用的热继电器适用于交流50Hz、60Hz、额定电压至660V、额定电流至80A的电路中,供交流电动机的过载保护用。它具有差动机构和温度补偿环节,可与特定的交流接触器插接安装。  时间继电器也是很常用的一种继电器,它的作用是作延时元件,通常它可在交流50Hz、60Hz、电压至380V、直流至220V的控制电路中作延时元件,按预定的时间接通或分断电路。可广泛应用于电力拖动系统,自动程序控制系统及在各种生产工艺过程的自动控制系统中起时间控制作用。  在控制中常用的中间继电器通常用作继电控制,信号传输和隔离放大等用途。此外还有电流继电器用来限制电流、电压继电器用来控制电压、静态电压继电器、相序电压继电器、相序电压差继电器、频率继电器、功率方向继电器、差动继电器、接地继电器、电动机保护继电器等等。正是有了这些不同类型的继电器,我们才有可能对不同的物理量作出控制,完成一个完整的控制系统。  除了传统的继电器之外,继电器的技术还应用在其他的方面,比如说电机智能保护器是根据三相交流电动机的工作原理,分析导致电动机损坏的主要原因研制的,它是一种设计独特,工作可靠的多功能保护器,在故障出现时,能及时切断电源,便于实现电机的检修与维护,该产品具有缺相保护,短路、过载保护功能,适用于各类交流电动机,开关柜,配电箱等电器设备的安全保护和限电控制,是各类电器设备设计安装的优选配套产品。该技术安装尺寸、接线方式、电流调整与同型号的双金属片式热继电器相同。是直接代替双金属片式热继电器的更新换代的先进电子产品。继电器技术发展到现在,已经和计算机技术结合起来,产生了可编程控制器的技术。可编程控制器简称作PLC。它是将微电脑技术直接用于自动控制的先进装置。它具有可靠性高,抗干扰性强,功能齐全,体积小,灵活可扩,软件直接、简单,维护方便,外形美观等优点 以往继电器控制的电梯有几百个触点控制电梯的运行。  而PLC控制器内部有几百个固态继电器,几十个定时器/计数器,具备停电记忆功能,输入输出采用光电隔离,控制系统故障仅为继电器控制方式的10%。正因为如此,国家有关部门已明文规定从97年起新产电梯不得使用继电器控制电梯,改用PLC微电脑控制电梯。  可以看出,继电器技术在日常生活中无所不在,而且和电脑的紧密结合更加增强了它的活力,使得继电器为我们的生活更好地服务。  液压传动控制系统  液压传动控制是工业中经常用到的一种控制方式,它采用液压完成传递能量的过程。因为液压传动控制方式的灵活性和便捷性,液压控制在工业上受到广泛的重视。液压传动是研究以有压流体为能源介质,来实现各种机械和自动控制的学科。液压传动利用这种元件来组成所需要的各种控制回路,再由若干回路有机组合成为完成一定控制功能的传动系统来完成能量的传递、转换和控制。  从原理上来说,液压传动所基于的最基本的原理就是帕斯卡原理,就是说,液体各处的压强是一致的,这样,在平衡的系统中,比较小的活塞上面施加的压力比较小,而大的活塞上施加的压力也比较大,这样能够保持液体的静止。所以通过液体的传递,可以得到不同端上的不同的压力,这样就可以达到一个变换的目的。我们所常见到的液压千斤顶就是利用了这个原理来达到力的传递。  液压传动中所需要的元件主要有动力元件、执行元件、控制元件、辅助元件等。其中液压动力元件是为液压系统产生动力的部件,主要包括各种液压泵。液压泵依靠容积变化原理来工作,所以一般也称为容积液压泵。齿轮泵是最常见的一种液压泵,它通过两个啮合的齿轮的转动使得液体进行运动。其他的液压泵还有叶片泵、柱塞泵,在选择液压泵的时候主要需要注意的问题包括消耗的能量、效率、降低噪音。  液压执行元件是用来执行将液压泵提供的液压能转变成机械能的装置,主要包括液压缸和液压马达。液压马达是与液压泵做相反的工作的装置,也就是把液压的能量转换称为机械能,从而对外做功。  液压控制元件用来控制液体流动的方向、压力的高低以及对流量的大小进行预期的控制,以满足特定的工作要求。正是因为液压控制元器件的灵活性,使得液压控制系统能够完成不同的活动。液压控制元件按照用途可以分成压力控制阀、流量控制阀、方向控制阀。按照操作方式可以分成人力操纵阀、机械操纵法、电动操纵阀等。  除了上述的元件以外,液压控制系统还需要液压辅助元件。这些元件包括管路和管接头、油箱、过滤器、蓄能器和密封装置。通过以上的各个器件,我们就能够建设出一个液压回路。所谓液压回路就是通过各种液压器件构成的相应的控制回路。根据不同的控制目标,我们能够设计不同的回路,比如压力控制回路、速度控制回路、多缸工作控制回路等。  根据液压传动的结构及其特点,在液压系统的设计中,首先要进行系统分析,然后拟定系统的原理图,其中这个原理图是用液压机械符号来表示的。之后通过计算选择液压器件,进而再完成系统的设计和调试。这个过程中,原理图的绘制是最关键的。它决定了一个设计系统的优劣。  液压传动的应用性是很强的,比如装卸堆码机液压系统,它作为一种仓储机械,在现代化的仓库里利用它实现纺织品包、油桶、木桶等货物的装卸机械化工作。也可以应用在万能外圆磨床液压系统等生产实践中。这些系统的特点是功率比较大,生产的效率比较高,平稳性比较好。  液压作为一个广泛应用的技术,在未来更是有广阔的前景。随着计算机的深入发展,液压控制系统可以和智能控制的技术、计算机控制的技术等技术结合起来,这样就能够在更多的场合中发挥作用,也可以更加精巧的、更加灵活地完成预期的控制任务。
  • 福禄克携5款温度、压力、电学计量校准产品亮相世界传感器大会
    仪器信息网讯 8月23日,为期三天的2022世界传感器大会在郑州国际会展中心完美落幕,此次传感器大会由中华人民共和国工业和信息化部、中国科学技术协会与河南省人民政府主办,郑州市人民政府、河南省工业和信息化厅、河南省科学技术协会、中国仪器仪表学会承办。福禄克(FLUKE)展位本次世界传感器大会,众多知名传感器公司携新品和主推产品参展,同时也吸引了多家仪器企业参加,福禄克(FLUKE)公司也携一系列计量校准产品亮相。据了解,福禄克早在2000年就收购了Wavetek Wandell Goltermann的精密测量部门,从而稳固了其在电气校准市场内已经获得的地位。近几年,福禄克公司又先后收购了以温度计量和校准著称的 HART公司,以及以压力计量和校准而著称的DHI公司,从而使福禄克公司的计量和校准技术和产品覆盖了电学、温度以及压力,成为全面提供计量和校准产品的仪器仪表公司。1586A高精度多路测温仪(下)和外置接线模块(上)1586A高精度多路测温仪可以扫描测量并记录直至40通道的直流电压和电流,电阻,扫描速度可达每秒10个通道。1586A可以配置为多通道的记录仪在现场使用,也可以配置为参考温度计连接方式用于实验室的温度传感器校准。1586A高精度多路测温仪可满足制药,生物,食品,航空航天以及汽车行业的大量的温度分布,传感器校准,温度测量的应用。2271A工业压力校准器这款仪器兼容两个不同精度级别的模块。PM200模块为大部分量程提供 0.02% FS。PM500模块提供0.01%的读数不确定度,确保2271A可用于测试或校准更高精度的变送器和数字仪表。2271A的压力量程达到-100 kPa至20MPa(-15 psi至3000psi),满足较宽范围的压力计和传感器需求。仪器内置支持HART功能的电学测量模块(EMM),因此能够对4-20 mA设备(例如,智能变送器、压力计和开关)进行闭环、全自动校准。此外,该仪器顶部的双测试端口可安装两台被测设备(DUT),提升工作效率。9173高精度干式计量炉干井炉是早期最传统的现场热源。而福禄克最早开发的干式计量炉,其不确定度要远远小于干井炉的不确定度。不确定度越低,客户就越有能力校准准确度更高的传感器。干式计量炉提供了接近恒温槽的性能,但是却不需要昂贵的恒温槽液体。干式计量炉达到预定温度点并且稳定的时间比恒温槽快5到10倍,这样即可节省技术人员的工作时间,提高检定速度。干式计量炉的便携性使其能够到现场进行校准的工作,从而解决了恒温槽在运输上的困难。而此次参展的福禄克9173高精度干式计量炉采用了双段控温技术。传统的炉子在轴向(垂直方向)的温度场很难做到均匀,越接近炉口温度变化就越大。所谓双段控温就是在垂直方向上使用上下两层双路控温的方式,这种新型的模拟和数字控制技术提供了高达±0.005 C的稳定性。而且利用两段控温技术,轴向(垂直方向)的均匀性在60 mm区域内可达到±0.02 ℃。7109A便携式恒温槽在制药、生物科技和食品生产等行业,过程制造工厂大量使用卫生型温度传感器,这些传感器需要定期校准,在校准时必须停止生产。因此,校准效率越高意味着工厂停工时间越短。此外,在有些生产过程中,0.1摄氏度的误差就会造成严重成本损失,温度准确度对于保证质量至关重要。而本次展出的这款7109A便携式校准恒温槽与市面上许多恒温槽相比,系统准确度提高了两倍,能在更短的时间内校准更多的卫生型传感器,工作效率提高四倍。用户可以将4支卡箍式卫生型传感器同时置于恒温槽中进行校准,温度显示准确度达±0.1°C。对于小法兰或没有法兰的卫生型热电阻,校准效率甚至更高。7109A恒温槽覆盖温度范围可达-25°C至140°C,内置测温仪直接用于连接外部参考探头以及被校温度探头。8588A八位半数字多用表8588A是一款八位半数字化标准多用表,专门为校准实验室量身打造,拥有直观的用户界面和彩色屏幕和超过12项的测量功能,包括新增的数字化电压、数字化电流、电容、射频(RF)功率,以及用于交/直流电流的外部分流器,帮助用户将实验室级别的系统测试成本统一整合到单台测量仪器中。8588A拥有1年期直流电压准确度(2.7μV/V@95%置信区间,或3.5μV/V@99%置信区间)和最佳的24小时稳定度(0.5 μV/V@95%置信区间,或0.65 μV/V @99%置信区间),使其能够傲视市场上其他标准数字多用表。8588A还能够在短短1秒内产生稳定的八位半读数,进一步提高速度覆盖范围。
  • 特惠新品推荐---LSA100RF光学滞留力测量仪(第二代视频光学接触角测量仪)
    光学滞留力测量仪LSA100RF 是德国Lauda Scientific公司推出的世界上第一台光学滞留力测量的商品机,是传统视频光学接触角测量仪的更新换代产品,属于第二代视频光学接触角测量仪。该机器不仅涵盖第一代视频光学接触角测量仪的所有测量功能,而且具有独特的滞留力测量功能,是表面分析仪器领域中的一个开拓性创新!LSA100RF光学滞留力测量仪的测量方法LSA100RF光学滞留力测量仪在常规接触角测量仪上引入了离心力旋转台和视频同步触发技术。在快速旋转状态下置于材料表面上的液滴,在离心力的驱动下产生侧向滑动的趋势,迫使液滴形状发生变化。当离心驱动力达到最大滞留力数值的时候,液滴沿材料表面发生横向水平滑动。在这一动态过程中,仪器利用视频同步触发技术能够准确的抓拍到液滴形状和位置变化的一组照片并记录相对应的滞留力数据,通过软件自动处理得到滞留力数据以及前进接触角和后退接触角的变化曲线和最大值。滞留力能够直接反映液体和固体之间界面上的相互作用力。LSA100RF光学滞留力测量仪利用滞留力和动态接触角同时测量功能,可以进一步分析滑动过程中滞留力和液滴形状变化等因素之间的相互关系。LSA100RF光学滞留力测量仪的推出为材料润湿性的研究提供了一种有力的工具。LSA100RF在动态、多功能测量方面展示出了巨大的潜力,它能够同时使用几何参数和物理参数表征液体和固体材料之间界面上的相互作用,必将在特殊功能材料、液体的传送和过滤过程、表面的自清洁和易清洗等众多领域发挥出关键作用。LSA100RF光学滞留力测量仪的技术参数:新冠病毒疫情期间,LSA100RF 将特价销售,并确保3周的到货期! 感兴趣的客户请速与我们联系,我们开通了网上和微信购买业务,您的购买将更简单方便! 等待您的联系!东方德菲联系电话: 400-860-5168转0629
  • 柔性温度传感器实现高温测量新突破
    近年来,各大品牌的折叠屏手机、柔性可穿戴电子等智能设备层出不穷,成为行业热点。作为柔性电子设备的重要组成部分,柔性传感器用以测量温度,反映人体的各项指标。现有的柔性薄膜温度传感器受柔性衬底、敏感材料等限制,难以实现高温物理场的温度测量。因此,如何继承柔性薄膜传感器优势,实现柔性薄膜传感器在高温环境下的应用是一个值得关注的问题。近日,来自微纳制造领域的一项最新研究成果,为柔性传感器突破高温应用瓶颈提供了新思路。西安交通大学机械工程学院精密工程研究所的刘兆钧博士、田边教授、蒋庄德院士及其合作团队首次制备出了具有良好温度敏感性的高温柔性温度传感器。相关成果发表于工程制造领域期刊《极端制造》。传统柔性温度传感器难以实现高温无损监测柔性传感器是指采用柔性材料制成的传感器,具有良好的柔韧性、延展性,甚至可自由弯曲、折叠,而且结构形式灵活多样,可根据测量条件的要求任意布置,能够非常方便地对复杂表面进行检测。在可穿戴方面,柔性的电子产品适合“人体不是平面”的生理特性,因此更易于测试皮肤的相关参数,其可将外界的受力或受热情况转换为电信号,传递给机器人的电脑进行信号处理,从而实时精准地监测出人体各项指标。“柔性薄膜温度传感器能变形、易附着、轻薄等优点受到了研究人员的广泛关注。”田边说,“热电偶式传感器以结构简单、动态响应快、便于集中控制等优点脱颖而出。”结合二者优势,热电偶式柔性薄膜温度传感器应运而生。“温度传感器主要由两部分组成,由两种不同材料制成的温度敏感层和柔性基板。温度敏感层常由金属以及金属化合物组成,柔性基材则选择已经商业化的聚二甲基硅氧烷、聚酰亚胺等高分子聚合物材料。”田边表示。实际上,柔性传感器的优势使其能运用到多个领域当中,除了可穿戴设备,柔性传感器还在医疗电子、环境监测等领域显示出很好的应用前景。然而,现有的柔性薄膜温度传感器受柔性衬底、温度敏感材料等限制,难以在高温环境场中工作,更无法实现功能化应用。“因为柔性基板的熔点通常低于400℃,在高温环境中发生碳化后会变脆、变硬,因此,很难在高温环境下使用现有的柔性温度传感器。这一点也限制了它们在航空航天、钢铁冶金和爆炸损伤检测等极端环境中的应用。”田边解释道。“现有的高温温度测量手段受限于设备尺寸大、需要破坏结构、破坏气流场、受环境干扰等,难以实现对温度场的无损实时温度监测。”博士生刘兆钧补充道。因此,如何继承柔性薄膜传感器的优势,实现柔性薄膜传感器在高温环境下的安装与应用是亟须解决的关键问题。突破多项柔性温度传感器测量瓶颈为了突破柔性温度传感器的温度测量瓶颈,田边教授团队创新性地选择了具有宽温域的铝硅氧气凝胶毡作为温度传感器的柔性基板。由于柔性基板表面不均匀、粗糙度较大,难以通过传统的微纳制造工艺实现薄膜沉积与功能化,因此团队选用了丝网印刷技术制备厚膜以克服上述困难。在制备传感器的实际操作中,田边、刘兆钧等人使用有机黏合剂混合功能粉末完成浆料配置,利用高温热处理的方法去除薄膜中的多余有机物,如环氧树脂、松油醇等。同时,团队还针对不同应用表面,基于柔性材料可变形、可共形的优势,实现了功能薄膜的特定曲面化制备。“就像球鞋设计者根据球星脚底的尺寸大小来制定码数一样,这种‘独家订制’能有效解决一些问题。”田边表示,这样制备好的柔性温度传感器能够贴附于不同曲率曲面,例如叶片等。同时,其也具有超薄、超轻等优点。这项研究首次实现柔性传感器在零下190℃至零上1200℃这一极广的温度范围内工作,测试灵敏度也达到了可观的226.7微伏每摄氏度(μV/℃)。这是现有所有柔性温度传感器难以实现的。扩大柔性传感器的工作温域,为柔性传感开拓了更广阔的应用领域,它在探险排难、航空航天、钢铁冶金等领域将呈现出巨大的应用潜力。在被问及新型柔性传感器何时能够实现实际应用时,蒋庄德表示:“我们团队的研究人员对制备的柔性温度传感器已经进行了多种实验室级测试与实际测试。其中,包括对航模发动机的尾喷温度进行实时监控,小型物理爆炸场爆炸瞬时温度测量以及对坩埚中金属熔化过程进行温度监测等。传感器在整个测试过程都表现出了优异的测温能力。”在蒋庄德看来,科技发展的目标始终围绕造福人类。他指出:“我们根据柔性温度传感器极轻、极薄的特点,创新性地将其应用于智能穿戴设备,如传感器与环保透明面罩相结合设计出的智能口罩,实现对人体呼吸状态的实时监测,有望惠及长期独居旅行者和慢性病患者。我们的科研成果可以给人们的生活带来便捷,这也让科研有了‘温度’。”目前,柔性传感器许多技术仍停留在研究阶段,柔性传感器产业链整体能力亟待增强。就技术本身而言,传感器本身的稳定性、耐磨损性等还需要进一步提高。而从整个产业链的配套来说,柔性电路、柔性存储,以及软硬连接等环节也需要跟进步伐。在未来,团队也期望将制备的柔性传感器进一步优化,实现飞机表面、涡轮叶片等国之重器上的温度测量,为我国科技进步添砖加瓦。
  • 世界量程最大力标准机自主研制成功 达国际领先水平
    近日从闽侯经济技术开发区获悉,入驻该开发区的福建省计量院科研基地上月成功自主研制出世界量程最大的60兆牛力标准机,并与德国联邦物理技术研究院(PTB)50兆牛力标准装置力值比对成功,标志着这种力标准机的量程和精度均处于国际领先水平。除此之外,该院还自主研发了高精度衡器载荷测量仪、天然气用超声流量计远程在线诊断及检测系统等一批具有国际国内先进水平、引领产业升级的关键计量技术成果。  省计量院院长许航介绍,力标准机可对测力仪、传感器、千斤顶等超大力值计量器具进行检定、校准及检测。60兆牛力标准机的研制成功,为国家航空航天、国防科工等领域提供了强大技术保障。基地自主研发的衡器载荷测量仪的样机已在福建科达衡器公司等4家应用单位进行长期试用,解决了企业生产的衡器仪器设备难以逐台进行出厂检验的难题,极大提升了企业的产品质量和市场竞争能力。  许航告诉记者,检定一台150吨汽车衡,用传统砝码检定方法需运输砝码150吨,检定过程需搬卸砝码2300多吨,耗时4天~8天。而使用科研基地研制的衡器载荷测量仪,运输检定设备不超过1.5吨,对汽车衡进行全量程全性能检定仅需半天。以科达公司为例,之前年总产销量约为200台(套)汽车衡,应用该成果后,仅在福建地区就实现了年产销量800台(套)。  “这一成果不仅填补了大型衡器非砝码检定装置的国际空白,解决了世界难题,还从根本上解决了基层计量技术机构检定汽车衡及衡器企业产品出厂检验难的问题。”许航说。  此外,由该院主持完成的省科技厅重大专项“食品中致癌物的检测技术研究与仪器研制”,可快速检测大米、酒、粮油等产品中的致癌物质含量,项目成果应用有效提升有害物质的现场快速筛查、预警的监控水平,保障食品安全。目前,已经形成标准化批量生产。  据了解,该院现已建成289项社会公用计量标准,具备了将具有先进水平的计量技术“嵌入”企业生产、工艺控制中的能力和水平。例如,建立全国最大的综合性能源计量数据在线监测公共服务平台,已服务省内738家重点耗能企业,为能源计量、安全生产和节能降耗提供了技术保障 研制的国内首 个“食品安全快速检测仪通用技术标准”帮助生产企业规范食品安全快速检测仪器的技术要求,推进了食品安全检测仪生产的综合示范性基础建设 “无线婴儿培养箱自动校准装置”的应用使婴儿培养箱的使用更加安全 国内首 个“污染源监控计量流动实验室”,对我省环境质量的维护和污染治理具有重要的技术支撑作用。  记者获悉,该院科研基地一期工程去年8月完成综合验收,建有6栋工作大楼,实验室及科研办公面积32000平方米,其中恒温恒湿实验室约3000平方米。二期工程项目正进行规划设计及可研报批,预计年内动工建设,2019年完成并投用。二期工程建筑面积6000平方米,计划建设力学、电学、环境医学、标准物质等计量检测实验楼。
  • 研究开发出基于FBG传感原理的触觉传感器应用于微创手术组织触诊
    近日,中国科学院深圳先进技术研究院医工所微创中心研究员王磊团队在基于布拉格光栅光纤传感原理在微创手术的应用——活体组织触诊的研究中实现了活体组织的精准力信息反馈和肿块信息的定位检测功能。相关研究成果以Development of a Fiber Bragg Grating-based Force Sensor for Minimally Invasive Surgery ―Case Study of Ex-vivo Tissue Palpation为题,发表在IEEE Transactions on Instrumentation and Measurement上。  随着医疗技术的快速发展,微创手术(MIS)逐渐成为现实。但是,传统手术中发现的一些问题仍与MIS有关。例如,在进行微创外科手术期间,医护人员会暴露在手术室中发现的放射线和整形外科危害中。引入机器人辅助微创手术的技术成为了比传统微创手术更好的替代方案;然而,机器人辅助手术过程中伴随着外科医生的触觉丧失。外科医生通过操作机器人来进行微创手术,手术期间医生无法直接接触人体组织并且分析人体器官,因此无法保证所进行的手术的可靠性。在传统手术过程中,医生通过触觉去感知器官的异常情况,进而判断器官中是否存在肿瘤和肿块。但随着医疗机器人的普及,这种可获得的触觉信息尚未有效集成到机器人辅助的微创手术中,因此要求机器需要具有更高精确度和灵敏度的触觉信息反馈。深圳先进院科研人员在此基础上提出一种用于微创手术组织触诊中的高灵敏度布拉格光栅光纤(FBG)传感方案,与以往的电容式传感方案不同,光纤传感器与手术期间的磁共振(MR)系统和成像系统兼容。   为此,研究设计了用于微创手术的一维远端力传感器。其中,传感器结构中嵌有双光栅元件可用于解耦传感器在使用过程中受到的应变和温度交叉影响,实现更精准的力觉检测。研究中,科研人员基于双光栅元件结构设计出发,推导出相应的柔性结构理论模型。通过fmincon函数对柔性件进行了基于物理模型的优化设计,确定了结构的关键参数。采用有限元法对柔性件的静态和动态特性进行分析,在理论基础上验证了该柔性件的可行性。为了进一步提高传感器性能,并基于前馈神经网络对数据进行标定,该网络模型可精准预测力与波长偏移量的关系。研究还进行了温度补偿实验,验证了双光栅元件能够有效的进行温度解耦方案。实验结果表明,FBG传感器能够在1N范围内感知力值,平均相对误差小于满量程的2%;温度补偿后的误差0.8 mN。科研人员进一步对猪肝器官进行组织触诊实验,验证所提传感器设计在微创手术中的有效性和适用性。   研究实现了组织触诊中器官肿块信息的精准力反馈和定位检测,并提出了新型的温度解耦方案和传感器标定方法,为微创手术中手术机器人的触觉信息检测提供了有效技术路线,有望推动手术机器人在介入式医疗中的手术路径导航和机器控制中的应用。   研究工作得到国家自然科学基金、深圳市科技计划等的资助。   论文链接
  • 质检总局5个重大仪器开发专项启动
    近日,由我局组织实施的“高端动力装置扭矩和速度测量仪器设备的研发与应用”、“基于频域可变的高端电磁检测仪器开发及应用”、“多功能离子色谱仪的开发与产业化”、“微膜泵驱动核酸微全分析仪”和“动态多谱分析仪的开发与应用研究”5个项目正式启动。为有效实施对项目的管理,我司组织成立了项目监理组、项目总体组、技术专家委员会、用户委员会和项目管理办公室,并制定了各自项目管理实施细则。   “高端动力装置扭矩和速度测量仪器设备的研发与应用”开展高端动力装置机械功率关键参数扭矩和速度精密测量技术的研究,攻克扭矩标准装置中高精密空气轴承支撑部件的核心技术及双天线雷达测速收发模块的关键技术。研究建立具有自主知识产权的高端动力装置的扭矩测量仪器(20kNm扭矩标准机)、高端动力装置速度测量仪器(双天线雷达测速仪器)和加速度计动态特性校准装置。项目研制成果将有望为我国高端动力装备扭矩与速度等功率测量建立可靠的计量溯源体系,并将在仪器开发、产业化示范、节能减排等方面起到重要的推动作用。   “基于频域可变的高端电磁检测仪器开发及应用项目”以频域可变局部磁化技术为基础,利用电磁耦合非接触的优势,开发具有磁致伸缩导波/漏磁/电磁超声一体化功能的频域可变电磁检测仪,为从微观上研究材料损伤的磁学、电学和声学特性表征和宏观上在役构件腐蚀快速检测提供技术支撑 针对我国公共安全和能源领域急需解决的技术难题,对所开发的仪器,进行大型常压储罐底板腐蚀在油检测和油气输送管道金属损失多功能内检测应用开发,扩展其功能。最后,攻克频域可变电磁检测仪小批量制造过程中的相关难题,全面提升其稳定性和可靠性,建立高端电磁检测仪器的产业化基地,打破国外技术垄断和仪器封锁,服务于我国特种设备安全事业,保障国民经济持续稳定发展。   “多功能离子色谱仪的开发与产业化项目”以开发具有自主创新核心技术的高灵敏度、高稳定性多功能离子色谱仪并实现产业化为目标,将发挥对我国离子色谱仪器研发和产业化的创新引领作用,多功能离子色谱仪将在环境、食品、电子、能源和化工领域广泛应用,是环保、质检等相关部门获取基础数据必要的分析工具,具有重要的社会意义和经济意义。   “微膜泵驱动核酸微全分析仪”项目基于在微流体膜泵驱动及聚苯乙烯微流控芯片精密注塑技术业已形成的突破,重点攻克检测器单元技术、核酸扩增部件集成接口技术、芯片功能组件微制造技术和复杂基质痕量核酸微流控预富集技术,开发将核酸分子检测步骤中的细胞裂解、核酸提取纯化、核酸扩增与检测功能高度集成于芯片系统并实现自动化操作的微全分析仪器,同时开发专用芯片批量制作、试剂灌装、封装生产工艺。研发仪器在检验检疫、疾病诊断与研究、环境监测、生物计量等领域进行应用开发,开发配套检测方法、建立检测数据库、完善仪器性能,形成检测标准或操作规程。为食品安全与检验检疫、疾病诊断与监控、环境监测等领域提供技术支撑。   “动态多谱分析仪的开发与应用研究项目”重点攻克TGA-IR热重单元与红外光谱单元联机接口技术、TGA-GCMS热重单元与气相质谱单元联机接口技术、不同状态样品在各检测单元间的传输进样等关键技术,强化系统集成,开发我国自主知识产权动态多谱分析仪 以葡萄酒、白酒、调味品、食用油、乳粉等涉及民生的大宗和“名、优、特“食品为重点应用对象,研究建立动态多谱仪分析方法 研发具有用户自建模功能的动态多谱特征信息数据库和识别模型,形成批量生产能力。
  • phase-FMR铁磁共振测量系统:新技术带来的革命性突破
    对于研究磁学的科研工作者来说,市场上有不少测量静态磁学的仪器设备:高端的有Quantum Design公司著名的MPMS3(SQUID)以及功能更为丰富的PPMS系统;中等的有各种振动样品磁强计(VSM);低端一些的有磁滞回线测试仪。另外还有一些辅助的磁学测量手段,例如磁光克尔效应测量,磁扭矩测量,磁弹性测量等,可以说静态磁学测量系统的手段是非常丰富的。然而静态磁学测量手段反映的只是宏观统计的测量结果,无法反映微观磁相互作用的结果。比较为大家所熟知的动态磁学测量手段就是铁磁共振测量。但是铁磁共振测量涉及到高频信号传输和复杂的数据分析,通常需要用昂贵的矢量网络分析仪来搭建,对于大多数科研工作者来说是非常困难的任务,而且信噪比难以达到较高的水平。瑞典NanOSC公司的phase-FMR铁磁共振测量系统,采用了两种特殊技术,在大提高测量信噪比的同时,对测量人员的技术要求也大为降低。先,phase-FMR采用了亥姆霍兹线圈加锁相放大器技术,使得交流信号测量的精度得到大提升,下图是系统的测量原理图。其次,phase-FMR使用了更加容易操作的CPW共面波导板作为高频信号的传输部件。使得测量频率范围更宽,也不再象谐振腔那样,限于几个特殊的频率点。可以在2-40GHz范围内的任何频率下进行测量。通过铁磁共振测量,获得不同频率下的共振线宽,就可也拟合出样品的相关动态磁学参数,主要有:有效磁矩: Meff,旋磁比: γ,阻尼系数: α,非均匀展宽: ΔHo。同时也可以获得饱和磁化强度Ms的信息。测量实例: 1、1.5纳米CFO薄膜的铁磁共振原始测量曲线及测量软件自带的数据分析曲线。即使使用高精度的MPMS系统,1.5纳米的薄膜测量起来已经比较困难了。Phase-FMR依然能获得较好的测量曲线。 2、退火对样品的磁学性能的影响 3、磁性薄膜的PSSW和FMR效应相关产产品链接:1、高精度铁磁共振仪 http://www.instrument.com.cn/netshow/SH100980/C221410.htm2、美国Montana无液氦超低振动低温光学恒温器 http://www.instrument.com.cn/netshow/SH100980/C122418.htm3、PPMS 综合物性测量系统 http://www.instrument.com.cn/netshow/SH100980/C17086.htm
  • 非侵入性微型传感器可测人体pH值,或有助于诊断癌症
    据最新一期《化学科学》杂志报道,加拿大研究人员开发出一种可更准确测量pH值的微型传感器,或有助更好地理解和诊断包括癌症在内的一系列疾病。 多伦多大学士嘉堡分校化学系助理教授张晓安称,在活生物系统中实时检测pH值,对于探测和理解pH值失衡导致的相关疾病至关重要。如低pH值与囊性纤维化、局部缺血以及癌症的病理状况密切相关。pH值信号可用于诊断疾病及监测治疗效果,了解人体组织内的pH值在何时何地发生显著变化是非常重要的。因此,迫切需要找到一种可进行深入、精确的探查,同时又确保不入侵组织的新方法。 张晓安团队使用核磁共振光谱技术开发的微型传感器,可以非侵入方式在原子水平对分子进行非常详细的观察。研究人员将大肠杆菌细胞作为实验对象,完成了对卵母细胞(鱼卵细胞)的传感器测试。 pH值是对质子(附着于其他分子的微小带电粒子)活性的测定。质子活性很难在组织中测量,因为质子移动迅速,难以用常规核磁共振的时间尺度来捕获分子位置。利用核磁共振测量pH值的主要挑战在于,在不同的质子化状态(附着或不附着)对分子进行精细成像。既有核磁共振技术无法对不同质子态的实时测量提供足够的精度。 张晓安团队研发的传感器,则通过一种缓慢的质子交换机制,提供了独特的解决方案。该探测器可减缓质子运动,并观察不同状态下的质子,从而使测量变得更为灵敏和精确。该传感器虽为医疗成像设计,但亦可扩展到环境科学、生物学乃至食品生产和质量控制等其他应用领域。
  • 基于损失模式共振光纤传感器的增强型光谱电化学装置
    光谱电化学(SEC)测量在分析化学中起着至关重要的作用,利用透明或半透明电极对电化学过程进行光学分析。电化学读数提供了有关电极状态的信息,而透射光谱的变化有助于识别电化学反应的产物。 据麦姆斯咨询报道,近日,波兰华沙理工大学(Warsaw University of Technology)的研究人员开发了一种增强型光谱电化学装置,其中,基于双域(光学和电化学)光纤的传感器直接用作工作电极,同时像光谱电化学一样单独测量分析物的光学特性。该传感器采用反射(探针状)配置,其中只有短纤芯部分涂有氧化铟锡(ITO)并浸入分析物中。对ITO纳米涂层的性能进行了优化,以满足在期望的反射光谱范围内获得损失模式共振(LMR)的条件。基于LMR和分光光度计的测量在单独的光路中进行。这产生了一种具有电化学激活的两个垂直定向光谱通道的新形式。相关研究成果以“Enhanced spectroelectrochemistry with lossy-mode resonance optical fiber sensor”为题发表在Scientific Reports期刊上。 在这项工作中,ITO-LMR传感器是基于聚合物包层的石英(PCS,芯径 = 380 μm)多模光纤。由于传感器设计为反射(探针状)配置以有效地引导在光纤端面之一处反射的光,因此使用直流磁控溅射技术在其中一个光纤端面上沉积一层铝膜。必须注意的是,只有当LMR传感器用作工作电极时,传感器/电极的光学询问(通道2中的光学测量)才是可能的,而当使用铂网或ITO涂覆的载玻片时则不可能。增强型SEC装置(LMR传感器作为工作电极)的示意图 增强型SEC装置提供了三种类型的询问读数:电化学测量、与分析物体积相对应的光谱分析(类似于标准SEC)、反映传感器/电极表面状态的LMR光谱分析。在每个询问路径中,分别用铁氰化钾和亚甲基蓝两种氧化还原反应探针进行循环伏安法(CV)实验。随后,在传感器的计时电流(CA)测量期间进行同步测量,并检查读数之间的相互关系。(A)铁氰化钾和亚甲基蓝溶液中LMR传感器的CV扫描;(B)LMR光谱的演变,其中施加电压以诱导氧化还原探针的氧化和还原;(C)计时电流响应,显示LMR传感器在亚甲基蓝溶液中的可重复响应。LMR传感器支持的增强型SEC配置中的多步电流法测量结果(铁氰化钾作为氧化还原探针)LMR传感器支持的增强型SEC配置中的多步电流法测量结果(亚甲基蓝作为氧化还原探针) 总而言之,研究人员开发了一种基于ITO的损失模式共振光纤传感器的增强型光谱电化学测量系统。由于ITO膜的优化厚度和光学性质,在光学域中观察到了LMR,而ITO的电学性质允许将传感器也用作电化学装置中的工作电极。通过检测两种氧化还原探针,即铁氰化钾和亚甲基蓝,证明了该方法。由于LMR强烈地依赖于外部介质的属性和传感器表面发生的变化,因此外加电压的变化会引起共振波长的移动以及特定波长的透射。此外,外加电压引起的变化具有高度可逆性。与标准工作电极相比,“针状”形式的传感器结构紧凑,因此在测量系统内传感器的放置方面提供了很大的灵活性,并能够减小分析样品的体积。此外,这种传感器的制造具有可扩展性,高度可重复性和低成本。利用ITO-LMR增强型光谱电化学装置,增加了关于工作电极表面状态、氧化还原反应本身的信息,并交叉验证了获得的结果,从而提高了分析的灵敏度。这种三通道系统将来可以应用于其他分析,也可以应用于需要使用便携式系统的传感应用。论文信息:https://www.nature.com/articles/s41598-023-42853-0延伸阅读:
  • 超声波气体流量传感器国产化助力燃气计量行业转型升级
    一、燃气表行业背景分析近年来,我国加快推进“煤改气”工程建设,天然气已经成为我国现代清洁能源体系的主体能源之一。到2020年,天然气在一次能源消费结构中的占比力争达到10%左右,到 2030 年,占比提高到15%左右。在这些燃气迅速发展的利好消息促进下,燃气计量行业将迎来巨大的发展契机。膜式燃气表因其技术成熟、质量稳定和价格低廉等优点,在我国城市燃气发展中得到广泛应用,随着计算机和微电子技术的发展,膜式表也逐步实现了智能化,目前在燃气计量行业仍然占据着主导地位。但膜式燃气表结构复杂、易磨损、易受管道介质温度压力等客观因素的影响,导致测量精度降低。热式(MEMS)燃气表是利用热传递原理测量燃气标准状况下流量的一种新型燃气计量器具,采用全电子结构,无机械运转部件,体积小、精度高。虽然可以针对特定天然气组分进行修正,但是从原理上还是易受多种不同气体组分影响,温度的影响修正也相对复杂,同时长期的污染物沉积使得MEMS芯片响应变慢影响精度,使得其应用受到限制。超声波燃气表以其非接触测量、无可动部件、无压力损失、极高的计量精度和可结合更多的智能化应用等优势,引起国内外的高度重视,是近年来燃气计量领域的开发热点。 二、超声波燃气表的研究与应用现状其实早在上世纪九十年代,英国、德国等国的多家燃气公司已陆续开发了超声波燃气表。受当时超声波探头、计时芯片、电子技术等的因素限制,价格还是非常高昂,无法与传统膜式燃气表竞争。进入二十世纪后,超声波燃气表的关键部件价格大大降低,迎来了超声波燃气表的快速发展。日本东京燃气公司于2003年7月开展了超声波燃气表的各种现场测试,于2005年率先安装了5000台超声波燃气表至用户家中,在2008年全面使用超声波燃气表。目前国际上的超声波燃气表技术主要来源于松下、西门子等公司,他们在超声波领域深耕多年,从流道结构、软件算法、超声波换能器及模块到整机,都有着诸多专利。虽然国内现有多家燃气表公司已开始研发超声波燃气表,但是大多数厂家还是使用松下的超声波燃气表传感器方案,也就是购买松下的电路板和超声波探测器,自己配套外壳组装成超声波燃气表。这样的模式使得国内厂家生产的超声波燃气表价格偏高,市场推广受到限制。我国燃气表产业生态已经基本建立,因此积极开展自主知识产权、可以满足燃气表规范要求的超声波气体流量传感器的技术研究,对于打破国外技术垄断、促进我国燃气表转型升级发展具有重要意义。 三、超声波燃气表用气体流量传感器核心关键(1)超声波换能器的自主研制。目前满足超声波燃气表计量要求的核心部件的超声波换能器基本都是进口,价格占总成本的40%。国产化的难点是其带宽以及高低温特性,既要保证较长的测试距离提高测试分辨率、较高灵敏度提高信噪比,还需要考虑不同温度下的测试漂移。 (2)燃气表的性能和稳定性问题。超声波燃气表由于无机械部件,理论上稳定性较传统膜式表要高很多,但膜式表在国内多年的使用中,已广泛被燃气表公司和客户接受。超声波燃气表如何在稳定性上达到燃气表公司的需求,打消燃气表公司的顾虑,是超声波燃气表迈向市场化的非常重要的一关。(3)气体污染问题。与膜式燃气表一样,由于超声波燃气表的常年运行,燃气中的粉尘或杂质会附着在超声波换能器上,影响换能器对信号的接收敏感度,从而影响燃气表测量准确度。(4)气源适应性问题。天然气密度比空气小,信号也较空气小;不同密度的气体通过超声波换能器后,其信号的波形会很不稳定。超声波信号传输会受传播介质、环境(温度、湿度、压力)以及管道内反射等各种因素影响,接收到的超声波信号通常存在着波形变化、幅值变化。因此,家用波燃气表要想进入家庭,并广泛使用,对气源的适应性是需要克服的最重要一关。 四、超声波燃气表用气体流量传感器技术特点四方光电公司自2008年开展对超声波气体传感器的研究以来,通过在超声波换能器、时间计量芯片以及时差自动计算方法、流程成分同时感知等领域取得突破,特别是在超声波氧气流量传感器、超声波沼气流量计等领域实现了规模化生产应用,具有较好的技术和产业基础。针对家用燃气表需要的超宽量程比、宽温度范围、抗污能力、脉动气流测量等特殊要求,开发成功满足超声波燃气表用的超声波气体流量传感器。(1)“L”型流道结构设计。超声波燃气表用超声波气体流量传感器采用“L”型流道设计,包括腔体、进气口、出气口及两个超声波换能器,通过将气室腔体的横截面设置为圆形,将超声波信号在第一个换能器安装孔和第二换能器安装孔之间的传播路径设置为“L”型流道,如图1所示。 图1. 燃气表用超声波气体流量传感器结构原理图传统超声波燃气表气体流量计量气室的“W”型发射流道,“V”型对射单通单流道以及“N”型对射单通单流道,都是通过超声波在流道内产生一次或多次反射而形成的路径以增加超声波声程,间接增大了换能器的有效距离,从而获得更高测量精度。但其缺点是通过反射后探测器信号较弱,信噪比降低,对换能器的要求很高。因此造成成本也较高。采用“L”型流道、圆形横截面的超声波燃气模块,克服了现有超声波燃气表气体流量计量气室管道的横截面积较大,气室体积较大,成本较高的问题,以及两个超声波换能器之间传播距离较短,降低测量结果准确性的问题。同时,还避免了被测气体中的污染物污染超声波换能器,从而影响检测结果准确性的问题。(2)用双阈值过零检测与数据选择技术。以时差法超声波气体流量计为基础,采用双阈值过零检测与数据选择算法技术,区别于超声波自动增益控制法,不对信号进行处理,通过关联幅值与飞行时间周期变化的关系,根据幅值判断飞行时间是否发生周期性变化,从实际测量得到多个结束方波脉冲对应的时间值中选择合适的结果,作为最终的飞行时间,从而精确计算气体流量。(3)自动调零算法。燃气表在温度、压力等外部因素变化条件下,对超声信号产生一定的影响,从而影响计量的时间差;此产生的时间差变化,可能只有ns级别,对高端流量几乎没影响;但对于低端流量,特别是Qmin,影响非常大,造成测量精度超过标准要求。另外,燃气表在无流量情况下的零点,可能受到超声波换能器零点的漂移影响,产生整体计量的漂移,对低端流量造成较大的影响,这是低端流量精度和稳定性超标最重要的原因。针对超声波换能器的零点漂移问题,在软件算法上,采用自动调零的处理算法,超声波燃气表采用可调整的零点,并根据超声波换能器的信号波动特点,软件上自动调整超声波燃气表的零点,保证在外部因素或内部因素作用下,超声波燃气表的零点随环境变化而适当做出调整,抵消由于零点漂移对低端流量产生的影响;同时,考虑电路整体对时间差值的影响,在软件算法上,补偿此部分对测量的影响。 五、超声波燃气表用气体流量传感器的应用基于专利的气体流量传感器硬件和软件核心技术,四方光电公司针对我国家用表以及五小工商户客户的需求,成功开发出超声波家用和商用燃气表。其核心传感器部件见图2:图2. 家用和商用超声波燃气表核心传感器部件解决核心燃气表气体流量传感器后,就可以利用以往具有的外壳、皮膜阀、电源管理等组装燃气表。图3是采用超声波核心流量传感器的G4燃气表。 图3. G4超声波燃气表(内置国产化核心流量传感器)根据燃气表的计量要求,进行了宽量程的燃气表误差特性以及耐久性实验。 图4. G4超声波燃气表典型误差曲线 图5. G4超声波燃气表耐久性误差曲线由于我国超声波燃气表的国家标准还处于征求意见稿阶段,因此借鉴了EN-14236欧洲有关“ultrasonic-domestic-gas-meters”标准进行完整的测试。除以上图示的基本试验,还进行了线性度、压损、高低温、交变湿热、耐粉尘、脉动流量等试验。试验表明基于超声波气体流量传感器核心模块的燃气表均满足燃气表的各项指标要求。作者简介熊友辉博士,教授级高工。中国科协九大代表、中国仪器仪表学会理事、分析仪器分会副理事长。主持过科技部重大科学仪器设备开发专项、工信部物联网专项、湖北省重大科技专项等多项国家和省市科技项目。现任武汉四方光电科技有限公司总经理。 公司简介武汉四方光电科技有限公司是一家专业从事气体传感器、气体分析仪器及物联网解决方案的国家高新技术企业,其全资子公司——四方仪器自控系统有限公司,以自主知识产权的核心传感器技术为依托,陆续推出了红外/紫外烟气分析仪、红外煤气分析仪、红外天然气热值仪、激光拉曼气体分析仪等气体成分分析仪器,并先后研制了超声波气体流量计、超声波燃气表核心传感器部件、智能超声波燃气表等燃气流量测量产品。四方光电通过了ISO9001、ISO14000、ISO18000、IATF16949等有关质量、环境、健康安全、汽车电子等体系认证,目前已与多家世界五百强企业建立长期配套合作关系。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制