当前位置: 仪器信息网 > 行业主题 > >

集成激光扫描共焦荧光寿命成像系统

仪器信息网集成激光扫描共焦荧光寿命成像系统专题为您提供2024年最新集成激光扫描共焦荧光寿命成像系统价格报价、厂家品牌的相关信息, 包括集成激光扫描共焦荧光寿命成像系统参数、型号等,不管是国产,还是进口品牌的集成激光扫描共焦荧光寿命成像系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合集成激光扫描共焦荧光寿命成像系统相关的耗材配件、试剂标物,还有集成激光扫描共焦荧光寿命成像系统相关的最新资讯、资料,以及集成激光扫描共焦荧光寿命成像系统相关的解决方案。

集成激光扫描共焦荧光寿命成像系统相关的仪器

  • 荧光和荧光寿命分子包含多个单能态S0、S1、S2… 和三重态T1… ,每个能态都包含多个精细的能级。正常情况下,大部分电子处在*低能态即基态S0 的*低能级上,当分子被光束照射,会吸收光子能量,电子被激发到更高的能态S1 或S2 上,在S2 能态上的电子只能存在很短暂的时间,便会通过内转换过程跃迁到S1 上,而S1 能态上的电子亦会在极短时间内跃迁到S1 的*低能级上,而这些电子会存在一段时间后通过震荡弛豫辐射跃迁到基态,这个过程会释放一个光子,即荧光。此外,亦会有电子跃迁至三重态T1 上,再由T1 跃迁至基态,我们称之为磷光。荧光特性研究荧光特性时,主要在以下几方面进行分析:激发光谱,发射光谱、荧光强度、偏振荧光、荧光发光量子产率、荧光寿命等。其中荧光寿命(Fluorescence Lifetime)是指荧光分子在激发态上存在的平均时间(纳秒量级)。荧光寿命测试荧光寿命一般在几纳秒至几百纳秒之间,如今主要有两类测试方法:时域测量和频域测量时间稳定性实验测试曲线:1 时域测量由一束窄脉冲将荧光分子激发至较高能态S1,接着测量荧光的发射几率随时间的变化。其中目前广泛应用的是时间相关单光子计数,即TCSPC(Time Correlated Single Photon Counting)时间相关单光子计数(TCSPC) 实现了从百ps-ns-us 的瞬态测试,此方法对数据的获取完全依赖快速探测器和高速电路。用统计的方法计算样品受激后发出的第一个( 也是*一的一个) 光子与激发光之间的时间差,也就是下图的START( 激发时刻) 与STOP( 发光时刻) 的时间差。由于对于Stop 信号的要求,所以TCSPC 一般需要高重复频率的光源作为激发源,其重复至少要在100KHz 以上,多数的光源都会达到MHz 量级;同时,在一般情况下还要对Stop 信号做数量上的控制,做到尽量满足在一个激发周期内,样品产生且只产生一个光子的有效荧光信号,避免光子对的出现。2 频域测量对连续激发光进行振幅调制后,分子发出的荧光强度也会受到振幅调制,两个调制信号之间存在与荧光寿命相关的相位差,因此可以测量该相位差计算荧光寿命。 左图为正弦调制激发光(绿色)频域显示,发射光信号(红色)相应的相位变化频域显示。右图为对应不同寿命的调制和相位的频域显示。TM- 调制寿命,TP- 相位寿命。[1]显微荧光寿命成像技术(FLIM)显微荧光寿命成像技术(Fluorescence Lifetime ImagingMicroscopy,FLIM)是一种在显微尺度下展现荧光寿命空间分布的技术,由于其不受样品浓度影响,具有其他荧光成像技术无法代替的优异性能,目前在生物医学工程、光电半导体材料等领域是一种重要的表征测量手段。FLIM 一般分为宽场FLIM 和激光扫描FLIM。宽场FLIM(Wide Field FLIM,WFM)该技术是用平行光照明并由物镜聚焦样品获得荧光信号,再由一宽场相机采集荧光成像。宽场FLIM 常用于快速获取大面积样品成像。时域或是频域寿命采集都可以应用在宽场成像FLIM 上。宽场FLIM 有更高帧率和低损伤的优势。2 激光扫描FLIM(Laser Scanning FLIM,LSM)激光扫描FLIM 是针对选定区域内的样品逐点获取其荧光衰减曲线,再经过拟合最终合成荧光寿命图像。相比宽场FLIM,其在空间分辨率、信噪比方面有更大的优势。扫描方式有两种:一种是固定样品,移动激光进行扫描,一种是固定激光,电动位移台带动样品移动进行扫描。显微荧光寿命成像系统RTS2-FLIM应用材料科学领域宽禁带半导体如GaN、SiC 等体系的少子寿命mapping 测量量子点如CdSe@ZnS 等用作荧光寿命成像显微镜探针钙钛矿电池/LED 薄膜的组分分析、缺陷检测铜铟镓硒CIGS,铜锌锡硫CZTS 薄膜太阳能电池的组分、缺陷检测镧系上转换纳米颗粒GaAs 或GaAsP 量子阱的载流子扩散研究生命科学领域细胞体自身荧光寿命分析自身荧光相对荧光标记的有效区分活细胞内水介质的PH 值测量局部氧气浓度测量具有相同频谱性质的不同荧光标记的区分活细胞内钙浓度测量时间分辨共振能量转移(FRET):纳米级尺度上的远差测量,环境敏感的FRET 探针定量测量代谢成像:NAD(P)H 和FAD 胞质体的荧光寿命成像显微荧光寿命成像系统RTS2-FLIM应用案例1 用荧光分子对海拉细胞进行染色用荧光分子转子Bodipy-C12 对海拉细胞(宫颈癌细胞的一种) 进行染色。(a) 显微荧光寿命成像图,寿命范围1ns(蓝色)到2.5ns(红色);(b) 荧光寿命直方图,脂肪滴的短寿命约在1.6ns 附近,细胞中其他位置寿命较长,在1.8ns 附近。用荧光分子转子的时间分辨测量*大的好处在于荧光寿命具备足够清晰的标签特性,且与荧光团的浓度无关。[2]2 金属修饰荧光金属修饰荧光:(a) 荧光寿命是荧光团到金表面距离的函数;(b) 用绿色荧光蛋白(GFP)标记乳腺腺癌细胞的细胞膜的共聚焦xz 横截面,垂直比例尺:5m;(c) b 图的FLIM 图,金表面附近的GFP 荧光寿命缩短。[2]3 钙钛矿太阳能电池下图研究中,展示了一种动态热风(DHA)制备工艺来控制全无机PSC 的薄膜形态和稳定性,该工艺不含有常规的有害反溶剂,可以在大气环境中制备。同时,钙钛矿掺有钡(Ba2+) 碱金属离子(BaI2:CsPbI2Br)。这种DHA 方法有助于形成均匀的晶粒并控制结晶,从而形成稳定的全无机PSC。从而在环境条件下形成完整的黑色相。经过DHA处理的钙钛矿光伏器件,在0.09cm小面积下,效率为14.85%,在1x1cm的大面积下,具有13.78%的*高效率。DHA方法制备的器件在300h后仍然保持初始效率的92%。4 MQWs 多量子阱研究在(a) 蓝宝石和(b) GaN 上生长的MQWs 的共焦PL mapping 图像。具有较小尺寸的发光团的最高密度是观察到在GaN 上生长的MQWs。在(c) 蓝宝石和(d)GaN 上生长的MQWs 的共焦TRPL mapping 图。仅对于在GaN 上生长的MQWs,强的PL 强度区域与较长PL 衰减时间的区域很好地匹配。在(e) 蓝宝石和(f)GaN 上生长的MQWs 在A 点和B 点测量的局部PL 衰减曲线,均标记在图中。对于在GaN 上生长的MQWs,点A 和B 之间的PL 衰减时间差更高。显微荧光寿命成像系统FLIM参数配置北京卓立汉光仪器有限公司提供的显微荧光寿命成像系统是基于显微和时间相关单光子计数技术,配合高精度位移台得到微观样品表面各空间分布点的荧光衰减曲线,再经过用数据拟合,得到样品表面发光寿命表征的影像。是光电半导体材料、荧光标记常用荧光分子等类似荧光寿命大多分布在纳秒、几十、几百纳秒尺度的物质的选择。参数指标:系统性能指标光谱扫描范围200-900nm最小时间分辨率16ps荧光寿命测量范围500ps-1μs@ 皮秒脉冲激光器空间分辨率≤1μm@100X 物镜@405nm 皮秒脉冲激光器荧光寿命检测IRF≤2ns配置参数激发源及匹配光谱范围(光源参数基于50MHz 重复频率)375nm 皮秒脉冲激光器,脉宽:30ps,平均功率1.5mW,荧光波段:400-850nm405nm 皮秒脉冲激光器,脉宽:25ps,平均功率2.5mW,荧光波段:430-920nm450nm 皮秒脉冲激光器,脉宽:50ps,平均功率1.9mW,荧光波段:485-950nm488nm 皮秒脉冲激光器,脉宽:70ps,平均功率1.3mW,荧光波段:500-950nm510nm 皮秒脉冲激光器,脉宽:75ps,平均功率1.1mW,荧光波段:535-950nm635nm 皮秒脉冲激光器,脉宽:65ps,平均功率4.3mW,荧光波段:670-950nm660nm 皮秒脉冲激光器,脉宽:60ps,平均功率1.9mW,荧光波段:690-950nm670nm 皮秒脉冲激光器,脉宽:40ps,平均功率0.8mW,荧光波段:700-950nm科研级正置显微镜落射明暗场卤素灯照明,12V,100W5 孔物镜转盘,标配明场用物镜:10×,50×,100×监视CCD:高清彩色CMOS 摄像头,像元尺寸:3.6μm*3.6μm,有效像素:1280H*1024V,扫描方式:逐行,快门方式:电子快门电动位移台高精度电动XY 样品台,行程:75*50mm(120*80mm 可选),最小步进:50nm,重复定位精度:< 1μm光谱仪320mm 焦距影像校正单色仪,双入口、狭缝出口、CCD 出口,配置三块68×68mm 大面积光栅,波长准确度:±0.1nm,波长重复性:±0.01nm,扫描步距:0.0025nm,焦面尺寸:30mm(w)×14mm(h),狭缝缝宽:0.01-3mm 连续电动可调探测器:制冷型紫外可见光电倍增管,光谱范围:185-900nm(标配,可扩展)光谱CCD(可扩展PLmapping)低噪音科学级光谱CCD(LDC-DD),芯片格式:2000x256,像元尺寸:15μm*15μm, 探测面:30mm*3.8mm,背照式深耗尽芯片,低暗电流,*低制冷温度-60℃ @25℃环境温度,风冷,最高量子效率值95%时间相关单光子计数器(TCSPC)时间分辨率:16/32/64/128/256/512/1024ps… … 33.55μs,死时间< 10ns,*高65535 个直方图时间窗口,瞬时饱和计数率:100Mcps,支持稳态光谱测试;OmniFluo-FM 荧光寿命成像专用软件控制功能:控制样品平移台移动,通过显微镜的明场光学像定位到合适区域,框选扫描区域进行扫描,逐点获得荧光衰减曲线,实时生成荧光图像等数据处理功能:自动对扫描获得的FLIM 数据,逐点进行多组分荧光寿命拟合(组分数小于等于4),对逐点拟合获得的荧光强度、荧光寿命等信息生成伪彩色图像显示图像处理功能:直方图、色表、等高线、截线分析、3D 显示等操作电脑品牌操作电脑,Windows 10 操作系统软件界面控制测试界面测试软件的界面遵循“All In One”的简洁设计思路,用户可在下图所示的控制界面中完成采集数据的所有步骤:包括控制样品平移台移动,通过显微镜的明场光学像定位到合适区域,框选扫描区域进行扫描,逐点获得荧光衰减曲线,实时生成荧光图像等。数据处理界面功能丰富的荧光寿命数据处理软件,充分挖掘用户数据中的宝贵信息。可自动对扫描获得的FLIM 数据,逐点进行多组分荧光寿命拟合(组分数小于等于4),对逐点拟合获得的荧光强度、荧光寿命等信息生成伪彩色图像显示。自主开发的一套时间相关单光子计数(TCSPC)荧光寿命的拟合算法,可对荧光衰减曲线中最多包含4 个时间组分的荧光过程进行拟合,获得每个组分的荧光寿命,光子数比例,计算评价函数和残差。TCSPC 荧光寿命通常并非简单的指数衰减过程,而是与光源及探测器相关的仪器响应函数(IRF)与荧光衰减过程相互卷积的结果,因此适当的拟合方法和参数选择对获得正确可靠的荧光寿命非常重要。该软件可导入实际测量的IRF 对衰减曲线进行卷积计算和拟合。但是大多数情况下, IRF 很难正确的从实验获得,针对这种情况,软件提供了两种无需实验获取IRF 的拟合方法:1.通过算法对数据上升沿进行拟合,获得时间响应函数IRF,然后对整条衰减曲线进行卷积计算和拟合得到荧光寿命。2.对于衰减时间远长于仪器响应时间的,可对衰减曲线下降沿进行直接的指数拟合。该软件经过大量测试,可以很好的满足各种场合的用户需求。MicroLED 微盘的荧光强度像(3D 显示):
    留言咨询
  • 荧光和荧光寿命分子包含多个单能态S0、S1、S2…和三重态T1…,每个能态都包含多个精细的能级。正常情况下,大部分电子处在*低能态即基态S0 的*低能级上,当分子被光束照射,会吸收光子能量,电子被激发到更高的能态S1 或S2 上,在S2 能态上的电子只能存在很短暂的时间,便会通过内转换过程跃迁到S1 上,而S1 能态上的电子亦会在极短时间内跃迁到S1 的*低能级上,而这些电子会存在一段时间后通过震荡弛豫辐射跃迁到基态,这个过程会释放一个光子,即荧光。此外,亦会有电子跃迁至三重态T1 上,再由T1 跃迁至基态,我们称之为磷光。荧光特性研究荧光特性时,主要在以下几方面进行分析:激发光谱,发射光谱、荧光强度、偏振荧光、荧光发光量子产率、荧光寿命等。其中荧光寿命(Fluorescence Lifetime)是指荧光分子在激发态上存在的平均时间(纳秒量级)。荧光寿命测试荧光寿命一般在几纳秒至几百纳秒之间,如今主要有两类测试方法:时域测量和频域测量时间稳定性实验测试曲线:1 时域测量由一束窄脉冲将荧光分子激发至较高能态S1,接着测量荧光的发射几率随时间的变化。其中目前广泛应用的是时间相关单光子计数,即TCSPC(Time Correlated Single Photon Counting)时间相关单光子计数(TCSPC) 实现了从百ps-ns-us 的瞬态测试,此方法对数据的获取完全依赖快速探测器和高速电路。用统计的方法计算样品受激后发出的*一个( 也是唯一的一个) 光子与激发光之间的时间差,也就是下图的START( 激发时刻) 与STOP( 发光时刻) 的时间差。由于对于Stop 信号的要求,所以TCSPC 一般需要高重复频率的光源作为激发源,其重复至少要在100KHz 以上,多数的光源都会达到MHz 量级;同时,在一般情况下还要对Stop 信号做数量上的控制,做到尽量满足在一个激发周期内,样品产生且只产生一个光子的有效荧光信号,避免光子对的出现。2 频域测量对连续激发光进行振幅调制后,分子发出的荧光强度也会受到振幅调制,两个调制信号之间存在与荧光寿命相关的相位差,因此可以测量该相位差计算荧光寿命。 左图为正弦调制激发光(绿色)频域显示,发射光信号(红色)相应的相位变化频域显示。右图为对应不同寿命的调制和相位的频域显示。TM- 调制寿命,TP- 相位寿命。[1]显微荧光寿命成像技术(FLIM)显微荧光寿命成像技术(Fluorescence Lifetime ImagingMicroscopy,FLIM)是一种在显微尺度下展现荧光寿命空间分布的技术,由于其不受样品浓度影响,具有其他荧光成像技术无法代替的优异性能,目前在生物医学工程、光电半导体材料等领域是一种重要的表征测量手段。FLIM 一般分为宽场FLIM 和激光扫描FLIM。宽场FLIM(Wide Field FLIM,WFM)该技术是用平行光照明并由物镜聚焦样品获得荧光信号,再由一宽场相机采集荧光成像。宽场FLIM 常用于快速获取大面积样品成像。时域或是频域寿命采集都可以应用在宽场成像FLIM 上。宽场FLIM 有更高帧率和低损伤的优势。2 激光扫描FLIM(Laser Scanning FLIM,LSM)激光扫描FLIM 是针对选定区域内的样品逐点获取其荧光衰减曲线,再经过拟合*终合成荧光寿命图像。相比宽场FLIM,其在空间分辨率、信噪比方面有更大的优势。扫描方式有两种:一种是固定样品,移动激光进行扫描,一种是固定激光,电动位移台带动样品移动进行扫描。FLIM 应用材料科学领域宽禁带半导体如GaN、SiC 等体系的少子寿命mapping 测量量子点如CdSe@ZnS 等用作荧光寿命成像显微镜探针钙钛矿电池/LED 薄膜的组分分析、缺陷检测铜铟镓硒CIGS,铜锌锡硫CZTS 薄膜太阳能电池的组分、缺陷检测镧系上转换纳米颗粒GaAs 或GaAsP 量子阱的载流子扩散研究生命科学领域细胞体自身荧光寿命分析自身荧光相对荧光标记的有效区分活细胞内水介质的PH 值测量局部氧气浓度测量具有相同频谱性质的不同荧光标记的区分活细胞内钙浓度测量时间分辨共振能量转移(FRET):纳米级尺度上的远差测量,环境敏感的FRET 探针定量测量代谢成像:NAD(P)H 和FAD 胞质体的荧光寿命成像OmniFluo-FLIM系列显微荧光寿命成像系统应用案例1 用荧光分子对海拉细胞进行染色用荧光分子转子Bodipy-C12 对海拉细胞(宫颈癌细胞的一种) 进行染色。(a) 显微荧光寿命成像图,寿命范围1ns(蓝色)到2.5ns(红色);(b) 荧光寿命直方图,脂肪滴的短寿命约在1.6ns 附近,细胞中其他位置寿命较长,在1.8ns 附近。用荧光分子转子的时间分辨测量*大的好处在于荧光寿命具备足够清晰的标签特性,且与荧光团的浓度无关。[2]2 金属修饰荧光金属修饰荧光:(a) 荧光寿命是荧光团到金表面距离的函数;(b) 用绿色荧光蛋白(GFP)标记乳腺腺癌细胞的细胞膜的共聚焦xz 横截面,垂直比例尺:5 m;(c) b 图的FLIM 图,金表面附近的GFP 荧光寿命缩短。[2]3 钙钛矿太阳能电池下图研究中,展示了一种动态热风(DHA)制备工艺来控制全无机PSC 的薄膜形态和稳定性,该工艺不含有常规的有害反溶剂,可以在大气环境中制备。同时,钙钛矿掺有钡(Ba2+) 碱金属离子(BaI2:CsPbI2Br)。这种DHA 方法有助于形成均匀的晶粒并控制结晶,从而形成稳定的全无机PSC。从而在环境条件下形成完整的黑色相。经过DHA处理的钙钛矿光伏器件,在0.09cm小面积下,效率为14.85%,在1x1cm的大面积下,具有13.78%的*高效率。DHA方法制备的器件在300h后仍然保持初始效率的92%。4 MQWs 多量子阱研究在(a) 蓝宝石和(b) GaN 上生长的MQWs 的共焦PL mapping 图像。具有较小尺寸的发光团的*高密度是观察到在GaN 上生长的MQWs。在(c) 蓝宝石和(d)GaN 上生长的MQWs 的共焦TRPL mapping 图。仅对于在GaN 上生长的MQWs,强的PL 强度区域与较长PL 衰减时间的区域很好地匹配。在(e) 蓝宝石和(f)GaN 上生长的MQWs 在A 点和B 点测量的局部PL 衰减曲线,均标记在图中。对于在GaN 上生长的MQWs,点A 和B 之间的PL 衰减时间差更高。OmniFluo-FLIM系列显微荧光寿命成像系统参数配置北京卓立汉光仪器有限公司提供的显微荧光寿命成像系统是基于显微和时间相关单光子计数技术,配合高精度位移台得到微观样品表面各空间分布点的荧光衰减曲线,再经过用数据拟合,得到样品表面发光寿命表征的影像。是光电半导体材料、荧光标记常用荧光分子等类似荧光寿命大多分布在纳秒、几十、几百纳秒尺度的物质的不二选择。参数指标:系统性能指标光谱扫描范围200-900nm*小时间分辨率16ps荧光寿命测量范围500ps-1μs@ 皮秒脉冲激光器空间分辨率≤1μm@100X 物镜@405nm 皮秒脉冲激光器荧光寿命检测IRF≤2ns配置参数激发源及匹配光谱范围(光源参数基于50MHz 重复频率)375nm 皮秒脉冲激光器,脉宽:30ps,平均功率1.5mW,荧光波段:400-850nm405nm 皮秒脉冲激光器,脉宽:25ps,平均功率2.5mW,荧光波段:430-920nm450nm 皮秒脉冲激光器,脉宽:50ps,平均功率1.9mW,荧光波段:485-950nm488nm 皮秒脉冲激光器,脉宽:70ps,平均功率1.3mW,荧光波段:500-950nm510nm 皮秒脉冲激光器,脉宽:75ps,平均功率1.1mW,荧光波段:535-950nm635nm 皮秒脉冲激光器,脉宽:65ps,平均功率4.3mW,荧光波段:670-950nm660nm 皮秒脉冲激光器,脉宽:60ps,平均功率1.9mW,荧光波段:690-950nm670nm 皮秒脉冲激光器,脉宽:40ps,平均功率0.8mW,荧光波段:700-950nm科研级正置显微镜落射明暗场卤素灯照明,12V,100W5 孔物镜转盘,标配明场用物镜:10×,50×,100×监视CCD:高清彩色CMOS 摄像头,像元尺寸:3.6μm*3.6μm,有效像素:1280H*1024V,扫描方式:逐行,快门方式:电子快门电动位移台高精度电动XY 样品台,行程:75*50mm(120*80mm 可选),*小步进:50nm,重复定位精度:< 1μm光谱仪320mm 焦距影像校正单色仪,双入口、狭缝出口、CCD 出口,配置三块68×68mm 大面积光栅,波长准确度:±0.1nm,波长重复性:±0.01nm,扫描步距:0.0025nm,焦面尺寸:30mm(w)×14mm(h),狭缝缝宽:0.01-3mm 连续电动可调探测器:制冷型紫外可见光电倍增管,光谱范围:185-900nm(标配,可扩展)光谱CCD(可扩展PLmapping)低噪音科学级光谱CCD(LDC-DD),芯片格式:2000x256,像元尺寸:15μm*15μm, 探测面:30mm*3.8mm,背照式深耗尽芯片,低暗电流,*低制冷温度-60℃ @25℃环境温度,风冷,*高量子效率值95%时间相关单光子计数器(TCSPC)时间分辨率:16/32/64/128/256/512/1024ps……33.55μs,死时间< 10ns,*高65535 个直方图时间窗口,瞬时饱和计数率:100Mcps,支持稳态光谱测试;OmniFluo-FM 荧光寿命成像专用软件控制功能:控制样品平移台移动,通过显微镜的明场光学像定位到合适区域,框选扫描区域进行扫描,逐点获得荧光衰减曲线,实时生成荧光图像等数据处理功能:自动对扫描获得的FLIM 数据,逐点进行多组分荧光寿命拟合(组分数小于等于4),对逐点拟合获得的荧光强度、荧光寿命等信息生成伪彩色图像显示图像处理功能:直方图、色表、等高线、截线分析、3D 显示等操作电脑品牌操作电脑,Windows 10 操作系统 FLIM 软件界面控制测试界面测试软件的界面遵循“All In One”的简洁设计思路,用户可在下图所示的控制界面中完成采集数据的所有步骤:包括控制样品平移台移动,通过显微镜的明场光学像定位到合适区域,框选扫描区域进行扫描,逐点获得荧光衰减曲线,实时生成荧光图像等。数据处理界面功能丰富的荧光寿命数据处理软件,充分挖掘用户数据中的宝贵信息。可自动对扫描获得的FLIM 数据,逐点进行多组分荧光寿命拟合(组分数小于等于4),对逐点拟合获得的荧光强度、荧光寿命等信息生成伪彩色图像显示。自主开发的一套时间相关单光子计数(TCSPC)荧光寿命的拟合算法,可对荧光衰减曲线中*多包含4 个时间组分的荧光过程进行拟合,获得每个组分的荧光寿命,光子数比例,计算评价函数和残差。TCSPC 荧光寿命通常并非简单的指数衰减过程,而是与光源及探测器相关的仪器响应函数(IRF)与荧光衰减过程相互卷积的结果,因此适当的拟合方法和参数选择对获得正确可靠的荧光寿命非常重要。该软件可导入实际测量的IRF 对衰减曲线进行卷积计算和拟合。但是大多数情况下, IRF 很难正确的从实验获得,针对这种情况,软件提供了两种无需实验获取IRF 的拟合方法:NO.1 通过算法对数据上升沿进行拟合,获得时间响应函数IRF,然后对整条衰减曲线进行卷积计算和拟合得到荧光寿命。NO.2对于衰减时间远长于仪器响应时间的,可对衰减曲线下降沿进行直接的指数拟合。该软件经过大量测试,可以很好的满足各种场合的用户需求。MicroLED 微盘的荧光强度像(3D 显示):测试案例
    留言咨询
  • SPM900 系列少子寿命成像测试仪原理说明非平衡少数载流子少数载流子的寿命是半导体材料的一个重要参数,也是评价半导体质量的一个指标。例如在光伏电池中,少子寿命决定了少子扩散长度, 决定了光吸收层、内建电场区域的厚度设计等重要的器件参数;载流子寿命也可以反映器件中杂质或者缺陷的影响,抑或是存在污染, 进行失效分析,对工艺过程进行优化。载流子的复合在一定温度下,处于热平衡状态的半导体材料,电子- 空穴对的产生和复合保持一种动态平衡,载流子浓度是一定的。然而,外界的作用会破坏这种热平衡,使其处于与热平衡相偏离的状态,随之改变的是载流子的浓度, 多于平衡值的载流子就是非平衡载流子。非平衡少数载流子也称也称少子,通常对于半导体器件的性能起到决定性的作用。当外界作用撤掉后,处于非平衡态的载流子会通过复合而产生衰减,直到载流子浓度恢复到之前的热平衡状态。载流子的复合方式可以分为三类:SRH 复合、辐射复合及俄歇复合(直接和间接)。(a) SRH 复合; (b) 辐射复合; (c) 直接俄歇复合;(d)间接俄歇复合少子寿命测试少子寿命的测量通常包括非平衡载流子的注入和检测两个方面,*常用的注入方法是光注入和电注入。对于间接带隙的半导体,常使用电注入或者微波光电导衰减的方法进行少子寿命测试,间接带隙半导体一般寿命较长, 为毫秒量级。而对于GaAs 这类的直接间隙半导体,复合的能量几乎全部以发光的形式放出,发光效率高,寿命较短(典型的寿命在10-8-10-9s),通常使用时间分辨光致发光光谱(TRPL)的方法来进行测试。激光扫描少子寿命成像测量仪SPM900当外界作用停止以后,少子的浓度(ΔC)随时间t 增长呈指数衰减的规律。由以下方程可知,少子的寿命为当少子浓度衰减到初始浓度1/e 时候所经历的时间。在辐射复合中,发光的强度与少子的浓度相关,因此可以通过检测发光的寿命来获得少子的寿命信息。当在显微镜上加载少子寿命测试模块,就可以得到微区下半导体器件的少子寿命分布信息,这对于微小型器件的研究及质量控制十分重要。激光扫描少子寿命成像仪基于时间相关单光子计数进行设计,包含显微镜主体,激光光源,光子计数检测器,单色仪以及自动XY 样品台等部分。位于显微镜上的激光光源用于样品的激发,通过控制样品台的移动,可以进行微区单点少子寿命测量和少子寿命成像。少子寿命成像测试应用外延ZnS 薄膜半导体本征带- 浅杂质复合半导体中施主- 受主对复合深能级复合III-V 族载流子杂质俘获过程研究非辐射中心的电子弛豫及复合机制研究半导体外延片缺陷和杂质检测测试软件控制测试界面测试软件的界面遵循“All In One”的简洁设计思路,用户可在下图所示的控制界面中完成采集数据的所有步骤:包括控制样品平移台移动,通过显微镜的明场光学像定位到合适区域,框选扫描区域进行扫描,逐点获得荧光衰减曲线,实时生成荧光图像等。数据处理界面功能丰富的荧光寿命数据处理软件,充分挖掘用户数据中的宝贵信息。可自动对扫描获得的FLIM 数据,逐点进行多组分荧光寿命拟合(组分数小于等于4),对逐点拟合获得的荧光强度、荧光寿命等信息生成伪彩色图像显示。3D 显示功能少子寿命测试案例MicroLEDMicroLED 显示技术是指以自发光的微米量级的LED 为发光像素单元,将其组装到驱动面板上形成高密度LED 阵列的显示技术, 在发光亮度、分辨率、对比度、稳定性、能量损耗等方面有很大优势,可以应用在AR/VR,可穿戴光电器件,柔性显示屏等领域。由于MicroLED 的尺寸在微米级别,因此需要在显微镜下进行检测。下图为使用少子寿命成像系统对直径为80 微米的MicroLED 微盘进行测试。单组分拟合,可以看到红圈中的污损位置,虽然影响发光强度,但对发光寿命没有影响钙钛矿测试钙钛矿属于直接带隙半导体材料,具有高光学吸收,高增益系数、高缺陷容忍度、带隙可调,制备成本低等优点,可以广泛应用在光子学与光电信息功能器件等领域,例如钙钛矿太阳能电池,钙钛矿量子点,钙钛矿LED 等材料的研究。对于钙钛矿中的载流子辐射复合的研究对于提供器件的光电转换性能有很大的帮助。以下示例为钙钛矿样品的少子辐射复合发光成像和寿命成像。图中可见此钙钛矿样品有两个寿命组分,且不同寿命组分的相对含量也可以从相对振幅成像图中很直观的看到。晶圆级大尺寸的少子寿命成像测试仪4、6、8 英寸晶圆样品测试,可在此基础上增加小行程电动位移台实现数百纳米至微米尺度的精细扫描显微尺度的少子寿命成像测试仪参数指标 系统性能指标:光谱扫描范围200-900nm*小时间分辨率16ps寿命测量范围500ps-1ms(具体视激光器而定)小尺寸空间分辨率≤ 1μm@100X 物镜@405nm 皮秒脉冲激光器大尺寸扫描可适用4 英寸、6 英寸、8 英寸样品配置参数:脉冲激光器375nm 皮秒脉冲激光器,脉宽:30ps,平均功率1.5mW@50MHz405nm 皮秒脉冲激光器,脉宽:25ps,平均功率2.5mW@50MHz450nm 皮秒脉冲激光器,脉宽:50ps,平均功率1.9mW@50MHz488nm 皮秒脉冲激光器,脉宽:70ps,平均功率1.3mW@50MHz510nm 皮秒脉冲激光器,脉宽:75ps,平均功率1.1mW@50MHz635nm 皮秒脉冲激光器,脉宽:65ps,平均功率4.3mW@50MHz660nm 皮秒脉冲激光器,脉宽:60ps,平均功率1.9mW@50MHz670nm 皮秒脉冲激光器,脉宽:40ps,平均功率0.8mW@50MHz其他皮秒或纳秒脉冲激光器具体视材料及激发波长而定科研级正置显微镜落射明暗场卤素灯照明,12V,100W5 孔物镜转盘,标配明场用物镜:10×,50×,100×监视CCD:高清彩色CMOS 摄像头,像元尺寸:3.6μm*3.6μm,有效像素:1280H*1024V,扫描方式:逐行,快门方式:电子快门小尺寸扫描用电动位移台高精度电动XY 样品台,行程:75*50mm(120*80mm 可选),*小步进:50nm,重复定位精度< 1μm大尺寸扫描用电动位移台XY 轴行程200mm/250mm,单向定位精度≤ 30μm,水平负载:30Kg;光谱仪320mm焦距影像校正单色仪,双入口、狭缝出口、CCD出口,配置三块68×68mm大面积光栅, 波长准确度:±0.1nm,波长重复性:±0.01nm,扫描步距:0.0025nm,焦面尺寸:30mm(w)×14mm(h),狭缝缝宽:0.01-3mm 连续电动可调探测器:制冷型紫外可见光电倍增管,光谱范围:185-900nm(标配,可扩展)光谱CCD( 可扩展PL mapping)低噪音科学级光谱CCD(LDC-DD),芯片格式:2000x256,像元尺寸:15μm*15μm,探测面:30mm*3.8mm,背照式深耗尽芯片,低暗电流,*低制冷温度-60℃ @25℃环境温度,风冷,*高量子效率值95%时间相关单光子计数器(TCSPC)时间分辨率:16/32/64/128/256/512/1024ps… … 33.55μs,死时间< 10ns,*高65535 个直方图时间窗口,瞬时饱和计数率:100Mcps,支持稳态光谱测试;OmniFlμo-FM 寿命成像专用软件控制功能:控制样品平移台移动,通过显微镜的明场光学像定位到合适区域,框选扫描区域进行扫描,逐点获得发光衰减曲线,实时生成发光图像等数据处理功能:自动对扫描获得的寿命成像数据,逐点进行多组分发光寿命拟合( 组分数小于等于4),对逐点拟合获得的发光强度、发光寿命等信息生成伪彩色图像显示图像处理功能:直方图、色表、等高线、截线分析、3D 显示等操作电脑品牌操作电脑,Windows 10 操作系统
    留言咨询
  • 近年来,钙钛矿型闪烁体及钙钛矿型 X 射线直接探测器被广泛研究及报道。在发光闪烁体层面,钙钛矿纳米晶闪烁体通过溶液即可制得,成本极低,且具备全色彩可调谐辐射发光的特点。在直接探测层面,铅卤钙钛矿材料因其具备较大的原子序数、高吸收系数等优点,在 X 射线直接探测领域同样表现出非常优异的性能。卓立汉光能够提供基于 X 射线的稳态发光光谱,荧光寿命,瞬态光谱以及 X 射线探测成像的相关测量方案。能够提供全套涵盖 X 射线激发源、光谱仪、稳态及瞬态数据处理、成像测量(CMOS 成像,单像素成像,TFT 面阵成像)、辐射剂量表、辐射安全防护等,辐射防护防护满足国标《低能射线装置放射防护标准》(GBZ115-2023)。如下陈述我们几种测量方案及相关配置明细( 一 ) 稳态光谱及荧光寿命采集基于皮秒 X 射线和 TCSPC 测量原理的方法纳秒脉冲 X 射线 稳态和寿命测量数据( 二 ) X 射线探测成像X 射线探测成像光路图X 射线探测成像及脉冲 X 射线实现光电流衰减测量TFT 集成的面阵 X 射线成像 成像测量结果( 三 ) 技术参数稳态光谱及荧光寿命采集基于皮秒X 射线和TCSPC 测量原理的方法包含:皮秒脉冲激光器、光激发X 射线管、TCSPC 或条纹相机。 由皮秒脉冲激光器激发“光激发X 射线管”发射出X-ray 作用于样品上,样品发射荧光,经光谱仪分光之后,由探测器探测光信号,数据采集器读取数据。皮秒X 射线测量荧光寿命原理图纳秒脉冲X 射线150KV 纳秒脉冲X 射线* 安全距离要求:a:3 米,b:6 米,c:30 米稳态和寿命测量数据NaI 样品在管电压50KeV,不同管电流激发下的辐射发光光谱 纳秒X 射线激发的荧光衰减曲线X 射线探测成像X 射线探测成像光路图X 射线探测成像及脉冲X 射线实现光电流衰减测量TFT 集成的面阵X 射线成像TFT 传感芯片规格TFT 读取系统规格成像测量结果 CMOS 成像实物图分辨率指标:TYP39 分辨率卡的X 射线图像。测试1mm 厚的YAG(Ce) 时,分辨率可以优于20lp/mm 手机充电头成像测试密码狗成像测试技术参数稳态X 射线激发发光测量光源 能量:4-50KV,功率:0-50W 连续可调,靶材:钨靶,铍窗厚度 200μm样品位置辐射剂量:0-25Sv/h光路透射和反射双光路,可切换 光谱范围200-900nm(可扩展近红外)监视器内置监视器方便观察样品发光,可拍照快门可控屏蔽快门,辐射光源最大功率下,关闭快门,样品位置辐射剂量小于10uSv/h辐射防护满足国标《X 射线衍射仪和荧光分析仪卫视防护标准》(GBZ115-2023)样品支架配备粉末、液体、薄膜样品架成像测量模块成像面积:直径20mm(可定制更大面积:120mm×80mm)成像耦合光路附件,样品测试夹具相机参数:颜色:黑白,分辨率:20MP, 5472 (H) x 3648 (V),像元尺寸:2.4μm×2.4μm,量子效率:84%@495nm,暗电流:0.001e-/pixel/s,制冷温度:-15℃,成像分辨率:优于20lp/mm瞬态X 射线激发发光测量光源皮秒脉冲X 射线源纳秒脉冲X 射线源*405nm ps 激光二极管:波长:100Hz-100MHz 可调,峰值功率:400mW@ 典型值,脉冲宽度:100ps光激发X 射线光管:辐射灵敏度:QE10%(@400nm),靶材:钨,操作电压:40KV,操作电流:10μA@ 平均值,50μA@ 最大值 电压:150KV脉冲宽度:50ns重复频率:10Hz平均输出剂量率:2.4mR/pulse数据采集器TCSPC 计数器条纹相机(同时获得光谱和寿命)示波器瞬时饱和计数率:100Mcps 时间分辨率(ps):16/32/64/128/256/512/1024/…/33554432通道数:65535死时间:< 10ns支持稳态光谱采集数据接口:USB3.0最大量程:1.08μs @16ps,67.1μs@1024ps, 2.19s@33554432ps 光谱测量范围:200-900nm时间分辨率:=5ps,( 最小档位时间范围+ 光谱仪光路系统)探测器:同步扫描型通用条纹相机ST10测量时间窗口范围:500ps-100us( 十档可选)工作模式:静态模式,高频同步模式以及 低频触发模式;系统光谱分辨率:0.2nm@1200g/mm单次成谱范围:=100nm@150g/mm静态(稳态)光谱采集,瞬态条纹光谱成像及荧光寿命曲线采集模拟带宽:500 MHz通道数:4+ EXT实时采样率:5GSa/s( 交织模式),2.5GSa/s( 非交织模式)存储深度:250Mpts/ch( 交织模式),125 Mpts/ch( 非交织模式) 寿命尺度500ps-10μs100ps-100μs 100ns-50msX 射线探测成像 方式CMOS 成像单像素探测器TFT 集成的面阵探测器配置成像耦合光路附件,样品测试夹具相机参数:颜色:黑白分辨率:20MP, 5472 (H) x 3648 (V) 像元尺寸:2.4μm×2.4μm量子效率:84%@495nm暗电流:0.001e-/pixel/s制冷温度:-15℃XY 二维电动位移台:XY5050:行程:X 轴50mm,Y 轴50mm,重复定位精度1.5μm,水平负载4Kg;XY120120:行程:X 轴120mm,Y 轴120mm,重复定位精度3μm,水平负载20KgTFT 阵列传感芯片(可提供直接型和间接型芯片):背板尺寸(H×V×T):44.64×46.64×0.5 mm,有源区尺寸(H×V):32×32mm,分辨率(H×V):64×64, 像素大小:500×500μmTFT 读出系统:成像规格:解析度:64 行×64 列,数据灰阶:支持256 灰阶显示,数据通信方式:WIFI 无线通讯,数据显示载体:手机/ 平板(Android 9.0以上操作系统、6GB 以上运行内存)辐射剂量测定辐射计量表探测器:塑料闪烁体, Ø 30x15 mm连续长期辐射:50 nSv/h ... 10 Sv/h连续短期辐射:5 μSv/h ... 10 Sv/h环境剂量当量测量范围:10 nSv ... 10 Sv连续的短时辐射响应时间:0.03 s相对固有误差:连续和短期辐射:±15% 最大137 Cs 灵敏度:70 cps/(μSvh-1 )剂量率变化0.1 to 1 μSv/h 的反应时间 ( 精度误差 ≤ ±10%) 2 s全光产额测量方案 闪烁晶体的光产额(也称为光输出或光子产额)是指晶体在受到电离辐射(如γ 射线、X 射线或粒子)激发后,发射光子(通常是可见光)的数量。光产额通常以每单位能量沉积产生的光子数来表示,单位可以是光子/MeV。光产额是衡量闪烁晶体性能的重要参数之一,它是衡量闪烁体材料性能的重要指标之一,也直接关系到该材料在实际应用中的灵敏度和效率。常见的闪烁晶体包括碘化钠(NaI),碘化铯(CsI),和氧化镧掺铈(LaBr3)等。不同的晶体材料会有不同的光产额,这取决于其发光机制、能带结构、以及材料的纯度和缺陷等因素。研究闪烁体材料的光产额对于提高其性能、拓展其应用具有重要的意义。一些常见闪烁晶体的光产额值如下:碘化钠(NaI(Tl)):约38,000 photons/MeV氯化铯(CsI(Tl)):约54,000 photons/MeV氧化铈掺杂的氧化镧(LaBr3):约63,000 photons/MeV钇铝石榴石掺杂铈离子(YAG:Ce):约14,000 photons/MeV 光产额越高,意味着该晶体能够在相同的能量沉积条件下产生更多的光子,从而在探测器中生成更强的信号,通常也会导致更好的能量分辨率。卓立汉光提供一整套包含同位素源、屏蔽铅箱(被测器件及光路)、光电倍增管、高压电源、闪烁体前置放大器、谱放大器、多道分析仪及测试软件,实现闪烁体的光产额测量。同位素源Na-22(或 Cs-137 可选),屏蔽铅箱(被测器件及光路),充分保证测试人员安全 光电倍增管 光谱范围:160-650nm,有效面积:46mm 直径,上升时间:≤ 0.8ns 高压稳压电源 提供:0-3000V 闪烁体前置放大器 :上升时间< 60ns积分非线性≤ ±0.02%计数率:250 mV 参考脉冲的增益偏移 0.25%,同时应用 65,000/ 秒的 200 mV 随机脉冲的额外计 数速率,前置放大器下降时间:信号源阻抗为 1 MΩ,则下降时间常数为 50 μs 谱放大器高性能能谱,适合所有类型的辐射探测器(Ge、Si、闪烁体等) 积分非线性(单极输出): 从 0 到 +10V0.025%噪声:增益 100 时,等效输入噪声 5.0uV rms;手动模式下,增益> 1000 时,等效输入噪声 4.5uV rms;或者自动模式下,增益 100 时,等效输入噪声 6.0uV rms温度系数(0 到 50° C)单极输出:增益为 +0.005%/'C,双极输出:增益为 +0.07%/'C,直流电 平为 +30μV/° C误差:双极零交叉误差在 50:1 动态范围内 ±3 ns增益范围:2.5-1500 连接可调,增益是 COARSE(粗调)和 FINE GAIN(微调增益)的乘积。单极脉冲形状:可用开关为 UNIPOLAR(单极)输出端选择近似三角形脉冲形状或近似高斯脉冲形状。配置专用 3kv 高压电源 2K 通道多道分析仪ADC: 包括滑动标度线性化和小于 2us 的死区时间,包括存储器传输 积分非线性 : 在动态范围的前 99% 范围内≤士 0.025%。 差分非线性 : 在动态范围的前 99% 范围内小于士 1%。 增益不稳定性 : 士 50 ppm/° C死区时间校正 : 根据 Gedcke-Hale 方法进行的延长的实时校正。 USB 接口 :USB 2.0 到 PC 的数据传输速度最高可达 480Mbps操作电脑/ 光学平台 尺寸:1500*1200*800mm台面 430 材质,厚度 200mm,带脚轮。固有频率:7-18Hz,整体焊接式支架
    留言咨询
  • 激光共焦多维荧光成像系统: FLIM / FCS 时间分辨的空间分辨显微系统: ISS 推出新一代的快速荧光寿命成像系统FLIM/PLIM。成像速度可达 20 fps (@256×256),自由选择1×1到4096×4096像元分辨率;同时获取荧光寿命成像和共焦强度成像数据,保持单分子级的检测灵敏度。 用于化学、纳米、能源、生物等学科方向,单分子、活细胞、微区成像及形貌、能级结构和能量传递特征的机理研究。满足上转换量子点及相关材料的寿命成像测试。。 ISS以整机的荧光寿命成像系统为己任,实现共焦三维扫描模块(针孔,二维振镜、压电台或自动工作台)和时间分辨模块的完美结合,提供<100ps-100ms的全时域荧光寿命检测;同时软件融合Phasor Plots荧光寿命直读半圆规的矢量图技术,可视化、直观的提供荧光寿命分布及数值。 荧光寿命成像数据分析进入直读时代。 ISS 激光共焦扫描荧光寿命成像系统,还可以同时满足以下需要: 1. 双光子的荧光寿命 FLIM/PLIM 成像; 2. 深紫外激发的荧光寿命 FLIM / PLIM 成像;266nm 355nm 3. 红二区荧光寿命 FLIM /PLIM 成像; 4. 激光扫描大视场活体成像 FLIM /PLIM ; 5. 光谱采集及光谱成像; 6. AFM联用--活细胞工作站联用--冷冻及加热工作台联用; 7. 纳米颗粒三维跟踪;(专有技术) 主要功能描述:(单/双光子功能) 激光共焦荧光强度成像LCM;荧光寿命成像FLIM,磷光寿命成像PLIM;上转换荧光(寿命)成像,稀土发光(寿命)成像,延迟荧光(寿命)成像;荧光波动成像FFS(FCS,FCCS, PCH,N&B, RICS, FLCS,scan-FCS), FLIM-FRET成像;荧光定量成像;单量子点发光(寿命)成像,单分子及单分子荧光共振转移成像smFRET,包括交替激发PIE成像;稳态及瞬态偏振成像;微区荧光光谱采集 400-1100nm;反聚束测试(含专业软件);活细胞工作站升级(含多孔板)仪器特点: 实时直读式获得荧光寿命数值及变化趋势,FRET效率分布;选择350nm-1100nm加上900nm-1700nm波长范围检测器,2-4通道检测器,用于成像,FLIM-FRET;可以升级无波长干扰AFM(正置或倒置),实现同区域形貌和FLIM同步测试;紫外-可见-红外激发波长,单波长或超连续激光器;单光子或双光子的激光器; 主要技术指标 1. 荧光寿命测试范围:100ps-100ms;2. 最小时间分辨率≤1ps;3. 数据计数速率:65 MHz/channel4. 检测通道:upto 8 channels;5. 标配xy振镜扫描,5kHz扫描频率,配合xy闭环自动台实现大区域扫描;6. Phasor plots 用于数据分析;7. 光谱采集;400-1100nm8. 扫描透射成像;9. 界面聚焦系统;10. 变温附件;77k-500k;
    留言咨询
  • 激光共焦多维成像系统: FLIM / FCS 时间分辨的空间分辨显微系统: ISS 推出新一代的快速荧光寿命成像系统FLIM/PLIM。成像速度可达 20 fps (@256×256),自由选择1×1到4096×4096像元分辨率;同时获取荧光寿命成像和共焦强度成像数据,保持单分子级的检测灵敏度。 用于化学、纳米、能源、生物等学科方向,单分子、活细胞、微区成像及形貌、能级结构和能量传递特征的机理研究。满足上转换量子点及相关材料的寿命成像测试。。 ISS以整机的荧光寿命成像系统为己任,实现共焦三维扫描模块(针孔,二维振镜、压电台或自动工作台)和时间分辨模块的完美结合,提供<100ps-100ms的全时域荧光寿命检测;同时软件融合Phasor Plots荧光寿命直读半圆规的矢量图技术,可视化、直观的提供荧光寿命分布及数值。 荧光寿命成像数据分析进入直读时代。 ISS 激光共焦扫描荧光寿命成像系统,还可以同时满足以下特殊需要: 1. 双光子的荧光寿命 FLIM/PLIM 成像; 2. 深紫外激发的荧光寿命 FLIM / PLIM 成像; 3. 红二区荧光寿命 FLIM /PLIM 成像; 4. 激光扫描大视场活体成像 FLIM /PLIM ; 5. 光谱采集及光谱成像; 6. AFM联用--活细胞工作站联用--冷冻及加热工作台联用; 7. 纳米颗粒三维跟踪;(专有技术) 主要功能描述:(可以选择双光子功能)激光共焦荧光强度成像LCM;荧光寿命成像FLIM,磷光寿命成像PLIM;上转换荧光(寿命)成像,稀土发光(寿命)成像,延迟荧光(寿命)成像;荧光波动成像FFS(FCS,FCCS, PCH,N&B, RICS, FLCS,scan-FCS),FLIM-FRET成像;荧光定量成像;单量子点发光(寿命)成像,单分子及单分子荧光共振转移成像smFRET,包括交替激发PIE成像;稳态及瞬态偏振成像;微区荧光光谱采集 400-1100nm;反聚束测试(含专业软件);活细胞工作站升级(含多孔板)仪器特点: 实时直读式获得荧光寿命数值及变化趋势,FRET效率分布;选择350nm-1100nm加上900nm-1700nm波长范围检测器,2-4通道检测器,用于成像,FLIM-FRET;可以升级无波长干扰AFM(正置或倒置),实现同区域形貌和FLIM同步测试;紫外-可见-红外激发波长,单波长或超连续激光器;单光子或双光子的激光器; 主要技术指标 1. 荧光寿命测试范围:100ps-100ms;2. 最小时间分辨率≤1ps;3. 数据计数速率:65 MHz/channel4. 检测通道:upto 8 channels;5. 标配xy振镜扫描,5kHz扫描频率,配合xy闭环自动台实现大区域扫描;6. Phasor plots 用于数据分析;7. 光谱采集;400-1100nm8. 扫描透射成像;9. 界面聚焦系统;10. 变温附件;77k-500k;
    留言咨询
  • 本设备利用激光、显微镜、精密扫描组件、时间分辨数据采集技术和图像处理技术获得样品不同位置的荧光强度及寿命。利用定点激发技术,可以观测载流子迁移。是一种高性能、高扫描速度、高灵敏度的荧光成像仪器。一、系统主要技术指标1.激光扫描振镜模块1) 激光光纤输入,配电控光阑系统2)激光扫描成像范围∶最高4096x4096像素点3)成像放大倍数(zoom)∶1-32倍4)激光扫描波长范围:400-750nm 2.TCSPC模块1) 时间精度7ps 2) Bin通道数∶40963) 时间窗口50ps-5μs 4) 仪器响应函数(IRF)∶≤:300ps 5) 时间分辨率∶≤50ps 3.高灵敏度单光子检测器模块1) 检测面直径100μm 2) 光谱检测范围400-1000nm 3) 时间分辨率∶50ps(FWHM)4) 量子效率∶45%@550nm 4.稳态光谱检测模块光谱仪(配置可根据客户需求调整)1) 焦长200mm 2) 光谱仪内置两块光栅3) 出口耦合PMT检测器或CCD相机光谱检测模式∶波长扫描采集或CCD采集波长探测范围350-900nm 5.倒置显微镜模块1) 含照明光源、双色片、滤光片等基本配置2) 物镜一套(空气镜)∶100x、60x、20x 3) 最高空间分辨率≤500nm(取决于物镜和激光/荧光波长)6.激光器(可按客户需求选配)1) 单波长皮秒半导体激光器2) 皮秒超连续白光激光器二、应用实例1、荧光强度成像、荧光寿命成像样品:MAPbI3单晶纳米片和MAPbI3纳米线实验条件∶100X objective,pinhole 40μm,Exc∶400 nm,成像模式:共聚焦扫描成像模式样品:二维 SnSe2(微弱荧光材料)实验条件:100X(油镜),激发波长:405nm成像模式:共聚焦激光扫描成像模式 参考文献:Xing Zhou ,et al.,Tianyou Zhai*,Adv. Mater. 2015, 27, 8035–80412、低温舱内的荧光成像样品:MAPbI3 纳米线实验条件:100X,空间分辨率 1μm成像模式:共聚焦激光扫描成像模式 观测到钙钛矿纳米先低温相变过程的空间分布和演化状况3、高压舱内的荧光成像样品:MAPbI3单晶纳米片和MAPbI3纳米线MAPbI3 纳米线不同压力下激光扫描荧光成像 不同压力下荧光动力学曲线 MAPbI3 纳米线不同压力下载流子迁移荧光成像 不同压力下载流子迁移动力学曲线 参考文献:YanfengYin,WenmingTian,*etal.,JimingBian,*andShengyeJin*ACS Energy Lett.2022,7,154&minus 1614、载流子迁移成像实验条件∶100× objective,pinhole 40μm,Exc∶400 nm 样品:钙钛矿纳米片成像模式∶激光定点激发,荧光扫描成像,可获得样品荧光动态演化图5、电致发光成像样品:CdSe量子点LED 6、光电流成像实验条件∶405nm连续激光器,激光强度调至最弱,60x物镜下测量结果2D(ITO/SnO2/QW/Spiro-Au)结构的太阳能电池光电流成像图
    留言咨询
  • 激光共焦多维成像系统: FLIM / FCS 时间分辨的空间分辨显微系统: ISS 推出新一代的快速荧光寿命成像系统FLIM/PLIM。成像速度可达 20 fps (@256×256),自由选择1×1到4096×4096像元分辨率;同时获取荧光寿命成像和共焦强度成像数据,保持单分子级的检测灵敏度。 用于化学、纳米、能源、生物等学科方向,单分子、活细胞、微区成像及形貌、能级结构和能量传递特征的机理研究。满足上转换量子点及相关材料的寿命成像测试。。 ISS以整机的荧光寿命成像系统为己任,实现共焦三维扫描模块(针孔,二维振镜、压电台或自动工作台)和时间分辨模块的完美结合,提供<100ps-100ms的全时域荧光寿命检测;同时软件融合Phasor Plots荧光寿命直读半圆规的矢量图技术,可视化、直观的提供荧光寿命分布及数值。 荧光寿命成像数据分析进入直读时代。 ISS 激光共焦扫描荧光寿命成像系统,还可以同时满足以下特殊需要: 1. 双光子的荧光寿命 FLIM/PLIM 成像; 2. 深紫外激发的荧光寿命 FLIM / PLIM 成像; 3. 红二区荧光寿命 FLIM /PLIM 成像; 4. 激光扫描大视场活体成像 FLIM /PLIM ; 5. 光谱采集及光谱成像; 6. AFM联用--活细胞工作站联用--冷冻及加热工作台联用; 7. 纳米颗粒三维跟踪;(专有技术) 主要功能描述:(可以选择双光子功能)激光共焦荧光强度成像LCM;荧光寿命成像FLIM,磷光寿命成像PLIM;上转换荧光(寿命)成像,稀土发光(寿命)成像,延迟荧光(寿命)成像;荧光波动成像FFS(FCS,FCCS, PCH,N&B, RICS, FLCS,scan-FCS),FLIM-FRET成像;荧光定量成像;单量子点发光(寿命)成像,单分子及单分子荧光共振转移成像smFRET,包括交替激发PIE成像;稳态及瞬态偏振成像;微区荧光光谱采集 400-1100nm;反聚束测试(含专业软件);活细胞工作站升级(含多孔板)仪器特点: 实时直读式获得荧光寿命数值及变化趋势,FRET效率分布;选择350nm-1100nm加上900nm-1700nm波长范围检测器,2-4通道检测器,用于成像,FLIM-FRET;可以升级无波长干扰AFM(正置或倒置),实现同区域形貌和FLIM同步测试;紫外-可见-红外激发波长,单波长或超连续激光器;单光子或双光子的激光器; 主要技术指标 1. 荧光寿命测试范围:100ps-100ms;2. 最小时间分辨率≤1ps;3. 数据计数速率:65 MHz/channel4. 检测通道:upto 8 channels;5. 标配xy振镜扫描,5kHz扫描频率,配合xy闭环自动台实现大区域扫描;6. Phasor plots 用于数据分析;7. 光谱采集;400-1100nm8. 扫描透射成像;9. 界面聚焦系统;10. 变温附件;77k-500k;
    留言咨询
  • 使用进口配件 保障成像质量配置高性能Semrock滤光片、Coherent长寿命固态激光器、滨松多碱PMT,成就高图像质量。 可定制升级 加载各种功能模块如:CCD/SCOMS相机接口、电动Z轴扫描模块、适用于活细胞成像的超高灵敏度探测器等。通用性好 适用各品牌显微镜使用标准C型接口,无需额外配件即可与显微镜连接,搭建单点扫描共聚焦成像系统,获取高品质图像。 高性价比 宽场荧光显微镜升级方式一台简单的倒置荧光显微镜,即可搭配CSIM 100单点扫描模块,方便快速地升级为共聚焦成像系统,实现高分辨率共聚焦成像。进口品质、国产价格,全面的技术支持和售后服务。
    留言咨询
  • Sapphire FL 从分子检测到活体成像是专为应用灵活性研发的终极激光扫描成像系统。基于定制化、用户可自主更换的激光器和滤光片模块,Sapphire FL可轻松满足客户多样化、深入的科研需求。Sapphire FL具有定制化的、用户可自主更换的光学模块,5-1000μm的扫描分辨率,-1.0 至+6 mm的Z轴扫描功能,用于活体成像的5个麻醉输出端口以及化学发光检测模块等。 产品特点应用灵活,兼容多种样本类型:高分辨率成像、超大样品仓设计,支持从分子检测到活体成像样品类型。 定制化,可升级,颠覆传统设计理念:可根据需求选择合适的模块。可轻松替换激光器及滤光片,兼容更多种类的荧光染料。可升级化学发光模块配置。 超宽动态范围(EDR)模式分辨细微表达差异:可将动态范围扩展至24bit,在保证强信号不过饱和的前提下,极大提高同时获取强弱信号的能力。 高灵敏荧光检测:支持常规荧光染料的飞克级检测灵度。助力客户获取高质量的定量数据。 应用Sapphire FL激光扫描成像系统广泛适用于多种分子生物学实验的结果分析,如荧光Western、In-Cell Western、In-Gel Western、蛋白芯片、核酸芯片、二维电泳、DNA凝胶、考马斯亮蓝染色凝胶、荧光组织切片,活体成像等等。仪器支持近红外荧光,可见光,磷屏成像(放射性同位素自显影成像),同时可升级化学发光模块。
    留言咨询
  • Sapphire 激光扫描成像系统是新一代基于激光光源的扫描成像系统,通过其无与伦比的灵敏度、超高的分辨率、宽广的动态范围为客户提供高质量数据。仪器可搭载四个固态激光器作为激发光源,国际首创融合PMT、APD和CCD三种检测器于一体,不仅能够进行高灵敏度宽动态范围的RGB荧光成像、近红外NIR荧光成像、磷屏成像(放射性同位素自显影成像),还可进行传统的化学发光成像、凝胶成像和可见光成像等。本产品型号为Sapphire NIR,搭载有685nm和784nm两个固态激光器作为近红外波段激发光源,仪器可选配PI模块用于磷屏成像(放射性同位素自显影成像),也可选配CCD模块,用于传统化学发光成像。同时,仪器还可选配Q模块,加配520nm通道激光器,升级为Sapphire NIR-Q,用于总蛋白染色成像和绿色荧光通道成像。 产品特点● 强大的多重荧光检测,可同时扫描,也可逐通道扫描● 宽广的动态范围,动态范围≥6OD● 高分辨率,分辨率可达10微米● 化学发光成像,fg级检测灵敏度● 直观友好的软件操作界面,易于使用● 强大的分析软件,轻松高效地分析多种实验数据 应用Sapphire NIR激光扫描成像系统广泛适用于多种分子生物学实验的结果分析,如荧光Western、In-Cell Western、In-Gel Western、近红外荧光EMSA、蛋白芯片、核酸芯片、二维电泳、DNA凝胶、考马斯亮蓝染色凝胶、荧光组织切片等等。通过选配CCD模块、PI模块和Q模块,仪器应用范围将拓展到化学发光成像、可见光成像、磷屏成像(放射性同位素自显影成像)以及总蛋白染色成像等。 Sapphire激光扫描成像系统信息由Azure Biosystems(中国)公司为您提供。如您想了解更多Sapphire激光扫描成像系统相关报价、型号、参数等信息,欢迎来电或留言咨询。
    留言咨询
  • Sapphire 激光扫描成像系统是新一代基于激光光源的扫描成像系统,通过其无与伦比的灵敏度、超高的分辨率、宽广的动态范围为客户提供高质量数据。仪器可搭载四个固态激光器作为激发光源,国际首创融合PMT、APD和CCD三种检测器于一体,不仅能够进行高灵敏度宽动态范围的RGB荧光成像、近红外NIR荧光成像、磷屏成像(放射性同位素自显影成像),还可进行传统的化学发光成像、凝胶成像和可见光成像等。本产品型号为Sapphire RGB,搭载有488nm、520nm和658nm/685nm(选配)三个固态激光器作为RGB可见荧光波段激发光源,仪器可选配PI模块用于磷屏成像(放射性同位素自显影成像),也可选配CCD模块,用于传统化学发光成像。 产品特点● 强大的多重荧光检测,可同时扫描,也可逐通道扫描● 宽广的动态范围,动态范围≥6OD● 高分辨率,分辨率可达10微米● 化学发光成像,fg级检测灵敏度● 直观友好的软件操作界面,易于使用● 强大的分析软件,轻松高效地分析多种实验数据 应用Sapphire RGB激光扫描成像系统广泛适用于多种分子生物学实验的结果分析,如荧光Western、In-Cell Western、In-Gel Western、蛋白芯片、核酸芯片、二维电泳、DNA凝胶、考马斯亮蓝染色凝胶、荧光组织切片等等。仪器可搭配CCD模块,用于化学发光成像和可见光成像。通过选配PI模块,仪器可用于磷屏成像(放射性同位素自显影成像)。 Sapphire激光扫描成像系统信息由Azure Biosystems(中国)公司为您提供。如您想了解更多Sapphire激光成像系统相关报价、型号、参数等信息,欢迎来电或留言咨询。
    留言咨询
  • 高精度激光扫描显微镜高精度激光扫描显微镜-NESSIE是美国密歇根大学衍生公司MONSTR Sense Technologies潜心研制。开创性的设计使其外形小巧,组件灵活,可适配不同高度的样品台甚至是低温光学恒温器,实现低温显微成像。显微镜可处理波长范围广,快速光栅式扫描可以在几秒时间内获得一个高光谱图像。特殊激光光路设计消除了激光扫描过程中的光束漂移,使其非常适合与该公司研发的全共线多功能超快光谱仪集成,实现强大的材料表征功能,不仅可以实现高速、高精度激光扫描谱图,还可以对感兴趣的样品位点进行多维光谱数据采集。高精度激光扫描显微镜-设备特点创新光路设计,适合集成高精度激光扫描显微镜-NESSIE的输入信号为单个激光光束,输出信号为样品探测点收集的单个反向传播光束,这样的光路设计确保了反传播信号在扫描图像时不会相对于输入光束漂移,因而非常适用于激光的实验中的成像显微镜系统。室温GaAs量子阱成像。(a)白光成像;(b)激光扫描线性反射率测量,80 MHz激光(5 mW激光输出)调谐到GaAs带隙;(c)四波混频激光扫描成像揭示了影响GaAs层的次表面缺陷。灵活可调与稳定性兼具高精度激光扫描显微镜-NESSIE可适配不同高度的样品台和低温光学恒温器。其结构的特殊设计可实现显微镜组件整体提高,以清除高度从4″到8″的物体。物镜中心与显微镜支架和外壳之间的间隙为5.5″,可实现不同尺寸形状的低温光学恒温器的容纳。普通显微镜下安装低温恒温器需要转接板,往往会带来样品台的不稳定性,影响采集数据的品质。高精度激光扫描显微镜-NESSIE采用了独立的支撑和提升单元,保证了高度灵活可调的同时,也保持了严格对齐和高稳定性,可以有效避免低温恒温器和其他设备产生振动的干扰,对于在振动的环境中生成高分辨率图像至关重要。激光扫描无光束漂移普通激光扫描显微镜一般使用两个相邻X、Y扫描镜来实现激光扫描。由于两个镜面均不在光学系统的像面上,光束在扫描图像时发生漂移。高精度激光扫描显微镜-NESSIE的特殊设计将X、Y扫描镜均置于像平面,使用抛物面镜作为扫描镜之间的中继系统,可以消除物镜后焦平面上的光束漂移。消除渐晕渐晕是视场图像边缘附近亮度降低的效应,在显微镜中,渐晕会扭曲数据和缩小视场。激光扫描中扫描镜近邻安装,是引入渐晕效应的主要原因。高精度激光扫描显微镜-NESSIE的特殊光路设计可以消除了渐晕效应对整个显微镜物镜的视野的影响。(a)渐晕效应;(b)无渐晕的视场成像可处理波长范围广宽频光路设计,标配可允许激光波长在450-1100 nm 范围,其他频率的激光可选。 软件可拓展性强系统软件灵活易用,可拓展性强。基于LabVIEW的软件包,可将用户自定义指标与自带的成像控制算法结合在一起,实现实时图像生成。另外系统也配有基于API软件包,实现系统自带代码与用户实验代码的整合。全共线多功能超快光谱显微成像系统高分辨激光扫描显微镜与全共线多功能超快光谱仪集成,形成功能强大的全共线多功能超快光谱成像系统。可搭配低温光学恒温器,实现低温多功能超快光谱成像。光栅式扫描几秒时间便可以获得一个超快成像动画,帮助用户迅速定位到感兴趣的区域进行高分辨的扫描成像。对于部分感兴趣样品位点,利用全共线多功能超快光谱仪,可以获得每个样品位点的全面的电子和振动能级信息。全共线多功能超快光谱显微成像系统充分发挥了光谱仪和显微镜的优势,通过弛豫时间成像和多功能光谱成像,允许用户分析样品空间不均匀性与电子结构的关联关系。MoSe2/WSe2异质结构低功率低温(6K)FWM积分成像光谱(a,b)和弛豫时间成像(c) 全共线多功能超快光谱显微成像系统强大的材料表征能力,也可以应用于工业制作环境中的非接触式材料检测,帮助制造商识别原材料品质,避免缺陷材料应用于设备。常温下,CVD生长WSe2薄片移相时间分布和FWM强度变化应用领域(全共线多功能超快光谱显微成像系统)高精度激光扫描显微镜提供整个显微镜物镜视野的成像控制,包括:像素分辨率,扫描速率和聚焦区域。而全共线多功能超快光谱仪兼具共振和非共振超快光谱探测,并兼容瞬态吸收光谱、相干拉曼光谱、多维相干光谱探测。这两款设备集成具有强大的多功能超快光谱显微成像能力,可实现双光子显微成像、瞬态吸收成像、受激拉曼显微成像、荧光寿命显微成像、多维相干光谱显微成像。其中多维相干光谱显微成像,基于非线性四波混频FWM技术,可实现超高分辨的5维数据采集,其成像系统具有以下优势:1. FWM显微成像超高空间分辨本领,可以进行细微结构成像受到abbe衍射极限限制,激光扫描成像空间分辨率在940 nm,但基于全共线MDCS的非线性四波混频FWM成像光谱,可将空间分辨率提高到540nm。2. FWM显微成像,明、暗激子空间分布可辨激子是由受激电子和空穴由于库仑引起的形成的束缚态,而暗激子,是电子与空穴的动量不同,从而阻止了它们对光的吸收。相比于荧光光谱等探测技术仅对亮激子态敏感,非线性四波混频,可实现暗激子的直接观测与研究。3. 不同延时FWM显微成像,揭示耦合动力学过程在空间的不同分布探究空间不同位置四波混频FWM信号随泵浦延迟时间T的变化,可以获得相干、非相干耦合动力学过程在空间的不同分布。4. FWM decay time mapDecay time map仅改变泵浦延迟时间T,对于T>50ps的情况,可以获得不同空间位置层间激子寿命信息。测试数据MoSe2/WSe2异质结构中,PL积分光谱探究空间差异的应力分布 MoSe2/WSe2异质结构中,不同延时FWM显微成像谱图,揭示空间差异的动力学演变过程CVD获得的WSe2薄片,不同的FWM decay time map揭示激子的快、慢弛豫过程的空间差异FWM hyperspectral map和FWM decay time map数据处理(Data from Prof. Steve Cundiff lab at University of Michigan)发表文章1. T. L. Purz et al., Imaging dynamic exciton interactions and coupling in transition metal dichalcogenides. J Chem Phys 156, 214704 (2022).2. T. L. Purz, B. T. Hipsley, E. W. Martin, R. Ulbricht, S. T. Cundiff, Rapid multiplex ultrafast nonlinear microscopy for material characterization. Optics Express 30, 45008 (2022).相关产品1、全共线多功能超快光谱仪
    留言咨询
  • 荧光和荧光寿命分子包含多个单能态S0、S1、S2…和三重态T1…,每个能态都包含多个精细的能级。正常情况下,大部分电子处在*低能态即基态S0 的*低能级上,当分子被光束照射,会吸收光子能量,电子被激发到更高的能态S1 或S2 上,在S2 能态上的电子只能存在很短暂的时间,便会通过内转换过程跃迁到S1 上,而S1 能态上的电子亦会在极短时间内跃迁到S1 的*低能级上,而这些电子会存在一段时间后通过震荡弛豫辐射跃迁到基态,这个过程会释放一个光子,即荧光。此外,亦会有电子跃迁至三重态T1 上,再由T1 跃迁至基态,我们称之为磷光。荧光特性研究荧光特性时,主要在以下几方面进行分析:激发光谱,发射光谱、荧光强度、偏振荧光、荧光发光量子产率、荧光寿命等。其中荧光寿命(Fluorescence Lifetime)是指荧光分子在激发态上存在的平均时间(纳秒量级)。荧光寿命测试荧光寿命一般在几纳秒至几百纳秒之间,如今主要有两类测试方法:时域测量和频域测量时间稳定性实验测试曲线:1 时域测量由一束窄脉冲将荧光分子激发至较高能态S1,接着测量荧光的发射几率随时间的变化。其中目前广泛应用的是时间相关单光子计数,即TCSPC(Time Correlated Single Photon Counting)时间相关单光子计数(TCSPC) 实现了从百ps-ns-us 的瞬态测试,此方法对数据的获取完全依赖快速探测器和高速电路。用统计的方法计算样品受激后发出的*一个( 也是唯一的一个) 光子与激发光之间的时间差,也就是下图的START( 激发时刻) 与STOP( 发光时刻) 的时间差。由于对于Stop 信号的要求,所以TCSPC 一般需要高重复频率的光源作为激发源,其重复至少要在100KHz 以上,多数的光源都会达到MHz 量级;同时,在一般情况下还要对Stop 信号做数量上的控制,做到尽量满足在一个激发周期内,样品产生且只产生一个光子的有效荧光信号,避免光子对的出现。2 频域测量对连续激发光进行振幅调制后,分子发出的荧光强度也会受到振幅调制,两个调制信号之间存在与荧光寿命相关的相位差,因此可以测量该相位差计算荧光寿命。 左图为正弦调制激发光(绿色)频域显示,发射光信号(红色)相应的相位变化频域显示。右图为对应不同寿命的调制和相位的频域显示。TM- 调制寿命,TP- 相位寿命。[1]显微荧光寿命成像技术(FLIM)显微荧光寿命成像技术(Fluorescence Lifetime ImagingMicroscopy,FLIM)是一种在显微尺度下展现荧光寿命空间分布的技术,由于其不受样品浓度影响,具有其他荧光成像技术无法代替的优异性能,目前在生物医学工程、光电半导体材料等领域是一种重要的表征测量手段。FLIM 一般分为宽场FLIM 和激光扫描FLIM。宽场FLIM(Wide Field FLIM,WFM)该技术是用平行光照明并由物镜聚焦样品获得荧光信号,再由一宽场相机采集荧光成像。宽场FLIM 常用于快速获取大面积样品成像。时域或是频域寿命采集都可以应用在宽场成像FLIM 上。宽场FLIM 有更高帧率和低损伤的优势。2 激光扫描FLIM(Laser Scanning FLIM,LSM)激光扫描FLIM 是针对选定区域内的样品逐点获取其荧光衰减曲线,再经过拟合*终合成荧光寿命图像。相比宽场FLIM,其在空间分辨率、信噪比方面有更大的优势。扫描方式有两种:一种是固定样品,移动激光进行扫描,一种是固定激光,电动位移台带动样品移动进行扫描。FLIM 应用材料科学领域宽禁带半导体如GaN、SiC 等体系的少子寿命mapping 测量量子点如CdSe@ZnS 等用作荧光寿命成像显微镜探针钙钛矿电池/LED 薄膜的组分分析、缺陷检测铜铟镓硒CIGS,铜锌锡硫CZTS 薄膜太阳能电池的组分、缺陷检测镧系上转换纳米颗粒GaAs 或GaAsP 量子阱的载流子扩散研究生命科学领域细胞体自身荧光寿命分析自身荧光相对荧光标记的有效区分活细胞内水介质的PH 值测量局部氧气浓度测量具有相同频谱性质的不同荧光标记的区分活细胞内钙浓度测量时间分辨共振能量转移(FRET):纳米级尺度上的远差测量,环境敏感的FRET 探针定量测量代谢成像:NAD(P)H 和FAD 胞质体的荧光寿命成像OmniFluo-FLIM系列显微荧光寿命成像系统应用案例1 用荧光分子对海拉细胞进行染色用荧光分子转子Bodipy-C12 对海拉细胞(宫颈癌细胞的一种) 进行染色。(a) 显微荧光寿命成像图,寿命范围1ns(蓝色)到2.5ns(红色);(b) 荧光寿命直方图,脂肪滴的短寿命约在1.6ns 附近,细胞中其他位置寿命较长,在1.8ns 附近。用荧光分子转子的时间分辨测量*大的好处在于荧光寿命具备足够清晰的标签特性,且与荧光团的浓度无关。[2]2 金属修饰荧光金属修饰荧光:(a) 荧光寿命是荧光团到金表面距离的函数;(b) 用绿色荧光蛋白(GFP)标记乳腺腺癌细胞的细胞膜的共聚焦xz 横截面,垂直比例尺:5 m;(c) b 图的FLIM 图,金表面附近的GFP 荧光寿命缩短。[2]3 钙钛矿太阳能电池下图研究中,展示了一种动态热风(DHA)制备工艺来控制全无机PSC 的薄膜形态和稳定性,该工艺不含有常规的有害反溶剂,可以在大气环境中制备。同时,钙钛矿掺有钡(Ba2+) 碱金属离子(BaI2:CsPbI2Br)。这种DHA 方法有助于形成均匀的晶粒并控制结晶,从而形成稳定的全无机PSC。从而在环境条件下形成完整的黑色相。经过DHA处理的钙钛矿光伏器件,在0.09cm小面积下,效率为14.85%,在1x1cm的大面积下,具有13.78%的*高效率。DHA方法制备的器件在300h后仍然保持初始效率的92%。4 MQWs 多量子阱研究在(a) 蓝宝石和(b) GaN 上生长的MQWs 的共焦PL mapping 图像。具有较小尺寸的发光团的*高密度是观察到在GaN 上生长的MQWs。在(c) 蓝宝石和(d)GaN 上生长的MQWs 的共焦TRPL mapping 图。仅对于在GaN 上生长的MQWs,强的PL 强度区域与较长PL 衰减时间的区域很好地匹配。在(e) 蓝宝石和(f)GaN 上生长的MQWs 在A 点和B 点测量的局部PL 衰减曲线,均标记在图中。对于在GaN 上生长的MQWs,点A 和B 之间的PL 衰减时间差更高。OmniFluo-FLIM系列显微荧光寿命成像系统参数配置北京卓立汉光仪器有限公司提供的显微荧光寿命成像系统是基于显微和时间相关单光子计数技术,配合高精度位移台得到微观样品表面各空间分布点的荧光衰减曲线,再经过用数据拟合,得到样品表面发光寿命表征的影像。是光电半导体材料、荧光标记常用荧光分子等类似荧光寿命大多分布在纳秒、几十、几百纳秒尺度的物质的不二选择。参数指标:系统性能指标光谱扫描范围200-900nm*小时间分辨率16ps荧光寿命测量范围500ps-1μs@ 皮秒脉冲激光器空间分辨率≤1μm@100X 物镜@405nm 皮秒脉冲激光器荧光寿命检测IRF≤2ns配置参数激发源及匹配光谱范围(光源参数基于50MHz 重复频率)375nm 皮秒脉冲激光器,脉宽:30ps,平均功率1.5mW,荧光波段:400-850nm405nm 皮秒脉冲激光器,脉宽:25ps,平均功率2.5mW,荧光波段:430-920nm450nm 皮秒脉冲激光器,脉宽:50ps,平均功率1.9mW,荧光波段:485-950nm488nm 皮秒脉冲激光器,脉宽:70ps,平均功率1.3mW,荧光波段:500-950nm510nm 皮秒脉冲激光器,脉宽:75ps,平均功率1.1mW,荧光波段:535-950nm635nm 皮秒脉冲激光器,脉宽:65ps,平均功率4.3mW,荧光波段:670-950nm660nm 皮秒脉冲激光器,脉宽:60ps,平均功率1.9mW,荧光波段:690-950nm670nm 皮秒脉冲激光器,脉宽:40ps,平均功率0.8mW,荧光波段:700-950nm科研级正置显微镜落射明暗场卤素灯照明,12V,100W5 孔物镜转盘,标配明场用物镜:10×,50×,100×监视CCD:高清彩色CMOS 摄像头,像元尺寸:3.6μm*3.6μm,有效像素:1280H*1024V,扫描方式:逐行,快门方式:电子快门电动位移台高精度电动XY 样品台,行程:75*50mm(120*80mm 可选),*小步进:50nm,重复定位精度:< 1μm光谱仪320mm 焦距影像校正单色仪,双入口、狭缝出口、CCD 出口,配置三块68×68mm 大面积光栅,波长准确度:±0.1nm,波长重复性:±0.01nm,扫描步距:0.0025nm,焦面尺寸:30mm(w)×14mm(h),狭缝缝宽:0.01-3mm 连续电动可调探测器:制冷型紫外可见光电倍增管,光谱范围:185-900nm(标配,可扩展)光谱CCD(可扩展PLmapping)低噪音科学级光谱CCD(LDC-DD),芯片格式:2000x256,像元尺寸:15μm*15μm, 探测面:30mm*3.8mm,背照式深耗尽芯片,低暗电流,*低制冷温度-60℃ @25℃环境温度,风冷,*高量子效率值95%时间相关单光子计数器(TCSPC)时间分辨率:16/32/64/128/256/512/1024ps……33.55μs,死时间< 10ns,*高65535 个直方图时间窗口,瞬时饱和计数率:100Mcps,支持稳态光谱测试;OmniFluo-FM 荧光寿命成像专用软件控制功能:控制样品平移台移动,通过显微镜的明场光学像定位到合适区域,框选扫描区域进行扫描,逐点获得荧光衰减曲线,实时生成荧光图像等数据处理功能:自动对扫描获得的FLIM 数据,逐点进行多组分荧光寿命拟合(组分数小于等于4),对逐点拟合获得的荧光强度、荧光寿命等信息生成伪彩色图像显示图像处理功能:直方图、色表、等高线、截线分析、3D 显示等操作电脑品牌操作电脑,Windows 10 操作系统 FLIM 软件界面控制测试界面测试软件的界面遵循“All In One”的简洁设计思路,用户可在下图所示的控制界面中完成采集数据的所有步骤:包括控制样品平移台移动,通过显微镜的明场光学像定位到合适区域,框选扫描区域进行扫描,逐点获得荧光衰减曲线,实时生成荧光图像等。数据处理界面功能丰富的荧光寿命数据处理软件,充分挖掘用户数据中的宝贵信息。可自动对扫描获得的FLIM 数据,逐点进行多组分荧光寿命拟合(组分数小于等于4),对逐点拟合获得的荧光强度、荧光寿命等信息生成伪彩色图像显示。自主开发的一套时间相关单光子计数(TCSPC)荧光寿命的拟合算法,可对荧光衰减曲线中*多包含4 个时间组分的荧光过程进行拟合,获得每个组分的荧光寿命,光子数比例,计算评价函数和残差。TCSPC 荧光寿命通常并非简单的指数衰减过程,而是与光源及探测器相关的仪器响应函数(IRF)与荧光衰减过程相互卷积的结果,因此适当的拟合方法和参数选择对获得正确可靠的荧光寿命非常重要。该软件可导入实际测量的IRF 对衰减曲线进行卷积计算和拟合。但是大多数情况下, IRF 很难正确的从实验获得,针对这种情况,软件提供了两种无需实验获取IRF 的拟合方法:NO.1 通过算法对数据上升沿进行拟合,获得时间响应函数IRF,然后对整条衰减曲线进行卷积计算和拟合得到荧光寿命。NO.2对于衰减时间远长于仪器响应时间的,可对衰减曲线下降沿进行直接的指数拟合。该软件经过大量测试,可以很好的满足各种场合的用户需求。MicroLED 微盘的荧光强度像(3D 显示):测试案例
    留言咨询
  • Sapphire RGBNIR激光扫描成像系统是新一代基于激光光源的扫描成像系统,通过其无与伦比的灵敏度、超高的分辨率、宽广的动态范围为客户提供高质量数据。仪器搭载四个固态激光器作为激发光源,国际首创融合PMT、APD和CCD三种检测器于一体,不仅能够进行高灵敏度宽动态范围的RGB荧光成像、近红外NIR荧光成像、磷屏成像(放射性同位素自显影成像),还可进行传统的化学发光成像、凝胶成像和可见光成像等。 产品特点● 强大的多重荧光检测,可同时进行四通道扫描● 宽广的动态范围,动态范围≥6OD● 高分辨率,分辨率可达10微米● 化学发光成像,fg级检测灵敏度● 直观友好的软件操作界面,易于使用● 强大的分析软件,轻松高效地分析多种实验数据 应用Sapphire RGBNIR激光扫描成像系统广泛适用于多种分子生物学实验的结果分析,如荧光Western、In-Cell Western、In-Gel Western、近红外荧光EMSA、蛋白芯片、核酸芯片、二维电泳、DNA凝胶、考马斯亮蓝染色凝胶、荧光组织切片等等。仪器可搭配CCD模块,用于化学发光成像和可见光成像。通过选配PI模块,仪器可用于磷屏成像(放射性同位素自显影成像)。 Sapphire激光扫描成像系统信息由Azure Biosystems(中国)公司为您提供。如您想了解更多Sapphire激光扫描成像系统相关报价、型号、参数等信息,欢迎来电或留言咨询。
    留言咨询
  • 激光扫描共聚焦显微镜(LSM)是生物化学,细胞生物学和其他相关生命科学领域中广泛使用的工具。 通过使用时间分辨技术,可以进一步增强这些显微镜的功能,并具有以下优点:基于荧光寿命的荧光共振能量转移(FRET)效率量化测量利用时间分辨成像测量环境参数(pH,离子浓度)寿命测量与荧光团浓度无关利用荧光寿命拆分发射光谱重叠的荧光分子减少所需检测器的数量——一个检测器足以根据不同荧光团的特定寿命通过模式匹配同时检测不同荧光团用荧光寿命区分荧光对弹性和拉曼散射及其他背景噪声造成的影响荧光寿命作为一个进一步的参数提高了分析测量的准确性该升级套件作为激光扫描显微镜升级部件,在增强了功能性的基础上,更使整个系统简单易用。作为交钥匙系统,它主要包含三个单元:皮秒脉冲激发源,单分子灵敏度检测器,以及时间相关单光子计数(TCSPC)模块。特点:FLIM, FRET, FCS的交钥匙系统紧凑、易用、免维护的组件,所有的升级系统各个配置都高度模块化,具有无限的灵活性最大4通道独立探测模块的高灵敏系统荧光寿命探测范围从100ps到微秒级别高端易用、匹配多种分析方式的数据收集和分析软件可用于各向异性和厚组织FLIM新功能:rapidFLIMHiRes——利用超快FLIM成像和出色的5 ps时间分辨率实现动态过程可视化应用:时间分辨荧光rapidFLIM - 重新定义动态FLIM成像标准荧光寿命成像(FLIM)磷光寿命成像(PLIM)荧光相关光谱(FCS)荧光寿命相关光谱(FLCS)荧光互相关光谱(FCCS)荧光共振能量转移(FRET)脉冲交替激发(PIE)激光切割/烧蚀模式匹配分析时间分辨光致发光(TRPL)TRPL 成像反聚束效应各向异性参数:激发系统激光耦合台,基于皮秒脉冲半导体激光器(功率/重复频率可调, 最大80MHz)375-900nm波长范围支持单通道或者多通道驱动可选:支持外接第三方激光器 (如钛蓝宝石飞秒激光器和超连续谱激光器)新品:采用LDH-D-TA-560的560 nm皮秒脉冲激发支持显微镜的厂家型号Nikon:AX,A1, C2+, C2, C1siOlympus: FluoView FV3000, FVMPE-RS, FluoView FV1200 (MPE), FluoView FV1000 (MPE)Scientifica:VivoScope, HyperScopeZeiss:LSM 980, LSM 880, LSM 780, LSM 710探测方式最多可支持4通道相互独立的探测模块共聚焦和NDD配置通过光纤与显微镜连接探测器单光子雪崩二极管(SPAD) 混合型光电倍增管(Hybrid-PMT) 光电倍增管(PMT)数据采集方式基于时间相关单光子计数(TCSPC)的TTTR测量模式 多达四个通道的同时数据采集采集和软件SymPhoTime 64支持显微镜的厂家型号:AX,A1,C2+, C2,C1siFluoView FV3000FVMPE-RSFluoView FV1200 (MPE)FluoView FV1000 (MPE)HyperScopeVivoScopeLSM 980LSM 880LSM 780LSM 710
    留言咨询
  • 荧光寿命成像和相关分析软件SymPhoTime 64是一款集数据采集和分析为一身的软件,它被用来控制,,及升级系统这三种显微共聚焦系统,和其他设备。该软件需要在位操作系统下工作,拥有简单易懂的用户操作界面。结构清晰,功能强大,使用户可以更高效的获取数据分析结果,并可以通过模式更加直观的管理数据。最后,通过基于语言的用户自定义编译脚本功能,用户可以任意改变分析和测量的具体步骤。特点:功能强大的64位数据采集和分析软件单点,2D,和3D的TTTR数据采集,包含有可在线预览FLIM,FCS,time trace和TCSPC数据的功能FLIM、快速FLIM和FLIM-FRETFCS、FCCS、FLCS、PIE-FCS,符合相关,总相关分析FRET、PIE-FRET荧光随时间的分析及单分子荧光爆发现象分析各向异性分析TCSPC寿命拟合,包括先进的误差分析基于"STUPSLANG"语言的用户自定义编译脚本功能应用:荧光寿命成像和相关分析软件SymPhoTime 64可以被用于时间分辨共聚焦数据采集实验,如:时间分辨荧光荧光寿命成像(FLIM)磷光寿命成像(PLIM)荧光相关光谱(FCS)荧光寿命相关光谱(FLCS)荧光共振能量转移(FRET)超分辨显微(STED)双聚焦荧光相关光谱(2fFCS)脉冲交错激发(PIE)单分子探测/光谱学Pattern Matching分析时间分辨磷光(TRPL)TRPL成像镧化物上转换反聚束参数:数据采集可联用TCSPC模块HydraHarp 400, PicoHarp 300, TimeHarp 260, MultiHarp 150,TimeHarp 200 (仅数据导入)可联用荧光系统MicroTime 200 MicroTime 100激光扫描显微系统 (LSM),支持Nikon, Olympus或 Zeiss品牌 单独的 TCSPC 模块 通过TCP/IP接口远程控制 (支持ZEN和 NIS Elements)探测通道数量1 到 8 detectors采集模式单点采集,多点采集,2D成像(XY,XZ,YZ),3D成像(XYZ),定时成像(XYT),用于调节系统时使用的示波器模式采集预览FLIM, FCS, FLCS 和FCCS, Time Trace, TCSPC柱状图 最多同时在线显示4种数据自动化测量Z轴逐层成像, 定时成像, 图片缝合, 多点测量硬件控制PDL 828 "Sepia II" 激光驱动器 E-710, E-725, E-727和宽范围扫描仪控制器(Physik Instrumente)MicroTime 200的快门系统 MicroTime 200 中宽视场荧光相机IDS uEye USB3数据分析总体特点时间门控 BinningTCSPC binning TCSPC拟合(1到5多指数衰减拟合)最小平方拟合, 最大可能性估算拟合, IRF解卷积拟合,尾部拟合,自举误差分析TCSPC曲线的全局化分析图形化交互界面成像FLIM, FLIM-FRET, 荧光强度FRET, 各向异性成像, (时间门控) 荧光强度成像Pattern Matching, 快速Pattern Matching 可调寿命颜色分配及对比度 特定区域分析 (ROI)用于相位分析的 Bin输出(通过荧光动力学实验室开发的第三方软件Globals)相关分析FCS, FCCS, FLCS, PIE–FCS STED-FCS, STED-FLCS FCS 拟合 (拟合模型: 扩散常数, 三重态, 构象分析, 质子化, 高斯PSF, 用户自定义, 自举误差分析) 全局分析 FCS校准 反聚束/符合相关,总相关FRETPIE (脉冲交错激发) 渗滤校正 FLIM-FRETSTEDSTED, 门控STED, STED-FLIM, 交错脉冲 STED及共聚焦, 分辨率估计荧光强度Trace分子闪烁(On/Off 柱状图), 计数率柱状图 (PCH), 爆发量柱状图, 强度门控制TCSPC, 荧光寿命 Traces, 寿命柱状图, BIFL稳态各向异性包含物镜校正系数导出数据格式BMP, ASCII, TIFF, BIN用户自定义脚本译 (STUPSLANG)用户自定分析步骤, 拟合功能, 多条件筛选 整合控制外部其他器件
    留言咨询
  • SPM900 系列少子寿命成像测试仪原理说明非平衡少数载流子少数载流子的寿命是半导体材料的一个重要参数,也是评价半导体质量的一个指标。例如在光伏电池中,少子寿命决定了少子扩散长度, 决定了光吸收层、内建电场区域的厚度设计等重要的器件参数;载流子寿命也可以反映器件中杂质或者缺陷的影响,抑或是存在污染, 进行失效分析,对工艺过程进行优化。载流子的复合在一定温度下,处于热平衡状态的半导体材料,电子- 空穴对的产生和复合保持一种动态平衡,载流子浓度是一定的。然而,外界的作用会破坏这种热平衡,使其处于与热平衡相偏离的状态,随之改变的是载流子的浓度, 多于平衡值的载流子就是非平衡载流子。非平衡少数载流子也称也称少子,通常对于半导体器件的性能起到决定性的作用。当外界作用撤掉后,处于非平衡态的载流子会通过复合而产生衰减,直到载流子浓度恢复到之前的热平衡状态。载流子的复合方式可以分为三类:SRH 复合、辐射复合及俄歇复合(直接和间接)。(a) SRH 复合; (b) 辐射复合; (c) 直接俄歇复合;(d)间接俄歇复合少子寿命测试少子寿命的测量通常包括非平衡载流子的注入和检测两个方面,*常用的注入方法是光注入和电注入。对于间接带隙的半导体,常使用电注入或者微波光电导衰减的方法进行少子寿命测试,间接带隙半导体一般寿命较长, 为毫秒量级。而对于GaAs 这类的直接间隙半导体,复合的能量几乎全部以发光的形式放出,发光效率高,寿命较短(典型的寿命在10-8-10-9s),通常使用时间分辨光致发光光谱(TRPL)的方法来进行测试。激光扫描少子寿命成像测量仪SPM900当外界作用停止以后,少子的浓度(ΔC)随时间t 增长呈指数衰减的规律。由以下方程可知,少子的寿命为当少子浓度衰减到初始浓度1/e 时候所经历的时间。在辐射复合中,发光的强度与少子的浓度相关,因此可以通过检测发光的寿命来获得少子的寿命信息。当在显微镜上加载少子寿命测试模块,就可以得到微区下半导体器件的少子寿命分布信息,这对于微小型器件的研究及质量控制十分重要。激光扫描少子寿命成像仪基于时间相关单光子计数进行设计,包含显微镜主体,激光光源,光子计数检测器,单色仪以及自动XY 样品台等部分。位于显微镜上的激光光源用于样品的激发,通过控制样品台的移动,可以进行微区单点少子寿命测量和少子寿命成像。少子寿命成像测试应用外延ZnS 薄膜半导体本征带- 浅杂质复合半导体中施主- 受主对复合深能级复合III-V 族载流子杂质俘获过程研究非辐射中心的电子弛豫及复合机制研究半导体外延片缺陷和杂质检测测试软件控制测试界面测试软件的界面遵循“All In One”的简洁设计思路,用户可在下图所示的控制界面中完成采集数据的所有步骤:包括控制样品平移台移动,通过显微镜的明场光学像定位到合适区域,框选扫描区域进行扫描,逐点获得荧光衰减曲线,实时生成荧光图像等。数据处理界面功能丰富的荧光寿命数据处理软件,充分挖掘用户数据中的宝贵信息。可自动对扫描获得的FLIM 数据,逐点进行多组分荧光寿命拟合(组分数小于等于4),对逐点拟合获得的荧光强度、荧光寿命等信息生成伪彩色图像显示。3D 显示功能少子寿命测试案例MicroLEDMicroLED 显示技术是指以自发光的微米量级的LED 为发光像素单元,将其组装到驱动面板上形成高密度LED 阵列的显示技术, 在发光亮度、分辨率、对比度、稳定性、能量损耗等方面有很大优势,可以应用在AR/VR,可穿戴光电器件,柔性显示屏等领域。由于MicroLED 的尺寸在微米级别,因此需要在显微镜下进行检测。下图为使用少子寿命成像系统对直径为80 微米的MicroLED 微盘进行测试。单组分拟合,可以看到红圈中的污损位置,虽然影响发光强度,但对发光寿命没有影响钙钛矿测试钙钛矿属于直接带隙半导体材料,具有高光学吸收,高增益系数、高缺陷容忍度、带隙可调,制备成本低等优点,可以广泛应用在光子学与光电信息功能器件等领域,例如钙钛矿太阳能电池,钙钛矿量子点,钙钛矿LED 等材料的研究。对于钙钛矿中的载流子辐射复合的研究对于提供器件的光电转换性能有很大的帮助。以下示例为钙钛矿样品的少子辐射复合发光成像和寿命成像。图中可见此钙钛矿样品有两个寿命组分,且不同寿命组分的相对含量也可以从相对振幅成像图中很直观的看到。晶圆级大尺寸的少子寿命成像测试仪4、6、8 英寸晶圆样品测试,可在此基础上增加小行程电动位移台实现数百纳米至微米尺度的精细扫描显微尺度的少子寿命成像测试仪参数指标 系统性能指标:光谱扫描范围200-900nm*小时间分辨率16ps寿命测量范围500ps-1ms(具体视激光器而定)小尺寸空间分辨率≤ 1μm@100X 物镜@405nm 皮秒脉冲激光器大尺寸扫描可适用4 英寸、6 英寸、8 英寸样品配置参数:脉冲激光器375nm 皮秒脉冲激光器,脉宽:30ps,平均功率1.5mW@50MHz405nm 皮秒脉冲激光器,脉宽:25ps,平均功率2.5mW@50MHz450nm 皮秒脉冲激光器,脉宽:50ps,平均功率1.9mW@50MHz488nm 皮秒脉冲激光器,脉宽:70ps,平均功率1.3mW@50MHz510nm 皮秒脉冲激光器,脉宽:75ps,平均功率1.1mW@50MHz635nm 皮秒脉冲激光器,脉宽:65ps,平均功率4.3mW@50MHz660nm 皮秒脉冲激光器,脉宽:60ps,平均功率1.9mW@50MHz670nm 皮秒脉冲激光器,脉宽:40ps,平均功率0.8mW@50MHz其他皮秒或纳秒脉冲激光器具体视材料及激发波长而定科研级正置显微镜落射明暗场卤素灯照明,12V,100W5 孔物镜转盘,标配明场用物镜:10×,50×,100×监视CCD:高清彩色CMOS 摄像头,像元尺寸:3.6μm*3.6μm,有效像素:1280H*1024V,扫描方式:逐行,快门方式:电子快门小尺寸扫描用电动位移台高精度电动XY 样品台,行程:75*50mm(120*80mm 可选),*小步进:50nm,重复定位精度< 1μm大尺寸扫描用电动位移台XY 轴行程200mm/250mm,单向定位精度≤ 30μm,水平负载:30Kg;光谱仪320mm焦距影像校正单色仪,双入口、狭缝出口、CCD出口,配置三块68×68mm大面积光栅, 波长准确度:±0.1nm,波长重复性:±0.01nm,扫描步距:0.0025nm,焦面尺寸:30mm(w)×14mm(h),狭缝缝宽:0.01-3mm 连续电动可调探测器:制冷型紫外可见光电倍增管,光谱范围:185-900nm(标配,可扩展)光谱CCD( 可扩展PL mapping)低噪音科学级光谱CCD(LDC-DD),芯片格式:2000x256,像元尺寸:15μm*15μm,探测面:30mm*3.8mm,背照式深耗尽芯片,低暗电流,*低制冷温度-60℃ @25℃环境温度,风冷,*高量子效率值95%时间相关单光子计数器(TCSPC)时间分辨率:16/32/64/128/256/512/1024ps… … 33.55μs,死时间< 10ns,*高65535 个直方图时间窗口,瞬时饱和计数率:100Mcps,支持稳态光谱测试;OmniFlμo-FM 寿命成像专用软件控制功能:控制样品平移台移动,通过显微镜的明场光学像定位到合适区域,框选扫描区域进行扫描,逐点获得发光衰减曲线,实时生成发光图像等数据处理功能:自动对扫描获得的寿命成像数据,逐点进行多组分发光寿命拟合( 组分数小于等于4),对逐点拟合获得的发光强度、发光寿命等信息生成伪彩色图像显示图像处理功能:直方图、色表、等高线、截线分析、3D 显示等操作电脑品牌操作电脑,Windows 10 操作系统
    留言咨询
  • 显微拉曼荧光寿命成像系统 德国S&I GmbH成立于1995年,是一家专门从事科研级拉曼光谱分析设备的制造公司,也是美国普林斯顿仪器(Princeton Instruments)在欧洲的OEM客户,其设备以优异的灵活性,高灵敏及易操作性著称。 显微拉曼荧光寿命成像系统,型号:MonoVista CRS+系列产品定位:服务于科学研究的强大“光谱成像综合分析平台”。lS&I公司擅长于提供各种科研级定制化的解决方案;l根据用户的应用需求,适用并可拓展不同的配置;l在保证系统自动控制与高可靠性情况下,适合各种光学测试;l显微拉曼光谱 /显微荧光 / 荧光寿命TCSPC成像/l变温红外光谱 / 时间分辨光谱 / 暗场光谱/l适用高压科学研究要求的开放式测试环境,如大样品系统,低温,强磁,高温等。 lMonovista CRS+系统是基于共聚焦显微镜设计的多功能光谱成像分析系统;应用领域:高压科学材料,半导体材料特性,碳纳米材料,钙钛矿材料,生物细胞研究等。 低波数性能: Stokes/Anti-Stokes spectrum from L-Cystine显微拉曼荧光寿命成像系统特点:l深紫外到近红外波长范围l多达 4 个集成多线激光器,可选配外接大型激光器端口l紫外和可见光/近红外双光束路径l自动控制激光选择l自动对准,聚焦和校准功能l超高拉曼光谱分辨率,例如 FWHM<25px -1 @ 633 nml利用低波数拉曼附件,低波数可测试到 +/- 10 cm-1 l高波数范围可达 225000px-1(@ 532nm),适用于光致发光l热电制冷和液氮制冷探测器l正置/倒置/双显微镜l步进电机和压电驱动 XYZ 位移台l快速拉曼 mappingl集成控制加热/冷却台,液氦温度低温恒温器l可结合拉曼成像和原子力显微镜成像l自动控制的偏振光谱功能 硬件与激光选择软件自动切换 荧光扣减与背景抑制功能 同一样品不同成分的拉曼成像图显微拉曼荧光寿命成像系统定制应用案例 Monovista显微光路+宏光路拉曼+AFM Monovista与低温,强磁测试条件(HPSTAR)
    留言咨询
  • 激光扫描共聚焦成像模块 CSIM 100/110共聚焦扫描成像模块的创新之处主要体现在两点: 1)与市场同类产品相比,CSIM 100/110共聚焦扫描成像模块具有更简洁的光路设计。通过光路的重新设计优化,减少了光学元件的使用数量和信号传递的步骤。信号传递环节的减少,使荧光信号的损失降到ZD,进而提高了模块的检测灵敏度。简洁的光路同时提高了模块的稳定性和可靠性,降低了维护成本; 2)与市场同类产品相比,CSIM 110共聚焦扫描成像模块优化了信号的探测类型,获得更为高效的信号采集。自主开发的信号采集电路,重新设计了信号的探测频次和和方式,显著提升了信号增益,以更低的照明强度获得了更好的信噪比和动态范围。CSIM 100/110共聚焦扫描成像模块,是桑尼基于多年高速光学扫描振镜和激光打标系统的开发经验,全新自主研发的产品。用户可将其搭配在原有的倒置荧光显微镜上,即可方便、快速地把倒置荧光显微镜升级为激光扫描(单点)共聚焦显微镜,获取高质量的共聚焦图像。CSIM 100/110共聚焦扫描成像模块通用性好,适配各品牌显微镜使用标准C型接口,无需额外配件即可与显微镜连接,搭建单点扫描共聚焦成像系统。使用进口配件 保障成像质量配置高性能Semrock滤光片、Coherent长寿命固态激光器、滨松多碱PMT,获取高分辨率图像。可定制升级 加载各种功能模块如:CCD/SCOMS相机接口、电动Z轴扫描模块、DIC(微分干涉)模块、适用于活细胞成像的超高灵敏度探测器等。光路设计简洁用最少的光学元件实现共聚焦成像功能,既减少了荧光信号的损失,提高了模块的检测灵敏度,又增强了模块的稳定性和可靠性,降低了维护成本。信号采集稳定自主设计开发的信号采集电路,优化了信号增益,提高了图像的信噪比和动态范围。激光器直调 超长使用寿命使用COHERENT OBIS 固体或半导体激光器,通过外部调节激光器功率和开关,延长激光器使用寿命,有效降低售后成本。激光器稳定性好,8小时功率变化<2%。即开即用,操作方便,可同时搭载4个激光器。高灵敏度PMT标配Hamamatsu新一代高性能多碱PMT,量子效率超过25%,相比国外前代共聚焦产品,灵敏度提高超过一倍。可升级为磷砷化镓(GaAsP),进一步提高图像的信噪比: GaAsP 的量子效率可达45%。Sunny XY描振镜高速扫镜使用本公司生产制造的XY高速扫描振镜,响应速度快、重复精度高、发热量低、温度漂移小。其他配件:共聚焦/宽场切换接口接口可同时连接共聚焦和相机,可自由选择共聚焦成像或相机成像。电动Z轴马达使手动显微镜实现自动调焦功能,实现XYZ三维扫描。 DIC功能可定制升级,加载DIC(微分干涉)模块。软件功能全中文界面,简单易用全软件控制完成多维图像采集,实现多通道扫描、时间序列和Z轴序列成像多色荧光、DIC图像叠加,添加标尺全软件控制数据记录,支持成像参数管理导出支持多种图像输出格式
    留言咨询
  • 仪器简介:HORIBA Scientific(Jobin Yvon光谱技术)荧光光谱仪器可提供全套稳态、瞬态和稳-瞬态以及各种偶联技术的解决方案。在细胞科学、生物物理和材料科学领域,重要变化经常会发生在时间和空间的微小尺度里。时间分辨荧光显微镜是研究细胞结构和纳米材料领域中动态事件的有效工具。与传统的荧光强度成像(由荧光显微镜获得)不同,荧光寿命是荧光基团的一个内在特性,因此它的测量不受非均匀负载,光漂白,激发光不稳定和光散射的影响。更重要地是时间分辨测试通过辨别显微点在样品中的位置获得更多关于分子运动、尺寸、所处环境、相互作用和键合的信息。借助于共聚焦显微镜的力量,可以得到清晰的样品成像、测定细胞内的局部作用和细胞结构的动力学。HORIBA科学仪器部推出的DynaMyc是基于滤光片式,全自动共焦显微镜系统,可在微观尺寸下测试荧光寿命和强度。DynaMyc采用高灵敏度的时间相关单光子计数(TCSPC)技术,荧光寿命范围100ps~100&mu s。整机包括:模块光学部件和Olympus BX51显微镜。它的成像部分包含X,Y,Z自动快速扫描平台,以及共聚焦设计,可在微米级的空间分辨率条件下实现荧光寿命成像。DynaMyc是一款灵活的研究工具,针对您的不同应用需求,可选多种波长的皮秒脉冲激光二极管光源,涵盖较宽的光谱范围(270~980nm),宽重复频率可调(CW~100MHz),多种滤光片以及不同检测器可选。可配置高动态范围、低噪声、制冷型照相机和高强度荧光照明,获得宽场荧光成像。DynaMyc由DataStation软件交互控制的一款全自动系统。基于去卷积分析后,可以生成各种参数的成像图,例如,寿命,相对振幅,平均寿命和荧光强度。DynaMyc是研究蛋白动态结合或解离及FRET的理想工具。可选附件:l 物镜(60/100X可选)l 皮秒脉冲激光二极管光源(多种波长可选)l 制冷型荧光相机技术参数:l 样平台:分辨率0.5µ m,行程范围75 x 50 mml 时间相关单光子计数(TCSPC)技术,寿命范围100ps~10&mu sl 光谱检测范围:185-650 nm/300-850 nm(TBX快速检测器)l 可配置DeltaDiode 100MHz高频率激光器,连续输出CW可选l 单点、多点和荧光寿命成像三种数据采集模式l 专业DAS6寿命分析软件能够快速数据分析l 可实现宽场荧光成像(制冷型荧光相机可选) 主要特点:l 时间相关单光子计数(TCSPC)技术,寿命范围100ps~10&mu sl 全自动紧凑光学寿命模块,可自动切换滤光片,二向色滤光片和针孔l 光纤耦合不同激光二极管(370~980nm)l 共焦头单元可自动切换针孔(100~1000&mu m)l 激光二极管(DeltaDiode),高重复频率可调(~100MHz),CW或脉冲模式可调l 直观的数据采集和分析软件l 宽场荧光成像(制冷型荧光照相机可选)
    留言咨询
  • 次世代荧光寿命成像相机/FLIM相机Lambert Instrument推出的Toggel是一款次世代荧光寿命成像相机/FLIM相机,它结合卓越的光灵敏度和易于获取的图像和数据分析等优点,简化了研究人员和成像中心的功能成像。次世代荧光寿命成像相机应用:活细胞成像Live-cell imaging使用内置的延时功能跟踪示例中的生命周期如何随时间变化。只需设置两次测量之间的持续时间和时间,我们的软件就可以完成其余的工作。这个视频截图是HeLa细胞的延时拍摄。加入异丙肾上腺素150秒后,cAMP迅速增加,荧光寿命相应延长。随后cAMP分解,荧光寿命逐渐降低。FLIM数据由荷兰癌症研究所提供。单图像荧光寿命成像Single-image FLIM演示了Lambert仪器荧光寿命成像相机Toggel用于单图像FLIM (siFLIM)检测组胺诱导的Ca2+浓度变化。加入组胺后,Ca2+水平出现微小振荡(~2.5 s周期)。这种微小而快速的瞬变现象被传统的FLIM记录下来时是完全不被注意的。细菌研究GFP-tagRFP荧光团被连接的枯草芽孢杆菌细胞与GFP-tagRFP荧光团被分裂的枯草芽孢杆菌细胞以1:1的比例混合 导致两种细胞的混合,一种是由于tagRFP的猝灭而导致GFP荧光寿命较短,另一种是GFP荧光寿命较长。图片由格罗宁根大学提供高通量筛选阿姆斯特丹大学的研究人员开发了一种多位置荧光寿命成像(FLIM)筛查方法来筛查明亮的FPs。然而,该方法可以应用于任何荧光寿命是一个重要参数的实验。次世代荧光寿命成像相机Toggel图片库下面的图像是用Toggel记录的,并在Toggel附带的LIFA软件中处理的。在ImageJ中对寿命图像进行拼接。次世代荧光寿命成像相机配置方案宽场荧光显微Widefield在宽视场显微镜上,荧光寿命成像相机Toggel结合多通道LED光源提供了一个强大而紧凑的FLIM解决方案。Toggel兼容广域显微镜的相机端口,而多通道LED光源兼容广域显微镜的标准荧光端口。转盘共聚焦荧光显微Spinning-disk confocal作为一种基于相机的系统,Lambert仪器用于频域FLIM的LIFA系统与多光束共焦显微镜技术兼容,知名的横河CSU旋转圆盘系列(基于Nipkow圆盘扫描仪),以及Visitech International的VTInfinity系列。全内反射荧光显微Total Internal Reflection Fluorescence (TIRF)全内反射荧光(TIRF)显微镜便于极高对比度的可视化,因此在覆盖玻璃附近的荧光灵敏度很高。通常,靠近盖玻片的光学部分约为100纳米。TIRF和频域FLIM的独特组合使得测量寿命成为可能,例如,覆盖玻璃附近的小焦点粘连。次世代荧光寿命成像相机用户应用文献:Lability of Stationary and Time-Resolved Optical Properties of the Conformationally Locked CFP Chromophore Derivative(构象锁定CFP发色团衍生物的稳态和时间分辨光学性质的不稳定性)Advanced Imaging Techniques Enhance Fluorescence SensingsiFLIM: single-image frequency-domain FLIM provides fast and photon-efficient lifetime data(siFLIM:单图像频域FLIM提供快速和光子效率的寿命数据)Single Cell FRET Analysis for the Identification of Optimal FRET-Pairs in Bacillus subtilis Using a Prototype MEM-FLIM System(利用原型MEM-FLIM系统进行枯草芽孢杆菌中蕞优FRET对的单细胞FRET分析)荧光寿命成像相机TOGGEL规格指标:更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密、先进激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。您可以通过我们昊量光电的官方网站了解更多的产品信息,或直接来电咨询。
    留言咨询
  • SPM900 系列少子寿命成像测试仪原理说明非平衡少数载流子少数载流子的寿命是半导体材料的一个重要参数,也是评价半导体质量的一个指标。例如在光伏电池中,少子寿命决定了少子扩散长度, 决定了光吸收层、内建电场区域的厚度设计等重要的器件参数;载流子寿命也可以反映器件中杂质或者缺陷的影响,抑或是存在污染, 进行失效分析,对工艺过程进行优化。载流子的复合在一定温度下,处于热平衡状态的半导体材料,电子- 空穴对的产生和复合保持一种动态平衡,载流子浓度是一定的。然而,外界的作用会破坏这种热平衡,使其处于与热平衡相偏离的状态,随之改变的是载流子的浓度, 多于平衡值的载流子就是非平衡载流子。非平衡少数载流子也称也称少子,通常对于半导体器件的性能起到决定性的作用。当外界作用撤掉后,处于非平衡态的载流子会通过复合而产生衰减,直到载流子浓度恢复到之前的热平衡状态。载流子的复合方式可以分为三类:SRH 复合、辐射复合及俄歇复合(直接和间接)。(a) SRH 复合; (b) 辐射复合; (c) 直接俄歇复合;(d)间接俄歇复合少子寿命测试少子寿命的测量通常包括非平衡载流子的注入和检测两个方面,*常用的注入方法是光注入和电注入。对于间接带隙的半导体,常使用电注入或者微波光电导衰减的方法进行少子寿命测试,间接带隙半导体一般寿命较长, 为毫秒量级。而对于GaAs 这类的直接间隙半导体,复合的能量几乎全部以发光的形式放出,发光效率高,寿命较短(典型的寿命在10-8-10-9s),通常使用时间分辨光致发光光谱(TRPL)的方法来进行测试。激光扫描少子寿命成像测量仪SPM900当外界作用停止以后,少子的浓度(ΔC)随时间t 增长呈指数衰减的规律。由以下方程可知,少子的寿命为当少子浓度衰减到初始浓度1/e 时候所经历的时间。在辐射复合中,发光的强度与少子的浓度相关,因此可以通过检测发光的寿命来获得少子的寿命信息。当在显微镜上加载少子寿命测试模块,就可以得到微区下半导体器件的少子寿命分布信息,这对于微小型器件的研究及质量控制十分重要。激光扫描少子寿命成像仪基于时间相关单光子计数进行设计,包含显微镜主体,激光光源,光子计数检测器,单色仪以及自动XY 样品台等部分。位于显微镜上的激光光源用于样品的激发,通过控制样品台的移动,可以进行微区单点少子寿命测量和少子寿命成像。少子寿命成像测试应用外延ZnS 薄膜半导体本征带- 浅杂质复合半导体中施主- 受主对复合深能级复合III-V 族载流子杂质俘获过程研究非辐射中心的电子弛豫及复合机制研究半导体外延片缺陷和杂质检测测试软件控制测试界面测试软件的界面遵循“All In One”的简洁设计思路,用户可在下图所示的控制界面中完成采集数据的所有步骤:包括控制样品平移台移动,通过显微镜的明场光学像定位到合适区域,框选扫描区域进行扫描,逐点获得荧光衰减曲线,实时生成荧光图像等。数据处理界面功能丰富的荧光寿命数据处理软件,充分挖掘用户数据中的宝贵信息。可自动对扫描获得的FLIM 数据,逐点进行多组分荧光寿命拟合(组分数小于等于4),对逐点拟合获得的荧光强度、荧光寿命等信息生成伪彩色图像显示。3D 显示功能少子寿命测试案例MicroLEDMicroLED 显示技术是指以自发光的微米量级的LED 为发光像素单元,将其组装到驱动面板上形成高密度LED 阵列的显示技术, 在发光亮度、分辨率、对比度、稳定性、能量损耗等方面有很大优势,可以应用在AR/VR,可穿戴光电器件,柔性显示屏等领域。由于MicroLED 的尺寸在微米级别,因此需要在显微镜下进行检测。下图为使用少子寿命成像系统对直径为80 微米的MicroLED 微盘进行测试。单组分拟合,可以看到红圈中的污损位置,虽然影响发光强度,但对发光寿命没有影响钙钛矿测试钙钛矿属于直接带隙半导体材料,具有高光学吸收,高增益系数、高缺陷容忍度、带隙可调,制备成本低等优点,可以广泛应用在光子学与光电信息功能器件等领域,例如钙钛矿太阳能电池,钙钛矿量子点,钙钛矿LED 等材料的研究。对于钙钛矿中的载流子辐射复合的研究对于提供器件的光电转换性能有很大的帮助。以下示例为钙钛矿样品的少子辐射复合发光成像和寿命成像。图中可见此钙钛矿样品有两个寿命组分,且不同寿命组分的相对含量也可以从相对振幅成像图中很直观的看到。晶圆级大尺寸的少子寿命成像测试仪4、6、8 英寸晶圆样品测试,可在此基础上增加小行程电动位移台实现数百纳米至微米尺度的精细扫描显微尺度的少子寿命成像测试仪参数指标系统性能指标:光谱扫描范围200-900nm*小时间分辨率16ps寿命测量范围500ps-1ms(具体视激光器而定)小尺寸空间分辨率≤ 1μm@100X 物镜@405nm 皮秒脉冲激光器大尺寸扫描可适用4 英寸、6 英寸、8 英寸样品配置参数:脉冲激光器375nm 皮秒脉冲激光器,脉宽:30ps,平均功率1.5mW@50MHz405nm 皮秒脉冲激光器,脉宽:25ps,平均功率2.5mW@50MHz450nm 皮秒脉冲激光器,脉宽:50ps,平均功率1.9mW@50MHz488nm 皮秒脉冲激光器,脉宽:70ps,平均功率1.3mW@50MHz510nm 皮秒脉冲激光器,脉宽:75ps,平均功率1.1mW@50MHz635nm 皮秒脉冲激光器,脉宽:65ps,平均功率4.3mW@50MHz660nm 皮秒脉冲激光器,脉宽:60ps,平均功率1.9mW@50MHz670nm 皮秒脉冲激光器,脉宽:40ps,平均功率0.8mW@50MHz其他皮秒或纳秒脉冲激光器具体视材料及激发波长而定科研级正置显微镜落射明暗场卤素灯照明,12V,100W5 孔物镜转盘,标配明场用物镜:10×,50×,100×监视CCD:高清彩色CMOS 摄像头,像元尺寸:3.6μm*3.6μm,有效像素:1280H*1024V,扫描方式:逐行,快门方式:电子快门小尺寸扫描用电动位移台高精度电动XY 样品台,行程:75*50mm(120*80mm 可选),*小步进:50nm,重复定位精度< 1μm大尺寸扫描用电动位移台XY 轴行程200mm/250mm,单向定位精度≤ 30μm,水平负载:30Kg;光谱仪320mm焦距影像校正单色仪,双入口、狭缝出口、CCD出口,配置三块68×68mm大面积光栅, 波长准确度:±0.1nm,波长重复性:±0.01nm,扫描步距:0.0025nm,焦面尺寸:30mm(w)×14mm(h),狭缝缝宽:0.01-3mm 连续电动可调探测器:制冷型紫外可见光电倍增管,光谱范围:185-900nm(标配,可扩展)光谱CCD( 可扩展PL mapping)低噪音科学级光谱CCD(LDC-DD),芯片格式:2000x256,像元尺寸:15μm*15μm,探测面:30mm*3.8mm,背照式深耗尽芯片,低暗电流,*低制冷温度-60℃ @25℃环境温度,风冷,*高量子效率值95%时间相关单光子计数器(TCSPC)时间分辨率:16/32/64/128/256/512/1024ps……33.55μs,死时间< 10ns,*高65535 个直方图时间窗口,瞬时饱和计数率:100Mcps,支持稳态光谱测试;OmniFlμo-FM 寿命成像专用软件控制功能:控制样品平移台移动,通过显微镜的明场光学像定位到合适区域,框选扫描区域进行扫描,逐点获得发光衰减曲线,实时生成发光图像等数据处理功能:自动对扫描获得的寿命成像数据,逐点进行多组分发光寿命拟合( 组分数小于等于4),对逐点拟合获得的发光强度、发光寿命等信息生成伪彩色图像显示图像处理功能:直方图、色表、等高线、截线分析、3D 显示等操作电脑品牌操作电脑,Windows 10 操作系统
    留言咨询
  • 中图仪器激光扫描3d成像影像仪Novator系列智能化和自动化程度高,使测量变得简单。在测量一些弱边缘特征(如过渡曲线、圆角加工等)时能完成自动抓取,在保证精度的前提下,可以自动抓取产品的边界和表面,测量效率更高。中图仪器激光扫描3d成像影像仪Novator系列将传统影像测量与激光测量扫描技术相结合,支持频闪照明和飞拍功能,1-2S自动聚焦速度快,处理去毛刺、弱边界等复杂边界提取能力强,可进行高速测量,并融入中图闪测仪的拼接测量功能,结合可独立升降和可更换RGB光源,可适应更多复杂工件表面,同时测量效率提升5~10倍。产品优势稳固移动平台、高测量精度1.精密大理石机台,稳定性好,精度高。2.精密线性滑轨和伺服控制系统,超低分贝静音级运动。3.三轴全自动可编程检测,实现复杂特征批量检测。激光扫描成像、3D复合测量1.支持点激光轮廓扫描测量,进行高度方向上的轮廓测量。2.支持线激光3D扫描成像,可实现3D扫描成像和空间测量。 3.VisionX测量软件支持多种轮廓测量和3D空间测量,无缝连接2D/3D混合测量。频闪照明光源、高速硬件飞拍1.具备频闪照明光源,支持频闪和普通双模式。2.支持飞拍模式测量,测量效率提升5~10倍。3.融入中图闪测仪的拼接测量功能,发挥综合优势。可更换RGB表光、独立升降表光1.可更换RGB表光和白色表光,适应多种复杂颜色和材料表面。2.表光可独立升降,更好的观察样品表面。3.支持六环八分区表面光、透射光、同轴光分段编程控制。自动测量,批量更快1.程序匹配工件坐标系,自动执行测量流程。2.支持CAD图纸和Gerber图纸导入,坐标系匹配测量。3、CNC固定坐标系模式下,可快速精确地进行批量测量。操作简单,轻松无忧1.具备大幅面导航相机,快速实现工件定位。2.具有镜头防撞功能,轻松无忧。3.一体化操作界面,任何人都能轻松设定和测量。中图仪器激光扫描3d成像影像仪Novator系列自动抓取数据点,测量点、线、圆、弧、椭圆、矩形等几何特征,自动分析测量特征的各种参数,如宽度、直径、位置、直线度、圆锥度、圆柱度等各种几何尺寸。结合专用测量软件对测绘要素数据进行处理、评价和输出。在保证精度的前提下,测量效率更高。高度尺寸测量Novator系列影像测量仪配备(1)触发式测头;(2)点激光(激光同轴位移计);(3)三角激光三种传感器配置,能精准测量零件高度尺寸。1、接触式测量影像测量仪+触发式测头组合相当于一台小的三坐标测量仪,也就是我们说的复合式影像测量仪,在需要测量高度的地方,用探针取元素(点或者面),然后运用影像测量仪软件中的Z轴自动对焦功能,测量得出高度。2、非接触式测量通过搭载点激光(激光同轴位移计)、三角激光传感器配置,点激光轮廓扫描测量以及线激光3D扫描成像进行高度测量,平面度测量,针对镜面和光滑斜面均可测量;或是运用影像测量仪软件中的Z轴自动对焦功能,测量得出高度,这样的测量方法可以减少人为误差,不管是谁来测量,都可以测得同样的数值,非常简单方便。平面度尺寸测量在测量平面度时,可以将待测物放置在二维影像仪的工作台上,使用光学放大镜头和图像处理软件来检测物体表面的高低差异,并计算出物体表面的平坦度参数。通过与标准样品的比较,可以判断物体表面是否符合规定的平面度要求。需要注意的是,二维影像仪在测量平面度时,需要选择合适的光学放大倍率和图像处理算法,以保证测量结果的准确性和可靠性。光学测头平面度测量Novator可实现各种复杂零件的表面尺寸、轮廓、角度与位置、形位公差、3D空间形貌与尺寸结构等精密测量。Novator可用于机械、电子、模具、注塑、五金、橡胶、低压电器、磁性材料、精密冲压、接插件、连接器、端子、手机、家电、印刷电路板、医疗器械、钟表、刀具、计量检测等领域。部分技术指标型号Novator432行程范围X(mm)400Y(mm)300Z(mm)200图像传感器高清彩色工业摄像机显示器24英寸 LCD显示器(1920×1080)放大倍率光学放大0.6~8.0X 影像放大17~232X照明系统透射光远心透射照明(绿色)表面光6环8分区分割照明(白光);选配,可更换RGB光源同轴光LED光3D扫描成像测量Z向测量范围5mm扫描宽度30mm支持飞拍测量模式支持支持导航相机支持传感器配置选配,(1)接触式探针;(2)白光共焦;(3)三角激光外形尺寸(mm)860*1350*1670仪器重量(Kg)650恳请注意:因市场发展和产品开发的需要,本产品资料中有关内容可能会根据实际情况随时更新或修改,恕不另行通知,不便之处敬请谅解。如有疑问或需要更多详细信息,请随时联系中图仪器咨询。
    留言咨询
  • 共聚焦显微镜系统能够提供高信噪比图像,表征样品从宏观到微观的多尺度细节,灵活应对丰富的样品种类和实验场景,是科学研究中不可或缺的高端荧光成像设备。除了高精度微观定位,近年来研究人员也对精准定量和可靠重复性提出更高的要求。Evident利用专利*技术,结合全新光子探测器件、光学模组、人工智能算法,重磅推出FLUOVIEW FV4000激光扫描共聚焦显微镜以及FV4000MPE多光子系统,为高效率单双光子检测、精准的数据定量带来新的突破。 FV4000系统拥有以下突出优势全新检测器带来卓越的成像质量和准确性FV4000开创性使用专利*技术SilVIR检测器(Silicon detector Visible to IR),该检测器不仅将高信噪比、线性的大动态范围、宽光谱的高灵敏度等特点融于一体,其半导体技术工艺还能保证更均一和稳定的光子探测能力。SilVIR检测器具备的高效率和高精度的优势,将彻底代替传统GaAsP-PMT检测器,引领共聚焦和多光子成像全面进入弱光探测与光子数定量新模式。SilVIR检测器比GaAsP检测器具有更低的噪声,更高的信噪比更大的动态范围,可定量的线性记录强弱信号差异SilVIR检测器在400-900nm宽光谱范围提供优于GaAsP-PMT的光子探测效率;特有的近红外优化检测器器,提供业内更高的近红外检测能力配合检测器的更新换代,FV4000系统标配激光功率监控系统,针对成像时的实时激光功率进行监控和反馈,保证实际激发功率的稳定和一致,带来可精准量化的图像数据。全光谱超多色分析得益于专利*VPH体相位透射光栅,FV4000系统全部检测通道均具有光谱成像和光谱扫描的能力,光谱分辨率高达2nm,光谱步进精度1nm。系统最多可实现6色荧光同步光谱成像,并能灵活覆盖400 nm至900 nm,其成像通道数和光谱探测范围均达到开创水平。 引领创新的近红外成像功能FV4000系统的光学设计针对近红外(NIR)成像进行了优化,支持从405 nm到785 nm多达10条激光谱线的激光组合,将全新且高效的红外染料纳入显微成像武器库。并延续Evident特有的上转换近红外成像能力,支持808 nm和980 nm等近红外激光的接入。升级的高速高分辨率扫描FLUOVIEW系统升级更大视野、更高分辨率的共振快扫单元,在兼顾大视野成像的同时可实现1024*32分辨率下438帧每秒的高速高分辨成像,配合高信噪比和高光子探测效率的SilVIR检测器使用,可以获得更高质量的高速活细胞的动态采集。不仅是快速扫描模式进一步提高了大视野样品的图像拼接以及深层3D Z-stack数据的获取效率,同时高分辨扫描模式下1024x1024也提速1.45倍,与SilVIR检测器组合使用,更好地为常规实验提速增效。智能与自动化成像体验利用人工智能工具,FLUOVIEW系列为用户带来全新的成像体验。全新的AI降噪和智能识别功能,显著提升图像质量,并加速了数据的量化处理。针对特定的成像需求,系统还提供了个性化的自动成像解决方案,包括高效的类器官自动探测成像、线虫运动自动化追踪模块等,这些定制化功能将大大简化研究人员操作复杂成像工作流程的需求,实现了“一键操作“的便捷。模块化和灵活性FLUOVIEW系统设计灵活,根据应用需求,可选扫描单元、检测器数量、激光器配置、多类型物镜、活细胞工作站、超分辨模块等。FV4000共聚焦系统具有丰富的拓展性,支持多种第三方设备,也可以升级多光子成像功能模块,单双一体模式提供更多应用可能性。* Patent No.US11237047
    留言咨询
  • 非接触式独立激光测量系统Lazer200是一种创新的非接触式测量系统,它使用激光扫描和影像同时进行表面形貌测量。DRS™ 激光器可对关键零件表面进行高质量的非接触式激光扫描。Lazer系统采用创新的“升降桥”设计,在有限的紧凑空间内打造尽可能大量程的系统。基体轴向直线度和垂直度的保证,使DRS激光在整个Z轴行程的扫描过程中保持在捕获范围内。集成的影像系统用于定位零件、设置基准、选择激光扫描起始点和一般测量。技术参数XYZ行程(MM)标准扫描长度-X轴NA,Y轴50毫米Z轴调整范围-50毫米照明标准线性白光LED表面,LED台激光扫描结果标准0.125μm软件ZONE3MeasureMind3DMeasure-X传感器和附件激光传感器DRSLasers
    留言咨询
  • 高精度3D小型激光扫描系统Cobra™ 3D可提供小面积分析从而获取零件的更多信息。Cobra3D可测量X轴和Z轴的轮廓,激光扫描分辨率可达0.125微米。Cobra3D用途广泛,可置于台面或安装在定制系统上。精确的表面轮廓Cobra™ 使用低功率激光扫描零件表面并提供精确的表面高度信息。可选激光传感器DRS™ 激光器提供可选用的一系列分辨率和距离,以满足各种应用。实时成像可选摄像头,用于对被测部件进行轴上成像。在测量时查看激光光斑在零件表面路径。15×放大倍率下的同轴LED表面照明,可实现完美的图像对比度,并可通过Scan-X软件进行调节。技术参数扫描长度和Z轴调整范围标准扫描长度–X轴100毫米,Y轴50毫米Z轴调整范围–50毫米激光扫描分辨率标准0.125μm扫描速度标准5毫米/秒。在30μm间距的镜面软件Scan-X® 传感器和附件激光传感器DRSLasers
    留言咨询
  • 高精度便携式激光扫描系统非接触式测量Cobra™ 2D是一款便携式激光扫描仪,Cobra使用低功率高精度激光,可提供高分辨率的线性轮廓测量,因此非常适合具有关键表面轮廓尺寸测量要求的易碎或柔韧零件可的现场测量。Cobra速度快,可以轻松测量高度、长度、坡度和半径。精确的表面轮廓Cobra™ 使用低功率激光扫描零件表面并提供精确的表面高度信息。可选激光传感器DRS™ 激光器提供可选用的一系列分辨率和距离,以满足各种应用。实时成像可选摄像头,用于对被测部件进行轴上成像。在测量时查看激光光斑在零件表面路径。15×放大倍率下的同轴LED表面照明,可实现完美的图像对比度,并可通过Scan-X软件进行调节。技术参数扫描长度和Z轴调整范围标准扫描长度-X轴NA,Y轴50毫米Z轴调整范围-50毫米激光扫描分辨率标准0.125μm扫描速度标准5毫米/秒。在30μm间距的镜面软件Scan-X® 传感器和附件激光传感器DRSLasers
    留言咨询
  • NS3500L 大面积高速3D激光扫描仪 NS-3500L 是一种准确、可靠的三维(3D)测量高速共焦激光扫描显微镜(CLSM)。通过快速光学扫描模块和信号处理算法实现实时共焦显微图像。在测量和检测微观三维结构,如半导体晶片,FPD产品,MEMS设备,玻璃基板,材料表面等方面拥有无可比拟的解决方案。Features & Benefits(性能及优势):高分辨无损伤光学3D测量 自动倾斜补偿实时共焦成像 简单的数据分析模式多种光学变焦 双Z扫描大范围拼接 半透明基材的特征检测实时CCD明场和共聚焦成像 无样品准备自动聚焦Application field(应用领域):NS-3500是测量低维材料的有前途的解决方案。可测量微米和亚微米结构的高度,宽度,角度,面积和体积,例如-半导体:IC图形,凹凸高度,线圈高度,缺陷检测,CMP工艺- FPD产品:触摸屏屏幕检测,ITO图案,LCD柱间距高度- MEMS器件:结构三维轮廓,表面粗糙度,MEMS图形-玻璃表面:薄膜太阳能电池,太阳能电池纹理,激光图案-材料研究:模具表面检测,粗糙度,裂纹分析Specification(规格):ModelMicroscope NS-3500备注Controller NS-3500E物镜倍率10x20x50x100x150x观察/ 测量范围 水平 (H): μm140070028014093垂直 (V): μm105052521010570工作范围: mm16.53.10.540.30.2数值孔径(N.A.)0.300.460.800.950.95光学变焦x1 to x6总放大倍率178x to 26700x观察/测量光学系统 针孔共聚焦光学系统高度测量测量扫描范围精细扫描 : 400 μm (and/or) 长扫描 : 10 mm [NS-3500-S]长扫描 : 10mm [NS-3500-T]显示分辨率0.001 μm重复率 σ0.010 μm注 1宽度测量显示分辨率0.001 μm重复率 3σ0.02 μm注 2帧记忆像素1024x1024, 1024x768, 1024x384, 1024x192, 1024x96单色图像12 bit彩色图像8-bit for RGB each高度测量16 bit帧速率表面扫描20 Hz to 160 Hz线扫描~8 kHz自动功能自动增益激光共焦测量光源波长 405nm输出~2mW激光等级Class 3b激光接收元件PMT (光电倍增管)光学观察光源灯10W LED光学观察照相机成像元件1/2” 彩色图像 CCD 传感器记录分辨率640x480自动调整增益, 快门速度, White balance数据处理单元 PC电源电源电压100 to 240 VAC, 50/60 Hz电流消耗500 VA max.重量显微镜Approx. ~50 kg(Measuring head unit : ~12 kg)控制器~8 kg注 1 :以100×/ 0.95物镜对标准样品(步长1μm)进行100次测量 注 2 :以100×/ 0.95物镜对标准样品(5μm间距)进行100次测量。
    留言咨询
  • NS3500G 大型非接触式3D激光扫描仪NS-3500G 是一种准确、可靠的三维(3D)测量高速共焦激光扫描显微镜(CLSM)。通过快速光学扫描模块和信号处理算法实现实时共焦显微图像。在测量和检测微观三维结构,如半导体晶片,FPD产品,MEMS设备,玻璃基板,材料表面等方面拥有无可比拟的解决方案。 Features & Benefits(性能及优势):高分辨无损伤光学3D测量 自动倾斜补偿实时共焦成像 简单的数据分析模式多种光学变焦 双Z扫描大范围拼接 半透明基材的特征检测实时CCD明场和共聚焦成像 无样品准备自动聚焦 Application field(应用领域):NS-3500是测量低维材料的有前途的解决方案。可测量微米和亚微米结构的高度,宽度,角度,面积和体积,例如-半导体:IC图形,凹凸高度,线圈高度,缺陷检测,CMP工艺- FPD产品:触摸屏屏幕检测,ITO图案,LCD柱间距高度- MEMS器件:结构三维轮廓,表面粗糙度,MEMS图形-玻璃表面:薄膜太阳能电池,太阳能电池纹理,激光图案-材料研究:模具表面检测,粗糙度,裂纹分析 Specification(规格):ModelMicroscope NS-3500备注Controller NS-3500E物镜倍率10x20x50x100x150x观察/ 测量范围 水平 (H): μm140070028014093垂直 (V): μm105052521010570工作范围: mm16.53.10.540.30.2数值孔径(N.A.)0.300.460.800.950.95光学变焦x1 to x6总放大倍率178x to 26700x观察/测量光学系统 针孔共聚焦光学系统高度测量测量扫描范围长扫描 : 10mm [NS-3500-T]显示分辨率0.001 μm重复率 σ0.010 μm注 1宽度测量显示分辨率0.001 μm重复率 3σ0.02 μm注 2帧记忆像素1024x1024, 1024x768, 1024x384, 1024x192, 1024x96单色图像12 bit彩色图像8-bit for RGB each高度测量16 bit帧速率表面扫描20 Hz to 160 Hz线扫描~8 kHz自动功能自动增益激光共焦测量光源波长 405nm输出~2mW激光等级Class 3b激光接收元件PMT (光电倍增管)光学观察光源灯10W LED光学观察照相机成像元件1/2” 彩色图像 CCD 传感器记录分辨率640x480自动调整增益, 快门速度, White balance数据处理单元 PC电源电源电压100 to 240 VAC, 50/60 Hz电流消耗500 VA max.重量显微镜Approx. ~200 kg(Measuring head unit : ~12 kg)控制器~8 kg 注1 :以100×/ 0.95物镜对标准样品(步长1μm)进行100次测量 注 2 :以100×/ 0.95物镜对标准样品(5μm间距)进行100次测量。
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制