当前位置: 仪器信息网 > 行业主题 > >

快速纵向大孔径普克尔盒电光调制器

仪器信息网快速纵向大孔径普克尔盒电光调制器专题为您提供2024年最新快速纵向大孔径普克尔盒电光调制器价格报价、厂家品牌的相关信息, 包括快速纵向大孔径普克尔盒电光调制器参数、型号等,不管是国产,还是进口品牌的快速纵向大孔径普克尔盒电光调制器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合快速纵向大孔径普克尔盒电光调制器相关的耗材配件、试剂标物,还有快速纵向大孔径普克尔盒电光调制器相关的最新资讯、资料,以及快速纵向大孔径普克尔盒电光调制器相关的解决方案。

快速纵向大孔径普克尔盒电光调制器相关的资讯

  • 仅细菌大小 迄今世界最小电光调制器问世
    p   据最新一期《纳米快报》报道,美国研究人员设计并制造出了目前世界上最小的电光调制器,这或许意味着未来数据中心和超级计算机所使用的能源将得到大幅削减。 /p p   电光调制器在光纤网络中起着关键作用。就像晶体管作为电信号的开关一样,电光调制器可用作光信号的开关。光通信使用光,所以调制器用于打开和关闭在光纤中发送二进制信号流的光。 /p p   俄勒冈州立大学电子与计算机学院副教授王小龙在接受科技日报记者采访时称,此项技术的创新点是在光子晶体的微腔里集成了透明氧化物—硅基MOS(金属氧化物半导体)结构。微腔调制器可以把光场压缩到很小的范围,通过载流子富集形成很强的电光调制效应,从而在很小的区间内实现很大的电光调制。 /p p   王小龙表示,新研制的电光调制器可极大降低光互联器件的功耗。目前全球数据中心和超级计算机所使用的能源占据了全球电力使用量的4%—5%,数据中心的大部分功耗主要由互联产生,通过光取代电来降低系统功耗是今后的研究方向。但光互联研究的一个瓶颈在于电光转换,电光转换同样需要消耗大量能源。 /p p   此项设计结合了材料和器件的创新,增强电子和光子之间的相互作用,从而使研究人员能够创建出一个更小的电光调制器。新调制器相比主流硅基微环电光调制器在尺寸上缩小了10倍,仅为一个细菌大小(8微米× 0.6微米),有源区更是缩小到了0.06立方微米(仅仅是波长立方尺寸的2%),在理论上可将电光转换的能耗降低2—3个数量级。 /p p /p
  • 盛志高研究团队成功研发出一种主动智能化的太赫兹电光调制器
    近日,中科院合肥研究院强磁场中心盛志高研究团队依托稳态强磁场实验装置成功研发了一种主动智能化的太赫兹电光调制器。相关研究成果发表在国际期刊 ACS Applied Materials & Interfaces 上。虽然太赫兹技术具有优越的波谱特性和广泛的应用前景,但其工程应用还严重受制于太赫兹材料与太赫兹元器件的开发。其中,围绕智能化场景应用,采用外场对太赫兹波进行主动、智能化的控制是这一领域的重要研究方向。瞄准太赫兹核心元器件这一前沿研究方向,强磁场中心磁光团队继2018年发明一种基于二维材料石墨烯的太赫兹应力调制器[Adv. Optical Mater. 6, 1700877(2018)]、2020年发明一种基于强关联氧化物的太赫兹宽带光控调制器[ACS Appl. Mater. Inter. 12, 48811(2020)]、2021年发明一种基于声子的新型单频磁控太赫兹源[Advanced Science 9, 2103229(2021)]之后,选择关联电子氧化物二氧化钒薄膜作为功能层,采用多层结构设计和电控方法,实现了太赫兹透射、反射和吸收多功能主动调制(图a)。研究结果表明,除了透射率和吸收率,反射率和反射相位也可被电场主动调控,其中反射率调制深度可以达到99.9%、反射相位可达~180o调制(图b)。更为有趣的是,为了实现智能化的太赫兹电控,研究人员设计了一种具有新型“太赫兹-电-太赫兹”的反馈回路的器件(图c)。不管起始条件和外界环境如何变化,该智能器件可以在30秒左右自动达到太赫兹的设定(预期)调制值。(a)基于VO2的电光调制器示意图(b)透射率、反射率、吸收率和反射相位随外加电流变化(c)智能化控制原理图这一基于关联电子材料的主动、智能化太赫兹电光调制器的研发为太赫兹智能化控制的实现提供了新的思路。该工作获得了国家重点研发计划、国家自然科学基金、强磁场安徽省实验室方向基金的支持。文章链接:https://pubs.acs.org/doi/10.1021/acsami.2c04736
  • 科学岛团队研发出一种光控太赫兹相位调制器
    近日,中科院合肥研究院强磁场中心磁光团队成功研发了一种主动的太赫兹相位调制器。相关研究成果发表在ACS Applied Electronic Materials 国际期刊上。   虽然具有优越的波谱特性和广泛的应用前景,太赫兹技术的工程应用还严重受制于太赫兹材料与太赫兹元器件的开发。为了满足不同的应用要求,太赫兹调制器件成为这一领域的研究重点。   强磁场中心磁光团队聚焦太赫兹核心元器件这一前沿研究方向,继2018年发明一种基于二维材料石墨烯的太赫兹应力调制器【Adv. Optical Mater. 6, 1700877(2018)】、2020年发明一种基于强关联氧化物的太赫兹宽带光控调制器【ACS Appl. Mater. Inter.12, 48811(2020)】、2022年发明一种基于关联电子材料的主动、智能化太赫兹电光调制器【ACS Appl. Mater. Inter. 14, 26923-26930, (2022)】之后,与固体所苏付海团队合作,经过大量材料筛选与技术探索,发现氧化物晶体NdGaO3可以使太赫兹发生明显相位移动。研究结果表明,NdGaO3晶体在100-400K下可以实现~94°的相位移动,相位移动大小几乎线性依赖于太赫兹频率,并且具有晶体各向异性。采用光控的方式,研究团队实现了太赫兹相位的主动调制,即在20 J/cm2的光照激发下,NdGaO3晶体可以实现稳定的相位调控~78°,通过改变光照激发强度,可以实现多态的太赫兹相位移动。该结果表明NdGaO3晶体是太赫兹移相器的合适候选材料,其灵敏度和稳定性有望在新型太赫兹光学器件中得到良好的应用。   该工作获得了国家重点研发计划、国家自然科学基金,省级重大科技专项计划中国科学院前沿科学重点研究项目的支持。(a)基于NdGaO3的光控相位调制器示意图(b)相位移动随太赫兹频率和光照开关的变化。
  • 纯相位空间光调制器在PSF工程中的应用
    纯相位空间光调制器在PSF工程中的应用一、引言2014年诺贝尔化学奖揭晓,美国及德国三位科学家Eric Betzig、Stefan W. Hell和William E. Moerner获奖。获奖理由是“研制出超分辨率荧光显微镜”,从此人们对点扩散函数 (PSF) 工程的认识有了显着提高。Moerner 展示了 PSF 工程与 Meadowlark Optics SLM 的使用案例,用于荧光发射器的超分辨率成像和 3D 定位。 PSF工程已被证明使显微镜能够使用多种成像模式对样本进行成像,同时以非机械方式在模式之间变化。这允许对具有弱折射率的结构进行成像,以及对相位结构进行定量测量。 已证明的成像方式包括:螺旋相位成像、暗场成像、相位对比成像、微分干涉对比成像和扩展景深成像。美国Meadowlark Optics 公司专注于模拟寻址纯相位空间光调制器的设 计、开发和制造,有40多年的历史,该公司空间光调制器产品广泛应用于自适应光学,散射或浑浊介质中的成像,双光子/三光子显微成像,光遗传学,全息光镊(HOT),脉冲整形,光学加密,量子计算,光通信,湍流模拟等领域。其高分辨率、高刷新率、高填充因子的特点适用于PSF工程应用中。图1. Meadowlark 2022年蕞新推出 1024 x 1024 1K刷新率SLM二、空间光调制器在PSF工程中的技术介绍在单分子定位显微镜(SMLM)中,通过从相机视场中稀疏分布的发射点来估计单个分子的位置,从而克服了分辨率的衍射限制。可实现的分辨率受到定位精度和荧光标签密度的限制,在实践中可能是几十纳米的数量级。有科研团队已经将这种技术扩展到三维定位。通过在光路中加入一个圆柱形透镜或使用双平面或多焦点成像,可以估算出分子的轴向位置。光斑的拉长(散光)或光斑大小的差异(双平面成像)对轴向位置进行编码。将空间光调制器(SLM)与4F中继系统结合到成像光路中,可以设计更广泛的点扩散函数(PSF),为优化显微镜的定位性能提供了可能。利用空间光调制器(SLM)对荧光显微镜进行校准,可以建立一个远低于衍射极限的波前误差,SIEMONS团队就利用Meadowlark空间光调制器实现了高精度的波前控制。原理证明和实验显示,在1微米的轴向范围内,在x、y和λ的精度低于10纳米,在z的精度低于20纳米。对这篇文献感兴趣的话可以联系我们查阅文献原文《High precision wavefront control in point spread function engineering for single emitter localization 》下面我们来具体看看是如何应用的,以及应用效果如何。图2. A)SLM校准分支和通过光路的偏振传输示意图。额外的线性偏振滤波器没有被画出来,因为它们与偏振分光器对齐。B)相机上的强度响应作为λ/2-板不同方向α的SLM的相位延迟的函数。C) 光学装置的示意图。一个带有SLM的中继系统被添加到显微镜的发射路径中(红色),一个单独的SLM校准路径(绿色)被纳入发射中继系统中。这允许在实验之间进行SLM校准。BE:扩束器,DM:分色镜,L:镜头,LPF:线性偏振滤镜,M:镜子。OL:物镜,PBS:偏振分光镜,TL:管镜。光路如上图2所示,包括一台尼康Ti-E显微镜,带有TIRF APO物镜(NA = 1.49,M = 100),一个200毫米的管状镜头,一个带有SLM的中继系统被建立在显微镜的一个出口端口。中继系统包括两个消色差透镜,一个向列型液晶空间光调制器(LCOS)SLM(Meadowlark,XY系列,512x512像素,像素大小=15微米,设计波长=532纳米)和一个偏振分光器,用于过滤未被SLM调制的X偏振光。di一个消色差透镜在SLM上转发光束。第二个中继镜头确保在EMCCD上对荧光物体进行奈奎斯特采样。显微镜配备了一套波长为405nm、488nm、561nm和642nm的合束激光器。 这个配置增加了一个用于校准SLM的第二个光路。这个空降光调制器校准光路是为测量入射到SLM上的X和Y偏振光之间的延迟差而设计的,为了测量某个SLM像素的调制,需要将SLM映射到校准路径的相机上。这种映射是通过在SLM上施加一个电压增加的棋盘图案来获得的。平均捕获的图像和没有施加电压时的图像之间的差异被用作角落检测算法(来自Matlab - Mathworks的findcheckerboard)的输入,以找到角落点。对这些点进行仿生变换,并用于找到对应于每个SLM像素的CMOS像素。图3. SLM校准程序。A) 单个SLM像素的测量强度响应作为应用电压的函数。每一个极值都对应于等于π的整数倍的相位变化,并拟合一个二阶多项式以提高寻找极值的精度。强度被分割成四个部分,它们被缩放为[0 1]。这个归一化的强度(B)被转换为相位(C),并反转以创建该特定电压段和像素的LUT(D)。E)20个随机选择的SLM像素的归一化强度响应,显示像素间的变化。F) 测量的波前均方根误差是校准后立即使用校准LUT的相位的函数,45分钟后,以及制造商提供的LUT。G) 在不同的恒定相位下,用于成像光路的SLM部分的LUTs。暗点表示没有3个蕞大值的像素。H) 测量的平均相位和预定相位之间的差异作为预定相位的函数。 图3解释了SLM像素的校准程序。首先,以256步测量作为应用电压函数的强度响应,产生一连串的蕞小值和蕞大值,它们对应于π或2π的迟滞。在被照亮的SLM平面内的所有像素似乎有三个蕞大值,这意味着总的相位调制为4π或1094纳米。这些极值出现的电压是通过对极值附近的三个点进行拟合抛物线来找到的,这增加了精度,并充分利用了SLM的16位控制。然后,强度被分为四段,用公式(11)的逆值对这些段进行缩放并转换为相位。相位响应被用来为每个SLM像素构建一个单独的查找表(LUT),以补偿SLM的非均匀性。LUT参数在SLM上平滑变化,并与肉眼可见的法布里-珀罗条纹大致对应,表明相位响应的差异是由于液晶层厚度的变化造成的。额外的像素与像素之间的变化可能来自底层硅开关电路的像素与像素之间的变化。完整的校准需要大约5分钟(在四核3.3GHz i7处理器上的3分钟扫描和2分钟计算时间),但原则上可以优化到运行更快。实验结果:图4 测量的PSF与矢量PSF模型拟合之间的PSF比较。G-I)平均测量的PSF是由大约108个光子携带的信号通过上采样(3×)和覆盖所有获得的斑点编制而成。比例尺表示1μm。 图4显示PSF模型的预测结果。通过这种方式,实验的PSF是由∼108个光子的累积信号建立起来的。实验和理论上的矢量PSF之间的一致性通常是非常好的,甚至在蕞大的离焦值的边缘结构也是非常匹配的。剩下的差异,主要是光斑的轻微变宽,是由于入射到相机上的光的非零光谱宽度,由于发射光谱的宽度和四带分色器的带通区域的宽度。边缘结构中也有一个小的不对称性,这可能是由光学系统中残留的高阶球差造成的。 所有工程PSF的一个共同特点是,与简单的二维聚焦斑点相比,它们的复杂性必须在PSF模型中得到体现,该模型被用于估计三维位置(可能还有发射颜色或分子方向)的参数拟合算法。简化的PSF模型,如高斯模型、基于标量衍射的Airy模型、Gibson-Lanni模型,或基于Hermite函数的有效模型都不能满足这一要求。一个解决方案是使用实验参考PSF,或用花样拟合这样的PSF作为模型PSF,或者使用一个或多个查找表(LUTs)来估计Z-位置。矢量PSF模型也可以用于复杂的3D和3D+λ工程PSF。众所周知,矢量PSF模型是高NA荧光成像系统中图像形成的物理正确模型。复杂的工程PSF的另一个共同特点是对扰乱设计的PSF形状的像差的敏感性,并以这种方式对精度和准确性产生负面影响。为了实现精确到Cramér-Rao下限(CRLB),即无偏估计器的蕞佳精度,光学系统的像差水平应该被控制在衍射极限(0.072λ均方根波前像差),这个条件在实践中往往无法满足。因此,需要使用可变形镜或为产生工程PSF而存在的SLM对像差进行校正。自适应光学元件的控制参数可以使用基于图像的指标或通过测量待校正的像差来设置。后者可以通过基于引入相位多样性的相位检索算法来完成,通常采用通焦珠扫描的形式。这已经在高数值孔径显微镜系统、定位显微镜中实现,并用于提高STED激光聚焦的质量。三、PSF应用对液晶空间光调制器的要求1.光利用率 对于这个应用来说,SLM将光学损失降到蕞低是很重要的。PSF工程使用SLM来操纵显微镜发射路径上的波前。在不增加损失的情况下,荧光成像中缺乏信号。使用具有高填充系数的SLM可以蕞大限度地减少衍射的损失。 Meadowlark公司能提供标速版95.6%的空间光调制器,分辨率达1920x1200,高刷新率版像素1024x1024,填充因子97.2%和dielectric mirror coated版本(100%填充率)。镀介电膜版本的SLM反射率可以做到100%,一级衍射效率可以做到98%。高分辨率能在满足创建复杂相位函数的同时,能够提升系统的光利用率。2.刷新率(蕞高可达1K Hz)高速度可以实现实时的深层组织超分辨率成像。可见光波段蕞高可达1K Hz刷新速度(@532nm)。3.分辨率(1920x1200) 高分辨率的SLM是创建三维定位所需的复杂相位函数的理想选择,如此能够对每个小像元区域的光场进行自由调控。上海昊量光电作为Medowlark在中国大陆地区总代理商,为您提供专业的选型以及技术服务。对于Meadowlark SLM有兴趣或者任何问题,都欢迎通过电话、电子邮件或者微信与我们联系。欢迎继续关注上海昊量光电的各大媒体平台,我们将不定期推出各种产品介绍与技术新闻。 关于昊量光电:昊量光电 您的光电超市!上海昊量光电设备有限公司致力于引进国外先进性与创新性的光电技术与可靠产品!与来自美国、欧洲、日本等众多知名光电产品制造商建立了紧密的合作关系。代理品牌均处于相关领域的发展前沿,产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,所涉足的领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及前沿的细分市场比如为量子光学、生物显微、物联传感、精密加工、先进激光制造等。我们的技术支持团队可以为国内前沿科研与工业领域提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务,助力中国智造与中国创造! 为客户提供适合的产品和提供完善的服务是我们始终秉承的理念!
  • 雪景科技发布全二维气相色谱气流调制器产品
    2019年8月23日,雪景科技在第二届全二维色谱技术与应用大会上正式发布了全新的气流调制器 QFM1200 QFM1200系列气流调制器采用雪景科技发明的准止流调制技术(Quasi-stop flow modulation), 通过周期性将进样口直接联通二维柱,(近似)停止一维流动并产生较大的二维流量,将一维馏出物快速释放至二维,实现调制效果。 QFM1200开创了一种全新的气流调制原理,继承了气流调制的优势,包括体积小巧,无需制冷剂,沸点范围宽,运行稳定可靠,重复性好,无需维护等。同时进一步简化了结构和附属设备,省去了目前气流调制技术常用的额外气流控制组件和微流路元件,显著降低了系统复杂度。可以在常规色谱平台上更简便、更快捷、更经济地升级到全二维气相色谱系统。雪景科技同时推出了针对不同应用的多种柱系统配置和优化色谱方法,当方法确定后可长期不间断稳定运行,在常规分析及便携式现场分析领域具有广阔的应用前景。
  • 5G电光调制解调器核心部件:王家海教授团队在有机电光材料取得系统性进展
    近年来,人们在居住、工作、休闲和交通等各种不同场景的多样化业务需求推动着新一轮的光子革命。其中,以5G无线通讯为主,对于信息高速传输的需求已经渗透到大数据、机器学习、远程医疗及自动驾驶等领域,使信息突破时空限制进行智能互联。而光子作为载体的信息处理传输材料可以很好的解决传输速率慢的问题,因此制备出高速、低耗能和易于工业化生产的电光材料,从而实现高速率的数据中心光互连,成为学术界和工业界亟待解决的关键问题。在传统的商业化电光材料的研究中,主要是以无机材料铌酸锂作为代表。然而传统铌酸锂材料所制成的电光调制器的信号质量、带宽、半波电压、插入损耗等关键性能参数的提升逐渐遭遇瓶颈,电光系数低,晶体生长、加工困难、体积庞大且与CMOS工艺不兼容等。与无机材料和电子为载体的微电子材料相比,光子为载体的二阶非线性有机电光材料具有电光系数高、光学损伤阈值高、响应速度快、制备过程更易于生产,具有良好的热稳定性、成本低以及选择范围广等优点,并能易与半导体微电子器件实现集成,故而有很大的应用前景。然而有机非线性光学材料运用到商业化的电光调制器等领域也面临着技术瓶颈(难以满足Telecordia GR-468-CORE standards 标准),如何获得兼具大的电光系数(r33值)、光热稳定性、极化取向稳定性的有机电光发色团仍然是行业的难点。1. 高性能交联型有机电光材料的研究针对有机电光材料的研究难点,王家海教授团队首次提出了二元交联材料的基解决方案:将可以交联的蒽和丙烯酸酯基团修饰到发色团QLD1-QLD4的电子给体和电子桥上,发色团在电场的作用下发色极化取向,温度进一步升高,交联反应发生,以网状聚合物的形式固定住已经取向的发色团分子,光热稳定性大幅提升。此外,由于没有小分子/聚合物交联剂的存在,发色团含量高达100wt%,电光系数大幅提升。交联后,QLD1/QLD2和QLD2/QLD4薄膜的电光活性非常高,r33的最大值分别为327 pm/V和373 pm/V, 这是目前文献报告的最高值。经Diels-Alder反应后,其电光薄膜的玻璃化转变温度从~90°C增加至185°C,这高于任何其他纯发色团膜。在85℃退火后,99.63%的r33初始值可保持500 h以上,这些材料具有超高的电光活性和长期长期极化取向稳定性,为有机电光材料的器件化和商业化提供了可能。图 1 电光材料QLD1-QLD4的分子结构该成果发表在化学顶级刊物 Chemical Science, 2022, 13, 13393-13402文章链接 https://pubs.rsc.org/en/content/articlelanding/2022/sc/d2sc05231h图 2 发色团数密度与极化效率的关系图;b)长期稳定性测试结果。2. 基于新型双给体的有机非线性光学材料的研究 研发了一种基于(N-乙基-N-羟乙基)苯胺衍生物的可修饰性双给体,并首次将其应用于非线性光学材料。在发色团的给体 和桥上分别引入三个隔离基团,用于减少分子之间的静电相互作 用,从而提高极化效率。基于此,我们开发了一系列非线性光学 发色团 BLD1-4,它们具有相同的双(N-乙基-N-羟乙基)苯胺基 给体、TCF 或 CF3–TCF 受体,和异佛尔酮衍生桥。密度泛函理 论计算表明,这四个发色团由于给体具有强大的给电子能力,比 传统的非线性光学发色团的一阶超极化率更大。纯发色团 BLD1– BLD4 的极化膜由于发色团的大空间位阻和大的一阶超极化率从而展现出非常高的极化效率。含有发色团 BLD3 的纯发色团膜在1310nm 处获得了超高的 r33 值(351pm/V)和极化效率(3.50±0.10 nm2 V-2)。大的电光系数使这些新的给体为有机非线性光学材料提 供了很有价值的参考。图 3 发色团 BLD1-4 的结构图 4 发色团 BLD1-4 的极化效率曲线该成果发表在材料刊物 Materials Chemistry Frontiers, 2022, 6,1079-1090.文章链接 https://pubs.rsc.org/en/content/articlelanding/2022/qm/d1qm01577j3. 树枝状有机电光材料的研究图 5 发色团 C1-C3 的结构 开发出具有大电光系数和高稳定性的电光材料,一直是这个领域最具挑战性的话题。一系列基于相同的双(N,N-二乙基)苯胺给体、三亚乙基二氢呋喃受体和异佛尔酮衍生桥的发色团 C1-C3 被合成开发出来。与含有单发色团的树枝状材料 C1 进行比较,我们合成了双枝发色团分子 C2 和三枝发色团分子 C3。这是第一次将双(N,N-二乙基) 苯胺基给体用于 CLD 型发色团和多发色团系统。与 C1 发色团相比, C2 和 C3 多发色团具有更高的电光性系数和玻璃化转变温度。纯发色团 C2 的薄膜上在 1310 nm 处取得了大的 r33 系数 (180 pm/V)和极化效率(1.94±0.08 nm2 V-2),已经实现在。此外,树枝状分子 C2 的玻璃化转变温度高达 122℃。该材料具有良好的稳定性和大的电光系数,具有良好的应用前景。图 6 发色团 C1-C3 的 DSC 曲线该成果发表在材料刊物 Materials Chemistry Frontiers, 2021, 5, 8341-8351文章链接 https://pubs.rsc.org/en/content/articlelanding/2021/qm/d1qm01337h4. 自组装型有机电光材料的研究我们已经开发了一系列自组装的树枝状电光材料。通过在发色团的给体和桥部分引入芳香树枝状化合物(HD)、三氟苄基树枝状化合物、五氟苯基树枝状化合物和蒽环,合成了四种交联型树枝状化合物H1、H2、H3 和 HLD1。此外,还合成了含有三枝化三氟苄基的多发色团 H4。基于 HD-PFD/HD-AH/TFD-TFD 的π-π相互作用使得这些分子可以进行超分子自组装的,以最大限度地减少发色团的偶极-偶极相互作用,并在高负载密度下最大限度地提高发色团的极化效率。 对于分别含有发色团 1:1 H1:H3、1:2 H3:HLD1 和 H4 的纯电光膜,已经实现了高 r33 值(328、317 和 279 pm/V)。此外,发色团的长期取向稳定性也得到了改善。在室温下 1000 小时后,自组装型电光薄膜的初始电光系数仍然保持在 95%以上。图 7 发色团 H1-H4 以及 HLD1 的结构该成果发表在材料刊物 Dyes and Pigments, 2022, 202, 110283.文章链接 https://www.sciencedirect.com/science/article/pii/S0143720822002054图 8 发色团 H1-H4 以及 HLD1 的极化效率与分子数密度的关系图团队负责人简介王家海,广州大学化学化工学院教授、研究生和博士后导师,2008年5月美国University of Florida化学系毕业,师从Charles R. Martin;2008年5月至2009年1月,美国约翰霍普金斯大学化学生物工程系博士后,从事微纳米器件加工课题,致力于智能器件的设计及其应用性能的探讨;2009年1月至2014年8月,分别在中科院苏州纳米所和长春应用化学研究所任副研究员,从事体外诊断纳米孔检测相关的技术开发。2014年10月加入山东大学,任研究员,从事氢能源催化剂材料的开发。2017年至今加入广州大学,百人计划教授。入选中国科学院首批促进会会员,广州市高层次青年后备青年人才,全球顶尖十万科学家之一。目前团队研究方向包括能源催化材料、锂电池、生物化学传感器、纳米孔单分子计数器和5G通讯。代表性成果发表在Advanced Materials、Biosensor and Bioelectronics、J. Am. Chem. Soc.、Nano Letters 等国际著名期刊上。
  • 500us(2KHz)高速纯相位液晶空间光调制器(SLM)面世!
    纯相位液晶空间光调制器的液晶响应速度多年以来一直受限于60Hz的数据传输及30-140ms的液晶响应时间限制,无法实现高速的调制,不能满足相控阵扫描,自适应光学等高速调制应用的使用要求。一直以来,纯相位空间光调制器的速度到底可以做到多快?一直备受科研工作者的关注。 美国Meadowlark公司近日推出了高液晶响应速度(2KHz at 532nm)、高光利用效率(98%)、高填充因子(97.2%)、高分辨率(1024x1024)的纯相位液晶空间光调制器。500us(2KHz)高速纯相位液晶空间光调制器(SLM)产品特点:1) 液晶响应速度快:2KHz at 532nmMeadowlark Optics的硅基液晶(LCoS)空间光调制器(SLM)专为纯相位应用而设计,并结合了具有高刷新率的模拟数据寻址。这种组合为用户提供了具有高相位稳定性的最快响应时间(500us fall time)。图1 液晶响应时间 1024 x 1024 SLM非常适合需要高速、高衍射效率、低相位纹波和高功率激光器的应用。客户还可以控制温度设定点,从而在开关速度和相位稳定性之间找到完美的平衡。1024 x 1024 空间光调制器系统包括一个Gen3 x8 PCIe控制器,带有输入和输出触发器以及低延迟图像传输。触发可以在696µs的SLM芯片刷新周期边界上执行,对于需要SLM与外部硬件紧密同步的应用,甚至可以在刷新周期中间执行。该控制器还包括可加载752幅1024x1024(8bit)图片的内部存储器,可以提前加载,然后全速排序,以便在操作期间最大限度地减少PCIe总线上的流量。 2)光利用效率高:Up to 98%Meadowlark公司可提供镀介质镜型号的SLM,填充了像素间的间隙,使液晶空间光调制器的面积填充率达到100%,提高反射率、降低衍射损耗。镀介质镜型的SLM可以在400-1700nm工作波段范围内轻松实现98%(Max)的光利用率,同时降低了激光引起的热效应,提高了SLM的损伤阈值,以满足高功率脉冲激光调制和激光加工等应用需求。图2 镀介电膜的SLM反射率曲线图3 SLM损伤阈值测试 3) 高波前质量(λ/20)许多用于表征和校正像差的算法都基于Zernike多项式。然而,对圆形孔径的依赖不适用于描述正方形或矩形阵列的像差。已经开发了基于SLM的干涉子孔径的替代策略[9],以确保SLM的有效区域上的像差可以被校正到λ/ 40或更好。图4(a/c)未校准的SLM波前(λ/ 7 RMS)(b/d)校准后的SLM波前(λ/ 20 RMS)上海昊量光电作为Meadowlark Optics公司在中国大陆地区独家代理商,为您提供专业的选型以及技术服务。上海昊量光电设备有限公司可以给客户提供样品试用,以及相关的技术支持。您可以通过我们的官方网站了解更多的液晶空间光调制器产品信息,或直接来电咨询。
  • 雪景科技携固态热调制器亮相PEFTEC大会
    p   两年一度的石油环境检测技术大会(PEFTEC, Petroleum, Refining, Environment Monitoring Technologies Conference)于2017年11月29-30日在比利时著名港口城市安特卫普召开。本次大会主题包括实验室检测、石油化工产品分析,环境排放监测、便携式与在线采样技术、标准物质与方法、质量控制等。吸引了全球石化炼油、环境检测、以及分析仪器行业的数百名专家学者和仪器厂商参加。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/dc6bcff0-da1b-47f5-9948-ebbfc43c649f.jpg" style=" " title=" IMG_20171129_100536_副本.jpg" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/c619152a-5e82-4c70-9f7f-62dd0963efdd.jpg" style=" " title=" IMG_20171130_141622_副本.jpg" / /p p   雪景科技作为唯一一家中国仪器厂商参加本次大会,展出了公司自主开发的基于半导体制冷技术的全二维气相色谱热调制器SSM1800。全二维气相色谱是一种具有强大分离能力的分析技术,可用于石油化工、环境检测、食品香料等行业中复杂样品的分离分析。相比传统气相色谱,全二维技术可极大提高峰容量和分辨率,一次可同时分析上千种化合物。这项技术在欧洲和北美应用较为广泛,很多实验室都有配备,积累了丰富的实用经验。但传统全二维技术需要使用液氮等制冷剂,运行成本较高,而且附属设备多,操作维护也比较复杂。主要集中于高端实验室。雪景科技开发的SSM1800采用革命性的调制方式,彻底摈弃了制冷剂使用,其独特的设计和方便简捷的操作颠覆了人们对全二维气相色谱技术的认知,吸引了广大参会的色谱应用者前来观看咨询。 /p p   在了解了固态热调制器的工作原理和实际效果后,很多用户产生了浓厚的兴趣。他们表示,“SSM1800是一个令人兴奋的产品。它的出现极大简化了全二维分析的操作和维护过程,降低了这项高端分析手段的技术门槛。由于全二维技术在石化和环境行业中针对复杂体系出色的分析效果,固态热调制技术将对今后全二维气相色谱在相关应用中的普及推广起到了非常积极的作用。” /p p    strong 雪景电子科技(上海)有限公司简介 /strong /p p   雪景科技(J& amp X Technologies)是一家由海归博士创立的初创公司,致力于新型全二维气相色谱技术的设计、研发、生产、和应用。公司总部设在上海,另外在南京、北京设有分支机构。雪景科技自主开发的全球首款不使用制冷剂的固态热调制器SSM1800于2016年面世,目前已应用于国内多家高校、科研机构和企事业实验室,受到用户的广泛好评。同时雪景科技积极开拓海外市场,目前与一些国外知名分析实验室开展合作,共同推广方便易用的全二维气相色谱技术,实现其在普通实验室和常规分析上的普及应用。 /p
  • 分子玻璃用于5G电光调制解调器核心材料:王家海教授团队在国际知名期刊Advanced Science发表最新成果
    近日,化学化工学院王家海教授团队在交联性非线性光学分子发射团取得新的进展。刘锋钢副教授设计了全新的交联性分子玻璃,具备卓越的性能,研究成果发表在国际知名期刊Advanced Science,刘锋钢副教授和王家海教授为共同通讯作者。01研究背景当前,随着云计算、5G通信、高清网络视频、太赫兹场、人工智能/机器学习和物联网等技术的快速发展,对信息的需求正在快速增长,没有任何放缓。随着现有服务的快速发展和新型服务的出现,世界互联网数据流量出现了爆炸式增长。在诸如数据中心网络之类的中短距离通信网络中存在对超大容量光纤通信的需求。对于中短距离光通信系统,如何在光电子器件带宽有限的系统中实现超高速(单波长400Gb s−1以上)信号传输已成为业界的热点问题。为了解决这一问题,研究低成本的单通道、高频谱效率的光通信系统具有重要意义。决定光通信技术应用的关键因素之一是制备高效稳定的二元交联/自组装有机非线性光学分子玻璃,即高性能有机电光材料(二阶非线性光学材料)的制备。早期对二阶非线性光学材料的研究主要是铌酸锂(LiNbO3)等无机晶体材料。这种类型的材料本身有一系列难以克服的缺点,如电光系数低、晶体生长和加工困难、介电常数高、对输入光波信号干扰强。经过多年的发展,有机电光材料的优势越来越明显。有机非线性光学材料具有电光系数高、响应速度快、可加工性和集成性好等优点,广泛应用于电光调制器、光通信、光信息存储、太赫兹等领域02研究内容开发了蒽-马来酰亚胺Diels–Alder(DA)反应以及蒽-五氟苯和苯-五氟苯基的π–π相互作用,以制备高效的二元可交联/自组装树枝状发色团FZL1-FZL4。电场极化取向后,DA反应或π–π相互作用形成共价或非共价交联网络,极大地提高了材料的长期取向稳定性。交联膜FZL1/FZL2的电光系数高达266 pm V−1,玻璃化转变温度高达178°C,自组装膜FZL1/FZL4和FZL3/FZL4由于发色团密度高(3.09–4.02×1020分子cm−3)而达到272–308 pm V−1。长期取向稳定性测试表明,在85°C下加热超过500小时后,极化交联电光膜1:1 FZL1/FZSL2保持了99.73%的初始r33值。极化自组装电光膜1:1 FZL1/FZL4和1:1 FZL3/FZL4在室温下放置500小时后,仍能分别保持原电光系数的97.11%和98.23%以上。该材料优异的电光系数和稳定性表明了有机电光材料的实际应用前景。03研究相关硕士研究生张恋本文的第一作者,刘锋钢副教授和王家海教授为共同通讯作者,广州大学为第一单位。王家海,广州大学化学化工学院教授。团队研究方向包括能源催化材料、锂电池、生物化学传感器、纳米孔单分子计数器和5G通讯。代表性成果发表在Advanced Materials、Biosensor and Bioelectronics、J. Am. Chem. Soc.、Nano Letters 、Nano-Micro Letter 、Nano Energy等国际知名期刊。论文链接https://onlinelibrary.wiley.com/doi/10.1002/advs.202304229
  • 美设计出太赫兹多像素光波调制器
    据《每日科学》网站2009年5月31日报道,美国科学家首次设计出一款多像素太赫兹频率(THz)光波调制器,将来有望广泛应用于生物光谱学和半导体结构成像研究。   太赫兹辐射是指频率从0.37THz到10THz,波长介于无线波中的毫米波与红外线之间的电磁辐射区域,所产生的T射线在物体成像、医疗诊断、环境检测、通讯等方面具有广阔的应用前景。对太赫兹辐射的正式研究,可以追溯到很多年前,但直到1990年高效生成和检测辐射的方法成为可能后,该研究才变得越来越普遍。   美国莱斯大学物理学家丹尼尔米特尔曼和他在桑迪亚和洛斯阿拉莫斯国家实验室的同事,使用一种特异材料来控制太赫兹波束的流出。之所以称之为特异材料,是因为它包含数组微观分裂的金属环,这些圆环可由附近的电极控制。通过调节圆环的电容来调整辐射水平。也就是说,赫兹光(即T射线)可以通过调制器进行转换,由调制器决定光线能否通过。该调制器由16个像素组成,呈4×4阵列。   米特尔曼称,第一次对太赫兹波束进行电控非常重要。要使光束能够穿过整个平面,而不呈现线性爆裂状态,进而促成光波成像,这是第一步。调制器的切换速度大约为1兆赫,与现今数据传输的最快速率相比并不算快。但他认为,对许多T射线成像任务来说,高带宽并不是必需的。目前他们正在设计一个较大的32×32像素阵。   该研究成果将在2009年激光与电学/国际量子电子学会议(CLEO/IQEC)上提出。该会议将于5月31日至6月5日在美国巴尔的摩召开。
  • 全二维气相色谱热调制技术的发展与最新进展
    热调制技术是全二维气相色谱中使用较多的一种调制方式,在第一根色谱柱和第二根色谱柱之间以固定频率反复施加高温和低温,使一维的馏出物在该段位置产生周期性的冷聚和释放,从而实现对一维峰的调制过程。热调制技术相对于气流调制,调制效果更好,分辨率更高,而且载气流量保持不变,适合连接质谱检测器,另外冷聚过程中可以对分析物进行浓缩,灵敏度也有所提高。热调制技术已经成为应用最广泛的一种全二维气相色谱调制方法。  目前的热调制技术经历了一系列的技术革新。John Philips和Zaiyou Liu最先于1991年提出热调制技术并申请了专利。当时是在一根石英毛细柱上利用导电涂料的电阻加热和自然冷却来完成调制过程。由于导电涂料反复加热后容易剥落,而且自然冷却速度较慢,这种阻热式的调制方式被淘汰,但它却奠定了当今经典的两级热调制的技术基础。  上世纪90年代末,澳大利亚的Phillip Marriott教授发明了纵向调制冷却系统(Longitudinally Modulated Cryogenic System, LMCS)。LMCS将一个移动的冷阱(Cryo Trap)套在需要调制的色谱柱上,冷阱内可用液态二氧化碳对局部色谱柱进行制冷,冷阱套以外的色谱柱放置在色谱仪的炉膛内部,被炉膛加热。通过冷阱套的上下移动,对不同部位的色谱柱进行反复加热制冷从而完成调制(图1)。这种方式加热和制冷都十分快速有效,能产生非常理想的调制峰宽,大大增加了全二维气相色谱的实用性。LMCS的出现让众多色谱学者开始应用全二维气相色谱技术,发表了大量以此技术为基础的分析应用,对全二维气相色谱的发展产生了深远的影响。不过,由于LMCS的运动部件自外向内伸入炉膛,其两端存在很大的温差,因此易产生变形和失效,其长期稳定性一直存在问题,最终也没有商业化。不过随后发展的商业调制器均沿袭了这种思路,采用色谱仪炉膛直接加热,相比于阻热式调制器,这种方法简单稳定,可靠性大大加强,但为了在加热的炉膛内实现快速冷却,必须大量使用液态制冷剂,所以被称为制冷式热调制器。  图1. LMCS热调制器技术原理示意图  经过一系列探索与改进后,采用固定冷热喷嘴的调制器开始慢慢盛行,例如ZOEX公司的环形调制器,LECO公司的四喷嘴调制器,和Thermo Scientific公司的双喷嘴调制器。这些调制器利用喷嘴喷出的冷热气体对调制柱进行加热冷却(图2),温度变化速率快,可靠性高,该技术现已实现商品化,成为目前学术界和工业界大量使用的主流热调制器。    图2. 冷热喷嘴调制器技术原理示意图  与此同时,随着不锈钢毛细色谱柱的问世和商业化,已经消失很久的阻热式调制技术在几年前重新获得发展。其代表是美国密西根大学Richard Sacks教授的研究团队和加拿大滑铁卢大学的Tadeusz Gorécki教授的研究团队。其共同特点就是长期将调制柱放置在低温环境中,以周期性的电流直接加热需要调制的不锈钢毛细柱。这种方式利用不锈钢的导电性质,不用依赖导电涂料,稳定性显著提高。而且电加热方式简单灵活,可以产生非常窄的脉冲,实现快速释放。他们两个团队在冷却系统上稍有区别。  密西根大学的调制器核心部件安装于色谱仪炉膛内,将金属毛细管浸泡在被一个制冷机循环冷却的聚乙二醇液态腔体里来完成调制全过程。密西根大学首创的这种通过制冷机形成充足冷量的技术方案被ZOEX等公司随后纷纷采用和改进,并形成了商业化的不使用液氮的喷嘴式热调制器。但是,这些调制器仍然需要消耗大量的用于热交换的干燥的氮气或空气,并没有将全二维色谱技术真正从高端实验室或研究机构中解放出来。  滑铁卢大学的调制器核心部件最初安装于炉膛之外,并利用蜗旋管冷却技术来完成调制。蜗旋管需要消耗大量的压缩空气,因此一般也只能在实验室中使用。近年来,改进的调制器核心部件重新安装于炉膛之内,并利用一端伸出炉膛的导热铜块来实现风冷降温。这项改进终于让人看到了不消耗任何制冷剂的曙光。但是,它也牺牲了一定的调制范围,尤其是在低沸点化合物一端。  无论哪种方案,只要采用不锈钢色谱柱作为调制柱,必须同时解决电的良好接触和避免在接触点产生冷点,这样才能保证正常的色谱过程。然而。这两点往往是矛盾的。因此可以看到上述两个团队最终还是选择了直接或间接在炉膛内完成调制全过程,并由此在其它方面做出了牺牲。另外,不锈钢本身比熔融石英的热质量大了近四倍,因此在没有强制冷的条件下,降温速度很慢,例如滑铁卢大学的调制器,调制周期无法做到4秒以下 然而,目前全二维色谱的运行趋势是将调制周期优化在2秒到4秒之间,从而更好地保持第一维的色谱分离效果和节省整体分析时间。最后,不锈钢色谱调制柱必须具有不同膜厚的内部固定相才能完成对相应沸点范围化合物的调制,但是因其固定方式对良好电接触的要求,更换起来并不灵活。综上所述,采用不锈钢色谱柱电阻加热的调制器目前还有很多技术问题没有解决,在短期内难有大的突破,目前只停留在研究阶段,尚未实现商业化。  随着本世纪初微加工工艺和微机电系统(MEMS)的兴起,第一个微型固态热调制器在美国密西根大学诞生。它在一片硅晶片上集成了微色谱柱和金属丝线,利用后者脉冲式电阻加热和一块半导体制冷元件的持续冷却完成对微色谱柱的调制(图3)。这项发明由于整体设备的热质量非常微小,从而省去了制冷剂的使用,极大简化了日常操作。但是由于其微机电系统和外部宏观尺寸的设备难以实现完美的无缝连接,实际性能并不理想。此外由于分析测试市场规模比较小,不足于降低微系统的开发制造成本。经过多年的研发,该技术始终不能商业化。  图3. 基于MEMS的微型热调制器技术原理示意图  借鉴了LMCS移动式系统和微型热调制器的优势后,Guan和Xu将它们以崭新的方式结合起来,发明一种不依赖微加工工艺但又能成功使用半导体制冷的固态热调制器。这种调制器在整体上摈弃了业界一直流行的对色谱仪炉膛加热的依赖,构建了独立的冷却与加热环节以实现炉膛外的完全调制。由于不再需要大量的制冷以抵消炉膛的加热,另外冷却与加热区域进一步在空间上相互隔绝,大大增加了制冷效率。这样只依靠半导体制冷就能实现优异的调制效果,完全避免了制冷剂的使用(图4)。这种技术目前已经成功商业化。  图4. 无需制冷剂的商业化固态热调制器
  • 纯相位空间光调制器(SLM)零级光的产生及消除方法
    引言:空间光调制器(一般指相位型SLM)可以对光的振幅、相位、偏振态等进行调制,在光学研究领域拥有广泛和悠久的历史。目前相位型空间光调制器在全息光学,全息光镊,激光并行加工,自适应光学,双光子/三光子/多光子显微成像,散射或浑浊介质中的成像,脉冲整形,光学加密,量子计算,光通信,湍流模拟等领域应用广泛。很多的科研人员在使用空间光调制器时,往往会受到零级光的困扰,零级光对研究结果也产生了非常大的影响。可以说大家苦零级光久矣。本文对液晶空间光调制器零级光的产生原因及其消除方法进行了阐述。Meadowlark Optics公司拥有40年纯相位SLM研发经验,可以提供模拟寻址的纯相位空间光调制器(1920x1200 & 1024x1024分辨率),产品工作波段可以覆盖400-1700nm,相位稳定性可以达到0.1%,帧频可以到1436Hz,损伤阈值可以达到200W/cm2以上。 关键词:空间光调制器、SLM,液晶空间光调制器,纯相位,LCOS,零级光,一级衍射空间光调制器零级光产生的原因?要想了解SLM零级光产生的原因,我们需要先了解下空间光调制器的结构构成。如下图所示,LC-SLM光学头主要由:保护玻璃,透明电极,液晶层,像素电极层(Wafer)构成。1) 保护玻璃的透过率窗口片保护玻璃的透过率在相应的工作波段(400-800nm,500-1200nm,850-1650nm)内通常在98.5-99.5%范围内,因此有少量的光被直接反射回去。2)透明电极的透过率透明电极的透过率一般都在99%以上,该部分造成的零级光基本可以忽略。3)空间光调制器填充率像素电极层(Wafer)由一个个的独立像元构成,从而SLM可以实现针对单个像元的独立调制。相邻像元之间会有微小的缝隙,缝隙部分无法加载电压,因此对应的液晶层无法加载相位,这部分未被调制的光会反射回去,产生零级光。4)入射光照射到非工作区域如果入射光照射到了非工作区域,则这部分光也会不被调制,直接反射回光路,产生零级光。5)入射光的偏振态或者偏振方向错误目前市面上所有的相位型空间光调制器(SLM)均要求线偏光入射,线偏方向与液晶的e轴平行(extraordinary axis)。如果入射光与e轴存在夹角,或者入射光的偏振态不是线偏光,则会有一部分分量的光不被调制,从而产生零级光。Meadowlark公司SLM零级光消除方法?硬件方面:1)提高空间光调制器的填充率,蕞小化缝隙影响。Meadowlark Optics公司可以提供1024x1024的纯相位空间光调制器,填充因子可以达到目前世界蕞高的97.2%,大大减小了缝隙产生的影响。2)提高空间光调制器的线性度。1920x1200的液晶空间光调制器,MLO公司在出厂前会对每一台SLM进行高精度的校准,保证每一台空间光调制器都具有高度的线性准确性,从而提高相位调制精度,达到蕞优的调制效果。软件方面:a)叠加闪耀光栅Meadowlark公司的SLM控制软件提供生成任意周期闪耀光栅的功能,该光栅可以方便的与客户的全息图进行叠加,从而把结果偏转到1级位置,客户只需要用光阑将零级光滤掉,只让一级光通过即可。b)叠加菲涅尔透镜MLO公司的调制器控制软件提供生成任意焦距菲涅尔透镜的功能,用户可以将全息图与该菲涅尔灰度图进行叠加,从而零级光与衍射光的焦平面会发生错位,零级光在衍射光的焦平面上会发散掉,从而减小零级光的影响。光路方面:1)光路中添加偏振片和半波片,提高入射光的偏振态准确性为了使用SLM作为相位调制器,入射偏振必须是线性的,并且与LC分子对齐。为了确保入射光的偏振是线性的,建议在激光光源后放置一个偏振器。为了确保偏振与LC分子对齐,建议在偏振器和SLM之间放置半波片,通过半波片的旋转可以将0级光调到最小。2)光路中添加使用0阶块(0th order block),阻挡零级光上海昊量光电设备有限公司可以提供什么样的空间光调制器?1)1920x1200纯相位空间光调制器(标准速度) 2)1024x1024纯相位空间光调制器(超高速度)关于昊量光电:昊量光电可以给客户提供SLM样品试用,以及全面的技术支持。上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、先进激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。您可以通过昊量光电的官方网站了解更多的产品信息,或直接来电咨询。
  • 科学家研制出稳定且双折射可调的深紫外液晶光调制器
    近日,中国科学院院士、中科院深圳先进技术研究院碳中和技术研究所(筹)所长成会明与副研究员丁宝福团队,联合清华大学深圳国际研究生院教授刘碧录团队、中科院半导体研究所研究员魏大海团队,首次发现了二维六方氮化硼(h-BN)液晶具有巨磁光效应,其磁光克顿-穆顿效应高出传统深紫外双折射介质近5个数量级,进而研制出稳定工作在深紫外日盲区的透射式液晶光调制器。   双折射是引起偏振光相位延迟的一个基本光学参数。有机液晶因双折射可受外场连续调制,而被广泛用作光调制器的核心材料。然而,传统有机液晶在深紫外光照射下吸收强且不稳定,液晶光调制器仅能工作在可见及部分红外光波段,无法工作在紫外及深紫外波段。同时,透射式深紫外光调制器在紫外医学成像、半导体光刻加工、日盲区光通讯等领域颇具应用前景。因此,发展一种在深紫外光谱区稳定、透明度高及具有场致双折射效应的新型液晶材料,有望推进透射式深紫外液晶光调制器的发展。   科研团队研制出一种基于二维六方氮化硼无机液晶的磁光调制器。研究采用的氮化硼二维材料具有极大的光学各向异性因子(6.5 × 10-12C2J-1m-1)、巨比磁光克顿-穆顿系数(8.0 × 106T-2m-1)、高循环工作稳定性(270次循环工作后性能保留率达99.7%)和超宽带隙等优点,同时二维六方氮化硼是通过“自上而下”的高粘度纯溶剂辅助研磨法剥离制备而成。由于超宽的带隙,二维六方氮化硼液晶在可见、紫外和部分深紫外光谱区具有颇高透明度。在磁场作用下,基于二维六方氮化硼液晶的磁光器件在正交偏振片下呈现出明显的磁控光开关效应。   科研人员通过观察入射光偏振态与磁场作用下液晶透射率关系的实验揭示了二维六方氮化硼在外场作用下顺磁场的排布方式。在入射光的偏振态被调整为平行和垂直于磁场的两种状态下,后者呈现较高的光透射率,间接印证了二维六方氮化硼纳米片平行于磁场方向排布。该研究针对层状二维六方氮化硼薄膜的磁化率各向异性测试揭示了面内易磁化方向,进一步证实了二维六方氮化硼纳米片顺磁场排布的物理机制。结合二维氮化硼纳米片的极大的光学各向异性,研究发现了二维六方氮化硼液晶的巨磁致双折射效应。   该研究选用波长处于深紫外UV-C日盲区的266 nm激光,测试二维氮化硼液晶在该光谱区的光学调制性能。通过开启和关闭0.8特斯拉的磁场,研究实现了该调制器在深紫外光波段的透明与不透明两种状态之间的切换。经过270个不间断开关循环测试后,性能的保持率达99.7%。   鉴于二维材料家族成员庞大、带隙覆盖宽,基于无机超宽带隙二维材料液晶的光调制器的光谱覆盖范围有望向更短深紫外波段延伸,促进液晶光调制器在深紫外光刻、高密度数据存储、深紫外光通讯和生物医疗成像重要领域的应用。   相关研究成果以Magnetically tunable and stable deep-ultraviolet birefringent optics using two-dimensional hexagonal boron nitride为题,发表在Nature Nanotechnology上。研究工作得到国家自然科学基金、科技部、广东省科学技术厅、深圳市科技创新委员会等的支持。六方氮化硼无机二维液晶及其磁控光开关效应 六方氮化硼无机二维液晶的磁致排列和磁致双折射效应表征基于六方氮化硼无机二维液晶的深紫外光调制器性能研究及对比
  • 雪景科技推出全球首款无需制冷剂的商业化热调制器
    全二维气相色谱(comprehensive two-dimensional GC, or GC×GC)作为一种全新的色谱分离手段,具有分离能力强,峰容量大,定性有规律等优点。目前已经开始应用在石油化工、环境监测、天然产物分析、食品卫生、生物医药等行业,是复杂样品和痕量样品分析的强大武器。全二维色谱最核心的部件调制器可分为气流式调制器(flow modulator)和热调制器(thermal modulator)。相比气流式调制器,热调制器调制性能更加优异,而且可以直接连接质谱,是当前最主流的调制技术。市场上的热调制器普遍采用气流喷射调制方式,利用液氮或压缩空气以及热空气对色谱炉膛内的调制色谱柱进行冷却和加热,附属设备较多,运行和维护费用较高。加上居高不下的系统价格,使全二维气相色谱技术目前仅限于一些高端实验室和较前沿的科研应用,难以向广大中低端用户和常规检测普及。  雪景科技经过多年的研发,成功推出了全球首款采用半导体制冷元件的商业化固态热调制器(SSM),使全二维气相色谱(GC×GC)彻底摆脱了液氮和其他制冷剂的使用。独特的机械和热管理设计保证了产品与目前主流热调制器相当的调制性能。其小巧的结构和方便的操作极大地简化了GC×GC技术的使用难度和运营成本。由于采用了模块化设计,用户可以方便地将该调制器安装到任意气相色谱平台上,配合专业的全二维色谱数据处理软件,将常规的一维气相色谱升级成全二维气相色谱系统,极大提高现有系统对复杂样品的分析能力。另外,由于该热调制器体积小巧能耗低,可以和其他在线式或者便携式色谱进行联用甚至集成,第一次实现全二维气相色谱在在线监测和野外分析中的应用,为我国日益增长的环境、食品和化工检测需求提供一种全新的技术手段。固态热调制器  雪景科技是一家致力于推广和普及全二维气相色谱技术的公司。主要产品包括全二维气相色谱调制器、全二维色谱数据处理软件、以及全二维气相色谱系统构建和维护、应用解决方案和技术支持等。全二维气相色谱系统
  • 合肥研究院采用超快技术构筑GHz高频光弹调制器
    近期,中国科学院合肥物质科学研究院强磁场科学中心盛志高研究团队等采用超快时间分辨泵浦探测技术,在SrTiO3晶体中实现了由超快相干声子诱导的GHz频率的双折射调制,其工作频率远超现今商业光弹调制器的截止频率。相关研究成果发表在《先进科学》(Advanced Science)上,并申请了发明专利。具有双折射效应的特定材料能塑造光。基于双折射调制技术工作的光弹调制器是现代光学技术的核心元件之一。目前的光弹调制器多借助压电材料提供的机械应力,来驱动光弹晶体实现双折射调制,其工作频率受限于光弹/压电晶体的谐振频率,一般为kHz量级。随着高频信号处理和高频光通信的需求不断涌现,亟需研发具有GHz工作频率的双折射材料与调制技术。针对这一现状,盛志高课题组与合作者经过大量材料筛选与技术探索,借助强磁场磁光实验室中的超快泵浦-探测系统,在钙钛矿SrTiO3晶体中发现了由超快相干声子诱导的GHz光学双折射效应,并实现了对其进行光学操控。研究团队在换能器/SrTiO3异质结构中,使用超快激光脉冲产生了具有低阻尼的相干声学声子。经过系列材料筛选,研究发现LaRhO3半导体薄膜作为换能器层能获得相对较高的光子-声子能量转换效率。进一步,研究在优化的异质结构中发现,超快相干声学声子可以在应力敏感的SrTiO3晶体中诱导出具有GHz频率的光学双折射。同时,研究团队通过双泵浦技术实现了对相干声子及其诱导的GHz双折射的光学操纵。这揭示了超快光学双折射调制的一种机制,并为GHz高频声光器件的应用奠定了技术基础。研究工作得到国家重点研发计划、国家自然科学基金、强磁场安徽省实验室方向基金和合肥大科学中心高端用户培育基金的支持。左图:激光诱导的声学声子激发SrTiO3晶体GHz双折射原理示意图;右图:不同晶体取向的SrTiO3晶体GHz双折射调制。
  • Meadowlark公司收购CRi空间光调制器业务
    Meadowlark公司收购CRi空间光调制器业务 近日,美国Meadowlark Optics公司与Cambridge Research & Instrumentation(CRi)公司发布联合声明,宣布双方就Meadowlark Optics公司正式收购CRi公司液晶空间光调制器产品线达成协议。 Meadowlark Optics公司总裁兼CEO Garry Gorsuch先生表示,纳入CRi SLM产品,进一步丰富了美国Meadowlark Optics公司的产品线,充分证明了公司要发展和扩大更多SLM市场的决心,以及公司在空间光调制器生产核心技术方面的信心。作为美国Meadowlark Optics公司在空间光调制器产品线的中国地区独家代理商,昊量光电将一如既往地为客户(包括CRi SLM客户)提供优质的服务与技术支持!关于CRI:CRi公司的P128 SLM和 P640透射式液晶SLM在超快脉冲整形方面具有独特的技术优势,持有多项技术专利。目前CRI公司的SLM产品线已经加入到Meadowlark现有的透射和反射SLM产品线中。 关于Meadowlark Optics公司:2014年7月,Meadowlark收购了Boulder Nonlinear Systems 的商业产品部分,BNS公司的产品包括了SLMs、光学快门,偏振旋转器,可变波片和立体光学镊子系统。截止目前,Meadowlark的SLM产品线已经涵盖了美国原BNS公司的SLM,CRi的的SLM,以及Meadowlark公司原有的SLM生产线。目前Meadowlark公司的液晶空间光调制器的研发技术、生产工艺及拥有的专利技术数量,均处于全球领先地位。 关于上海昊量光电设备有限公司:上海昊量光电设备有限公司作为Meadowlark Optics公司空间光调制器产品线中国地区的独家代理,深耕SLM行业多年。上海昊量光电设备有限公司拥有专业的销售团队及售后技术团队,多年来坚持为客户提供一流的产品和售后服务,在SLM的应用领域得到了客户高度的认可和好评。 调制器 空间光调制器超高速液晶空间光调制器透射式液晶空间光调制器 ? 美国BNS公司(Boulder Nonlinear Systems, Inc.)生产销售适用于各种光电应用的液晶空间光调制器(liquid crystal spatial light modulator),能够根据指定的像素图案对光在空间的分布进行调制,在需要pixel-by-pixel光束控制以优化产品性能的应用领域正扮演着 越来越重要的角色。BNS公司能够提供基于LCoS(liquid crystal on silicon)技术的各种反射式空间光调制器,包括纯相位调制,纯振幅调制,及振幅相位混合调制。其XY(512X512)面阵及 linear(1X4096)线阵空间光调制器被广泛应用于激光光束偏转与可编程相位掩模等热点领域。 BNS公司的空间光调制器具有相位或振幅调制速率高、透过效率高、图形软件操作界面友好等特点。调制器 空间光调制器XY系列偏振无关液晶空间光调制器1x12,288线阵相位型液晶调制器XY系列铁电液晶空间光调制器XY系列向列液晶空间光调制器 专用实验设备 CUBE-便携式光镊系统全息光镊系统
  • “2022中国光学十大进展”发布 近五年首次无光学显微成像技术成果上榜
    4月20日晚,中国激光杂志社重磅发布“2022中国光学十大进展”。经过评审委员会多轮遴选,“微腔光梳驱动的新型硅基光电子片上集成系统”等10项前沿进展入选“2022中国光学十大进展”(基础研究类);“集成化成像芯片实现像差矫正三维摄影”等10项进展入选“2022中国光学十大进展”(应用研究类)。笔者注意到,今年的十大进展中,没有光学显微成像技术入选。回顾在过去几年,2021年《线照明调制显微术实现高清成像》、2020年《亚纳米分辨的单分子光致荧光成像》、2019年《基于多角度干涉的三维多色活细胞超分辨光学显微镜》、2018年《超快,长时程超分辨率海森结构光照明显微镜》连续4年均有光学显微成像技术的上榜。此外,2021年《溶液中单分子电化学反应的直接成像》作为一项研究工具为化学反应位点可视化、单分子测量、化学和生物成像等领域提供了新的可能,也为显微成像技术提供新的思路。基础研究类(10项)1.微腔光梳驱动的新型硅基光电子片上集成系统北京大学王兴军团队联合加州大学圣塔巴巴拉分校John E. Bowers团队,攻关解决微腔光梳简易鲁棒激发与长时间稳定、面向光梳光源的硅基系统设计、硅基片上可重构多维光谱整形技术等难题,在国际上首次实现了由克尔微腔光梳驱动的新型硅基光电子片上系统,有望直接应用于数据中心、5/6G信号处理、自动驾驶、光计算等领域,为下一代片上光电子信息系统提供了全新的研究范式和发展方向。2.光学涡环的诞生上海理工大学詹其文带领的纳米光子学团队基于麦克斯韦方程组和光学保角变换,首次在理论上完整推导并在实验上实现了优美的光学涡环结构。该研究工作为三维复杂时空光场的生成和表征提供了崭新的思路,对环状对称电动力学、环状对称等离子物理、光学对称和拓扑、量子物理、天体物理等理论研究,以及光学传感、光操纵、光信息与能量传递等应用研究都将具有重要且深远的意义。3.用光 3D 打印纳米晶体清华大学精密仪器系孙洪波、林琳涵课题组首次提出了利用光生高能载流子调控纳米材料的表面化学活性并实现化学键合,由此实现了半导体量子点等功能纳米粒子的三维激光装配。这一技术具备真三维、高纯度、高分辨率、异质异构集成的技术优势,开辟了功能纳米器件制备工艺的新途径,在片上光电器件集成、高性能近眼显示等领域具有广泛的应用前景。4.新技术首次实现激光3D打印纳米铁电畴南京大学张勇领衔的研究团队发展了一种非互易激光极化铁电畴技术:将飞秒脉冲激光聚焦于铌酸锂晶体中,在晶体内部形成了一个有效电场,实现了三维纳米铁电畴的可控制备。加工精度达到了30纳米,远远突破衍射极限,且可以实现铁电畴结构的修正与重构。这一技术解决了传统极化工艺仅限于在二维平面内以微米精度加工铁电畴结构的难题,为三维集成光电器件的发展提供了新的技术支撑。5.高纯度超集成手性光源领域取得重要研究进展哈尔滨工业大学(深圳)宋清海团队基于连续域中束缚态自身的物理特性,实现了高纯度、高Q值与高方向性的手性荧光到激光的出射。在无需自旋注入的情况下,即可实现控制自发辐射和激光的光谱、远场以及自旋角动量。这种方法对改善当前手性光源的设计,并促进其在光子系统与量子系统中的应用具有重要意义。6.羲和激光首轮实验获得60 MeV质子束中国科学院上海光学精密机械研究所强场激光物理国家重点实验室激光质子加速课题组依托于上海超强超短激光实验装置(羲和激光,SULF) ,在首轮磨合实验中利用SULF-10 PW激光轰击微米金属靶,在靶后法线鞘层加速机制下获得了截止能量达62.5 MeV的质子束,该结果达到国内领先水平,进入国际前列。未来将通过进一步优化,获得百MeV级的高能质子束,切实推动激光质子源在聚变能源、肿瘤治疗等重要领域的应用。7.高效、高重频极紫外超快相干光源上海交通大学刘峰、陈民和李博原课题组通过引入圆偏振预脉冲,成功实现对微米尺度预等离子体的主动调控,构建出合适的纵向密度分布,解决了高次谐波产生受限于激光对比度的难题,实验验证了产生高重频、高亮度极紫外超快辐射源的新方案。8.稀土离子f-f跃迁发光寿命被压缩至纳秒级陕西师范大学物理学与信息技术学院张正龙、郑海荣团队,依托自主搭建的高分辨原位光谱系统,在纳米光学领域取得了突破性进展。利用等离激元倾斜纳米光腔,将稀土离子f-f 跃迁发光寿命压缩至50 纳秒以下,同时获得1000余倍的量子产率增强。该成果被审稿人评价为稀土发光领域“里程碑”式的工作,对拓展稀土发光应用优势,推动量子通讯单光子源、纳米激光器的发展具有重要意义。9.激光干涉仪的量子超越上海交通大学物理与天文学院及李政道研究所张卫平团队与合作者,利用其发展的量子关联干涉技术与激光干涉仪巧妙结合,实现了一种超越传统激光干涉仪的新型量子精密测量技术。新方法融合经典-量子优势于一体,原理上可以拓展到LIGO引力波探测器等大型精密测量仪器中,实现对传统干涉技术的升级,向开拓真正有应用价值的量子技术迈出了重要的一步。10.突破荧光范围的激光辐射山东大学于浩海、张怀金团队和南京大学陈延峰团队协同攻关,在激光物理领域取得突破,首次实现基于多声子耦合的激光辐射,在远超荧光光谱的范围获得了宽波段、可调谐激光输出。研究成果拓宽了激光增益范围,阐明了激光晶体中的关键功能基元和序构关系,对于固体激光技术的发展具有重要意义。应用研究类(10项)1.集成化成像芯片实现像差矫正三维摄影清华大学成像与智能技术实验室方璐、戴琼海团队提出了非相干光下的数字自适应光学新架构,解耦信号采集与像差矫正,首次实现了高速大范围分块像差去除。研制了集成化的元成像芯片,能够实现像差矫正的大视场高分辨率高速三维成像,将传统自适应光学的有效视场直径从40角秒提升至了1000角秒,可广泛用于天文观测、工业检测、医疗诊断等领域。2.时空域精细操控半导体纳米晶能带结构浙江大学邱建荣团队与之江实验室谭德志团队合作,揭示了飞秒激光诱导空间选择性介观尺度分相和离子交换新规律,实现了对玻璃微区元素分布的精细调控,开拓了飞秒激光三维极端制造新技术,构筑了三维发光宽波段连续可调谐纳米晶结构,首次提出并展示这种三维微纳结构在超大容量超长寿命信息存储、高稳定Micro-LED列阵和动态立体彩色全息显示等的前沿应用。3.基于超构透镜集成的平面广角相机南京大学李涛团队研发出一种基于超构透镜阵列的平面广角相机,仅用一微米厚的纳米结构就实现了超过120°视角高质量的广角成像功能。这一全新原理的设计原理成功突破传统商用鱼眼镜头在体积和重量上的限制,展示了超构透镜设计在颠覆性成像技术中巨大的应用潜力。4.光电集成轻微型“复眼相机”,解决商用探测器不兼容问题吉林大学张永来领衔的合作团队通过飞秒激光微加工技术,制造具有对数轮廓小眼的三维仿生复眼,突破了三维复眼非平面成像和商用微型CCD/CMOS探测器失配难题,研制了质量仅为230 mg的光电集成微型复眼相机,借助多目视觉原理和神经网络重构算法,实现了对微观目标运动轨迹的三维重构。该成果在医疗内窥成像和微型机器人视觉等前沿领域具有重要意义。5.光纤量子密钥分发新纪录——无中继安全传输超830公里中国科学技术大学郭光灿、韩正甫团队通过解决极弱光双场制备和低噪声快速相位补偿难题,突破信噪比限制,创造830公里无中继光纤量子通信世界纪录。相比于国内外其他团队的工作,该成果不仅将无中继传输距离提升了200多公里,而且将成码率提升了50~1000倍,向实现千公里陆基量子通信迈出了重要一步。6.光频完美异常反射器同济大学物理科学与工程学院王占山和程鑫彬联合复旦大学物理学系周磊,提出了一维多层膜结合二维超表面的准三维亚波长新结构,通过传输波和布洛赫波的高效耦合增强非局域能流调控能力,首次实现了效率优于99%的光频异常反射。研究成果有望推动新型波束扫描系统等仪器装备的发展。7.超长寿命的钙钛矿LED浙江大学狄大卫、赵保丹团队利用双极性分子稳定剂抑制离子迁移,首次实现了满足实际应用标准的超长寿命钙钛矿LED。在等同于高亮度OLED的光功率下,这些近红外LED的寿命为32675小时(3.7 年);在更低的辐亮度下,其寿命预期长达 270 年。这些创纪录的器件在 5 mA/cm² 的恒定电流下持续工作 5 个月,辐亮度无明显衰减。8.世界首例铌酸锂薄膜偏振复用相干光调制器中山大学蔡鑫伦课题组实现了世界首例铌酸锂薄膜偏振复用相干光调制器,该器件具有CMOS兼容驱动的半波电压,110 GHz的调制带宽,这是目前世界上最高性能的超低电压和超大带宽的电光调制器芯片。利用这一芯片,研究团队演示了目前单载波相干传输的最高净速率——1.96 Tb/s。该项研究攻克了在下一代超高速、低功耗的相干光传输系统不可或缺的电光转换器件。铌酸锂薄膜材料及其光子集成技术研究为实现我国光通信产业链自主可控提供了有力保障。9.首次发现光学微腔中的界面回音壁模式北京大学物理学院肖云峰团队与中科院半导体所陈幼玲合作,首次发现了光学微腔中的界面回音壁模式。研究人员在微流集成的微泡腔中,将光学回音壁模式的电磁场峰值调控至传感表面,从物理上提高了传感器的光学响应强度,成功实现了具有单分子响应的微流传感器件,在高灵敏度微量检测领域具有广泛的应用前景。10.在光编码液晶超结构应用取得突破性研究进展华东理工大学化学与分子工程学院、物理学院、费林加诺贝尔奖科学家联合研究中心朱为宏、郑致刚、Feringa合作,围绕动态可控手性液晶光学微结构,从材料设计、制备和微结构的外场控制入手,解决传统液晶体系光效率低的问题,赋能液晶微结构的光控宽动态域,发展可逆、可擦、渐变、结构叠加与嵌入的多重防伪新技术,为解决我国在高端防伪技术领域面临的材料瓶颈提供了可供借鉴的技术方案。“中国光学十大进展”评选活动由中国激光杂志社发起,至今已成功举办17届,旨在促进中国优秀光学研究成果的广泛传播,推动中国光学事业的发展。凭借高学术水平的候选成果,以及严格公正的评审机制,这一奖项备受业界认可,具有高度的公信力和影响力。
  • 滨松推出1550nm光利用率98%的新型空间光调制器
    在光通信的研究中,所涉及的波段除了可见光中的多个波长(如780nm)外,在红外波段,1550nm是最多被选择的。由于光纤中使用的玻璃材料的吸收特性,1550nm光在传输过程中能量损失是最小的,这样就能达成更远距离的光通信。除了对光本身性能的利用外,光通信还要求光路中的每一个元件,在保证功能的前提下,最大程度地控制光能损失。光通信研究典型光路空间光调制器中的光能损失想要光携带信息传输向远方,需要对其进行编码。空间光调制器(LCOS-SLM)就是可以通过相位调制来实现这一操作的元件。待编码的激光束穿过空间光调制器透明的玻璃基板层和ITO电极层,到达液晶层完成相位的调制(电压→液晶分子排列方向→折射率→光程→相位)后,经过反射面的反射进行输出。这时候的光,就已经是满载信息的了。 当然,作为光路中的其中一环,"高性能、低光能损失"也是光通信对空间光调制器提出的苛刻要求。光在空间光调制器的透明的玻璃基板层和ITO电极层其实损失都较小,而液晶层为主要的的工作层,调制带来的损耗难以避免。在这种情况下,提高反射面的反射率,便是控制元件整体光能损失的最有效方法。目前空间光调制器反射层主要有两类:传统的铝制反射层和介质镜。其中,后者的反射率是明显高于前者的。虽然在可见光波段高反射率介质镜已经得以应用,但受材料限制,适用于1550nm的介质镜始终是业界的技术瓶颈。因此,大部分针对此波长的空间光调制器,一直以来采用的都是传统材料(铝)的反射层,光利用率也只在80%左右。155nm处光利用率达98%的新型空间光调制器滨松成功突破了材料和工艺难题,自主开发出了可应用于1500nm-1600nm波段的介质镜。利用此项独家的专利技术,研发了在1550nm附近超高光利用率(97%)的全新空间光调制。 目前市面上1550nm附近各主要SLM产品的光利用率对比除了1550nm高反射率外,滨松此款新型空间光调制器在上升和下降时间方面,较以往产品也有了明显的提升,灵敏度进一步改善。新品现在可以接受预定咨询,而针对光通信用可见光波段,滨松同样可以提供丰富的产品选择。 滨松1550nm高反射率空间光调制器基本参数一览整体方案提供:InGaAs红外相机+空间光调制器针对调制后的光斑观察和分析,滨松也可提供针对1550nm附近波段的高灵敏InGaAs红外相机,可搭配空间光调制器,应用于光通信研究中。
  • 美国Meadowlark公司推出亚毫秒响应速度的纯相位液晶空间光调制器!
    美国Meadowlark公司推出亚毫秒液晶空间光调制器!目前市面上的纯相位液晶空间光调制器的液晶响应速度均处于50Hz以内(0-2π),无法满足高速调制客户的使用要求。 为满足自适应、通信等领域的用户高速调制的需求,美国Meadowlark公司(原BNS)于2016年推出了目前市面上唯一一款兼具有高液晶响应速度(0-2π)(285Hz-667Hz @ 532nm;166Hz-250Hz@1550nm)、高衍射效率(90-95%)、高填充因子(100%)、的纯相位液晶空间光调制器。 美国Meadowlark Optics公司的超高速液晶空间光调制器采用瞬态向列液晶效应技术(Transient Nematic Effects)、相位环绕技术(Phase Wrapping)、局部校准技术(Regional LUTs),实现了超高速的液晶响应速度。这三项技术均已申请专利。 瞬态向列液晶效应技术超高速液晶空间光调制器与高速型的空间光调制器响应速度对比上海昊量光电设备有限公司可以给客户提供样品试用,以及相关的技术支持。您可以通过我们的官方网站(http://www.auniontech.com/n/news/v_The_Fastest_Liquid_Crystal_Spatial_Light_Modulator.html)了解更多的液晶空间光调制器产品信息,或直接来电咨询021-34241962。
  • 磁光克尔效应系统再发Nature:全反铁磁隧道结新突破!
    巨磁阻效应自发现以来就被广泛应用于MRAM、磁传感器等自旋电子器件中。目前,基于巨磁阻效应的自旋电子器件主要是铁磁体磁隧道结,其研究和发展受限于铁磁体的使用。因此,为进一步提升自旋电子器件的磁阻比等性能,探究其他磁体开发的高效自旋电子器件的研究非常有必要。近期,东京大学的Satoru Nakatsuji团队对手性反铁磁体Mn3Sn组成的磁隧道结进行了深入探究。作者首先对Mn3Sn手性反铁磁态中自旋正极化、负极化和磁八极的投影态密度进行了表征,发现八极矩的大多数和少数能带之间存在明显的能量漂移,与铁磁性铁中自旋矩的大多数和少数能带的漂移非常相似,并根据第一性原理进行了模拟验证,结果表明Mn3Sn在基于隧穿磁阻(TMR)的器件(如MRAM)中具有巨大的应用潜力。此外,为了更好的观测其TMR效应,作者制备了基于Mn3Sn的磁性隧道结( MTJ ),测得室温下的隧穿磁阻(TMR)比率约为2%,出现在手性反铁磁状态下簇磁八极的平行和反平行构型之间。该成果以《Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction》为题发表在Nature上。图1 带簇磁八极的反铁磁隧道结(a)铁磁(FM)隧道结示意图(b)反铁磁(AFM)隧道结示意图(c)(d)铁磁隧道结和反铁磁隧道结的投影态密度图(pDOS) 本文中,作者使用了英国Durham公司的磁光克尔效应系统-NanoMOKE3,通过系统自带的磁滞回线测量功能,对反铁磁隧道结顶部和底部Mn3Sn电极的矫顽力进行了测量。图2 室温基于手性Mn3Sn反铁磁体的磁隧道结表征图 (a)高分辨率TEM表征图(b)磁光克尔测量示意图(c)顶部和底部Mn3Sn反铁磁体的磁滞回线图 英国Durham公司是依托于英国Durham大学的高科技企业。与Durham大学强大的磁光学研究相对应,Durham公司的Russell Cowburn教授(英国剑桥大学卡文迪许实验室主任,英国科学院院士)设计并研发了灵敏度能到10-12 emu兼具Kerr显微镜与回线测量功能的高精度磁光克尔效应系统——NanoMOKE3。相比于历代MOKE系统,NanoMOKE3系统将磁光克尔的光路部分集成在光学盒中,避免了实验人员测试前搭建光路的工作,大大减少了实验人员操作量。另外,光学盒中的光路经过特殊设计,可以同时实现极向克尔和纵向克尔的测量,无需调整光路,只需更换镜片即可完成极向克尔和纵向克尔的切换。左)NanoMOKE3磁光克尔效应系统;右)NanoMOKE3光学集成盒因其高集成度的系统设计和开放式的样品环境,NanoMOKE3具备丰富的拓展性。实验人员可以以NanoMOKE3系统为基础,与其他实验设备组合搭建,进行其他领域方面的测量。一、低温磁光克尔系统NanoMOKE3系统允许用户在样品台部分搭建低温恒温器,实现低温磁光克尔的测量。例如,下图所示为NanoMOKE3与美国Montana Instrument无液氦低温恒温器进行了组合使用,从而实现了10K以下的磁光克尔测量。NanoMOKE3的低温磁光克尔测量性能在国内外领域内具有极高的水平。此低温MOKE方案已在南方科技大学安装使用。NanoMOKE3 磁光克尔系统与 Montana Instrument无液氦低温恒温器组合使用示意图二、晶圆扫描探测系统如今,越来越多的晶圆检测设备采用非接触式的光学测量,取代了传统的接触式晶圆测试方法。其中,以磁光克尔效应原理进行晶圆检测的方法就因其操作简单、检测速度快而被广泛使用。Durham公司在现有磁光克尔系统基础上改造升级,推出了超高灵敏度的晶圆扫描探测系统(wafer mapper),专门用于测量整个晶圆表面的磁滞回线和磁畴图像。系统中集成的磁光克尔能对整个晶圆样品区域(可按X和Y轴自由移动)进行磁滞回线扫描和区域Mapping的测量,最终绘制得到晶圆样品整体区域的磁性分布图,从而完成晶圆样品的检测。该款晶圆级磁光克尔测绘仪选用NanoMOKE3特创的光学盒,继承了其测量速度快,操作简单的优点。整个测量过程可以通过系统自带的LX PRO3软件完成,无需进行繁琐的实验预设值,大大增加了实验效率。晶圆扫描探测系统装配图 Durham公司特创的NanoMOKE3磁光克尔光学集成盒是Cowburn教授从事MOKE系统研发和深耕多年的结晶。不但减轻了实验人员的操作繁琐度,更重要的是以磁光克尔效应为基础,为更丰富领域的测量提供了可能,有望助力各个领域科研人员实现更高水平的突破!参考文献:[1]. Chen, X., Higo, T., Tanaka, K.et al. Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction. Nature 613, 490–495 (2023).
  • 美国MeadowlarkOptics公司推出全球响应速度最快的纯相位液晶空间光调制器
    摘 要:传统的液晶空间光调制器作为一种高单元密度的新型波前矫正器件, 一直受限于液晶的刷新速度,在许多的应用领域无法满足科研人员的需求。美国Meadowlark Optics公司20多年以来一直致力于研发高响应速度的空间光调制器,近期Meadowlark Optics宣布推出液晶刷新速度(0-2π)高达600Hz@532nm 500Hz@635nm的高速型SLM,其控制器的帧频为833Hz。 引 言:这款高速型液晶空间光调制器的分辨率为512x512,像素25um,开孔率:96%,通光口径:12.8x12.8mm 相信这款空间光调制器的出现,可以为天文自适应,生物显微自适应等对空间光调制器的刷新速度有较高要求的客户带来便利。此款产品由上海昊量光电独家代理。 液晶空间光调制器的工作原理Meadowlark Optics公司使用的液晶材料为超高速液晶,利用液晶的双折射效应及扭曲特性,当光进入双频液晶空间光调制器后,对应的O光和e光的折射率不同导致光束中的o光和e光分离。o光和e光在液晶空间光调制器中的传输速度不同,同时利用液晶的扭曲效应,在SLM两端施加不同的电压时液晶分子会发生不同角度的偏转,因此液晶空间光调制器可以对每一个像素点实现不同的相位调制(如下图所示)。 结论 高速型液晶空间光调制器以其液晶响应速度快,校正单元多(512*512)等特点受到越来越多的科研人员的青睐。目前在天文望远镜观测、大气湍流模拟、自适应光学算法模拟、眼底成像、双光子显微镜、超分辨显微成像等领域发挥着越来越重要的作用。此款产品由上海昊量光电独家代理。 关于我们:上海昊量光电设备有限公司专注于光电领域的技术服务与产品经销,致力于引进国外顶级光电器件制造商的技术与产品,为国内客户提供优质的产品与服务。我们力争在原产厂商与客户之间搭建起沟通的桥梁与合作的平台。
  • 致真磁光克尔显微镜助力全线性神经元-SOT磁性存储器件研究取得新进展
    存算一体及人工智能神经网络芯片采用非冯诺依曼架构体系,可大降低数据的访问延迟和传输能耗,提升计算速度。SOT-MRAM以其高速、高耐久度等优点,在此类应用中将发挥巨大的优势。当前,存算一体和人工智能神经网络芯片领域亟需一种全线性的多态存储器件(图1b),以便为人工智能神经网络的神经元、突触、存内计算等提供硬件支撑。但现有的SOT多态磁性存储器件及其他类型的存储器件大都是非全线性的(图1a),其输入-输出曲线的部分区域为线性,其他部分为非线性区,要使器件工作在线性区需要额外的时间、能耗和电路开销,阻碍了其在高速、低功耗和高集成密度的存算一体及人工智能神经网络芯片方面的应用[1]。图1、(a)目前的多态存储器件,(b)理想的全线性存储器件,(c)目前电流磁化翻转曲线,(d)通过调节DMI和交换耦合实现的线性磁化翻转曲线。 今年5月,微电子所杨美音副研究员和博士研究生李彦如为共同作者,微电子所先导中心罗军研究员和半导体所王开友研究员为通讯作者,在Physical Review Applied期刊上发表了题为“All-linear multistate magnetic switching induced by electrical current”的学术论文[2],该团队合作研制出全线性的电流诱导多态自旋轨道矩(SOT)磁性存储器件,并实现了低能耗、可编辑的突触功能,对基于SOT-MRAM的低功耗存算一体逻辑和神经形态计算提供了一种新方法。图2、(a)离子注入引起的全线性磁化翻转,(b)局域离子注入注入实现的可编译的突触功能。 为了获得全线性的多态磁性存储器件,该团队在理论上模拟调节磁性材料中的“DMI效应”和“交换耦合效应”的比例,发现可将非全线性的磁化翻转曲线调控成全线性的磁化翻转曲线(图1c,d)。该理论预测的结果获得了实验验证。该团队在本次工作创新的采用离子注入工艺,成功调节了普通磁性材料中“DMI效应”和“交换耦合效应”的比例,实现了SOT磁性存储器件的全线性磁化翻转(图2a)。同时,通过局域的离子注入,实现了无外场的线性多态存储和突触功能。该突触可在同一超低电流脉冲下实现兴奋和抑制功能,并具备可编译特性。图3 面内场Hx下垂直磁场脉冲作用的磁畴壁运动速度。样品(a) S1, (b) S2, 和 (c) S3. 插图分别是面内场Hx(负、零和正)下的磁畴壁运动的轨迹。(d) 测量的A和D值。本项工作中样品的磁动力学过程观测,磁畴壁运动速度和DMI作用测量的工作由北京航空航天大学张学莹老师组合作提供(如图3),此系列测量表征工作利用了北航-致真团队自主研制的多功能高分辨率磁光克尔显微成像系统,该系统除了能够获得高分辨率的动态磁畴观测外,在磁性薄膜材料和自旋电子器件动力学分析领域也有着突出的优势,它自带了磁场探针台,能够让用户利用软件定义电、磁等多种想要的波形,在进行电输运测量的同时,观察器件磁畴的变化,一键触发后,在样品上同步施加垂直/面内磁场、电流脉冲、微波信号,并同步采集克尔图像信息,能够直观、高效、无损地测量多种参数,包括饱和磁化强度、各向异性强度、海森堡交换作用强度和DMI强度等,是传统的磁光克尔显微镜所不具备的。 图4 多功能高分辨率磁光克尔显微成像系统 产品基本参数:☛ 向和纵向克尔成像分辨率可达300 nm;☛ 配置二维磁场探针台,面内磁场高达1 T,垂直磁场高达0.3 T(配置磁场增强模块后可达1.5 T);☛ 快速磁场选件磁场反应速度可达1 μs;☛ 可根据需要选配直流/ 高频探针座及探针;☛ 可选配二次谐波、铁磁共振等输运测试;☛ 配置智能控制和图像处理系统,可同时施加面内磁场、垂直磁场和电学信号同步观测磁畴翻转;☛ 4K~800K,80K~500K 变温选件可选。 参考信息:[1] http://www.ime.ac.cn/zhxx/zhxw/202105/t20210521_6036245.html[2] M Yang et al., PHYSICAL REVIEW APPLIED 15, 054013 (2021)
  • 滨松成功研发出适用于高功率CW激光器的空间光调制器
    滨松公司利用其独特的光学半导体制造工艺,成功研制出世界上最大规模的液晶型空间光调制器(Spatial Light Modulator,以下简称SLM※1),该SLM的有效面积约较以往产品增加了4倍,且耐热性更高。该开发器件可应用于工业用高功率连续振荡(以下简称CW)激光器,实现激光分束等控制,应用到如金属3D打印,以激光烧灼金属粉来模塑成形车辆部件等,同时有望提高激光热加工的效率和精度。本次研发项目的一部分是受量子科学技术研发机构(QST)管理的内阁办公室综合科学技术和创新会议战略创新创造计划(SIP)第2期项目“利用光和量子实现Society 5.0技术”的项目委托,开展的研发工作。该开发器件将于4月18日(星期一)至22日(星期五)在横滨Pacifico(横滨市神奈川县)举办为期5天的国内最大的国际光学技术会议“OPIC 2022”上发布,敬请期待。※1 SLM:通过液晶控制激光等入射光的波前,调整反射光的波前形状,来校正入射光的光束和畸变 等,是可自由控制激光衍射图形的光学设备。传统开发产品(左)和本次研发器件(右)产品开发概要本次研发的器件是适用于高输出功率CW激光器的SLM。激光器分为在短时间间隔内可重复输出的脉冲激光器和连续输出的CW激光器。脉冲激光器可以减少热损坏,实现高精度加工;而CW激光器可用于金属材料的焊接和切割等热加工,因此成为激光加工的主流。滨松凭借长期以来积累的独特的薄膜和电路设计技术,已经成功开发了全球耐光性能最佳,适用于工业脉冲激光器的SLM。通过应用SLM,将多个高功率脉冲激光光束进行并行加工,相较于仅聚焦到1个点的加工方式,它的优势在于它可以实现碳纤维增强塑料(CFRP)等难加工材料的高速、高精度地加工。但在应用于CW激光器时,存在随着SLM温度上升导致性能下降的问题。SLM结构和图形控制原理SLM由带像素电极的硅衬底、带透明电极的玻璃衬底,以及两衬底中间的液晶层组成。它通过控制在像素电极上的液晶的倾斜角度,来改变入射光的路径长度然后进行衍射。其结果便是,通过对入射光进行分支、畸变校正等,实现对激光束照射后衍射图形的自由调控。此次,滨松公司运用了大型光学半导体器件在开发和生产中积累的拼接技术(※2),将SLM的有效面积扩大到30.24×30.72 mm,约为现有尺寸的4倍,为世界上最大的液晶型SLM,也因此它可以减少SLM单位面积的入射光能量。同时,由于采用耐热性和导热性俱佳的大型陶瓷衬底,提高了散热效率,成功地抑制了因CW激光器连续照射而引起的温度升高,使得SLM可适用于工业用的高功率CW激光器。此外,大面积硅衬底在制造过程中容易出现弯曲、平整度恶化的情况,进而导致入射图形的光束形状产生畸变,针对这一问题我们运用了滨松独特的光学半导体元件生产技术,使SLM在增大面积的同时,保持了衬底的平整度。至此,实现了光束的高精度控制。※2拼接技术:在硅衬底上反复进行光刻的技术。适用于完成无法一次性光刻的大型电子回路。本次研发的器件适用于工业用高功率CW激光器,实现多点同时并行加工,有望提高如金属3D打印为代表的激光焊接和激光切割等激光热加工的效率。此外,通过对光束形状进行高精度的控制,该开发器件可根据对象物体的材料和形状进行优化,进而实现高精度的激光热加工。今后,我们将继续优化SLM结构中的多层介质膜反射镜,以进一步提高耐光性能。此外,我们也会将此开发器件搭载到激光加工设备中,进行实际验证实验。研发背景SIP第2期课题旨在通过将网络空间(虚拟空间)和物理空间(现实空间)高度融合的信息物理系统(Cyber Physical System,以下简称CPS)验证具有革命性的创新型工业制造。其中,“利用光和量子的Society 5.0实现技术”中,我们研发的主题包括激光加工在内的3个领域,旨在通过CPS激光加工系统验证创新型制造的可能性。随着CPS激光加工系统的实现,我们期待通过AI人工智能收集在多种条件下用激光照射物体得到的加工结果数据,选择最佳的加工条件,进而优化设计和生产过程。SLM被定义为CPS激光加工系统中必需的关键设备,为此,我们将继续致力于提高SLM的性能。本次研发的器件在CPS激光加工系统中的应用场景主要规格
  • 全国首套多功能高分辨率磁光克尔显微成像系统成功落户清华大学
    2021年5月,多功能高分辨率磁光克尔显微成像系统在清华大学顺利完成安装和调试,并获得用户的高度认可。该系统是由北京航空航天大学集成电路学院赵巍胜教授指导,张学莹老师带领团队根据多年积累的磁畴动力学实验技巧和 新的磁学及自旋电子学领域的热点课题研究需求设计的,也是Quantum Design中国与致真精密仪器(青岛)有限公司合作推出后在国内完成的套安装和验收。 致真精密仪器(青岛)有限公司工程师与用户的现场合影 安装精彩瞬间相比于传统的磁光克尔显微镜,该系统除了拥有高达300 nm的纵向和向克尔成像(分别对应面内和垂直各向异性样品磁畴测量),还增加了灵活的磁场探针台及面内旋转的磁场和高度智能化的软件控制系统。其中磁场探针台可以同时施加面内和垂直的磁场,通过智能控制系统,能够让用户利用软件定义电、磁等多种想要的波形,一键触发后,在样品上可同步施加垂直/面内磁场、电流脉冲、微波信号,进行磁光克尔成像及微区磁滞回线提取、局部饱和磁化强度Ms表征、局部各项异性能K的表征、海森堡交换作用常数Aex,Dzyaloshinskii-Moriya作用的表征等,在磁性薄膜材料和自旋电子器件动力学分析领域有着突出的优势。这套多功能高分辨率磁光克尔显微成像系统历经5年多的研发历程,在北航集成电路学院、北航青岛研究院的支持下,经过了3轮迭代和试用,在致真精密仪器(青岛)有限公司团队进行工程化之后,形成了性能稳定,功能多样,多场景适配改装方便的系统。该产品还获得了青岛市市长杯创新创业大赛一等奖。北航团队在该设备的强大功能支撑下,在DMI测量[1]、自旋轨道矩(SOT)效应研究[2]、磁畴壁动力学[3-4]、磁性材料和自旋电子器件研究[5]等方面,取得了丰富的成果。同时,该设备还可用于永磁材料和硅钢等软磁材料的磁畴分析等。该设备的成功落户标志着国产商用磁光克尔显微镜领域的长期空白得以弥补。作为北航集成电路学院工艺与装备系孵化的公司,致真精密仪器(青岛)有限公司传承了北航文化,响应在高端科研设备方面的需求,与时俱进,精益求精,敢于啃硬骨头,做高品质高可靠性产品。同时,作为本土企业,致真精密仪器会始终与用户保持良好沟通,紧密追踪前沿热点,以用户的需求和科学发展方向为指引,将 新的测试技术融入到产品中去,为新老用户持续做好服务,支持中国甚至全球更多的科研者的科学探索。目前,该系统已经更新至三代,感谢所有提出过建议的老师和同学们,也欢迎大家继续提供宝贵的意见!在此,特别感谢清华大学的老师对我们的信任与支持,祝他们科研顺利,硕果累累!目前,这款多功能高分辨率磁光克尔显微成像系统已经获得了清华大学、中国科学院物理研究所、北京工业大学、上海科技大学等客户多套订单。 产品基本参数: ☛ 向和纵向克尔成像分辨率可达300 nm;☛ 配置二维磁场探针台,面内磁场 高达1 T,垂直磁场 高达0.3 T(配置磁场增强模块后可达1.5 T);☛ 快速磁场选件磁场反应速度可达1 μs;☛ 可根据需要选配直流/ 高频探针座及探针;☛ 可选配二次谐波、铁磁共振等输运测试;☛配置智能控制和图像处理系统,可同时施加面内磁场、垂直磁场和电学信号同步观测磁畴翻转;☛ 4K~800K,80K~500K 变温选件可选。 样机体验:目前,致真精密仪器(青岛)有限公司可对相关领域感兴趣的科学工作者提供测样体验,欢迎感兴趣的老师或同学通过拨打电话010-85120280或发送邮件至info@qd-china.com体验磁光克尔显微成像全新技术! 参考文献:[1]. Cao, A. et al. Tuning the Dzyaloshinskii–Moriya interaction in Pt/Co/MgO heterostructures through the MgO thickness. Nanoscale 10, 12062–12067 (2018).[2]. Zhao, X. et al. Ultra-efficient spin–orbit torque induced magnetic switching in W/CoFeB/MgO structures. Nanotechnology 30, 335707 (2019).[3]. Zhang, X. et al. Low Spin Polarization in Heavy-Metal–Ferromagnet Structures Detected Through Domain-Wall Motion by Synchronized Magnetic Field and Current. Phys. Rev. Appl. 11, 054041 (2019).[4]. Zhang, Y. et al. Domain-Wall Motion Driven by Laplace Pressure in CoFeB/MgO Nanodots with Perpendicular Anisotropy. Phys. Rev. Appl. 9, 064027 (2018).[5]. Zhang, X. et al. Spin‐Torque Memristors Based on Perpendicular Magnetic Tunnel Junctions for Neuromorphic Computing. AdvancedScience 8, 2004645 (2021).
  • 无液氦低温磁光克尔测试系统落户加利福尼亚大学
    NanoMOKE3是新一代超高灵敏度磁强计和克尔显微镜,灵敏度高达10-12emu,是研究磁性薄膜以及磁性微结构理想的测量工具,在自旋/磁电子学、磁性纳米技术、磁性随机存储器、GMR/TMR、记录磁头、磁传感器等研究领域有着广泛的应用。磁光克尔测试属于光学测试,对样品的振动有着一定的要求。传统的低温磁光克尔测试通常使用低振动的液氦恒温器来进行,这种恒温器往往不能兼容纵向和向磁光克尔测试,且使用者需要多次采购和传输使用液氦,实验过程比较繁琐,也给实验室增加了大量液氦成本。2018年6月,Quantum Design在美国加利福尼亚大学圣迭戈分校Ivan Schuller教授实验室成功安装了一套集成NanoMOKE3与5nm别超低振动的Montana无液氦低温恒温器的磁光克尔测试系统,实现了4.5K~325K下的纵向0.47T/向0.35T的磁光克尔测试,为低温下的磁光克尔测试带来了新的方向。 图1 :磁光克尔测试系统NanoMOKE3+Montana无液氦低温恒温器设备集成外观Schuller教授团队的研究方向之一是制备和研究新型微纳米结构,如量子点、磁性异质结构、二维铁磁线和一维铁磁链等。“新的低温磁光克尔测试系统可灵活安装配置样品,允许我们进行原位磁光和磁输运测试”,Nicolas Vargas研究员说:“我们小组目前正在研究混合异质结构(V-Oxide/FM)在结构相变(SPT)-温度依赖性期间的磁性和反射率行为,这套系统的安装,将对我们的实验提供非常大的帮助。”设备安装成功后,工程师先对垂直磁各项异性薄膜Ta(4 nm)/Pt(10 nm)/CoFeB(0.6 nm)/Pt(2 nm)进行了4.5K下的向克尔测试(如图2所示),结果显示该样品在单次循环无平均下的噪声仅为5%。随后又对该薄膜进行了4.5K下的克尔成像测试(如图3所示),左上角显示为饱和磁化时的成像,顺时针方向为磁场逐渐减小至反向饱和时的成像,可以明显的观察到磁畴的变化。 图2:CoFeB薄膜4.5K下向克尔测试左:60秒平均测试结果 右:单次循环1秒(总测试时间)无平均测试结果 图3:CoFeB 薄膜4.5K下的磁畴成像观测除了向克尔测试,工程师还对坡莫合金微带线(25-um 宽, 24-nm 厚)进行了5.5K下的纵向磁光克尔测试(如图4所示),结果显示该样品单次循环即可得到强的克尔测试信号,噪声仅为3%。 图4:坡莫合金微带线5.5K下的纵向磁光克尔测试左:微带线结构 中:60秒测试平均结果 右:单次循环1秒无平均结果 这套系统除了集成为低温磁光克尔测试系统外,也可以分成室温磁光克尔和低温恒温器等两套系统单使用。已经购买了Montana C2恒温器或者NanoMOKE3磁光克尔系统的用户,也可以在此基础上升为无液氦低温磁光克尔测试系统!
  • Quantum Design中国合作引进 多功能高分辨率磁光克尔显微成像系统
    磁畴是铁磁体材料在自发磁化的过程中,为降低静磁能而产生分化的方向各异的小型磁化区域。它的研究可将材料的基本物理性质、宏观性质和应用联系起来。近年来,由于材料的日益完善和器件的小型化,人们对磁畴分析的兴趣与日俱增。目前市面上主要的磁畴观测设备有磁光克尔显微镜、磁力显微镜、洛伦兹电镜、以及近兴起的NV色心超分辨磁学显微镜等,其中,磁光克尔显微镜可以灵活的结合外加磁场、电流及温度环境等来对材料进行面内、面外的动态磁畴观测,成为目前常用的磁畴观测设备,可用于多种磁性材料的研究,如铁磁或亚铁磁薄膜、钕铁硼等硬磁材料、硅钢等软磁材料。 2020年11月,Quantum Design中国与致真精密仪器(青岛)有限公司签署了中国区战略合作协议,合作推出多功能高分辨率磁光克尔显微成像系统。通过此次战略合作,Quantum Design中国希望能够为磁学及自旋电子学等领域的研究提供更多的可能。图1 多功能高分辨率磁光克尔显微成像系统 多功能高分辨率磁光克尔显微成像系统由北京航空航天大学集成电路学院张学莹老师带领团队,根据多年的磁畴动力学实验技巧积累和新的磁学及自旋电子学领域的热点课题研究需求研发。它采用先进的点阵LED光源技术,能够在不切换机械结构的情况下,同时进行向和纵向克尔成像,不仅能同时检测样品垂直方向和面内方向的磁性,成像分辨率还能够达到270 nm,逼近光学衍射限。与传统的磁光克尔显微镜相比,多功能高分辨率磁光克尔显微成像系统配置了多功能磁铁探针台,能够在保证450 nm高分辨率的前提下,向被测样品同时施加面磁场、垂直磁场、电流和微波信号。 此外,多功能高分辨率磁光克尔显微成像系统拥有专门的智能控制系统,用户界面友好,无需复杂设置,一键触发既能实现多维度磁场、电学信号与克尔图像的同步操控。该系统的另一亮点是配置了反应速度高达1 μs的超快磁场,为微米器件中磁畴的产生、磁畴的高速运动捕捉等提供了可能。 张学莹老师师从北航赵巍胜教授和法国巴黎萨克雷大学Nicolas Vernier教授,从2015年开始研究磁光克尔成像技术和磁畴动力学,其有关磁性材料性质的论文获得北京航空航天大学博士学位论文。经过3年潜心研究,该团队于2018年完成了台克尔显微镜样机的集成,并创立致真精密仪器(青岛)有限公司。至2020年初,在北航青岛研究院和北航集成电路学院经过两轮迭代和打磨,已经完成了产品的稳定性验证,目前,该设备已经被清华大学、中科院物理所、北京工业大学等多家单位采购。 产品磁畴成像照片案例图2 CoFeB(1.3 nm)/W(0.2)/CoFeB(0.5)薄膜中的迷宫畴图3 斯格明子磁畴观测 多重信号的叠加,能够满足客户多种前沿课题的实验需求面内磁场和垂直磁场的叠加可以进行Dzyaloshinskii-Moriya作用(DMI)的测试[1,2]图4 样品Pt(4 nm)/Co(1 nm)/MgO(t nm)/Pt(4 nm)DMI作用测量[1] 自旋轨道矩(spin-orbit torque,简称SOT)是近年来发展起来的新一代电流驱动磁化翻转技术,如何更好的表征SOT翻转,在当今自旋电子学领域具有重要的理论和应用价值。 多功能高分辨率磁光克尔显微成像系统配置的面内磁场和电学测试系统,不但可以实现这个过程的电学测试,还可以利用相机与信号采集卡同步的功能,逐点解析翻转曲线对应的磁畴状态 [3,4]。图5 面内磁场和电流的叠加用于sot驱动的磁性变化过程研究 在某些材料中,无法观测到纯电流驱动的磁畴壁运动。这时,可以利用多功能高分辨率磁光克尔显微成像系统微秒别的超快磁场脉冲与电流同步,观测垂直磁场与电流共同驱动的畴壁运动,从而解析多种物理效应,如重金属/ 铁磁体系的自旋化率由于自旋散射降低的效应 [5]。图6 垂直磁场和电流的叠加可用于观测单磁场或者电流无法驱动的磁性动力学过程 克尔成像下磁场和微波的叠加则能够为自旋波和磁畴壁的相互作用研究提供可能[6]。图7 自旋波驱动的磁畴壁运动[6] 多功能高分辨率磁光克尔显微成像系统还可进行多种磁性参数的微区测量局部饱和磁化强度Ms表征[7]由于偶作用,磁畴壁在靠近时会相互排斥。通过观察不同磁场下磁畴壁的距离,可以提取局部区域的饱和磁化强度Ms。此方法由巴黎- 萨克雷大学Nicolas Vernier 教授(致真技术顾问)在2014 年先提出并验证,与VSM测量结果得到良好吻合。图8 局部饱和磁化强度Ms表征及与其他测试方法Ms结果对比 海森堡交换作用刚度[8]采用系统的磁场“自定义波形”功能,将样品震荡退磁,再将得到的迷宫畴图片进行傅里叶变换,能够得知磁畴宽度,从而提取海森堡交换作用刚度Aex。图9 海森堡交换作用刚度提取 自旋电子薄膜质量的表征、自旋电子器件的损坏检测等[9]图10 磁性薄膜质量检测 除此之外,该系统还开发了性价比超高的变温系统。针对永磁材料研究的用户,开发了能够兼容克尔成像的高温强磁场模块。针对硅钢等软磁材料研究用户,开发了大视野面内克尔显微镜。 动态磁畴成像案例图11 cofeb薄膜动态磁畴图12 sot磁场+电流驱动磁畴翻转图13 钕铁硼永磁动态磁畴观测图14 磁性材料内钉扎点的观测,可与巴克豪森噪声同步匹配 产品基本参数✔ 向和纵向克尔成像分辨率可达300 nm;✔ 配置二维磁场探针台,面内磁场高达1 t,垂直磁场高达0.3 t(配置磁场增强模块后可达1.5 t);✔ 快速磁场选件磁场反应速度可达1 μs;✔ 可根据需要选配直流/ 高频探针座及探针;✔ 可选配二次谐波、铁磁共振等输运测试;✔ 配置智能控制和图像处理系统,可同时施加面内磁场、垂直磁场和电学信号同步观测磁畴翻转;✔ 4k~800k,80k~500k 变温选件可选。 小结多功能高分辨率磁光克尔显微成像系统除了拥有超高分辨的动态磁畴观测能力外,还能结合多功能磁场探针台提供的外加电流、面内/面外磁场等对多种磁学参数进行提取。 样机体验目前,致真精密仪器(青岛)有限公司可对相关领域感兴趣的科学工作者提供了测样体验,欢迎感兴趣的老师或同学拨打电话010-85120280或发送邮件至info@qd-china.com体验磁光克尔显微成像全新技术! 参考文献[1] A. Cao et al., Nanoscale 10, 12062 (2018).[2] A. Cao et al., Nanotechnology 31, 155705 (2020).[3] X. Zhao et al., Appl. Phys. Lett. 116, 242401 (2020).[4] G. Wang et al., IEEE Trans. Circuits Syst. I Regul. Pap. 66, 215 (2019).[5] X. Zhang et al., Phys. Rev. Appl. 11, 054041 (2019).[6] J. Han et al., Science (80-. ). 366, 1121 (2019).[7] N. Vernier et al., Appl. Phys. Lett. 104, 122404 (2014).[8] M. Yamanouchi et al., IEEE Magn. Lett. 2, 3000304 (2011).[9] Y. Zhang et al., Phys. Rev. Appl. 9, 064027 (2018).
  • 上海微系统所等开发出可批量制造的新型光学“硅”与芯片技术
    5月8日,中国科学院上海微系统与信息技术研究所研究员欧欣团队在钽酸锂异质集成晶圆及高性能光子芯片制备领域取得突破性进展。相关研究成果以《可批量制造的钽酸锂集成光子芯片》(Lithium tantalate photonic integrated circuits for volume manufacturing)为题,发表在《自然》(Nature)上。随着全球集成电路产业发展进入“后摩尔时代”,集成电路芯片性能提升的难度和成本越来越高,人们迫切寻找新的技术方案。以硅光技术和薄膜铌酸锂光子技术为代表的集成光电技术可以应对这一问题。其中,铌酸锂有“光学硅”之称,近年来备受关注。与铌酸锂类似,欧欣团队与合作者证明单晶钽酸锂薄膜同样具有优异的电光转换特性,在双折射、透明窗口范围、抗光折变、频率梳产生等方面比铌酸锂更具优势。此外,硅基钽酸锂异质晶圆的制备工艺与绝缘体上的硅更接近,因此钽酸锂薄膜可实现低成本和规模化制造,具有应用价值。欧欣团队采用基于“万能离子刀”的异质集成技术,通过氢离子注入结合晶圆键合的方法,制备了高质量硅基钽酸锂单晶薄膜异质晶圆。进一步,合作团队开发了超低损耗钽酸锂光子器件微纳加工方法,使对应器件的光学损耗降低至5.6 dB m-1,这低于其他团队报道的晶圆级铌酸锂波导的最低损耗值。该研究结合晶圆级流片工艺,探讨了钽酸锂材料内低双折射对于模式交叉的有效抑制,并验证了可以应用于整个通信波段的钽酸锂光子微腔谐振器。钽酸锂光子芯片展现出与铌酸锂薄膜相当的电光调制效率;同时,基于钽酸锂光子芯片,该研究首次在X切型电光平台中产生了孤子光学频率梳,结合电光可调谐性质,有望在激光雷达和精密测量等方面实现应用。当前,该研究已攻关8英寸晶圆制备技术,为更大规模的国产光电集成芯片和移动终端射频滤波器芯片的发展奠定了材料基础。欧欣介绍:“相较于薄膜铌酸锂,薄膜钽酸锂更易制备,且制备效率更高。同时,钽酸锂薄膜具有更宽的透明窗口、强电光调制、弱双折射、更强的抗光折变特性,这种先天的材料优势扩展了钽酸锂平台的光学设计自由度。”上述成果的第一完成单位为上海微系统所。该工作由上海微系统所和瑞士洛桑联邦理工学院合作完成。(论文链接 )钽酸锂异质集成晶圆制备及高性能光子芯片示意图(a)硅基钽酸锂异质晶圆(b)薄膜钽酸锂光学波导制备工艺及波导的扫描透镜显微镜(a)钽酸锂弯曲波导、(b)铌酸锂弯曲波导的色散曲线设计(实线)与实际色散曲线(散点),可观察到铌酸锂波导色散曲线中明显的模式交叉效应(a)薄膜钽酸锂电光调制器;(b)首次实现X切型钽酸锂上的克尔孤子光频梳8英寸硅基薄膜钽酸锂晶圆制备
  • Nat. Commun. :无液氦低温磁光克尔助力金属-绝缘体转变研究
    具有特功能特性的材料可以替代大型复杂电路,大地提高电子设备的可扩展性和能效。例如,使用电压应用诱导电阻开关的材料,可以在仅由几个元件组成的电路中模拟突触可塑性和不同的神经元峰行为。相比之下,传统互补金属氧化物半导体(CMOS)则需要数十个晶体管来实现类似的功能。深入了解此类先进电子材料的物理特性及其对外部刺激的响应对于后续设计应用程序至关重要。迄今为止已有许多研究探索了基于离子电迁移的非易失性开关的特性,这在存储器中具有广阔的应用前景。 近期,人们对一种不同类型的电阻开关产生了大的兴趣。该类型的电阻开关是由金属-缘体转变的电触发变化而产生的易失性开关,即改变材料电荷传输特性的本征相变(例如,莫特或佩尔斯转变)。这种易失性切换是通过向金属-缘体转变材料施加并保持电刺激而诱发的,并且在关闭刺激后,这种开关自动重置回初始状态(因此称为“易失性”)。基于金属-缘体转变的开关通常伴随着电阻率和光学特性的巨大变化,这使得其在射频电子学、光电学和受生物启发的人工神经元中的应用具有吸引力。 近期,加利福尼亚大学圣地亚哥分校物理科学与先进科学中心的Pavel Salev,Ivan K. Schuller等利用无液氦低温磁光克尔效应系统-CryoMOKE研究了基于La0.7Sr0.3MnO3(LSMO)薄膜器件中金属-缘体转变电触发的易失性电阻开关,从金属到缘体,发生在一个相应的特征空间模式中,形成一个垂直于驱动电流的缘势垒。这种势垒的形成导致电流-电压特性中出现不寻常的N型负微分电阻。作者进一步证明电诱导横向势垒能够实现电压控制磁性的特方法。通过触发磁性材料中的金属-缘体电阻开关,使用施加到整个设备的全局电压偏置实现铁磁性的局部开/关控制。该成果以《Transverse barrier formation by electrical triggering of a metal-to-insulator transition》为题发表在Nature Communications. 图1 金属-缘体电阻开关的磁光成像 a.磁光测量示意图,在器件区域的每个xy点处获得MOKE磁滞回线。沿器件长度方向在平面内施加磁场。在整个测量时间内,电压偏置保持不中断。b. 同时记录I–V曲线(中心)和MOKE xy成像图(侧面)。图中的亮区对应于铁磁LSMO。总视场为90×140μm2。在MOKE成像图中,电流沿着水平方向。随着I–V穿过负微分电阻,在器件中心出现横向缘顺磁势垒,并随着外加电压的增加而不断扩展。I–V图中的插图显示了势垒尺寸d,作为施加电压的函数,V。c. 在24 V下的MOKE成像图和对应于记录的三个器件区域(使用罗马数字标记)的局部磁滞回线。当器件两侧(区域I和III)显示铁磁响应时,中心(区域II)的MOKE信号为零。所有测量均在100 K下进行。 为解释金属-缘体电阻开关的潜在微观机制,该工作的研究者利用金属-缘体转变与磁跃迁同时发生的事实,对LSMO器件进行了操作成像。使用扫描磁光克尔效应(MOKE)显微镜(图1a),绘制了施加电压偏置时铁磁区域的空间分布图。测量过程使用5 μm大小的激光束记录设备区域上每个点的MOKE磁滞回线,通过绘制MOKE回线量(即大克尔旋转角)的xy图来表示数据。在传统的MOKE图像中,对比度来源于不同磁化方向的区域。在这篇工作中,亮区对应于铁磁性区域,而暗区表示没有铁磁性。 该研究发现金属-缘转换是通过在垂直于电流的方向上形成横跨整个器件宽度的缘势垒来实现的。图1b显示了不同电压下的MOKE图和相应的I–V曲线。该器件在15 V以下仍保持均匀的铁磁(金属)状态,但施加更高的电压会导致LSMO转变为性质不同的状态。在16 V时,I–V曲线显示出一个小的跳跃,同时在器件中心附近出现一个~5 μm宽的无磁性畴。磁畴横跨整个器件宽度,其尺寸随着外加电压的增加而增大,直到电压升至48 V时覆盖整个器件(图1b中I–V图中的插图)。 值得注意的是,本工作中低温下的磁光克尔测试使用了DMO和Montana公司联合研发的低温磁光克尔效应系统- CryoMOKE,该设备可以实现在4~350K范围的高灵敏度磁滞回线及磁畴成像测试,Montana提供了超低振动的无液氦低温恒温器,该恒温器可以连接多种电学测试,可以在测量磁光克尔的同时在样品上施加电流/电压。 图2 DMO和Montana公司联合研发的CryoMOKENanoMOKE3主要技术特点:☛ 温度范围:4~350K☛ 振动:小于5nm☛ 纵向/向磁光克尔☛ 纵向磁场:>0.4T,向磁场>0.3T☛ 高灵敏度磁滞回线测试及磁畴成像 CryoMOKE国内客户: 南方科技大学中国科学院化学研究所 参考文献:[1] Pavel S, Ivan K. S,et al. Transverse barrier formation by electrical triggering of a metal-to-insulator transition. Nat. Commun.12,5499(2021)
  • Advanced Science:多功能高分辨率磁光克尔显微成像系统助力自旋忆阻器研究取得突破性进展
    忆阻器是一类表示磁通与电荷关系的基础电路元件,也是构建人工神经网络的理想元件。传统忆阻器多数是基于材料内部的离子迁移和价带变化实现的,存在工作寿命短和反应速度慢等缺陷,无法支撑持续训练学习的神经网络的长时间工作[2]。与之相反,自旋电子器件基于材料内部的磁性变化工作,具有工作寿命长、反应速度快等优势[3-7]。长期以来,科学和产业界在不断地探索如何将磁隧道结等自旋器件应用于神经网络计算[8]。然而,经典的磁隧道结仅具有高、低二值阻态,无法在神经网络计算方面发挥优势。 2021年3月7日,北京航空航天大学集成电路科学与工程学院赵巍胜教授团队教师张学莹、博士生蔡文龙、教师王梦醒及潘彪以共同位作者,赵巍胜教授为通讯作者在Advanced Science期刊在线发表了题为“Spin‐Torque Memristors Based on Perpendicular Magnetic Tunnel Junctions for Neuromorphic Computing” 的学术论文[1]。赵巍胜教授团队设计了一种带有特自由层结构的磁隧道结,即在自由层中插入了单原子层的W,然后利用退火技术,让W形成聚簇效应,实现了一种基于垂直各向异性磁隧道结的自旋忆阻器,并在百纳米的器件中实现了稳定的近乎连续的多态,也是国际上次实现百纳米尺寸的可全电学操控的自旋忆阻器(如图1所示),有望为自旋电子器件在人工智能领域的应用打开道路。图 1 (a,b)该工作实现的自旋忆阻器件通过电压脉冲序列激励诱导的阻态变化;(c-e)器件的脉冲时序依赖可塑性验证。 该研究对这种新型器件的性质进行了全面的实验表征,验证了这种器件阻态的脉冲时序依赖可塑性(简称STDP,是脉冲神经网络的基础),证明了其构成的系统能够高效率、低功耗地实现手写数字识别等功能。 此外,该研究次发现了一种立体的手性涡旋结构(图2d):在CoFeB/W/CoFeB构成的自由层中,CoFeB/W界面和W/CoFeB界面产生的Dzyaloshinskii-Moriya作用(DMI)相反,同时,两层CoFeB之间的耦合作用则随着W的厚度变化出现强度涨落或铁磁/反铁磁耦合交替。在局部区域W出现聚簇效应,反铁磁耦合与反向DMI联合作用,促使磁畴壁演变成手性涡旋结构,形成能量势阱。在磁隧道结自由层翻转过程中,这种涡旋结构会将运动的畴壁牢牢地钉扎住,从而形成了稳定的多阻态。图 2 (a)论文所用MTJ膜层中W原子的分布;(b)在反向DMI和不同RKKY耦合强度下CoFeB/W/CoFeB双磁层中可能存在的磁畴壁形态;(c)不同磁畴壁形态对应的能量;(d)在W原子聚簇区域由反向DMI和RKKY反铁磁耦合共同促进形成的立体涡旋结构示意图。 值得一提的是,Quantum Design中国与致真精密仪器(青岛)有限公司合作推出的多功能高分辨率磁光克尔显微成像系统对解析自旋忆阻器的工作原理分析和多态来源方面发挥了重要作用。 先,作者通过高分辨率磁光克尔显微镜观察了MTJ膜层自由层的磁性翻转过程,与磁滞回线测量结果进行了对照,发现文章所用膜层存在较强的磁畴钉扎作用(如图3)。同时,作者测量了该材料自由层中磁畴壁移动速度,通过蠕行公式(creep mode motion)拟合,提取了一个重要的参数:本征磁畴壁钉扎磁场Bdep,如图4a所示。这个磁场是表征磁性薄膜磁畴壁钉扎强度的标志性参数,低于该临界磁场,不考虑热扰动的情况下,磁畴壁无法运动。经对比发现,薄膜中提取的该磁场与忆阻器件中多态在低温下的临界稳定磁场几乎相等,由此确定了自旋忆阻器件的多态来源于磁畴钉扎(图4b)。以磁光克尔显微镜为工具,通过磁畴壁速度测量提取磁畴壁本征钉扎磁场强度,是少有的能够定量评估磁性薄膜质量和畴壁钉扎强度的方法,在开发新材料,优化自旋电子器件性能方面得到广泛应用[7][9]。 图 3 利用高倍磁光克尔显微镜观察到的该自旋忆阻器自由层中磁畴扩张状态与磁滞回线的对应关系。图 4 (a) 磁光克尔显微镜测量的CoFeB/W/CoFeB磁性薄膜(蓝)与普通CoFeB薄膜(红)中磁畴中磁畴壁运动速度的比较;以及CoFeB/W/CoFeB中内禀钉扎磁场(16.3 mT)与(b)器件在低温下的多态稳定磁场(去除偏置后为15.5 mT)的比较。 在CoFeB/W/CoFeB自由层薄膜中,为什么会有如此强的磁畴壁钉扎作用呢?作者利用磁光克尔显微镜,从DMI、海森堡交换作用强度等多个角度进行了细致表征。先,分别定量测量了sub/MgO/CoFeB/W薄膜、sub/W/CoFeB/MgO两种镜面对称薄膜结构的DMI,发现两种膜层的DMI手性相反且强度相当(图5)。随后,测量了多态器件所用的自由层薄膜CoFeB/W/CoFeB的DMI,强度几乎为零。由此推测,CoFeB/W界面和W/CoFeB的DMI被中和。另一方面,通过透射电镜,作者观察到了CoFeB/W/CoFeB中W原子的分布并不均匀,局部出现了聚簇,W原子垒叠成2层甚至3层,而多数区域W原子则为单层甚至出现断裂。依据S. Parkin测量结果[10],双原子层的W能够使上下两层铁磁材料发生RKKY反铁磁耦合。进一步,作者通过微磁仿真,结合磁光克尔成像获得了关于DMI,海森堡交换作用(测量方法见该文章附加材料[1])等参数,证明在具有W聚簇的区域,能够形成上下层手性相反的的垂直涡旋结构。而且,这种涡旋结构具有较低能量,在磁畴壁经过之时,能够形成强烈的钉扎作用。图 5 利用磁光克尔显微镜测量不同薄膜结构中磁畴壁运动的速度以及DMI的提取。 磁光克尔显微镜除了能够获得高分辨率的动态磁畴观测外,在磁性薄膜材料和自旋电子器件动力学分析领域也有着突出的优势,它能够直观、高效、无损地测量多种参数,包括饱和磁化强度、各向异性强度、海森堡交换作用强度和DMI强度等。通用型的磁光克尔显微镜很难对这些磁学参数进行直接的测量,为了降低使用门槛,使磁光克尔成像和磁畴动力学分析技术在磁学和自旋电子学中发挥更大作用,张学莹老师在多年积累的测试经验和仪器配置方案基础上,开发出了一款多功能、智能化的多场高分辨率磁光克尔成像系统。该系统能够让用户利用软件定义电、磁等多种想要的波形,一键触发后,在样品上同步施加垂直/面内磁场、电流脉冲、微波信号,可同时进行磁光克尔成像和电阻等参数的测量。这种多功能的设备将电输运测试和磁光克尔成像结合,预期将在自旋轨道矩、斯格明子磁泡动力学等方面发挥更大作用。 目前,这款多场高分辨率磁光克尔成像系统已经获得了清华大学、中国科学院物理研究所、北京工业大学、上海科技大学等客户多套订单。 图6多功能高分辨率磁光克尔显微成像系统 产品基本参数:向和纵向克尔成像分辨率可达300 nm;配置二维磁场探针台,面内磁场高达1 T,垂直磁场高达0.3 T(配置磁场增强模块后可达1.5 T);快速磁场选件磁场反应速度可达1 μs;可根据需要选配直流/ 高频探针座及探针;可选配二次谐波、铁磁共振等输运测试;配置智能控制和图像处理系统,可同时施加面内磁场、垂直磁场和电学信号同步观测磁畴翻转;4K~800K,80K~500K 变温选件可选。 参考文献 [1] X. Zhang#, W. Cai#, M. Wang#, B. Pan#, K. Cao, M. Guo, T. Zhang, H. Cheng, S. Li, D. Zhu, L. Wang, F. Shi, J. Du, and W. Zhao*, Adv. Sci. 2004645, 2004645 (2021).[2] M. A. Zidan, J. P. Strachan, and W. D. Lu, Nat. Electron. 1, 22 (2018).[3] X. Lin, W. Yang, K. L. Wang, and W. Zhao*, Nat. Electron. 2, 274 (2019).[4] M. Wang, W. Cai, K. Cao, J. Zhou, J. Wrona, S. Peng, H. Yang, J. Wei, W. Kang, Y. Zhang, J. Langer, B. Ocker, A. Fert, and W. Zhao*, Nat. Commun. 9, 671 (2018).[5] M. Wang#, W. Cai#, D. Zhu#, Z. Wang#, J. Kan, Z. Zhao*, K. Cao, Z. Wang, Y. Zhang, T. Zhang, C. Park, J. P. Wang, A. Fert, and W. Zhao*, Nat. Electron. 1, 582 (2018).[6] S. Peng#, D. Zhu#, W. Li, H. Wu, A. J. Grutter, D. A. Gilbert, J. Lu, D. Xiong, W. Cai, P. Shafer, K. L. Wang, and W. Zhao*, Nat. Electron. 3, 757 (2020).[7] X. Zhao#, X. Zhang#, H. Yang#, W. Cai, Y. Zhao, Z. Wang, and W. Zhao*, Nanotechnology 30, 335707 (2019).[8] X. Zhang, W. Cai, X. Zhang, Z. Wang, Z. Li, Y. Zhang, K. Cao, N. Lei, W. Kang, Y. Zhang, H. Yu, Y. Zhou, and W. Zhao*, ACS Appl. Mater. Interfaces 10, 16887 (2018).[9] X. Zhao et al., Appl. Phys. Lett. 115, (2019).[10] S. S. P. Parkin, Phys.Rev.Lett. 67, 3598(1991)
  • 戏说纵向加热石墨炉(收官之作)
    前 言:   自从70年代起其至今,我使用过好几款仪器的石墨炉,如:PE403,PE5000,PE3010,GGX-3,180-80,Z-8000,Z-5000,Z-2000,ZA3000等。凑巧的是,上述仪器的石墨炉全部是纵向加热类型的。为了活跃论坛这个&ldquo 草根&rdquo 平台,我就将这些年对纵向加热型石墨炉的认识和体会展现给版友。   遗憾的是,一来本人的理论水平有限,二来有关石墨炉的文献与论文,从60年代的石墨炉鼻祖利沃夫和马斯曼起,一直到目前的国内外众多的原吸大咖止,比比皆是,令人目不暇接,且全部是正说。因此,如果我也采用&ldquo 正说&rdquo 石墨炉的形式,则深感力不从心,故只能&ldquo 戏说&rdquo 了,望大家见谅!   (一)纵向石墨炉的历史:   1959年,前苏联科学家利沃夫(L,vov)设计出了石墨炉坩埚原子化器。   1967年,德国学者马斯曼(H.Massmann)从利沃夫的石墨原子化器得到灵感,设计出电热石墨炉并于1970年被PE公司应用到商品原吸仪器上。   由于马斯曼设计的纵向电加热石墨炉首次成为商品仪器,所以之后有人就将这种纵向加热结构的石墨炉称之为&ldquo 马斯曼炉&rdquo ,以示纪念。   (二)纵向石墨管的结构:   首先要搞清楚何为&ldquo 纵向&rdquo ?所谓的纵向就是指作用在石墨管上的加热电流I的流通方向与通过石墨管光轴的方向一致。见图-1 所示:   图-1 纵向加热石墨炉示意图   纵向加热石墨炉的整体外观和结构示意以及实体分解如图-2,3,4所示:   图-2 纵向石墨炉外观图(Z-2000)   图-3 纵向石墨炉结构示意图   图-4 纵向石墨炉实体分解图(Z-2000)   从图-3 和图-4 可以看出,纵向石墨炉主要是由:石墨管,石墨环,电极和石英窗组成。   由于纵向石墨炉问世最早,结构相对简单,石墨管加工的一致性好且成本低廉,加之技术成熟,所以该类型的石墨炉应用较为广泛 目前国内外的原子吸收光度计的生产厂家绝大部分仍然采用的是该类型的石墨炉。   (三)纵向石墨管的种类:   无论是纵向石墨炉还是横向石墨炉,最终做热功的还是石墨管 为此有必要介绍一下纵向石墨管的种类和特点。图-5 所示的就是一部分纵向加热的石墨管的外观图。   图-5 形形色色的纵向石墨管   不知大家注意没有,在上图中最右侧的那个&ldquo 高大上&rdquo 的石墨管,就是我在70年代时使用过的美国PE-403型原子吸收分光光度计中石墨炉上的石墨管,可惜当时没有想起要保存下一只该管子的实物作为留念,不能不说是一件憾事!   (1)筒形石墨管:   纵向加热石墨炉从问世开始(以PE公司原吸为代表),石墨管就是筒形的,直至目前许多国内外仪器生产厂家例如:PE公司,热电公司,瓦里安公司,GBC公司的部分型号的仪器仍然使用着这种石墨管。如下面所示:   图-6 几种进口仪器使用的筒形石墨管   最早的传统筒形石墨管有一个弱点,那就是:由于管子的管壁厚度一致,也就是管子整体的任何一个部位的电阻值是均匀的,所以当石墨管通电加热时,理论上管子的整体的温度应该是均匀一致的才对。这种石墨管的剖面图如下:   图-7 传统筒形石墨管的剖面图   可是遗憾的是,由于纵向石墨管两端紧贴着两个质量很大的石墨环和电极之故(见图-4),所以在原子化加热开始的瞬间,石墨管两端的温度就会因为石墨环和电极的热传导作用而低于石墨管的中央部分的温度 其后经过暂短的时间后(约零点几秒),管子整体才会达到热平衡。这,就是在许多资料中所经常被垢病的&ldquo 温度梯度&rdquo 现象。   为了克服这种&ldquo 温度梯度&rdquo 的弊端,于是后人们便产生了提高筒形石墨管两端电阻值的设想。这样原来的一个阻值均匀的石墨管整体R就会被等效看做为三个串联的单体,即(R左R中  那么如何提高筒形石墨管两端的电阻值呢?方法只有一个,那就是减少管子两端管壁的厚度。我们在初中物理学到过,一个导电体的截面积与其电阻值成反比。所以减少石墨管两端管壁的厚度就可以提高电阻值。但是要想减少管子两端管壁的厚度,却不能通过将管子外径切削变薄来实现 其原因是:石墨管两端还要保持与石墨环大面积的紧密接触才能减少热损耗。所以即要想提高电阻又要保持管子与石墨环的紧密接触,那只能在管子的内壁上做文章。具体的做法是:用车刀在管子内壁两端刻上几刀沟槽,这样既不影响管子与石墨环的接触也可以提高了两端的电阻值了,可谓一举两得。其示意图和实体图见图-8和图-9 所示:   图-8 改良后的筒形石墨管示意图   图-9 改良后的筒形石墨管剖面实体图   (2)鼓形石墨管:   改良型石墨管尽管缩短了管子整体的热平衡时间,但是效果还是不太理想。于是有的仪器厂家就设想:如果让纵向石墨管中央放置样品的部位先行到达原子化温度不就可以忽略石墨环的散热影响了吗?要想做到这一点,就要从改良型筒形石墨管做反向思维了 那就是让石墨管的三部分变为(R左R右)了,于是乎,鼓形石墨管则应运而生了 其外观如下次:   图-10 鼓形石墨管外观   看到上面的鼓形石墨管,也许有人会问:这种石墨管的外径中间粗(8mm)两端细(7mm),如果依照前面导体的截面积与电阻成反比的定律,那么此管子的中央部位外径比两端的要粗1mm,其截面积一定大啊!按道理应该中间部位的电阻要小于两端才对,怎么反而说比两端的阻值要大呢?   下面我将此类管子的实际剖面图展现出来,大家就一目了然了,见图-11所示:   图-11 鼓形石墨管的剖面实例图   从上面的照片可以看到,尽管鼓形管的中间外径较两端大1毫米,但是其管壁厚度却小于两端的厚度,两者之差为(2mm-1.5mm)=0.5mm 千万别小看了这区区的0.5毫米的厚度,他却使石墨管中央部分的截面积整整小了约1/4。这样的差别,就会使该管子在原子化加热的瞬间,其中间部位迅速到达预设的原子化温度。如果用肉眼从石墨炉上盖的进样孔观察石墨管的升温状态就会发现这一过程 如图-12,13所示:   图-12 鼓形石墨管在原子化阶段升温瞬间的状态   图-13 鼓形石墨管在原子化阶段迅速达到平衡的状态   从上面两张照片图可以清晰地看到,鼓形石墨管在原子化开始的瞬间的确是从中央部位先行到达预设的原子化温度的,然后再向两端迅速延伸直至达到整体的热平衡,而这个平衡时间是非常短暂的。目前此类型石墨管主要是应用在岛津和日立的原吸上面。   此外这种鼓形石墨管还有一个优点,那就是管子中间的凹陷部位注入样品后液体不会向两端扩散 这样就保证了全部样品集中在温度最高的区域,有利于原子化。   (3)异形石墨管:   这类石墨管主要是喇叭型和哑铃型两类 由于目前几乎难以见到,故不再赘述。   (4)双进样孔鼓型石墨管:   这是一种新型的石墨管,其特点是:石墨管中央注入样品的部位被分割为两个空间 这样设计的目的是可以加大进样量,对低含量的样品起到了一个富集的效果 但是采用这种石墨管的仪器对自动进样器的精度要求是很高的,目前为止,这种双孔进样方式只有日立ZA3000型原子吸收上采用 而在横向加热石墨管上是不能实现的。该型管子的外观图和剖面图如下所示:   图-14 双孔石墨管的外观图  图-15 双孔石墨管剖面图   (5)平台石墨管:   此类石墨管就是在管子的中央安放一个悬浮的石墨平台,样品加注在平台上以完成原子化过程。平台石墨管的设计理念就是实现石墨炉分析鼻祖B.V.L&rsquo vov提出的&ldquo 恒温原子化&rdquo 的理念而问世的。该石墨管的剖面图如下:   图-16 平台石墨管   (四)纵向石墨炉的特点:   (1)升温速率:   众所周知,无论石墨炉是何种形式的,其最终做功而产生的焦耳热的关键部件是由石墨管来完成的。而影响石墨炉灵敏度和重现性的一个重要的因素则是:升温程序由灰化阶段转为原子化阶段瞬间的升温速率的快慢。   为何这个转换速率对分析的灵敏度的影响是那样大呢?其实原因很简单:当样品完成灰化步骤后,石墨管由灰化阶跃到原子化阶段的时间越短(即升温速率快)样品产生的基态原子数目越多,自然检测到的信号就越强。反之,如果石墨管升温速率慢的话,一部分样品在还未形成基态原子前就会被载气吹跑掉了,自然灵敏度就下降了。这也就是为何石墨炉在原子化阶段采取停止载气的做法的缘由 任何事物都是一分为二的,虽然可以通过停止载气来提高检测信号的灵敏度,但是样品信号的背景值也会随之加大了,熊掌鱼翅不可兼得。   那么影响石墨管升温速率的因素又是什么呢?答案是:石墨管本身的质量的大小 在同等的升温条件下,质量越小升温速率越快。举一个试验例子:如果将一个大铁球和一个小铁球同时放到火炉中,哪一个先红?毋庸置疑,还是小铁球先红(即达到热平衡早),我想这个试验结果大家均会给予认可的。目前的纵向石墨管无论是筒形的还是鼓形的其质量均在1克左右 见下表-1:   表-1   而横向石墨管的质量均比纵向石墨管大的多,一般在2.5~5.4克之间,见下表-2:   表-2   对于横向加热的石墨管而言,由于其本身的质量大于纵向石墨管,所以实际上更加注意升温速率的问题 这些石墨管的设计理念与纵向鼓形石墨管的设计如出一辙,其结构也是中央管壁薄两端管壁厚,从而造成管子整体中央电阻值大二两端小,并且这个厚薄的差异较纵向鼓形石墨管还要明显,远远大于0.5mm。见下图所示:   图-17 PE公司横向石墨管剖面图   图-18 Jena公司横向石墨管侧面图   图-19 GBC公司横向石墨管侧面图   所以,在升温速率上:从整体来看纵向石墨管优于横向石墨管(质量不同) 从局部来看二者接近(使用空间一样)。   (2)温度梯度:   自从纵向加热石墨炉问世以来,关于石墨管整个腔体内空间的温度梯度问题一直就是一个饱受诟病的争论焦点。为此,石墨炉分析鼻祖利沃夫(L,vov)先生就提出了一个&ldquo 恒温原子化&rdquo 的理念。大家熟悉的平台石墨管就是出于这个目的而研发出来的。   前面已经讲到,由于纵向石墨管两端存在石墨环和水冷电极的散热作用,故在原子化的瞬间致使管子的整体产生了一个两端低,中间高的&ldquo 温度梯度&rdquo 现象 这是一个不争的事实。   但是经过了一个暂短的时间后,石墨管会立即达到热平衡了。见下图所示:   图-20 筒形石墨管原子化阶段的升温模型   图-21 鼓形石墨管原子化阶段的升温模型   从上面的两张图的比较可以看出,鼓形管由于中间部分的温度高,故其升温速率要稍高于筒形管。   那么,横向加热的石墨管的究竟有没有&ldquo 温度梯度&rdquo 呢?见下模型图:   图-22 横向石墨炉工作原理   图-23 横向石墨管原子化阶段的升温模型   从图-22,23可以看出,横向石墨管在与电极接触的上下两端,同样也存在水冷电极的散热效应,所以对于横向石墨管整体而言同样也存在着温度梯度,只不过是在光轴通过的区域没有温度梯度罢了。因此纵向与横向石墨管的温度梯度的区别是:从整体来看,二者均有,仅是部位不同 从光轴观察空间来看,在原子化的瞬间,横向石墨管优于纵向石墨管 但是管子温度到达平衡后,二者相差无几了。既然横向石墨管的中间部位没有温度梯度的弊端,但是目前有些横向石墨管(例如PE的)仍然采用平台式的,这是为什么?   现在的问题关键是,纵向石墨管在原子化的瞬间,管子整体确实存在着温度梯度,这是一个无可争辩的事实。这个过程可用下面的模型图来说明:   图-24 鼓形石墨管原子化瞬间的升温模型图   通过上面的模型图不难看出几点:   1)在原子化瞬间鼓形管的确存在温度梯度,并且鼓形管的中央已经先行到达了预设的原子化温度(参看图-12)。   2)当石墨管整体温度到达平衡后,两端与石墨环接触的狭小部位的温度严格地讲要略低于整体的温度,这是因为石墨环的电阻要小于石墨管,因此在做功时其温度肯定比石墨管低,但是却要比水冷电极的温度高多了 由此看来,石墨环在这里不仅仅起到加持石墨管的作用,另一个不可忽略的作用就是:在石墨管和电极之间起到一个温度缓冲的隔离作用 如此就可将石墨管两端的温度梯度的影响降到了最小的程度。   3)鼓形石墨管的容积约600微升,而样品为20微升,仅占总容积的1/30,且位居管子中部。我的疑问:管子两端瞬时的温度梯度能对管子中央部位的20微升的样品产生多大的影响?我想这可能就如同地球一样,尽管南北两极温度很低,但是生活在赤道的居民没有感到寒冷吧?   4)当鼓形石墨管温度平衡后与横向加热石墨管的状态所差无几(参看图-13)。   5)石墨环的质量越小,温度梯度的影响也就越小。   6)石墨炉电路采用温控方式可以减少温度梯度的影响。   (3)零点漂移:   纵向石墨管从室温升高至3000° 时,管子本身因热涨的原因会延伸1毫米。由于纵向石墨管的延伸方向与光轴呈现同心圆的状态,所以尽管子受热膨胀,但是不会因物理挡光而使零点信号漂移。这个状态可由下图模型说明:   图-25 纵向石墨管受热膨胀方向与光轴的关系   但是当横向石墨管在受热膨胀时,其延伸方向会与光轴方向形成正交,从而影响了零点的位移。所以经常听到使用横向加热石墨炉的用户反映:&ldquo 为何我的石墨炉在空烧时会产生一个很大的吸收啊?&rdquo 其原因就在于此。这种横向石墨管在加热时的位移模型图如下所示:   图-26 横向石墨管受热膨胀方向与光轴方向的正交关系   实际上,这种石墨管膨胀方向与光轴形成正交的结果还不仅仅是零点的漂移的问题,因为石墨管在原子化阶段,管腔里面的待测元素和背景的活动非常复杂,据说要用量子力学来解释。正因如此,一直以来许多科学大咖对这个课题的研究从未停止过。   (五)纵向石墨管的加工和价格:  通过前面的介绍可以看到,无论是筒形的和鼓形的石墨管,均是圆桶形的 因此加工起来就非常简单了,仅仅使用车床切削即可 并且由于加工工序简单,所以加工出来的成品的同一性,如尺寸,质量等就很容易保证,所以价格低廉。   而横向石墨管又别称&ldquo 异形石墨管&rdquo ,所以加工起来就相对复杂多了,需要好几道工序,如PE800的石墨管,不但要切削,还要大量的铣床工序,这可以从下图的外观造型上得到印证,所以其价格较为昂贵就在所难免啦!   图-27PE800石墨管   备 注:   (1)由于本文为&ldquo 戏说&rdquo ,可能难免有些观点不严谨或不科学,那么各位看官就权且当做饭后茶余的消遣罢了 不妥之处,尽可莞尔一笑。   (2)由于本文仅仅是谈谈个人多年来对于自己使用的纵向石墨炉的体会和看法,之所以例举了横向石墨炉的一些特点,也仅仅是为了做对比说明,仅此而已,并无丝毫褒贬和厚此薄彼之意,特此说明。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制