当前位置: 仪器信息网 > 行业主题 > >

高海拔环境大气流量温度压力校准器

仪器信息网高海拔环境大气流量温度压力校准器专题为您提供2024年最新高海拔环境大气流量温度压力校准器价格报价、厂家品牌的相关信息, 包括高海拔环境大气流量温度压力校准器参数、型号等,不管是国产,还是进口品牌的高海拔环境大气流量温度压力校准器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高海拔环境大气流量温度压力校准器相关的耗材配件、试剂标物,还有高海拔环境大气流量温度压力校准器相关的最新资讯、资料,以及高海拔环境大气流量温度压力校准器相关的解决方案。

高海拔环境大气流量温度压力校准器相关的资讯

  • 天霁大气采样器完成模拟高海拔采样测试
    天霁HN-ASA1双模正压大气采样器在中国计量科学研究院成功完成了模拟高海拔低温条件下的采样测试。测试分别模拟了珠峰大本营(海拔5100米、0.5大气压、-10℃)和前进营地(海拔6500米、0.42大气压、-20℃)的气压和温度条件,天霁HN-ASA1双模正压大气采样器在这些极端条件下均可以正常启动,并成功完成了气体样品的采集工作,采集的样品压力均可满足后续分析的要求。 这批采样器随“巅峰使命2022”第二次青藏科考北京大学分队赴珠峰进行高海拔空气采样工作。这是我国首次在珠峰营地开展针对甲烷和含氟气体的采样实验,所得数据对于珠峰地区乃至全球的温室气体浓度分布与传输状况的研究具有重要意义。此前,天霁采样器还曾搭乘“雪龙号”极地考察船,在南极圆满完成了空气采样工作。天霁系列大气采样器专门为环境空气正压采样所开发,采用便携拉杆箱设计,携带方便,稳定可靠。采样器具有独特的抽气-充气双模式切换功能,在现场只需一台采样器即可完成采样罐的冲洗和采样,极大提高空气采样效率和样品可靠性。天霁大气采样器还提供全自动(ASP2)、多通道可编程(ASP8)等多个型号,并可选配流量控制、内置电池等模块,满足各种场景下的空气采样需求。
  • 水位|高海拔地区的地下水监测
    如果问你监测水质意味着什么时,您会想到哪些参数?温度、电导率、pH值、溶解氧和浊度这“五大”参数吗?追踪有害藻华的叶绿素和藻蓝蛋白?以我作为水质仪器经理的经验来看,每当我问这个问题时,“水位”很少是我得到的第一个答案。实际上,在一些圈子中,水位根本不被认为是水质的衡量,而是水量的衡量,被当作一个完全独立的话题来对待。无论你是否相信水位是一个水质参数,水位可能是最重要的,当然也是最广泛的。今天测量的参数,准确的水位测量对于地下水监测、河流和河流测量、湖泊/池塘水位分析、洪水水位记录、灌溉渠道、波浪和潮汐分析都非常重要...不胜枚举。我最近写了气候变化教育的重要性,而水位也与之息息相关。伴随气候变化引发极端天气事件,各地区应对暴雨和洪水、干旱和缺水、海平面上升以及其他与气候相关的问题。此系列文章将重点介绍凭借 Xylem的水位测量实现重要应用的以下三个项目: 地下水监测暴雨监测洪水监测01地下水监测第一个例子来自于我的同事James Chen。James作为YSI的资深水质监测专家,提供从现场应用到销售和业务开发的全方位服务,并曾在世界上最迷人的地方开展工作。例如,James在西藏的拉萨开展过一个项目,监测地下水。出于多种原因,监测地下水水位非常重要,其中包括了解在静态条件和抽水条件下的蓄水层水位、确定水位与当地地表水源的相互作用以及了解地表开发对蓄水层的影响。拉萨被称为“亚洲水塔”,在这样的情况下,James将协助客户监测拉萨的自然资源- 尤其是水质。James用一台EXO1透气式水位主机来完成这项任务。这种仪器的选择至少说明了关于地下水监测的两个非常重要的原则。在传统意义上,水质监测也是一个优先事项。为什么客户要求测量诸如比电导、温度、pH/ ORP和浊度等水质参数,而不仅仅是测量地下水水位?主要原因就是,水量丰富并不代表水源适合饮用。雨水或地表水在渗入地下时会接触受污染的土壤,从那一刻起,雨水或地表水就可能会被污染,并将污染从土壤带到地下水蓄水层。而当液态有害物质通过土壤或岩石渗入地下水时,地下水也可能受到污染。还存在许多其他类型的地下水点源和非点源污染,而在这个项目中,客户需要监测这些威胁。连续监测标准水质参数的变化是一种很好的方法,同时也证明了相比于水位记录仪,使用窄小直径 EXO1进行地下水监测的关键优势。第二个原则,该项目揭示了在某些情况下使用透气式水位深度传感器的重要性。拉萨是世界上海拔最高的城市之一。海拔超过3650米,拉萨的气压比海平面的气压低约35%。正如以下James提供的数据所示,这对水位的测量产生了巨大影响,尤其是在不使用透气式水位传感器的情况下。所以...什么是透气式水位测量,它和深度传感器有哪些区别?02深度vs.透气式水位YSI EXO配备的传感器分为深度和透气式水位两种。深度由一个非透气式的应变传感器进行测量的,这里我们将其称为压力传感器(也称之为“深度传感器”)。压力传感器与电阻相连接,当传感器隔膜片上的压力变化时就会发出电信号。隔膜的一侧暴露在水中,另一侧暴露于真空中。在真空侧,压力恒定不变。在水侧,压力随水压(Pw)的变化而变化,水压与水深成正比。因此,水量越多意味着压力越大,信号被转换成工程单位(磅/平方英寸-PSI 或深度,单位为m、ft或bar)。据此,您就可以知道压力传感器上方的水深。有时,这些测量值被称为绝对深度。我不是特别喜欢“绝对”这个词。因为我始终认为有可能存在极低的测量误差。我认为“绝对”代表的含义是:所有对传感器隔膜施加的压力都会被转换成电信号,然后这些信号由仪器的固件转换成深度,但如果是这样,情况就变得复杂了...如您所见,Pw则不再仅代表水施加的压力。它也代表大气施加在水面的压力,甚至水的密度,受诸如盐等溶质以及诸如温等环境条件的影响。对于许多应用,这些其他因素可以忽略不计。但是在浅水应用中,有两个因素可能会产生严重影响:盐度(也可解释为水的比重ρ)和大气压。在室温1个大气压(即海平面)下,纯水的比重为1。海水的比重则要高 50%,甚至还取决于温度。因此,考虑温度的盐度测量可用于补偿水位测量。其中一个重要的例子是与海平面上升相关的气候变化研究,如在佛罗里达州Clam Bayou案例的经典文章关于海平面上升的YSI应用指南所描述的。Clam Bayou案例研究也描述了第二个关键变量–大气压。特别是在水深较浅的应用中(YSI认为透气式水位主机中的压力传感器通过透气管与大气联通。当使用压差传感器时,这确保了整个测量中自动补偿了大气压力(Pair) 。有时气压会发生剧烈波动,例如在暴风雨期间。在生活中,您甚至可能认识一些可以感知这些变化的人,——也许他们会患上气压性头痛。海拔变化也会影响气压,这也是拉萨气压如此低的一个重要原因。因此,让我们从Clam Bayou向上爬升3,650米,看看大气压补偿有多重要。03高海拔水位的气压补偿 我的同事James在西藏拉萨的客户现场安装了一台 EXO1透气式水位主机。之后他的一位合作伙伴也访问了该地点,并在同一口井中安装了一台配有非透气式压力传感器的EXO2主机,他们也想在那里观察水质。这台非透气式主机的深度传感器只是在出厂前进行了校准。工厂校准可能仍然非常好(深度传感器相当稳定)。但是,俄亥俄州的金泉市海拔为260米,实际的传感器本身是在压力控制室中校准的。这也就是在部署之前深度传感器通常应该在室外现场进行校准的原因。在深水应用中,Pw远大于Pair,这可能无关紧要。但如果是在地表水应用,且使用我们的垂直剖面仪进行深度测量的情况下,则一定要进行现场校准。然而,James的合作伙伴起初并不想测量深度,因此他没有校准深度传感器。尽管如此,深度传感器仍在部署过程中进行了记录。10周后,James查看和分析数据时他注意到了一些显著的差异,如下图所示。James比较了他的EXO1主机和合作伙伴的EXO2主机的测量值。在下图中,左侧Y轴表示EXO1水位值,右侧Y轴表示EXO2深度值,两者均以米为单位:从另一个角度来看数据,James绘制了两条线之间的差值,且还是使用米作为Y轴上的度量单位。该图显示了两台主机所测得的水位值之间相差约6.5-6.85米,此外更重要的是它还显示了值在6.67至6.84 米之间的波动。这一点很有趣引起我们的注意,并还会在我们的最终分析中再次出现。我们已经暗示过,拉萨的低气压可能是引起两个探头测得的数据之间的波动和差值的一个原因,但是这一假设是否得到有力证据的支持?James在右侧Y轴上绘制了以百帕斯卡 (hPa) 为单位的气压测量值,并在左侧Y轴上绘制了两个探头所测的深度差 (m)。作为参考,海平面上的1个标准气压为1013.25hPa。除了这两条线看起来相互跟踪程度外,该图的右轴数据还显示出了气压非常之低,与拉萨的高海拔相对应。James继续评估了两个主机所测的深度差值(X轴、ΔDepth,以m为单位)与Y轴的气压之间的相关性。通过线性回归分析,大多数环境科学家认定它们之间存在非常强的相关性:这为在高海拔地区使用透气式水位测量进行地下水监测这一假设提供了有力的依据。04准确度规格当我看到这些数据时,我想到,如果想知道水是什么时候抽出或流入的,主要的深度测量可能不是最重要的,而是检测变化的能力。换句话说,假设EXO2主机测得的起点为9m实际上是错误的,但我仍然能够检测到几厘米的变化,就像我使用透气式水位主机一样。那么如果我有一台EXO2,又不想再买另一台主机,这样够用了吗?以下为来自EXO用户手册的规格信息:这项研究中使用的EXO2是中等深度 (100m) 主机,其准确度规格约为满量程的±0.04% ,即±4cm。相比之下,EXO1浅水透气式主机 (10m) 的准确度规格为满量程的±0.03% ,即±0.3cm。准确度足足提高了10倍以上!然而... 如果James的同事部署的并不是100m量程的主机,而是浅水不透气的EXO2主机,由于浅水非透气式主机(EXO1或EXO2)在10m量程范围内的准确度为±0.4cm,所以所得测量结果可能会与EXO1透气式水位主机的测量值更接近。当然,前提是已经在现场正确校准了EXO2。假设您打算进行校准,您可能会想,为什么还要这么费心使用透气呢?0.4cm我听着挺好的!请记住这些准确度规格是在受控的海平面条件下测得的。气压仍然是必须考虑的干扰因素。使用透气式水位主机,气压补偿将自动完成。但对于非透气式标准主机,必须从外部完成气压补偿,现在有另一个测量误差被引入总误差预估。这就意味着,在这个高度偏远的地区,气压的一些单独测量必须与探测器的水位测量同时进行,气压测量是可靠的,以最终进行大气压补偿,从而完成最终的水位测量。如果这听起来有点混乱,那是因为确实如此。当在拉萨James现场的百帕的变化相差2-4% (16hPa) 时,要做到这一点颇为困难:最后,相对于含水层的总体积,水位变化所代表的估计体积对于选择仪器时的理解也很要,这将提高应用所需的整体准确度。最终分析:这些有关系吗?所以在这个故事中,我们遇到了不同的状况。有两种不同类型的测量值:深度和透气水位。另一个现实是,EXO2主机没有进行现场校准,这进一步增加了深度测量的误差。但是,总体来说,如果James的客户选择信任这台EXO2主机的深度测量结果,而不是EXO1的透气水位测量结果,会发生什么?再看上图,气压变化在 648-632hPa之间波动,EXO1报告的水位变化约为6cm(3.045-2.985m)。但是EXO2报告的水“位”变化为20cm (9.98-9.68)。我们可以估计出,EXO2报告的约17cm的差异是由缺乏气压补偿导致(6.84-6.670m,来自上面的差异图)。如果未进行此补偿,操作人员怎么知道地表水流入、流出或其他因素正在发生呢?如需更多讨论和信息,请联系James.Chen@xylem.com 。05 Case Study此案例研究说明了为什么YSI建议您使用经过适当校准的透气式水位主机进行地下水水位测量。针对地下水监测的YSI标准建议如下:大多数地下水应用,需要使用高准确度的透气式水位传感器。无论是自动(通过透气)还是手动补偿,都建议在高海拔或气压易于出现明显波动的地方实施大气补偿。如果优先考虑其他水质参数,尤其是在可能需要盐度或比重补偿也是必要的,那么透气式水位的主机(而不是压力传感器)是最正确的解决方案。
  • 建气象站、追踪极高海拔大气污染输送...珠峰科考创多项纪录
    5月4日中午,我国13名珠峰科考登山队员成功登顶珠穆朗玛峰。这是我国珠峰科考首次突破8000米以上海拔高度。此次珠峰科考聚焦珠峰地区的环境变化,从大气、水、生态、地表过程等方面进行全方位的考察。5个科考分队、16支科考小组的270多名科考队员参加科考任务,应用先进技术、方法和手段,围绕西风-季风协同作用、亚洲水塔变化、生态系统与生物多样性、人类活动等重大科学问题开展研究。图源:新华社成功架设全球海拔最高气象站登顶的第一项重要任务,就是架设气象站。4日中午12时46分,在珠峰海拔8830米处,科考队员成功架设一台重达50公斤的自动气象观测站,并成功传回实时数据。这是全世界海拔最高的自动气象观测站,可实现珠峰极高海拔区气象梯度自动观测和数据传输,获取的实测数据可填补珠峰极高海拔气象记录空白。据介绍,该自动气象站由太阳能电池板供电,正常情况下可使用2年,经过卫星通信等手段,传送温度、湿度、风向、风速、太阳辐射等气象信息。图源:新华社珠峰地区架设8个极高海拔梯度气象站此次科考的一项重要任务,是在珠峰北坡搭建海拔梯度气象站。今年以来,科考队已陆续在海拔5200米、7028米、7790米和8300米,架设了4个自动气象站。加上去年在海拔6500米、5800米及5400米架设的3个自动气象站,一个从海拔5200米至8300米之间的7个梯度自动气象站已建成运行。而在海拔8830米架设的这个自动气象站,是“巅峰使命”珠峰科考活动中架设的最后一个气象站,相当于海拔梯度气象站的最后一块“拼图”。图源:新华社8个气象站呈阶梯分布,立体、精准实测珠峰北坡的气温、相对湿度、风速、风向和太阳辐射等数据,并可实时远程传输。目前我们的高海拔地区相对缺少这种气象观测,常规的气象观测一般都在5000米以下,5000米以上很少。通过收集的气象数据,可以进一步研究极高海拔的气象要素变化特征,对我国建设珠峰梯度气象观测体系,对高海拔冰川和积雪变化的监测意义重大。开展系列极高海拔综合科考工作,“极目一号”Ⅲ型浮空艇升空高度有望超过9000米此次珠峰科考还开展了一系列极高海拔综合科考工作,比如极高海拔大气污染的输送和人体极高海拔适应性研究。在海拔5200米的珠峰大本营,中科院院士、北京大学环境科学与工程学院院长朱彤带领珠峰大气与人体健康科考分队,首次释放了由我国科研人员自主研发的臭氧探空气球,获取了从地面至万米高空的臭氧浓度信息,为解密青藏高原如何影响大气自净能力这一重大科学问题,积累了首批珍贵数据。坐落于珠峰北坡地区、海拔近4300米的珠峰站,是此次科考的主要营地之一。在这里,一个体格硕大的“飞艇”浮在半空,十分“抢镜”。这是我国自主研发的“极目一号”Ⅲ型浮空艇。在这次科考任务中,科考队将利用“极目一号”Ⅲ型浮空艇展开高空大气环境的综合测试。2019年,第二次青藏科考水汽传输科考分队在西藏纳木错多圈层综合观测站开展区域水循环观测研究,就曾利用“极目一号”系列浮空器综合观测地表至海拔7000米高空的大气水汽稳定同位素、大气黑碳和大气甲烷含量等大气组分,首次获得了青藏高原海拔7000米高空的大气组分变化科学数据。这为揭示亚洲水塔的水从何处来提供了关键科学数据。这一次,“极目一号”Ⅲ型浮空艇将挑战世界最高升空海拔,升空目标预计将超过珠峰峰顶。浮空艇的体积是9060立方米,是由我国自主研发的一个高空观测科学平台,主要目标是希望浮空艇升空高度能超过珠穆朗玛峰,超过9000米。
  • 明华电子发布明华MH4031型 全自动流量/压力校准仪新品
    MH4031型全自动流量/压力校准仪(以下简称校准仪)采用孔口流量测量原理,内置高精度压力传感器。一机多用,可用于VOCs采样器、大气采样器、中流量环境空气颗粒物采样器、便携式烟尘采样器的流量校准,微压、表压的校准以及PT100部分温度的标定。 校准器内置自动校准协议,仅需一根数据线就可实现流量全自动校准的功能,如本公司生产的MH1200系列采样器,后续会陆续开放本公司MH1205恒温恒流大气颗粒物采样器和MH3300型烟气烟尘颗粒物浓度测试仪的自动校准功能,校准器同时也开放外部接口协议,其他公司生产的采样器若采用该协议,亦可实现流量的全自动校准。执 行 标 准HJ/T 368-2007《标定总悬浮颗粒物采样器用的孔口流量计》主 要 特 点功耗低,噪音小,重量轻,超小型化设计,结构紧凑,外形美观,携带方便;多路大范围流量校准,包括两路(10~300)mL/min,两路(0.3~3)L/min,一路(5~130)L/min,一路(200~1200)L/min;大范围自动加压,微压:(0~4000)Pa,表压:(-30.00~+30.00)Kpa;常用PT100烟温标定(包括0℃、80℃、100℃、120℃、200℃以及500℃);孔板集成于仪器内部,在进行流量校准时,不需要频繁的更换孔板;超大7寸触摸电容屏,触感更优,简单明了的界面风格,操作简单易学;内置电池,可供仪器连续工作4小时以上。应 用 领 域环境监测及环境评价卫生防疫及劳动安全科研院所采样分析大专院所教学仪器创新点:与同类产品相比,MH4031型全自动流量/压力校准仪采用孔口流量测量原理,内置高精度压力传感器。一机多用,可用于VOCs采样器、大气采样器、中流量环境空气颗粒物采样器、便携式烟尘采样器的流量校准,微压、表压的校准以及PT100部分温度的标定。而且本仪器体积小,便于携带。 明华MH4031型 全自动流量/压力校准仪
  • 用先进科学仪器对冰川全面“体检” 进行高海拔身体缺氧实验
    已持续5年的第二次青藏高原综合科学考察研究,今年开启了“巅峰使命”2022——珠峰极高海拔地区综合科学考察研究。为何如此重视对青藏高原和珠穆朗玛峰的保护和研究?相关研究打破了哪些世界纪录?发现距今1500万年植物化石这次“巅峰使命”珠峰科考,已经取得了多项发现,来自中科院的古植物科考队就在珠峰地区发现了距今1500万年的植物化石。1500万年前喜马拉雅山脉地区的叶子长什么样呢?这些1500万年前的叶子,是科考团队在珠峰附近海拔5800米的区域发现的,分别为高山栎叶片和木贼地下块茎化石,而现今这些植物不可能分布在那样的高海拔地区,这对于认识珠峰地区的抬升历史和植物多样性演化过程都具有重要意义。中国科学院西双版纳热带植物园研究员苏涛介绍,此次科考继续关注珠峰地区新生代的植物多样性演化与环境变化历史,科考队员们实地勘测了珠峰五条不同地质时期的地层剖面,并采集到大量植物化石、孢粉和岩石样品。2亿多年前,喜马拉雅山脉还被特提斯海覆盖,由于印度洋板块和欧亚板块的碰撞,导致地壳上升,海底变成了如今地球上最高的山脉——喜马拉雅山脉。这些化石正是喜马拉雅山脉剧烈地壳运动的见证。在“巅峰使命”珠峰科考活动中,中国科学院西双版纳热带植物园的科考队,还深入到日喀则市的亚东沟、陈塘沟、樟木沟以及吉隆沟等地,考察了现代植物多样性垂直梯度分布,采集到海拔1650米至5500米的表土孢粉样品和现生植物标本,将为珠峰地区地质时期的植物多样性和环境提供参照依据。科考使命A完成污染物、绒布冰川和冰湖变化监测5月1日,冰川与污染物科考分队挺进东绒布冰川,携带先进科学仪器对冰川进行全面“体检”。冰川与污染物科考分队将覆盖珠峰大本营至东绒布冰川的高海拔区域,进行为期一个月的科考工作,主要完成污染物监测、绒布冰川和冰湖变化监测、河流湖泊温室气体通量监测等科考工作。科考队员们要登上海拔5800米到6700米的高度进行钻取冰芯、冰雷达测厚、采集雪样等科考工作。从海拔5800米向上的东绒布冰川冰塔林之路,是极高海拔科考团队必须共同经历的路途。这一路上是东绒布冰川冰塔林分布最密集的地方。科考组成员、青藏高原研究所冰芯组教授李真介绍,冰川,就是河流的意思,冰川也是流动的,在流动的过程中,在历史上的某个时期,温度突然升高,下面流动速度快,冰就断开了,拉开了,就形成了一个一个的截面。B采集高海拔PM2.5颗粒物此次珠峰科考有一项任务,就是在海拔5200米的珠峰大本营,采集大气氮氧化合物和PM2.5颗粒物,这项任务5月5日完成。样本会送进实验室,进行同位素分析,能够从中发现珠峰大气超强自我净化能力的来源和奥秘。本次珠峰科考,为什么要采集这些大气成分?在海拔5200米的珠峰大本营附近,放着两个黄色小帐篷和再远一些的金属箱,就是来自中国科学技术大学的科考队员,采集二氧化氮和PM2.5颗粒物的“利器”。每天早晨8点、下午2点和晚上9点,在这3个固定的时间,科考队员风雪无阻,要收走仪器采集的样本,并更换新的采集容器。收集氮氧化合物样本,科考队员要在仅容一人的小帐篷内,全过程蜷缩着完成,极高海拔的缺氧环境,常常让他们感到晕眩窒息。而回收采集PM2.5颗粒物的滤膜,则要求科考队员动作越快越好,通常控制在1分钟以内,因为光照会分解掉样本中最关键的硝酸根等成分。据介绍,采集的氮氧化合物和PM2.5颗粒物等样本进入实验室,预计最快可在半个月内完成分析。C亲测极高海拔对人体影响5月1日,为探寻高原反应对人体产生的影响并获取一手数据,中科院院士、北京大学环境科学与工程学院院长朱彤和部分科研人员,以自己的身体作为实验对象,佩戴测量血氧、心电监测的传感器,在珠峰登山大本营和绒布冰川之间来回徒步穿梭。科考队员要收集自身血样、尿样、唾液、粪便等样本,还要测量血压、监测脉搏波传导速度,为后续研究提供样本支撑。为了获取更多数据,科考分队将追踪在海拔5200米、5800米、6350米、8848米这4个高度活动的人群,开展高海拔缺氧的人体健康效应等科学问题研究。这也是第二次青藏高原科学考察“巅峰使命——珠峰极高海拔地区综合科学考察研究”的重要项目之一。珠峰科考百科为何如此重视珠峰科考?“守护好世界上最后一方净土”第二次青藏高原综合科学考察研究队队长、现场总指挥、中国科学院院士姚檀栋介绍,青藏高原是世界屋脊、亚洲水塔,是地球第三极,是我国重要的生态安全屏障、战略资源储备基地,是中华民族特色文化的重要保护地。新中国对青藏高原的科学研究从20世纪50年代就开始了。20世纪70年代初,在我们国家还很困难的时候,就启动了第一次青藏高原综合科考。2003年12月,中国科学院青藏高原研究所成立,专门从事青藏高原综合科学研究。国家第二次青藏高原综合考察研究的使命,聚焦水、生态、人类活动,着力解决青藏高原资源环境承载力、灾害风险、绿色发展途径等方面的问题,为守护好世界上最后一方净土、建设美丽的青藏高原作出新贡献,让青藏高原各族群众生活更加幸福安康。青藏高原综合科考,第一次主要是“摸家底”,第二次则要“看变化”。我们要努力取得重大科研突破,为青藏高原经济社会发展和生态环境保护提供决策依据。为何锁定珠穆朗玛峰?“揭秘气候变暖背景下珠峰环境变化规律”今年科考任务目标为何锁定珠穆朗玛峰?姚檀栋介绍,珠峰是青藏高原的标志,从科学角度来讲,青藏高原气候环境变化对世界其他地区而言,可谓牵一发而动全身。首先,青藏高原是亚洲水塔,世界上很多重要江河都从这里发源,从而造福人类。第二,从生态角度看。从珠峰往南走,下面就是恒河平原,海拔接近零米。也就是说,直线距离仅两三百公里,海拔落差就超过八千米。这里的动植物分布、生态系统变化就相当于一个微缩的地球景观,这也是珠峰最大的魅力之一。第三,从气候角度看。青藏高原是季风和西风的巨型调节器,对全球气候变化具有重要影响。我国科研地位如何?“某些研究领域已处于国际第一方阵”围绕青藏高原的科学研究备受世界关注,我国科学家的相关科研在国际上是否处于领先地位?姚檀栋介绍,从20世纪50年代至今,我国在青藏高原进行了多次专项和综合科考,中科院在青藏高原建立了多个观测台站,包括西藏的珠峰站、纳木错站、藏东南站、阿里站等等,持续开展相关科学研究。青藏高原研究范围很广泛,包括地球物理、地质构造、生态、环境等等。我国科学家的研究,特别是近二三十年在国家对重大基础研究项目的支持下,某些领域已经在国际上处于第一方阵,例如,包括冰川变化等气候变化领域,以及生态领域等。随着研究的推进,相信我们会在国际上展示更多新发现和新进展,将在相关科研领域拥有更多国际话语权。背景自20世纪50年代起,我国开展了超过6次的珠峰科考活动。此次“巅峰使命”首次突破8000米以上海拔高度并完成珠峰峰顶的综合科学考察任务,是第二次青藏科考自2017年启动以来学科覆盖面最广、参加科考队员最多、采用的仪器设备最先进的一次综合性科考,是人类在珠峰地区开展极高海拔综合科学考察研究的一次壮举。
  • 中国计量院成功助力西藏高海拔地区建立酒驾执法呼气酒精检测计量标准
    近日,中国计量科学研究院(以下简称“中国计量院”)技术专家赴西藏自治区计量测试所开展“高海拔下呼出气体酒精含量检测仪溯源性研究”项目专题技术指导。期间,专家组通过原理阐释、技术演示、规范操作等方式,面对面为西藏自治区计量测试所相关技术人员进行了深入细致的讲解辅导,有效带动和提升了该地区呼气酒精检测溯源的研究水平和实际能力。   近年来,中国计量院牵头制修订JJG 657-2019《呼出气体酒精含量检测仪》、JJF 1785-2019《呼出气体酒精含量检测仪型式评价大纲》等一系列技术文件,有效解决了高海拔地区呼气酒精检测溯源难题。今年,随着历时两年之久的高海拔地区呼气酒精检测试验圆满成功,中国计量院首次在西藏境内成功建立呼出气体酒精含量检测量值传递溯源体系,为在全国范围建立相应溯源体系奠定了基础。   中国计量院作为国家最高法定计量技术机构,高度关注安全和环保领域计量技术的研究发展,特别是围绕交通安全中的酒驾执法,成功研制出乙醇气体国家一级标准物质和系列检定校准装置。通过国际比对使我国在该项目国际互认的检测与校准能力(CMC)达到国际领先水平,提高了我国标准气体制备水平在国际上的地位和影响力,极大推动了国产酒检执法仪质量的全面提升和国产化进程。   据统计,国产酒检执法仪国内市场占有率从2006年的0.1%提高到现在的100%,使我国30万交警手中酒驾检测的标尺做到完全自主可控,并实现了从“零”出口到销往几十个国家的飞跃。
  • 先进简单的多功能过程校准器
    Allerød, Denmark –过程信号在各个行业中都是至关重要的,从控制阀、开关或灯,到测量管道中的压力,再到校准烘焙烤箱中的温度。随着如此重要的参数被广泛使用,确保这些过程信号保持准确是至关重要的。用户对他们使用的校准设备有多种选择,但最重要的因素之一是易用性。因为可能会使用多个过程信号,包括伏特、毫伏、安培或毫安,而每一个都可能有很大的量程差异,大多数用户转向多功能校准以满足所有情况。然而,随着期权的增加,该工具的复杂性也趋于增加。对于新手来说,看似简单的连接接线任务可能都是困难的。JOFRA ASC-400 先进的校准仪具有连接助手的功能。ASC-400现在包括一个内置的帮助功能,提供了一个图形解决方案,根据当前设置提供精确的连接图示。如果测量参数发生变化(例如从V变为mA),连接辅助界面也会发生变化。使用新功能可以显著减少错误和浪费时间。ASC-400多功能过程校验仪读取和输出RTD,热电偶,电流,电压,频率,电阻,脉冲序列等信号。它整合了诸如百分比误差计算、缩放、泄漏测试和开关测试校准等功能到一个手持校准器。大型全彩显示器、带有光标的数字小键盘和功能键有助于简化使用。ASC-400结合APM CPF压力模块实现压力校准. ASC-400结合Jofra干体炉实现温度校准。关于AMETEK STC and JOFRA AMETEK STC 在JOFRA和Crystal品牌下制造和供应温度、压力和过程信号的校准仪器。JOFRA温度校准器以其准确性、稳定性和可靠性闻名于世。
  • 福禄克携5款温度、压力、电学计量校准产品亮相世界传感器大会
    仪器信息网讯 8月23日,为期三天的2022世界传感器大会在郑州国际会展中心完美落幕,此次传感器大会由中华人民共和国工业和信息化部、中国科学技术协会与河南省人民政府主办,郑州市人民政府、河南省工业和信息化厅、河南省科学技术协会、中国仪器仪表学会承办。福禄克(FLUKE)展位本次世界传感器大会,众多知名传感器公司携新品和主推产品参展,同时也吸引了多家仪器企业参加,福禄克(FLUKE)公司也携一系列计量校准产品亮相。据了解,福禄克早在2000年就收购了Wavetek Wandell Goltermann的精密测量部门,从而稳固了其在电气校准市场内已经获得的地位。近几年,福禄克公司又先后收购了以温度计量和校准著称的 HART公司,以及以压力计量和校准而著称的DHI公司,从而使福禄克公司的计量和校准技术和产品覆盖了电学、温度以及压力,成为全面提供计量和校准产品的仪器仪表公司。1586A高精度多路测温仪(下)和外置接线模块(上)1586A高精度多路测温仪可以扫描测量并记录直至40通道的直流电压和电流,电阻,扫描速度可达每秒10个通道。1586A可以配置为多通道的记录仪在现场使用,也可以配置为参考温度计连接方式用于实验室的温度传感器校准。1586A高精度多路测温仪可满足制药,生物,食品,航空航天以及汽车行业的大量的温度分布,传感器校准,温度测量的应用。2271A工业压力校准器这款仪器兼容两个不同精度级别的模块。PM200模块为大部分量程提供 0.02% FS。PM500模块提供0.01%的读数不确定度,确保2271A可用于测试或校准更高精度的变送器和数字仪表。2271A的压力量程达到-100 kPa至20MPa(-15 psi至3000psi),满足较宽范围的压力计和传感器需求。仪器内置支持HART功能的电学测量模块(EMM),因此能够对4-20 mA设备(例如,智能变送器、压力计和开关)进行闭环、全自动校准。此外,该仪器顶部的双测试端口可安装两台被测设备(DUT),提升工作效率。9173高精度干式计量炉干井炉是早期最传统的现场热源。而福禄克最早开发的干式计量炉,其不确定度要远远小于干井炉的不确定度。不确定度越低,客户就越有能力校准准确度更高的传感器。干式计量炉提供了接近恒温槽的性能,但是却不需要昂贵的恒温槽液体。干式计量炉达到预定温度点并且稳定的时间比恒温槽快5到10倍,这样即可节省技术人员的工作时间,提高检定速度。干式计量炉的便携性使其能够到现场进行校准的工作,从而解决了恒温槽在运输上的困难。而此次参展的福禄克9173高精度干式计量炉采用了双段控温技术。传统的炉子在轴向(垂直方向)的温度场很难做到均匀,越接近炉口温度变化就越大。所谓双段控温就是在垂直方向上使用上下两层双路控温的方式,这种新型的模拟和数字控制技术提供了高达±0.005 C的稳定性。而且利用两段控温技术,轴向(垂直方向)的均匀性在60 mm区域内可达到±0.02 ℃。7109A便携式恒温槽在制药、生物科技和食品生产等行业,过程制造工厂大量使用卫生型温度传感器,这些传感器需要定期校准,在校准时必须停止生产。因此,校准效率越高意味着工厂停工时间越短。此外,在有些生产过程中,0.1摄氏度的误差就会造成严重成本损失,温度准确度对于保证质量至关重要。而本次展出的这款7109A便携式校准恒温槽与市面上许多恒温槽相比,系统准确度提高了两倍,能在更短的时间内校准更多的卫生型传感器,工作效率提高四倍。用户可以将4支卡箍式卫生型传感器同时置于恒温槽中进行校准,温度显示准确度达±0.1°C。对于小法兰或没有法兰的卫生型热电阻,校准效率甚至更高。7109A恒温槽覆盖温度范围可达-25°C至140°C,内置测温仪直接用于连接外部参考探头以及被校温度探头。8588A八位半数字多用表8588A是一款八位半数字化标准多用表,专门为校准实验室量身打造,拥有直观的用户界面和彩色屏幕和超过12项的测量功能,包括新增的数字化电压、数字化电流、电容、射频(RF)功率,以及用于交/直流电流的外部分流器,帮助用户将实验室级别的系统测试成本统一整合到单台测量仪器中。8588A拥有1年期直流电压准确度(2.7μV/V@95%置信区间,或3.5μV/V@99%置信区间)和最佳的24小时稳定度(0.5 μV/V@95%置信区间,或0.65 μV/V @99%置信区间),使其能够傲视市场上其他标准数字多用表。8588A还能够在短短1秒内产生稳定的八位半读数,进一步提高速度覆盖范围。
  • 北京赛克玛携七款国际领先大气环境监测仪器亮相第三届中国国际环境监测仪器展览会
    北京赛克玛携七款国际领先大气环境监测仪器亮相第三届中国国际环境监测仪器展览会。 北京赛克玛展位号: B229/B230 参展样机 1. Belfort Model 6000能见度监测仪(支持杆,校准板 ); 2. Nephelometer浊度仪 3. Aethalometer黑碳仪(七波段)(现场开机); 4. 安光所MPL偏振微脉冲激光雷达 (与两位安光所技术工程师合照) 5.AMA 挥发性有机物(VOCs)在线色谱监测系统 6. TE-6070 MFC/VFC 大流量颗粒物采样器 TSP/PM10/PM2.5 (1m3/min) (左一) 7. 安德森八级撞击采样器 (DC1 deltaCal 和TC5 triCal 大气流量/温度/压力校准器) (上图中一) CIEEMI 2010 欢迎您 第三届中国国际环境监测仪器展览会 The 3rd China International Exhibition on Environmental Monitoring Instrumentation 参展商手册 主办单位:中国环境保护产业协会 中国环境监测总站 协办单位:北京瑞利达展览展示有限公司 时 间:2010年11月24日-26日 地 点:北京· 中国国际展览中心1A、1B 第三届中国国际环境监测仪器展览会组委会 地址:北京市朝阳区安外大羊坊 8 号(乙)中国环境监测总站 105 室 100012 电话:(010)84943143 / 3144 传真:(010)84943069 邮箱:zhanlan @cnemc.cn
  • 中国首次完成高海拔地区光谱类油中溶解气体在线监测装置特性试验
    记者从国网青海电科院获悉,该院于8日成功完成“光谱类油中溶解气体在线监测装置的测量误差及稳定性环境影响特性试验”,该试验是中国首次在海拔2000米以上地区进行的该类在线监测装置的特性试验,试验结果可有效解决在高海拔环境下,光谱类油中溶解气体在线监测装置可靠性差和现场运维难题。图为试验人员开展光谱类油中溶解气体在线监测装置的测量误差及稳定性环境影响特性试验。何炳勋 摄据悉,通过在线监测装置实时监测大型充油电气设备绝缘油中溶解气体含量,反馈主设备运行状态、实现故障主动预警,是当前强化变压器(高抗)状态管控、对设备开展早期故障检测和诊断最有效的手段之一。光谱类油在线装置因其无需分离单元、监测周期短等特点,正广泛运用于750千伏及特高压变电站。据悉,由于该类装置研发和出厂应用主要集中在中国东部地区,在高海拔地区存在油气分离度、气体检测准确度不足等应用瓶颈,导致在装置入网过程中,质量管控标准难以统一。“我们搭建测试平台验证激光与红外热辐射光源的环境适应性,提出数据校正方法,可提高高海拔地区油在线装置的入网质量管控质量,突破高海拔环境下装置可靠性差、缺乏科学评价标准的难题。”国网青海电科院设备状态评价中心周尚虎介绍说。未来,国网青海电科院将开展系列研究,形成高海拔环境因素对光谱类在线装置的影响规律及数据抑制校正方法,并将研究结果应用至光声光谱在线装置的入网及现场运维,解决现场运维技术瓶颈,保障电网设备安全稳定运行。
  • 海拔4600-5200米!珀金埃尔默助力西藏玉龙铜矿绿色升级
    传说青藏高原是距离天堂最近的地方,这里的天空分外清澈、圣洁。的确,被称为“世界屋脊”的西藏有着独特的地理风貌,这里由于海拔高、气压低、空气含尘量小,天空尤其澄澈湛蓝。然而,雪域高原的美不仅在天上,这里的地底有着丰富的矿产。位于西藏自治区昌都地区的玉龙铜矿,海拔4569-5118米,是国内第二大单体铜矿,铜金属储量高达658万吨,远景储量达1000万吨。尽管早在1966年就已勘探发现,但艰苦的自然环境、落后的交通电力条件,特别是开发资金无着,一直制约着矿山的开发。近年来,在西部大开发、国家加大援藏力度等政策措施激励下,西藏积极吸引区内外投资,终于“激活”了沉睡的矿山。玉龙铜矿一期项目于2016年完工,已实现湿法及浮现采选能力230万吨/年,铜金属产能约3万吨;二期改扩建工程2019年4月启动建设,在2022年全面达产后,可实现年新增铜金属量10万吨,规模将位居中国第二,仅次于江西德兴铜矿。珀金埃尔默与玉龙铜矿的不解之缘早在2005年,当玉龙铜矿启动一期工程时,珀金埃尔默便已参与其中,2007年安装投用的aanalyst 400型原子吸收光谱仪和lambda25型紫外可见光分光光度计,至今仍在玉龙铜矿的检测中心运转。伴随矿山产能的不断释放和二期工程启动,珀金埃尔默的另三款元素检测利器——optima 8000 icp-oes(电感耦合等离子体发射光谱仪)、pinaacle 900f型原子吸收光谱仪、avio 200 icp-oes,也陆续加入其中,共同为原矿石品位分析、冶炼过程样品分析、成品分析,以及环境污染物检测,提供高灵敏度、高精密度的分析检测。滑动查看更多玉龙铜矿融采、选、冶、销为一体,是西藏现代工业的标志性工程。作为藏东高原高质量发展的标杆企业,它的定位十分清晰:智能、高效、绿色、高端。而珀金埃尔默分析仪器的定位也恰是如此。在世界屋脊,挑战极限高海拔地区对于仪器有着格外严苛的要求。超高灵敏度在使用icp-oes对样品进行品位分析、成分分析时,样品溶液会通过雾化器转变为气溶胶进入等离子体中进行激发,高海拔地区由于气压差异,所以会导致雾化效率低,灵敏度明显低于平原地区,这就要求检测仪器的灵敏度必须足够高才能满足用户对于样品分析测试的需求,optima 8000及avio 200在灵敏度上有着突出的优势,即便是在高海拔地区进行低含量样品测试,也能得到稳定的检测效果。足够大的设计余量市场上绝大部分仪器设计海拔高度为2000米,对于海拔高度远远高于设计值的地方,只有拥有足够大设计余量的仪器才能确保正常运行,尤其是气控部分。尽可能低的维护需求玉龙铜矿地处藏东高原,对于偏远地区的生产型用户,仪器必须故障率极低才能满足要求,因为即便从较近的成都派工程师前往,也需要两天时间到达,只有维护需求低、性能稳定的仪器才能胜任雪域高原的要求。去青藏高原安装仪器是怎样的一种体验?“痛并快乐着!”玉龙铜矿位于西藏昌都地区江达县青泥洞镇境内。最近的昌都邦达机场距离昌都市区126千米,早期在交通还不便利的情况下,从机场到昌都县城需耗时7-8个小时,直到2013年交通状况改善后,时间缩短至4小时左右。如果在冬天来昌都的话,可以感受到这里30米/秒以上的风速,低到零下42度的极端温度和极为稀薄的空气密度(仅为海平面的50%)。玉龙铜矿建设初期,条件十分艰苦,住宿只能靠帐篷,珀金埃尔默最初的两台仪器正是在那一阶段安装,尽管十分艰难,但工程师们回忆起来更多的是骄傲:“ 玉龙铜矿开创了我国在4500米以上高原地区发展有色金属工业的先例,能够参与到这样重大的项目中,我们深感自豪。”玉龙铜矿的检测中心在海拔4500米左右,高原反应是每个工程师都会面临的挑战,头疼脑胀、流鼻血都是常见症状,特别是冬天含氧量更低的时候,还可能要一边吸氧一边工作。另外比较特殊的是,在高海拔地区,由于空气稀薄,仪器在安装前需要一些特殊调试,有些仪器需要调整乙炔和空气的压力和流量,有些需要调整气控电路板,以保证仪器的正常工作。工程师回忆在安装optima 8000(icp-oes)时,当时正是玉龙铜矿加紧建设的档口,仪器到货后存放于室外堆货场,仅靠帆布防水,大半年后才得以安装到检测点。仪器经历了藏东高原一个冬天的考验,夜间室外极低温度可达到零下30度,仪器光学系统光栅在恶劣环境下脱胶,从基座上脱落,珀金埃尔默的两位工程师克服各种困难,靠着过硬的技术,完成了核心光学系统的修复和调试,仪器使用至今已有8年,该部件一直正常工作。“用我们的技术和服务,帮助客户解决实际问题,这就是工程师的快乐。”后记:据了解,中国是世界第一大铜消费和进出口贸易国,铜矿资源紧缺,对外依存度高达80%,是所有对外金属里依存度最高的品种之一。随着玉龙铜矿二期工程即将于2022年全面投产,年产铜金属量将达到13万吨,将进一步提升中国铜原料的自给率。这一项目也是我国将资源优势转化为经济效益,建设绿色高效矿业的又一里程碑。很荣幸,在这个浓墨重彩的篇章中,再度有珀金埃尔默的身影。
  • 国家重大科技基础设施高海拔宇宙线观测站(LHAASO)通过国家验收
    5月10日,国家重大科技基础设施高海拔宇宙线观测站(LHAASO)顺利通过国家验收。验收委员会认为,项目法人单位中国科学院成都分院和共建单位中国科学院高能物理研究所按期、全面、优质完成了国家发展改革委批复的建设任务,各项指标达到或优于批复的验收指标。LHAASO的1/4规模探测装置于2019年4月投入试运行,全规模探测装置于2021年7月投入试运行,整体性能可靠,具备长期稳定的科学运行能力。LHAASO充分利用特定地域4410米优越的高海拔条件和先进技术优势,成为目前世界上最灵敏的超高能伽马射线探测装置、世界上灵敏度最高的甚高能伽马射线源巡天普查望远镜,以及能量覆盖范围最宽的超高能宇宙线复合式立体测量系统。LHAASO的建成运行,使之成为目前国际粒子天体物理三大实验设施之一,对促进该领域实现重大原创突破、带动前沿交叉相关学科发展和国际合作具有重要意义。LHAASO是以宇宙线观测研究为核心的国家重大科技基础设施,2015年12月31日获得国家发展和改革委员会批复立项,项目由中国科学院和四川省人民政府共建,由中国科学院成都分院与中国科学院高能物理研究所承担建设,建设周期4年。LHAASO主体工程于2017年动工,于2021年全部完成建设,已先后通过由主管部门中国科学院组织的工艺、建安、财务、设备资产和档案五个专业组验收。此次国家验收会受国家发展和改革委员会委托,由中国科学院会同四川省组织,来自国家发改委、中咨公司、科研院所、高校等单位的近20位专家出席了验收会。LHAASO位于四川省稻城县海子山,平均海拔4410米,占地面积约1.36平方公里,瞄准的是当今最重要的科学前沿课题——高能宇宙线起源问题。它由5216个电磁粒子探测器和1188个缪子探测器构成的一平方公里地面簇射粒子探测器阵列、78000平方米的水切伦科夫探测器阵列、18台广角切伦科夫望远镜等三大阵列组成。LHAASO首席科学家曹臻介绍,LHAASO项目团队通过自主创新和国际合作,完成了多项关键核心技术攻关,首次在大视场成像切伦科夫望远镜中大规模使用新型硅光电管,改变了这类望远镜不能在月夜工作的传统观测模式,实现了有效观测时间的成倍增长;发展了基于“小白兔”技术、适应4000米以上高海拔野外工况的大面积、多节点、高精度时钟同步技术,远距离同步精度提升到0.2纳秒,达到国际领先水平;采用了国产20英寸超大型光电倍增管,将时间响应提高了3倍,观测阈能从3000亿电子伏降低到700亿电子伏,观测能力达到国际领先水平;在海量数据获取技术上取得显著进步,发展并实现了“无触发”数据获取,对宇宙线事例实现“零死时间”观测;采用特殊的数据筛选技术,对海量数据进行无损压缩,实现从海子山到高能所的实时数据传输。基于其超高的探测灵敏度,LHAASO在初步运行期间已经取得多项突破性的重大科学成果。LHAASO在银河系内发现了大量超高能宇宙加速器候选天体,并记录到人类观测到的最高能量光子,开启了“超高能伽马天文学”时代;精确测定了标准烛光蟹状星云的超高能段亮度,发现1千万亿电子伏伽马辐射,挑战理论极限。LHAASO在建设期间即开展观测,科学成果持续产出。截至目前,基于LHAASO项目发表的期刊论文累计约215篇、会议论文约156篇。LHAASO项目建设单位充分发挥中国科学院建制化研究的优势,依托设施开展观测与理论研究,并面向国内外全面开放共享。目前,已有28个天体物理研究机构成为LHAASO的国际合作组成员单位。合作组利用LHAASO的观测数据开展粒子天体物理研究,同时进行宇宙学、天文学、粒子物理学等众多领域的基础研究。LHAASO将成为以中国为主、多国参与的国际宇宙线研究中心,借助高海拔伽马天文、宇宙线的观测优势,成为独具特色、综合开放的科学研究平台。曹臻介绍,中国的宇宙线实验研究经历了三个阶段,1954年,中国第一个高山宇宙线实验室在云南东川海拔3180米的高山建成;1989至2000年,在海拔4300米的西藏羊八井相继启动了中日合作ASγ实验、中意ARGO-YBJ实验;LHAASO是我国第三代高山宇宙线观测站,目前已经成为世界上重要的粒子天体物理支柱性实验站之一,使我国在高能伽马射线天文领域的研究达到国际领先水平。
  • 哈希产品成功应用于中国最高海拔污水处理厂
    坐落于海拔3800米青海玉树结合镇的中国第一高海拔污水处理厂,分为一、二期工程,一期已于2012年10月正式投入使用,日处理能力将达到每天3万吨。 污水处理厂包括厂前区、污水预处理区、污水处理区、污泥处理区四个部分,具体分为砂水分离间、生物池、沉淀池、滤布滤池等21个构筑和建筑项目。依据《城镇污水处理厂污染物排放标准》规定,城镇污水处理厂出水排入地表水Ⅲ类功能水域,应执行一级B标准。但在玉树,污水处理厂出水水质执行了国内最高的一级A标准。这意味着污水处理厂处理完的污水除了不可以饮用之外,几乎可以被用在任何地方。 面对海拔最高的污水处理厂,国内目前最高的污水出厂标准,如何监测各工艺段水质参数、如何保障污水厂的稳定运营、确保出厂水达到一级A标,成为了该项目设计部门、建设单位、污水厂日常营运与技术管理团队十分重视的问题。为此,污水厂与建设单位对水质监测设备提出了极高的要求,在技术选择上也格外慎重;哈希公司为该厂提供了完善的全套水质监测方案,精准、可靠的哈希水质监测仪器也受到污水厂的高度肯定,污水处理厂最终在全厂采用了哈希仪表,以确保出厂水质达到该项目设计标准。 污水处理厂已建成并正式投入使用近一年时间,哈希的仪器像一个个哨兵,保障了该厂的日常运营与出厂水质标准,污水厂的稳定运行大力改善了县城结古镇水污染状况,并对巴塘河流域的水污染治理起到极大的辅助作用。 哈希公司在拓展中国业务的同时,再次护航中国的环保事业,造福社会,推动了玉树的灾后重建,以及该地区未来的发展与民生工程建设。
  • 中国科学家Nature Genetics上发表金丝猴属物种高海拔适应遗传机制研究成果
    中国科学家Nature Genetics上发表金丝猴属物种高海拔适应遗传机制研究成果金丝猴属(Rhinopithecus)属于灵长目,猴科,疣猴亚科,包括5个近缘物种:滇金丝猴(R.bieti),怒江金丝猴(R.strykeri ),川金丝猴(R. roxellana)、黔金丝猴(R. brelichia)和越南金丝猴(R. avunculus)。所有物种均被列为红色物种名录濒危物种。除了重要保护生物学价值,金丝猴属物种不仅发展出以树叶为食的特化食性,而且占据了从低海拔到高海拔的生境类型(800-4500m)。黔金丝猴和越南金丝猴分别生活在中国贵州和越南北部的低地山区,滇金丝猴,川金丝猴和怒江金丝猴生活在西藏和中国中部不同的高海拔区域。尤其是滇金丝猴,目前仅存于我国滇藏交界的高寒森林中,海拔高度都在4000米左右, 是除人类外世界海拔分布最高的灵长类动物。金丝猴属物种为研究动物对高海拔环境适应性进化遗传机制提供了很好的动物模型。近年来基因组学,特别是进化基因组学的发展,为系统和整体的揭示自然选择的遗传机制提供了前所未有的机会。云南大学于黎研究员课题组,中国科学院昆明动物研究所张亚平院士课题组, 中国科学院昆明动物研究所陈勇斌课题组、芝加哥大学吴仲义教授课题组、和北京基因组所强强联合,成立联合攻关团队,对金丝猴属物种高海拔环境适应遗传机制开展研究。首先,利用二代Ilumina HiSeq2000测序平台,对一只滇金丝猴进行denovo测序,并与其他哺乳动物的比较基因组分析显示:滇金丝猴中显着扩张基因家族中的基因显着富集在DNA修复和氧化磷酸化过程。此外,对滇金丝猴和猕猴多个组织进行RNA测序和比较转录组分析显示:能量代谢相关组织(心脏和肌肉)中高表达基因富集在与氧化磷酸化和心脏肌肉收缩相关通路。接下来,对同属的黔金丝猴,怒江金丝猴和越南金丝猴各一个个体进行全基因组重测序,并结合已经发表的川金丝猴denovo基因组,通过比较基因组学分析,在三个高海拔金丝猴物种中(滇金丝猴,怒江金丝猴和川金丝猴)发现6个基因中的8个共有氨基酸替换,与肺功能,DNA修复和血管生成相关。对其中与DNA修复相关的CDT1的紫外辐照实验表明突变型相对于野生型具有更强的稳定性。推测突变有助于金丝猴在高海拔环境中对紫外线的抵抗。对与血管生成相关的RNASE4基因检测发现突变型在诱导HUVEC细胞生成管状结构方面具有更高活性。推测突变可能增强RNASE4的血管生成能力,有助于金丝猴适应高海拔环境。最后,对滇金丝猴一个群体(20个个体)和川金丝猴三个群体(26个个体)进行基因组扫描,发现了群体之间的重叠和各群体特异的受选择基因,这些基因与DNA修复,心脏和血管发育,缺氧反应,能量代谢和血管生成相关。本研究基于多层次研究,包括种上和群体的基因组序列分析,转录组和功能实验,发现与金丝猴物种适应高海拔环境相关的遗传机制。以非人灵长类为研究模型,为高海拔适应这一复杂性状提供一个新的和更全面的揭示。
  • 喜讯!便携式质谱仪成功挑战海拔4800米野外工作
    2024年4月,清谱科技在西藏地区顺利开展“便携式质谱技术应用操作”培训,这是我司工程师首次在海拔4500米以上地区进行设备的调试且所有设备在高海拔地区均正常运行、状态良好!为了更好地提高用户体验,满足用户试验需求,公司组建了专业的培训团队赶赴西藏。根据用户需求有针对性地进行知识技能的传授。培训的主要内容包括便携式质谱分析系统介绍、原理及使用、食品安保应用与操作以及仪器在高海拔地区的注意事项等。由于西藏地处高原,自然环境条件相对恶劣,具有大气压力低、 空气密度小、 气温变化剧烈等特点,因此对精密仪器的可靠性、稳定性等性能要求更为苛刻。清谱科技便携式质谱分析系统攻克了质谱小型化、原位采集离子化、非靶向智能筛查、环境自适应、一键式智能操作等多项关键性技术问题,具有时时可测、处处可至、人人可用的特点,实现了将实验室质谱技术应用到现场的设想。便携式质谱分析系统基于完善的数据谱库,可进行毒物的现场快速检测,如大型活动安保、制毒现场确证等。高原之巅,是挑战,更是机遇。此次清谱科技西藏之行,实现了便携式质谱仪在高原极端环境下的应用,推动高原地区现场即时检测技术进入新时代,更是清谱科技硬实力的强有力展示,清谱科技产品应用场景得以进一步拓展。清谱科技将继续秉持“让人类生活更安全更健康”的企业愿景前行,不断精进,为医疗诊断、公共安全、现场监管、科学研究等领域提供全球领先的解决方案。
  • 恒奥德仪器温湿度压力检测仪/温度湿度压力三合一检测仪/数字温湿度大气压力计H17888
    温湿度压力检测仪/温度湿度压力三合一检测仪/数字温湿度大气压力计H17888产品概述:数字温度大气压力计是新一代便携式测量大气压仪表,仪表采高精度隔膜式绝压传感芯片,液晶数字双排显示,方便直观地测量外界大气压力,温度数值。采用全数字化设计,可靠性强体积小,重量轻,手感好,操作简便。该仪表广泛用于气象、科研、环保、军事、体育,是各实验室的须备常用仪表。 技术参数:数字温湿度大气压计基本技术参数:1、大气压测量范围:300~1100hPa2、大气压精度:0.5%FS(300~1100hPa)3、分辨率:0.1hpa / 0.1℃/ 0.1RH%4、测量介质:大气5、温度测量范围:-30~60℃6、温度测量精度:0.5℃7、湿度测量范围:0~100RH%8、湿度测量误差:±3%9、使用环境:温度-40~100℃;湿度0~100RH%10、电源:AA碱性五号电池4节11、尺寸重量:150×75×30mm约180g 大气压力单位换算表:1标准大气压(atm)760mmHg(毫米汞柱)76cmHg (厘米汞柱)10.336mH2O(米水柱)1013.25mba(毫巴)1.013×105pa(帕)1013hpa(百帕)101.3Kpa(千帕)【备注】十届国际计量大会决议声明,规定标准大气压值为1标准大气压=101325牛顿/米2 数字温湿度大气压计特点:◎ 双排LCD液晶显示,大气压、温度和湿度数字直读。◎ 进口高精度绝压传感器、高分辨率、高稳定性。◎ 进口超低功耗单片微电脑,并具有数值稳定功能。◎ 仪表数字校准,不用任何硬件调整。◎ 具有使用范围广,适合各种工况状态下使用。◎ 体积小、质量轻、便于携带,适合室内和野外作业。◎ 四节干电池供电,屏幕电量显示,电池连续使用可达50小
  • 众瑞针对《环境空气质量标准》不在执行标准状态, 改为参比状态或监测时状态的解决方案
    众瑞针对《环境空气质量标准》不在执行标准状态, 改为参比状态或监测时状态的解决方案告知函 尊敬的各位众瑞客户:生态环境部新发布了《环境空气质量标准》(gb 3095-2012)修改单以及《环境空气 二氧化硫的测定 甲醛吸收—副玫瑰苯胺分光光度法》(hj 482-2009)等19项标准修改单公告。标准修改单自2018年9月1日起实施。根据生态环境部《环境空气质量标准》(gb 3095-2012)修改单,3.14“标准状态standard state 指温度为273 k,压力为101.325 kpa时的状态。本标准中的污染物浓度均为标准状态下的浓度”修改为:“参比状态 reference state 指大气温度为298.15 k,大气压力为1013.25 hpa时的状态。本标准中的二氧化硫、二氧化氮、一氧化碳、臭氧、氮氧化物等气态污染物浓度为参比状态下的浓度。颗粒物(粒径小于等于10 μm)、颗粒物(粒径小于等于2.5 μm)、总悬浮颗粒物及其组分铅、苯并[a]芘等浓度为监测时大气温度和压力下的浓度”。 众瑞参与此次软件升级的仪器清单如下:zr-3922型环境空气颗粒物综合采样器zr-7200系列扬尘在线监测系统zr-3920系列环境空气颗粒物综合采样器zr-5410a便携式气体、粉尘、烟尘采样仪综合校准装置zr-3920g型高负压环境空气颗粒物采样器zr-5040孔口流量校准器zr-3930系列环境空气颗粒物采样器zr-5220烟尘采样器校准仪zr-3500系列大气采样器zr-5330a智能质量流量计zr-3950环境空气有机物采样器zr-5320智能皂膜流量计zr-3620abc小流量气体采样器zr-5400气体罗茨流量计zr-7010便携式空气颗粒物浓度测定仪zr-5420孔口流量校准装置升级内容包括:空气颗粒物采样器:所有保持不变,在采样、查询、u盘导出和打印过程中,增加“参比体积”; 空气颗粒物直读采样器:所有保持不变,在采样、查询、u盘导出和打印过程中,增加“参比体积”,仪器显示的颗粒物浓度值更改为“工况浓度”;环境空气气态污染物的采样器:所有保持不变,在采样、查询、u盘导出和打印过程中,增加“参比体积”;环境空气气态污染物直读类仪器:所有保持不变,在采样、查询、u盘导出和打印过程中,增加“参比体积”;把原来的“标况浓度”更改为“参比浓度”;我司提供的解决方案:1、在上述仪器不进行软件升级的情况下,您依然可以使用,只要通过以下公式即可将标准状态下的采样体积换算为参比状态下的采样体积,再进行浓度的计算。v参体= v标体*298.15/273=v标体*1.09式中:v参体——参比状态(298.15k,1013.25 hpa)下的采样体积,l;v标体——标准状态(273k,101.325kpa)下的采样体积,l。2、颗粒物(粒径小于等于10 μm)、颗粒物(粒径小于等于2.5 μm)、总悬浮颗粒物及其组分铅、苯并[a]芘等浓度为监测时大气温度和压力下的浓度”。 备注:众瑞相关仪器原来就有大气温度和压力下体积(实体)的显示和存储,所以仪器不需要改变。3、近期内(1~2个月)没有仪器使用情况,您可联系我司当地客服工程师,预约时间为您上门升级程序。注意:因程序升级将改变数据的存储格式,仪器中原保存的数据可能会发生变化,请客户提前做好相关数据的备份。 我们会尽快为您安排仪器软件升级,因升级给您带来的不便敬请谅解! 特此函达青岛众瑞智能仪器有限公司二〇一八年八月二十九日
  • AMETEK 推出全新 RTC-168 干液两用温度校准炉
    RTC-158是AMETEK校准仪器上一代干液两用温度校准炉,因其便携、快速升降温、大腔体等优点,在制药,食品、计量、电力以及气象等行业被广泛应用,并深受好评。针对制药、食品和饮料行业广泛使用的卫生传感器校准,技术人员必须将传感元件放置在温度校准器的均匀温场区域,然而,由于卫生级传感器的长度较小或传感器上方的法兰较大,因此传感器元件往往很难放入要求的温场区域;同时针对电力行业主变温度控制器的校准,原先的RTC-158不能完全满足温度范围的要求。针对以上困难,AMETEK STC 与客户进行密切合作,了解其需求,现在推出 RTC-168 干液两用温度校准炉以及相关的解决方案,解决用户痛点。RTC-168干液两用温度校准炉 :RTC-168 VS RTC-158✔ 温度范围扩展:RTC-168扩展到 -30~165℃✔ 更快的升降温时间,其中-30至165℃升温时间为24分钟,RTC-158的-22~155℃则需要60分钟,效率提升了一倍以上;✔ 增加了新的附件--液体容器,使干液模式切换更简便,配合带有泄压阀的保护盖,易于运输;✔ 推出新的恒温套管适配器,兼容使用RTC-156的恒温套管,可以减少设备的投资;✔ 可以校准大法兰的卫生型传感器,最大可达84mm;✔ 新的控温技术显著提高了轴向温场均匀性,在80mm轴向温度偏差优于 ±0.03℃;✔ 新设计的磁性搅拌装置以及软起动方式,有效防止搅拌棒脱落,以及获得更高的搅拌效率;✔ 新的IP68防护等级的外置参考传感器。液体容器及带泄压阀的保护盖恒温套管适配器RTC-168 干液两用温度校准炉的应用✅ 卫生型传感器(干体及液槽模式)。✅ 压力式温度计及温度开关。✅ 标准直杆传感器。✅ PH计和电导率计温度部分。✅ 同时校准多支温度传感器。✅ 校准粗大的温度传感器。卫生型传感器 压力式温度计(开关)PH计关于Ametek Jofra 干体炉Ametek校准仪器是全球主要的温度、压力及电信号校准仪生产厂商之一,引领干体炉校准技术近40年,能提供快速精准的温度校准方案。AMETEK干体炉有5大系列共50多个型号,温度覆盖-100~1205℃,满足各个行业的温度校准需求。根据应用情况提供多样的解决方案,实现实验室及现场的快速精准温度校准。
  • Janis公司研发的世界首套极限低温100mK以下,用于5140m高海拔的低温系统问世。
    Janis超低温技术团队与众多科研团队合作(统称ACTPol),成功研发了一款新型超低温系统。该低温系统由3He-4He稀释制冷机JDry-100-ACTPol和脉管机PT-407组成,集成天文望远镜(ACT)使用。 ACT是一个长达6m的格雷戈里望远镜,位于智利北部的 Cerro Toco,海拔高达5140m处,用于观察在不同极化和弧分下的CMB辐射,来研究早期宇宙的结构和演化。ACT 的聚焦平面创新性的使用了3000个偏极化转变探测器(TES)热辐射测量计,系统运行时需冷却到100mK以下。PT-407 集成 ACTPol 研发的新型光学导管和探测器后,成为天文望远镜的感光器。运行时,三个感光器组件和光学系统的其他组件都会被Janis 研发的3He-4He稀释制冷机JDry-100-ACTPol冷却至超低温。其中第一个150GHz的感光器组件(PA1)于2013年春季进行现场测试。于 100mK 以下成功接收第一束光波,这也是世界上首次在如此低的温度下进行的宇宙微波背景实验。2014年初,第二个150GHz感光器组件(PA2)和第三个90/150GHz的感光器组件将被集成安装测试,整个系统的运行将于2014年春季完成。 美国Janis公司创建于1961年,Janis秉承其积极探索,追求卓越的优秀企业文化,在低温设备的设计、研发和制造等方面成为国际公认的领导者。Janis产品种类齐全,性能可靠,可提供液氦型低温恒温器、闭循环制冷机、低温真空探针台和稀释制冷机等低温系统,且能够根据客户不同要求定制。经过五十多年产品卓越品质的追求以及客户售前和售后的鼎力支持,Janis低温产品是众多科研人员的理想选择。图1 放置在微波防护屏的ACT天文望远镜,位于智利北部的Cerro Toco。图2 He3流量与制冷量和极限温度的关系。图3 JDry-100-ACTPol三维插件模型和和装配过程。
  • 技术前沿:超声波沼气流量计的优势探讨
    随着沼气集中供暖的逐年发展,沼气流量计得到了广泛应用。目前,有几种流量监测技术在沼气流量监测领域得到了成功应用,直接方法包括涡轮流量计、涡街流量计、孔板流量计、均速管流量计、热式气体质量流量计、超声波流量计,以及光学闪烁相关流量计等。 但由压力低,不耐腐蚀等因素,这些流量测量技术也存在一些具体应用问题,对测量的稳定性和日常维护带来麻烦。本文针对沼气测量方法的优异进行比较,对高性价比超声波沼气流量计BF-3000系列流量计详尽描述。 沼气流量测量的现状对比 沼气流量测量难点在于:流量变动大、不耐腐蚀、粘稠杂质、压力低。超声波流量计与孔板、涡轮、涡街等传统流量计相比,具有适应性强,操作方便等特点,4种流量计对比如下图所示: 超声波沼气流量计BF-3000是针对腐蚀性、低压、低流速、工业或市政现场状况开发的一种流量仪表,满足市政、工业测量需求。通用性强,可单独工作或接入大中小型沼气工程物联网监测系统。超声波沼气流量计BF-3000 工作原理 采用时差法,利用一对超声波换能器相向交替(或同时)收发超声波,通过观测其在介质中的顺流和逆流传播时间来测量流体的流速,再通过流速来计算流量,是一种间接、非接触式的测量方式,测量精度高、量程宽、耐压力、耐腐蚀。 功能特性 1.全数字化电子单元:电子单元采用最新的微电子技术和元件,采用数字算法程序,使仪表信号处理更精准,运算速度更快捷。 2.抗腐蚀性:传统的涡街、涡轮等流量计在高H2S和水分条件下容易被腐蚀破损,超声波沼气流量计探头采用特制陶瓷超声波探测器,具有超强的耐腐蚀性。 3.低流量测量:在传统气体流量计量程比范围窄,适合稳定的流量工艺;小型沼气工程供气具有明显的“谷峰”特性,要求流量计具有很宽的测量范围。超声波气体流量计更适合低流量测量,国际上天然气贸易计量就是采用超声波气体流量计。 4.温度、压力测量:内置防腐型温度、压力传感器,可实现沼气标准流量的测量。 5.CH4浓度测量功能:实施沼气产品补贴政策,沼气CH4浓度测量是关键,否则与城市燃气表盗气相仿,小型沼气工程会出现采用鼓空气的方法获取更多补贴的风险。传统气体流量计均无法完成这项重要功能,超声波沼气流量计BF-3000无需增加成本就可以实现CH4的准确测量。 6.低维护、低运行费用:传感器没有可造成堵塞或聚集残留的部件,内部无被磨损的机械运动部件,少日常维护,低运行成本。 安装要求 1.流量计安装位置应尽可能选择上游大于10倍直管径、下游大于5倍直管径以内无任何阀门、弯头、变径等均匀的直管段,这种安装条件将有助于确保有更加对称的速度分布剖面; 2.为消除沼气管道中凝结水的不良影响,建议用户在直管段前加装排污阀,并适当抬高流量计的安装位置,使冷凝水有效地在前端的排污口排出; 3.在沼气流量计管道旁并联一路旁路管段,以方便流量计的检修维护。沼气流量计入口处的管道必须安装一个关闭气路的阀门。沼气流量计安装好后,应检查联接处的密封性; 4.严禁用明火检漏。进入沼气流量计内的气体压力不得超过其规定的最大压力值; 5.流量计表体的内径与直管段的内径应一致,对于流量计上游的直管段尤其重要; 6.流量计表体与连接的直管段之间的轴线不重合度减至最小,沼气流量计应保证气室水平安装; 7.垫片如突入管道可能会造成对流场分布的干扰。应该采取措施确保垫片是在法兰密封面上且与法兰保持同心,不允许有垫片突入管道; 8.安装时应检查流量计测量管段内腔是否清洁,若有油脂及灰尘,需及时清除干净。 由于准确度高和维修费用低,超声沼气波流量计己被气体工业界所接受,它是自气体涡轮流量计后被气体工业界接受的最重要的气体流量计量器具。至今已有较多国家的政府机构批准气体超声波流量计为法定计量器具。 版权声明:本文转载自微信公众号@沼气工程及其测控技术,如欲转载,请务必注明来源,违者必究。
  • 国瑞力恒发布烟气流速检测仪新品
    GR-3020型烟气流速检测仪产品概述GR-3020型烟气流速检测仪(以下简称检测仪)为便携式监测仪,广泛应用于锅炉、炉窑以及各种排风管道的烟气流速、烟气流量、标干流量、动压、静压及烟温等参数的测定。适用范围本仪器采用皮托管法测量管道中气体流速,可对各种锅炉、工业炉窑以及排风管道的烟气流速、烟气流量、标干流量、动压、静压及烟温等参数进行检测,仪器采用进口高精度传感器,传感器24小时自身漂移小于0.15Pa,尤其适用于低流速的检测。采用标准JJG 518-1998 《皮托管检定规程》GB/T 16157 -1996《固定污染源排气中颗粒物测定与气态污染物采样方法》主要特点1. 采用进口高精度微压差传感器,24小时压力漂移小于0.15Pa。;2.流速测量精度高,测定下限可达0.3m/s;3.内置可充电锂电池,一次充连续电工作48小时以上;4. 手持式测量监测仪,轻巧便携,操作简便;5. 自动计算气体的平均流速、平均压力、烟气流量等参数。 6. 具有自动零点修正,软件校准功能,保证测量精度;7.具有烟道布点功能,自动推荐采样点数和测点距离;8.大容量数据存储,可存储800组数据文件;9.宽温液晶显示器,中文操作界面;10.大尺寸、宽温高亮彩色显示屏显示;11.具有掉电保护功能,采样中掉电采样数据不丢失;12.内置蓝牙模块,可选配蓝牙打印机进行数据打印工作原理将皮托管正端正对气流方向,负端背向气流方向,烟道气流经皮托管正负气嘴时会产生压力差,微处理器根据采集的动压、全压、烟温信号计算出静压、流速和风量的值,然后根据大气压、湿度、管道截面积等参数的输入值自动计算出标杆流量。技术指标流速检测仪主要技术指标详见表1。表1 检测仪主要技术指标技术指标参数范围分辨率准确度烟气动压(0~2000) Pa0.01Pa不超过±2.0%烟气静压(-35~35) kPa0.01 kPa不超过±4.0%烟气温度(0~600) ℃1 ℃不超过±3 ℃大气压(50~110) kPa0.1 kPa不超过±4.0%烟气流速(0.3~45) m/s0.1 m/s不超过±5.0%外型尺寸(长×宽×高)190mm×95mm×50mm连续工作时间≥48小时功耗约0.5W整机重量0.6kg创新点:GR-3020型烟气流速检测仪 采用皮托管法测量管道中气体流速,仪器采用进口高精度传感器,传感器24小时自身漂移小于0.15Pa,尤其适用于低流速的检测;内置可充电锂电池,一次充连续电工作48小时以上;手持式测量监测仪,轻巧便携,操作简便。 烟气流速检测仪
  • 应用案例 | 基于深度神经网络的无需压力校准和轮廓拟合的气体传感光谱技术
    近日,来自安徽大学的周胜副教授团队发表了《基于深度神经网络的无需压力校准和轮廓拟合的气体传感光谱技术》论文。Recently, the research team from Associate Professor Zhou Sheng's from Anhui University published an academic papers Pressure calibration- and profile fitting-free spectroscopy technology based on deep neural network for gas sensing.甲烷(CH4)是天然气的主要成分,在工业生产和日常生活中广泛用作燃料。此外,甲烷是一种重要的温室气体,其浓度对全球气候产生重要影响。因此,甲烷的测量对环境监测、生物医药和研究具有重要意义。气体浓度通常通过各种微量气体传感器进行测量,例如气相色谱仪、半导体气体传感器和电化学设备。半导体气体传感器在适当的操作环境下具有ppm级别的灵敏度。激光吸收光谱技术具有高选择性、高灵敏度、快速和多成分监测等优势,目前广泛用于各种气体的检测。激光吸收光谱技术可以准确测量气体分子的特征吸收线,并基于可调谐激光有效降低其他气体光谱线的干扰。此外,它提供了实时原位气体检测的可能性,这对于从工业过程到环境变化的各种现象的理解和监测至关重要。气体分子可以通过其指纹吸收光谱进行有效识别,包括典型的所谓“展宽”参数和“空气展宽”参数。光谱线参数是压力和温度的函数。浓度测量的准确性取决于压力稳定性和光谱拟合精度。对于定量光谱分析,传统上通过准确的模型对光谱进行拟合,同时压力和温度必须定期校准,尤其是在相对大的环境波动情况下。因此,为实现所需的准确性,系统的复杂性增加了。Methane (CH4), which is the main component of natural gas, is widely used as fuel in industrial production and daily life. In addition, CH4 is an important greenhouse gas whose concentration has a substantial influence on global climate. Therefore, the measurement ofCH4 has significant importance for environmental monitoring, biomedicine, and energy research. The gas concentrations are commonly measured by various trace gas sensors, such as gas chromatographs, semiconductor gas sensors, and electrochemical devices. The semiconductor gas sensors have a sensitivity of ppm level under a suitable operating environment. The laser absorption spectroscopy, which has the advantages of high selectivity, high sensitivity, and fast and multi-component monitoring, is currently widely used in the detection of a variety of gases. Laser absorption spectroscopy technology can accurately measure the characteristic absorption lines of gas molecules and effectively reduce the interference of other gas spectral lines based on the tunable lasers. Moreover, it provides the possibility of real-time in-situ gas detection, which is crucial for understanding and monitoring a variety of phenomena from industrial processes to environmental change. A gas molecule can be effectively identified by its fingerprint absorption spectrum, including typical so-called “self-broadening” parameters and “air-broadening” parameters. The spectral line parameters are functions of pressure and temperature. The accuracy of concentration measurement depends on pressure stability and spectral fitting accuracy. For quantitative spectral analysis, the spectra are traditionally fitted by an accurate model, while the pressure and temperature must be calibrated on time, especially in the case of relatively large environmental fluctuations. Consequently, the complexity of system is increased to achieve the required accuracy. 目前,人工智能的快速发展为解决这个问题提供了一种新途径。人工神经网络已被用于气体识别,并在足够训练数据的条件下表现出良好性能。基于Hopfield自联想记忆算法的神经网络已用于识别五种类似的醇的红外光谱。反向传播神经网络用于从混合气体中识别目标气体,证明了卷积神经网络(CNN)模型可以有效提高识别准确性。此外,最近的研究表明深度神经网络也可以应用于振动光谱分析。卷积神经网络和自编码器网络被用于处理一维振动光谱数据。与传统气体检测技术相比,辅以深度学习的气体传感器可以实现准确的灵敏度测量,并降低异常检测的鲁棒性。深度神经网络(DNN)可以在经过足够样本训练后直接从吸收光谱中学习特征,实现不需要压力校准和轮廓拟合的气体浓度直接识别。这种网络为检索气体浓度提供了一种新途径,无需昂贵且复杂的压力控制器。为了展示提出的DNN辅助算法的性能,构建了一个基于DFB激光二极管的甲烷检测气体传感器系统。预测的浓度与校准值相当吻合。这项研究表明,基于DNN的激光吸收光谱在大气环境监测、呼气检测等方面具有显着潜力。Currently, the rapid development of artificial intelligence provides a new way to solve this problem. The artificial neural network has been used for gas identification and shows a good performance under the condition of sufficient data for training. The infrared spectra of five similar alcohols has been identified by a neural network based on the Hopfield self-associative memory algorithm . A back propagation neural network is used to recognize target gas from the mixtures of gases, which proved that the convolutional neural networks (CNN) model can improve identification accuracy effectively. In addition, recent studies indicate that deep neural networks can also be applied to vibrational spectral analysis. The convolutional neural and auto encoder networks are used to process onedimensional vibrational spectroscopic data. Compared with traditional gas detection technology, the gas sensors assisted with deep learning can achieve accurate sensitivity measurement and reduce the robustness of anomaly detection. A deep neural network (DNN), which can learn features directly from the absorption spectra after training with sufficient samples, achievesthe direct identification of gas concentration free of pressure calibration and profile fitting. This network provides a new way to retrieve gas concentrations without expensive and complicated pressure controllers. To demonstrate the performance of proposed DNN assisted algorithm, a DFB diode laser-based gas sensor system for CH4 detection is constructed. The predicted concentrations are in good agreement with the calibrated values. This study indicates that DNN-based laser absorption spectroscopy has remarkable potential in atmospheric environmental monitoring, exhaled breath detection and etc..实验装置用于获取甲烷(CH4)气体吸收光谱的实验装置如图1所示。一台近红外DFB激光二极管,最大峰值输出功率为20毫瓦,被用作光源。通过控制激光温度和电流,激光可以在6045 cm-1到6047 cm-1范围内进行调谐,宁波海尔欣光电科技有限公司为此项目提供激光驱动器,型号为QC-1000。所选CH4在6046.95 cm-1附近的吸收线在图2中基于从HITRAN数据库获取的光谱线参数进行了模拟。DFB激光二极管经过纤维准直器进行准直,然后由一块CaF2分束器进行对准,分束后的可见红光(632.8纳米)光束用作跟踪激光。随后,光束被送入一个7米有效光程的多程传输池,并且池内的压力由压力控制器、流量控制器和隔膜泵协同控制。一个典型频率为100赫兹的三角波被用作扫描信号,以驱动激光二极管。最后,激光通过一个InGaAs光电探测器进行检测,并被数据采集单元卡获取。信号随后传输到计算机,并由自制的LabVIEW程序进行分析。Experimental setupThe experimental setup used to obtain CH4 gas absorption spectra is depicted in Fig. 1. A near-infrared DFB diode laser with a maximum peak output power of 20 mW is used as the optical source. The laser can be tuned from 6045 cm&minus 1 to 6047 cm&minus 1 by controlling the laser temperature and current via the controller (QC-1000, Healthy photon Co., Ltd.). The absorption line of selected CH4 near 6046.95 cm&minus 1 is simulated based on spectral line parameters obtained from the HITRAN database in Fig. 2. The DFB diode laser is collimatedby a fiber collimator and aligned by a CaF2 beam splitter with a beam of visible red light (632.8 nm) as the tracking laser. Subsequently, the beam is sent to a multi-pass cell with a 7 m effective optical length, and the pressure inside the cell is collaborative controlled by a pressure controller, a flow controller, and a diaphragm pump. A triangular wave with a typical frequency of 100 Hz is used as a scanning signal to drive the diode laser. Finally, the laser is detected through an InGaAs photodetector and acquired by a data acquisition unit card. The signal is subsequently transmitted to the computer and analyzed by the homemade LabVIEW program. QC-1000, Healthy photon Co., Ltd.Fig. 1. Experimental device diagram.Fig. 2. The spectral line intensities of CH4 in the tuning range of 6046.93–6046.96 cm&minus 1 and the cross-section of the selected line obtained from the HITRAN database.结论总体而言,本项目开发了基于DNN算法和激光吸收光谱的概念验证气体传感器,并设计了基于DFB激光二极管的甲烷检测传感器系统。此外,通过计算RMSE和训练时间评估了DNN算法的性能,并优化了DNN层、神经元数量和epochs等参数,以获取最佳参数。提出了改进的系统来分析和预测气体吸收光谱数据,在甲烷浓度预测方面表现出良好的准确性和稳定性。不同浓度的甲烷预测值与相应的理论值线性拟合,证明其在实际领域应用中具有巨大潜力,尤其适用于恶劣环境。Conclusions Overall, a proof-of-concept gas sensor based on the DNN algorithm and laser absorption spectroscopy is developed, and a CH4 detection sensor system based on the DFB diode laser is designed in this paper. In addition, the performance of the DNN algorithm is evaluated by calculating RMSE and training times, and the parameters, which include DNN layers, neuron number, and epochs, are optimized to obtain optimal parameters. The modified system is proposed to analyze and predict the gas absorption spectrum data, demonstrating good accuracy and stability in the prediction of CH4 concentrations. The predicted values of methane with different concentrations are linearly fitted with the corresponding theoretical value, which proves it has great potential in practical field applications, especially for harsh environments.参考ReferencesPressure calibration- and profile fitting-free spectroscopy technology based on deep neural network for gas sensing, Measurement 204 (2022) 112077https://doi.org/10.1016/j.measurement.2022.112077
  • 冷杉精密仪器发布冷杉6100气体动态校准仪新品
    冷杉6100气体动态校准仪是一台智能化在线气体校准仪器。传统校准方式采用不同浓度的多个钢瓶气体分别进样分析,通过校准曲线进行仪器校准,冷杉 6100 气体动态校准仪由流量控制系统、气路控制系统和计算机控制系统组成,使用一瓶已知浓度标气调节不同稀释比例得到不同含量的标准气体浓度梯度。完全自动化操作,大幅度减少工作量并节约配气时间。产品特点1.人性化操作界面 自主研发操作界面,需人工输入项目少,界面简洁易操作2.提供多种配气模式,满足客户各种需求 自动配气,手动配气,序列配气3.支持正压输出 支持输出压力不超过 0.1 MPa4. 流量计准确测量流量 采用进口元器件,保证校准仪的精度和线性技术参数项目参数稀释气体种类高纯空气、高纯氮气标气流量范围(0~100)SCCM流量准确度±1% F.S.稀释比根据流量计配置而定标气输出接口1/4’’管,英制操作温度5 oC~35 oC使用环境室内或机柜内使用压力(0.1~0.3)MPa稀释气流量范围(0~1000)SCCM;(0~10000)SCCM,可选流量重复性±0.2%F.S.通讯LAN;RS232电源输入220VAC,50Hz工作湿度5%~95% RH仪器尺寸(469.1×178×600)mm(W×H×D)创新点:1、配置超高性能气体控制模块 》使用冷杉高精度压力、流量控制模块,流量准确度可达± 1% F.S. (10 to 100% F.S.),测试精准。 》使用冷杉专业的动态PID补偿算法和机制,流量重复性可达± 0.2%F.S,实现长期运行的超高稳定性。 2、软件系统支持多种功能 》质量流量控制器可自动校准 》支持自动配气、手动配气、序列配气设置 3、产品线满足多样化选择 》外观多样化选择:机柜式与便携式 机柜式,适用于在机柜内或者实验室内使用; 便携式,适用于运维维护,可随身携带。 》管路多样化选择:惰性化与非惰性化 标准气体化学性质活性高,采用惰性化管路; 标准气体化学性质稳定,采用非惰性化管路。 》压力输出可切换:微正压输出与正压输出 微正压输出:配套检测设备有采样泵; 正压输出:配套检测设备无采样泵。 》稀释比多样化选择:标气流量计与稀释气流量计 标气流量计:(0~100)SCCM,(0~1000)SCCM,(0~5000)SCCM,可选; 稀释气流量计:(0~100)SCCM,(0~1000)SCCM,(0~5000)SCCM,可选。 冷杉6100气体动态校准仪
  • 如何选择仪器进行集中空调通风系统检测
    近年来,办公室、写字楼、商场和宾馆都已较普遍地采用了集中空调通风系统。统计发现,20世纪90年代后建成的写字楼、饭店、商厦玻璃窗都是封闭的,可开启的窗户没有了。换气通风均靠空调系统,如果空调系统的新风量不符合卫生标准要求,很难保证室内空气质量,极易引起人群发生军团病、过敏性疾病等。由于有些使用集中空调系统的单位为了省电,减少空调通风次数,致使新鲜空气不足。更重要的是,有些物业只注重集中空调的外部清洁,即清洗通风口,而对黏附在通风管道内部的灰尘,甚至死苍蝇、蟑螂、老鼠却无可奈何。管道内藏污纳垢,成为病菌生长的温床。所以,我们更要充分的认识集中空调通风系统污染给我们造成的危害。  集中空调不及时清洗带来的危害的有:  1.空气置换效果较差  2.积尘诱发细菌滋生  3.寄生物和昆虫的摇篮  4.滋生细菌,传染疾病  5.风阻加大、损耗能源  因此,提高公共场所集中空调通风系统的卫生质量,对减少传染病通过公共场所传播的机会,保障广大消费者的身体健康有着重要的作用。因此,对公共场所集中空调系统卫生指标需要进行经常性的监测,并对空调通风系统进行定期的消毒、除尘、清洗,以保证公共场所的空气质量。  为此,国家卫生部还先后颁布了《公共场所集中空调通风系统卫生管理办法》,《公共场所集中空调通风系统卫生规范》,《公共场所集中空调通风系统卫生学评价规范》,《公共场所集中空调通风系统清洗规范》明确规定了空调系统卫生指标,检验检测方法,空调系统净化消毒装置的检测方法,空调通风系统卫生学评价等详细内容。  保证公共场所集中空调通风系统通风质量,执行国家卫生部的管理办法,达到规范要求,主要措施归纳为两个方面:1.监督监测;2.综合治理。  依据公共场所集中空调通风系统的卫生管理办法和三个规范要求,结合仪器的性能指标,考虑现场快速检测、使用方便、便于携带、易于维护、稳定可靠、智能化、系统集成和国际国内领先技术等多方面因素,就实施公共场所集中空调通风系统的监督监测和综合治理所需仪器,我们在此与各位领导、专家来讨论如何选择和优化配置仪器。以下是我们推荐的相关产品。  一、集中空调通风系统新风量检测仪器  卫生规范中规定新风量卫生要求为≥10~30(m3/h.人)(不同的公共场所)  检测方法:风管法,即直接在新风管上测定新风量。  选用仪器:皮托管法,风速计法(当风管内的动压值小于4Pa时,可用热电风速仪测量风速)  1、 新风管内的新风量测量  新风管的风量是通过某一断面的面积与该断面的平均风速计算出来的。  美国TSI公司生产的9555型多参数通风表是测量新风管新风量的最佳选择。  它具备如下主要特点  1.手持式仪器,携带方便;  2.操作简单:直接将风速探头插入新风管就能自动计算平均风速并根据输入的风管截面积直接显示风量;  3.具有差压检测和风速检测功能,当风管内的动压值大于4Pa时可采用皮托管法;当小于4Pa时用风速计法检测风量。完全适合各种风管内的风量的检测;  4.提供温度和湿度测试功能,同时支持露点温度测试功能,可有效监测管道内的露点温度避免管道内结露从而滋生微生物。  方便性:仪器具有可拉长带有刻度的风速探头,拉杆上的标尺可以测量风管的尺寸并可直接输入仪器,仪器直接显示出新风管内的新风量。  智能化:包含 TRAKPROTM 和 LogDat2TM软件,用户可自定义测试数据组的名字,手动或连续的数据记录功能。  多样化:可选配差压传感器,配备有多个宽量程、插拔式探头。用户可根据实际测试的需要,从多种具有不同功能的探头中选用最合适的。只需简单的插上探头,即可实现多种测试。这些探头可测量风速、温度、相对湿度、CO 和 CO2。可以计算的参数包括风量、热流、紊乱度、湿球温度和露点温度。  2、出风口的风量测量  美国TSI公司8371型和8375M型套帽式风量罩是非常有效的选择。  直接读数:避免传统的风管截面测试风量的繁琐的工作,同时由于出风口的湍流使在出风口测试风速在计算风量无法实现,选择套帽式风量罩则避免该问题能直接测到风量。  便于携带:TSI 8375M是一种在风口可以快速读取空气流速流量的多功能电子检测仪。8375M套帽风量罩采用人体工学设计,重量轻便,便于个人操作携带,节省测量时间。  多样化:丰富的可选的附件,满足多种参数测量的要求,可分离的数字压力计配合皮托管,空气流量,温度,矩阵速度或相对湿度探头可进行其它应用:测试压力差,皮托管法测量风速和风量,手持式16点风速矩阵测量风速,选择空气流量探头测量风风速和风量,温度探头,温度湿度探头,多种可选套帽尺寸满足各种风口的风量测量。  二、可吸入颗粒物(PM10)浓度的检测  空调风口的风带有灰尘会污染直读式可吸入颗粒物检测仪器的气室,但是如果仪器带有鞘气系统就可以隔离光学室内的气溶胶,保持光学洁净。对于准确的检测可吸入颗粒物(PM10)和保护仪器的气室减少维护成本是非常重要的。  DUSTTRAK II 8530型可吸入颗粒物(PM10)浓度监测仪可以直接测量灰尘、烟雾、浓烟和薄雾中的气溶胶。并具有鞘气系统有效的解决了灰尘的污染问题。  智能化:可编程数据资料记录功能使 DUSTTRAK II 台式监测仪适用于无人监测。  数据远传:仪器可以和USB(设备和主机)、以太网、模拟计算机和警报输出一起,可以远程接收实时的PM10浓度数据。  PM10超限报警性:针对瞬时或 15 分钟短期暴露限定(STEL)。用户设定点的报警输出会发出警告。当PM10浓度超过标准值时,可以有声光报警提示。  光散射法和称重法集于一身:采样光散射法瞬时粉尘浓度测量的同时,可以使用一个 37mm 的过滤盒进行重量分析,方便进行参考校准。  准确性:可以通过外部调零模块进行自动调零。这个选件可用于长时间采样。采样期间对仪器进行调零,可以把零点漂移带来的影响最小化。  数字和图形显示:新型绘图式界面以及彩色触摸屏;通过数值或者实时变化曲线同时显示测量统计值。  三、送风中微生物检测仪器  QT30&4046型空气微生物采样器,采用国际公认的安德森采样器,稳定性好,电源采用交直流两用型,配套美国TSI生产的高精度4046型流量校准器,连续监测采样流量,使采样更可靠。  采样原理:六级筛孔空气撞击式采样器,符合国家规范要求,可以与国产的90厘米采样平皿配套使用。  方便性:充电锂电池供电,充满电后可以工作5小时;也可以连接AC/DC电源变换器用交流供电。  准确性:4046型数字流量校准器,连续监测采样流量,使采样更可靠。  四、空气净化消毒装置的卫生安全性检测  1、紫外吸收原理的臭氧检测仪测量臭氧浓度,克服了电化学原理臭氧仪的横向干扰,具有高的精度,小巧的体积和低功耗。是远程和监测的理想选择。  特点:  高精度:(1.5 ppbv),  可分析的范围:1.5 ppbv 到 100 ppmv  低功耗:12V DC (4.0 W)  智能化:RS-232输出时间/日期,O3浓度、温度和压力(加上附加的输入)  2、国标法总挥发性有机TVOC气体检测(符合GB/T 18883,热解析/毛细管气相色谱法)  SP530和730型个体采样器配合TVOC 专用吸附管是现场采集TVOC气体的合理选择。  智能式电池管理系统:以分钟显示运作时间;对电池寿命实时计数而不是以%显示  高级的流量控制:内置精确的流量计。只要设置能需要的流量值并开始采样,就可以简单的进行校正,而无须再像以往那样逐日监测校正如此费时了。  流量数据采集 :内置数据采集器,可连续记录流量读数,并且即使存在干扰气流也能准确计算总样品量。此外,使用TRAKPRO数据分析软件把数据归档并下载到您的电脑,就可以显示和打印样品记录历史,一个样品记录模板还包含了您的额外记录需求。  简易键盘编程:采样时间;流量设置;键盘锁  低流量采样和显示:SP730已内置低流量适配器,可进行低流量采样和显示流量。  当人们在不断提高生活质量的同时,也越来越多开始关注到空气污染,讲究空气质量更成为人们追求健康的重要方式之一。  通过上面我们介绍的几款集中空调检测设备以及我们从事经营空调通风检测设备的丰富经验和专业认知能力,相信我们的建议或彼此更多的交流能给您提供一个更好的方案和解决办法。真正的使您拥有一个健康舒适的生活环境。
  • 明尼克定制工厂再出新作:MF620动态标准气体发生器产品全新上线!
    全新升级,盛大登场!明尼克定制工厂再次为分析行业客户带来喜讯,MF620动态标准气体发生器火热上线!动态标准气体发生器配合渗透管使用,能够在实验室或现场对任何气体进行溯源至NIST标准校准,其标定的范围十分广泛,专业满足客户多样化需求。MF620动态标准气体发生器产品技术优势:1.流量控制系统保证通过渗透管腔的流量恒定;2.稀释流量范围广,可以满足不同的标定需要,可以进行线性标定;3.采用钝化管路和钝化不锈钢腔体,解决了硫化物对管路的腐蚀及痕量样品的吸附,提高了分析测试的精度。 一、 应用领域动态标准气体发生器配合渗透管使用,标定的范围十分广泛,应用范围包括:空气污染监测,工业卫生调查,气味分析以及其他各种不同气体浓度测量时的标定。特别适用于汞、甲醛、烃类校准器的标准气源,以及有毒气体、爆炸气体、化学活泼气体的气源。二、仪器特点u 大容量钝化不锈钢渗透腔(φ19*230mm);u 高精度温控模块控制炉温精度±0.1℃;u 温度:室温+5--120℃; u 配用1个100mL/min质量流量计控制载气流量,将渗透腔内渗透的物质有效带出;u 配用1L/min质量流量计作为稀释气,稀释比:1.5:1--11:1。 三、技术参数u载气流量:100ml/minu稀释气流量:1L/min(5 L/min、10L/min可选)u压力:0.3 MPau渗透腔尺寸:内尺φ19*230mm 渗透腔材质:不锈钢(表面钝化处理) 渗透腔数量:1个u工作电压:AC220V供电u内部管路:1/8″钝化不锈钢管路u仪器尺寸:505 × 460 × 215 mmu仪器重量:10kg
  • LI-2100 | 水汽来源复杂性对内陆山区降水稳定同位素海拔效应的影响
    祁连山脉位于青藏高原北部、河西走廊南侧,由多条平行的山脉组成,呈西北向东南延伸。石羊河流域上游是重点研究区域,海拔西南高、东北低,发源于祁连山脉北坡的冷龙岭,流经青藏高原,由西南向东北流动。该地区年降水量200~700 mm,月平均降水量24~51 mm,属于大陆性高山气候,受东亚季风、高原季风和西风影响。不同海拔对气候影响显著,山区年平均气温低于6℃,随海拔升高而降低。相对湿度随海拔增加而增加,反映了多种水汽来源的影响。图1 西北地区北麓的位置,(a)研究区采样点位置,图(a)左上:研究区水分来源(箭头大小表示重要性);(b)山区采样点位置;(c)祁连山北坡降水量与气温月平均变化。来自西北师范大学的研究团队在祁连山北坡6个采样点共采集降水样品863个,其中雪样出现在冬季(1月、2月、12月),雨样出现在3月至11月,采样期间共采集雪样61个、雨样802个(表1)。在研究区5个采样点共采集地表水(河水)样品372个,在研究区5个采样点共采集植物水样品92个,采样时间为2016年10月至2020年9月。每次降水事件后,用雨量计采集降雨样品并立即放入50 ml聚乙烯采样瓶中,同时记录降水量,最后用封口膜盖紧封口并冷藏保存。地表水样品每次采集后也立即密封冷藏。同时利用自动气象观测仪器记录气温、降水、相对湿度、大气压等气象要素。分析时,植物水由LI-2100 全自动真空冷凝抽提系统(北京理加联合科技有限公司)提取。δ2H和δ18O测定在西北师范大学同位素实验室进行,每个水样和同位素标准样品连续进样6次。表1 采样点基本信息 通过对2016年10月至2020年9月降水稳定同位素分析,确定祁连山水线(LMWL)为:δ² H = (7.78±0.05)δ¹ ⁸ O+ (10.97±0.52) (R² =0.97, n=863, p图5 气象水文过程对祁连山北坡降水稳定同位素海拔效应的影响。(a)降水稳定同位素海拔效应的月变化,图中连线表示海拔梯度及误差的月变化。(b)降水中循环水比例及相对湿度的月变化。(c)降水量和气温的月平均变化。(d)雨滴蒸发残留率的月变化。石羊河上游位于青藏高原北部的祁连山北坡,降水除受当地气象水文过程影响外,还受到平流水汽的影响。祁连山北坡当地大气降水线(LMWL)为:δ2H =(7.78±0.05)δ18O +(10.97±0.52)(R2 = 0.97,n = 863,p 0.05),表明夏半年当地大气降水线的斜率小于冬半年。祁连山北坡降水稳定同位素的海拔效应在各季节的变化顺序为冬季秋季春季夏季,表明海拔效应受当地气象水文过程的显著影响。研究区水汽主要来源于四个方向:西部、东北部、东南部和高原南部。来自东北和东南方向的水分具有较短的传输路径和较慢的速度,而来自西北和西南方向的水分具有较长的迁移路径和较快的速度。降水中稳定同位素的海拔效应变化在很大程度上取决于水分方向和气团特征,表现为四种不同的情况:1、平流水分垂直于山脉,气团迁移速度较慢,加剧了海拔效应。2、当平流水分(主要来源)与山脉方向平行,气团移动距离长且速度快时,海拔效应变得不那么明显。3、尽管平流水分占主导地位,但相当一部分地表蒸发水会削弱观察到的海拔效应。4、主要来源是平流水分,表现为沿斜坡向下的反向气流,在研究区域引入了反海拔现象。
  • 国产超声波沼气流量计BF-3000的应用优势分析
    超声波流量计是近年来随着集成电路技术迅速发展才开始应用的一种非接触式仪表,国际上天然气贸易计量就是采用超声波流量计。相比传统的涡轮流量计和孔板流量计,超声波流量计在测量天然气、沼气流量中的应用更具优势。 超声波频率高,波长短,衍射不严重,具有良好的定向性且穿透能力强。超声波流量计的基本原理是通过测量超声波脉冲顺流和逆流传播时传播速度不同引起的时差来计算被测流体速度,因此这种原理又称为“时差法”。超声波流量计的工作原理 如上图所示,探头1发射信号,信号穿过管壁1、流体、管壁2 后被另一侧的探头2接收到 在探头1发射信号的同时,探头2也发出同样的信号,经过管壁2、流体、管壁1后被探头1接收到 由于流速的存在使得两时间不等,存在时间差,因此根据时间差便可求得流速,进而得到流量值。超声波流量计剖析图 超声波流量计具有以下主要优势: 1.高精度,满足低流量测量 超声波流量计的主要优点之一是高精度,不受气体中固体颗粒和液滴的影响,并且可采用多次反射将声程加长。单路径超声波流量计的精度通常在1%至2%的范围内,而通过使用多条路径,它可以达到0.5或更高的精度范围。此外,由于超声波流量计量程比较宽,它非常契合小型沼气工程的“峰谷”特性,能够满足低流量测量。 2.极少的压力损失 压损是天然气输送中存在的主要问题。孔板流量计流体压力损失的主要原因是孔板前后涡流的形成以及流体的沿程摩擦,它使得流体具有的总机械能的一部分不可逆转地变成了热能,消失在流体内。涡轮流量计依赖转子转速来确定流量,当天然气流经涡轮,引起转子旋转,同样会产生压损。 使用超声波流量计,不用在流体中安装测量元件,故不会改变流体的流动状态,不产生附加阻力,仪表的安装及检修均可不影响生产管线运行,因而极少或无压力损失,是一种理想的节能型流量计。 3.无运动部件 运动部件主要是涡轮流量计的问题,涡轮流量计的转子,包括轴承,都会受到磨损。化学品和污垢在影响轴承的同时,也会影响涡轮流量计的性能。超声波流量计不存在易于磨损的运动部件,可保证长期使用精度不变,与此同时,无运动部件也让超声波流量计具有低维护特性。 4.低维护 无运动部件是超声波流量计低维护的原因之一,另一个因素则与它本身无磨损有关。孔板流量计随着时间推移不断遭受磨损,导致测量准确性劣化。当流体中存在污垢或任何其它杂质,则尤其如此。因此,孔板式流量计需要定期检查磨损,并确定它们是否仍然读数准确。与之相反的,由于超声波流量计不会磨损,并且没有运动部件,维护成本非常低。 5.轻松处理大尺寸管径 超声波流量计可以轻松地适用于大尺寸的管道。事实上,用于天然气流量测量的超声波流量计最适合6英寸及更大的管道。为了测量大管道中的天然气流量,例如20、30和36英寸管道,可能需要不止一个的孔板流量计。在这些情况下,流体有时会被转移到一组较小的管道中,以达到测量的目的。这也是为什么超声波流量计可以代替多达十个孔板流量计。超声波沼气流量计BF-3000 四方仪器自主研发的超声波沼气流量计BF-3000,巧妙地在流量计中融入了CH4测量功能,实现了沼气流量、成分的同时测量。不仅能够适应国家沼气产品补贴政策,防止鼓空气获取补贴的现象出现,也能够成为沼气工程运行的可靠数据来源,充当沼气工程验收、监督的“金标准”。 由于超声波流量计利用超声波对流体的流量进行测量,其比传统仪表更能适应工业现场的环境,不仅可以测量常规管道流量,还可以测量诸如具有强腐蚀性、放射性、易燃、易爆等特点的流体,因此测量具有高水分和高H2S的沼气自然也不在话下。 17世纪托里拆利奠定差压式流量计的理论基础,这是流量测量的里程碑。我国开展近代流量测量技术的工作比较晚,早期所需的流量仪表均从国外进口。可以说,超声波流量计的出现是又一个里程碑,它见证了国内涌现的一批科技创新企业,也见证了当今微电子技术和计算机技术的飞跃发展如何极大地推动了流量仪表的更新换代。来源:微信公众号@沼气工程及其测控技术,转载请务必注明出处
  • 海拔5100米与海拔7100米水中的氘含量有什么区别?
    低氘水是什么水?低氘水,英文名 deuterium depleted water,简称DDW。在英语的语义里,叫贫氘水(氘减少的水)。据说低氘水具有活化免疫细胞、改善机体基础代谢水平、抗细胞突变和延缓衰老等功能,有益于生命体的生存发展和繁衍,对于人类的健康具有重要意义。生物体总是优先利用氢,而不是氢的同位素——氘,相比而言,低氘水对人体更友好。目前市场上可以购买到的天然低氘水,均来自青藏高原,氘丰度为-152‰,今天我们就一探究竟。 初步检测在某东APP购入一瓶7100念青唐古拉山冰山弱碱性水和一瓶5100西藏冰川矿泉水后,我们使用液态水同位素分析仪分别对其进行了氢氧同位素检测,检测过程及结果如下:过程 ① 使用仪器及精度:仪器---GLA431-TLWIA( TLWIA -912)液态水同位素分析仪(δ2H, δ17O, δ18O,d-excess, 17O-excess)重复性/ 精度---高精度模式(1σ,110 未知样品/ 天):保证精度:δ2H根据检测结果可知,7100念青唐古拉山冰山弱碱性水与5100西藏冰川矿泉水的氘含量均很低。相比而言,7100西藏冰川矿泉水的氘含量会更低一些,达-143.2110‰,但是与其宣传的-152‰还具有一定差距。对比检测检测结束后,我们又对公司平时购买的景甜桶装水进行了检测,结果显示其δD值为-67.2367‰。同样是水,氘含量的差异为何如此之大?自然界中水同位素组成是呈有规律变化的:从赤道到高纬度地区、从海洋到大陆内部、从低海拔到高海拔地区,重同位素的亏损依次递增,构成纬度效应,大陆效应和高度效应。这是由于水在蒸发、凝聚过程中的同位素分馏效应,蒸发时轻同位素优先汽化,凝聚时重同位素优先液化,随着蒸发、凝聚过程的不断进行,造成轻同位素在逐渐增加。本次检测中使用的液态水同位素分析仪,兼具高速度和高精度,可进行野外在线连续测量,提供了同位素测量的新方式。此外,公司的其它各类同位素分析仪,可广泛应用于液态水、植物水、土壤水、酒水饮料、医药检测、果实等。ABB LG液态水同位素分析仪一台仪器的价值不仅在于数据检测的精准性,更在于为所需之人提供便捷的服务。因此,作为一家科技公司,我们致力于技术研发,力求给客户提供先进的高科技产品,同时也致力于技术服务,提供同位素检测的服务和渠道,希望能给更多有需求的用户带来更便利的技术检测。
  • 制药行业温度校准方案(一) | 安装于工艺设备卫生型温度传感器校准
    应用背景温度数据的监测在制药行业里有相当重要的地位,不论是产品质量保障、节能降耗还是合规要求,再或者药品研发-生产-包装-运输-存储的各个环节,都与温度息息相关,而且对温度参数的准确可靠有较高要求。温度监测大都由温度传感器和显示设备组成,随着时间的推移,温度传感器会受到诸多因素的影响,例如震动,盈利变化,化学腐蚀等,其性能参数也会产生变化,因此需要对其进行校准以确定其误差的大小,确保其在允许误差范围内工作。而新版GMP规范第五章第五节对校准也做了明确规定:对于生产和检验用的仪表要定期校准,保存校准记录,未经校准的仪表不得使用。AMETEK校准仪器具有40年的温度校准经验,深入了解用户需求,为制药行业用户设计了有综合性的专业解决方案:✔ 卫生型温度传感器✔ 超短支温度传感器✔ 无法拆卸狭小空间温度传感器✔ 超低温冰箱、冻干设备温度传感器✔ 湿热灭菌器温度传感器✔ 隧道灭菌温度传感器✔ 表面安装温度开关制药行业温度校准方案(一)安装于工艺设备卫生型温度传感器校准解决方案:RTC-156B 超级标准体炉配短支校准套件✔ 专业套件:定制套管保证与卫生型卡盘传感器充分热平衡,补偿热损失,外接参考传感器与被检传感器位置保持一致,精准控温。✔ 洁净 无液体介质,不易污染探头,尤其适用于对探头洁净度有严格标准的企业 。✔ 性能: 双区加热配合 DLC 动态负载补偿 ,保证垂直温场均匀稳定,不受被检传感器 插入深度影响 。✔ 便携 干体炉 便于携带至 现场 ,可以 进行 全回路校准,减少分离回路校准的附加误差 。✔ 安全: 无液体挥发,不会对操作人员健康产生危害,也不会污染实验室工作空间✔ 快捷: 升降温速度远快于 液槽,成倍提高 工作效率关于Ametek Jofra 干体炉Ametek校准仪器是全球主要的温度、压力及电信号校准仪生产厂商之一,干体炉的发明者,能提供快速精准的温度校准方案。AMETEK干体炉有5大系列共50多个型号,温度覆盖-100~1205℃,满足各个行业的温度校准需求。根据应用情况提供多样的解决方案,实现实验室及现场的快速精准温度校准。
  • 全球同步上市 福禄克高精度气流分析仪VT900
    p   在重症病房里,超过一半的病人需要利用呼吸机进行呼吸治疗。呼吸机作为风险等级最高的医疗设备,我们必须确保每一个病人每次使用的医疗设备都能以最佳的状态运行。对医院里的每一台呼吸机进行质控检测,是确保安全的关键的一步。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201801/insimg/af9882e0-40d0-4d78-a4a7-4f66e801184d.jpg" title=" 1.jpg" style=" width: 500px height: 333px " width=" 500" vspace=" 0" hspace=" 0" height=" 333" border=" 0" / /p p   VT900是Fluke 2018年最新发布的高精度气流分析仪,可准确可靠地测试所有类型的医疗气体流量设备(如呼吸机、气腹机、测氧计)。VT900 尤其适合需要高精度超低流量和超低压力测量值的设备(例如,麻醉机和流量计)。它们可检测多种气流参数包括:流量、压力、通气参数、氧浓度、温度、湿度、大气压、超低流量(限VT 900)、超低压力(限VT 900)。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201801/insimg/dbca07e6-de30-4edf-b19d-1861f8f037f7.jpg" style=" width: 500px height: 365px " title=" 2.jpg" width=" 500" vspace=" 0" hspace=" 0" height=" 365" border=" 0" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201801/insimg/10999382-be7a-417e-b7b8-c8521e5c1e70.jpg" style=" width: 500px height: 286px " title=" 3.jpg" width=" 500" vspace=" 0" hspace=" 0" height=" 286" border=" 0" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201801/insimg/7358ad51-6c0c-4fa2-b8be-e531509e219d.jpg" style=" width: 500px height: 490px " title=" 4.jpg" width=" 500" vspace=" 0" hspace=" 0" height=" 490" border=" 0" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201801/insimg/6fabbd4e-3ef2-49a4-afdf-abb05c730340.jpg" style=" " title=" 5.jpg" / /p p    strong 福禄克公司(Fluke) /strong /p p   福禄克公司成立于1948年,是世界电子测试工具的领导者,多年来,创造和发展了一个特定的技术市场,为各个工业领域提供了优质的测量和检测故障产品。福禄克的用户涵盖面广,包括技术人员、工程师、计量人员等等,他们利用福禄克的测试工具进行工业用电、电器设备和过程校准的安装、故障诊断和管理,并以此控制质量。在过去的五年中,福禄克的测试工具屡获殊荣,赢得了《测试与测量世界》最佳测试工具奖、《控制工程》工程师选择奖等50多个年度产品奖项,备受用户赞誉。 /p p    strong 关于福禄克医疗测试 /strong /p p   福禄克医疗测试是优质生物医学测试与模拟产品的世界领先制造商。此外,福禄克医疗测试提供最新的医学成像与肿瘤学质量保证解决方案,以符合法规。福禄 克医疗测试高度可信且配有 NVLAP 实验室代码 200566-0 认可的实验室,还可 提供最佳质量与客户服务,从而满足所有设备校准需求。 /p p   如今,医工质控人员必须适应日益增加的法规压力、更高的质量标准以及快速发展的技术,同时比以往更快更高效地完成自己的工作。福禄克医疗测试提供多种软件与硬件工具,来应对当今的挑战。 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制