当前位置: 仪器信息网 > 行业主题 > >

高通量微生物细胞表型芯片测定系统

仪器信息网高通量微生物细胞表型芯片测定系统专题为您提供2024年最新高通量微生物细胞表型芯片测定系统价格报价、厂家品牌的相关信息, 包括高通量微生物细胞表型芯片测定系统参数、型号等,不管是国产,还是进口品牌的高通量微生物细胞表型芯片测定系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高通量微生物细胞表型芯片测定系统相关的耗材配件、试剂标物,还有高通量微生物细胞表型芯片测定系统相关的最新资讯、资料,以及高通量微生物细胞表型芯片测定系统相关的解决方案。

高通量微生物细胞表型芯片测定系统相关的论坛

  • 【全球首发仪式】星赛高通量流式拉曼分选仪,12月30日盛大开启!听报告!赏新品!拿奖品!

    【全球首发仪式】星赛高通量流式拉曼分选仪,12月30日盛大开启!听报告!赏新品!拿奖品!

    [url=https://www.instrument.com.cn/webinar/meetings/FlowRACS/][img=,690,350]https://ng1.17img.cn/bbsfiles/images/2021/12/202112281152512795_9049_2507958_3.jpg!w690x350.jpg[/img][/url] 世间生灵,均由单个细胞组合而成或者发育而来,因此,单个细胞,是生命的功能单元和进化单位。显然,在单个细胞精度的分析与操作,能够在最“深”的水平来理解、设计和改造各种生命体系。但是,面对瀚如星海的细胞世界,如何快速探测细胞的功能呢? 拉曼光谱是一种散射光谱,是化合物中分子键被激发到虚能态却尚未恢复到原始态所引起的、入射光被散射后频率发生变化的现象。我们提出,“拉曼组”(Ramanome)作为一种信息极为丰富的分子光谱,能够在单细胞精度,定量检测细胞代谢各种底物的速率、各种拉曼敏感产物之多样性及其含量、细胞的环境应激性、细胞之间的代谢互作、细胞内代谢物相互转化网络等广阔的细胞代谢表型,还可区分不同的物种。 因此,拉曼组是一种直接刻画“代谢功能”的单细胞表型组。而且,拉曼组手段具有广谱适用、活体、无损、非标记、全景式表型、可分辨复杂功能、快速、高通量、低成本、能耦合下游测序、质谱或培养等重要优势,与现有的单细胞基因组、转录组、蛋白组和代谢物组等手段具有互补性,共同形成一个完整的单细胞多组学方法学体系。 在[b]基金委国家重大科学仪器研制项目、科技部合成生物学重点研发计划[/b]等的支持下,我们研制成功基于拉曼组概念和拉曼分选(RACS)技术的“单细胞分析仪器系列”,包括临床单细胞拉曼药敏快检仪(CAST-R)、高通量流式拉曼分选仪(FlowRACS)、单细胞拉曼分选-测序耦合系统(RACS-Seq)、单细胞微液滴分选系统(EasySort Lego / Compact)等。利用这些原创仪器,我们打通了从单细胞代谢表型组表征到相对应高质量单细胞基因组测定的全流程,为单细胞多组学体系提供了一个全新的维度。 青岛星赛生物科技有限公司(www.singlecellbiotech.com),专注于单细胞维度医疗器械与科学仪器的研发、生产、销售及相关技术服务,基于上述单细胞分析仪器系列,竭诚为客户提供原创、定制化、一体化、全方位的“单细胞代谢表型组表征-分选-测序-培养”解决方案。[b][size=18px][color=#ff0000] 2021年12月30日[/color][/size][/b][size=18px],星赛生物将携年度重磅创新单品——[b]全球首台高通量流式拉曼分选仪FlowRACS[/b]来袭![/size] 立足拉曼组/元拉曼组,依赖于微流控与AI技术,FlowRACS将为合成生物学、精准医学等领域带来重大突破。[b]产品真容、技术细节、精彩报告、有奖竞答[/b]……惊喜多多,不容错过。[size=24px][color=#ff0000][b][url=https://www.instrument.com.cn/webinar/meetings/FlowRACS/][img]https://simg.instrument.com.cn/bbs/images/brow/em17.gif[/img]点击参会![/url][/b][/color][/size]

  • 【分享】生物芯片原理

    生物芯片原理生物芯片技术是应人类基因组计划而发展起来的一项高新技术。从1992年美国人Stephen Foder 研制出第一块基因芯片起,生物芯片技术飞速发展:从基因芯片到蛋白质芯片、组织芯片、细胞芯片、芯片实验室,从表达谱芯片到诊断芯片、药物筛选芯片、生物传感器,从寡核苷酸芯片到cDNA 芯片、基因组芯片,新兴的生物芯片技术层出不穷,生物芯片的应用领域也在不断扩展,生物芯片发挥的作用也越来越大,特别是在 2003年人类与SARS病毒的决战中发挥了至关重要的作用:科学家借助基因芯片技术迅速而及时地发现了病原体,并查明病原体的本质,为最终战胜SARS 奠定了基础。生物芯片技术的实质是进行生物信号的平行分析。它利用微点阵技术,将成千上万的生物组分(细胞、蛋白质和DNA等)集中到一小片固相基质上,从而使一些传统的生物学分析手段能够在尽量小的空间范围内,以尽量快的速度完成。与传统的仪器检测方法相比,生物芯片技术具有高通量、微型化、自动化和成本低等特点。生物芯片按照其上所进行的生物化学反应有无外加场力的干预,分为主动式和被动式两大类。被动式芯片是指芯片上进行的生物化学反应在无外加场力的情况下,通过分子的扩散运动完成,如已在研究和临床应用的微阵列芯片,包括DNA芯片,蛋白质芯片等。这也是目前最普遍的生物芯片,但这类芯片存在如下缺点:生产和检测过程人为干扰因素多、难以标准化,生化反应条件和过程不可控、反应效率较低,检测结果重复性较差等。主动式芯片是在芯片的构建和生化反应中直接引入外力或场的作用,它具有快速、高效、自动化和重复性好的特点,是构建芯片实验室、实现过程集成化的基本部件。主动式芯片技术已成为生物芯片技术研究的重点。随着新兴技术和新设计思想的不断产生,各种新型的主动式芯片必将陆续推出,他们的发展与完善将对生命科学与医学的研究与应用产生深远的影响。本项目旨在开发一种新型的主动式生物芯片(主动式蛋白芯片),减少蛋白芯片生产和检测过程中的人为干扰因素,标化芯片的生产和检测过程,并使芯片上的生化反应可控、高效、快速地进行,最终改善芯片检测结果的重复性和准确性。同时,这一技术也可应用于其他种类芯片(如基因芯片、组织芯片、细胞芯片)的升级换代。

  • 生物芯片技术在药物R&D中的应用

    生物芯片技术在药物R&D中的应用(上)( 邓沱,宁志强,周玉祥,程京 )摘自“生物引擎”   1946年世界上第一台电子数字计算机ENIAC在美国Pennsylvania大学问世。在随后的50年里,以美国的硅谷为摇篮,计算机技术不断飞速发展,给我们的生活带来了巨大的变革。无独有偶,1991年又是在美国硅谷,Affymax公司开始了生物芯片的研制,他们将芯片光刻技术与光化学合成技术相结合制作了寡核苷酸阵列芯片。近年来,以DNA芯片为代表的生物芯片技术,得到了迅猛发展,已有多种不同功用的生物芯片问世。目前生物芯片技术已应用于分子生物学、疾病的预防、诊断和治疗、新药开发、生物武器的研制、司法鉴定、环境污染监测和食品卫生监督等诸多领域,已成为各国学术界和工业界所瞩目并研究的一个热点。 生物芯片的概念源自于计算机芯片,狭义的生物芯片即微阵列芯片,主要包括cDNA微阵列、寡核苷酸微阵列、蛋白质微阵列和小分子化合物微阵列。分析的基本单位是在一定尺寸的基片(如硅片、玻璃、塑料等)表面以点阵方式固定的一系列可寻址的识别分子,点阵中每一个点都可以视为一个传感器的探头。芯片表面固定的分子在一定的条件下与被检测物进行反应,其结果利用化学荧光法、酶标法、同位素法或电化学法显示,再用扫描仪等仪器记录,最后通过专门的计算机软件进行分析。广义的生物芯片是指能对生物成分或生物分子进行快速并行处理和分析的厘米见方的固体薄型器件,其主要种类有微阵列芯片、过滤分离芯片、介电电泳分离芯片、生化反应芯片和毛细管电泳芯片等。 随着二十一世纪的到来,制药公司正面临着一次严峻的市场挑战。这些公司为了保持或增强在市场上的竞争力,不得不寻求发展新的药物开发技术以提高药物发现的速度,缩短新药上市的时间,减少药物开发的成本。近年来生物芯片技术的飞速发展,引起了制药业的极大兴趣,使得生物芯片技术在药物研究与开发领域得到越来越广泛的应用,已逐渐渗入到药物研发过程中的各个步骤。本文将主要讨论生物芯片技术在药物靶点发现与药物作用机制研究、超高通量药物筛选、毒理学研究、药物基因组学研究以及药物分析中的应用。一、 生物芯片在药物靶点发现与药物作用机制研究中的应用 药物靶点发现与药物作用机制研究是生物芯片技术在药物研发中应用最为广泛的一个领域。在药物靶点发现和药物作用机制研究中所使用的生物芯片主要是指DNA芯片。在DNA芯片的表面,以微阵列的方式固定有寡核苷酸或cDNA。使用DNA芯片可以对研究者感兴趣的基因或生物体整个基因组的基因表达进行测定。在当代药物开发过程中发现和选择合适的药物靶点是药物开发的第一步,也是药物筛选及药物定向合成的关键因素之一。人体是一个复杂的网络系统,疾病的发生和发展必然牵涉到网络中的诸多环节。当今严重威胁人类健康的心脑血管疾病、恶性肿瘤、老年性痴呆症和一些代谢紊乱疾病都是多因素作用的结果,往往不能归结于单一因素的变化。应用一些基因寻找策略如DD-PCR等虽然为发现新的功能基因提供了一些线索,但还是有相当的局限性。而DNA芯片可以从疾病及药物2个角度对生物体的多个参量同时进行研究以发掘药物靶点并同时获取大量其他相关信息。因此可以说,在这种情况下,任何一元化的分析方法均不及DNA芯片这种集成化的分析手段更具有优势。 DNA芯片在药物靶点发现与药物作用机制研究中的应用具体表现在以下几个方面。(一) 比较正常不同组织细胞中基因的表达模式 基因的表达模式给它的功能提供了间接的信息。例如只在肾脏中表达的基因就不大可能与精神分裂症有关。一些药物的靶点是在整个身体中分布广泛的蛋白质,这类药物的副作用往往比较大。而选择只在特异组织中才表达的蛋白作为药物筛选的靶点,可以减少药物对整体产生的副作用,因而更引起人们的关注。例如骨质疏松症(osteoporosis)与破骨细胞(osteoclasts)的功能有关,破骨细胞可以破坏并吸收骨质,当骨质的形成与破坏出现不平衡的时候,就会导致骨质疏松症。如果破骨细胞的功能得到抑制,那么就可以控制骨质疏松症的发生和发展。利用已有的人类EST序列和DNA芯片技术,可以容易地得到只在破骨细胞中进行表达的基因如cathepsink基因,它编码半胱氨酸蛋白酶。以cathepsink基因作为靶标,筛选对它有抑制作用的药物,就有可能得到治疗骨质疏松症的药物。但是这种方法也有其局限性,它只能得到mRNA水平的表达谱,另外组织一般由多种细胞组成,而要将这些细胞分离很困难。(二) 研究正常组织与病理组织基因表达差异 正常组织在病变的过程中,往往伴随着基因表达模式的变化。基因表达水平的升高或降低,可能是病变的原因,也可能是病变的结果。若基因表达的变化是病变的原因,则以此基因为靶点的药物就可能逆转病变;若基因表达的变化是病变的结果,则以此基因为靶点的药物就可能减轻病变的症状。DNA芯片技术可以在病理组织与正常组织之间一次比较成千上万个基因的表达变化,找出病理组织中表达异常的基因。Heller等人提取正常及诱发病变的巨噬细胞、软骨细胞系、原代软骨细胞和滑膜细胞的mRNA,用包含细胞因子、趋化因子、DNA结合蛋白及基质降解金属蛋白酶等几大类基因的cDNA芯片进行筛选,发现了数种变化明显的基因。其中除了有已知与类风湿关节炎有关的TNF、IL-1、IL-6、IL-8、G-CSF、RANTES、VCAM的基因外,还有编码基质金属弹性蛋白酶HME、IL-3、ICE、趋化因子Groα等的基因。而以前认为金属弹性蛋白酶只存在于肺泡巨噬细胞和胎盘细胞中。弹性蛋白酶可以破坏胶原纤维及组织基底膜层,它在类风湿关节炎病理组织中的出现,为治疗该病提供了新的药物靶点。 利用DNA芯片来寻找疾病相关基因的策略尤其适用于病因复杂的情况。例如,恶性肿瘤的发生常常是多基因共同作用的结果,DNA芯片技术在肿瘤细胞基因表达模式及肿瘤相关基因发掘中具有重要的作用。Wang等人将一些看家基因、细胞因子及受体基因、细胞分裂相关基因及其他一些癌基因共5766个基因的cDNA探针固定在芯片上,对正常卵巢组织及卵巢癌组织的mRNA进行分析,发现两者之间30%基因表达相差两倍以上,9%相差3倍以上,其中上调较为明显的有CD9、上皮糖蛋白(epithelial glycoprotein)、p27及HE蛋白激酶抑制物等。这些结果不仅进一步证实了以前用其他方法获得的结果,还提供了一些新的信息。再如,Kapp等人用包含950个DNA探针的DNA芯片分析比较霍奇金病细胞系L428及KMH2与EB病毒永生化的B淋巴细胞系LGL-GK的基因表达谱,发现霍奇金病源的细胞系中白细胞介素-13(IL-13)及白细胞介素-5(IL-5)表达异常增高;用IL-13抗体处理霍奇金病源的细胞系可显著抑制其增殖。此发现提示,IL-13可能以自分泌形式促进霍奇金病相关细胞增殖。IL-13及其信号转导途径可能成为霍奇金病治疗及药物筛选的新靶点。(三) 建立模式生物细胞中的基因表达模型 采用模式生物细胞进行试验,条件容易控制,对模式生物基因表达的研究将启发人们发现和确认新的药物作用靶点。目前,已有多种模式生物(如酵母)的基因组计划已经完成。 酿酒酵母(saccharomyces cerevisiae)就是一种可用来进行药物筛选的较为理想的模式生物。它是真核生物而且基因组已全部测序,细胞繁殖快,易于培养,与哺乳动物细胞有许多共同的生化机制。现在已经发现,在酵母细

  • 【资料】用于氯霉素、克伦特罗和雌二醇三种兽药残留检测的高通量悬浮芯片技术研究

    用于氯霉素、克伦特罗和雌二醇三种兽药残留检测的高通量悬浮芯片技术研究摘要:目的建立一种氯霉素、克伦特罗和雌二醇(17-beta-estradiol,E2)的3种兽药残留的新型高通量悬浮芯片检测技术。方法:合成3种兽药的牛血清白蛋白(bovine serum albumin,BSA)结合物,并进行紫外和质谱鉴定。绘制出3种兽药残留检测的标准曲线;对不同浓度的干扰物和待测物分组,以此进行特异性检测和盲样测定。并用扫描电子显微镜(简称电镜)进行微球表面微观结构观察。悬浮芯片检测的标准曲线方程和方程相应的决定系数(R^2)表现良好,R^2〉0.99;3种兽药悬浮芯片的检测区间分别为(40.00~6.25)×10^5ng/L,(50.00-7.81)×10^5ng/L和1.00×10^3~7.29×10^5ng/L;最低检出限为:40ng/L、50ng/L和1μg/L;同时,悬浮芯片的特异度测试良好,与其他药物无明显交叉反应;对盲样测定的检测浓度值与实际浓度偏差在8.09%-17.03%,可认为偏差较小。原文:资料中心。

  • WITec共聚焦拉曼快检技术在单细胞表型及生物医学领域的前沿应用

    [align=center][b][size=14pt]WITec共聚焦拉曼快检技术在单细胞表型及生物医学领域的前沿应用[/size][/b][/align][align=center][size=11pt]会议时间[/size][size=11pt]:[/size][size=11pt]2020年[/size][size=11pt]4[/size][size=11pt]月[/size][size=11pt]2[/size][size=11pt][font=等线]日[/font]1[/size][size=11pt]0[/size][size=11pt]:00[/size][/align][b][size=12pt]内容[/size][size=12pt]介绍:[/size][/b][size=10.5pt]德国[/size][size=10.5pt]WITec的高分辨率、高灵敏度、共聚焦快速拉曼成像系统能够实现多种成像技术联用以满足客户的多样化、个性化需求,广泛应用于材料、地质及生命科学等领域。[/size][size=10.5pt]本次会议将带来上海氘峰医疗科技有限公司针对单细胞表型的拉曼数据分享以及德国[/size][size=10.5pt]WITec公司共聚焦拉曼快速成像在生物医学领域的前沿应用,欢迎关注![/size][b][size=12pt]讲师[/size][size=12pt]介绍:[/size][size=11pt]罗艳君[/size][size=11pt]:[/size][/b][size=11pt][font=等线]上海氘峰医疗科技有限公司总经理,负责公司曰常运营及市场销售。硕士期间师从于单细胞拉曼技术的前沿研究者黄巍教授(现为牛津大学工程系教授,主要研究方向:合成生物学、单细胞拉[/font][font=等线]曼)。氘峰致力于单细胞拉曼技术在生物医学领域的推广和应用,提供专业的第三方单细胞拉曼表型数据解决方案,服务于生医领域科学家。[/font][/size][b][size=11pt]胡海龙[/size][size=11pt]:博士[/size][/b][size=11pt]:[/size][size=11pt][font=等线]毕业于新加坡南洋理工大学物理系。[/font]2005起年在吉林大学超分子结构与材料国家重点实验室攻读硕士学位,主要研究半导体纳米材料的表面增强拉曼效应。2008起在南洋理工大学攻读博士学位,研究方向涉及近场拉曼光谱,针尖增强拉曼光谱及金属表面等离子体光学等多领域,工作先后在Nano Letter, ACS Nano与Nanoscale等杂志发表。同时与高校及科研机构展开广泛合作,共同发表文章超过15篇。2013年度荣获中国自费留学生优秀奖(新加坡区) ,同年加入德国WITec公司,现负责中国区应用技术支持[/size][size=11pt]。[/size][size=10.5pt]报名地址[/size][size=10.5pt]:[/size][url=https://www.instrument.com.cn/webinar/meeting_12843.html][u][color=#0000ff]https://www.instrument.com.cn/webinar/meeting_12843.html[/color][/u][/url]

  • 生物芯片入门:生物芯片及应用简介

    一、简介生物芯片(biochip)是指采用光导原位合成或微量点样等方法,将大量生物大分子比如核酸片段、多肽分子甚至组织切片、细胞等等生物样品有序地固化于支持物(如玻片、硅片、聚丙烯酰胺凝胶、尼龙膜等载体)的表面,组成密集二维分子排列,然后与已标记的待测生物样品中靶分子杂交,通过特定的仪器比如激光共聚焦扫描或电荷偶联摄影像机(CCD)对杂交信号的强度进行快速、并行、高效地检测分析,从而判断样品中靶分子的数量。由于常用玻片/硅片作为固相支持物,且在制备过程模拟计算机芯片的制备技术,所以称之为生物芯片技术。根据芯片上的固定的探针不同,生物芯片包括基因芯片、蛋白质芯片、细胞芯片、组织芯片,另外根据原理还有元件型微阵列芯片、通道型微阵列芯片、生物传感芯片等新型生物芯片。如果芯片上固定的是肽或蛋白,则称为肽芯片或蛋白芯片;如果芯片上固定的分子是寡核苷酸探针或DNA,就是DNA芯片。由于基因芯片(Genechip)这一专有名词已经被业界的领头羊Affymetrix公司注册专利,因而其他厂家的同类产品通常称为DNA微阵列(DNA Microarray)。这类产品是目前最重要的一种,有寡核苷酸芯片、cDNA芯片和Genomic芯片之分,包括二种模式:一是将靶DNA固定于支持物上,适合于大量不同靶DNA的分析,二是将大量探针分子固定于支持物上,适合于对同一靶DNA进行不同探针序列的分析。生物芯片技术是90年代中期以来影响最深远的重大科技进展之一,是融微电子学、生物学、物理学、化学、计算机科学为一体的高度交叉的新技术,具有重大的基础研究价值,又具有明显的产业化前景。由于用该技术可以将极其大量的探针同时固定于支持物上,所以一次可以对大量的生物分子进行检测分析,从而解决了传统核酸印迹杂交(Southern Blotting 和Northern Blotting等)技术复杂、自动化程度低、检测目的分子数量少、低通量(low through-put)等不足。而且,通过设计不同的探针阵列、使用特定的分析方法可使该技术具有多种不同的应用价值,如基因表达谱测定、突变检测、多态性分析、基因组文库作图及杂交测序(Sequencing by hybridization,SBH)等,为“后基因组计划”时期基因功能的研究及现代医学科学及医学诊断学的发展提供了强有力的工具,将会使新基因的发现、基因诊断、药物筛选、给药个性化等方面取得重大突破,为整个人类社会带来深刻广泛的变革。该技术被评为1998年度世界十大科技进展之一。二、应用领域1、基因表达水平的检测用基因芯片进行的表达水平检测可自动、快速地检测出成千上万个基因的表达情况。Schena等采用拟南芥基因组内共45个基因的cDNA微阵列(其中14个为完全序列,31个为EST),检测该植物的根、叶组织内这些基因的表达水平,用不同颜色的荧光素标记逆转录产物后分别与该微阵列杂交,经激光共聚焦显微扫描,发现该植物根和叶组织中存在26个基因的表达差异,而参与叶绿素合成的CAB1基因在叶组织较根组织表达高500倍。Schena等用人外周血淋巴细胞的cDNA文库构建一个代表1046个基因的cDNA微阵列,来检测体外培养的T细胞对热休克反应后不同基因表达的差异,发现有5个基因在处理后存在非常明显的高表达,11个基因中度表达增加和6个基因表达明显抑制。该结果还用荧光素交换标记对照和处理组及RNA印迹方法证实。在HGP完成之后,用于检测在不同生理、病理条件下的人类所有基因表达变化的基因组芯片为期不远了。2、基因诊断从正常人的基因组中分离出DNA与DNA芯片杂交就可以得出标准图谱。从病人的基因组中分离出DNA与DNA芯片杂交就可以得出病变图谱。通过比较、分析这两种图谱,就可以得出病变的DNA信息。这种基因芯片诊断技术以其快速、高效、敏感、经济、平行化、自动化等特点,将成为一项现代化诊断新技术。例如Affymetrix公司,把P53基因全长序列和已知突变的探针集成在芯片上,制成P53基因芯片,将在癌症早期诊断中发挥作用。又如,Heller等构建了96个基因的cDNA微阵,用于检测分析关节炎、风湿性关节炎(RA)相关的基因,以探讨DNA芯片在感染性疾病诊断方面的应用。现在,肝炎病毒检测诊断芯片、结核杆菌耐药性检测芯片、多种恶性肿瘤相关病毒基因芯片等一系列诊断芯片逐步开始进入市场。基因诊断是基因芯片中最具有商业化价值的应用。3、药物筛选如何分离和鉴定药的有效成份是目前中药产业和传统的西药开发遇到的重大障碍,基因芯片技术是解决这一障碍的有效手段,它能够大规模地筛选、通用性强,能够从基因水平解释药物的作用机理,即可以利用基因芯片分析用药前后机体的不同组织、器官基因表达的差异。如果再cDNA表达文库得到的肽库制作肽芯片,则可以从众多的药物成分中筛选到起作用的部分物质。还有,利用RNA、单链DNA有很大的柔性,能形成复杂的空间结构,更有利与靶分子相结合,可将核酸库中的RNA或单链DNA固定在芯片上,然后与靶蛋白孵育,形成蛋白质-RNA或蛋白质-DNA复合物,可以筛选特异的药物蛋白或核酸,因此芯片技术和RNA库的结合在药物筛选中将得到广泛应用。在寻找HIV药物中,Jellis等用组合化学合成及DNA芯片技术筛选了654536种硫代磷酸八聚核苷酸,并从中确定了具有XXG4XX样结构的抑制物,实验表明,这种筛选物对HIV感染细胞有明显阻断作用。生物芯片技术使得药物筛选,靶基因鉴别和新药测试的速度大大提高,成本大大降低。基因芯片药物筛选技术工作目前刚刚起步,美国很多制药公司已开始前期工作,即正在建立表达谱数据库,从而为药物筛选提供各种靶基因及分析手段。这一技术具有很大的潜在应用价值。4、个体化医疗临床上,同样药物的剂量对病人甲有效可能对病人乙不起作用,而对病人丙则可能有副作用。在药物疗效与副作用方面,病人的反应差异很大。这主要是由于病人遗传学上存在差异(单核苷酸多态性,SNP),导致对药物产生不同的反应。例如细胞色素P450酶与大约25%广泛使用的药物的代谢有关,如果病人该酶的基因发生突变就会对降压药异喹胍产生明显的副作用,大约5%~10%的高加索人缺乏该酶基因的活性。现已弄清楚这类基因存在广泛变异,这些变异除对药物产生不同反应外,还与易犯各种疾病如肿瘤、自身免疫病和帕金森病有关。如果利用基因芯片技术对患者先进行诊断,再开处方,就可对病人实施个体优化治疗。另一方面,在治疗中,很多同种疾病的具体病因是因人而异的,用药也应因人而异。例如乙肝有较多亚型,HBV基因的多个位点如S、P及C基因区易发生变异。若用乙肝病毒基因多态性检测芯片每隔一段时间就检测一次,这对指导用药防止乙肝病毒耐药性很有意义。又如,现用于治疗AIDS的药物主要是病毒逆转录酶RT和蛋白酶PRO的抑制剂,但在用药3~12月后常出现耐药,其原因是rt、pro基因产生一个或多个点突变。Rt基因四个常见突变位点是Asp67→Asn、Lys70→Arg、Thr215→Phe、Tyr和Lys219→Glu,四个位点均突变较单一位点突变后对药物的耐受能力成百倍增加。如将这些基因突变部位的全部序列构建为DNA芯片,则可快速地检测病人是这一个或那一个或多个基因发生突变,从而可对症下药,所以对指导治疗和预后有很大的意义。5、测序基因芯片利用固定探针与样品进行分子杂交产生的杂交图谱而排列出待测样品的序列,这种测定方法快速而具有十分诱人的前景。Mark chee等用含135000个寡核苷酸探针的阵列测定了全长为16.6kb的人线粒体基因组序列,准确率达99%。Hacia等用含有48000个寡核苷酸的高密度微阵列分析了黑猩猩和人BRCA1基因序列差异,结果发现在外显子11约3.4kb长度范围内的核酸序列同源性在98.2%到83.5%之间,提示了二者在进化上的高度相似性。据未经证实的报道,近年有一种不成熟的生物芯片在15分钟内完成了1.6万个碱基对的测定,96个这样的生物芯片的平行工作,就相当于每天1.47亿个碱基对的分析能力!

  • 药物高通量筛选技术

    简单介绍一下关于药物高通量筛选技术的知识一.概念高通量筛选(High throughput screening,HTS)技术是指以分子水平和细胞水平的实验方法为基础,以微板形式作为实验工具载体,以自动化操作系统执行试验过程,以灵敏快速的检测仪器采集实验结果数据,以计算机对实验数据进行分析处理,同一时间对数以千万样品检测,并以相应的数据库支持整个体系运转的技术体系。二. 高通量筛选技术体系的组成1. 化合物样品库化合物样品主要有人工合成和从天然产物中分离纯化两个来源。其中,人工合成又可分为常规化学合成和组合化学合成两种方法。2.自动化的操作系统自动化操作系统利用计算机通过操作软件控制整个实验过程。操作软件采用实物图像代表实验用具,简洁明了的图示代表机器的动作。自动化操作系统的工作能力取决于系统的组分,根据需要可配置加样、冲洗、温解、离心等设备以进行相应的工作。3.高灵敏度的检测系统检测系统一般采用液闪计数器、化学发光检测计数器、宽谱带分光光度仪、荧光光度仪等。4.数据库管理系统数据库管理系统承担4个方面的功能: 样品库的管理功能;生物活性信息的管理功能; 对高通量药物筛选的服务功能; 药物设计与药物发现功能。三. 高通量筛选模型常用的筛选模型都在分子水平和细胞水平,观察的是药物与分子靶点的相互作用,能够直接认识药物的基本作用机制。1. 分子水平的药物筛选模型:受体筛选模型;酶筛选模型;离子通道筛选模型1.1受体筛选模型:指受体与放射性配体结合模型。以受体为作用靶的筛选方法,包括检测功能反应、第二信使生成和标记配体与受体相互作用等不同类型。1.2酶筛选模型:观察药物对酶活性的影响。根据酶的特点,酶的反应底物,产物都可以作为检测指标,并由此确定反应速度。典型的酶筛选包括1) 适当缓冲液中孵化;(2)控制反应速度,如:温度,缓冲液的pH值和酶的浓度等;(3)单时间点数器, 需测量产物的增加和底物的减少。1.3离子通道筛选模型: (1)贝类动物毒素的高通量筛选,其作用靶为Na+通道上的蛤蚌毒素结合位点,用放射性配体进行竞争性结合试验考察受试样品。(2)用酵母双杂交的方法高通量筛选干扰N型钙通道β3亚单位与α1β亚单位相互作用的小分子,寻找新型钙通道拮抗剂。2.细胞水平药物筛选模型观察被筛样品对细胞的作用,但不能反映药物作用的具体途径和靶标,仅反映药物对细胞生长等过程的综合作用。包括: 内皮细胞激活; 细胞凋亡; 抗肿瘤活性; 转录调控检测; 信号转导通路; 细菌蛋白分泌; 细菌生长。四.问题及展望高通量筛选技术与传统的药物筛选方法相比有以下几个优点:反应体积小;自动化;灵敏快速检测;高度特异性。但是,高通量筛选作为药物筛选的一种方法,并不是一种万能的手段,特别是在中药研究方面,其局限性也是十分明显的。首先,高通量筛选所采用的主要是分子、细胞水平的体外实验模型,因此任何模型都不可能充分反映药物的全面药理作用;其次,用于高通量筛选的模型是有限的和不断发展的,要建立反映机体全部生理机能或药物对整个机体作用的理想模型,也是不现实的。但我们应该相信,随着对高通量筛选研究的不断深入,随着对筛选模型的评价标准、新的药物作用靶点的发现以及筛选模型的新颖性和实用性的统一,高通量筛选技术必将在未来的药物研究中发挥越来越重要的作用。

  • 生物芯片及应用简介

    生物芯片及应用简介一、简介 生物芯片(biochip)是指采用逛到原位合成或微量点样等方法,将大量生物大分子比如核酸片段、多肽分子甚至组织切片、细胞等等生物样品有序地固化于支持物(比如玻璃、硅片、聚丙烯酰胺凝胶、尼龙膜等载体)的表面,组成密集二维分子排列,然后与标记的待检测生物样品中靶分子杂交,通过特定的仪器比如激光共聚焦扫描或电荷偶联摄像机(CCD)对杂交信号的强度进行快速、并行、高效地检测分心,从而判断样品中靶分子的数量。由于常用玻片/硅片作为固相支持物,且在制备过程模拟计算机芯片的制备技术,所以称之为生物芯片技术。根据芯片上的固定的探针不同,生物芯片包括基因芯片、蛋白质芯片、细胞芯片、组织芯片,另外根据原理还有原件型微阵列芯片、通道型微阵列芯片、生物传感芯片等新型生物芯片、如果芯片上固定的是肽或蛋白,则称为肽芯片或蛋白芯片;如果芯片上固定的分子是寡核苷酸探针或DNA,就是DNA芯片。由于基因芯片(Genechip)这一专有名词已被业界的领头羊Affymetrix公司注册专利,因而其他厂家的同类产品通常称为DNA微阵列(DNA Microarray)。这类产品是目前最重要的一种,有寡核苷酸芯片、cDNA芯片和Genomic芯片之分,包括二种模式:一是将靶DNA固定于支持物上,适合于大量不同靶DNA的分析,二是将大量的探针分子固定于支持物上,适合于对同一靶DNA进行不同探针序列的分析。 生物芯片技术是90年代中期以来影响最深远的重大科技进展之一,是融微电子学、生物学、物理学、化学、计算机科学为一体的高度交叉的新技术,具有重大的基础研究价值,又具有明显的产业化前景。由于用该技术可以将及其大量的探针同时固定于支持物上,所以一次可以对大量的生物分子进行检测分析,从而解决了传统核酸印迹杂交(Southern Blotting和Northern Blotting等)技术复杂、自动化程度低、检测目的分子数量少、低通量(low through-put)等不足。而且,通过设计不同的探针阵列、使用特定的分析方法可使该技术具有多种不同的应用价值,如基因表达谱测定、突变检测、多态性分析、基因组文库作图及杂交测序(Sequencing by hybridization,SBH)等,为“后基因计划”时期基因功能的研究及现代医学科学及医学诊断学的发展提供了强有力的工具,将会使新基因的发现、基因诊断、药物筛选、给要个性等方面取得重大突破,为整个人类社会带来深刻广泛的变革。该技术被评为1998年度世界十大科技进展之一。

  • 小的不能再小的微型实验室,微流控芯片实验室

    中国在微流控芯片领域的水平和国外相差不大,而且中国已经有微流控芯片研发生产企业,在网上直接搜索“微流控芯片”便可以找到生产企业和微流控芯片相关资料文章。 微流控分析芯片最初在美国被称为“芯片实验室”(lab-on-a-chip),在欧洲被称为“微整合分析芯片”(micrototal analytical systems),它是微流控技术(Microfluidics)实现的主要平台,可以把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块微米尺度的芯片上,自动完成分析全过程。有着体积轻巧、使用样品及试剂量少,且反应速度快、可大量平行处理及可即用即弃等优点的微流控芯片,在生物、化学、医学等领域有着的巨大潜力,近年来已经发展成为一个生物、化学、医学、流体、电子、材料、机械等学科交叉的崭新研究领域。 微流控芯片采用类似半导体的微机电加工技术在芯片上构建微流路系统,将实验与分析过程转载到由彼此联系的路径和液相小室组成的芯片结构上,加载生物样品和反应液后,采用微机械泵。电水力泵和电渗流等方法驱动芯片中缓冲液的流动,形成微流路,于芯片上进行一种或连续多种的反应。激光诱导荧光、电化学和化学等多种检测系统以及与质谱等分析手段结合的很多检测手段已经被用在微流控芯片中,对样品进行快速、准确和高通量分析。微流控芯片的最大特点是在一个芯片上可以形成多功能集成体系和数目众多的复合体系的微全分析系统?微型反应器是芯片实验室中常用的用于生物化学反应的结构,如毛细管电泳、聚合酶链反应、酶反应和DNA 杂交反应的微型反应器等 。其中电压驱动的毛细管电泳(Capillary Electrophoresis , CE) 比较容易在微流控芯片上实现,因而成为其中发展最快的技术。它是在芯片上蚀刻毛细管通道,在电渗流的作用下样品液在通道中泳动,完成对样品的检测分析,如果在芯片上构建毛细管阵列,可在数分钟内完成对数百种样品的平行分析。自1992 年微流控芯片CE 首次报道以来,进展很快?首台商品仪器是微流控芯片CE ( 生化分析仪,Aglient) ,可提供用于核酸及蛋白质分析的微流控芯片产品。 微流控芯片的特点  芯片集成的单元部件越来越多,且集成的规模也归来越大,使着微流控芯片有着强大的集成性。同时可以 大量平行处理样品,具有高通量的特点,分析速度快、耗低,物耗少,污染小,分析样品所需要的试剂量仅几微升至几十个微升,被分析的物质的体积甚至在纳升级或皮升级。  廉价,安全,因此,微流控分析系统在微型化。集成化合便携化方面的优势为其在生物医学研究、药物合成筛选、环境监测与保护、卫生检疫、司法鉴定、生物试剂的检测等众多领域的应用提供了极为广阔的前景。  我国在微流控分析方面的研究虽然起步较国外晚了四到五年,但在多个相关的学科领域都具有足够的积累与优势,我国具有世界上最大的微流控芯片市场,用中国的芯片产品占领这一市场是我国科学家责无旁贷的使命。3月26日多名微流控领域的专家也将参加在上海举办的2015(第三届)先进体外诊断技术峰会,共同对微流控的先进技术进行总结和分析,对我国的微流控芯片研究领域进行更多的解读。相信经过不懈的努力,微流控芯片蓬勃的发展在我国很快将会到来。

  • 全球首发仪式|新星NOVA—MobiNova-100高通量单细胞测序建库系统,4月15日14:00等你来!

    全球首发仪式|新星NOVA—MobiNova-100高通量单细胞测序建库系统,4月15日14:00等你来!

    近年来,单细胞测序技术成为生命健康领域追逐的热点,可应用于肿瘤异质性研究、干细胞分化以及组织器官发育研究、神经系统发育研究、免疫方向研究、疾病分型和药物机制以及用药指导等方向。随着研究的深入和技术的不断发展进步,市场对单细胞产品提出了新的要求:从单组学到多组学、从基本到高通量、从哺乳动物到微生物。墨卓生物即将推出MobiNova-100高通量单细胞测序建库系统助力科学研究,MobiNova-100是墨卓团队过去数年磨一剑的结晶,是一个真正稳定、精准、可信赖的技术平台,在关键的性能指标上接近甚至部分超越了国际一流水平。一次可探索最多数十万单细胞,实现极高的细胞捕获率,精准捕获细胞信息;单次运行仅需十分钟,最大程度保证数据质量,给用户提供可信赖的解决方案。 “新星”升越 ,创新不止,创新是墨卓生物不断向前发展的内在引擎,新星NOVA—MobiNova-100高通量单细胞建库系统全球首发仪式将正式进行线上发布! [b] [color=#ff0000]2022年4月15日14:00[/color][/b]诚邀各位莅临MobiNova的世界,一同解锁细胞的无限可能! [img=,442,348]https://ng1.17img.cn/bbsfiles/images/2022/04/202204141904574225_9730_2507958_3.png!w442x348.jpg[/img][img]file:///C:/Users/wangqy/AppData/Local/Temp/企业微信截图_16499342329421.png[/img] [b][size=18px] [img]https://simg.instrument.com.cn/bbs/images/brow/em20.gif[/img] 直达会场:[/size][/b][url=https://www.instrument.com.cn/webinar/meetings/mobinova20220415/][b][size=18px]https://www.instrument.com.cn/webinar/meetings/mobinova20220415/[/size][/b][/url][img=,480,1600]https://ng1.17img.cn/bbsfiles/images/2022/04/202204141901011128_219_2507958_3.jpg!w480x1600.jpg[/img][font=&][size=16px][color=#333333]14:08--14:45[/color][/size][/font][font=&][size=16px][color=#333333]新星NOVA—MobiNova-100高通量单细胞测序建库系统 全球首发仪式[/color][/size][/font][font=&][size=16px][color=#333333]裴颢[/color][/size][/font][font=&][size=16px][color=#333333]墨卓生物 CEO[/color][/size][/font]

  • 什么是液态悬浮芯片系统?

    [b]液态悬浮芯片系统[/b]是基于xMAP技术的新一代多检测能力,具有更快的结果获取时间和自动化能力,是高通量核酸和蛋白质的首选。 [img=液态悬浮芯片系统1]http://www.celll.cn/uploads/allimg/180724/1-1PH4103205543.jpg[/img]液态悬浮芯片系统,在国内也被称为“多功能流格”、“液体芯片分析系统”、“液体芯片”和“流动荧光探测器”、“多功能并行指标分析系统”、“(微)悬架阵列技术”等,是Luminex专利技术产品,是目前最高的高通量测试平台。 应用领域包括HLA组合、自身免疫性疾病检测、过敏原检测、基因突变检测、肿瘤标志物检测、HPV分型等诸多领域。 [b]技术原理:[/b]1. 用两种不同比例的荧光染料将直径5.6微米的聚苯乙烯微球染成不同的荧光色。目前已获得的荧光编码微球不超过100种。2. 针对不同对象的抗体分子或基因探针与特定编码微球共价交联,每个编码微球对应相应的检测项目。3. 首先对不同对象的荧光编码进行混合,然后将形成的复合物与标记荧光素结合,加入待测材料或待测扩增片段。4. 用两束激光对微球进行测序,一束激光确定微球的荧光编码,另一束激光测量微球上报告分子的荧光强度。 [img=液态悬浮芯片系统2]http://www.celll.cn/uploads/allimg/180724/1-1PH4103221Z8.jpg[/img][b]特点:[/b]1.[b]高通量、高速度:[/b]每一个微球都可以作为一个检测体,同时进行大量的生物检测。每次可检测到100个指标,样本量为10-20l。达到每小时10,000个测试,真正实现“高吞吐量”和“高速度”。2. [b]多功能性:[/b]xMAP技术可用于多种生物测试,包括免疫分析、基因分型、基因表达、酶分析等,可检测蛋白质和核酸。除临床应用外,还可用于科研、疾控中心、血站、农牧业、生物制药等领域3.[b]高灵活性:[/b]微球可与特定的探针、抗原或抗体连接,以满足不同客户的需求。4.[b]灵敏度高:[/b]检测极限可达0.01pg/ml。5.[b]重复性好:[/b]类都有相反的响应模式,每个指标都有1000-5000个反应单元,分析100次取中值。6.[b]高精度:[/b]检测范围为3.5 ~ 6个数量级,与ELISA和质谱高度一致。7.[b]低成本:[/b]低试剂用量的流动荧光可以有效降低临床应用的成本。 [b]产品介绍:[/b]1.采用50种微珠检测系统2.与普通ELISA检测相比,成本大大降低3.大大减小了设备尺寸,减少了实验台的占用 截至2009年1月,基于该技术平台开发的产品共计48种,[b]液态悬浮芯片系统[/b]指标约300项,通过了FDA的严格认证并进入临床应用。近20种用于宫颈癌筛查的肿瘤标志物和人乳头瘤病毒(HPV)已通过国家SFDA认证并进入临床应用。

  • 电泳微流控芯片:生物分析的里程碑

    电泳微流控芯片是一种结合了电泳和微流控技术的创新型生物分析工具。该技术整合了微流体学的优势,通过微小尺度的通道、电场和高度灵活的流动控制,实现了对生物分子的高效分离、检测和分析。[align=center][img=图片]https://img1.17img.cn/17img/images/202404/uepic/434f44d0-8ac9-452a-bfa1-fd7840c0c1cc.jpg[/img][/align][b]——技术原理——[/b]电泳原理:在电解质溶液中,位于电场中的带电离子在电场力的作用下,以不同的速度向其所带电荷相反的电极方向迁移的现象。电泳微流控芯片技术可以分为两种主要类型:毛细管电泳和芯片上电泳。毛细管电泳利用单根毛细管作为分离通道,而芯片上电泳则将电泳所需的缓冲液、电极等组件集成到一个微流控芯片上,实现设备的微小化和自动化。这种集成化设计使得电泳微流控芯片具有高通量、高效率、低样品消耗和快速分离等优点。电泳微流控芯片的原理主要基于电场驱动下的带电粒子在微尺度流道中的迁移与分离。具体来说,电泳微流控芯片利用微加工技术在芯片上构建微米级的流道,这些流道用于容纳电泳缓冲液。当在芯片两端施加电场时,缓冲液中的带电粒子(如DNA、蛋白质等)会根据其电荷和电场方向发生迁移。不同带电粒子由于其电荷、质量和形状的差异,在电场中的迁移速度会有所不同,从而实现粒子的分离。[b]——应用领域——[/b]电泳微流控芯片的应用领域非常广泛,涵盖了多个重要的科学和工业领域。以下是其主要的应用领域:1、生物医学:在生物医学领域,电泳微流控芯片技术主要用于DNA片段、多肽、蛋白质等生物分子的分离和分析。它被认为是后基因时代中最有希望攻克蛋白质研究、基因临床诊断等科学难题的分离分析手段之一。此外,电泳微流控芯片技术也被用于[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]反应,可以大大简化操作步骤,显著提高检测效率。2、新药物合成与筛选:电泳微流控芯片技术在新药研发过程中发挥着重要作用。它可以用于药物分子的分离和筛选,从而加速新药的研发进程。3、食品和商品检验:电泳微流控芯片技术可以用于食品中添加剂、污染物等的检测和分析,确保食品的安全和合规性。同时,它也可以用于商品的质量控制和检验。4、环境监测:在环境监测领域,电泳微流控芯片技术可用于水、土壤、空气等环境样本中有害物质的检测和分析,为环境保护和污染治理提供科学依据。5、刑事科学:电泳微流控芯片在法医学中具有重要的应用,特别是在DNA分离、检测和分析方面,对于个体身份的鉴定和犯罪现场的物证分析具有重要意义。6、其他科学领域:此外,电泳微流控芯片技术还广泛应用于军事科学、航天科学等其他重要科学领域,为这些领域的研究和发展提供了强大的技术支持。[b]——优势——[/b]1、高分辨率和快速分离:微流控芯片中的通道尺寸小,因此具有较高的分辨率和更快的分离速度。这使得它能够在短时间内准确地分离和识别出各种生物分子,如DNA、蛋白质等。2、低样品和试剂消耗:由于微流控芯片中的流体通道尺寸微小,所需的样品和试剂量大大减少。这既降低了分析成本,也减少了生物样本的浪费,对于珍贵的生物样本尤其重要。3、高通量分析能力:微流控芯片可以并行处理多个样品,实现高通量分析。这大大提高了分析效率,使得在短时间内能够处理更多的样本,适用于大规模的生物分子分析任务。4、易于集成和自动化:电泳微流控芯片可以与其他技术(如质谱联用)实现联合分析,进一步提高分析的准确性和灵敏度。此外,微流控芯片技术易于实现自动化,减少了人为操作的误差,提高了分析的准确性和可靠性。5、微型化和便携性:电泳微流控芯片采用微型化设计,使得整个分析系统更加紧凑和便携。这使得它可以在现场进行实时分析,无需复杂的实验室设备,为现场检测和即时分析提供了便利。[b]保利微芯公司简介[/b]保利微芯科技有限公司隶属中国保利集团公司,由保利置业集团有限公司投资,设计研发微流控生物芯片,公司具备技术先进的微流控生物芯片设计制造能力,已形成创新性的、技术领先的微流控芯片整体解决方案。可以承接国内外芯片设计、应用公司的微流控芯片生产订单,为即时诊断(POCT)、基因测序、环境保护、食品安全和科学研究等应用领域的客户提供有核心竞争力的高性价比芯片产品。[来源:保利微芯][align=right][/align]

  • 【知识博物馆】 PAS CONCEPT 96 高通量薄片固相微萃取

    [b]PAS CONCEPT 96 高通量薄片固相微萃取[/b][size=14px]CONCEPT 96 高通量薄片固相微萃取有多种固定相介质可选,如C18、C8、C4、Pan-C18、Si、DEAE、C18-NH2-、C18-Diol-等多达20多种,96片萃取薄片可进行任意组合使用,用于样品筛选。该系统特别适合少量液体样品,组织培养液,体液等中的组分的富集萃取。尤其对于复杂基质的全血样品,可选用生物兼容性的专属萃取薄片,萃取时,血浆蛋白、血细胞不被吸附,而只萃取富集其中的小分子物质;经过活化后,可反复多次使用。[/size]

  • 芯片上的实验室------微流控芯片

    芯片上的实验室------微流控芯片

    微流控分析芯片最初在美国被称为“芯片实验室”(lab-on-a-chip),在欧洲被称为“微整合分析芯片”(micrototal analytical systems),它是微流控技术(Microfluidics)实现的主要平台,可以把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块微米尺度的芯片上,自动完成分析全过程。有着体积轻巧、使用样品及试剂量少,且反应速度快、可大量平行处理及可即用即弃等优点的微流控芯片,在生物、化学、医学等领域有着的巨大潜力,近年来已经发展成为一个生物、化学、医学、流体、电子、材料、机械等学科交叉的崭新研究领域。 芯片集成的单元部件越来越多,且集成的规模也归来越大,使着微流控芯片有着强大的集成性。同时可以 大量平行处理样品,具有高通量的特点,分析速度快、耗低,物耗少,污染小,分析样品所需要的试剂量仅几微升至几十个微升,被分析的物质的体积甚至在纳升级或皮升级。  廉价,安全,因此,微流控分析系统在微型化。集成化合便携化方面的优势为其在生物医学研究、药物合成筛选、环境监测与保护、卫生检疫、司法鉴定、生物试剂的检测等众多领域的应用提供了极为广阔的前景。 我国在微流控分析方面的研究虽然起步较国外晚了四到五年,但在多个相关的学科领域都具有足够的积累与优势,我国具有世界上最大的微流控芯片市场,用中国的芯片产品占领这一市场是我国科学家责无旁贷的使命。现如今在网站中搜寻“微流控芯片”,便可以找到研发生产微流控芯片的企业和相关资料,

  • 微流控浓度梯度芯片的应用

    微流控浓度梯度芯片的应用

    一.简介在微流控芯片通道网络中,流体主要做层流流动,因此当两种或多种不同试剂流入同一通道时,各试剂能够保持各自流型不变,而只在相与相接触面上发生反应或分子扩散现象,形成的浓度梯度具有较高的稳定性和重现性,且通过改变通道网络的构型设计及初始液流的浓度和组合顺序,可以获得一系列复杂的浓度梯度,利用微流控浓度梯度芯片可以模拟外界环境,建立化学物质浓度梯度,在细胞以及个体水平上研究生物体对外界环境变化的反应。该技术已广泛应用于药物筛选,模式生物趋化,毒性评价等研究领域。二.应用领域药物筛选随着新药开发技术的发展,对新药化合物的活性实验从早期的验证性实验已经逐渐转变成筛选性实验,即所谓的药物筛选。借助于组合化学和计算化学的发展,人们开始有能力在短时间内合成和分离多种化合物,因而在现代新药开发过程中药物筛选已经成为新药开发过程中的重要环节之一。微流控浓度梯度芯片进行药物筛选实验时,与传统多孔板技术相比,省去了配置和分配多种药物不同浓度溶液的繁杂操作,大大简化了细胞铺板、上药、洗涤、标记等操作过程,在显著减少细胞和试剂耗量的同时,进行高通量地删选。http://ng1.17img.cn/bbsfiles/images/2016/07/201607011649_598843_3091062_3.png模式生物趋化模式生物能对液体和空气中传播的化学物质产生反应,感受到微摩尔浓度范围的水溶性引发剂和挥发性物质,从而产生趋向或回避行为。能否成功的提供可控的浓度梯度成为研究模式生物趋化行为的关键。微流控浓度梯度芯片能够自由控制和创建化学物质浓度梯度,形成浓度梯度时间短,提供的实验条件重复性高等特点,成为研究模式生物趋化行为的有利工具。file:///C:\Users\ADMINI~1\AppData\Local\Temp\ksohtml\wps1223.tmp.pnghttp://ng1.17img.cn/bbsfiles/images/2016/07/201607011650_598844_3091062_3.png毒性评价微流控浓度梯度芯片能够生成不同的化学因子浓度梯度作用于海洋微藻、斑马鱼等受试对象,通过受试对象在不同浓度化学因子刺激下,将其生化反应作为反馈信号进行化学因子毒性评价。http://ng1.17img.cn/bbsfiles/images/2016/07/201607011650_598845_3091062_3.png我们提供的浓度梯度芯片基于层流扩散的原理,形成的浓度梯度具有较高的稳定性和重现性,与传统的“圣诞树”型浓度梯度生成器生成的相对单一的浓度梯度不同,我们可以通过改变通道网络设计,生成包括线性、指数等多种浓度梯度。图1为线性八梯度芯片示意图,其中Input(A)为样本溶液入口,Input(B)为缓冲溶液入口,样本溶液次第向下与缓冲溶液混合形成浓度梯度,出口处浓度见表1。芯片上集成浓度梯度生成器的同时,可以按照客户需求集成多功能培养单元。在材料的选择方面,可以提供PMMA、玻璃、PDMS等多种材质供用户选择。 http://ng1.17img.cn/bbsfiles/images/2016/07/201607011650_598846_3091062_3.png 图1.微流控线性八梯度芯片示意图 表1.线性八梯度浓度梯度芯片出口处浓度出口12345678浓度0(1/7)C(2/7)C(3/7)C(4/7)C(5/7)C(6/7)CC注:C为样本溶液浓度。表征结果使用PMMA材质的线性八梯度芯片进行荧光表征,图2为通入流量均为1μL/min的FITC水溶液和去离子水在芯片出口处形成的荧光图,使用Image-pro软件进行荧光强度分析。从图中可以看出,出口荧光强度保持良好的线性关系。http://ng1.17img.cn/bbsfiles/images/2016/07/201607011651_598847_3091062_3.pnghttp://ng1.17img.cn/bbsfiles/images/2016/07/201607011652_598848_3091062_3.png 图2.线性八梯度芯片荧光表征使用说明1.Input(A)流量等于Input(B)流量;2.样本溶液与缓冲溶液为黏度相近的稀溶液;3.注液时需先将通道中注满缓冲溶液避免通道中产生气泡;4.入口流量小于2μL/min.

  • 全球首发仪式|新星NOVA—MobiNova-100高通量单细胞测序建库系统,4月15日14:00等你来!

    近年来,单细胞测序技术成为生命健康领域追逐的热点,可应用于肿瘤异质性研究、干细胞分化以及组织器官发育研究、神经系统发育研究、免疫方向研究、疾病分型和药物机制以及用药指导等方向。随着研究的深入和技术的不断发展进步,市场对单细胞产品提出了新的要求:从单组学到多组学、从基本到高通量、从哺乳动物到微生物。墨卓生物即将推出MobiNova-100高通量单细胞测序建库系统助力科学研究,MobiNova-100是墨卓团队过去数年磨一剑的结晶,是一个真正稳定、精准、可信赖的技术平台,在关键的性能指标上接近甚至部分超越了国际一流水平。一次可探索最多数十万单细胞,实现极高的细胞捕获率,精准捕获细胞信息;单次运行仅需十分钟,最大程度保证数据质量,给用户提供可信赖的解决方案。 “新星”升越 ,创新不止,创新是墨卓生物不断向前发展的内在引擎,新星NOVA—MobiNova-100高通量单细胞建库系统全球首发仪式将正式进行线上发布! [b] [color=#ff0000]2022年4月15日14:00[/color][/b]诚邀各位莅临MobiNova的世界,一同解锁细胞的无限可能! [img=,442,348]https://ng1.17img.cn/bbsfiles/images/2022/04/202204141904574225_9730_2507958_3.png!w442x348.jpg[/img][img]file:///C:/Users/wangqy/AppData/Local/Temp/%E4%BC%81%E4%B8%9A%E5%BE%AE%E4%BF%A1%E6%88%AA%E5%9B%BE_16499342329421.png[/img] [b][size=18px] [img]https://simg.instrument.com.cn/bbs/images/brow/em20.gif[/img] 直达会场:[/size][/b][url=https://www.instrument.com.cn/webinar/meetings/mobinova20220415/][b][size=18px]https://www.instrument.com.cn/webinar/meetings/mobinova20220415/[/size][/b][/url][img=,480,1600]https://ng1.17img.cn/bbsfiles/images/2022/04/202204141901011128_219_2507958_3.jpg!w480x1600.jpg[/img]

  • 全球首发仪式|新星NOVA—MobiNova-100高通量单细胞测序建库系统,4月15日14:00等你来!

    [font=&] 近年来,单细胞测序技术成为生命健康领域追逐的热点,可应用于肿瘤异质性研究、干细胞分化以及组织器官发育研究、神经系统发育研究、免疫方向研究、疾病分型和药物机制以及用药指导等方向。随着研究的深入和技术的不断发展进步,市场对单细胞产品提出了新的要求:从单组学到多组学、从基本到高通量、从哺乳动物到微生物。墨卓生物即将推出MobiNova-100高通量单细胞测序建库系统助力科学研究,MobiNova-100是墨卓团队过去数年磨一剑的结晶,是一个真正稳定、精准、可信赖的技术平台,在关键的性能指标上接近甚至部分超越了国际一流水平。一次可探索最多数十万单细胞,实现极高的细胞捕获率,精准捕获细胞信息;单次运行仅需十分钟,最大程度保证数据质量,给用户提供可信赖的解决方案。[/font][font=&] “新星”升越 ,创新不止,创新是墨卓生物不断向前发展的内在引擎,新星NOVA—MobiNova-100高通量单细胞建库系统全球首发仪式将正式进行线上发布![/font][font=&] [/font][b][color=#ff0000]2022年4月15日14:00[/color][/b][font=&]诚邀各位莅临MobiNova的世界,一同解锁细胞的无限可能![/font][font=&] [/font][img=,442,348]https://ng1.17img.cn/bbsfiles/images/2022/04/202204141904574225_9730_2507958_3.png!w442x348.jpg[/img][img]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181711578855_8023_2507958_3.png[/img][b][size=18px][img]https://simg.instrument.com.cn/bbs/images/brow/em20.gif[/img] 直达会场:[/size][/b][url=https://www.instrument.com.cn/webinar/meetings/mobinova20220415/][b][size=18px]https://www.instrument.com.cn/webinar/meetings/mobinova20220415/[/size][/b][/url][img=,480,1600]https://ng1.17img.cn/bbsfiles/images/2022/04/202204141901011128_219_2507958_3.jpg!w480x1600.jpg[/img]

  • 生物芯片入门:应用

    基因芯片技术及其研究现状和应用前景生物芯片技术是随着“人类基因组计划”(human genome project,HGP)的进展而发展起来的,它是90年代中期以来影响最深远的重大科技进展之一,它融微电子学、生物学、物理学、化学、计算机科学为一体的高度交叉的新技术,具有重大的基础研究价值,又具有明显的产业化前景。生物芯片技术包括基因芯片、蛋白质芯片、细胞芯片、组织芯片、以及元件型微阵列芯片、通道型微阵列芯片、生物传感芯片等新型生物芯片。本文主要讨论基因芯片技术,它为“后基因组计划”时期基因功能的研究提供了强有力的工具,将会使基因诊断、药物筛选、给药个性化等方面取得重大突破,该技术被评为1998年度世界十大科技进展之一。1、基本概念基因芯片(gene chip)也叫DNA芯片、DNA微阵列(DNA microarray)、寡核苷酸阵列(oligonucleotide array),是指采用原位合成(in situ synthesis)或显微打印手段,将数以万计的DNA探针固化于支持物表面上,产生二维DNA探针阵列,然后与标记的样品进行杂交,通过检测杂交信号来实现对生物样品快速、并行、高效地检测或医学诊断,由于常用硅芯片作为固相支持物,且在制备过程运用了计算机芯片的制备技术,所以称之为基因芯片技术。2、技术基本过程2.1 DNA方阵的构建选择硅片、玻璃片、瓷片或聚丙烯膜、尼龙膜等支持物,并作相应处理,然后采用光导化学合成和照相平板印刷技术可在硅片等表面合成寡核苷酸探针;或者通过液相化学合成寡核苷酸链探针,或PCR技术扩增基因序列,再纯化、定量分析,由阵列复制器(arraying and replicating device ARD),或阵列机(arrayer)及电脑控制的机器人,准确、快速地将不同探针样品定量点样于带正电荷的尼龙膜或硅片等相应位置上,再由紫外线交联固定后即得到DNA微阵列或芯片。2.2 样品DNA或mRNA的准备从血液或活组织中获取的DNA/mRNA样品在标记成为探针以前必须进行扩增提高阅读灵敏度。Mosaic Technologies公司发展了一种固相PCR系统,好于传统PCR技术,他们在靶DNA上设计一对双向引物,将其排列在丙烯酰胺薄膜上,这种方法无交叉污染且省去液相处理的繁锁;Lynx Therapeutics公司提出另一个革新的方法,即大规模平行固相克隆(massively parallel solid-phase cloning)这个方法可以对一个样品中数以万计的DNA片段同时进行克隆,且不必分离和单独处理每个克隆,使样品扩增更为有效快速。在PCR扩增过程中,必须同时进行样品标记,标记方法有荧光标记法、生物素标记法、同位素标记法等。2.3 分子杂交样品DNA与探针DNA互补杂交要根据探针的类型和长度以及芯片的应用来选择、优化杂交条件。如用于基因表达监测,杂交的严格性较低、低温、时间长、盐浓度高;若用于突变检测,则杂交条件相反。芯片分子杂交的特点是探针固化,样品荧光标记,一次可以对大量生物样品进行检测分析,杂交过程只要30min。美国Nangon公司采用控制电场的方式,使分子杂交速度缩到1min,甚至几秒钟。德国癌症研究院的Jorg Hoheisel等认为以肽核酸(PNA)为探针效果更好。2.4 杂交图谱的检测和分析用激光激发芯片上的样品发射荧光,严格配对的杂交分子,其热力学稳定性较高,荧光强;不完全杂交的双键分子热力学稳定性低,荧光信号弱(不到前者的1/35~1/5),不杂交的无荧光。不同位点信号被激光共焦显微镜,或落射荧光显微镜等检测到,由计算机软件处理分析,得到有关基因图谱。目前,如质谱法、化学发光法、光导纤维法等更灵敏、快速,有取代荧光法的趋势。3、应用3.1 测序基因芯片利用固定探针与样品进行分子杂交产生的杂交图谱而排列出待测样品的序列,这种测定方法快速而具有十分诱人的前景。Mark chee等用含135000个寡核苷酸探针的阵列测定了全长为16.6kb的人线粒体基因组序列,准确率达99%。Hacia等用含有48000个寡核苷酸的高密度微阵列分析了黑猩猩和人BRCA1基因序列差异,结果发现在外显子11约3.4kb长度范围内的核酸序列同源性在98.2%到83.5%之间,提示了二者在进化上的高度相似性。3.2 基因表达水平的检测用基因芯片进行的表达水平检测可自动、快速地检测出成千上万个基因的表达情况。Schena等采用拟南芥基因组内共45个基因的cDNA微阵列(其中14个为完全序列,31个为EST),检测该植物的根、叶组织内这些基因的表达水平,用不同颜色的荧光素标记逆转录产物后分别与该微阵列杂交,经激光共聚焦显微扫描,发现该植物根和叶组织中存在26个基因的表达差异,而参与叶绿素合成的CAB1基因在叶组织较根组织表达高500倍。Schena等用人外周血淋巴细胞的cDNA文库构建一个代表1046个基因的cDNA微阵列,来检测体外培养的T细胞对热休克反应后不同基因表达的差异,发现有5个基因在处理后存在非常明显的高表达,11个基因中度表达增加和6个基因表达明显抑制。该结果还用荧光素交换标记对照和处理组及RNA印迹方法证实。在HGP完成之后,用于检测在不同生理、病理条件下的人类所有基因表达变化的基因组芯片为期不远了。3.3 基因诊断从正常人的基因组中分离出DNA与DNA芯片杂交就可以得出标准图谱。从病人的基因组中分离出DNA与DNA芯片杂交就可以得出病变图谱。通过比较、分析这两种图谱,就可以得出病变的DNA信息。这种基因芯片诊断技术以其快速、高效、敏感、经济、平行化、自动化等特点,将成为一项现代化诊断新技术。例如,Affymetrix公司,把P53基因全长序列和已知突变的探针集成在芯片上,制成P53基因芯片,将在癌症早期诊断中发挥作用。又如,Heller等构建了96个基因的cDNA微阵,用于检测分析关节炎、风湿性关节炎(RA)相关的基因,以探讨DNA芯片在感染性疾病诊断方面的应用。现在,肝炎病毒检测诊断芯片、结核杆菌耐药性检测芯片、多种恶性肿瘤相关病毒基因芯片等一系列诊断芯片逐步开始进入市场。基因诊断是基因芯片中最具有商业化价值的应用。3.4 药物筛选如何分离和鉴定药的有效成份是目前中药产业和传统的西药开发遇到的重大障碍,基因芯片技术是解决这一障碍的有效手段,它能够大规模地筛选、通用性强,能够从基因水平解释药物的作用机理,即可以利用基因芯片分析用药前后机体的不同组织、器官基因表达的差异。如果再用mRNA 构建cDNA表达文库,然后用得到的肽库制作肽芯片,则可以从众多的药物成分中筛选到起作用的部分物质。或者,利用RNA、单链DNA有很大的柔性,能形成复杂的空间结构,更有利与靶分子相结合,可将核酸库中的RNA或单链DNA固定在芯片上,然后与靶蛋白孵育,形成蛋白质-RNA或蛋白质-DNA复合物,可以筛选特异的药物蛋白或核酸,因此芯片技术和RNA库的结合在药物筛选中将得到广泛应用。在寻找HIV药物中,Jellis等用组合化学合成及DNA芯片技术筛选了654536种硫代磷酸八聚核苷酸,并从中确定了具有XXG4XX样结构的抑制物,实验表明,这种筛选物对HIV感染细胞有明显阻断作用。生物芯片技术使得药物筛选,靶基因鉴别和新药测试的速度大大提高,成本大大降低。基因芯片药物筛选技术工作目前刚刚起步,美国很多制药公司已开始前期工作,即正在建立表达谱数据库,从而为药物筛选提供各种靶基因及分析手段。这一技术具有很大的潜在应用价值。[/

  • 新型微芯片可快速检测癌细胞

    新华社华盛顿11月20日电 (记者林小春)美国研究人员20日在美国《科学转化医学》杂志上报告说,他们开发出的一种微芯片可简单、快速地检测人体体液中是否存在癌细胞,这一成果将有助于早期的癌症诊断。 癌变细胞的变形能力要比正常细胞大得多。研究人员利用癌变细胞的这一特征开发出一种有多个小孔的微芯片,从胸水提取的细胞进入这些小孔后会撞上芯片的“墙壁”弹回而发生变形,变形程度会被高速成像设备记录下来,以每秒100个细胞的速度分析,从而判断是否存在癌细胞。 领导研究的美国加利福尼亚大学洛杉矶分校教授饶建宇对新华社记者说,他们利用微芯片检测了100多个样本,结果100%地找出了癌变样本。而现有的癌症检查方法通常只能检测出80%到90%。下一步,他们将开展更大规模的临床试验。 饶建宇说,目前的癌症检查往往是间接地判断癌变细胞的一些行为特征,如浸润性和转移能力、对药物的敏感性等,一般要先对细胞进行固定处理再染色,或提取DNA及蛋白成分等进行分析,程序多而复杂,但所得结果往往是片面和间接的。 而微芯片技术则是直接判断癌变细胞的物理及行为特征,无需对细胞处理或染色,因此简单而快速,也更加精确。饶建宇说:“这就好像判断一个人的角斗能力,光看高矮胖瘦或家庭背景等也许有一些帮助但不够,而直接的比赛是最管用的。” 他说:“人们谈癌色变往往是由于癌细胞具有浸润和转移的共性,同时又有千变万化的个性,因此以直接的方法来判断癌细胞的物理及行为特征尤为重要,这使得我们对癌细胞的认识更直接、全面和准确,对癌症的诊断由此上了一个新平台。”

  • 高通量微阵列清洗器优势及应用

    [url=http://www.f-lab.cn/microarray-manufacturing/washstation.html]高通量[b]微阵列芯片清洗器[/b][/url]专业为[b]玻片清洗[/b]和[b]微阵列芯片清洗[/b]而设计的[b]玻片清洗器[/b],拥有耐用的载玻片架,可容纳1-25个25×76毫米规格的玻璃玻片微阵列,可浸入到500ml的缓冲溶液槽。[b]高通量微阵列清洗器特色[/b]大大了微阵列芯片干燥前的清洗效率和效果。该缓冲溶液槽配备有磁力搅拌棒和盖子,可以防止缓冲物蒸发。含独立的缓冲液加快微阵列芯片的处理和清洗速度。是提高基因学,生物医学,制药和农业研究的质量和速度的理想的工具[img=高通量微阵列清洗器]http://www.f-lab.cn/Upload/microarray-wash.jpg[/img]高通量微阵列清洗器:[url]http://www.f-lab.cn/microarray-manufacturing/washstation.html[/url]

  • 哈工深圳陈华英团队: 单细胞连续捕获, 弹性模量测量和可寻址分选打印

    [size=15px][color=#333333]细胞的机械特性对其生物学功能(如增殖、分化和凋亡)和形态状态(如迁移、附着和病理状态)至关重要。目前常用的细胞弹性模量测量技术包括原子力显微镜、微管吮吸、光镊和磁镊等。这些技术可以有效测量单个细胞的机械性质,但是通量低,限制了其实际应用。[/color][/size][size=15px][color=#333333]近年来,微流控芯片因其在小体积液体操控方面的独特优势,也被用于测量细胞弹性模量。现有的微流控芯片主要侧重于平台开发,虽然通量大幅提高,但很少将测量后的细胞进一步收集以实现后续分析。[/color][/size][size=15px][color=#333333]单细胞分析技术的发展要求能够准确地打印单个细胞。传统单细胞打印技术包括荧光激活细胞分选、有限稀释和手动细胞挑选,这些方法打印效率较低且难以实现自动化。[/color][/size][font=mp-quote, -apple-system-font, BlinkMacSystemFont, &][size=15px][color=#333333]近年来,各种微流控技术被开发用于高通量精确打印单个细胞,如喷墨打印、精确分配、双阀门筛选和移液管式单细胞分离等。这些技术可以根据目标细胞的荧光、形态等特征进行识别并打印,但是大多技术难以获得单细胞的机械信息。[/color][/size][/font][font=mp-quote, -apple-system-font, BlinkMacSystemFont, &][size=15px][color=#333333]因此,本研究报道了一款基于 U 型阵列的微流控系统,集成了单细胞连续捕获,弹性测量和可寻址打印。该装置在研究细胞力学与其他生物学特性的关系方面具有强大的应用潜力。[/color][/size][/font][b]研究内容[/b][size=15px]近日,哈尔滨工业大学(深圳)[color=#004976][b]陈华英课题组[/b][/color]在英国皇家化学会(RSC)期刊[color=#004976][b] Lab on a chip[/b][/color] 上发表题为“Continuous trapping, elasticity measuring and deterministic printing of single cells using arrayed microfluidic traps” ([color=#007aaa]《单细胞连续捕获、弹性模量测量和可寻址分选打印》[/color])的研究论文,报道了一款创新的微流控芯片,实现了基于精确调节的压力对微球/细胞进行捕获和逐个打印,并将已知弹性模量的单细胞确定性地打印到孔板中(图 1)。[/size][size=15px]该论文第一作者是哈工大(深圳)在读硕士研究生[color=#004976][b]蔡逸珂[/b][/color]和硕士毕业生[color=#004976][b]余恩[/b][/color]。[color=#004976][b]陈华英副教授[/b][/color]为通讯作者。[/size][img=图片]https://img1.17img.cn/17img/images/202403/uepic/b3ebc9a4-6d42-4ef1-bfd0-c7cf1f5c3a15.jpg[/img]微流控芯片(图 1A)由冲洗入口、样品入口、打印入口、压力维持口和两个平行的主通道组成,下游有打印出口。在所有入口通道中设计了宽度从 200μm 减小到 25μm 的微通道阵列,以过滤介质中较大的颗粒/细胞碎片。如图 1A 和 B 所示,在每个主通道的一侧有 16 个 U 型捕获陷阱,且吮吸通道的高度比分流通道的高度低 15 μm,以保证细胞停留在 U 型陷阱中并诱导其微小变形。[img=图片]https://img1.17img.cn/17img/images/202403/uepic/b3ee5e4c-b99c-4b5e-8904-b5a6d2817633.jpg[/img][table=677][tr][td=1,1,5]▲[/td][td=1,1,549][b]图1[/b] 单细胞连续捕获、弹性测量和可寻址打印系统。(A)微流控芯片连接到压力泵,将单细胞精确分配到孔板中;(B)通过调节打印压力(Po)捕获(Pi-Po0)和释放(Pi-Po0)单个细胞的机制;(C)用于捕获和分离细胞的吮吸通道;(D)用于捕获和分离微球的分流通道。[/td][/tr][/table][来源:陈华英团队 RSC英国皇家化学会][align=right][/align]

  • ZT 生物芯片的构建和阅读

    芯片的构建和阅读 Vivian G. Cheung, Michael Morley, Francisco Aguilar, Aldo Massimi, Raju Kucherlapati & Geoffrey Childs 联合基因科技有限公司 吴凌凌 译  摘要   制作芯片和获得芯片的数据有许多不同的方法。这里我们介绍了在学术领域中两种芯片的构建和使用。除了详细说明了技术细节外,我们还对组成和方法的优缺点进行了评论,同时还介绍了杂交的方法。用我们所建立和使用芯片的方法来回答生物领域问题的事实证明了这种技术在大学的环境下是可行的。   一种获得基因功能信息的高通量的方法是cDNA芯片。在一块显微镜载玻片上包含了几百至几千个固定的DNA样本,以类似于Northern blot 和 Southern blot的方法进行杂交。了解了这个方法后,我们决定在我们各自的实验室Pennsylvania大学(Penn)和Albert Einstein学院医学部(AECOM)制作了高速,高精度的芯片。这个设备是由Stanford医学院Pat Brown制造的,第一次论证了这个方法的可行性。我们的目标是(1)最终以合理的价格,用一块或几块芯片来检测哺乳动物细胞中每个基因的表达,(2)发展以芯片为基础的绘图方法,(3)兼顾硬件和超作方法,尽可能地提高灵敏度。   玻片的优势   一个理想化的支持物允许探针有效地固定在其表面,探针与目标分子能牢固地杂交结合。与另一种用于制作芯片的标准支持物尼龙一样,玻璃有许多的优点。它也有其特长。首先,DNA样品以共价键的形式结合在处理过的玻片上。第二,玻璃是一种耐用的材料,能够耐高温和高离子强度溶液的洗涤。第三,玻璃不是多孔材料,使杂交的容量能保持在最小,因此能提高探针与目标分子的退火效率。第四,由于材料的低荧光性,不会有背景的影响。最后,两种不同的探针能够标上两种不同的荧光标记,在一片芯片上同一个反应中同时孵育;尼龙就受到连续或平行杂交的限制。   芯片需要大量的探针固定(或排列)在玻片上,这里我们描述了AECOM芯片,扫描仪以及进行了关于设计和操作的讨论。如果想得到关于Penn芯片的信息,请到http://w95vcl.neuro.chop.edu/vcheung查找。   自动化装置性质   AECOM点样仪,Albert,产生高密度的分隔的矩阵,矩阵包括cDNA、基因组DNA或其他类似的生物物质。机械的基本组成有计算机控制的三轴向的机械手和独特笔尖装置。   设计特点   机械手被设计成能自动从96或384孔的微量滴定板中选取样本,12支点样笔同时升起,每个点样笔收集了250-500nl溶液,在每块玻片上放置0.25-1nl,产生的点的大小范围直径为100-150μm。机械手是由设置好的程序控制的,能进行连续的点样,每一点避免与相邻的点接触,每点的中心距离大约为200-250μm。检测的精密度大约是10μm。机械手放置在可视工作平台上(Newport公司),允许放置大量的显微镜玻片,微量滴定板,三个洗涤装置和一个干燥装置。   洗涤装置是个固定的容器,装有蒸馏水,两次微量滴定板使用后需要更换。当笔尖浸过液体后,机械手要来回摇动点样笔(大约5Hz)来增加清洁程度。虽然我们认为没必要,但电脑控制的洗涤液可用超声波或流动的水来替代。干燥装置实际上是干/湿真空吸尘器(Sear公司,美国),接头与插入笔尖的限制插口相匹配。干燥器要做到在笔尖有快速流动的空气围绕,保持局部真空。   所设计的机械手的重要目的是要达到在最小的震动范围内的高速和高精确性。我们使用了保湿的可视工作平台,精密螺旋驱动地机械滑动,高分辨率的解码器的随动系统和沿着x轴方向的两侧支杆,避免了在一些系统中所见的悬臂结构。利用第二x轴的滑面来增加系统的固定性,能依次产生更快的定位以及通过工作平台的准确一致性。这些特点允许在精确率下的快速运动,使机械手能在一秒内对两块显微镜载玻片操作。   带有笔尖的点样笔支持物装置是一个重要的部分。我们的设计结合了线形运动,控制点样笔的方向,允许在最小的阻力下精确地纵轴运动,以防止在其他方向上的错位。我们设计的另一个独特之处是可调整的末端丝,允许在10μm的范围内校直每个点样笔的轴,以保证所有12支笔尖能在同一时间内接触显微镜玻片。而另一个没有这特点的设计需要与点样笔的精确长度一致以适应多点样笔的操作。每个点样笔由低强度的弹簧作为支持,保证在未接触表面时能回到伸展的位置。笔尖是由直径大约为1.6mm的不锈钢材料逐渐处理变细直至每点直径为100μm。再沿着中心垂直切割,在尖端分成两部分,每部部分5μm。   这个系统由可视基础程序控制的,在Microsoft Windous NT环境下运行,软件提供:印刷程序具体化;完成系统校正;显示真正地时间位置、速度和产生的错误;与其他功能参数一样重要的随动系统;动态地显示打印过程中的重要参数。随动系统控制的计算机中的插件能够动态地控制高速、复杂的机械手的动力,并设计成以它的运动来控制程序的语言。可视原理和随动插件运动控制程序相互作用,交换了参数、图象和所需的命令。微量滴定板的同一性是由扫描它的阅读器所决定的。由于有笔尖易被灰尘和纤维阻碍的问题,打印机现在被附上了软保护壁允许三个方向的随意进入并且合并了高效率效式空气过滤与吹风机以达到湿气的再流通。

  • 【实战宝典】微流控芯片在细胞分析中有什么应用?

    问题描述:微流控芯片在细胞分析中有什么应用?解答:[font=宋体]微流控芯片的类仿生空间微结构的特性,为细胞培养、单细胞捕捉等提供了良好的平台。使得集成化的细胞研究成为可能,包括细胞进样、培养、分选、裂解和分离检测都有可能在一块生物微流控芯片上完成。[/font][font='Times New Roman','serif'][/font]以上内容来自仪器信息网《样品前处理实战宝典》

  • 生物芯片入门:制作和结果分析

    芯片的构建和阅读 Vivian G. Cheung, Michael Morley, Francisco Aguilar, Aldo Massimi, Raju Kucherlapati & Geoffrey Childs 联合基因科技有限公司 吴凌凌 译  摘要   制作芯片和获得芯片的数据有许多不同的方法。这里我们介绍了在学术领域中两种芯片的构建和使用。除了详细说明了技术细节外,我们还对组成和方法的优缺点进行了评论,同时还介绍了杂交的方法。用我们所建立和使用芯片的方法来回答生物领域问题的事实证明了这种技术在大学的环境下是可行的。   一种获得基因功能信息的高通量的方法是cDNA芯片。在一块显微镜载玻片上包含了几百至几千个固定的DNA样本,以类似于Northern blot 和 Southern blot的方法进行杂交。了解了这个方法后,我们决定在我们各自的实验室Pennsylvania大学(Penn)和Albert Einstein学院医学部(AECOM)制作了高速,高精度的芯片。这个设备是由Stanford医学院Pat Brown制造的,第一次论证了这个方法的可行性。我们的目标是(1)最终以合理的价格,用一块或几块芯片来检测哺乳动物细胞中每个基因的表达,(2)发展以芯片为基础的绘图方法,(3)兼顾硬件和超作方法,尽可能地提高灵敏度。   玻片的优势   一个理想化的支持物允许探针有效地固定在其表面,探针与目标分子能牢固地杂交结合。与另一种用于制作芯片的标准支持物尼龙一样,玻璃有许多的优点。它也有其特长。首先,DNA样品以共价键的形式结合在处理过的玻片上。第二,玻璃是一种耐用的材料,能够耐高温和高离子强度溶液的洗涤。第三,玻璃不是多孔材料,使杂交的容量能保持在最小,因此能提高探针与目标分子的退火效率。第四,由于材料的低荧光性,不会有背景的影响。最后,两种不同的探针能够标上两种不同的荧光标记,在一片芯片上同一个反应中同时孵育;尼龙就受到连续或平行杂交的限制。   芯片需要大量的探针固定(或排列)在玻片上,这里我们描述了AECOM芯片,扫描仪以及进行了关于设计和操作的讨论。如果想得到关于Penn芯片的信息,请到http://w95vcl.neuro.chop.edu/vcheung查找。   自动化装置性质   AECOM点样仪,Albert,产生高密度的分隔的矩阵,矩阵包括cDNA、基因组DNA或其他类似的生物物质。机械的基本组成有计算机控制的三轴向的机械手和独特笔尖装置。   设计特点   机械手被设计成能自动从96或384孔的微量滴定板中选取样本,12支点样笔同时升起,每个点样笔收集了250-500nl溶液,在每块玻片上放置0.25-1nl,产生的点的大小范围直径为100-150μm。机械手是由设置好的程序控制的,能进行连续的点样,每一点避免与相邻的点接触,每点的中心距离大约为200-250μm。检测的精密度大约是10μm。机械手放置在可视工作平台上(Newport公司),允许放置大量的显微镜玻片,微量滴定板,三个洗涤装置和一个干燥装置。   洗涤装置是个固定的容器,装有蒸馏水,两次微量滴定板使用后需要更换。当笔尖浸过液体后,机械手要来回摇动点样笔(大约5Hz)来增加清洁程度。虽然我们认为没必要,但电脑控制的洗涤液可用超声波或流动的水来替代。干燥装置实际上是干/湿真空吸尘器(Sear公司,美国),接头与插入笔尖的限制插口相匹配。干燥器要做到在笔尖有快速流动的空气围绕,保持局部真空。   所设计的机械手的重要目的是要达到在最小的震动范围内的高速和高精确性。我们使用了保湿的可视工作平台,精密螺旋驱动地机械滑动,高分辨率的解码器的随动系统和沿着x轴方向的两侧支杆,避免了在一些系统中所见的悬臂结构。利用第二x轴的滑面来增加系统的固定性,能依次产生更快的定位以及通过工作平台的准确一致性。这些特点允许在精确率下的快速运动,使机械手能在一秒内对两块显微镜载玻片操作。   带有笔尖的点样笔支持物装置是一个重要的部分。我们的设计结合了线形运动,控制点样笔的方向,允许在最小的阻力下精确地纵轴运动,以防止在其他方向上的错位。我们设计的另一个独特之处是可调整的末端丝,允许在10μm的范围内校直每个点样笔的轴,以保证所有12支笔尖能在同一时间内接触显微镜玻片。而另一个没有这特点的设计需要与点样笔的精确长度一致以适应多点样笔的操作。每个点样笔由低强度的弹簧作为支持,保证在未接触表面时能回到伸展的位置。笔尖是由直径大约为1.6mm的不锈钢材料逐渐处理变细直至每点直径为100μm。再沿着中心垂直切割,在尖端分成两部分,每部部分5μm。   这个系统由可视基础程序控制的,在Microsoft Windous NT环境下运行,软件提供:印刷程序具体化;完成系统校正;显示真正地时间位置、速度和产生的错误;与其他功能参数一样重要的随动系统;动态地显示打印过程中的重要参数。随动系统控制的计算机中的插件能够动态地控制高速、复杂的机械手的动力,并设计成以它的运动来控制程序的语言。可视原理和随动插件运动控制程序相互作用,交换了参数、图象和所需的命令。微量滴定板的同一性是由扫描它的阅读器所决定的。由于有笔尖易被灰尘和纤维阻碍的问题,打印机现在被附上了软保护壁允许三个方向的随意进入并且合并了高效率效式空气过滤与吹风机以达到湿气的再流通。

  • 【转帖】毒品检测芯片可快速查出十类毒品

    日前,公安部科技信息化局主持了对吉林省公安厅物证鉴定中心承担的“十一五”国家科技支撑计划项目“组合型常见毒品现场快速检测技术研究”的课题验收。专家一致认为,课题组在表面等离子体共振技术基础上研制开发了基于两瓣电流式光电位置测定技术的现场毒品检测系统,现场一次性高通量检测多种毒品成分的生物芯片系统,窄缝进样高灵敏微流控电泳芯片样机,为毒品检测提供了新的现场快速筛查手段,部分关键技术达到国际先进水平。  近年来,新的同类毒品即设计型毒品不断出现,对毒品检测鉴定提出了更高要求。公安部物证鉴定中心研究员于忠山表示,国内对毒品及代谢物的快速分析,主要是利用进口的免疫试剂盒,但该方法干扰因素多,经常出现假阳性。而使用常规仪器分析检测技术每次只能对一个样品或一种毒品成分进行检测鉴定,在遇到严打专项斗争和发生突发事件,大量样本需要测定和多种毒品成分需要定性筛查时,便显出通量小、速度慢的缺陷。  据课题负责人、吉林省公安厅物证鉴定中心高级工程师谢文林介绍,根据课题成果开发的具有自主知识产权的常见毒品电化学传感器,可代替进口免疫试剂盒,为不具备大型分析仪器的基础化验室办案现场提供了简易的快速筛选分析方法。其生物芯片可一次性高通量快速检测吗啡、苯丙胺、甲基苯丙胺、氯胺酮、大麻、丁丙喏啡、可卡因、美沙酮等十类毒品成分,基本涵盖了国内外的常见毒品成分。  此套毒品检测仪器为便携式设备,分析结果快速准确可靠,不需要后处理,一般修饰电极可多次重复使用,降低了使用单位的鉴定费用和能源消耗。

  • 北京英柏生物科技有限公司今日正在招聘,生物芯片研发工程师,坐标北京,高薪寻找不一样的你!

    [b]职位名称:[/b]生物芯片研发工程师[b]职位描述/要求:[/b]工作职责: 1.负责SPR生物芯片研发、相关生物实验及工艺改进工作;2.负责制订、优化实验方案,制定标准、编写SOP;3.负责与客户的沟通,了解客户对应用的需求,根据客户需求确定研发方向;4.负责SPR技术展示和给客户提供技术服务。职位要求:1.具有良好的生化背景与实验技能,能够独立设计研发方案、独立实验、查找国内外文献等;具有良好的英文基础。2.具有相关领域三年以上工作经验,如从事生命科学研究中蛋白质结构与功能间的关系、核酸与蛋白的相互作用、重组蛋白与抗体的筛选,以及药物新靶点的筛选、新药开发中先导化合物的优化与测定等等。熟悉生化检测技术,高通量筛选,抗体与重组蛋白技术等原理与应用者优先。[b]公司介绍:[/b] 英柏Inter-Bio(北京英柏生物科技有限公司) 成立于2013年,是一家专门从事光学表面等离子共振生物分析技术、生物芯片技术研发,集生物分析仪器软硬件的开发、研制、生产、销售、应用推广、技术服务为一体的企业。我们的团队集聚了生物检测技术领域各专业人才,主要研发人员均具有10年以上从事该技术研发的经验,是生物检测仪器设备领域的新生力量。致力于为中国生命科学研究领域、医药研发领域、医疗体外...[url=https://www.instrument.com.cn/job/user/job/position/59961]查看全部[/url]

  • 生物芯片之电化学生物传感器

    前面已经讲过生物芯片是生物传感器的延伸,所以生物传感器的研究就是生物芯片的研究基础中的重要部分了!下面对电化学生物传感器方面的研究进行简单的介绍。须指出的是,生物芯片中用到的生物传感器与传统的电化学传感器有一些不同,但这并不妨碍我们将传统电化学传感器的认识应用到生物芯片的研究中去。电化学生物传感器   传感器与通信系统和计算机共同构成现代信息处理系统。传感器相当于人的感官,是计算机与自然界及社会的接口,是为计算机提供信息的工具。   传感器通常由敏感(识别)元件、转换元件、电子线路及相应结构附件组成。生物传感器是指用固定化的生物体成分(酶、抗原、抗体、激素等)或生物体本身(细胞、细胞器、组织等)作为感元件的传感器。电化学生物传感器则是指由生物材料作为敏感元件,电极(固体电极、离子选择性电极、气敏电极等)作为转换元件,以电势或电流为特征检测信号的传感器。图1是电化学生物传感器基本构成示意图。由于使用生物材料作为传感器的敏感元件,所以电化学生物传感器具有高度选择性,是快速、直接获取复杂体系组成信息的理想分析工具。一些研究成果已在生物技术、食品工业、临床检测、医药工业、生物医学、环境分析等领域获得实际应用。   根据作为敏感元件所用生物材料的不同,电化学生物传感器分为酶电极传感器、微生物电极传感器、电化学免疫传感器、组织电极与细胞器电极传感器、电化学DNA传感器等。(1) 酶电极传感器   以葡萄糖氧化酶(GOD)电极为例简述其工作原理。在GOD的催化下,葡萄糖(C6H12O6)被氧氧化生成葡萄糖酸(C6H12O7)和过氧化氢:   根据上述反应,显然可通过氧电极(测氧的消耗)、过氧化氢电极(测H2O2的产生)和pH电极(测酸度变化)来间接测定葡萄糖的含量。因此只要将GOD固定在上述电极表面即可构成测葡萄糖的GOD传感器。这便是所谓的第一代酶电极传感器。这种传感器由于是间接测定法,故干扰因素较多。第二代酶电极传感器是采用氧化还原电子媒介体在酶的氧化还原活性中心与电极之间传递电子。第二代酶电极传感器可不受测定体系的限制,测量浓度线性范围较宽,干扰少。现在不少研究者又在努力发展第三代酶电极传感器,即酶的氧化还原活性中心直接和电极表面交换电子的酶电极传感器。  目前已有的商品酶电极传感器包括:GOD电极传感器、L 乳酸单氧化酶电极传感器、尿酸酶电极传感器等。在研究中的酶电极传感器则非常多。(2) 微生物电极传感器    由于离析酶的价格昂贵且稳定性较差,限制了其在电化学生物传感器中的应用,从而使研究者想到直接利用活的微生物来作为分子识别元件的敏感材料。这种将微生物(常用的主要是细菌和酵母菌)作为敏感材料固定在电极表面构成的电化学生物传感器称为微生物电极传感器。其工作原理大致可分为三种类型:其一,利用微生物体内含有的酶(单一酶或复合酶)系来识别分子,这种类型与酶电极类似 其二,利用微生物对有机物的同化作用,通过检测其呼吸活性(摄氧量)的提高,即通过氧电极测量体系中氧的减少间接测定有机物的浓度 其三,通过测定电极敏感的代谢产物间接测定一些能被厌氧微生物所同化的有机物。   微生物电极传感器在发酵工业、食品检验、医疗卫生等领域都有应用。例如:在食品发酵过程中测定葡萄糖的佛鲁奥森假单胞菌电极 测定甲烷的鞭毛甲基单胞菌电极 测定抗生素头孢菌素的Citrobacterfreudii菌电极等等。微生物电极传感器由于价廉、使用寿命长而具有很好的应用前景,然而它的选择性和长期稳定性等还有待进一步提高。(3) 电化学免疫传感器    抗体对相应抗原具有唯一性识别和结合功能。电化学免疫传感器就是利用这种识别和结合功能将抗体或抗原和电极组合而成的检测装置。   根据电化学免疫传感器的结构可将其分为直接型和间接型两类。直接型的特点是在抗体与其相应抗原识别结合的同时将其免疫反应的信息直接转变成电信号。这类传感器在结构上可进一步分为结合型和分离型两种。前者是将抗体或抗原直接固定在电极表面上,传感器与相应的抗体或抗原发生结合的同时产生电势改变 后者是用抗体或抗原制作抗体膜或抗原膜,当其与相应的配基反应时,膜电势发生变化,测定膜电势的电极与膜是分开的。间接型的特点是将抗原和抗体结合的信息转变成另一种中间信息,然后再把这个中间信息转变成电信号。这类传感器在结构上也可进一步分为两种类型:结合型和分离型。前者是将抗体或抗原固定在电极上 而后者抗体或抗原和电极是完全分开的。间接型电化学免疫传感器通常是采用酶或其他电活性化合物进行标记,将被测抗体或抗原的浓度信息加以化学放大,从而达到极高的灵敏度。   电化学免疫传感器的例子有:诊断早期妊娠的hCG免疫传感器 诊断原发性肝癌的甲胎蛋白(AFP或αFP)免疫传感器 测定人血清蛋白(HSA)免疫传感器 还有IgG免疫传感器、胰岛素免疫传感器等等。(4) 组织电极与细胞器电极传感器   直接采用动植物组织薄片作为敏感元件的电化学传感器称组织电极传感器,其原理是利用动植物组织中的酶,优点是酶活性及其稳定性均比离析酶高,材料易于获取,制备简单,使用寿命长等。但在选择性、灵敏度、响应时间等方面还存在不足。   动物组织电极主要有:肾组织电极、肝组织电极、肠组织电极、肌肉组织电极、胸腺组织电极等。测定对象主要有:谷氨酰胺、葡萄糖胺 6 磷酸盐、D 氨基酸、H2O2、地高辛、胰岛素、腺苷、AMP等。  植物组织电极敏感元件的选材范围很广,包括不同植物的根、茎、叶、花、果等。植物组织电极制备比动物组织电极更简单,成本更低并易于保存。   细胞器电极传感器是利用动植物细胞器作为敏感元件的传感器。细胞器是指存在于细胞内的被膜包围起来的微小“器官”,如线粒体、微粒体、溶酶体、过氧化氢体、叶绿体、氢化酶颗粒、磁粒体等等。其原理是利用细胞器内所含的酶(往往是多酶体系)。(5) 电化学DNA传感器    电化学DNA传感器是近几年迅速发展起来的一种全新思想的生物传感器。其用途是检测基因及一些能与DNA发生特殊相互作用的物质。电化学DNA传感器是利用单链DNA(ssDNA)或基因探针作为敏感元件固定在固体电极表面,加上识别杂交信息的电活性指示剂(称为杂交指示剂)共同构成的检测特定基因的装置。其工作原理是利用固定在电极表面的某一特定序列的ssDNA与溶液中的同源序列的特异识别作用(分子杂交)形成双链DNA(dsDNA)(电极表面性质改变),同时借助一能识别ssDNA和dsDNA的杂交指示剂的电流响应信号的改变来达到检测基因的目的。   已有检测灵敏度高达10-13g/mL的电化学DNA传感器的报道,Hashimoto等[8]采用一个20聚体的核苷酸探针修饰在金电极上检测了PVM623的PatⅠ片断上的致癌基因v myc。电化学DNA传感器离实用化还有相当距离,主要是传感器的稳定性、重现性、灵敏度等都还有待于提高。有关DNA修饰电极的研究除对于基因检测有重要意义外,还可将DNA修饰电极用于其它生物传感器的研究,用于DNA与外源分子间的相互作用研究[9],如抗癌药物筛选、抗癌药物作用机理研究 以及用于检测DNA结合分子。无疑,它将成为生物电化学的一个非常有生命力的前沿领域。   生物电化学所涉及的面非常广,内容很丰富。以上介绍的只是该交叉学科一些领域的概况。可以相信,随着相关学科的发展,生物电化学将进一步蓬勃发展。

  • 生物芯片入门:基因表达谱芯片实验操作

    待检测样品制备生物样品往往是非常复杂的生物分子混合体,除少数特殊样品外,一般不能直接与芯片反应,必须将样品进行生物处理。从血液或活组织中获取的DNA/mRNA样品在标记成为探针以前必须扩增以提高阅读灵敏度,但这一过程操作起来却有一定的难度。比如在一个癌细胞中有成千上万个正常基因的干扰,杂合癌基因的检测和对它的高效、特异地扩增就不是一件容易的事。因为在一般溶液中PCR扩增时,靶片段太少且不易被凝胶分离,故存在其它不同的DNA片段与其竞争引物的情况。美国Mosaic Technology公司发展了一种固相PCR系统。此系统包含两套引物,每套都可以从靶基因两头延伸。当引物和DNA样品及PCR试剂相混时,如果样品包含靶序列,DNA就从引物两头开始合成,并在引物之间形成双链DNA环或“桥”。由于上述反应在固相中产生,因而避免了引物竞争现象,并可减少残留物污染和重复引发。根据样品来源、基因含量、检测方法和分析目的不同,采用的基因分离、扩增及标记方法各异。为了获得基因的杂交信号必须对目的基因进行标记。标记方法有荧光标记法、生物素标记法、同位素标记法等。目前采用的最普遍的荧光标记方法与传统方法如体外转录、PCR、逆转录等原理上并无多大差异,只是采用的荧光素种类更多,这可以满足不同来源样品的平行分析。样品制备的常用试剂:对于检测表达的芯片,样品制备通常涉及mRNA的纯化,cDNA的合成,体外转录或者PCR,标记等步骤。而对于SNP或者突变检测,则往往涉及Genomic DNA纯化和PCR标记等步骤。1. RNA纯化:从样品中分离纯化高质量的RNA是非常重要的第一步。由于RNA样品中的DNA碎片会影响后继的PCR反应,所以要彻底除去样品中的DNA。通常用mRNA纯化的方法可以除去DNA片断,或者用RNase-Free的DNase处理RNA样品。在这里我们介绍一些常用的RNA纯化试剂盒,特别是由Affymetrix公司推荐的QIAGEN RNA纯化系列。* RNeasy Protect Kit:一旦生物样品被收集分离,它的RNA会立刻变得非常不稳定,极易被降解。由于特异及非特异的RNA降解,或者由于应激反应产生新的RNA都会引起RNA状态的改变。对于生物芯片、基因表达矩阵分析(Array Analysis)、定量RT-PCR等实验来说,采样后立即稳定样品里的RNA以保存当时RNA的表达状态,是精确/定量研究基因表达分析的重要前提。为了达到这个目的,往往需要将液氮或者干冰带到采样现场,采样后立即抽提RNA或者运回实验室保存。对于实验者来说非常不方便。著名的QIAGEN公司最近新推出一种RNA抽提试剂:RNeasy Protect Kit,提供一整套RNA保护和分离试剂,从样品的制备到RNA的抽提,只需一个试剂盒即可解决所有问题。保证样品的表达信息不受破坏,确保得到可信的基因表达分析结果。试剂盒里提供一种RNAlater RNA Stabilization Reagent,只要在采样后立即将新鲜样品浸入这种液体试剂,RNA保护剂可以迅速渗透到组织或其他生物样本中,稳定并保护RNA完整而不被降解,确保下游分析得到的数据真实反应样品的表达信息。保存在RNAlater中的样品RNA可以在37度下稳定保存1天,或者在18~25度保存7天,2~8度稳定4周,或者在-20度永久保存。这种技术为在不同温度下采样,运输和保存样品提供了极大的方便,特别适用于各种动物组织、培养细胞、细菌、白细胞,但必须说明的是它不适用于全血或体液中RNA的保存。RNAlater的用法非常简单,只要在采样后立即将样品完全浸入适量(10ul/1mg组织)的RNAlater中即可。取样的动作要尽量快速利索,组织样品的大小以不超过0.5公分厚为宜,对于一些小的组织如小鼠的脾、肾等器官则可以整个取出浸入溶液中,较大的则应切开为厚度小于0.5公分的小块,以确保RNAlater 能迅速扩散渗透入组织块中的所有细胞中。采样的容器应该足够大以容纳10倍于组织重量的溶液,避免组织块挤在一起,同时建议将溶液加满容器以避免在运输过程中组织块露出液面。注意本试剂只适用于新鲜样品,对于冷藏和包埋的样品直接抽提RNA即可。另外对于RNA已经降解的样品,RNAlater只能保护剩下的样品RNA,不能修复已破坏的RNA。保存后的样品可以直接用于RNA或者mRNA的抽提。RNAlater不会影响组织块的结构,可以在室温下切出适量的组织块用于称量和抽提RNA,剩下的部分可用于继续保存样品。-20度冻存的样品可以取出在室温下进行称量等操作而无需干冰。在-20度冻存的样品反复冻融20次RNA依然保持完好无损。RNAlater处理的样品比新鲜组织稍微硬一点,但不会影响匀浆过程。取出适量的样品即可开始加RLT缓冲液进行匀浆化。和传统的RNeasy Kit一样,RNeasy Protect Kits采用QIAGEN著名的硅胶膜纯化柱技术,迅速特异地吸附样品裂解液中的RNA,无需酚氯仿抽提,不用乙醇沉淀或LiCl沉淀,也不用CsCl超离,只要洗脱即可得到纯的RNA。通常情况下RNeasy的纯化技术足以除去绝大部分的DNA,而无需额外进行DNaes处理,但是对于一些对痕量DNA非常敏感的实验,用RNase-Free DNase Set(QIAGEN cat.no. 79254)可以直接在纯化柱上消化DNA残留,在随后的洗涤步骤中除去DNase,最后洗脱得到不含DNA的纯RNA。试剂盒具有以下优点:●迅速稳定并保护RNA,确保基因完整、基因表达信息可靠。   ●由于RNA Stabilization试剂,您可以放心地在室温下操作,方便、安全——无须液氮和干冰。   ●确保RNA不受降解——即使多次冻溶也不受影响。   ●简单、快速和可靠RNA分离——使用于所有下游分析的即用型RNA。货号 品名(规格) 价格(RMB)74124 RNeasy Protect Mini Kit(50) 3181.00  75152 RNeasy Protect Midi Kit(10) 1313.00  75182 RNeasy Protect Maxi Kit(12) 4140.00  76104 RNAlater RNA Stabilizationeagent 682.00http://www.biomart.cn/upload/asset/2008/07/28/1216791379.gif

  • 【原创】生物传感器/生物芯片/微流控芯片-不断增加中

    现在做生物传感器的,生物芯片的,微流控芯片的人非常多,有的时候觉得大家对于这些东西的界限似乎不是分得很开,希望自己对于这个领域的小小体会能够给大家帮助!生物传感器:利用生物元件(酶、核酸、细胞、组织等)对特定物质的生物识别功能,通过将这种识别转化成声光电磁信号,对该物质进行分析的器件。个人感觉现在做生物传感器大部分局限在电化学上面,可能是因为电化学的仪器比较容易集成。生物芯片/微流控芯片:似乎现在有的人对于生物芯片与微流控芯片的区别不是很明白,特此将比较一下两者的区别:生物芯片和微阵列芯片的意思应该是一样的,但是生物芯片并不是一个被广大学者认同的名词,主要是一些媒体在报道的时候为了简单和通俗使用了这个词,所以专业上来讲,生物芯片应该叫做微阵列芯片。其发展历史比较悠久,而且现在已经有商品化的产品。微流控芯片是通过微加工的方法制作出微米级别的通道,通过通道的设计将分析的各种基本过程如样品前处理,分离,分析检出集成在一个小小的基片上,她也叫做芯片实验室。这个的发展要晚于微阵列芯片,现在有很多的研究不仅仅局限在分析化学领域。对于微尺度上的流体行为,流体的操作也是物理学研究的热点,是一个交叉了物理、化学、生物、计算机、微加工等领域的学科。国内做的比较好的是浙江大学的方肇伦院士,国外有很多组,以后我会不断增加!

  • 3D打印微流控芯片的研究进展

    微流控芯片具有液体流动可控、消耗试样和试剂极少、分析速度成十倍上百倍地提高等特点,它可以在几分钟甚至更短的时间内进行上百个样品的同时分析,并且可以在线实现样品的预处理及分析全过程。用于制作微流控芯片的加工技术大多继承自半导体工业,其加工过程工序繁多,且依赖价格高昂的先进设备。采用3D打印技术,可以显著简化微流控芯片的加工过程,在打印材料的选择上也非常灵活。http://www.whchip.com/upload/201702/1487123319960727.jpg3D打印基于毛细驱动的微流控芯片 浙江大学贺永及其研究团队提出了一种基于毛细驱动的3D打印微流控芯片(μ3DPADs),其无泵驱动的特点与现有的纸基微流控芯片类似。对于纸基微流控芯片来说,毛细驱动的优点是不需要外界泵驱动,体积小,成本低,非常适合于Point-of-Care(POC)系统等资源紧缺的应用场合。但毛细驱动的缺点是流动场都被动的由毛细力控制,无法实现复杂的流动控制及流场的可编程。通过3D打印可以将2D的纸基微流控芯片扩展到3D尺度。维数的增大带来的优势是我们可通过调控其流道深度来实现流速的可控(流场的可编程)。一系列的实验证实该微流控芯片是目前2D纸基微流控芯片的有效补充,该微流控芯片适合于希望以无驱方式简化流体驱动的同时又希望能实现一些复杂的流动控制。3D打印结合微流控芯片加速药物检测 弗吉尼亚理工大学-维克森林大学生物医学工程学院和科学研究所以及再生医学机构的助理教授Aleksander Skardal博士和Adam R Hall博士通过3D打印结合微流控芯片加速药物检测。具体来说,研究人员建立了一个三维装置,将肝细胞包围在一个可以模仿ECM的生物聚合物中。肝细胞被UV交联水凝胶溶液混合在一起,放入装置内,实施定域光聚合技术,在原位生成组织结构。使用水凝胶是因为它能“特殊模仿自然ECM的特性,”根据研究显示。该结构在装置内可保持7天稳定。研究人员随后用0-500mM的乙醇,与上述结构混合进行毒理学分析。研究人员发现,乙醇的量对细胞活力有系统的影响。此外,对肝功能的分析评估表明,增加乙醇暴露后,人体血清白蛋白和尿素的输出量有显着减少。3D打印“器官芯片”此外,生物3D打印技术在制造复杂3D人体组织结构方面具有潜力。微流控系统可以为3D 组织提供营养、氧气和生长因子,在实验室环境下重现各种疾病的微环境,可广泛应用于药物研发、致病机理研究、细胞发育机制探讨等领域。未来,先进的生物3D打印机不仅可以打印微流控平台,还可以同时在微流控平台中直接打印出定制化的微观人体组织。美国康涅狄格大学等机构的科学家在Towards Single-Step Biofabrication of Organs on a Chip via 3D Printing(通过3D打印技术进行器官生物芯片的一步制造)一文中描述到,传统的微流控芯片制造技术是劳动密集型的产业,不利于实验室进行芯片设计的快速迭代和快速制造。将3D打印技术用于制造微流控生物芯片则可以在几个小时内实现微型流体通道的快速制造,有利于设计的快速迭代,提高了基于微流控研究的跨学科性,并加速创新。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制