当前位置: 仪器信息网 > 行业主题 > >

高温高压驱替核磁共振成像测试系统

仪器信息网高温高压驱替核磁共振成像测试系统专题为您提供2024年最新高温高压驱替核磁共振成像测试系统价格报价、厂家品牌的相关信息, 包括高温高压驱替核磁共振成像测试系统参数、型号等,不管是国产,还是进口品牌的高温高压驱替核磁共振成像测试系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高温高压驱替核磁共振成像测试系统相关的耗材配件、试剂标物,还有高温高压驱替核磁共振成像测试系统相关的最新资讯、资料,以及高温高压驱替核磁共振成像测试系统相关的解决方案。

高温高压驱替核磁共振成像测试系统相关的资讯

  • 国内首台0.7T开放式核磁共振成像磁体系统研制成功
    4月,中科院电工研究所王秋良研究组与宁波健信机械有限公司合作,成功研制出国内首台0.7T开放式核磁共振成像用超导磁体系统。   该系统由上、下2个大分离间隙的超导磁体系统与复杂形状的铁轭组成,以1台GM制冷机实现系统的液氦零挥发,具有自适应平衡结构克服超导线圈与铁轭之间的巨大电磁力,带铁轭的超导磁体构成磁回路,有效屏蔽磁场的发散(5高斯线小于4m),系统成本降低和磁场均匀度提高。   开放式核磁共振成像系统具有开放度大,便于实现介入治疗与治疗一体化的特点,能够达到实时监控与减少患者幽闭症的效果。目前开放式核磁共振成像系统主要为永磁型核磁共振成像系统,中心场强度最大0.5T。0.7T开放式超导磁体核磁共振成像系统造价低于0.35T永磁磁共振系统,采用液氦零挥发技术极大减小了液氦的消耗量,具有结构简单紧凑、磁场强度和均匀度高、可操控性好、运行平稳可靠、磁场连续可调、节能、经济、环保等优点,性价比突出。   研制成功的0.7T开放式核磁共振超导磁体系统与梯度线圈、射频线圈和图像处理软件系统等构成的开放式核磁共振系统将由宁波健信机械有限公司进行产业化生产,预计产值达到10亿元人民币以上。该系统的成功研制提升了我国在超导磁体技术产业化和高性能医疗核磁共振成像装备方面的能力和水平,具有良好的经济、社会效益。
  • 国产超导1.5T核磁共振成像系统获得订单
    7月17日下午,辽宁开普医疗系统有限公司自主研发的首台超导1.5T核磁共振成像系统出厂,正式发往吉林省辽源市东丰县中医院。该设备具有16通道光纤传输技术,填补了国产超导共振设备在此技术领域的空白。   超导磁共振成像系统作为目前医院功能最强大的影像检查手段,在临床诊断和医学研究方面具有广泛的应用领域和价值。开普医疗的Supernova 1.5T超导磁共振成像系统是目前市场上1.5T产品线中顶级产品,集合了磁共振领域最新的技术以及全新高级临床应用程序。   此前国内医疗机构安装使用的该产品全部依赖国外进口,价格昂贵。为此,开普医疗成立了由3个博士、10余个硕士共30多个技术顶尖人才组成的专业团队,自主研发超导1.5T磁共振成像系统的多通道谱仪控制系统,实现MRI系统核心技术自有化,大幅降低整机成本,从而确立该公司在高场强磁共振成像技术领域的领先地位。
  • 高能所研制成功1.5T核磁共振成像超导磁体
    近日,中国科学院高能物理研究所研制成功场强为1.5特斯拉的核磁共振成像超导磁体,为实现该产品国产化奠定了基础。   超导磁体是核磁共振成像设备的核心关键部件,长期以来,国内核磁共振成像产业的发展受制于国外对核磁共振超导磁体技术和产品的垄断。该技术的突破,为国内整机系统厂家提升产品性能和档次解决了关键难点,将改变国内该产业的被动局面,促进产业提升。打通了超导磁体这个关键环节,还能形成从超导材料、超导磁体到整机系统的国产化产业链。   高能所运用其在国家大科学工程建造中掌握的超导技术研制成功了这台医用超导磁体。在研制过程中,突破了多线圈设计、线圈绕制和稳定、杜瓦吊挂、超导开关、超导接头、失超保护、电流引线、液氦液面测量等众多的关键技术及工艺。高能所已与潍坊新力超导磁电公司开展合作,进行核磁共振成像超导磁体的产业化。
  • 日本开发世界顶级核磁共振成像装置
    据日媒报道,位于日本茨城县筑波市的物质与材料研究机构等日前宣布,利用世界上最强的超电导磁铁开发出了能在分子层面解析蛋白质结构的核磁共振(NMR)成像装置。  日媒称,这项新成果与以往的核磁共振成像装置相比,辨别能力大幅提高,将在新药开发和新材料研究等广泛领域“大展身手”。  据悉,该装置呈圆筒形,高5米,重约15吨。将超电导物质绕成线圈制作的磁铁产生磁场,然后对样品进行解析。磁场的强度达到全球最高水平的24特斯拉。  核磁共振成像装置的磁场越强就越能分析得精细。该机构为制作强磁铁,将超电导物资的材料从以往的金属改为陶瓷,并开发了将容易破碎的陶瓷线材绕成线圈状的特殊技术,磁场强度超过了此前最高的法国装置。  日媒称,全球围绕强磁场核磁共振成像装置的研发竞争日趋激烈。该机构表示,如果应用此次开发的材料和加工方法,可以开发出更高性能的核磁共振成像装置。
  • 核磁共振成像技术步入分子层面
    美国和加拿大科学家分别采用新型核磁共振成像(MRI)技术观测到人体内的分子变化,从而大大提高了MRI扫描的速度和精度,可在未来用于更快地检测癌症等疾病。研究发表在最新一期《科学》杂志上。   两国科学家使用的MRI技术都通过操控分子的旋转来提高扫描的速度和精度,从而可以在分子层面快速地完成诸如分析药物药效或推断肿瘤生长速度等工作,以更好地为人类健康服务。   加拿大研究人员通过操纵仲氢(仲氢是航天飞机上使用的燃料),将仲氢的磁性转移到许多更容易探测的分子上面,并在动物身上进行了该技术的测试。结果表明,新技术可以将扫描的灵敏度增加1000倍左右,原来统计生物系统数据需要花费90天时间,现在只需几秒就可以完成。   美国科学团队则调整了原子核的旋转来增强信号,在旋转状态的分子之间制造了很大不平衡,并且使分子变成了功能更加强大的磁体,可以产生更详细的图像。新技术得到的信号强度可能是传统MRI中氢原子所释放信号的几千倍甚至几万倍。
  • 大连理工大学单一来源采购纽迈核磁共振成像分析仪
    p   7月19日,中国政府采购网发布大连理工大学核磁共振成像分析仪单一来源公告,公告内容显示,大连理工大学拟采购一套核磁共振成像分析仪,包括五部分:磁体系统,温控系统,射频系统,梯度系统,谱仪系统,预算115万元。 /p p   值得一提的是,本次采购将采取单一来源采购的方式,对于原因公告中介绍到: /p p   大连理工大学拟开展生物材料活体实验方面的相关研究,核磁动物临床前实验是对药物的治疗效果和载药生物材料的缓释和靶向作用进行评价的最佳途径,同时也有助于推动实验室在荧光探针、肿瘤的光动治疗方面的研究进展早日走向应用,多模态的研究手段已成为一种趋势。 /p p   基于该项目研究内容,核磁共振成像分析仪购置需求如下: /p p   1. 70 mm动物线圈,以适用于不同类型和体重的实验鼠。 /p p   2. 具备成像和体成分分析双功能。 /p p   3. 可对生物材料的颗粒表面特性进行分析。 /p p   上海纽迈电子科技有限公司核磁共振成像分析仪拥有70 mm大鼠专用线圈适用于300 g以内的实验鼠,订制开发清醒小动物体成分分析模块,配套60 mm口径鼠笼和专用软件,适用于0-50 g的实验鼠,配套颗粒表面特性分析专用15 mm线圈,最低检出限100 μL,最快检出时间60 s。而国内宁波穿山甲机电有限公司的设备无70 mm探头线圈和体成分分析模块功能,上海凡轩电子有限公司的设备无70 mm探头线圈和颗粒表面特性分析专用15 mm探头。 /p p   因此,国内其他供应商的产品无法满足使用需求,只有上海纽迈电子科技有限公司的核磁共振成像分析仪能够满足本项目的技术要求,故只能从唯一供应商处采购。 /p p & nbsp /p
  • 一杯咖啡的时间,完成小动物核磁共振成像分析?
    p style=" text-indent: 2em line-height: 1.5em text-align: left " span style=" font-family: 微软雅黑 " 肿瘤生长?肿瘤转移?糖尿病与肥胖?如此多的问题亟待解决!您需要一款经济,高效的核磁共振成像系统。 /span /p p style=" text-indent: 2em line-height: 1.5em text-align: left " span style=" font-family: 微软雅黑 " 以色列Aspect M3& #8482 小动物核磁共振成像系统,专为小鼠表型成像而设计: /span strong span style=" font-family: 微软雅黑 line-height: 1.5em text-indent: 2em color: rgb(79, 129, 189) " 紧凑型 /span /strong span style=" font-family: 微软雅黑 line-height: 1.5em text-indent: 2em " 永磁体;无边缘磁场, strong span style=" font-family: 微软雅黑 line-height: 1.5em text-indent: 2em color: rgb(79, 129, 189) " 无需防护 /span /strong ;免冷却处理, strong span style=" font-family: 微软雅黑 line-height: 1.5em text-indent: 2em color: rgb(79, 129, 189) " 无需维护 /span /strong ; /span span style=" line-height: 1.5em text-indent: 2em font-family: 微软雅黑 " 简单易学, strong span style=" line-height: 1.5em text-indent: 2em font-family: 微软雅黑 color: rgb(79, 129, 189) " 简单操作 /span /strong span style=" line-height: 1.5em text-indent: 2em font-family: 微软雅黑 color: rgb(0, 0, 0) " 。让小动物核磁共振成像分析只需一杯咖啡的时间! /span /span /p p style=" text-indent: 2em line-height: 1.5em text-align: left " span style=" line-height: 1.5em text-indent: 2em font-family: 微软雅黑 " span style=" line-height: 1.5em text-indent: 2em font-family: 微软雅黑 color: rgb(0, 0, 0) " 点击视频查看详情: /span /span /p p style=" line-height: 1.5em text-align: left text-indent: 0em " span style=" line-height: 1.5em text-indent: 2em font-family: 微软雅黑 " span style=" line-height: 1.5em text-indent: 2em font-family: 微软雅黑 color: rgb(0, 0, 0) " br/ /span /span script src=" https://p.bokecc.com/player?vid=94F5951A091FBE909C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=2BE2CA2D6C183770& playertype=1" type=" text/javascript" /script /p p style=" text-indent: 2em line-height: 1.5em text-align: left " span style=" line-height: 1.5em text-indent: 2em font-family: 微软雅黑 " span style=" line-height: 1.5em text-indent: 2em font-family: 微软雅黑 color: rgb(0, 0, 0) " 更多视频资讯,请关注 a href=" https://www.instrument.com.cn/news/videolist.html" target=" _self" strong span style=" line-height: 1.5em text-indent: 2em font-family: 微软雅黑 color: rgb(79, 129, 189) " 仪器信息网视频栏目 /span /strong /a 。 /span /span /p
  • 德国利用核磁共振成像拍出全球首套婴儿降生图片
    据英国《每日邮报》12月7日报道,德国柏林沙里特医院近日实现了一项医学突破,他们利用核磁共振扫描在全球首次获得婴儿降生过程的图像。这些图像是在一个德国孕妇同意在核磁共振扫描仪里分娩后拍摄到的,它能够为分娩过程提供一些有价值的新的认识,也可用于在将来拯救生命。   德国医院实现医学突破获得婴儿降生时的图片   一个医生在查看核磁共振成像图片   沙特林医院的妇产科医生恩斯特拜茵德(音译:Ernst Beinder)表示,该孕妇的整个分娩过程都很正常,机器拍下了孕妇子宫内的所有运动和整个分娩过程。“我们现在可以看到以前只能通过探针观察到的全部细节,这些迷人的图片再次证明了每个分娩都是一个小奇迹,”他说。   沙特林医院研究团队两年前开始这项研究,本周终于取得成功。他们称多名孕妇曾自愿参加这项实验,另外还有5个孕妇的分娩过程将会被核磁共振扫描仪拍摄下来。医院研究团队为此还改进了通用的管状核磁共振成像扫描仪,专门研制了一种特别的“开放式”扫描仪,以便为助产士和孕妇提供足够的空间。   婴儿出生过程的核磁共振成像图片对于了解分娩并发症至关重要,并能对大约15%需要接受剖腹产手术的孕妇的治疗方案提供重要帮助。利用强大的磁体,核磁共振扫描仪能够产生一个强大磁场,使无线电波探测到人体内的某些原子。研究人员则可用这些数据制作出患者身体的横截面图,提供软组织和骨结构的细节。   核磁共振扫描仪被认为比X射线更安全,但因为它工作时总是发出嘈杂的嗡嗡声,很多患者不喜欢这种设备。为了保护本周参加实验的这位孕妇的健康,工作人员特意让她戴上了耳套,当孕妇体内的羊膜囊破开后,因担心婴儿的听力受损,扫描仪就被关闭了。
  • 新发明可将大脑核磁共振成像转化成三维图像
    据国外媒体报道,荷兰埃因霍温科技大学的研究人员开发出一个新的软件工具,该工具使用特殊技术将核磁共振成像转化成三维图像。医生借助该工具能够看见病人的大脑线路和线路连接的图像,在不用进行手术的情况下就可以研究病人的大脑线路。   生物医学图像分析教授巴尔特说,对于脑神经外科医生而言,知道大脑中重要神经束的精确位置是极为重要的。他举例说,对帕金森氏症患者进行“深部脑刺激”可以抑制他们的病情,有了这个新工具,医生可以在图像上看到大脑线路,从而能够更为准确地决定在大脑的何处埋置电极。这项新技术也能为神经和精神疾病带来新的曙光。而且重要的是,脑外科医生事先知道重要神经束的位置,在对病人进行治疗时就能够避免损伤,这是一个巨大的进步。   该软件工具是基于一项最近开发的叫做“哈尔迪”(高分辨率漫射成像)的技术。在哈尔迪核磁共振成像技术的基础上,研究小组对这些异常复杂的数据进行了交互式可视化等处理,最终得到了这项新的软件工具。   巴尔特教授预计,这项技术可能还需要几年的时间才能在医院使用。他说:“我们现在需要验证软件程序包,也需要证明使用该技术得到的图象与现实相符。”而相应的核磁共振成像技术的扫描速度还需要进一步提高,因为1个小时的扫描时间对病人来说过长。此外,该软件工具已经被其他科学家广泛使用。
  • 美用核磁共振成像技术提高喷气发动机性能
    据美国科学促进会11月22日(北京时间)报道,核磁共振成像(MRI)这种医学成像技术如今却将在提高喷气发动机效率方面发挥重要作用。在近日举行的美国物理协会流体动力学部年会上,斯坦福大学机械工程博士科勒奈尔迈克尔本森介绍了他们的发明。   本森称,利用MRI能在几个小时内收集大量的三维数据,而传统方法需要两年甚至更久才能完成相关检测。这种技术能大大节省喷气发动机的设计和测试时间,使改良后的发动机不仅效率提高,还可节约能源。   作为首批利用MRI技术收集流体数据的研究人员之一,本森利用MRI技术来分析涡轮喷气发动机中热燃烧和制冷气体之间的混合情况,希望以此来优化设计,减少制冷剂用量,同时提高发动机性能和燃烧效率。   本森说,此前分析冷热混合情况时都依靠荧光染料微粒或油滴,通过激光照射使其发光,然后用高速照相机拍摄它们的位置,再利用计算机分析画面计算出这些微粒的位置和速度。由于照相机拍摄的照片覆盖面很小,需要将多张局部小照片拼在一起才能形成一幅完整图像,而为了达到三维立体视觉效果,还要拍摄更多不同角度图像,这一过程非常耗时。“有个博士生收集这些数据就花了3年时间。”本森说,而用MRI来拍摄同样数量的数据,却只要4小时到8小时。因为MRI技术本身就是设计用来拍摄三维物体的,它能利用电磁脉冲有组织地震荡氢分子中的质子,当其在磁场中重新排列时迅速测出它们的位置。   研究小组在实验中使用了水和硫酸铜的混合溶液来成像,硫酸铜不仅成本低,而且也能对电磁脉冲快速作出响应,相比之下,如果利用医学上通常使用的流质钆作为造影剂,连续几个小时的扫描消耗,所需成本过于昂贵。   本森目前仍在分析发动机扇叶尾缘设计,并已经取得了一些进展。“表面制冷效率已经提高了10%,这相当于将扇叶的温度降低了100华氏度(约38摄氏度)到150华氏度(约66摄氏度)。”
  • 《自然通讯》:核磁共振成像新技术 可观察基因表达
    基因就如同开关一样,知道哪些基因开启,对于疾病的治疗和监控至关重要。美国加州理工学院研究人员23日在《自然通讯》杂志线上版发表论文称,他们开发出一种新方法,使用常见的核磁共振成像(MRI)技术,即可观察到体内细胞的基因表达情况。  在MRI过程中,体内氢原子(大多包含在水分子和脂肪中)被电磁波照射后会形成共振,随后释放信号,据此可创建大脑、肌肉和其他组织的图像。医生会利用该技术来观察人体组织的结构或生理功能,诊断病情,但目前还很少有人用它来观察特定细胞的活动情况。  此次,为创建观察特定细胞基因表达的新手段,研究人员将目标瞄向了水通道蛋白。这种蛋白在细胞膜上组成“孔道”,像守门员一样控制着水分子进出细胞。他们发现,增加细胞中水通道蛋白的数量,通过弥散加权MRI,可使这一细胞在图像中显得更加突出。随后,研究人员将水通道蛋白与他们感兴趣的特定基因联系起来,得到报告基因——一种编码可被检测的蛋白质基因。这意味着当这一特定基因被打开时,细胞会过度表达水通道蛋白,弥散加权成像后,细胞在图像中便会更暗一些。他们利用这一手段成功监测了小鼠大脑肿瘤的基因表达情况。  研究人员指出,开发有效的MRI报告基因是生物医学成像领域的“圣杯”,它会让非侵入性观察细胞功能成为现实。以前开发的MRI报告基因有着诸多限制,并不适用于所有人体组织。而此次研究表明,水通道蛋白是开发MRI报告基因的有效工具。水通道蛋白是人体自然产生的,不会引起免疫反应,其过度表达不会对细胞造成负面影响。在正常生理条件下,水通道蛋白增多后,进出细胞的水分子的数量也是一样的,细胞的含水量不会改变。  研究人员表示,目前这一方法虽仅在小鼠实验中取得成功,但其未来临床应用的潜力巨大。
  • 宁波余姚核磁共振成像装置首次出口塞内加尔
    p   近日,宁波鑫高益医疗设备股份有限公司一套价值34万美元的核磁共振成像装置首次出口非洲塞内加尔,在余姚检验检疫局顺利领取了原产地证书。 /p p   宁波鑫高益医疗设备股份有限公司是集医用磁共振成像系统的研究、开发、生产和售后服务为一体的高科技企业。产品出口全球20多个国家和地区,目前已成为大型医疗设备的全球供应商之一。由于企业出货在即,负责此项工作企业人员不了解产地证备案签证流程,余姚局全程指导企业备案,帮助企业在最短的时间内完成了新产品备案,并指导企业申领了原产地证,确保顺利出口。针对该企业出口产品价值高的特点,余姚局对该企业进行了优惠原产地证政策以及自贸协定优惠政策个性化宣传,详细介绍了此产品到各自贸区国家可以享受的关税优惠幅度,使企业进一步开拓自贸区新市场,更好地享受关税减免。 /p
  • 170万!东北师范大学环境学院中尺寸核磁共振成像分析仪采购项目
    1.项目编号:ZZ23441HW04310087;2.项目名称:东北师范大学环境学院中尺寸核磁共振成像分析仪采购;3.采购方式:竞争性磋商;4.预算金额:人民币170万元;5.采购需求:中尺寸核磁共振成像分析仪采购(详见第三章“磋商项目需求表”);6.合同履行期限(供货期):合同签订之日起90日内完成交付、安装及调试;7.本项目不接受联合体。竞争性磋商文件(货物)-东北师范大学环境学院中尺寸核磁共振成像分析仪采购定稿(1).pdf
  • 全球首台肺部气体磁共振成像系统获批上市
    近日,由中国科学院精密测量科学与技术创新研究院研发的创新医疗器械——磁共振成像系统获国家药品监督管理局批准上市。这是当前全球首台获批的可用于气体成像的临床多核磁共振成像系统,解决了临床无创无辐射精准检测肺部疾病的难题。目前临床上常用的肺部影像检查设备X光机、CT和PET等都存在电离辐射;磁共振检测设备无电离辐射,但无法对肺部空腔进行成像。此次获批的多核磁共振成像系统和2020年获批的医用氙气体发生器联用解决了上述难题,实现了肺部结构和功能的无侵入、无辐射检测、定量可视化评价,为肺部疾病的早期筛查和治疗评估提供了新仪器和新方法。精密测量院超灵敏磁共振团队历经十余年攻关,在气体磁共振信号增强的超极化技术、超快肺部气体磁共振成像技术、人体多核磁共振成像技术等方面实现全面突破。团队研发的人体肺部气体多核磁共振成像系统由“医用氙气体发生器”(型号:verImagin VIP510)和“人体多核磁共振成像系统”(型号:uMR 780(Xe))两大核心装置组成,有效解决了肺部检测中气体密度低导致磁共振成像信号极弱的难题,实现了临床单核向多核磁共振成像系统的拓展,使肺部空腔影像诊断由“不可看”到“看得清”。该研究得到国家自然科学基金委国家重大科研仪器设备研制专项(部委推荐)、中国科学院科研仪器设备研制项目和成果转移转化重点专项(弘光专项)等的接续支持。2020年9月,核心装备“医用氙气体发生器”获得全球首个同类医疗器械注册证;2023年8月16日,多核磁共振成像系统获批上市,成为全球首个可用于气体成像的临床多核磁共振成像产品。目前,该系统已在北京、上海、武汉等地10余家三甲医院及科研单位开展临床应用研究。
  • 填补国内MRI技术空白|国产首款肺部气体核磁共振成像系统获批上市
    【招商赞助中】iCCA2023 第六届细胞分析网络会议 全日程公布!(点击查看)填补我国肺部气体MRI关键技术空白近日,国家药品监督管理局批准了武汉中科极化医疗科技有限公司生产的磁共振成像系统创新产品注册申请。该产品由磁体、检查床、谱仪、梯度功率放大器、射频功率放大器、氙射频功率放大器、配电系统、生理信号门控单元等组成,拥有自主知识产权。该产品在常规磁共振成像系统基础上增加氙核成像功能,可使气体无侵入、无辐射地在肺部分布,为我国首款可用于肺部气体成像的磁共振成像系统。药品监督管理部门将加强该产品上市后监管,保护患者用械安全。据报道,此前,肺部气体磁共振关键技术一直为美国、英国、加拿大独立掌握,我国长期处于空白。因此,本次中科极化原研产品获批上市,无疑标志我国在肺部气体磁共振技术领域已经走上国际水平,更是我国高端医疗设备领域的又一重大飞跃。中科极化科研团队创新选择惰性气体——氙气作为造影剂(129Xe)。据了解,氙气具有良好的生化惰性、脂溶性和化学位移敏感性,可以溶解在肺部血液和组织内并产生不同的磁共振信号,十分利于肺部气血交换功能探测。关于中科极化武汉中科极化医疗科技有限公司由中科院武汉物理与数学研究所、“中国民营企业500强”横店集团控股有限公司及国内高端影像装备制造商上海联影医疗科技有限公司于2018年4月份共同发起成立,是一家集高端医疗器械研发生产销售于一体的高新技术企业。公司核心产品为“人体肺部气体磁共振成像系统”,其核心技术主要来源于中科院武汉物理与数学研究所研究员领导的超灵敏磁共振成像团队,样机在国家重大科学仪器研制专项的支持下,历经5年科研攻关首次在国内研制成功,拥有核心技术专利40余项。与基于X射线等常规影像手段相比,磁共振成像(MRI)具有无辐射、无侵入性的独特优势,但肺部为传统MRI唯一探测“盲区”。本公司产品创新性使用超极化气体作为造影剂,成功“点亮肺部“,获得了我国首幅人体肺部气体磁共振影像图。该技术不仅能无损、无辐射探测人体肺部结构信息,还能定量、可视化的探测肺部气血交换及气气交换的功能信息,是一种全新的肺部影像探测手段,对肺癌、慢阻肺等肺部疾病的早发现、早诊断、早治疗具有重大临床意义。【招商赞助中】iCCA2023 第六届细胞分析网络会议 全日程公布!(点击查看)
  • 开放磁共振成像系统实现产业化 获国外订单
    开放式超导磁共振成像磁体系统   侧身,抬腿,中科院院士都有为躺在一台洁白的开放式超导磁共振成像仪上,轻松地吸了口气。   门外,一台电脑将这台0.7特斯拉(磁感应强度单位,缩写为T)大开放式超导磁共振成像设备&ldquo 感知&rdquo 的图像完全显示出来,医生则根据这些清晰的影像进行诊断。   近日,《中国科学报》记者跟随中科院电工所(以下简称电工所)专家,参观了该所研发的&ldquo 开放式超导磁共振成像磁体系统&rdquo 产业化生产现场,一睹这台设备的神奇魔力。   随后的检测报告显示,尽管年过70,都院士的身体很健康。   &ldquo 虽然设备外观看上去很简单,但核心技术的研发耗费了我们将近5年时间。&rdquo 项目负责人、电工所研究员王秋良介绍说,这套具有异形结构的0.7T大开放式磁共振成像系统,其研发过程殊为不易。对磁场强度的调整和高精度控制等每个细节,都花费了科研人员大量的心血。最终,研究团队突破了开放式超导磁共振磁体成像系统的技术瓶颈,自主研发出这台在我国超导核磁成像领域具有标志性意义的国际领先产品。   自上世纪40年代起,磁共振作为一种物理现象开始应用于物理、化学和医疗领域。1973年,保罗· 劳特伯等人首先提出核磁共振成像的原理和技术。近年来,核磁共振成像技术的发展十分迅速。&ldquo 它作为一种神经外科影像学介入治疗手段,在治疗肿瘤、血管畸形,精准定位病变等领域有着非常广泛的应用。&rdquo 王秋良介绍说。   然而,传统的磁共振成像设备价格昂贵、维护成本高,且结构形状大多为密闭式,患者容易产生幽闭恐惧症。同时,设备液氦使用量大,运行成本高。&ldquo 更重要的是,传统设备无法实现医生的在线介入治疗。&rdquo 王秋良告诉记者,从2009年开始,电工所就致力于研制全新的开放式核磁共振成像系统。经过5年的努力,如今这一设备终于在宁波健信机械有限公司的厂房内&ldquo 开花结果&rdquo 。   在采访过程中,记者和9位院士专家一起走进宁波健信机械有限公司的车间。此时,工人们正在进行部件加工。   &ldquo 工人们需要将成对的超导线圈放置在两个相对的环形容器中,形成一个完整的超导磁体,继而产生主磁场,再利用成百上千块小铁片进行匀场。&rdquo 电工所研究员戴银明介绍说。   在另一车间,工人们将磁体固定成U形,再用类似航空隔热膜的银灰色材料将其完整包裹起来,最后安装好各种线路和制冷设备。经过细心检查后,工人们会给这套设备&ldquo 穿上&rdquo 金属外壳。   &ldquo 根据市场需求的不同,这套设备可设计成全封闭、半封闭、开放式的装置。外国人一般体型较大,加上部分患者对密闭空间有恐惧感,所以我们针对国外市场开发的是大开放式磁共振成像设备。&rdquo 宁波健信机械有限公司董事长许建益表示,该技术颇受国外用户欢迎,目前收到不少国外订单。   &ldquo 这样的开放式设计能满足各种体型病患者的需求,并且我们还开发了可升降设备。&rdquo 电工所副研究员王晖边说边按下按钮,只见设备上半部分缓缓上升。&ldquo 这样有什么好处呢?在临床应用时,医生可根据手术需要,对患者头部、腹部等部位实施手术。手术完毕后,按下按钮,仪器马上可以进行磁场校准,让医生通过电脑屏幕查看手术效果,实现一台设备多种用途。&rdquo   &ldquo 与常规磁共振成像设备相比,该系统设计液氦的使用量只有其十分之一,并且磁场稳定度和均匀度高、操控性好、运行稳定可靠,为我国开放式磁共振系统医疗技术产品的发展拓展了新方向。&rdquo 王秋良说,该技术成果已进入产业化生产阶段,预计未来3~5年内年产量可达500台,年产值将达数亿元。   由中科院院士甘子钊领衔的成果鉴定专家组对电工所的这一成果给予高度肯定。他们认为,这套设备完全达到国际先进水平。   &ldquo 中科院曾提出要大力发展低成本医疗。我们的这套设备、这种设计思路,其实就是低成本医疗的一种。目前,核磁共振成像设备在国外医疗领域应用很普遍,但在中国的使用率还较低。利用我们研发的设备,不但价格比进口设备便宜很多,而且维护方便,并且具有诊断与治疗融为一体的特点,可以减少病人的检测费用。&rdquo 王秋良表示,科学技术的最终目的是服务大众,&ldquo 我希望这套设备能被越来越多的医院和患者使用&rdquo 。
  • 核磁共振成像仪(MRI)用超导线材批量制备技术取得突破
    p   近日,由西北有色金属研究院等单位承担的863课题“高性能MRI用超导线材批量化制备技术(2014AA032701)”通过技术验收。通过该课题的突破,使我国核磁共振成像仪(MRI)用高性能NbTi和MgB2超导长线实现批量制备,开始向全球主要医疗影像仪制造企业实现供货。 /p p   超导MRI具有磁场强度高、无放射危害、图像分辨率高等优势,是目前全球医疗影像领域的主流高端装备,也是超导材料最主要的应用领域之一。NbTi超导线材性能不断提升促进了商用液氦浸泡冷却MRI系统成本不断降低,MgB2超导线材的快速发展使无冷却介质的移动式、开放式制冷机制冷MRI成为国际技术发展前沿。但是在2016年之前,MRI用超导线材长期被LUVATA、OXFORD等跨国公司垄断,导致我国超导MRI用线材长期处于完全依赖进口的状态,严重制约我国自主超导MRI装备产业的发展。 /p p   该课题突破了高均匀合金熔炼、导体结构设计、粉末装管法线材塑性变形控制、高尺寸精度线材加工、磁通钉扎控制和线材绝缘等MRI用超导线材制造核心技术,获得具有完全独立知识产权的超导MRI用NbTi和MgB2超导线材批量化制备技术并实现量产。量产单根万米级NbTi线材临界电流密度超过3410 A/mm2 (4 T,4.2 K),单根千米级MgB2线材临界电流密度超过21400 A/cm2 (3T,20 K),均达到国际先进水平。建成我国首条年产能400吨的MRI用超导线材生产线,相关产品已为美国通用电气(GE)、德国西门子等全球主要医疗影像仪供应商实现供货,并在中科院电工所、宁波健信等国内超导MRI系统研发中获得应用。 /p p   超导MRI系统是我国“十三五”期间医疗器械产业发展的重点。超导MRI用线材制备技术研究成果填补了国内空白,为我国发展自主知识产权超导MRI系统奠定了坚实的材料基础。 /p p /p
  • 中国热带农业科学院预算356万元购买低场核磁共振成像仪等多台仪器
    5月6日,中国热带农业科学院南亚热带作物研究所公开招标,购买低场核磁共振成像仪、傅里叶变换红外光谱仪、水分活度仪、真空冷冻干燥机等多台仪器,预算356万元。  项目编号:GZCQC2000FG05006  项目名称:中国热带农业科学院南亚热带作物国家重要热带作物工程技术中心南亚所分中心仪器购置(一期)  预算金额:356.0000000 万元(人民币)  采购需求:  1.采购项目内容:本项目分为:子包01(子包名称:多功能植物精油提取系统、超声波微波反应器等,预算金额96万元) 子包02(子包名称:傅里叶变换红外光谱仪、超纯水机等,预算金额130万元) 子包03(子包名称:水分活度仪、细胞计数器等,预算金额130万元) 具体内容详见招标文件《第三章 采购人需求》。  2.经政府采购管理部门同意:子包2的傅里叶变换红外光谱仪、粒度及电位分析仪,子包3的二氧化碳培养箱、倒置显微镜、台式离心机、真空冷冻干燥机允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品。序号名称数量(台/套)单价限价(万元)最高限价(万元)备注1多功能植物精油提取系统110 96采购国产设备2超声波微波反应器120采购国产设备3多功能植物精油提取系统166采购国产设备  注:核心产品为:低场核磁共振成像仪序号名称数量(台/套)单价限价(万元)最高限价(万元)备注1傅里叶变换红外光谱仪146 130允许采购进口设备2超纯水机16采购国产设备3粒度及电位分析仪148允许采购进口设备4聚能式超声波乳化分散器18采购国产设备5聚能式超声波乳化分散器15采购国产设备6电子万能试验机110采购国产设备7电化学工作站17采购国产设备  注:核心产品为:傅里叶变换红外光谱仪序号采购项目数量(台/套)单价限价(万元)最高限价(万元)备注1水分活度仪119 130采购国产设备2细胞计数器17.5采购国产设备3二氧化碳培养箱18允许采购进口设备4倒置显微镜17.5允许采购进口设备5生物安全柜17采购国产设备6台式离心机110允许采购进口设备7超低温冰箱16采购国产设备8多功能一体式成像仪117采购国产设备9真空冷冻干燥机135允许采购进口设备10粉碎机113采购国产设备  注:核心产品为:水分活度仪、真空冷冻干燥机。 合同履行期限:合同签订后,国产产品60天(日历天)内,进口产品90天(日历天)内完成交货、安装、调试、提供相应技术服务,保证项目交付采购人验收通过。  本项目( 不接受 )联合体投标。  开标时间:2021年05月27日 09点30分(北京时间)招标文件-中国热带农业科学院南亚热带作物国家重要热带作物工程技术中心南亚所分中心仪器购置(一期).pdf
  • 纽迈低场核磁共振成像分析仪中标上海海洋大学采购项目
    上海海洋大学食品学院食品品质与安全无损分析实验平台建设项目中标公告  项目名称:上海海洋大学食品学院食品品质与安全无损分析实验平台建设项目  采购人名称:上海海洋大学  采购人地址:上海市浦东新区沪城环路999号  采购人联系方式:021-61900020  采购代理机构名称:上海中招招标有限公司  采购代理机构地址:上海市共和新路1301号C座110室  招标公告日期:2015年11月20日  定标日期:2015年12月10日  招标编号:STC15A370  中标人名称: 苏州纽迈分析仪器股份有限公司  设备名称:低场核磁共振成像分析仪 1套  中标金额: 人民币122万元  评委委员会成员名单: 许学书、徐隽、肖石林、赵波、张红敏  招标代理机构联系人和联系方式:姚庆忠  联系电话:021—26065272  如对本次结果有异议,请于评标结果公布之日起7个工作日内以书面形式向上海中招招标有限公司(上海市共和新路1301号C座110室,电话:021-26065272)提出质疑。  在此,上海海洋大学和上海中招招标有限公司谨对积极参与本项目投标的供应商表示衷心的感谢!  上海中招招标有限公司  2015年12月10日
  • 核磁共振新技术:歌唱时也能成像
    在唱歌或是说话时,需要人的胸部、颈部、下颚、舌头和嘴唇等处上百种肌肉相互协作才能发出声音,利用新发明的一种超高速核磁共振成像技术,美国贝克曼高等科学技术研究所的研究人员现在能够对这些肌肉的协作进行成像,研究这些协作的进程。 &ldquo 人能够发出各种声音,能够唱歌,这一点让我感到惊叹&rdquo ,Aaron Johnson介绍说,他是贝克曼高等科学技术研究所下辖的生物成像科学与技术研究组的成员,语言与听觉科学助理教授,&ldquo 声音是通过两小片组织震动发出来的。这正是我付出一生对其进行研究的原因:我觉得这太神奇了。&rdquo 声音是由位于颈部的喉发出的。当我们唱歌或是说话的时候,声带(两小片组织)闭合起来,当空气通过两者之间时导致其发生震动,发出声音。 Johnson曾经在芝加哥的合唱团做过十年的专业歌手,他对声乐表演的激情也延伸到了科研上来,希望弄清声音和神经-肌肉系统间的关系,他对声音随着年龄增长发生的变化尤其感兴趣。 &ldquo 随着我们年龄的增长,我们的神经-肌肉系统和喉会发生变化,并且萎缩。这些变化是随着年龄增长声音在各个方面变差的原因,比如声音变弱、变紧或是变&lsquo 喘&rsquo &rdquo ,Johnson介绍说,&ldquo 我的研究兴趣是弄清这些变化是如何发生的,以及通过人工干预,比如进行发声训练,是否能够扭转这些变化。要想进行这些研究,我需要实时的观察发声时喉部肌肉的活动。&rdquo 使用贝克曼生物医学成像中心研发的新的核磁共振成像技术,Johnson能够观察人在发声时相关肌肉活动的动态图像,成像的速度可以达到每秒100帧&mdash &mdash 远远高于世界上其它核磁共振的成像速度。 &ldquo 通常核磁共振的成像速度大约为每秒10帧左右,但我们可以达到每秒100帧,同时还不会影响成像的质量&rdquo ,生物医学成像中心的技术总监,生物工程学副教授Brad Sutton介绍说。 这项研究成果日前发表在了《医学磁共振》(Magnetic Resonance in Medicine)杂志上。 要研究说话和歌唱时舌头以及头部和颈部其它肌肉的活动,动态的图像尤其有用。 &ldquo 要捕捉到这些灵活的运动,成像速度必须要达到每秒100帧,这项技术的出色之处也正在于此&rdquo ,Johnson介绍说。 Johnson最近获得了美国国立卫生研究院颁发的K23事业进步奖(K23 Career Development Award),他目前正在研究通过训练养老院的老人进行合唱,是否能够改善喉部相关结构的状况,使他们发出的声音更强、更有力。这项研究需要使用核磁共振技术采集喉部在运动前和运动后的相关数据。 贝克曼高等科学技术研究所的电子和计算机工程教授Zhi-Pei Liang研究组的研究工作为这项新技术奠定了基础。Sutton和他的团队在此基础上研发出了新的技术,使得在谈话时进行高速成像成为可能。 &ldquo 这项技术的空间分辨率和时间分辨率都非常出色&mdash &mdash 图像非常清晰,同时成像速度也非常快。使用常规的核磁共振技术,通常精细的空间分辨率和时间分辨率两者无法兼得&rdquo ,Sutton说。&ldquo 我们研发了一种特别的数据采集方法,能够分别采集时间和空间数据,然后再把两者合并到一起,从而取得高质量、高分辨率的图像,而且成像速度还很快。&rdquo 在把动态图像和音频信号整合到一起的时候,研究人员使用了一种降噪光纤麦克风来采集音频信号,然后把音轨添加到视频图像上。 &ldquo 从工程师到语言学家,在贝克曼高等科学技术研究所,我们有一个非常活跃的研究群体。利用几年前还不存在的核磁共振新技术,我们现在能够进行很多扫描研究&rdquo ,Sutton介绍说。&ldquo 团队中有Aaron这样的科学家很有意义,他们能够提出各种科学问题,这些问题能够推动我们的科研进展。&rdquo
  • 英攻克磁共振成像新技术
    最新的磁共振成像研究使人们进一步了解脑部疾病。图片来源:英国诺丁汉大学   有望提高脑部疾病诊断率和监测效果   磁共振成像(MRI)领域的一项新发现有望提高多发性硬化症等脑部疾病的诊断率和监测效果。研究人员指出,来自英国诺丁汉大学彼得曼斯菲尔德爵士磁共振中心的这一研究成果,可能会为医学界的磁共振成像提供一种新工具。   该项研究发表在日前出版的美国《国家科学院院刊》上,它揭示了利用新的磁共振成像技术生成的脑部图像为何对神经纤维走向如此敏感。   微神经纤维以微电子信号的形式传递信息,脑白质就是由数以十亿计的微神经纤维所构成。研究人员指出,每个神经纤维都由一种叫髓磷脂的脂肪物质包裹着,从而能够提高这些电子信号的行进速度。   此前的研究已经表明,磁共振图像中的脑白质外观取决于神经纤维与磁共振成像扫描仪所用极强磁场的方向之间的角度。   利用髓磷脂分子结构方面的知识,诺丁汉大学的物理学家发明了一种新的模型,其中用又长又细且带有特殊(具有各向异性的)磁性的空心管代表神经纤维。   此模型解释了图像对比取决于脑白质中的纤维取向,并且也具有从磁共振图像中推断出神经纤维的尺寸、方向等信息的潜力。   参与该项研究的Samuel Wharton说:“大多数基于磁共振成像的研究都集中在以毫米为长度单位而进行的人体组织测量上,而我们对健康志愿者进行的扫描实验以及由此制作的髓鞘模型都显示,利用相当简单的成像技术即可生成尺寸、方向等更为具体的神经纤维微观信息。”他补充说:“这些结果将为临床医生提供更多信息,用来识别并确定脑部损伤或异常状况,也将有助于他们选择适合某个特殊病人的扫描方法。”   诺丁汉大学物理学与天文学系系主任Richard Bowtell补充说:“对于生物医学成像界而言,这些结果应该能起到重要的推动作用。”   诺丁汉大学医院信托中心专门研究多发性硬化症的临床副教授Nikolaos Evangelou认为:“这项研究开辟了观察大脑神经纤维的多条新途径。我们越是了解神经及其周围的髓磷脂,就越能在研究多发性硬化症等脑部疾病方面取得成功。”   Evangelou说:“我们最近在了解和治疗多发性硬化症上取得的进展都是基于可靠的基础研究,其中有一项就是由Wharton博士和Bowtell教授所提供的。”   研究人员相信,这项研究将使世界各地的科学家和临床医生更加理解神经纤维及其取向差异在磁共振成像中所造成的影响,并且在诊断和监测多发性硬化症(已知此病与髓磷脂流失有关)等脑部、神经系统疾病方面也有潜在用途。   磁共振成像是利用核磁共振原理,依据所释放的能量在物质内部不同结构环境中不同的衰减,通过外加梯度磁场检测所发射出的电磁波,即可得知构成这一物体原子核的位置和种类,据此可以绘制成物体内部的结构图像。将这种技术用于人体内部结构的成像,就产生出一种革命性的医学诊断工具。快速变化的梯度磁场的应用,大大加快了核磁共振成像的速度,使该技术在临床诊断、科学研究的应用成为现实,极大地推动了医学、神经生理学和认知神经科学的迅速发展。
  • 英攻克磁共振成像新技术
    有望提高脑部疾病诊断率和监测效果 最新的磁共振成像研究使人们进一步了解脑部疾病。图片来源:英国诺丁汉大学   磁共振成像(MRI)领域的一项新发现有望提高多发性硬化症等脑部疾病的诊断率和监测效果。研究人员指出,来自英国诺丁汉大学彼得曼斯菲尔德爵士磁共振中心的这一研究成果,可能会为医学界的磁共振成像提供一种新工具。   该项研究发表在日前出版的美国《国家科学院院刊》上,它揭示了利用新的磁共振成像技术生成的脑部图像为何对神经纤维走向如此敏感。   微神经纤维以微电子信号的形式传递信息,脑白质就是由数以十亿计的微神经纤维所构成。研究人员指出,每个神经纤维都由一种叫髓磷脂的脂肪物质包裹着,从而能够提高这些电子信号的行进速度。   此前的研究已经表明,磁共振图像中的脑白质外观取决于神经纤维与磁共振成像扫描仪所用极强磁场的方向之间的角度。   利用髓磷脂分子结构方面的知识,诺丁汉大学的物理学家发明了一种新的模型,其中用又长又细且带有特殊(具有各向异性的)磁性的空心管代表神经纤维。   此模型解释了图像对比取决于脑白质中的纤维取向,并且也具有从磁共振图像中推断出神经纤维的尺寸、方向等信息的潜力。   参与该项研究的Samuel Wharton说:“大多数基于磁共振成像的研究都集中在以毫米为长度单位而进行的人体组织测量上,而我们对健康志愿者进行的扫描实验以及由此制作的髓鞘模型都显示,利用相当简单的成像技术即可生成尺寸、方向等更为具体的神经纤维微观信息。”他补充说:“这些结果将为临床医生提供更多信息,用来识别并确定脑部损伤或异常状况,也将有助于他们选择适合某个特殊病人的扫描方法。”   诺丁汉大学物理学与天文学系系主任Richard Bowtell补充说:“对于生物医学成像界而言,这些结果应该能起到重要的推动作用。”   诺丁汉大学医院信托中心专门研究多发性硬化症的临床副教授Nikolaos Evangelou认为:“这项研究开辟了观察大脑神经纤维的多条新途径。我们越是了解神经及其周围的髓磷脂,就越能在研究多发性硬化症等脑部疾病方面取得成功。”   Evangelou说:“我们最近在了解和治疗多发性硬化症上取得的进展都是基于可靠的基础研究,其中有一项就是由Wharton博士和Bowtell教授所提供的。”   研究人员相信,这项研究将使世界各地的科学家和临床医生更加理解神经纤维及其取向差异在磁共振成像中所造成的影响,并且在诊断和监测多发性硬化症(已知此病与髓磷脂流失有关)等脑部、神经系统疾病方面也有潜在用途。   磁共振成像是利用核磁共振原理,依据所释放的能量在物质内部不同结构环境中不同的衰减,通过外加梯度磁场检测所发射出的电磁波,即可得知构成这一物体原子核的位置和种类,据此可以绘制成物体内部的结构图像。将这种技术用于人体内部结构的成像,就产生出一种革命性的医学诊断工具。快速变化的梯度磁场的应用,大大加快了核磁共振成像的速度,使该技术在临床诊断、科学研究的应用成为现实,极大地推动了医学、神经生理学和认知神经科学的迅速发展。
  • 固体核磁共振:第N感“看”世界
    【科学人说科学】固体核磁共振:第N感&ldquo 看&rdquo 世界   主讲人:孔学谦 浙大化学系研究员 国家青年千人计划入选者   让我们把日历调到2050年,展望一下未来人的生活:如果一个人感到身体不适,他只需掏出一个手机大小的仪器对自己快速扫描一番,人体器官影像、血液生化指标、新陈代谢状况等全面的医学信息便一目了然,然后通过网络传输给医生做出诊断。医生呢,也可以随时利用这个仪器监测药物的作用部位和治疗效果。一个小小的仪器协助人们实现了精准医疗、远程医疗的理想。当然,这只是我的一个科学&ldquo 狂&rdquo 想,但最有可能将此仪器变为现实的就是核磁共振技术(Nuclear Magnetic Res-onance,NMR)。   核磁共振怎么&ldquo 看&rdquo ?   提到核磁共振,你或许马上想到医院里巨大的圆筒形的核磁共振成像仪(MRI)。的确,核磁共振从最初作为一个物理现象被认知,到医用的核磁共振成像仪协助人类进行医疗诊断,已大大造福人类,当然我们还期待它有更广泛的应用。这一领域经过70多年的发展,已经诞生了5次诺贝尔奖,7位诺奖获得者。它究竟有多神奇呢?   &ldquo 核磁共振&rdquo 中的&ldquo 核&rdquo 是指原子核,&ldquo 磁&rdquo 是指磁场。理解核磁共振的原理需要相当的量子力学基础,但不妨碍我们对它有个感性的认识:原子核就像小磁铁一样具有磁性,在外界磁场中,原子核会像陀螺一样旋转。而原子核的旋转可以吸收和释放特定频率的电磁波,它与调频广播FM的频率相当,我们把这个现象称为核磁共振。核磁共振不但能用来分辨物质的空间分布例如可以形成人体器官组织的影像,也可以帮你精确鉴定化学成分&mdash &mdash &mdash 每种化学或生物物质都有其特征的核磁共振谱线,例如分析药物的化学组成配方。   与人类发明的光学、X射线、电子成像等诸多技术相比,核磁共振的优势很明显,第一,核磁共振技术只用到低能量的电磁场,不损伤被测物体,人畜无害 所以核磁共振成像在医学上是肿瘤诊断、脑科学研究的重要手段 第二,具有极高的化学分辨率。核磁共振技术在生物和化学领域被用来鉴定化学分子结构和研究蛋白质结构和功能。核磁共振技术就像给人附上了第N感,让人透过表象&ldquo 看&rdquo 到各种微观和内部的世界。   把材料&ldquo 看&rdquo 个究竟   在各种不同的研究对象中,我最想&ldquo 看&rdquo 到的是固体材料中内部结构和化学反应机理,从而为新型功能材料,新能源材料的研发提供指导。在加州大学伯克利分校从事博士后研究期间,我加入了美国能源部资助的重点研究团队,团队正在为解决发电厂的碳排放问题,开发新型材料用来捕捉收集燃烧排放的二氧化碳。课题组的负责人OmarYaghi教授,是一位材料课题组金属有机框架材料(MOF)领域的创始人,他发明了一种全新的非常有前途的MOF材料,它布满纳米级别的微小孔道,可以像海绵一样选择性、高容量地吸附二氧化碳气体。那么问题来了,这种高性能的吸附机理是怎样的?Yaghi教授很想知道,这种材料内部的化学官能团,是聚集在一起呢,还是分散的排列?   要解决这个关键问题,我们必须&ldquo 钻&rdquo 到材料内部去&ldquo 看&rdquo 个究竟。这就好像要区分口袋里不同颜色的玻璃球&mdash &mdash &mdash 如果我把MOF材料三维结构比作玻璃球,而官能团则是它们的颜色。常见的X光衍射,电子显微镜等手段,可&ldquo 摸&rdquo 出球的大小、位置,但无法区别球的颜色。我设计了一种特别的核磁共振方法,不但可以&ldquo 看&rdquo 到球的颜色,而且可以看到色彩的图案。最终我的方法解开了有序晶体结构中不同化学官能团的排布谜题,深入阐释了材料纳米结构对二氧化碳吸附功能的影响。相关成果陆续在《科学》,《自然》等杂志上发表,这让更多人认可了核磁共振对材料结构认知的突破性贡献。   期待&ldquo 看&rdquo 到更多   2014年9月,我辞去美国硅谷的工作,正式入职浙江大学化学系,组建全新的具有世界水平的固体核磁共振实验室。我们实验室的根本目标是提升核磁共振技术应用的深度和广度。一方面,我希望核磁共振能使材料学科研究水平由单纯的结构表征提升到对整个工作体系的全面认知。这其中的关键有赖于原位表征技术的突破&mdash &mdash &mdash 即在反应进行过程中对物质进行直接研究,从而得到全面、准确、实时的信息。我们实验室正在着手构建这样的原位核磁共振系统,将具备流动态,变温,光照等多种特殊功能。另一方面,我希望核磁共振成为学术界、工业界乃至日常生活中可以大规模应用的技术。我们正在致力于推进核磁共振技术的小型化、便携化,让小型核磁系统能够媲美巨大且昂贵的超导核磁共振仪,在科学研究中发挥更大的作用。   核磁共振是一个持续快速发展的学科,新的技术不断出现。超导磁场的强度正在不断突破极限 新型的脉冲序列不断推出,将核磁共振的功能不断拓展 新型的超极化方法正在研制之中,可将核磁共振灵敏度提升成千上万倍 在医学上,新的核磁造影剂可以标记病变细胞组织,提升成像精度 在物理学上,核磁共振被用作量子计算的载体 传统的能源行业也在应用核磁技术勘探石油天然气&hellip &hellip 毋庸置疑,核磁共振必将在未来的科学研究和人民生活中扮演越来越重要的角色,我希望我的实验室能在核磁共振技术的进化过程中发挥推动作用,并期待有一天开文所描绘的情景变为现实。
  • 磁共振成像系统获批上市
    近日,国家药品监督管理局经审查,批准了上海联影医疗科技股份有限公司生产的“磁共振成像系统”创新产品注册申请。该产品由超导磁体(5.0T)、梯度功率放大器、梯度线圈、射频功率放大器、射频线圈、检查床、谱仪、配电系统、对讲系统和生理信号门控单元组成。适用于体重大于20kg患者的临床MRI诊断。该产品采用全身临床5.0T超导磁体,首次在超高场磁共振系统中将全身体激发线圈应用于临床扫描,从而实现全身成像,可以提升图像信噪比和图像空间分辨率,并实现超高场体部成像。该产品核心技术为全身临床5.0T超导磁体、多通道射频并行发射控制和超高场磁共振系统射频安全成像,均拥有自主知识产权,关键性能指标已达到国际领先水平。药品监督管理部门将加强该产品上市后监管,保护患者用械安全。附件:国家药监局已批准的创新医疗器械序号产品名称生产企业注册证号1基因测序仪深圳华因康基因科技有限公司国械注准201434021712恒温扩增微流控芯片核酸分析仪博奥生物集团有限公司国械注准201534005803双通道植入式脑深部电刺激脉冲发生器套件苏州景昱医疗器械有限公司国械注准201532109704植入式脑深部电刺激电极导线套件苏州景昱医疗器械有限公司国械注准201532109715植入式脑深部电刺激延伸导线套件苏州景昱医疗器械有限公司国械注准201532109726MTHFR C677T 基因检测试剂盒(PCR-金磁微粒层析法)西安金磁纳米生物技术有限公司国械注准201534011487脱细胞角膜基质深圳艾尼尔角膜工程有限公司国械注准201534605818Septin9基因甲基化检测试剂盒(PCR荧光探针法)博尔诚(北京)科技有限公司国械注准201534014819乳腺X射线数字化体层摄影设备科宁(天津)医疗设备有限公司国械注准2015330205210运动神经元存活基因1(SMN1)外显子缺失检测试剂盒(荧光定量PCR法)上海五色石医学研究有限公司国械注准2015340229311三维心脏电生理标测系统上海微创电生理医疗科技有限公司国械注准2016377038712呼吸道病原菌核酸检测试剂盒(恒温扩增芯片法)博奥生物集团有限公司国械注准2016340032713脱细胞角膜植片广州优得清生物科技有限公司国械注准2016346057314植入式迷走神经刺激脉冲发生器套件北京品驰医疗设备有限公司国械注准2016321098915植入式迷走神经刺激电极导线套件北京品驰医疗设备有限公司国械注准2016321099016药物洗脱外周球囊扩张导管北京先瑞达医疗科技有限公司国械注准2016377102017冷盐水灌注射频消融导管上海微创电生理医疗科技有限公司国械注准2016377104018胸骨板常州华森医疗器械有限公司国械注准2016346158219正电子发射及X射线计算机断层成像装置明峰医疗系统股份有限公司国械注准2016333215620人工晶状体爱博诺德(北京)医疗科技有限公司国械注准2016322174721骨科手术导航定位系统北京天智航医疗科技股份有限公司国械注准2016354228022低温冷冻消融手术系统海杰亚(北京)医疗器械有限公司国械注准2017358308823一次性使用无菌冷冻消融针海杰亚(北京)医疗器械有限公司国械注准2017358308924可变角双探头单光子发射计算机断层成像设备北京永新医疗设备有限公司国械注准2017333068125全降解鼻窦药物支架系统浦易(上海)生物科技有限公司国械注准2017346067926经皮介入人工心脏瓣膜系统杭州启明医疗器械有限公司
  • 2000万元的3.0T高场人体磁共振成像系统落户深圳
    7月19日,一台价值近2000万元的3.0T高场人体磁共振成像系统落地深圳,在中科院深圳先进技术研究院劳特伯医学影像科技平台完成安装调试。据悉,这是我国华南及港澳地区目前配备的第一台专门用于科学研究的人体高场磁共振成像系统。 至此,致力于高端医学影像研究的深圳先进院劳特伯医学影像科技平台已经配备齐全了磁共振系统、CT成像系统、功能超声、光学成像等多种模态的医学成像科研装备及人才队伍,初步形成了国际先进水平的综合性医学影像关键技术与装备研发的科技平台。   高端医学影像到底有多“高”?   ——是心脑血管及肿瘤等重大疾病早期诊疗的强大工具   医学影像是目前临床诊断技术中最重要的手段,包含多种模态的成像方法,如磁共振成像 (MRI)、电子计算机断层扫描 (CT)、正电子发射断层扫描(PET)和功能超声成像等。随着重大疾病早期(超早期)诊疗的需求的增加,医院中用于临床检查的现有影像设备已经不能有效满足对重大疾病进行超早期诊断的需求。发展高性能的高端医学成像设备,大幅度提升其成像速度、精度及诊断信息综合度,可以为临床上解决重大疾病早期诊疗中的复杂问题提供有力工具。   以3T高场磁共振系统为例,用普通的磁共振扫描脑部需10多分钟,而3T磁共振则只需5分钟,其成像的分辨率及功能特征定位精度也大幅度提升。对于帕金森、老年痴呆、癫痫、意识不清者的图像,用普通的设备很难做到,而3T磁共振特有的运动伪影消除技术,即使患者在扫描时有不自主运动,也可得到令人满意的脑部图像。此外,利用3T系统能完成更加复杂的功能成像,可以获取普通磁共振仪无法得到的分子功能信息,也就是说可以在分子级水平获得疾病的信息,为疾病的超早期诊断提供依据。   “更重要的是,许多重大疾病,如癌症和某些心脏疾病,通过高端的医学影像设备,可以在其病变早期发现,不仅可以提高治愈机会并且控制医疗费用。”在美国从事多年心血管磁共振成像研发相关工作,深圳先进院医工所劳特伯医学成像中心医学博士刘新研究员向记者介绍。“就比如说,应用3T磁共振有望检测出颈动脉和冠状动脉粥样硬化斑块破裂的可靠征象,早期预测脑中风和冠心病的发生,医生就可以尽早地采取相应的治疗措施了,可以大幅度降低病人的痛苦,乃至医疗费用。”   深圳离高端医学影像有多“远”?   ——已凝聚一批国际水平尖端人才,为支撑高端医学影像科技发展奠定了重要基础   高精度多模态医学成像技术早已成为全球各大科研机构和跨国公司角逐的热点。医学影像设备的国际市场总额大约是180亿美元,并且每年以15%左右的速度增长。中国已经成为世界第二大医疗器械市场,但是人均拥有量仍然很低,具有巨大的市场空间。比如,我国目前的磁共振成像仪器普及率每百万人不足2台(美国、日本等发达国家约为40台以上),并多集中于市级以上医院。而数量庞大且担负基层初级诊疗重任的县级医院多不具有磁共振等高端医学成像仪器设备,以致众多疾病发现时已处于中晚期。因此尽早地打破高端医学成像受跨国公司的技术垄断局面,有效地降低磁共振设备的成本,提高我国磁共振系统的占有率,造福民众疾病的早预防早诊治尤为迫切。   深圳是国内最具影响力的医疗器械产业集聚地、研发生产出口地,发展高端医学成像具有充分的基础。目前,国内众多知名医疗器械公司都在研发和生产相关医学影像系统以应对国内广大的市场需求,但核心技术创新能力仍然与国际同行有巨大的差距。近年来,北京、上海、成都、宁波等地纷纷成立了相关的高端医学影像方面的研发团队。而一个拥有一批国际水平影像人才团队的国家级医学影像科技平台将在深圳“呼之欲出”。   2007年磁共振成像之父、诺贝尔奖获得者Paul C. Lauterbur将诺贝尔奖牌(副牌)捐给了深圳先进院,组建了以其名字命名的高端医学成像技术研究单元——保罗劳特伯医学成像研究中心。“劳特伯医学成像研究中心通过集聚一流医学成像人才、依托深圳产业发展的基础,已经形成良好的技术基础和发展态势。深圳先进院目前已经拥有医学影像科技骨干人员90多人,博士就有30多人,特别是从国际著名大学及公司,引入了一批高端医学影像科技骨干。目前,正在依托深圳先进院的国家‘千人计划’基地,加紧引进磁共振、CT、PET等方面‘千人计划’专家。”深圳先进院医工所副所长、医学影像专家郑海荣研究员在接受采访时向记者透露。   据了解,引进的部分科研骨干已经获得了2010年“广东省首批引进科研创新团队”和“中科院——国家外专局高精度多模态医学成像创新团队”的支持。近3年内,医学影像科技平台配备了价值3500余万元的科研设备,相关科研团队承担了一批重要科技项目并取得令人瞩目的成绩:含深圳市首个国家“973”计划重点项目、国家自然科学基金、中科院、省市和企业委托项目等40余项,总经费近5000万元。研究团队在快速磁共振成像技术、高分辨低剂量CT成像系统、医学超声弹性成像关键技术和医学成像装备等方面实现了重要核心技术突破 在医学成像技术领域发表一系列高水平文章和专利,部分成果达到了国际领先水平。此外,还与国内、深圳本地多家医院、企业开展合作,在医疗器材装备、医学信息等方面进行共享合作开发。   “我们需要一批这样有责任感的高水平科技创新与创业团队,在发挥深圳生物战略新兴产业体系的源头创新作用。”深圳市发改委副主任吴优近日在调研深圳先进院时表示。这样的一批科研团队,势必要在国家高端医学影像技术开发等方面发挥更大的作用。   我国最近公布的新医改政策也明确地将疾病防治策略重心从疾病治疗转到了以预防为主的方向上。高端医学影像的技术是实现重大疾病的早期诊断、早期治疗的依赖工具。保障维护我国这样一个人口大国的国民健康问题,其依赖的主要医疗装备未来不可能一直再靠进口,发展一个具有核心的创新能力产业来支撑是必然的选择,否则国家国民健康安全保障能力将受到威胁。“我们计划通过3~5年的努力,形成成熟的具有自主知识产权的高端医学成像关键新技术及系统装备研发能力、专业技术人才培养能力、企业的孕育孵化能力,努力促进建立健全具有国际竞争力深圳战略新兴生物产业体系。到2020年,力争培育出深圳高端医学影像行业里具有国际竞争力和影响力的‘华为’。”深圳先进院院长樊建平如是说。
  • 低场核磁共振技术发展与应用论坛圆满召开,科技创新推动纽迈走向全球领先品牌
    仪器信息网讯 4月19日,在第十七届中国科学仪器发展年会(ACCSI2024)上,低场核磁共振技术发展与应用论坛在苏州狮山国际会议中心隆重举行。本次论坛的主办方为苏州纽迈分析仪器股份有限公司、中国仪器仪表学会分析仪器分会核磁共振仪器专家组、仪器信息网。论坛汇聚了来自各地的专家学者,共同探讨低场核磁共振技术在各领域的最新研究成果和应用前景。其中,多位业界学者发表了精彩的演讲,分享了他们在各自领域的科研成果和实践经验。主持人:燕军博士(苏州纽迈分析博士后工作站站长/苏州泰纽测试服务有限公司总经理)苏州纽迈分析仪器股份有限公司总经理 李向红姚叶锋(华东师范大学上海市磁共振重点实验室主任/研究员)报告题目:低场核磁共振技术在高分子材料研究中的一些应用姚叶峰研究员分享到,低场核磁虽然场强低,但是能力不低,可以做很多高场核磁做不了的事情。第一,可研究高分子材料非晶/结晶界面的精细相的结构变化,可以通过自旋扩散过程,实现对固体聚乙烯中非晶/结晶界面相信号的选择性观测。第二,还可以通过1H NMR区分出与无机材料有不同相互作用的材料。第三,低场核磁还可以观测高分子交联密度。高分子网络结构缺乏有效观测手段,相对于流变技术,通过1H CPMG研究高分子缠结和交联。变回波1H CPMG序列克服传统CPMG的缺点。第四,1H DQ NMR可观测高分子缠结。姚博士指出,核磁共振技术在高分子结构分析和检测方面能发挥重要作用,还有更多应用有待开发,而且,低场核磁共振的发展方向应该是以特定应用为导向:便携、易用、灵敏。朱峰(中国石化石油勘探开发研究院无锡石油地质研究所副主任/助理研究员)报告题目:低场核磁共振技术在非常规油气储层评价中的应用研究朱峰博士阐述了低场核磁共振技术在非常规油气藏勘探开发中的重要作用,尤其是在提高采收率、降低开采成本等方面的优势。朱博士表示,针对实验室泥页岩二维核磁共振定量分析,优选谱图划分方案,对泥页岩中油、水同时实现快速无损定量评价,应用在四川盆地侏罗系等页岩含油性评价中,和现有油、水定量方法结果具有较好的可对比性。应用超临界二氧化碳驱替与NMR组合的实验方法评价页岩油可动性,并结合地化参数初步建立了相关可动性评价指标。张通博士(安徽理工大学副教授)报告题目:考虑原位应力对油饱和煤中动态孔隙-裂缝演变和多相渗流影响的实验研究张通博士分享到,煤层气的产出涉及气体在多尺度孔裂隙结构裂隙中的解吸、传输和迁移,以及气/液两相流体与孔裂隙结构相互作用等影响。在这项研究中,基于自行开发的LF-NMR三轴加载系统,对饱油煤中的孔隙-裂隙演变和气-液流动进行了定量研究。通过横向弛豫谱(T 2)和核磁共振成像(NMRI)分析了应力扰动下的动态裂隙孔隙发育和气-液两相流体迁移与分布特征。这些发现为煤层气排水领域的模型开发和工程实践提供了基本参考。徐吉钊博士(中国矿业大学副教授)报告题目:低场核磁共振技术在煤矿领域应用的研究进展现有煤体孔隙表征手段有压汞法、N2/CO2吸附法、SEM、CT扫描和核磁共振NMR等,在可重复性、样本尺寸、测孔范围、测试精度和测试时间等方面各有特点。NMR更好地适用于较大尺寸试样的孔隙表征,且具有测试速度快、精度高、定量无损的优势。弛豫信号与H质子含量的定量关系可反映岩石孔隙度、渗透率和润湿性等徐博士还分享了七个测试案例,比如,甲烷吸附及注气置换吸附:低场核磁共振技术可以动态监测甲烷在煤样中的运移和分布,相较于传统体积法,对甲烷吸附/解吸的测试更加精细。受仪器测试精度影响,部分弛豫时间0.1ms的吸附甲烷不被检测到 煤中的原始水分信号会对测试结果产生干扰 当甲烷信号量较少时,核磁成像精度受限。徐博士还列举了一些应用展望:(1)二维核磁共振在流体识别方面独具优势,通过二维核磁共振提升对含瓦斯、水煤的流体识别。利用大数据和机器学习的核磁数据深度分析是测井领域的研究热点,值得在煤物性表征方面推广,提高数据的精确度和分析效率。(2)目前大多数的核磁测试都是常温常压条件,煤样不受载,与深部煤层的高温高压环境相差较远,测试结果必然存在较大误差 对低场核磁共振分析仪配套温压加载、流体注入装置和电磁兼容设计,通过实时测试与成像动态监测煤样在三轴应力、高温条件下致裂损伤过程的孔隙结构演化,实现煤体内部流体运移可视化。(3)煤矿井下有大量的钻孔,取钻屑简单方便,利用钻屑和煤心T₂谱的相似性,取合适粒径的钻屑在煤矿现场进行快速测试,可以获取大量丰富的煤层物理性质信息。(4)开发微型核磁共振分析仪,在煤矿井下对钻屑进行快速测试分析,甚至在煤层钻孔中实时采集水或者瓦斯分布信息。赵新礼博士(常州大学石油与天然气工程学院讲师)报告题目:基于分层核磁技术的多孔介质精细化表征及重构建模方法研究赵博士介绍到,核磁测试技术能够快速高效地实现对多孔介质储集和渗流特性信息的捕捉,其中SE-SPI(Spin-Echo SPI)序列将岩心划分为多层,并通过编码方式获取各层的T2分布谱。赵博士利用spatially resolved T2 distributions measurement,结合分形统计模型,提出了一种新的用于重构多孔介质的精细化表征建模方法。通过REV-LBM对重构的精细化多孔介质模型进行了相关的流动模拟,模拟结果证明了这一新方法生成的多孔介质模型能够在较小的误差范围内复现出原始样品的宏观储集和渗流参数,这一误差远远小于现有数字岩心技术重构模型所产生的误差。新的多孔介质精细化表征及重构建模方法大大缩短了现有多孔介质重构方法(图像分析及数字岩心)的实验测试周期,降低了相应的实验成本。此外,由于新方法依托于核磁测试技术,因而操作简便,易于实现,具有广阔的发展前景。吴飞(苏州纽迈分析仪器研发经理)报告题目:多孔介质核磁共振岩石物理技术发展现状最后,吴飞博士作为企业代表,在会上详细梳理了NMR测井仪器发展时间线。从他的分享中可以看到,2001年,核磁钻井仪就已经出现,2008年,纽迈科技开始商业化推广国产MicroMR系列NMR岩心分析仪,2017年,纽迈科技新一代NMR岩心分析仪开始商业化销售。此次论坛的成功举办,不仅促进了学术交流,也为低场核磁共振技术的发展注入了新的活力。线上线下与会者纷纷提问,显示对低场核磁共振技术及其应用场景和前景的浓厚兴趣,此次论坛将深化产学研合作,促进低场核磁共振技术的进步与发展。我们相信,在不久的将来,这一技术将在更多领域展现其独特魅力,在各个领域给科研和应用者带来更多惊喜和福祉。论坛主办方苏州纽迈分析仪器股份有限公司简介:纽迈成立于2003年,专注于“低场核磁共振”技术开发及应用推广,具备强大的自主研发能力、卓越的生产服务水平和完备成熟的运营体系,是国家高新技术企业。经过二十多年的发展,纽迈分析独立自主开发的多款低场核磁共振仪器打破了国外进口设备的垄断,已成功的应用于能源岩土、食品农业、生命科学、材料与教学等领域,获得业界的一致认可,取得多项国家奖项和资质认证。据悉,低场核磁共振技术,目前真正投入巨资来展开研发的,不是布鲁克,也不是牛津,而是纽迈科技。纽迈公司产品在与强大有力的对手竞争的时候,主要依靠性价比来获取竞争优势,根据用户需求定制产品,能够及时提供原厂级的现场快速维修,并人性化地提供用户应用培训服务,与进口仪器价格差异不大的同类型仪器,通过多提供用户一些分析测试应用功能,增强仪器的功能,由此提高性价比以获取竞争优势;目前纽迈的愿景是成为低场核磁共振领域全球领先的品牌。拓展阅读:祝贺!纽迈分析仪器董事长杨培强荣获“2023年度科学仪器行业研发特别贡献奖”,2024年https://www.instrument.com.cn/news/20240418/714362.shtml以“磁共振+”敲开工业市场大门——视频访苏州纽迈分析仪器股份有限公司董事长杨培强,2019年https://www.instrument.com.cn/news/20190513/485103.shtml纽迈分析与低场核磁技术的“共振”——访苏州纽迈分析仪器股份有限公司董事长杨培强,2018年https://www.instrument.com.cn/news/20180628/466646.shtml
  • 核磁共振、顺磁共振、磁共振成像......你想要的都在这里
    p style=" text-align: justify "   磁共振指的是自旋磁共振(spin magnetic resonance)现象,包含核磁共振(nuclear magnetic resonance, NMR)、电子顺磁共振(electron paramagnetic resonance, EPR)或称电子自旋共振(electron spin resonance, ESR)。人们日常生活中常说的磁共振成像(Magnetic Resonance Imaging,MRI),是基于核磁共振现象的一类用于医学检查的成像设备。 /p p style=" text-align: justify "    span style=" color: rgb(255, 0, 0) " strong 那么,你真正了解核磁共振(NMR)、磁共振成像(MRI) 及电子顺磁共振(EPR/ESR)吗? /strong /span /p p style=" text-align: justify "    strong 核磁共振波谱(NMR) /strong /p p style=" text-align: justify "   核磁共振波谱法(Nuclear Magnetic Resonance Spectroscopy, NMR )研究的是原子核对射频辐射(Radio-frequency Radiation)的吸收。1945 年布洛赫(Bloch )和伯塞尔 (Purcell) 证实了原子核自旋的确实存在, 他们为此共同获得了1952 年诺贝尔物理奖。1991年诺贝尔化学奖授予了R.R.Ernst教授,以表彰他对二维核磁共振理论及傅里叶变换核磁共振的贡献。这两次诺贝尔奖的授予,充分说明了核磁共振的重要性。 /p p style=" text-align: justify "   自1953年出现第一台核磁共振商品仪器以来,核磁共振在仪器、实验方法、理论和应用等方面有着飞跃的进步。目前,NMR不仅是对各种有机和无机物的成分、结构进行定性分析的最强有力的工具之一,有时亦可进行定量分析,其所应用的学科已经从化学、物理扩展到了生物、医学等多个学科。 /p p style=" text-align: justify "    strong 磁共振成像(MRI) /strong /p p style=" text-align: justify "   核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。 /p p style=" text-align: justify "   MRI也就是磁共振成像,英文全称是:Magnetic Resonance Imaging。经常为人们所利用的原子核有: sup 1 /sup H、 sup 11 /sup B、 sup 13 /sup C、 sup 17 /sup O、 sup 19 /sup F、 sup 31 /sup P。在这项技术诞生之初曾被称为核磁共振成像,到了20世纪80年代初,作为医学新技术的NMR成像(NMR Imaging)一词越来越为公众所熟悉。随着大磁体的安装,有人开始担心字母“N”可能会对磁共振成像的发展产生负面影响。另外,“nuclear”一词还容易使医院工作人员对磁共振室产生另一个核医学科的联想。因此,为了突出这一检查技术不产生电离辐射的优点,同时与使用放射性元素的核医学相区别,放射学家和设备制造商均同意把“核磁共振成像术”简称为“磁共振成像(MRI)”。 /p p style=" text-align: justify "    strong 电子顺磁共振(EPR/ESR) /strong /p p style=" text-align: justify "   电子顺磁共振(Electron Paramagnetic Resonance 简称EPR),或称电子自旋共振 (Electron Spin Resonance 简称ESR),是研究电子自旋能级跃迁的一门学科,是直接检测和研究含有未成对电子的顺磁性物质的现代分析方法。 /p p style=" text-align: justify "   自1945年物理学家Zavoisky首次提出了检测EPR信号的实验方法至今,电子顺磁共振技术的理论、实验技术和仪器结构性能等诸多方面都有了很大的发展,特别是20世纪70年代随着计算机和固体器件等电子技术的发展及其推广应用,使EPR实验技术有了许多重大的突破。随着现代科学技术的发展,EPR已经在物理学、化学、材料学、地矿学和年代学等许多领域获得了越来越广泛的应用。 /p p style=" text-align: justify " a href=" https://www.instrument.com.cn/webinar/meetings/6832/" target=" _blank" img style=" max-width: 100% max-height: 100% width: 600px height: 131px " src=" https://img1.17img.cn/17img/images/202006/uepic/675b0ee9-ba73-4bfb-892b-46b308191a24.jpg" title=" ba611d21-07b1-47c9-bba0-c6989443be32.jpg!w1920x420.jpg" alt=" ba611d21-07b1-47c9-bba0-c6989443be32.jpg!w1920x420.jpg" width=" 600" height=" 131" border=" 0" vspace=" 0" / /a /p p style=" text-align: justify "   自20世纪40年代以来,磁共振技术的持续发展对生命科学、医药、材料等多学科的发展起到了巨大的推动作用。而相关学科的快速发展,对磁共振技术也提出了更高的要求。在多方需求的碰撞下,核磁共振(NMR)、电子顺磁共振(EPR/ESR)、磁共振成像(MRI)等不同分支的磁共振技术也逐渐“百花齐放” DNP、超高转速固体核磁、液相色谱核磁联用等各种新的技术和应用层出不穷,为磁共振的发展提供了强劲的动力,其应用范围跨越了物理、化学、材料、生物等多个学科。 /p p style=" text-align: justify "   为了促进和加强国内外磁共振工作者的学术交流与合作,仪器信息网、北京波谱学会、《波谱学杂志》将于2020年6月9-10日联合举办“第四届磁共振网络会议”(iConference on Magnetic Resonance,简称iCMR 2020)”。本次会议开设了磁共振(MR)新技术及其应用、核磁共振(NMR)技术及其应用、顺磁共振(EPR/ESR)技术及其应用、磁共振成像(MRI)技术及其应用四个专题,更大范围涵盖了波谱相关技术及应用,共计安排了11位专家报告,并吸引了布鲁克、日本电子、国仪量子、纽迈分析、青檬艾柯等国内外的知名企业参与。 /p p style=" text-align: justify "   而且,特别值得一提的是,本次会议邀请到了清华大学宁永成教授分享其八本书的故事。非物理专业出身,如何深入理解和应用磁共振波谱?届时,宁永成教授和杨海军高工的专家对话环节或将让您醍醐灌顶。 span style=" color: rgb(255, 0, 0) " strong a href=" https://www.instrument.com.cn/webinar/meetings/6832/" target=" _blank" 立即报名》》》 /a /strong /span /p p style=" text-align: center " strong 报告日程 /strong /p p style=" text-align: center " a href=" https://www.instrument.com.cn/webinar/meetings/6832/" target=" _blank" strong 磁共振(MR)新技术及其应用(6月9日) /strong /a /p p style=" text-align: center " span style=" color: rgb(227, 108, 9) " a href=" https://www.instrument.com.cn/webinar/meetings/6832/" target=" _blank" — 我要报名 — /a /span /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" align=" center" tbody tr class=" firstRow" td width=" 14%" p style=" text-align:center " 09:20-09:30 /p /td td width=" 48%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6597" target=" _blank" 开幕致辞—非物理专业出身,如何深入理解和应用磁共振波谱? /a /p /td td width=" 37%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6597" target=" _blank" 杨海军(清华大学) /a /p /td /tr tr td width=" 14%" p style=" text-align:center " 09:30-10:00 /p /td td width=" 48%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6572" target=" _blank" 多核人体磁共振成像(MRI)新仪器及应用 /a /p /td td width=" 37%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6572" target=" _blank" 周欣(中国科学院精密测量科学与技术创新研究院) /a /p /td /tr tr td width=" 14%" p style=" text-align:center " 10:00-10:30 /p /td td width=" 48%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6568" target=" _blank" 基于量子技术的单分子磁共振谱学和成像 /a /p /td td width=" 37%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6568" target=" _blank" 石发展(中国科学技术大学) /a /p /td /tr tr td width=" 14%" p style=" text-align:center " 10:30-11:00 /p /td td width=" 48%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6791" target=" _blank" 布鲁克固体核磁新技术简介 /a /p /td td width=" 37%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6791" target=" _blank" 王秀梅(布鲁克(北京)科技有限公司) /a /p /td /tr tr td width=" 14%" p style=" text-align:center " 11:00-11:30 /p /td td width=" 48%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6570" target=" _blank" “非常见”原子核的固体核磁共振研究 /a /p /td td width=" 37%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6570" target=" _blank" 徐骏(南开大学) /a /p /td /tr /tbody /table p style=" text-align: center " br/ /p p style=" text-align: center " strong a href=" https://www.instrument.com.cn/webinar/meetings/6832/" target=" _blank" 核磁共振(NMR)技术及其应用(6月9日) /a /strong /p p style=" text-align: center " span style=" color: rgb(227, 108, 9) " a href=" https://www.instrument.com.cn/webinar/meetings/6832/" target=" _blank" — 我要报名 — /a /span /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" align=" center" tbody tr class=" firstRow" td width=" 14%" p style=" text-align:center " 14:00-14:30 /p /td td width=" 48%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6563" target=" _blank" 基于磁共振技术的蛋白质动态调控机制研究 /a /p /td td width=" 37%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6563" target=" _blank" 姜凌(中国科学院精密测量科学与技术创新研究院) /a /p /td /tr tr td width=" 14%" p style=" text-align:center " 14:30-15:00 /p /td td width=" 48%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6581" target=" _blank" 日本电子特有核磁技术简介 /a /p /td td width=" 37%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6581" target=" _blank" 叶跃奇(JEOL(Beijing)) /a /p /td /tr tr td width=" 14%" p style=" text-align:center " 15:00-15:30 /p /td td width=" 48%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6569" target=" _blank" 核磁共振仿真波谱仪开发与教育应用 /a /p /td td width=" 37%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6569" target=" _blank" 汪红志(华东师范大学上海市磁共振重点实验室) /a /p /td /tr tr td width=" 14%" p style=" text-align:center " 15:30-16:00 /p /td td width=" 48%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6790" target=" _blank" Bruker液体核磁新进展 /a /p /td td width=" 37%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6790" target=" _blank" 徐雯欣(布鲁克(北京)科技有限公司) /a /p /td /tr tr td width=" 14%" p style=" text-align:center " 16:00-16:30 /p /td td width=" 48%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6565" target=" _blank" 基于密度泛函理论的高精度有机分子化学位移计算在线系统构建及其在有机分子核磁谱图指认及结构确证中的应用 /a /p /td td width=" 37%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6565" target=" _blank" 李骞(中国科学院化学研究所) /a /p /td /tr /tbody /table p style=" text-align: center " br/ /p p style=" text-align: center " strong a href=" https://www.instrument.com.cn/webinar/meetings/6832/" target=" _blank" 顺磁共振(EPR/ESR)技术及其应用(6月10日) /a /strong /p p style=" text-align: center " span style=" color: rgb(227, 108, 9) " a href=" https://www.instrument.com.cn/webinar/meetings/6832/" target=" _blank" — 我要报名 — /a /span /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" align=" center" tbody tr class=" firstRow" td width=" 14%" p 09:00-09:30 /p /td td width=" 48%" align=" center" valign=" middle" p a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6566" target=" _blank" 若干血红素衍生物的电子自旋顺磁共振研究 /a /p /td td width=" 37%" align=" center" valign=" middle" p a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6566" target=" _blank" 李剑峰(中国科学院大学) /a /p /td /tr tr td width=" 14%" p 09:30-10:00 /p /td td width=" 48%" align=" center" valign=" middle" p a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6567" target=" _blank" 电子顺磁共振在研究青蒿素激活机制中的应用 /a /p /td td width=" 37%" align=" center" valign=" middle" p a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6567" target=" _blank" 刘国全(北京大学药学院) /a /p /td /tr tr td width=" 14%" p 10:00-10:30 /p /td td width=" 48%" p a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6571" target=" _blank" 光合作用水裂解催化中心的仿生模拟 /a /p /td td width=" 37%" align=" center" valign=" middle" p a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6571" target=" _blank" 张纯喜(中国科学院化学研究所) /a /p /td /tr tr td width=" 14%" p 10:30-11:00 /p /td td width=" 48%" align=" center" valign=" middle" p a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6579" target=" _blank" 顺磁共振仪器——从系综到单自旋 /a /p /td td width=" 37%" align=" center" valign=" middle" p a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6579" target=" _blank" 许克标(国仪量子(合肥)技术有限公司) /a /p /td /tr tr td width=" 14%" p 11:00-11:30 /p /td td width=" 48%" align=" center" valign=" middle" p a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6564" target=" _blank" 利用电子顺磁共振(EPR)指导有机合成 /a /p /td td width=" 37%" align=" center" valign=" middle" p a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6564" target=" _blank" 蒋敏(杭州师范大学) /a /p /td /tr /tbody /table p style=" text-align: center " br/ /p p style=" text-align: center " strong a href=" https://www.instrument.com.cn/webinar/meetings/6832/" target=" _blank" 磁共振成像(MRI)技术及其应用(6月10日) /a /strong /p p style=" text-align: center " span style=" color: rgb(227, 108, 9) " a href=" https://www.instrument.com.cn/webinar/meetings/6832/" target=" _blank" — 我要报名 — /a /span /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" align=" center" tbody tr class=" firstRow" td width=" 14%" p style=" text-align:center " 14:00-14:30 /p /td td width=" 48%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6562" target=" _blank" 心脏磁共振成像中的黑血技术 /a /p /td td width=" 37%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6562" target=" _blank" 丁海艳(清华大学) /a /p /td /tr tr td width=" 14%" p style=" text-align:center " 14:30-15:00 /p /td td width=" 48%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6773" target=" _blank" 低场核磁成像在临床前科研中应用 /a /p /td td width=" 37%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6773" target=" _blank" 丁皓(苏州纽迈分析仪器股份有限公司) /a /p /td /tr tr td width=" 14%" p style=" text-align:center " 15:00-15:30 /p /td td width=" 48%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6792" target=" _blank" 智能集成化磁共振成像系列仪器及应用 /a /p /td td width=" 37%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6792" target=" _blank" 刘化冰(北京青檬艾柯科技有限公司) /a /p /td /tr tr td width=" 14%" p style=" text-align:center " 15:30-15:40 /p /td td width=" 48%" p style=" text-align:center " 现场讨论环节 /p /td td width=" 37%" p style=" text-align:center " 杨海军主持 /p /td /tr tr td width=" 14%" p style=" text-align:center " 15:40-16:10 /p /td td width=" 48%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6613" target=" _blank" 我的八本书 /a /p /td td width=" 37%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6613" target=" _blank" 宁永成(清华大学) /a /p /td /tr tr td width=" 14%" p style=" text-align:center " 16:10-16:40 /p /td td width=" 48%" p style=" text-align:center " 专家对话 /p /td td width=" 37%" p style=" text-align:center " 杨海军@宁永成 /p /td /tr tr td width=" 14%" p style=" text-align:center " 16:40-17:00 /p /td td width=" 48%" p style=" text-align:center " 现场答疑 /p /td td width=" 37%" p style=" text-align:center " 全体参会人员 /p /td /tr /tbody /table p   span style=" color: rgb(255, 0, 0) " strong  特别惊喜: /strong /span 为了提高磁共振工作者工作和学习的热情,鼓励大家积极参与会议交流环节,本次会议还特别安排了抽奖环节,将从积极提问的参会者中抽取幸运者,送出主办方精心准备的礼品(小度智能音箱、京东卡)! /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/aff21f8a-cd43-40a2-bb8d-8fa2d2012782.jpg" title=" 二维码图片_6月3日17时44分31秒.png" alt=" 二维码图片_6月3日17时44分31秒.png" / /p p style=" text-align: center " strong 扫码报名,免费参会 /strong /p
  • 新型磁共振成像技术使图质量提高3至5倍
    磁共振检查是早期诊断的重要手段,但我国长期以来存在普及率低、技术设备为西方垄断、收费高等问题。上海张江高科技园区内的美时医疗科技公司9月24日正式公布,其自主研发出一种新型医学磁共振成像技术——高温超导射频线圈,该技术使人体图像分辨率和清晰度提高了3至5倍,是目前世界磁共振领域灵敏度最高的“电子眼”。该设备已顺利通过美国FDA认证,面向全球销售,一举打破世界高端磁共振设备垄断格局。   据介绍,磁共振仪中的核心部件是射频线圈,相当于航天器的“电子眼”。美时海外留学人员研究团队自主开发出领先全球的高温超导线圈技术,是世界上最灵敏的“电子眼”。美时的超导线圈在今年8月美国加州大学圣地亚哥医学院和匹茨堡大学医学院分别进行了初步的人体实验,在3T钠原子成像的测试中获得了灵敏度与清晰度3至5倍的提高。这一技术使磁共振系统在无需增加磁场强度的情况下,使低场型核磁共振系统的成像达到了高场型的效果,大幅度增强人体成像的清晰度。   据了解,长期以来,人体磁共振装置的设备制造核心技术多为少数跨国企业所掌握,该技术的研发成功意味着我国有望用低成本生产高质量的磁共振设备,从而降低患者医疗诊断成本。同时,目前全球磁共振均使用铜作为常规的射频线圈,铜线圈难以捕捉和呈现极弱的钠分子成像,而钠成像又恰恰可用来直接检测肿瘤及癌症。这一高温超导射频线圈技术的突破,也标志着钠成像临床应用的序幕正式拉开。
  • 智能导钻系统随钻核磁共振测井仪通过技术指标现场测试和科技目标验收
    2023年7月29-30日,中国科学院地质与地球物理研究所所牵头研发的随钻核磁共振测井仪(IGG-MRLWD)通过专家组技术指标现场测试和科技目标验收,其中关键技术指标最小回波间隔为0.6毫秒,达到国外同类仪器水平,可有效提高对复杂油气藏短弛豫组分的识别能力,标志着我国在这一高端测井技术领域迈出了重要的一步。随钻核磁共振测井技术是在钻井过程中通过激发地层孔隙流体分子中的氢核对地层岩石孔隙结构和流体类型进行探测的技术。该技术是井下区分小孔隙内束缚流体和大孔隙内可动流体的唯一方法,已成为页岩油气等低孔低渗、非均质碳酸盐岩、低电阻率等复杂油气藏精细评价不可或缺的重要手段。与医学和化学领域核磁共振仪器不同,随钻核磁共振测井仪工作时面临井下高温、高压、强振(震)动、空间受限、旋转和轴向运动等复杂环境,研制难度极大,目前国际上仅斯伦贝谢、哈里伯顿、贝克休斯三大油服公司拥有这类商用仪器,而且垄断了市场,高昂的现场服务费用制约了仪器在国内的应用。   2017年,在中国科学院A类战略性先导智能导钻专项支持下,我所联合中海油田服务股份有限公司、中国石油大学(北京)、吉林大学、北京工业大学,在国内率先开展随钻核磁共振测井关键技术和仪器样机攻关研发。经过六年努力,科研团队攻克了短回波间隔脉冲序列、低梯度静磁场设计、大功率射频脉冲发射、微弱自旋回波信号检测等关键核心技术,研制了具有自主知识产权的随钻核磁共振测井仪样机。自研仪器在中国石油大学(华东)完成2口标准井测试,并在胜利油田成功开展了国内首次实井试验,分别在定点、连续运动和钻进条件下获得了高质量的井下核磁共振原始数据,孔隙度测量结果与电缆测井、岩心测定结果相符,验证了仪器井下工作的可靠性,为仪器工程化奠定了坚实的技术基础。   随钻核磁共振测井技术研发是我所面向国家油气资源高效开发重大需求、恪守国家战略科技力量主力军的使命定位,联合院内外优势研究力量开展产学研协同攻关的成功范例。科研团队将继续攻坚克难,加快仪器工程化步伐,努力抢占油气随钻测井领域科技制高点!
  • 243万!纽迈中标东南大学分析测试中心大口径核磁共振分析与成像系统采购项目
    一、项目编号:JC066022092023(招标文件编号:JC066022092023)  二、项目名称:东南大学分析测试中心大口径核磁共振分析与成像系统采购项目  三、中标(成交)信息  供应商名称:江苏昊升抗体生物医药科技研究院有限公司  供应商地址:南京市江宁区天元东路1009号创业大厦3层(江宁高新园)  中标(成交)金额:243.000000(万元)  四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 江苏昊升抗体生物医药科技研究院有限公司 大口径核磁共振分析与成像系统 纽迈 MacroMR12-150V-I 1套 2430000
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制