当前位置: 仪器信息网 > 行业主题 > >

转台

仪器信息网转台专题为您提供2024年最新转台价格报价、厂家品牌的相关信息, 包括转台参数、型号等,不管是国产,还是进口品牌的转台您都可以在这里找到。 除此之外,仪器信息网还免费为您整合转台相关的耗材配件、试剂标物,还有转台相关的最新资讯、资料,以及转台相关的解决方案。

转台相关的资讯

  • 东菱振动自主研发双轴多功能转台批量出口俄罗斯
    p   从苏高新股份集团获悉,近日,该集团旗下的苏州东菱振动试验仪器有限公司研发的八套双轴多功能转台,一次性顺利通过俄罗斯客户验收,这也是我国首次批量出口该类系统。 /p p   在5天的验收过程中,验收组认为,东菱公司研制的转台完全满足其技术要求,工作性能稳定、性能指标优异 其中,动态指标大大超出国内业界相关动态指标的性能要求,在国际上也有很强的竞争力,并对东菱公司的项目执行能力给予高度评价。 /p p   记者了解到,“转台”是一种高端精密设备,具有速率、定位和摇摆等功能,可进行实时信息数据记录与显示,主要为被测负载,提供精密的定位和速率基准,可用于惯性元件和惯导系统的动静态测试与标定,也可用于动态仿真试验。此外,也可根据客户需求配备温控箱进行高低温试验等。 /p p   在此之前,无论是东菱公司还是国内业界其他厂商,都没有对外出口相应设备的经验,而且客户要求的时间很紧迫,动态指标高、难度大。东菱公司项目组成员通力合作,充分利用好企业的创新平台和创新资源,从前期调研、方案沟通、设备优化设计、供应商筛选、生产制造及系统联调,一气呵成,仅用了6个月就完成了八套转台的研制工作。 /p p   “此次八套双轴多功能转台顺利通过验收并获高度评价,提高了东菱公司在国际上的知名度,也充分彰显了东菱公司强大的技术及资源整合能力,进一步提升了股份集团的影响力。”苏高新股份相关负责人表示。 /p
  • 「积跬步,以致千里」国内首台超精准全开放强磁场低温光学研究平台-OptiCool于清华大学交付使用
    近期,我们于清华大学交付使用了超全开放强磁场低温光学研究平台-OptiCool,该设备是全球发布以来国内的套设备,也是美国本土以外安装的二套设备。设备配备7个侧面窗口和1个部窗口可实现光路的灵活搭建。集成的低温位移台和旋转台可以实现样品在低温环境下的三维位移和二维旋转。本套OptiCool的用户是清华大学物理系的杨鲁懿教授,设备将被用于量子材料超快光谱探测的相关研究。我们感谢杨老师能认可并选择Quantum Design作为科研的合作伙伴,祝杨老师科研顺利,硕果累累!超全开放强磁场低温光学研究平台-OptiCool自发布以来就受到了全球的广泛关注。OptiCool全新的设计方案打破了传统强磁场设备对光学实验的诸多限制,设备具有低温、强磁场的同时还有超低震动、多窗口、近工作距离等特点。OptiCool的发布使得低温强磁场的光学实验也可以用室温物镜和自由光路来实现。这一特点意味着很多成熟的室温试验方案可以平移到低温强磁场环境下来进行,这对于低温光学实验是一个巨大的进步。Quantum Design工程师在安装调试位移台和旋转台 Quantum Design工程师与用户合影(中间为杨鲁懿教授) 背后的故事本套设备在春节前就已运抵清华大学,由于疫情原因美国工程师无法亲临现场安装。为了让用户能够早日进行科学研究,由QD中国的王笃明博士、田勇博士、谷大春博士三位资深工程师组成的OptiCool技术团队在疫情期间就设备的安装与美国工厂进行了详细的线上技术沟通。在国内疫情有所缓解的5月,在与清华大学进行报备后三位工程师齐聚清华大学对设备进行安装。设备的安装调试进行的非常顺利,设备所有指标均达到要求。本次国际远程协作、国内高手联合的工作模式是我们技术团队在为国内用户提供技术支持方面的重要一步。新发布OptiCool在2020年3月正式发布了集成式室温物镜选件,该选件在下凹式部窗口的基础上将窗口换成了100×的物镜,实现了2 mm的近工作距离和0.75的NA值,这在强磁场设备上取得了又一里程碑式的进步。该选件甚至使得OptiCool比多数无磁场的恒温器具有更近的工作距离,彻底突破了低温磁场设备在低温光学实验方面对工作距离上的所有限制。正是Quantum Design全体工程师的不懈努力,使我们在低温光学领域不断取得进步,而我们的每一步终将汇成低温光学的一大步。我们期待OptiCool能为科研工作者带来更多超乎想象的惊喜。 集成式室温物镜设计示意图拓展阅读OptiCool是Quantum Design于2018年2月推出的超全开放强磁场低温光学研究平台,2019年正式向美国以外市场销售。系统拥有3.8英寸超大样品腔、双锥型劈裂磁体,可在超大空间为您提供高达7T的磁场。多达7个侧面窗口、1个部超大窗口方便光线由各个方向引入样品腔,高度集成式的设计让您的样品在拥有低温磁场的同时摆脱大型低温系统的各种束缚。OptiCool是全干式系统,启动和运行只需少量氦气。全自动软件控制可实现一键变温、一键变场;避震、控温技术让控温更智能;新型磁体结合了超大均匀区与超大数值孔径。OptiCool让低温光学实验实现无限可能!超全开放强磁场低温光学研究平台:https://www.instrument.com.cn/netshow/C283786.htm
  • Nature、Science! mK极低温纳米精度位移台在二维材料、石墨烯等领域的前沿应用进展
    nature:二维磁性材料的磁结构与相关特性研究关键词:二维铁磁材料;低温纳米精度位移台;反铁磁态;二次谐波 近年来,二维磁性材料在国际上成为备受关注的研究热点。近日,中国与美国的研究团队合作,在二维磁性材料双层三碘化铬中观测到源于层间反铁磁结构的非互易二次谐波非线性光学响应,并揭示了三碘化铬中层间反铁磁耦合与范德瓦尔斯堆叠结构的关联。同时,研究团队发现双层反铁磁三碘化铬的二次谐波信号相比于过去已知的磁致二次谐波信号(例如氧化铬Cr2O3),在响应系数上有三个以上数量的提升,比常规铁磁界面产生的二次谐波更是高出十个数量。利用这一强烈的二次谐波信号,团队成功揭示双层三碘化铬的原胞层堆叠结构的对称性。图一 双层三碘化铬的二次谐波光学显微图 运用光学二次谐波这一方法来探测二维磁性材料的磁结构与相关特性是此实验的关键。团队利用自主研发搭建的无液氦可变温强磁场显微光学扫描成像系统,完成了关键数据的探测。值得指出的是,该无液氦可变温强磁场显微光学扫描成像系统采用德国attocube公司的低温强磁场纳米精度位移台和低温扫描台来实现样品的位移和扫描。德国attocube公司是上著名的端环境纳米精度位移器制造商。公司已为全科学家生产了4000多套位移系统,用户遍及全球著名的研究所和大学。它生产的位移器设计紧凑,体积小,种类包括线性XYZ线性位移器、大角度倾角位移器、360度旋转位移器和纳米精度扫描器。图二 attocube低温强磁场位移器、扫描器attocube低温位移台技术特点如下:参考文献:Sun, Z., Yi, Y., Song, T. et al. Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3. Nature 572, 497–501 (2019). nature:石墨烯摩尔超晶格可调超导特性研究关键词:石墨烯 超晶格 高温超导高温超导性机制是凝聚态物理领域世纪性的课题。这种超导性被认为会在以Hubbard模型描述的掺杂莫特缘体中出现。近期,美国和中国的国际科研团队合作在nature上报道了在ABC-三层石墨烯(TLG)以及六方氮化硼(hBN)摩尔超晶格中发现可调超导性特征。研究人员通过施加垂直位移场,发现ABC-TLG/hBN超晶格在20K的温度下表现出莫特缘态。进一步通过冷却操作发现,在温度低于1K时,该异质结的超导特特性开始出现。通过进一步调控垂直位移场,研究人员还成功实现了超导体-莫特缘体-金属相的转变。 图1.德国attocube公司低温mK纳米旋转台电学输运工作的测量是在进行仔细的信号筛选后,本底温度为40mK的稀释制冷机内进行的。值得指出的是,样品的面内测量需要保证样品方向与磁场方向平行,这必须要求能够在低温(40mK)环境下实现良好且工作的旋转台来移动样品,确保样品与磁场方向平行。实验中使用了德国attocube公司的mK纳米精度旋转台(如图1所示)。Attocube公司可提供水平和竖直方向的旋转台,使样品与单轴线管的超导磁场方向的夹角调整为任意角度。通过电学输运结果,证实了样品中存在超导体-莫特缘体-金属相的转变(结果如图2所示),为三层石墨烯/氮化硼的超晶格超导理论模型(Habbard model)以及与之相关的反常超导性质和新奇电子态的研究提供了模型系统。 图2. ABC-TLG/hBN的超导性图左低温双轴旋转台;图右下:石墨烯/氮化硼异质节的超导性测量测试结果,样品通过attocube的mK适用旋转台旋转后方向与磁场方向平行参考文献:Guorui CHEN et al, Signatures of tunable superconductivity in a trilayer graphene moiré superlattice, Nature, 572, 215-219 (2019) nature:分数量子霍尔效应区的非线性光学研究关键词:量子霍尔效应 四波混频 化激元设计光学光子之间的强相互作用是量子科学的一项重要挑战。来自瑞士苏黎世联邦理工学院(Institute of Quantum Electronics, ETH Zürich, Zürich,)的研究团队在光学腔中嵌入一个二维电子系统的时间分辨四波混频实验,证明当电子初始处于分数量子霍尔态时,化激元间的相互作用会显著增强。此外,激子-电子相互作用导致化子-化激元的生成,还对增强系统非线性光学响应发挥重要作用。该研究有助于促进强相互作用光子系统的实现。值得指出的是,该实验在温度低于100mK的环境下进行,使用德国attocube公司的低温mK环境纳米精度位移台来实现物镜的移动和聚焦。参考文献:Knüppel, P., Ravets, S., Kroner, M. et al. Nonlinear optics in the fractional quantum Hall regime. Nature 572, 91–94 (2019). Science:NV center在加压凝聚态系统中的量子传感研究关键词:NV色心 量子传感器压力引起的影响包括平面内部性质变化与量子力学相转变。由于高压仪器内产生巨大的压力梯度,例如金刚石腔,常用的光谱测量技术受到限制。为了解决这一难题,巴黎十一大学,香港中文大学和加州伯克利大学的研究团队研发了一款新型纳米尺度传感器。研究者把量子自旋缺陷集成到金刚石压腔中来探测端压力和温度下的微小信号,这样空间分辨率不会受到衍射限限制。为此加州伯克利大学团队采用了德国attocube公司的与光学平台高度集成的闭循环低温恒温器- attoDRY800来进行试验,其中包含了attocube公司的低温纳米精度位移台,以此来实现快速并且控制金刚石压强的移动以及测量实验。参考文献:[1] S. Hsieh et al., Science, Vol. 366, Issue 6471, pp. 1349-1354 (2019) [2] M. Lesik, et al., Science, Vol. 366, Issue 6471, pp. 1359-1362 (2019)[3] K. Yau Yip et al., Science, Vol. 366, Issue 6471, pp. 1355-1359 (2019)
  • 长春智能生产汽车燃油箱综合试验台
    汽车燃油箱综合测试系统平台 我公司于2001年就为德国KOTAS制造了一套奥迪C6燃油箱检漏设备生产线,由于采用了PLC和计算机智能化自动检测合格与不合格分选智能存储打印和气动控制得到了德方的好评。在日本检湿传感器,在日方工作人员不能及时到现场的情况下,我们解决了安装调试。因此,德方亲自来我公司考察两次,又定制了一套PQ35检漏生产线的合同,我方用两个月的时间完成并验收。对于此次与贵公司合作的项目,我方将借鉴为德国KOTAS制做设备的经验,并结合国内外相关产品的优点为贵公司做出合格满意的产品。 一,系统构成及试验方案 本系统有四个组成部分,可分别进行如下试验 1, 汽车燃油箱油箱盖的密封性试验 2, 燃油箱耐压试验,安全阀开启压力试验及燃油箱进气阀开启压力试验 3, 塑料燃油箱角锤冲击试验 4, 燃油箱密封性试验。 该系统满足GB18296-2001和QC/T 644-2000标准中的相关要求。该系统为四个相对独立的试验平台。 试验平台一:该试验平台为燃油箱箱盖密封性试验台。技术要求参照QC/T 644-2000行业标准中4..6项,安全性能要求参照GB18296-2001国家标准中3.1项,试验方法参照QC/T 644-2000行业标准中5.4项和GB18296-2001国家标准中4.1项。油箱放到旋转台后装夹固定,在空载的情况下通过电动翻转台将油箱翻转180度,通过电机水平二维控制将漏杯定位在燃油箱箱盖下方。然后再将油箱翻转回位。通过流量控制装置装入额定量水后密封,油箱经通过PLC控制电机与减速器驱动操作平台翻转180度,将15秒稳定后一分钟内的漏液去皮称重。操作平台翻转回位,然后开封抽水松夹并将漏杯自动升起倒掉漏液。用户可通过计算机采集的漏液重量,打印试验结果,建议增加操作平台旋转时安全保护功能。 试验平台二:燃油箱耐压试验,安全阀开启压力试验及燃油箱进气阀开启压力试验台。燃油箱耐压试验的安全性能要求参照GB18296-2001国家标准中3.6,3.7,试验方法参照GB18296-2001国家标准中4.4,4.5项。燃油箱耐压试验分塑料油箱试验和金属油箱试验两种。塑料油箱耐压试验温度非常温。自动增压系统采用比例阀控制,注水采用流量控制装置控制注入额定容量。后俩项试验温度为常温。安全阀开启压力试验安全性能要求参照GB18296-2001国家标准中3.1项和3.4项,试验方法参照GB18296-2001国家标准中4.2项。进气阀开启压力试验技术要求参照QC/T 644-2000行业标准中4.8项,试验方法参照QC/T 644-2000行业标准中5.6项中。自动增压系统采用比例阀控制,注水采用流量控制装置控制注入额定容量,抽水时采用流量可控抽水装置。整个试验台可移动,试验配套外设随用随取。 试验平台三:塑料燃油箱角锤冲击试验台。本试验试验方法参照GB18296-2001国家标准z中4.6项。在油箱中加入额定液体后装夹,通过15KG重的三角形云锤,用30J冲击能量冲击易损伤部位;自动调整角锤高度,使角锤在20J~50J的范围内可调。整个装夹平台可垂直升降水平翻转,摆锤位置可水平调整。摆锤位置控制可分手动和自动两种。油箱内介质可过滤回收。注水采用流量控制装置控制注入额定容量。整个试验台可移动,试验配套外设随用随取。 试验平台四:燃油箱密封性试验台。具体技术要求参照QC/T 644-2000行业标准中4.5项中相关内容。试验方法参照QC/T 644-2000行业标准中5.3项。整个系统采用PLC控制,水下测漏箱采用高亮度照明易于检测。水循环过滤系统可另选。 二、技术指标及报价: 1、 燃油箱盖密封性试验: (1) 油箱注水流量控制装置和抽水系统:充满额定水 ± 95%(此系统随取随用,此系统费用不包含在该项试验设备费用中,价格按市场同类产品价格做适当调整) (2) 翻转/复位精度:± 3° (3) 自动称量: 0~30g~100g连续称重 (4) PLC控制显示:0~15s~1min~2min (5) 合格/不合格报警、打印。 (6) 操作平台旋转时安全保护功能。 (7) 漏杯电子定位系统 (8) 报价: 燃油箱耐压试验,安全阀开启压力试验及燃油箱进气阀开启压力试验台: (9) 压缩空气源: 4.0Mpa(此设备随取随用,此设备费用不包含在该项试验设备价格中,价格按市场同类产品价格做适当调整) (10) 加压速率控制: 8kPa/min (11) PLC控制显示: 监测气源: 0~100kPa± 2% 开启压力控制: 0~100kPa± 1% 开启后压力检测:0~60kPa± 1% 加压速率控制: 0~8kPa/min± 2% (12) 合格/不合格报警、打印 (13) 安全防爆保护 (14) 53℃± 2℃水加热循环控制系统(此设备随取随用,此系统费用不包含在该项试验费用中,价格按市场同类产品价格做适当调整) 报价: 2、 塑料燃油箱角锤冲击试验 (1) 角锤规格: 三角冲锤 15kg (2) 冲击能量: 30J (3) 压力控制: 0~100kPa± 1% (4) 压力检测: 0~100kPa± 1% (5) 冲击位置移动/转动夹持系统 (6) 冲击锤提升系统 (7) 冲击防护罩 (8) 油箱内介质回收过滤系统 报价 以上塑料燃油箱角锤冲击试验需要在借鉴国内外相关产品的经验并根据客户要求做适当调整,以上价格仅供参考。 4, 燃油箱密封性试验台。 (1) 压力控制: 0~100kPa± 1% (2) 压力检测: 0~100kPa± 1% (3) PLC控制显示: 监测气源: 0~100kPa± 2% (4) 高亮度水下测漏箱 (5) 水循环过滤系统可选配。(此系统费用不包含在该项试验费用中,价格按市场同类产品价格做适当调整) 报价 以上试验所需的燃油箱进出口密封装置需要根据具体装配要求双方确定方案,价格待定。 三各试验台所用配件一览 1, 燃油箱盖密封性试验。 ⑴ 大连电机厂生产的三相异步电机,3KW ⑵ 与电机匹配的日本富士变频调速器 ⑶ 国产优质减速器 ⑷ 日本欧姆龙可编程控制器 ⑸ 日本富士伺服电机 ⑹ 国产优质电子天平 ⑺ 国产优质直线导轨 ⑻ 国产优质电器开关 ⑼ 研华工控机,显示器及电脑操作台 2. 燃油箱耐压试验,安全阀开启,进气阀开启压力试验 ⑴ 日本欧姆龙可编程控制器 ⑵ 日本SMC压力控制表 ⑶ 国产优质气动三联件, ⑷ 国产优质压缩机(不包含在整体报价中,根据客户要求选配) ⑸ 温度控制系统 ⑹ 国产优质比例阀 ⑺ 国产优质自吸泵 3.塑料燃油箱角锤冲击试验 ⑴ 国产优质万向轴承 ⑵ 国产优质电磁离合器 4.燃油箱密封性试验 ⑴ 日本欧姆龙可编程控制器 ⑵ 日本SMC压力控制表 ⑶ 国产优质气动三联件 ⑷ 国产优质气动导轨 ⑸ 国产优质电器元件 公司名称:长春市智能仪器设备有限公司 地址:长春市经济开发区昆山路2755号 联系电话:0431-84644218 传真:0431-84642036 联系人:芮小姐 Http://www.znyq.com E-mail:ruishume@yahoo.com.cn
  • 极低温mK级纳米精度位移台助力量子通讯网络现实化
    光纤通信因其具有高带宽、低损耗、重量轻、体积小、成本低、抗电磁干扰等优点,已成为现代信息社会的支柱。同时,传统的微波无线技术也展现出了有效的泛在感知与接入能力。而将上述两种技术进行有机融合,则诞生了微波光子学。微波光子学为电子传感和通信系统提供了上述优势,但与非线性光学领域不同的是,到目前为止,电光器件需要经典调制场,其变化由电子或热噪声而不是量子涨落控制。从理论到实际的量子通讯不仅需要用于量子纠缠的组件,而且还需要一个低损耗和鲁棒性很好的网络来做进一步的数据分发和传输。超导处理器与光通信网络的接口问题是量子领域的一个开放性问题,也是目前面临的大挑战。近期,奥地利科学技术研究所(位于奥地利克洛斯特纽堡)的约翰内斯芬克小组提出了一个可能的解决办法。他们通过使用纳米机械传感器将双向和芯片可伸缩转换器的超导电路集成到大规模光纤网络中开辟了一条道路(如图一所示)。文章中介绍了一种可在毫开尔文环境下工作的腔电光收发器,其模式占用率低至0.025± 0.005噪声光子。其系统是基于铌酸锂回音壁模式谐振器,通过克尔效应与超导微波腔共振耦合。对于1.48 mw的大连续波泵浦功率,演示了X波段微波到C波段电信光的双向单边带转换,总(内部)效率为0.03%(0.7%),附加输出转换噪声为5.5光子(如图二所示)。10.7兆赫的高带宽与观测到的1.1兆赫噪声光子的非常慢的加热速率相结合使量子有限脉冲微波光学转换触手可及。该装置具有通用性和与超导量子比特兼容的特点,为实现微波场与光场之间的快速、确定的纠缠分布、超导量子比特的光介导远程纠缠以及新的多路低温电路控制和读出策略开辟了道路。图一:实验装置示意图图二:转换噪声与模式布居结果在10mK温度下,实现转换的关键是:光纤与微波芯片的对准和稳定连接需要一套用于x、y和z精密移动的位移台。实验中使用了attocube公司的 ANPx101/RES/LT-linear x-nanopositioner,ANPz101/RES/LT-linear z-nanopositioner,ANPx101/ULT/RES+/HV-Linear x-Nanopositioner和ANPz102/ULT/RES+/HV-linear z-nanopositioner系列mk环境兼容的位移台。attocube公司是上著名的端环境纳米精度位移器制造商,已为全科学家生产了4000多套位移系统,用户遍及全球著名的研究所和大学。它生产的位移器设计紧凑,体积小,种类包括线性XYZ线性位移器、大角度倾角位移器、360度旋转位移器和纳米精度扫描器。图三 attocube低温强磁场位移器,扫描器,及3DR旋转台低温mK纳米精度位移台技术特点如下: 参考文献:[1] Nature Communications 11, 4460 (2020) [2] PRX Quantum 1, 020315 (2020)
  • BCEIA 2013,展台展品细端详 ——“小身材、大能量”的能谱仪
    BCEIA 2013,今天在北京展览馆正式开幕。天公作美,秋日的阳光温暖的洒在每个人的身上,更让北展馆熠熠生辉,吸引着更多参观者前来观展。踏进展馆,一片盛装的海洋&mdash &mdash 错落的展台,五彩的颜色,各角度的灯光,还有那外观各异、功能不同的万千仪器。看得观众们有些眼花缭乱,还有些晕晕乎乎。想起参观故宫珍宝馆时,解说员的娓娓叙述让人清楚何为&ldquo 珍&rdquo ,为何&ldquo 宝&rdquo ,旅游有导游,仪器展有没有陪同讲解员?好,今天我就给您做个仪器展陪讲员,来到展会看展品,细细端详看门道。 BCEIA 2013 盛装的北京展览馆 咱们先来岛津展台看一看,今天就先说说这款&ldquo 小身材、大能量&rdquo 的能量色散型X射线荧光光谱仪吧。 能谱新品 EDX-7000 能量色散型X射线荧光光谱仪,业界更喜欢称它为&ldquo 能谱&rdquo ,是用X射线照射样品,通过对产生的X射线荧光能量和强度分析,得到样品组成元素种类和含量的分析仪器。作为一种无损、简便、迅速的元素分析方法,广泛应用于各种制造业,特别是随着RoHS/ELV指令有害元素限制的全球强制性导入,能量色散型X射线荧光分析装置得到了长足的发展。同时,其便利性也使得不仅在环境限制应对的管理用途上,更在材料分析等多研究用途上崭露头角。 提到&ldquo 能谱&rdquo ,分析仪器界三句话之内必提到&ldquo 岛津&rdquo ,岛津以其5000台的市场份额稳居&ldquo 能谱仪&rdquo 的霸主地位。5000家用户的实际使用,上千种分析要求,岛津深知客户的需求:在产品管理时需要高操作性&bull 简便性,而在材料研究时需要高灵敏度&bull 高精度,打个比方就是需要一名&ldquo 召之即来,来之能战,战之能胜&rdquo 的&ldquo 孙悟空&rdquo 。功夫不负有心人,在BCEIA 2013上,岛津将数十年的能谱制造技艺高效融合,新品推出高水平通用能谱仪&mdash &mdash 兼具优越分析性能和高操作性能的旗舰机型EDX-7000/8000。 现场演示:EDX-7000的精彩 小身材 &mdash &mdash 460mm宽的紧凑身材,配备大容量的样品室 460mm宽的紧凑身材,与我公司以往机型相比尺寸减少20%。紧凑的机身,却拥有最大可放置200(W)× 275(D)× 100(H)mm样品的大型样品室。 大能量 &mdash &mdash 无与伦比的分析性能 ◇ 配置高性能半导体检测器,与最佳化的光学系统和一次滤光片的组合,实现前所未有的高灵敏度。从轻元素到重元素,全范围轻松应对。与以往配置液态氮的半导体检测器相比,检测下限可提升1.5~5倍,可应对高要求的研究分析。 ◆ 分辨率出色,分析多元素组成的样品可降低谱峰重叠的影响,提升分析结果的可靠性。 ◇ 与以往机型相比可以在更短的时间内完成精确分析,高通量检测器最大可提高10倍,适用于高速分析的产品管理。 ◆ 无需液态氮的电子制冷半导体检测器有效控制运行成本,有利于提高产品维护性能。 ◇ 从微小样品到大型样品,从粉末样品到液体样品,灵活应对各类样品。 ◆ 配备进行轻元素的高灵敏度分析时所需的真空检测单元、氦气置换检测单元,以及可实现自动连续测定的12位样品转台。 欢迎来到BCEIA 2013 岛津展台,数十台仪器现场展示,想了解各款仪器的精彩看点,请每天关注现场直播之&mdash &mdash BCEIA 2013,展台展品细端详。 岛津展台,您的必由之路
  • 如何将9T磁场测量系统秒变9T-9T-9T矢量磁场?
    探索材料角度相关的磁输运性质是凝聚态物理学中应用广泛和重要的课题研究方向。该研究通常需要很宽的样品温度范围,比如从室温到几开尔文或更低,还需要强大的矢量磁场。控制矢量磁场对此类研究尤为重要。然而,传统的超导矢量磁体不仅价格昂贵,而且场强也有限:三个方向上至少两个方向的磁场强度通常不能超过2T。 德国attocube公司是上著名的端环境纳米精度位移器制造商。近期,该公司推出的atto3DR低温双轴旋转台,将施加在样品上固定方向的单一磁场(垂直或水平方向)的改变为三维矢量磁场。通过这种方式,在任何其他方向上也可立即获得非常高的磁场(例如9 T或12 T)。因此,它相当于提供了9T-9T-9T矢量磁铁的等效系统,这是目前尚无法实现的。此外,与常规矢量磁铁(如5T-2T-2T)只能在旋转中提供大2T的磁场相比,此解决方案的成本也非常低。 另外,双旋转轴的应用保证了样品在任意磁场方向上的变化和灵活性,通过水平固定轴的旋转,可控制样品表面与外界磁场的倾角(+/- 90°);而沿面内固定轴的旋转提供了另外+/- 90°的运动,从而实现样品与磁场形成任意相对方向。同时还兼容2英寸样品空间和He气氛,配备Chip carrier,提供多达20个电信号接口。 1. 为什么要旋转你的样品? 物理学家、化学家和材料科学家正在不懈地寻找具有理想性能的新材料。新材料几乎每天都会被合成出来,并经历各种各样的测量和表征。费米面的表征在材料表征中起着核心作用,因为将电子结构与材料的性质相关联,可以设计出具有所需性质的材料,并针对特定的应用进行调整。若能够地控制磁输运测量中的场方向有助于提取样品各向异性的信息。能够旋转样品在面内和面外场之间切换,或沿所需方向(例如,沿准一维样品,如纳米管或纳米线)对准就显的尤为重要。 Attocube公司研发的压电驱动的纳米旋转台有效地取代了价格昂贵的矢量磁铁,甚至提高了它们的性能,不仅扩大了其任意方向上的大可用磁场,而且也能很好的实现自动化的测量。更为重要的一点是:它们优于传统无法避免的机械滞后性的机械转子。此外,当需要超高压条件时,例如在ARPES中,与机械旋转器相比,压电陶瓷旋转台提供了额外的优势-压电陶瓷旋转台不会导致超高压室泄压或者漏气。2. Attocube提供的解决方案2.1 attocube 的纳米精度旋转台 attocube提供了多种可以组合的压电驱动纳米定位器,其中包括水平旋转台和竖直旋转台(attocube纳米旋转器-ANR/ANRv)。旋转台组合包括一系列不同尺寸和方向,以及适用于低温环境、超高真空和/或高磁场的不同环境下的需求。由于其体积非常紧凑,attocube的旋转台能够适配于大多数的超导磁体样品腔。图1: ANR portfolio [4]2.2 atto3DR:在3D中模拟强矢量磁场 atto3DR双旋转器具有两个立的旋转台,它们组合在一起,从而提供相对于样品表面的所有方向上的全磁场(例如14 T),如引言中所述。atto3DR如图2所示。atto3DR可以提供普通低温版本,同时也可根据具体需求提供用于低温真空(如稀释制冷机)的定制版本;有关mK温度下的应用案例,请参阅应用部分。图2: atto3DR:(a)带有无铅陶瓷芯片载体的样品架,配备20个触点;(b) 面内ANR;(c) 另外一个面内的ANR[4]。 3. 应用案例 在概述了ANRs、atto3DR的主要特点和优点之后,本文后一章将重点介绍通过使用基于我们的旋转器获得的传输测量的研究结果。3.1 基于ANR旋转台的应用案例3.1.1 在强磁场和200 mK条件下考察的g因子的各向异性 在Zumbühl集团(瑞士巴塞尔)与RIKEN(日本Saitama)、SAS(斯洛伐克布拉迪斯拉发)和UCSB(美国圣巴巴拉)课题组的合作进行了以显示GaAs量子点中各向同性和各向异性g因子校正的分离实验。这项研究是在两个立的横向砷化镓单电子量子点上进行的。为了在实验上确定g因子修正,通过测量具有不同强度和方向的平面内磁场的隧穿速率来得到自旋分裂。自旋分裂定义了自旋量子位的能量,是磁场中自旋的基本性质之一。在这里,他们测量并分离了两个GaAs器件中对g因子的各向同性和各向异性修正,发现与近的理论计算有很好的一致性。除了公认的Rashba和Dresselhaus项,作者还确定了动量平方依赖的塞曼项g43和穿透AlGaAs势垒gP项[5]。 此项工作是在attocube纳米精度旋转台ANRv51的帮助下完成的:样品安装在压电驱动旋转器上,并在磁场平面内旋转。由于旋转台有电阻编码器,因为能够读出旋转器的状态角度。此外,ANRv51可在高达35 T的磁场环境下使用,并可在低至mK的低温范围内使用-该实验在稀释制冷机中进行,电子温度为200 mK,磁场高达14 T。该磁场强度在任意面内方向上施加,只能通过旋转器实现不同角度下的测量。图3: sample in chip carrier mounted on ANRv513.1.2 mK位移台在材料输运性质随磁场角度的变化研究中的应用 北京大学量子材料科学中心林熙课题组成功研制出基于attocube低温mK位移台研制的低温强磁场下的样品旋转台,用于测量材料的输运性质随磁场角度的变化研究。 该系统是基于Leiden CF-CS81-600稀释制冷机系统的一个插杆,插杆的直径为81 mm,attocube的mK位移台通过一个自制的转接片连接到插杆上,如图4所示,位于磁场中心的样品台的尺寸为5 mm*5 mm,系统磁场强度为10T。系统的制冷功率为340 μW@120mK,得益于attocube低温位移台低的发热功率及工作时非常小的漏电流,使得旋转台能够很好的在<200mK的温度下工作(工作参数:60V,4Hz, 300nF)。 图4. 实现的旋转示意图和ANR101装配好的实物图 图5. 侧视图,电学测量的12对双绞线从旋转台的中心孔穿过 图6中是GaAs/AlGaAs样品在不同角度下测试结果,每一个出现小电导率的点,代表着不同的填充因子。很好的验证了其实验方案的可行性和稳定性。图6. Shubnikov–de Haas Oscillation at T = 100 mK3.1.3 25 mK和强磁场下的自旋弛豫测量 基于量子点的自旋量子位是未来量子计算机的一个有希望的核心元件。2018年,一项国际合作((Basel, Saitama, Tokyo, Bratislava and Santa Barbara)在理论预测电子自旋弛豫现象15年后,次通过实验成功证明了一种新的电子自旋弛豫机[8]。图7: Measurement setup with sample on an ANRv51 for rotating around the angle ϕ in the plane of the magnetic field. 在25 mK 的稀释制冷机和高达14 T的磁场条件下,半导体纳米结构(GaAs)中的电子自旋寿命在0.6 T左右达到了一分钟以上的新记录。有关此记录的更多信息,请参见[9]。对于该实验设置,使用了attocube的ANRv51,只有它完全符合mK温度和高磁场系统的要求。此外,在GaAs二维电子气体中形成的单电子量子点样品可以与平面内磁场相对于晶体轴作任意角度的旋转。3.1.4 从缓慢的Abrikosov到快速移动的Josephson涡旋的转变 来自瑞士苏黎世ETH的Philip Moll及其研究组使用attocube的ANR31研究了层状超导体SmFeAs(O,F)中磁旋涡的迁移率,发现旋涡迁移率的大增强与旋涡性质本身的转变有关,从Abrikosov转变为Josephson[12]。该实验中如果磁场倾斜出FeAs平面,即使小的未对准(图8: Flux -flow dissipation as a function of the angle between the magnetic field (H = 12 T) and the FeAs layers (= 0°) for several temperatures.图9: Rotator setup showing the ANR31/LT rotator carrying the sample and two Hall sensors.3.1.5 用于量子输运分析的超低热耗散旋转系统 在2010新南威尔士大学(澳大利亚悉尼)的La AYOH ET.A.课题组分析了半导体纳米器件中的量子输运。他们的主要目标是获得一个合适的旋转系统来研究各向异性塞曼自旋分裂。为了充分观察测量这种效应,需要在保持温度低于100mK的情况下,在磁场(高达10T)方向旋转样品。该样品安装在陶瓷LCC20器件封装中的AlGaAs/Ga/As异质结构。两条铜线连接到载体上。使用带RES传感器的ANRv51进行位置读出,该小组设计了一个具有两个可选安装方向的样品架(见图10):一个具有芯片载体的平面内旋转,另一个具有芯片载体的平面外旋转(见图)。ANRv51非常适合此应用:先其由非磁性材料制成,完全兼容mK,并具有一个小孔,可将20根铜线送至转子背面。在他们的论文中,研究小组仔细描述了不同驱动电压和频率下,旋转器的散热作为转速的函数[13]。在缓慢的旋转速度下,散热可以保持在低限度,即使连续旋转,仍然能让系统温度低于100 mK。当关闭旋转器时回到25 mK基准温度的时间仅仅为20 min。此外,由于滑移原理,旋转台可在到达终目标位置时接地,从而确保位置稳定性和零散热。图10: Rotation system assembly for rotating the sample in two separate configurations with respect to the applied magnetic field B.3.2. atto3DR 应用案例3.2.1 范德华异质结器件在低温40mK中旋转 理解高温超导物理机制是凝聚态物理学的核心问题。范德华异质结构为量子现象的模型系统提供了新的材料。近日,国际合作团队(团队成员来自美国伯克利大学,斯坦福大学,中国上海南京以及日本韩国等课题组)研究石墨烯/氮化硼范德华异质结具有可调控超导性质的工作发表在《Nature》杂志上。在温度低于1K的时候,该异质结的超导的特特性开始出现,电阻出现一个明显的降低,出现一个I-V电学曲线的平台[14]。图11: 图左低温双轴旋转台;图右下:石墨烯/氮化硼异质结器件,图右上,电输运测试结果,样品通过旋转后的方向与与磁场方向平行。 电学输运工作的测量是在进行仔细的信号筛选后,在本底温度为40mK的稀释制冷剂内进行的。样品的面内测量需要保证样品方向与磁场方向平行,因而使用了德国attocube公司的atto3DR低温双轴旋转台。该atto3DR低温双轴旋转台可以使样品与单轴线管的超导磁场方向的夹角调整为任意角度。通过电学输运结果,证实了样品中存在的超导与Mott缘体与金属态的转变,证明了三层石墨烯/氮化硼的超晶格为超导理论模型(Habbard model)以及与之相关的反常超导性质与新奇电子态的研究提供了模型系统。3.2.2 30mk下的扭曲双层石墨烯的轨道铁磁性 范德华异质结构,特别是魔角双层石墨烯(tBLG),是当今固态物理研究的热点之一。尽管之前对tBLG的测量已经表明,铁磁性是从大滞后反常霍尔效应中推断出来的,随后又指向了Chern缘体,但A.L.Sharpe及其同事通过输运测量实验表明,tBLG中的铁磁性是高度各向异性的,这表明它是纯轨道起源的——这是以前从未观察到的[15]。 为了进行测量,该小组将封装在氮化硼薄片中的tBLG样品安装在attocube atto3DR双旋转器上,通过巧妙设计,使其在电子温度低于30 mK的条件下正常工作,在高达14 T的磁场中,使用霍尔电阻对倾斜角度进行专门的现场校准,以便在实验过程中控制准确的面内和面外方向。图12: Angular dependence of hysteresis loops in twisted bilayer graphene, measured with atto3DR at 磁性输运测量通常涉及可变温度和强磁场。能够旋转样品是提取有用信息的关键先决条件,如三维费米表面、电荷载流子的有效质量和密度,亦或块体材料、薄膜或介观结构的各向异性相关的许多其他参数。使用基于压电陶瓷的旋转器有助于获得比矢量磁场更高的矢量场,而且能够大大降低成本。因此,attocube ANR及其成套解决方案——atto3DR——对于每一位在具有磁场依赖和低温下进行电气和磁性输运测量的研究人员来说,都是佳和的解决方案。5. 参考文献[1]L.W. Shubnikov, W.J. de Haas, Proc. Netherlands Roy. Acad. Sci. 33, 130 (1930)[2]Fermi Schematics, Sabrina Teuber, attocube systems AG[3]http://www.phys.ufl.edu/fermisurface/[4]attocube systems AG[5]L.C. Camenzind et al., Phys. Rev. Lett. 127, 057701 (2021)[6]U. Zeitler et al., attocube Application Note CI04 (2014)[7]P. Wanget al., Rev. Sci. Instrum. 90, 023905 (2019)[8]L.C. Camenzind et al. Nat Commun 9, 3454 (2018)[9]https://www.unibas.ch/en/News-Events/News/Uni-Research/New-mechanism-of-electron-spin-relaxation-observed.html[10]Y. Pan et al., Sci. Rep. 6, 28632 (2016)[11]A.M. Nikitin et al., Phys. Rev. B 95, 115151 (2017)[12]P.J.W. Moll et al., Nature Mater. 12, 134 (2013)[13]L. A. Yeoh et al., Rev. Sci. Instrum. 81, 113905 (2010)[14]G. Chen et al., Nature 572, 215 (2019)[15]A.L. Sharpe et al., Nano Lett 2021, 21, 10, 4299 – 4304 (2021)
  • 预算1.95亿元!北京理工大学近期大批仪器采购意向
    近日,北京理工大学围绕大科学装置发布多批政府采购意向,仪器信息网特对其进行梳理,统计出27项仪器设备采购意向,预算总额达1.95亿元,涉及精密微纳制造中心核心实验区洁净设备购置、精密微纳制造中心洁净设备购置、高性能光学测试平台等,预计采购时间为2024年9~10月。北京理工大学2024年9~10月仪器设备采购意向汇总表序号采购项目需求概况预算金额/万元采购时间1精密微纳制造中心核心实验区洁净设备购置洁净系统(含相关辅助子系统)常用于需要极高洁净度和稳定温湿度环境的场所,其核心技术能力包括:恒温控制、恒湿控制、空气过滤等。通过这些核心技术,可以过滤掉0.3μm以上的颗粒。适用于极其敏感的生产和研究活动;且该系统采用特殊设计防止不同区域之间的空气交叉感染,可确保环境洁净度。要求提供至少3年免费原厂报修服务以及完善的售后服务。免费提供现场仪器安装、调试及操作培训服务并对招标文件中要求的安装、调试、验收、技术培训、售后服务等方面作出详细承诺。59892024年9月2精密微纳制造中心洁净设备购置洁净系统(含相关辅助子系统)常用于需要极高洁净度和稳定温湿度环境的场所,其核心技术能力包括:恒温控制、恒湿控制、空气过滤等。通过这些核心技术,可以过滤掉0.3μm以上的颗粒。适用于极其敏感的生产和研究活动;且该系统采用特殊设计防止不同区域之间的空气交叉感染,可确保环境洁净度。要求提供至少3年免费原厂报修服务以及完善的售后服务。免费提供现场仪器安装、调试及操作培训服务并对招标文件中要求的安装、调试、验收、技术培训、售后服务等方面作出详细承诺。78602024年9月3三轴转台采购一台三轴转台设备。 1、三轴温控转台可以实现从单自由度到三自由度的位置、速度、加速度的精密运动控制;提供精确的角度位置、精密的运动测试基准和模拟环境温度变化; 2、转台由机械台体、转台电控系统、温控箱及其控制系统等组成,通过线缆相互连接,可采用本地计算机集中控制,也可通过对外高速通讯接口接收外部指令,完成对系统位置、速率、高低温的控制。 3、机械台体结构由三个框架和基座两大部分组成,主要为负载提供安装基准和内框、中框、外框三轴系回转运动。采用U-U-T结构,三轴旋转连续无限。方位轴为铅垂、俯仰轴为水平、横滚轴绕俯仰轴可处不同的空间位置; 4、转台电控系统主要完成转台的起停、转台监控及远程控制等功能,主要由工业控制计算机、运动控制单元、测角单元、驱动单元、逻辑控制单元等组成。各单元分散放置于控制机柜和驱动机柜内,控制机柜主要放置转台的运动控制和测角单元,驱动机柜主要放置转台驱动功放单元。 5、具备可视化操作界面,便于模式选择、参数设置及监控;也可通过RS232或RS422与远控计算机进行通讯与控制;转台电控系统采用主控计算机+“DSP+FPGA运动控制板卡”+伺服驱动单元+力矩电机+高精度编码器的成熟技术方案,位置、速率、电流三环控制方式,配合成熟的伺服控制算法,保证系统良好的稳态精度及动态品质。1502024年9月4飞秒激光器产生超短激光脉冲用于样品激发. 数量1。2002024年9月5高性能光学测试平台用于搭建氮化铝、金刚石等晶圆级光学测试平台 数量1套。1052024年9月6PVT单晶炉需采购的PVT单晶炉用于氮化铝单晶生长。主要性能指标:1.可控温度:最高2400 ℃; 2.温度稳定性:工作温度为2350 ℃时,温度波动±1 ℃;3. 温度上限及稳定性验收方式:红外高温计实测,间隔10 s采样30 min;4. 压力可制范围0-1500 mbar;5.压力稳定性:工作压力为700 mbar时,压力波动±2 mbar;6. 压力及压力稳定性验收方式:压力表实测,间隔10 s采样30 min;7. 最高真空度:≤10-6 mbar;8. 真空度验收方式:压力表实测;9. 程序自动化:抽真空、充气、升温、压力控制、降温全流程可编辑,数据可导出;10. 生长晶片尺寸:3英寸; 11. 晶体生长速率:≥100 μm/h; 参考品牌苏州美腾炉业,MT-V1144V/G;采购数量:1台;部署场地:良乡校区前沿交叉科学研究大楼401;安装工程需求:冷却水:0.4公斤;电压:380 V三相电;功率:≥35 kW。1802024年9月7肿瘤类器官培养、成像和检测一体化系统肿瘤类器官培养、成像和检测一体化系统,1套。6302024年9月8高精度低温芯片测试系统1)主要功能:用于半导体芯片高精度光电性能测试,可提供不低于4.5K-350K的可控测试环境温度范围,且样品环境真空度优于5*10-4 torr,配套测试源表和开关。 2)主要技术参数 1、闭循环低温控制系统,可控温度范围不低于 4.5K-350K,温度稳定性高于300K±100mk 2、安装四路开尔文探针,X 方向位移距离不低于 50mm,Y 方向位移距离不低于 25mm,Z 方向位移距离不低于25mm,位移精度不低于 3μm,每路探针配两个三同轴接口。安装 1 路光纤臂,多模 IRVIS 光纤,波长范围不低于400-2100nm,纤芯/包层直径:200/240μm。 3、不低于两英寸样品台,样品台浮地屏蔽设计,带背部电极,样品台表面镀金处理 4、观察窗净尺寸直径不低于 65mm,观察窗材料使用熔融石英 5、样品环境真空度优于 5*10-4 torr 6、双通道源表最大电流源/量程不低于10A,最大电压源/量程不低于200V,测量分辨率(电流/电压)不低于0.1fA / 100nV 7、多通道系统开关最大开关通道数不低于576,集成式数字万用表,卡槽数不低于6,配置不少于 2个高密度多路复用卡 3)售后服务: 1、质量保证期为12个月,由最终双方验收合格签署验收报告之日期起;提供一名10年以上设备服务维修经验的工程师提供持续的技术支持。 2、若设备发生故障,卖方在接到买方的设备故障通知后 2小时内做出反应,工作日24小时/周末节假日48小时内赶到现场。1042024年9月9多功能显微光谱检测系统1. 基于开放式显微机台,搭配多波长激光器,实现显微荧光光谱、透射及反射光谱等检测功能。配备显微冷热台与源表,实现样品环境调控与光电流检测功能。 2. 配备100 W卤素光源与荧光落射器,实现显微镜下明场成像与光谱采集功能。 3. 配备100 W卤素光源用于透射照明,可实现400-1700 nm波段透反射光谱检测。 4. 配备405 nm激光器,功率100 mW,线宽3 nm。配备对应荧光滤光片组,可实现420~1000 nm荧光光谱接收。 5. 配备532 nm窄线宽拉曼激光器,功率100 mW,线宽小于1 MHz。配备对应荧光功能滤光片,可实现550~1000 nm以及900~1600 nm波段荧光光谱接收。 6. 系统配置覆盖紫外-可见波段的制冷型面阵背照式CCD光谱探测器,探测器波段范围覆盖不低于250-980 nm,制冷温度最低可达室温(@20℃)以下40℃,最短采集时间需为4 ms。 7.近红外波段配置制冷型InGaAs阵列探测器,波段范围覆盖不低于900-1700 nm,制冷温度最低可达室温(@20℃)以下40℃,最短采集时间需为1ms。 8. 配备高精度源表,最大电压量程200V,最大电流量程1A,电源功率20W;电压分辨率10 nV,电流分辨率10 fA。配备软件,支持IV、IT曲线以及光电流mapping测试。 9. 系统配置自动化控制软件,实现显微成像、光谱测量模式切换、快门控制、位移台控制、照明强度控制功能。软件支持基于样品图像,自定义选择待测点位及区域,进行光谱测量,支持多个样品点位记录存储功能,支持mapping数据的二次导入及分析。1102024年9月10中红外激光器用于红外光电探测器与成像测试,主要功能包括: 1.输出波长2600±30nm,3400±30nm,4400±30nm范围内,输出功率0.8W@2600nm,0.8W@3400nm,0.1W@4400nm,输出方式光纤耦合,光纤参数400um芯径,NA0.22,SMA905接口,长度1米;功率可调节范围0~100%,工作温度范围15℃~35℃,工作湿度范围30%~80%,激光输出功率稳定性<5%(rms),预热时间<10mins。 2.具有单像素计算成像功能,三合一波段激光器,并配有透射式振幅型空间光调制器,8位,256阶,分辨率1920×1080,像元大小8.5um,刷新频率60Hz,光谱范围380-1200nm,损伤阈值2W/cm2,有效区域0.74",匹配探测器像素尺寸,使光斑缩小到单像素大小。 3.并配有单像素扫描成像(笼式系统1),532±1nm,功率500mW光源通过液芯光纤+透镜+转接件方式做匀化处理,配备二维位移台及控制器,重复定位精度5μm,行程30mm,可绘制强度-位置图。 4.并配有单像素扫描成像(笼式系统2),1470±20nm,功率500mW光源通过液芯光纤+透镜+转接件方式做匀化处理,配备二维位移台及控制器,重复定位精度5μm,行程30mm,可绘制强度-位置图。 5.并配有单像素扫描成像(笼式系统3),1060±5nm,功率500mW光源通过液芯光纤+透镜+转接件方式做匀化处理,配备二维位移台及控制器,重复定位精度5μm,行程30mm,可绘制强度-位置图。 6.电源供电:AC 220V±10% 50Hz±1 7.具有过温报警和保护功能,当环境温度超过45℃时,报警过温保护灯自动亮起,激光器切断供电,停止工作。 8.具有急停开关。 9.功率可调节:手动调节旋钮,功率0~100%可调节。 10.需提供厂家出具的技术白皮书、检测报告复印件或公开发行的技术资料。 售后服务: 1.仪器到货安装,仪器到货前卖方应将安装环境要求书面通知买方,并与买方协商到货和安装验收时间,卖方负责安装调试,现场开箱清点检查和性能测试以及验收结果需买卖双方参与并确认。 2.仪器设备验收标准,应符合国家行业标准和招标投标文件以及合同约定的技术标准指标等,验收结果需卖方确认签字。 3.质量保证,仪器设备质保期自验收合格之日起计算,免费质保期为1年。质保期内,任何由制造商引起的质量问题,卖方负责维护维修或更换部件等直至符合验收标准,并承担相关全部费用。保修期满前1个月内卖方应负责一次免费全面检查,并写出正式检查报告,如发现潜在问题,应负责解决排除。1322024年9月11射频芯片组件三维集成制造1. CB3飞秒激光器 中心输出波长:1030nm±10nm; 最大平均功率:20W; 基频光最短脉冲宽度:≤250 fs; 脉冲宽度可调谐:250fs-10ps; 重复频率:1-1MHz 可调; 单脉冲能量:400uJ ; 光束质量:TEM00 M22024年9月12PVT单晶炉需采购的PVT单最炉用于氮化铝单晶生长。主要性能指标:1.可控温度:最高2400°C;2.温度稳定性:工作温度为2350°C时,温度波动正负1°C;3.温度上限及稳定性验收方式:红外高温计实测,间隔10 s采样30 min 4.压力可制范围0-1500 mbar 5.压力稳定性:工作压力为700 mbar时,压力波动正负2mbar 6.压力及压力稳定性验收方式:压力表实测,间隔10 s采样30min; 7.最高真空度:≤10-6 mbar 8.真空度验收方式:压力表实测;9.程序自动化:抽真空、充气、升温、压力控制、降温全流程可编辑,数据可导出;10.生长品片尺寸:3英寸;11.品体生长速率:≥100 μm/h;参考品牌苏州美腾炉业,MT-V1144V/G;采购数量:1台;部署场地:良乡校区前沿交叉科学研究大楼401;安装工程需求:冷却水:0.4公斤;电压:380V三相电;功率:235 kW。1602024年9月13四端口矢量网络分析仪及太赫兹扩频系统四端口矢量网络分析仪及太赫兹扩频系统,1套。3922024年9月14电子白板一体机计划采购四十八台××电子白板一体机,为实验教学提供终端触屏设备。具体要求详见采购文件。具体事宜由成交供应商按采购人指定地点及时间安排要求执行。1202024年9月15材料锻造工艺仿真软件软件包含锻造成形、金属成形、热处理、机械加工、用户自定义子程序等功能。3752024年9月16多物理场材料分析软件软件具备CAD建模、网格剖分、求解、结果后处理和二次开发等功能,求解器具备多物理场耦合分析功能,支持电磁、流体、结构、热等不同物理场的单场和多场计算。2312024年9月17爆炸冲击××动力学仿真平台软件配套方案中包含前后处理,接口,标准包,可以模拟爆轰及冲击波效应。1072024年9月18PIV仪器设备粒子图像测速仪(PIV),1套。1812024年9月19
  • 如何在1秒内实现锂离子电池的微米级全CT扫描 --- 高亮度液态靶X射线源助力高产量电池高效检测
    高效电池是电动汽车(EV)转型的关键,也是在使用更多可再生能源时实现储能平衡电网的关键。如今,每一个电动汽车电池都要经过二维(2D)X射线检查以进行质量控制,及早发现可能导致火灾的缺陷。然而,即使采取了这一步骤和其他几个质量控制步骤,这些缺陷也时常发生,导致经济和人身伤害方面的灾难性损失。 相较于二维X射线检查方法,100%三维(3D)X射线检查,或在不清楚的情况下对二维检查进行三维补充,是一条有希望实现令人满意的质量控制的道路。但是, 3D X射线CT检查通常需要很长的时间,会大幅降低检测效率,因此需要一个具有微米焦点的高功率X射线源——这是市场上从未曾有过的。 瑞典Excillum是一家致力于研发、生产超高亮度微焦斑X射线光源的公司,经过十余年的研发与改进,发布了10倍于普通固体阳X射线光源所发射的X射线通量(在相同焦斑面积上)的高亮度液态靶X射线源MetalJet D2+,今年又研发出新一代的高亮度液态靶X射线源MetalJet E1+,在相同焦斑面积上的通量约2倍于MetalJetD2+。该公司一直在寻求解决方案,以实现对电池和其他工业部件的高速3D X射线检查。在如下视频中,您将看到如何在1秒内实现锂离池的微米全CT扫描。这些实验均在瑞典的Excillum工厂进行,使用其MetalJet E1+、直接转换的高性能探测器(Thor FX20.256 CdTe)和高速、高精度旋转台。 1秒内实现锂离子电池的微米全CT扫描MetJet E1+160KV液态靶X射线源 技术参数性能参考 在1000瓦的功率下,新的MetalJet E1+在宽光谱范围内提供的X射线通量是具有相同30 µm光斑尺寸的30 W传统钨固体阳微焦点源的17倍。在24-29千电子伏的光谱范围内,铟和锡的特征发射线存在,通量优势高达100倍。 尽管在1000 W的高热负荷下运行,MetalJet E1+在连续长期运行期间保持优于1µm的位置稳定性。
  • 捷克 CactuX—致力于提升您微纳 CT 系统的成像质量和测试效率
    引言计算机断层扫描 (CT) 在医学领域已经普遍用于评估传统计算机轴向断层 (CAT) 扫描中的人体解剖结构。它也是评估骨小梁结构以诊断骨质疏松症等疾病的非常常用的工具。最近,高分辨率 CT (micro-CT) 在材料科学中越来越多地用于评估工业应用中各种先进材料的内部结构。了解这些材料的微结构对于更好地了解它们的性能非常重要。Micro-CT 是一种无损 3D 表征工具,它使用 X 射线通过对被扫描物体内不同密度的成像来确定物体的内部结构。基于实验室的高分辨率 micro-CT 或 nano-CT 可提供 ~50 nm 量级的图像分辨率。如此高的分辨率允许人们可视化精细特征的内部 3D 结构。来自 micro-CT 的数据可以对正在研究的对象进行虚拟渲染,这允许人们以任何方向和角度穿过物体,从而揭示对象内复杂的隐藏结构。为了获得更高的的分辨率,科研工作者做了许多的尝试,包括减小 X 射线源的焦斑,提高 X 射线探测的分辨率,开发更优的重建算法,同时纠正各种伪像等。目前实现X射线显微(微米/微米)的技术路线主要有:1. 投影几何放大技术2. 基于菲涅尔波带片的扫描透视显微技术或全场透视显微技术等全场透视显微光路扫描透视显微技术更高的测试精度在微纳 CT 的制造和使用中,对 CT 系统分辨率的测试,体素的校正及不可避免的转台摆动的校正,是获得高质量,高精度 CT 数据的必要步骤。CactuX 捷克 CactuX 公司成立于 2020 年 3 月,由 CEITEC布尔诺理工大学 X 射线微纳米 CT 实验室的研究人员组成,得益于在计算机断层扫描领域丰富的研发经验,CactuX 为广大工业和实验室 X 射线计算机断层扫描(CT)系统研发和生产 CT 附件,并提供 CT 咨询服务。CactuX 公司用极小的红宝石球制造的模体工具,可用于微纳 CT 系统的转台几何错位校正、分辨率测试表征、体素校正等以及提高 CT 数据质量。其中 Spirit 系列是用于微纳 CT 计量表征和校准的模体和 Shadow 系列是经过认证的 CT 模体,即使视野 (FOV) 低于 1 毫米,也可以进行体素尺寸校准。Spirit系列— 纳米CT体素校准模体 Voxel-Spirit Voxel-Spirit 是一种独特的,经过认证的CT模体,专为nanoCT应用而开发,甚至可以对1毫米以下的视场(FOV)进行体素大小校准。▪ 0.06 μm 校准精度▪ 缩短校准时间▪ 视场要求0.6 mm x 0.7 mm球规格直径: 0.3 mm距离0.45 mm (认证精度: 0.06 μm)模体支架规格可选直径: 1.5 mm, 3.0 mm, 5.0 mm长度50 mm使用材料红宝石,碳,不锈钢校准流程任何用于CT数据的图像处理软件— 微纳CT分辨率测试模体 Spirit resolution Resolution-spirit 通用模体组适用于纳米CT和微米CT的空间分辨精密评估。▪ 4 种尺寸可选▪ 快捷、易用▪ 10 μm 体素尺寸CT应用▪ 遵从 ASTM E1695-95 标准主要参数模体IIIIIIIV球直径 * [mm]0.51.02.55.0最大市场宽度 [mm]1.02.05.010.0支架尺寸 [mm]1.51.53.05.0支架长度[mm]50.050.050.050.0使用材料红宝石,碳校准流程任何用于CT数据的图像处理软件— 微纳CT转台摆动校正样品架 R1-Shadow带有用于 nanoCT 和 microCT 测量的基准标记的样品架,可以快速直观地校正旋转台的不准确性和 CT 数据配准,适用于双能量 CT 或 4D CT 等应用。R1-Shadow 是一种多用途解决方案,适合可变视场 (FOV) 限制和高精度要求。▪ 4 种尺寸可选▪ 快速,简单,易用▪ 数据匹配精度小于1个像素▪ 数据质量和精度增强主要参数尺寸可选项IIIIIIIV基准尺寸 [μm]252550100最大像素尺寸[μm]*2.52.55.0SaguaroX SSaguaroX M
  • 沈阳自动化研究所IDE团队成功研出大型圆柱度测量仪
    近日,中国科学院沈阳自动化研究所智能检测与装备研究室IDE团队在国家重点研发计划项目的支持下,经过艰苦攻关,创新性提出了高负载大可变量程的大型圆柱度测量新方法,并依此方法研发了大型圆柱度测量仪。大型零件圆柱度测量仪样机圆柱度是精密回转类零件重要的精度指标之一。目前,圆柱度测量仪大多通过接触式传感器获取被测目标信息,采用精密转台回转的方式实现测量,如英国Talyrond公司研制的最大测量直径达1.6米的1600型圆柱度测量仪。接触式传感器的可形变量极小,在圆柱度测前定心调整过程中,大偏心距累积的运动定位误差极易超出传感器的极限行程而造成传感器损坏。受被测对象的尺寸、重量及高精密转台的制造技术等因素的影响,过大的载荷将严重影响精密轴系的回转精度,所产生的随机误差难以通过算法有效补偿,无法满足大型工件的高精度测量需求。对于直径超过2米的大型轴承套圈,由于零件尺寸巨大、圆柱度测量精度要求高以及测量环境的局限性,现有的接触式传感器与转台回转的测量方式难以满足其测量要求。因此,亟需研究针对大型回转类零件圆柱度的现场快速精密测量方法及相应的评定技术。沈阳自动化所智能检测与装备研究室IDE团队提出的高负载大可变量程的大型圆柱度测量新方法采用具有精密、隔震等特性的气浮驱动技术,配合精密耦件,通过测前快速自适应偏置调整技术实现工件测前自动定心,采用精密测头回转的方式快速获取有效测量信息。在测量原理方面,提出了更完善的圆柱度测量模型及误差分离算法,测前定心与实际测量采用分立的运动控制系统,既解决了大型工件的载荷问题,又能够通过模型参数拟合的方式实现偏心、测量线偏置、被测圆柱轴倾斜等误差的精准分离;测量系统采用对称式双测头测量方案,综合了非接触式位移传感器安全、柔性的特点与接触式位移传感器精密、可靠的特性。本方法的提出突破了传统测量方法在大型圆柱度测量过程中的局限性,实现了大型回转类零件圆柱度测前自适应偏置调整和现场快速精密测量。目前,该研发团队已完成大型圆柱度测量仪原理样机的研发工作,并在《光学精密工程》《中国激光》等高质量期刊发表相关论文2篇,申请发明专利4项。经过国家权威计量专家及天津计量院的检定,大型圆柱度测量仪样机的回转精度为42.6nm,Z向导轨精度139nm/100mm,最大测量直径为2500mm,且其测量范围可根据使用需求进一步拓展。这意味着该原理样机的核心技术指标已达到国内领先、国际先进水平。本项目的实施将进一步夯实我国大型轴承及以大型轴承为核心基础部件的高端装备的制造技术基础,填补直径大于2米的大型轴承圆柱度测量仪的国内空白,掌握大型圆柱度测量仪的核心技术,提高轴承及相关行业的自主创新能力,为我国高铁、风电和高档数控机床等高端装备制造业的进一步发展提供保障能力,对我国从制造大国迈向制造强国,具有重要的现实意义和巨大的社会经济效益。
  • 沈阳自动化所高精密测量技术取得新突破
    近期,中国科学院沈阳自动化研究所智能检测与装备研究室IDE团队在国家重点研发计划项目的支持下,经过艰苦攻关,创新性提出了高负载大可变量程的大型圆柱度测量新方法,并依此方法研发了大型圆柱度测量仪。  圆柱度是精密回转类零件重要的精度指标之一。目前,圆柱度测量仪大多通过接触式传感器获取被测目标信息,采用精密转台回转的方式实现测量,如英国Talyrond公司研制的最大测量直径达1.6米的1600型圆柱度测量仪。接触式传感器的可形变量极小,在圆柱度测前定心调整过程中,大偏心距累积的运动定位误差极易超出传感器的极限行程而造成传感器损坏。受被测对象的尺寸、重量及高精密转台的制造技术等因素的影响,过大的载荷将严重影响精密轴系的回转精度,所产生的随机误差难以通过算法有效补偿,无法满足大型工件的高精度测量需求。对于直径超过2米的大型轴承套圈,由于零件尺寸巨大、圆柱度测量精度要求高以及测量环境的局限性,现有的接触式传感器与转台回转的测量方式难以满足其测量要求。因此,亟需研究针对大型回转类零件圆柱度的现场快速精密测量方法及相应的评定技术。  沈阳自动化所智能检测与装备研究室IDE团队提出的高负载大可变量程的大型圆柱度测量新方法采用具有精密、隔震等特性的气浮驱动技术,配合精密耦件,通过测前快速自适应偏置调整技术实现工件测前自动定心,采用精密测头回转的方式快速获取有效测量信息。在测量原理方面,提出了更完善的圆柱度测量模型及误差分离算法,测前定心与实际测量采用分立的运动控制系统,既解决了大型工件的载荷问题,又能够通过模型参数拟合的方式实现偏心、测量线偏置、被测圆柱轴倾斜等误差的精准分离;测量系统采用对称式双测头测量方案,综合了非接触式位移传感器安全、柔性的特点与接触式位移传感器精密、可靠的特性。本方法的提出突破了传统测量方法在大型圆柱度测量过程中的局限性,实现了大型回转类零件圆柱度测前自适应偏置调整和现场快速精密测量。大型零件圆柱度测量仪样机  目前,该研发团队已完成大型圆柱度测量仪原理样机的研发工作,并在《光学精密工程》《中国激光》等高质量期刊发表相关论文2篇,申请发明专利4项。经过国家权威计量专家及天津计量院的检定,大型圆柱度测量仪样机的回转精度为42.6nm,Z向导轨精度139nm/100mm,最大测量直径为2500mm,且其测量范围可根据使用需求进一步拓展。这意味着该原理样机的核心技术指标已达到国内领先、国际先进水平。本项目的实施将进一步夯实我国大型轴承及以大型轴承为核心基础部件的高端装备的制造技术基础,填补直径大于2米的大型轴承圆柱度测量仪的国内空白,掌握大型圆柱度测量仪的核心技术,提高轴承及相关行业的自主创新能力,为我国高铁、风电和高档数控机床等高端装备制造业的进一步发展提供保障能力,对我国从制造大国迈向制造强国,具有重要的现实意义和巨大的社会经济效益。
  • 新品│马尔新一代圆柱度仪MarForm MMQ 500
    三本是一家综合性的测量仪器公司,提供一站式测量解决方案,是德国蔡司和德国马尔公司官方授权代理商,帮助客户高效测量解决方案,马尔公司推出新的产品来满足客户多样化的测量需求。针对客户对测量速度和重型工件测量的需求,推出了新一代的MarForm MMQ 500圆度仪。本期内容,我们将给大家解读这一款全新的测量利器。MarForm MMQ 500MarForm MMQ系列历代成员们马尔的圆柱度仪系列,从入门级的圆度仪 MMQ 100到高精密的圆度测量仪 MFU 100,几乎可以涵盖客户所有的测量需求。马尔圆度仪 MMQ 100 到 MMQ 400系列如今,新款的MMQ 500 在此基础上,又增加了一些新的特点。MMQ 500圆柱度仪的优点• 直径300 毫米的工作转台;• 工作转台可承重 80 公斤;• 更大的调心调平范围;• X轴和Z轴更高的直线度;• 更快的调心调平时间;正是由于以上这些优点,马尔新一代 MMQ 500 圆柱度仪可以测量更重、更大的零件,而且测量的结果更加精确。同时,MMQ 500 快速的调心调平和定位时间有效的缩短测量时间,提高了测量效率,对于如今不断增加的人力成本而言,无疑是增效降本的一个重大利好。 快速调整和定位,可以缩短30%的测量时间此外,MMQ 500 的评价软件依然是基于 MarWin 这个卓越的软件平台,可以沿用MarForm所有的评价设置和软件选项,如活塞测量、扭纹测量、速率分析、快速傅立叶分析这些工业测量中常用的测量选项。
  • 结构复杂注塑件测量难题,天远高精度三维扫描轻松破解
    注塑是现代制造的重要工艺之一,为汽车制造、消费电子等众多行业提供各种复杂的注塑结构件、功能件及其特殊用途的精密件等。注塑具有生产效率高、原料浪费少、所需劳动力相对较少等优势,但是随着其结构逐渐复杂化,精度要求逐渐提高等,精密注塑件的测量环节也遇到了难题。传统测量难点:大部分精密注塑工件结构复杂→使用传统的手工测量手段,基本上很难获取准确的结果;→若使用三坐标方式,需要众多夹具,且在测量过程中,容易造成工件变形等。如何快速、准确、完整地完成结构复杂的注塑工件测量?高精度三维扫描是良好方式——通用性强、速度快、结果准确。#1高精度三维检测过程我们以这个注塑件为例☟工件特征:注塑件,为某一智能产品的内部组成部分,要求尺寸严格控制在误差范围内,否则将造成产品后续组装困难。检测过程:1)通过OKIO 5M高精度蓝光三维检测系统进行三维扫描,将工件放置在转台上,转动转台,进行三维扫描。(该工件结构较为复杂,在扫描时,每次转动幅度可以相对较小,获取完整数据。)OKIO 5M采用稳定可靠的高分辨率高速工业相机,有效改善镜头畸变带来的数据误差,准确获取工件边缘高质量数据。OKIO 5M最高精度可达0.005mm,且重复性精度稳定,同时获取的数据细节完整丰富,为后续的三维检测提供高质量的数据基础。2)导入Geomagic Control X检测软件,与原始设计数据相拟合,快速得到可视化偏差报告。材料厚度分析:绿色表示厚度正常,偏红色则表示材料太厚,偏蓝则表示材料不足。截面分析:准确把握工件变形趋势,颜色偏红则表示偏大,颜色偏蓝则表示偏小。宽度、长度、孔直径、孔间距等测量:在软件中快速得到测量数值,检测是否符合装配需求。#2高精度三维扫描核心优势1)通用性强,无论何种形状的工件,均可使用同一台设备进行检测,解决了检测工具繁多的困扰。2)速度快,体积范围在10*10*10cm的工件,扫描时间在3分钟以内,检测时间在2分钟以内(在完成软件首次路径编程后)。3)无损检测、结果准确,非接触式测量,测量过程中不会触碰工件,不会因工件受力形变产生测量偏差,同时,OKIO 5M精度水平达到计量级(最高0.005mm)且精度水平稳定,检测结果准确性得以保障。#3高精度三维扫描带来益处1)提升试模环节效率众所周知,注塑的设计、制造和试模的周期很长。特别是在试模环节,需要一次次调试,来找到最佳的生产工艺。高精度三维扫描可实现样品的快速三维检测,通过色谱图直观展示注塑工件的变形趋势及具体尺寸,助力工艺参数的快速修正,从而加快试模环节的进程。2)高效进行成品检测单个工件检测时间控制在几分钟之内,在小批量试产之后,可以实现全检,并可以在大批量生产时进行抽检。使用OKIO系列三维扫描仪配合自动转台,或者使用RobotScan(选用结构光扫描测头),均可高效完成生产过程中的三维尺寸检测。除此之外,还可以助力注塑工件的新品开发及进行生产模具的三维检测。❖随着高精度三维扫描技术的发展,其通过准确的非接触式测量方式解决了众多细分制造业领域的测量难题,除了注塑行业,天远也将不断为其他行业提供高质量的三维扫描服务,助力其产品尺寸的高效检测、非标零件的快速修复以及新产品的开发等。
  • 劳达 科学发布LAUDA Scientific 光学接触角测量仪 LSA200新品
    德国劳达科学仪器公司(LAUDA Scientific GmbH)是一家拥有60多年历史的著名科学仪器设备研发制造企业,是德国最早涉及表界面和黏度测量表征技术的专业厂家。从上世纪60年代起,劳达就着手研发包括表面膜天平和液滴体积法、力天平法和最大气泡压力法等测量表面单分子层和表界面张力的仪器,是这一领域的开拓者和先锋,其各类仪器被广泛地应用于科学研究、产品研发和质量控制等领域。目前劳达公司研发生产的视频光学接触角张力测量仪,以其丰富而卓越的功能拓宽了该仪器的应用领域,把接触角测量仪的应用提升到了一个新的高度。 作为LAUDA Scientific GmbH公司中国区指定代理,北京东方德菲仪器有限公司将继续秉承“Leading by professional”的理念,与LAUDA Scientific公司一起为您推荐先进的仪器,提供专业的售前、售后技术服务。 LAUDA Scientific 光学接触角测量仪 LSA200是一款功能齐备、性能卓越的全功能型视频光学接触角张力测量仪,是一款利用液滴形状分析技术探索界面现象的测量仪器,它具有功能多样化的特点,并且能够实现仪器的智能化全自动控制。LSA200不仅可以准确可靠地完成接触角,滚动角、固体表面自由能和界面张力测量等常用的测量任务,而且在高速动态、多功能测量方面显示出了明显的优势。 滞留力测量功能是 LSA200 具有的第二代接触角测量仪器的标志性功能。此外 LSA200 灵活的配置可以完成单一纤维接触角测量,俯视法接触角测量,界面扩张流变测量,全自动临界胶束浓度测量(CMC)等特殊任务。LSA200为材料科学、界面化学与胶体化学、以及液滴流体动力学等相关实验室提供了更加专业,更加高效的解决方案。LAUDA Scientific 光学接触角测量仪 LSA200的测量功能介绍:1. 自动测量接触角软件具有成像清晰度判别功能,测量接触角时能够自动寻找基线、自动拟合轮廓。支持捕获气泡法测量模式。选用程序模板操作时软件显示操作向导,可以完成一键测量。对于材料表面特殊形状或结构形成的弯曲基线,可使用手动模式测量。2. 测量动态接触角可以选用插针法或倾斜台法测量前进角和后退角,使用专用的Truedrop算法能够更加准确的测量不对称液滴的接触角。3. 同步测量滞留力和动态接触角此功能是LSA200在常规接触角测量仪上引入了离心力旋转台和视频同步触发技术,从而实现的。LSA200配置滞留力旋转台时固体材料固定在旋转台之上,在快速旋转状态下置于材料表面上的液滴,受离心力驱动产生横向水平滑动的趋势,迫使液滴形状发生变化。当离心驱动力达到最大滞留力数值的时候,液滴沿材料表面发生横向水平滑动。在这一动态过程中,仪器利用视频同步触发技术准确的抓拍到液滴形状和位置变化的一系列照片并记录相对应的旋转速度,通过软件自动处理得到滞留力数据以及前进接触角和后退接触角的变化曲线和最大值。滞留力能够直接反映液体和固体之间界面上的相互作用力。利用滞留力和动态接触角同步测量功能,可以分析滑动过程中滞留力和液滴形状变化等因素之间的相互关系。最大离心力达到 40 倍重力加速度 最大转速 800 转/分钟滞留力测量功能为材料润湿性的研究提供了一种有力的工具,使得LSA200在动态、多功能测量方面展示出了巨大的潜力,它能够同时使用几何参数和物理参数表征液体和固体材料之间界面上的相互作用,必将在特殊功能材料、液体的传送和过滤过程、表面的自清洁和易清洗等众多领域发挥出关键作用。4. 非接触式注射功能LSA200能够利用注射泵推进时产生的脉冲推射液体,使液滴直接落到材料表面上。这种注液方式避免了液滴在注射针头上的粘附,解决了向超疏水材料表面转移液滴的问题。5. 全自动倾斜台测量滚动角全自动倾斜台和视频系统由软件控制,自动记录倾斜过程中液滴的形状变化,倾斜角度和位置移动,自动测量滚动角、前进角和后退角等相关参数。6. 测量单一纤维的接触角单一纤维润湿接触角的测量经常应用在复合材料和特殊功能材料领域。不同于微升级液滴在平面材料上的接触角测量,单一纤维测量需要特殊的理论计算方法和高放大倍数的显微光学镜头等特殊附件。LSA200可以在同一台仪器上完成普通平面材料和单一纤维材料的润湿接触角测量。7. 记录并分析粉末或多孔材料对液体的吸收过程高速视频系统可以完成粉末或多孔材料对液体吸收过程的连续录像,并自动计算全过程的接触角变化数值。8. 俯视法测量接触角在已知液体表面张力和密度的前提下,LSA200能够准确控制液滴体积并利用俯视模块从正上方向下对液滴成像,能精确测量三相接触线或液滴最大直径处周边线的形状尺寸,利用Laplace-Young模型计算得到接触角数值。俯视法和传统侧视法联用可以同时对同一液滴进行接触角测量。俯视法解决了凹表面接触角和超亲表面极小接触角测量的难题,并在各向异性材料接触角测量和多角度润湿动态行为观察方面具有明显优势。9. 表面能的计算和粘附功的分析固体表面自由能测量软件包括了多种表面自由能数值及其组成计算方法,粘附功分析软件可以进一步分析粘附功。涉及到一般表面、低能表面、高能表面、等离子体处理表面等实际应用。 10. 双液滴接触角测量在测量固体表面能的时候往往需要至少两种不同的标准液体,LSA200具备两种液体同时注射,一键式测量接触角的功能,这明显提高了进行大量固体材料表面能测量实验的工作效率。11.测量表面张力LSA200使用悬滴法对液体的表面张力或界面张力进行测量。测量方法符合国际标准ISO 19403-3/ISO 19403-4和德国工业标准DIN 55660-3。软件使用优化的Young-Laplace算法全自动计算张力,具有更快的动态计算速度,与高速注射单元联用时能对极短寿命的界面进行动态张力测量。12. 振荡滴方式测量界面扩张流变界面扩张流变研究是对表面活性物质界面可溶膜实施规律性的扰动,记录界面张力响应,测量粘弹模量等参数,通过数据处理和理论分析,最终获得界面膜性质的丰富信息。LSA200既可以做液-液界面的振荡又可以做气-液界面的气泡振荡。13. 全自动临界胶束浓度(CMC)测量基于表面界面张力测量CMC的方法是传统测量CMC的方法中常见的一种。传统上,采用DuNoüy环法或Wilhelmy片法来确定表界面张力,但无论是DuNoüy环法或Wilhelmy片法都不适合与含表面活性剂溶液一起使用。Wilhelmy片法遇到表面活性剂分子吸附到探针金属(通常是铂)表面的问题,会导致明显的测量误差,甚至可能影响溶液中表面活性剂的浓度。DuNoüy环法则仅适用于单组分(即纯净)液体, 当涉及表面活性剂时密封圈通常很难彻底清洁,并且对应于特定的动态或平衡状态无法获得表面张力值。与传统测量方法形成鲜明对比,LSA200CMC采用光学悬滴分析法测量临界胶束浓度(CMC),LSA200配置两个连续注射单元时可使用表面张力法进行全自动临界胶束浓度的测量,其中一个注射单元进行不同浓度溶液的配置,另一个注射单元连续形成液滴,测量全过程在程序自动控制下工作,而且避免使用吊片法测量时活性剂分子在铂金片上吸附时产生的影响,是测量临界胶束浓度的理想方法。与传统测量方法相比,LSA200CMC提供了一种新颖的全自动测量方法,在几乎所有都涉及到准确性,可靠性,便利性和对各种表面活性剂溶液的适用性以及自动化程度方面,都具有明显的优势:- 全自动测量- 适用于各种表面活性剂;- 能够同时测量静态CMC和动态CMC。LSA200的基础功能:- 静态/动态接触角测量 - 粉末或多孔材料的吸收过程分析- 表面自由能测量和粘附功分析- 表面界面张力测量 LSA200的基础配置:- 8.6 倍变焦视频系统 - 三套液体注射单元- X轴精密导轨定位视频调焦太- X/Y/Z三轴精确导轨定位样品台- X/Y/Z三轴精确导轨定位注射平台- SurfaceMeter专业测量软件 LSA200的选配功能:- 8.6 倍变焦高速视频系统 - 全自动样品台 - 全自动注射平台 - 全自动倾斜台 - 滞留力旋转台 - 温度控制单元- 俯视法测量模块 - 振荡滴扩张流变模块- 双液滴注射功能 - 非接触式注射功能- 单一纤维接触角测量模块- 全自动临界胶束浓度测量模块(CMC) 技术参数 型号LSA200接触角测量范围精度分辨率0~180°±0.1°0.01°表面/界面张力测量范围: 分辨率1×10-2 ~ 2×103mN/m0.01 mN/m1)视频图像系统(系统可升级) 镜头 分辨率 相机速度 视野范围8.6倍变焦光学镜头1920×1200 pixel3300 fps2.1×1.3~17.5×11(mm×mm)视频调焦台 调节方式X轴方向精密导轨调节 调焦范围:100 mm样品台 调节方式 尺寸 载重X/Y/Z三轴精密导轨调节;移动行程100/100/50 mm100x100 mm12 Kg加液单元调节台 调节方式X/Y/Z三轴精密导轨调节 移动行程:85/118/60 mm自动倾斜台 角度范围0~360°最大样品尺寸∞×310x76 mm(L×W×H)光源高亮度高均匀LED冷光源,亮度可手动/软件调节软件SurfaceMeter 专业软件接触角计算方法Circle Width-Height Conic TrueDrop Young-Laplace Tangent2)Drop-on-Filament 3)Liquid Bridge/Meniscus张力计算方法Young-Laplace3)Liquid Bridge/Meniscus4)Drop volume电源50/60Hz 110/240V 90 W仪器尺寸(基座)及重量620×200×536mm(L×W×H) 22Kg 1)LSA200 的视频系统可选配 45 倍变焦光学镜头,适合于单一纤维接触角的测量。 2)此计算方法为纤维包覆法,专用于单一纤维接触角测量。 3)此计算方法为液桥法/弯液面法,专用于单一纤维接触角测量和表面张力测量。 4)此计算方法为滴体积法,专用于表面张力测量创新点:1.标配 8.6 倍变焦视频系统,可升级为8.6 倍变焦高速视频系统 2.独特的滞留力测量功能:引入了离心力旋转台和视频同步触发技术,可以同时测量滞留力和动态接触角 3.同时利用俯视法和侧视法测量同一液滴的接触角 4.新颖的CMC测量方法:采用光学悬滴分析法测量临界胶束浓度(CMC) LAUDA Scientific 光学接触角测量仪 LSA200
  • 珀金埃尔默发布珀金埃尔默FT 9700™ 傅里叶变换近红外光谱仪新品
    FT 9700™ 全新一代易学易用的高性价比FT-NIR近红外光谱仪FT 9700™ 基于珀金埃尔默在设计和生产红外光谱仪方面70余载的丰富经验研发,具有极简的操作性、优越的性能和出色的性价比。其设计紧凑、完全集成、采样稳定的特性,配合简单直观的ResultPlus触屏操作界面,确保无论在实验室还是现场,FT 9700系统都能开展快速无损的分析评价。小体积大功效系统标配基于高灵敏度、方法可转移和易清洁特性而设计的近红外反射附件(NIRM)。它的测量操作快速简单,非常适合各种形态样品的定性和定量分析。磁性可卸的旋转台使得采样表面和旋转台本身易于清洁,因此可有效节省做样时间。另外,NIRM的专利的镜像方法提供了最先进的方法可转移性。60/100mm培养皿旋转器,全新的透反射附件以及固定式小瓶架 也提供了无与伦比的灵活性。任何样品整粒、粉状、液体、糊状和膏状等,FT 9700可以分析任意类型的样品,而且不需要选配其它额外昂贵的配件。简单、现代、直观和高效Results Plus是我们最新版本的软件平台,配有触屏界面,能够使分析工作流程变得快速、简单。应用FT-NIR光谱仪的主要优势在于应用广泛且便于操作,节约时间和试剂消耗而降低成本,可很大程度上取代各行业的化学分析法。可以应用在食品相关行业、纺织行业、酿酒行业、聚合物和回收利用行业、药品和化妆品行业等。创新点:1、创新的旋转干涉仪,免除动态校正,长期可靠工作 拥有Dynascan™ 干涉仪设计,系统无需通过动态校正来补偿动镜在运动中造成的的误差。通过实际验证和久经考验的干涉仪技术融合了可靠的旋转轴承,能在仪器的整个使用寿命中提供可靠的服务。 2、独一无二的标准技术,保障不同仪器之间的数据高度一致性和模型可传递性 绝对标准仪器(Absolute Virtual Instrument™ )技术采用了以甲烷气体光谱为基准的标准化技术,能确保仪器准确校准,与传统的方法相比较,仪器的波数和线形能够更精确地实现标准化。有了AVI技术,不管使用哪一台仪器,你都能得到同样的数据结果。 3、先进的数据处理算法,干扰更少,结果更准确、更一致 FT 9700系统拥有大气背景校正(Atmospheric Vapor Compensation)™ 技术,能够实时自动补偿水分吸收。这一特性能在日常使用中帮助得到更准确、更一致的结果。 4、FT 9700™ 标配高灵敏度、方法可转移的反射采样附件(NIRM),并配合磁性可卸的旋转样品台,可实现固体、液体及粉末样品的快速直接测量,1分钟内获取结果。 珀金埃尔默FT 9700™ 傅里叶变换近红外光谱仪
  • 蔡司获得CNAS认证,为CNAS实验室量身定制一套标准物质
    CNAS认证期间核查的故事蔡司的测量实验室获得了CNAS的认证,对于实验室的各项要求也要比以前高很多。其中就有一条,蔡司的实验室三坐标测量机必须定期进行期间核查,来保证精度达标。对此蔡司有点烦恼,在CNAS认证后对于精度校验的频率要求高了,以前是一年一次校验就可以,现在实验室的机器需要一个季度进行一次精度校验,而平时测量项目又比较多,如果每次找人上门校验的话,需要先走合同流程,再要和工程师约定上门时间,期间还要调整工作计划,那是相当的麻烦。有没有什么好办法可以解决这个问题?校验频次变高,测量项目多,上门校验流程繁复,怎么办???蔡司突然发现CMM CHECK装置对于他们而言是一个非常好的选择。借助CMM Check可以判定三坐标测量机是否达到DIN EN ISO10360 及VDI/VDE2617 规定标准。它的主要用途包括: 功能检查三坐标测量机探头系统的探测性能检查三坐标测量机探头系统的扫描性能检查形状测量时的过滤特性检查三坐标测量机的线性测量误差检查带转台三坐标测量机的4轴误差 根据DIN EN ISO 10360第4页和第5页确定探测误差的探测点分布 组成50mm直径的环规30mm直径的陶瓷标准球带有10μm和250μm平剖面的高精度圆柱体—切口柱长度分别为50mm和400mm的块规两个30mm 直径的陶瓷标准球(选项)蔡司如何使用这套装置是来进行设备自检的呢?根据DIN EN ISO的相关规定,借助CMM Check实现以下自检项目:通过CMM Check上长度分为为50mm和400mm的两个量块,来检查机器的MPE-E 和E0(俗称机器的线性及空间和重复性)ISO 10360-2;环规用来检查机器的扫描误差ISO 12181;标准球用来检查探头的探测误差及扫描误差,也就是MPE-P(球上打25 个点算最大最小半径差)&MPE-THP(扫描四条线,算最大与最小的半径差)ISO 10360-4;圆柱用来检查机器的滤波功能,上面有两个豁口,此豁口有在选用15&50&150&500 的滤波时有不同的值。选配的两个球是用来检查机器转台的精度是否符合精度要求。MPE-FR 为径向跳动,MPE-FA 为轴向跳动,MPE-FT 为角向偏差,ISO 10360-3另外CMM CHECK可配备全球认可的DAKKS校准证书,可追溯到国家标准的测量值。配了此装置之后,蔡司可以在实验室自行对三坐标测量机进行精度校准,这样不仅大大提高了工作效率,时间上也可以自由安排。而当测量产品结果出现和供应商的质量数据有差异的时候,首先也可以排除设备自身精度对质量结果的影响,能更加快速的找到问题的所在之处。蔡司工业质量解决方案蔡司CMM Check装置,三坐标测量机系统的诊断器,借助它可以判定蔡司三坐标测量机是否达到DIN EN ISO10360及VDI/VDE2617规定标准。
  • 致癌物-石棉的有效检测方法
    一、石棉简介石棉是天然纤维状硅酸盐矿物质的总称,其化学成分主要为硅、氧、氢、钠、镁、钙和铁等元素。石棉纤维具有低导电性、耐火性、抗拉强度高、耐酸碱腐蚀、吸声、吸热等多种优秀的性能,因此广泛应用于绝缘材料、消防、建筑、汽车、造船、密封材料等领域。但是石棉纤维释放到空气中,人体吸入石棉纤维会引起石棉肺、肺癌等疾病,石棉是国际认定的一类致癌物。二、主要检测方法介绍由于石棉纤维对人体伤害极大,因此对石棉制品的检测有严格的要求,对于不同尺寸以及不同来源的石棉检测方法主要有:X射线衍射、光学显微镜及电子显微镜等。对于石棉制品中石棉的检测分析,现行国家标准是利用X射线衍射与偏光显微镜联合进行石棉定性以及定量分析。 1. X射线衍射法(XRD)依据是每种矿物都具有特定的X射线衍射数据和图谱,且衍射峰强度与含量成正比,可判断试样中是否含有某种石棉矿物并测定其含量。X射线衍射法具有样品处理简单、用量少、快速有效等特点,可鉴定石棉种类,并进行定量分析。布拉格方程:2dsinθ=nλθ为入射角、d为晶面间距、n为衍射级数、λ为入射线波长,2θ为衍射角。 2.光学显微镜法a. 相差显微镜法b. 偏光显微镜法每种矿物都有特定矿物光性和形态特征,通过偏光显微镜观测矿物晶体形态、颜色、干涉色、以及折光率等物理特性,可以判断是否含有石棉并鉴定石棉种类和数量。 3.电子显微镜法a. 扫描电镜法(SEM)b. 透射电镜法( TEM)不仅可以对样品的表面形貌进行表征,而且利用其装备的能谱分析仪( EDXA) 对石棉纤维中的元素组成进行分析。但是SEM、TEM 价格比较高,对制样要求高。三、石棉检测——光学显微镜法Leica可以提供偏光显微镜检测石棉的解决方案,在专业偏光显微镜上通过配置相差物镜以及分散染色物镜实现石棉纤维计数以及石棉种类分析。相差显微镜是把透过标本的可见光光程差变成振幅差,以提高各种结构间的对比度,使各种结构变得清晰可见,提高检测精度并进行计数。分散染色技术对石棉进行定性分析的流程是:选择已知折射率的分散液体,匹配已知折射率的样品或将未知折射率样品,放在显微镜载片上,盖上盖玻片,旋转样品转台以旋转样品,观察颜色和颜色的变化。两种方法结合实现石棉种类定性分析及计数。测定制品中是否含有石棉所用偏光显微镜的规格如下: 透射光照明 起偏器、检偏器 360度旋转载物台 530nm补偿片 相差物镜及分散染色物镜,建议配置10x及40x镜头 1. 相差显微镜——相差物镜相差显微镜是把透过标本的可见光光程差变成振幅差,以提高各种结构间的对比度,使各种结构变得清晰可见,提高检测精度并进行计数。2. 偏光显微镜——分散染色物镜用于石棉观察的专用物镜在分散染色物镜的后焦平面上有一个不透明点,聚光镜光阑设置到小于不透明点。3. 石棉种类分析—— 分散染色技术样品制备完成后在石棉样品上滴入具有相同折射率的浸渍液。分散染色技术石棉分析流程:石棉检测——光1. 选择已知折射率的分散液体,匹配你的已知折射率的样品或将未知折射率样品2. 放在在显微镜载片上,盖上载玻片3. 在单偏光的状态下,旋转样品转台以旋转样品4. 观察颜色和颜色的变化 欲了解更多信息,可关注徕卡官方公众号“徕卡显微系统”-“徕卡学院”-“课程回顾”- “工业制造”观看应用视频。
  • 2011北京光电展(ILOPE)圆满结束
    2011北京光电展(ILOPE)圆满结束 中国国际光电产业博览会暨第十六届中国国际激光· 光电子及光显示产品展览会(ILOPE 2011)圆满结束,这次展览取得了不错的效果,众多科研和工业客户到我们的展位参观,在展会上卓立汉光推出了多款新产品,如:超高精密电控位移台和旋转台、自平衡光学平台、高稳定光学镜架、精密手动位移台、影像校正光谱仪、高光谱测量系统、LED测量系统、光致发光光谱成像测量系统等。得到了客户的广泛关注。
  • 共120项!2022年度浙江省制造业首台(套)产品工程化攻关项目名单出炉
    近日,浙江省经济和信息化厅公布2022年度浙江省制造业首台(套)产品工程化攻关项目名单,“单细胞质谱分析仪”、“面向新能源电芯缺陷检测的光度立体-三维机器视觉系统”等120项在列。根据《浙江省制造业首台(套)提升工程工作指南(试行)》浙经信装备〔2022〕9号,浙江省制造业首台(套)产品工程化攻关项目是指以开发填补国内空白的重大短板装备、重点新材料、关键软件,产业链供应链“补链、强链”关键产品为目标,目前尚处于研发或工程化攻关阶段,能在一到两年内实现不少于一项工程化应用或重大工程项目配套的项目。项目完成后的产品预期技术水平在同类产品中应达到国内领先及以上水平,或达到国家首台(套)产品推广应用指导目录产品指标要求。浙江省制造业首台(套)装备分为国际、国内和省内首台(套)产品三个档次。按照国际、国内和省内首台(套)产品三个档次,将分别给予200万元-400万元,100万元-300万元和50万元-100万元的一次性奖励。2022年度浙江省制造业首台(套)产品工程化攻关项目(公示名单)序号项目名称牵头单位协同单位类别所属领域重点项目(54项)1电控空气悬架系统浙江戈尔德智能悬架股份有限公司温州大学装备节能与新能源汽车2WLY-DHT300浙江万里扬新能源驱动有限公司装备节能与新能源汽车3新能源和智能汽车关键零部件高效能精密轴承人本股份有限公司温州人本汽车轴承股份有限公司装备节能与新能源汽车4IBB行车驻车集成控制系统浙江力邦合信智能制动系统股份有限公司装备节能与新能源汽车5可变传动比R-EPS转向系统杭州世宝汽车方向机有限公司浙江科技学院装备节能与新能源汽车6铅碳储能电池绿色高效智能集成生产线成套装超威电源集团有限公司德国先进装备制造商、武汉镭立信息科技有限公司、浙江超威贝特瑞科技有限公司装备节能与新能源汽车7高负载精密数控分度转台浙江畅尔智能装备股份有限公司装备数控机床8钢筋网智能焊接机器人系统浙江省建材集团建筑产业化有限公司浙江省建材集团有限公司装备机器人9三维激光哨兵浙江华是科技股份有限公司浙江理工大学、浙江警官职业学院装备机器人10抽水蓄能水泵水轮机浙江富春江水电设备有限公司装备节能环保装备11商用空气源变频热泵热水机-DKFXRS浙江中广电器集团股份有限公司装备节能环保装备1211FFG-100畜禽云智能有机肥发酵一体化装备浙江明佳环保科技股份有限公司浙江大学装备节能环保装备13六万等级空分用离心式原料空气压缩机杭州杭氧透平机械有限公司杭氧集团旗下各子公司装备节能环保装备14强腐蚀环境下大体积重型全自动环保酸洗设备浙江瑞丰机械设备有限公司装备节能环保装备15热法磷酸全热能回收系统项目浙江诚泰化工机械有限公司装备节能环保装备16医药化工VOCs废气协同废水低碳处理装备浙江海河环境科技有限公司杭州华东医药集团浙江华义医药有限公司、浙江大学装备节能环保装备17高参数、大容量低碳环保焦化余热锅炉东方菱日锅炉有限公司装备节能环保装备18DF6210E电控双燃料发动机宁波中策动力机电集团有限公司浙江大学、中电科(宁波)海洋电子研究院有限公司、武汉理工大学、中国科学院宁波材料技术与工程研究所装备节能环保装备19反射式高倍聚光光伏地面电站浙江星煜机电科技股份有限公司装备节能环保装备20天然气差压径向透平发电装备浙江浙能天然气运行有限公司浙江省能源集团有限公司、浙江福腾流体科技有限公司装备节能环保装备21效玻璃纤维智能制造控制系统的研发与产业化桐乡华锐自控技术装备有限公司装备智能电气22大功率、高转速智能精密电主轴研究与应用绍兴欧力-卧龙振动机械有限公司装备智能电气23钢-镍基合金双金属冶金复合管浙江卓业能源装备有限公司装备关键基础件24轻量化高强度高效率商用车万向节万向钱潮股份有限公司装备关键基础件25风电增速齿轮箱滑动轴承浙江长盛滑动轴承股份有限公司上海电气集团股份有限公司装备关键基础件266MW级风电高可靠滑动轴承浙江中达精密部件股份有限公司装备关键基础件27高端液压螺纹插装阀浙江华益精密机械有限公司湖南星邦智能装备股份有限公司、宁波搏业液压科技有限公司、杭州力龙液压有限公司(三一集团全资子公司)装备关键基础件28超大型大截面均温低阻高效换热装置杭氧集团股份有限公司装备航空航天装备29火灾装备燃烧假人性能评估系统温州市大荣纺织仪器有限公司装备自然灾害防治技术装备30H型钢智能生产线浙江省建工集团有限责任公司杭州固建机器人科技有限公司装备数字化生产线31基于分布式架构的XC系列高性能氢燃料电池工业车辆杭叉集团股份有限公司浙江重塑能源科技有限公司、中国计量大学、同济大学装备智能物流装备32交通枢纽智能化项目浙江中控信息产业股份有限公司装备综合交通装备33复材挤出-注塑一体成形技术及装备德清申达机器制造有限公司浙江大学城市学院、杭州本松新材料技术股份有限公司装备特色专用装备34基于机器视觉的数字化智能包装成套装备杭州永创智能设备股份有限公司浙江大学高端装备研究院装备特色专用装备35智能喷涂装备、智能搭载装备万邦船舶重工(舟山)有限公司浙江鼎力机械股份公司及研究院装备特色专用装备36全自动PVD离子镀膜成套装备纳狮新材料有限公司装备新一代信息技术装备37肿瘤血清肽谱人工智能辅助诊断系统杭州汇健科技有限公司浙江汇健智谱科技有限公司、浙江大学、浙江大学医学院附属第二医院装备高端医疗装备38车载激光雷达发射接收一体化主动装校AA设备宁波舜宇车载光学技术有限公司装备检测与监测设备39超洁净超声流量传感器浙江启尔机电技术有限公司装备检测与监测设备40电动汽车SGM270SS8B7TFM模块杭州士兰微电子股份有限公司阳光电源股份有限公司、成都集佳科技有限公司装备半导体装备及零部件41超精密常高温探针台研发产业化项目杭州长川科技股份有限公司装备半导体装备及零部件4212公斤级导模法蓝宝石长晶炉浙江昀丰新材料科技股份有限公司西安交通大学装备半导体装备及零部件43大型风机关键结构件高强韧低温球墨铸铁材料浙江佳力风能技术有限公司浙江机电职业技术学院、上海交通大学材料新能源材料44第三代新能源汽车驱动电机用超强耐电晕特种先登高科电气有限公司江苏四达特材科技有限公司、上海利势凯美科技有限公司、上海应用技术大学材料新能源材料45高电压用多元掺杂四氧化三钴衢州华友钴新材料有限公司浙江华友钴业股份有限公司材料新能源材料46舰船用超轻多晶丝防火材料浙江浦森新材料科技有限公司材料军民融合材料47高品质热熔包覆不锈钢纤维丝浙江百川导体技术股份有限公司浙江青山钢铁有限公司材料军民融合材料48MOS用超均匀单晶硅片浙江海纳半导体有限公司材料先进半导体材料49高端芯片封装底部填充胶用合成球形二氧化硅浙江三时纪新材科技有限公司湖州师范学院材料先进半导体材料50“图立方”时序关联图实时计算平台浙江邦盛科技股份有限公司软件大数据51中奥情指勤舆一体化 平台软件V1.0杭州中奥科技有限公司软件大数据52基础设施数字化服务操作系统浙江省机电设计研究院有限公司杭州电子科技大学滨江研究院、浙江大学建工学院智能交通研究所、浙江台州市沿海高速公路有限公司、杭州杭千高速公路发展有限公司、温州市交投智慧交通科技有限公司软件基础软件53飞步无人集卡驾驶系统杭州飞步科技有限公司软件人工智能54船舶辅助(自主)驾驶系统杭州钱航船舶修造有限公司杭州电子科技大学软件人工智能一般项目(66项)55电动汽车多能互补智能微电网网格控制系统浙江晨泰科技股份有限公司温州大学装备节能与新能源汽车56硅负极高能量密度锂离子电池瑞浦兰钧能源股份有限公司装备节能与新能源汽车577DCT新能源变速器吉利长兴自动变速器有限公司装备节能与新能源汽车58智慧集成阀岛浙江新劲空调设备有限公司装备节能与新能源汽车59基于数据采集与分析系统的MZ五面复合智能钻攻中心工程化攻关杭州大天数控机床有限公司浙江理工大学装备数控机床60高性能内置同步直驱伺服动力刀塔海辰精密机械(嘉兴)股份有限公司浙江大学机械工程学院装备数控机床61高效超精密数控齿轮旋铣机YKS8030浙江日创机电科技有限公司湖州职业技术学院机电学院装备数控机床62装配式板材BIM智能机器人浙江舜虞达环境科技集团有限公司浙江理工大学、上虞工业技术研究院有限公司、浙江舜虞检测技术有限公司装备机器人63面向无人值守数据中心的智能运维机器人浙江国自机器人技术股份有限公司装备机器人64基于深度学习的真皮全自动切割流水线装备(LCPS3)杭州爱科科技股份有限公司杭州爱科自动化技术有限公司装备机器人657功能全海域特种作业机械臂浙江凯富博科科技有限公司浙江理工大学装备机器人66基于智能穿梭车的自动化物流装备及系统浙江凯乐士科技集团股份有限公司装备农机装备83船舶大气污染物违规排放动态精准监测系统杭州春来科技有限公司装备
  • 美日科学家合作研制出新一代医用CT机
    据美国国立卫生研究院(NIH)最新消息,NIH科学家与日本东芝公司科研人员合作研制出了新一代计算机断层扫描机(CT),具有辐射剂量更小、成像更清晰、速度更快等特点。   CT机是重要的医学成像设备,在目前的医疗诊断中使用广泛。根据最新发表的实验数据,这种新型CT机采用了320排X射线探头,是目前临床使用64位CT机的5倍,因此其成像区域大大增加。研究人员对CT机的转台进行了改进,使其转动速度更快,完成一次旋转仅需275毫秒,在93%的情况下可在一次心跳内完成心脏成像。此外,他们还对CT机的成像效率和质量进行了改良,使患者接受的辐射剂量相比第一代CT机下降了95%,而图像分辨率更高,画面模糊感和颗粒感得到有效控制。   目前,该型CT机已得到美国食品药品管理局的批准,但科学家认为其进入临床还需要更多研究数据的支持。
  • CIOE深圳光电展火热进行中,欢迎来森泉展位
    展会正在进行中,森泉现场展位:2D018,2D019欢迎您的莅临~森泉为您的科研事业添砖加瓦:1) 激光控制:激光电流源、激光器温控器、激光器控制、伺服设备与系统等等2) 探测器:光电探测器、单光子计数器、单光子探测器、CCD、光谱分析系统等等3) 定位与加工:纳米定位系统、微纳运动系统、多维位移台、旋转台、微型操作器等等4) 光源:半导体激光器、固体激光器、单频激光器、单纵模激光器、窄线宽激光器、光通讯波段激光器、CO2激光器、中红外激光器、染料激光器、飞秒超快激光器等等5) 光机械件:用于光路系统搭建的高品质无应力光机械件,如光学调整架、镜架、支撑杆、固定底座等等6) 光学平台:主动隔振平台、气浮隔振台、实验桌、刚性工作台、面包板、隔振、隔磁、隔声综合解决方案等等7) 光学元件:各类晶体、光纤、偏转镜、反射镜、透射镜、半透半反镜、滤光片、衰减片、玻片等等8) 染料:激光染料、荧光染料、光致变色染料、光致发光染料、吸收染料等等
  • 思看科技新品发布!AM-CELL C系列 自动化光学3D检测系统
    2024年4月9日,思看科技(SCANTECH) 全新发布AM-CELL C系列自动化三维检测系统 !创新性融入核心单元设计理念,集易部署、易操控、高拓展性、全方位安全于一体,为中小型零部件检测打造自动化交钥匙解决方案,探寻智能制造更多可能!AM-CELL C系列自动化光学3D检测系统创新性融入核心单元设计概念,深度集成机器人、变位机和跟踪站单元,布局更灵活,支持拓展多工位协同工作,实现更加柔性的部署方式。设备使用标准工业外扩接口,可无缝衔接生产线,搭配全新自研的DefinSight-AM自动化软件,满足各类复杂车间环境下的冲压件、注塑件、机加钣金件、压铸件等中小型零部件的自动化检测需求,赋能生产制造企业打造智慧工厂。轻装上阵 灵活布局 系统由多个标准化的独立模块组成,布局灵活,轻松驾驭用户多元场景下的批量检测需求。设备安装调试仅需2天,调试过程可拖拽机器人进行示教,实现快速自动路径规划,告别复杂繁琐的操作流程,大幅降低自动化设备的使用门槛,开启您的效率革新之旅。机器人单元-深度集成机器人和设备总控于一体-精准操控,安全可靠变位机单元-高灵敏度自研转台-智能运动控制系统-实现更多负载-快速响应,稳定运行跟踪站单元-人体工程学结构设计-大幅度扩展操作区-大容量收纳空间,支持整套扫描仪收纳硬派计量 精准出击AM-CELL C系列适配思看科技全系列不贴点跟踪式三维扫描系统,长时间运行更稳定,可以24小时不间断地完成每天数百个零部件的批量检测任务。无损演绎手持设备最高2,600,000 次/秒测量速率和0.025mm计量级精度;同时支持全新灰度值边界检测功能,自动提取孔特征,轻松获取冲压件或机加件的圆孔、圆槽、方孔等封闭类特征的高精度三维数据。赋能生产过程分析,从源头提高产量、降低生产成本,实现标准化质保过程。柔性部署 高效协同针对客户的产品测量需求、生产节奏以及产品种类的多样性,灵活配置多工位系统,以此达成换件不停机的高效生产模式。结合自动化软件,可以多线程并行处理任务,真正做到测量设备无等待、无停滞地持续运作,测量效率较传统三坐标提高5倍以上,加速研发转化周期,为新产品快速投放市场提供有力的保障。多元适配 多样选择AM-CELL C系列凭借卓越的兼容性,可无缝适配各种品牌、型号的大臂展协作机器人(臂展≥1300mm),无需额外硬件配置,就能实现即插即用的部署过程,快速融入各类生产场景,大幅减少使用成本和准备时间。设备亦可根据不同产品的特定要求,提供200-1000KG范围内多种负载和尺寸的智能转台系统,便于用户灵活选择,以满足不同工业产品及工艺的差异性应用,为用户打造高效益和高适应性的自动化检测系统。人机交互 全方位安全感机器人和变位机单元均搭载先进的力反馈伺服控制系统,无需特殊安全防护,凭借精准的力量控制,确保操作的稳定性和安全性。整套测量系统提供更好的人机交互场景,可以充分保障操作人员和设备本身的双重安全。同时,依据客户的安全需求和更高的安全等级要求,可选择加装安全围栏、安全光幕、安全门锁等多种防护方式,带给用户全方位的安全操纵体验。自动化软件DefinSight-AM自研专属自动化软件平台DefinSight-AM,融合先进的数据采集能力和高度智能化的机器人控制系统,兼容思看科技全系列3D扫描仪及各种测量策略,数据采集更加精准可靠。支持搭载市面主流机器人,开放控制脚本,在符合机器人安全要求下直连机器人运动,降低机器人的使用门槛。软件可按使用者权限设置为工程师模式或操作者模式:工程师模式:支持脱机制作自动化测量程序及模板,便于工程师一人同步维护多套自动化测量系统。通过回溯历史测量结果并生成统计分析,实现更加精细化的质量控制过程,为生产制造保驾护航。操作者模式:支持一键启动,自动调用、计算、生成检测报告,对测量程序设置仅作读操作,保证程序及设备安全,大大降低了操作员的技能要求及误操作可能性。软件支持多种工业通讯协议及其他设备拓展,例如读码调取程序,视觉安全防护,环境状态监控等功能,使得整套测量系统完全融入工业物联网,实现黑灯工厂、无人工厂的工作需求,快速识别生产中的变化,确保生产过程稳定可靠,赋能生产制造全生命周期的质量控制。全场景测量 释放强悍实力生产车间设备抗干扰性强,不受环境光源、温度变化的影响,在复杂车间环境下,仍能保持长时间高精度自动化三维测量。尺寸测量室无需特殊安全防护要求,可以根据实际情况选择是否加装防护外框,实现安全稳定、用户友好的实验室测量。教学实训支持多种编程,无需专业技能即可高效完成测量任务,致力于以产学研融合的方式,助力人才培养生态建设。关于思看科技思看科技是面向全球的三维视觉数字化综合解决方案提供商,主营业务为三维视觉数字化产品及系统的研发、生产和销售。公司深耕三维视觉数字化软硬件专业领域多年,产品主要覆盖工业级高精度和专业级高性价比两大差异化赛道,主要产品涵盖便携式3D视觉数字化产品、跟踪式3D视觉数字化产品、工业级自动化3D视觉检测系统和专业级彩色3D视觉数字化产品等。公司产品广泛应用于航空航天、汽车制造、工程机械、交通运输、3C电子、绿色能源等工业应用领域,以及教学科研、3D打印、艺术文博、医疗健康、公安司法、虚拟世界等万物数字化应用领域,致力于提供高精度、高便携和智能化的三维视觉数字化系统解决方案,打造三维视觉数字化民族品牌。
  • 我国研制出新型测量装置 实现二维图形高精度圆度校准
    日前,一种高精度的新型光学二维图形圆度测量装置在中国计量科学研究院研制成功并通过专家验收。该装置首次将圆度测量的标准方法与影像探测技术进行结合,实现二维圆图形高精度圆度校准,准确度达到世界先进水平,解决了高精度影像测头坐标测量机的溯源问题。   据介绍,坐标测量机是一种精密、高效的空间几何量测量仪器。小到五金件的尺寸确定,大到整机、整车的几何量测量,都须借助该设备。然而,我国已引进的高精度坐标测量机影像测头的探测误差达0.5微米,但评定用标准器的不确定度应优于0.15微米。为此,高精度标准圆图形的圆度校准迫切需要建立更高精度的圆度测量装置。   为解决这一难题,中国计量科学研究院长度所研究员王为农带领团队经过攻关,将圆度测量的标准方法与影像探测技术相结合,以自主研制的一维影像传感器作为测头,利用成熟的精密转台和数据处理系统,构成了高精度、可溯源“光学二维图形圆度测量装置”,实现了二维圆图形高精度圆度校准。   据了解,从测量原理上,该装置结合了接触法和影像法的优点,解决了零高度二维图形的圆度测量问题。同时,该装置误差来源简单,与传统测量的评价方法一致,量值溯源途径清晰,解决了光学系统数值孔径、光学传感器噪声等对分辨力和测量能力的限制等难题。   业内专家认为,该成果可用于光学影像测量设备标准器的溯源,为集成电路、印刷电路和机械零件等加工制造行业的光学制版设备和光学成像加工设备的准确度验收提供了新的可能。
  • 预算2604万元,中国海洋大学采购一批仪器设备
    2月28日,中国海洋大学发布多条仪器设备采购需求,总预算达2604万元,采购酶标仪、显微镜、色谱、光度计等。中国海洋大学仪器设备采购需求汇总表项目名称采购仪器数量预算金额项目详情中国海洋大学全波长多功能酶标仪、倒置荧光显微镜设备采购项目全波长多功能酶标仪1台34万元详情链接倒置荧光显微镜1台31万元中国海洋大学蛋白纯化色谱系统、超高效液相色谱等设备采购项目超高效液相色谱1台45万元详情链接蛋白纯化色谱系统1套52万元全自动生长曲线分析仪1台46万元荧光分光光度计1台35万元中国海洋大学温盐深仪、声学多普勒流速剖面仪(75kHz)、海流计等设备采购项目甲板控制单元2台25.2万元详情链接温盐深仪27台167.4万元海流计5台63万元声学多普勒流速剖面仪(75 kHz)2台102万元中国海洋大学水色版自动太阳光度计采购项目水色版自动太阳光度计8台480万元详情链接中国海洋大学电磁数据传输及回收系统、海洋磁力测量系统等设备采购项目电磁记录仪及辅助系统1套56万元详情链接电磁数据传输及回收系统1套106万元海陆联测地震采集系统1套68万元海洋磁力测量系统1套70万元中国海洋大学海洋大数据蓝光存储系统采购项目海洋大数据蓝光存储系统1套400万元详情链接中国海洋大学海洋环境多物理场智能协同感知平台采购项目水下双目三维成像仪、物联网参数数据采集系统、MEMS芯片设计与应用平台、AGV搬运机器人、海面风场观测系统、多波束前视声呐、海洋环境声场探测系统、工业视觉应用实验硬件平台、海洋环境光探测系统、船载X波段雷达、多视窗光电重型转台-823万元详情链接以上项目采购文件获取时间:2021年03月01日 至 2021年03月05日。
  • 2018年春季慕尼黑上海光博会再度强势来袭!森泉邀您来参展~
    一年一度的慕尼黑上海光博会又来到,大会将以国际化的视角呈现广电行业的全方位产品内容,专为满足中国市场的独特需求。届时,森泉将以豪华的展位,超大的阵容,携带多种样机置身会场,并有多位厂家工程师为您现场答疑,请静候精彩呈现:十多个中外品牌产品 (TMC、Arroyo、Exciton、Crystalaser、Vescent、OtO Photonics、Edmund、Siskiyou、Block、Iradion、Avesta、Ocean Optics、NewScale、EOPC、EOT...)54平方米展示面积森泉为您的科研事业添砖加瓦:1) 激光控制:激光电流源、激光器温控器、激光器控制、伺服设备与系统等等2) 探测器:光电探测器、单光子计数器、单光子探测器、CCD、光谱分析系统等等3) 定位与加工:纳米定位系统、微纳运动系统、多维位移台、旋转台、微型操作器等等4) 光源:半导体激光器、固体激光器、单频激光器、单纵模激光器、窄线宽激光器、光通讯波段激光器、CO2激光器、中红外激光器、染料激光器、飞秒超快激光器等等5) 光机械件:用于光路系统搭建的高品质无应力光机械件,如光学调整架、镜架、支撑杆、固定底座等等6) 光学平台:主动隔振平台、气浮隔振台、实验桌、刚性工作台、面包板、隔振、隔磁、隔声综合解决方案等等7) 光学元件:各类晶体、光纤、偏转镜、反射镜、透射镜、半透半反镜、滤光片、衰减片、玻片等等8) 染料:激光染料、荧光染料、光致变色染料、光致发光染料、吸收染料等等1、为保证内容正常显示,图片请使用本地上传。2、新闻内容不得添加电话、邮箱、QQ、网址、二维码等任何联系方式,新闻底部会自动添加联系我们的功能。
  • 东方德菲推出新品---LSA100DARF光学粘滞力测量仪
    LSA100DARF 光学粘滞力测量仪由德国LAUDA Scientific公司研发生产,LSA100DARF不仅具备一般光学接触角测量仪的常规功能, 而且能够直接测量液体和固体材料之间在界面上的相互作用力,是表面分析仪器领域中的一个开拓性创新!LSA100DARF 光学粘滞力测量仪的测量方法:|| 粘附力测量液滴在超疏材料表面上被拉伸过程中产生的垂直方向的粘附力是一个评价材料表面润湿性质的重要指标。 在高精度自动升降台的操控下,材料表面和液滴先相互挤压使得液固两相充分接触,然后缓慢拉伸直到液滴 和材料表面完全分离。软件通过液滴的形变量可以精确的计算出材料表面作用于液滴的垂直方向的粘附力。液体表面张力:72.8 mN/m 液滴体积 v:5 μl 最da粘附力:45.9 μN|| 滞留力测量光学粘滞力测量仪配置速度可控的离心转台时,仪器可以自动对液滴进行离心操控。置于材料表面上的液滴在旋转状态下产生侧向滑动的趋势,当离心驱动力达到最da滞留力数值的时候,液滴沿材料表面发生横向水 平滑动。在这一动态过程中,仪器利用视频同步触发技术通过软件计算能够准确得到材料表面作用于液滴的水平方向的滞留力。技术参数:1.软件计算方法: Laplace-Young (垂直粘附力) Truedrop method(水平滞留力)2.垂直粘附力测量: 样品台升降方式:自动可编程 样品台移动速度:0.04---500 mm/min 位置精度:0.05μm 测量分辨率:0.01μN3.水平滞留力测量 离心样品台控制方式: 自动可编程 zui大离心力(加速度): 40 g 转速范围: 0---750 rpm 控制精度: 2 rpm 旋转加速度: 1---100 rpm/s 测量分辨率: 0.01μN
  • 预算1.72亿元!中国科学院微小卫星创新研究院近期大批仪器采购意向
    近日,中国科学院微小卫星创新研究院发布9项仪器设备采购意向,预算总额达1.72亿元,涉及宽频域高灵敏卫星电磁洁净试验系统、高精载荷在环的超精稳控制验证系统、多光轴高精度对准测量系统、微振动测量与性能验证系统、微弱热弹变形高灵敏测量系统、全生命周期超洁净控制保障系统等,预计采购时间为2024年10月。中国科学院微小卫星创新研究院2024年10月仪器设备采购意向汇总表序号采购项目需求概况预算金额/万元采购时间1高精载荷在环的超精稳控制验证系统本项目建设满足不同类型载荷模拟系统,包含大口径相机图像模拟器、激光链路捕获模拟系统、干涉仪系统和多自由度航天器模拟系统等,模拟包含噪声的载荷输出信号,如图像、转角、距离等信息,经过处理转换成高精度姿态或轨道信息。建设适用于多种载荷的载荷在环超精稳控制器,将载荷信息与传统姿态敏感器测量信息进行融合,计算出相应任务的控制信息,即力或力矩。执行机构测量系统,将测得的力或力矩引入卫星高精度动力学仿真系统,得到相应的姿态及稳定度,最终实现载荷在回路地面半物理条件下超高稳定度控制闭环。19502024年10月2多光轴高精度对准测量系统本系统主要由隔振系统、运动系统与测量系统组成,其中隔振系统为运动与测量系统提供隔振支撑,主要由隔振地基、隔振平台及振动监测系统组成,运动系统主要由直线运动导轨、自准直仪俯仰轴转台、卫星偏航轴转台组成,测量系统主要由多个自准直仪(测量分辨率优于0.01角秒)及水平仪(测量分辨率优于0.2角秒)等构成,结合运动控制软件及测量系统数据采集软件,实现对被测星上设备的光学基准棱镜相对角度的测量。9992024年10月3微振动测量与性能验证系统根据微振动测量与性能验证流程,规划面向大型超稳载荷的微振动测试系统,五大子系统组成如下:1)微振动超静环境子系统;2)多扰源特性测试与分析子系统;3)微振动多功能模拟子系统;4)大型卫星系统级微振动测试子系统;5)微振动一体化仿真子系统。1) 超静微振动环境系统:通过对现有环境系统噪声源更精细化处理,显著降低环境系统噪声,实现10μg环境; 2) 多扰源特性测试与分析系统:基于新的弱力传感器和更高量程力传感器,建立5mN级的干扰力测量系统,满足多扰源的低噪声测试需求; 3) 微振动多功能模拟子系统:通过多轴振动同步控制技术,充分模拟微振动多轴共振环境,进行多工况的微振动模拟;精确模拟在轨无重力环境下微振动干扰工况; 4) 大型卫星系统级微振动测试系统:通过桁架系统和低频双悬吊系统,布置μg级高精度传感器系统和十毫角秒准直测试系统,测试卫星级微振动响应和传递;同时布置高承载气浮控制和主动控制系统,实现2.5t级卫星无重力微振动闭环验证系统的实施; 5) 微振动一体化仿真子系统:通过建立上述四部分过程中的试验数据系统,以及精细模型修正系统,充分的修正卫星微振动传递模型和干扰模型,获得高置信度的在轨仿真结果。39002024年10月4微弱热弹变形高灵敏测量系统包含1)环境保持系统:为高精度热变形测量提供稳定良好的测试环境,为测量过程提供需要的环境温度,同时降低热变形测量过程中的外界振动、环境温度波动、气流扰动等因素对测量结果的影响,是微弱热弹变形高灵敏测量系统的基础。 2)整体位移形面测量系统:用于测量获取不同温度场作用下航天器或关键部组件结构外形变化。可以方便快速的获取结构各个部位的形变情况,用于模型修正和结构构型设计合理性评估。 3)关键点高精度线位移测量系统:用于测量获取不同温度场作用下航天器或关键部组件关键点的线位移变形。获取满足测量精度要求的线位移变形数据,用于直接评估设计结果的满足度。 4)关键点角变形测量系统:用于测量获取不同温度场作用下航天器或关键部组件关键点的角变形。获取满足测量精度要求的角变形数据,用于直接评估设计结果的满足度。 5)高精度温度场测量系统:用于测量获取测试过程中航天器或关键部组件的温度场变化以及稳定后的温度场分布。确定温度场平稳时间、评估最终加载温度场有效性,同时获取温度场用于模型修正和设计方案优化。9102024年10月5超稳温度控制试验验证系统包含1)高精度测温系统 由精密驱动电源输出的驱动电压加载于高精度测温电路,该电路由精密分压电阻和高灵敏度热敏电阻构成,通过封闭处理后放置于精密恒温槽内以抑制元器件的温度漂移。热敏电阻上的微小分压信号通过锁相放大器滤除信号源的固有噪声后,放大信号输入高性能ADC,最后输出的信号转换成分辨率优于10μK的温度读数。2)超稳热试验环境系统 超稳热环境试验系统由有源控温区、无源控温区和热屏蔽通道组成,如下图所示。对热阻尼层1进行主动控温,控温精度优于10mK量级,通过热阻尼层1与热阻尼层2间被动阻尼的设计,最终实现内部热沉温度稳定度满足10mK级精度。此外,无源测试对象和有源测试对象间设计有数据传输通道,通道内温度稳定度的优于1mK。3)高效传热系统 ①先进热管传热系统 实验系统主要由环路热管、加热系统、冷却系统、图像采集系统和数据采集系统组成。环路热管由蒸发器、补偿器、气体管路、液体管路和冷凝器组成,利用内部工质在蒸发器中蒸发并转移到冷凝段冷凝后,通过毛细芯将液体抽吸回流至蒸发段进行循环并传递热量。加热系统和冷却系统用于模拟星上的热端和冷端的换热条件。先进热管实验系统中设置局部可视化窗口并采用高速摄像机内部的流态进行采集和分析。气体管路和液体管路布置压力测点对流动压降进行测试,在蒸发器和冷凝器进出口布置温度测点对环路热管传热性能进行测试,得到热管的流动和传热性能。在保证环路热管高效的流动和传热性能的基础上,开展环路热管气体管路和液体管路的柔性管段与可展开式辐射器之间的集成,并进一步进行传热性能和寿命测试。②泵驱微通道两相传热系统 泵驱微通道两相传热系统开发平台的工作主要包括:基于仿真模拟对微通道的尺寸结构等进行优化分析,得到设定工况下的微通道散热器内流道的分布、数量、宽度和高度等结构设计的优选方案,并搭建微通道流动沸腾散热性能测试实验系统,完成微通道两相流系统的测试验证。7102024年10月6全生命周期超洁净控制保障系统超高洁净度AIT保障子系统是为卫星研制及在轨防污染提供全方位全流程的服务保障,需要从星上原材料控制、组件生产加工及清洁到卫星整星级AIT过程进行监控,实现卫星全流程的防污染控制。其需要从AIT洁净厂房建设、污染监控及检测能力及材料控制能力等方面进行管控。超高洁净AIT保障子系统,具有如下功能: 设备、人员:采用“逐次逼近,层层嵌套”的设计思路,经过三级净化专用通道进入千级环境,千级环境设备、人员严格控制:结构件、多层:在十万级环境下进行初步清洁静置,在万级下清洗除气,在千级环境下加工存储; 高洁净卫星材料专用除气设备:满足实时监测污染物出气率实时监测功能; 污染物监测功能:具备量化检测航天器材料表面颗粒物和分子污染物沉积相关技术指标的技术能力。11402024年10月7低噪声复杂耦合磁洁净测试系统高磁洁净度测试与试验系统主要包括测试场地、测试设备。试验设备主要包括精确磁补偿与充退磁装置、交流低频磁场测量装置、多磁偶极矩测量装置、无磁转台与转运装置、磁测设备标定装置、环境磁场监测装置、增强现实辅助测试装配装置、同心三轴磁测装置。17802024年10月8宽频域高灵敏卫星电磁洁净试验系统系统由高精度快速EMC仿真设计平台、超高电磁洁净度EMC/EMI测试暗室、超大静区紧缩场天线辐射特性测试暗室三大部分构成。系统主要具备如下功能: 1)基于集群计算的单机及整星级高精度快速EMC及天线电磁辐射的仿真设计,结合实测数据外推及局部物理验证手段进行低频段天线或载荷电磁辐射表征分析能力。 2)高灵敏度的EMC/EMI测试 提供高精度的星上载荷与平台的单机级与卫星整星级的EMC/EMI测试能力。依据军国标151B-2013及卫星对星上载荷与单机EMC/EMI的要求,提供CE101,CE102,CS101, CS106,CS109,CS114,CS115,CS16,RE101, RE102,RS101及RS103检测能力。特别针对未来超长波天文观察卫星(DSL)等对电磁洁净度有极高要求的科学卫星提供高电磁洁度的测量能力。 3)天线辐射特性测试 提供宽频域(0.4~60GHz,后期可拓展至110GHz), 大测试静区(最大达4.5米)的整星天线辐射方向下图测试能力,可实现单天线及整星状态下天线辐射方向下图测试、增益测试、圆极化轴比测试、相位中心测试以及通信载荷的 EIRP与G/ T值等通信性能的测试。40302024年10月9基于局部物理验证的全维数字化性能评估子平台该平台主要围绕基于局部物理验证的MBSE系统工程开展的针对复杂化高精度航天器进行仿真和设计能力提升,拟提升航天器系统设计过程中的多物理场协同设计以及全链路误差分析等方面的能力。该子平台重点建设高复杂度MBSE、基于局部物理验证的全链路误差和噪声仿真、硬件支撑平台。通过该项目的建设,通过基于数字化的MBSE技术初步实现全链路误差模型的仿真及分析能力,迭代周期缩短一半的水平。1)面向多学科高复杂度MBSE附属软件 实现面向超净超稳超精航天器解决方案域以及系统架构搭; 具备外部软件协同计算分析能力; 覆盖航天器系统级到部件级力、热、电、磁、动力学模型涵盖。 2)基于局部物理验证的航天器全链路误差和噪声仿真系统 通过局部物理验证实现:探测器-有效载荷-航天器-任务效能的全链路噪声动态闭环仿真; 构建局部物理验证信息管理平台; 构建支持物理模拟仿真信息; 构建数字卫星交付能力。17842024年10月
  • 海克斯康计量技术助力MTU航空发动机新卓越中心
    MTU航空发动机公司是德国领先的发动机制造商,于2013年4月在其德国慕尼黑总部启动77大厦,即专用于顶级叶盘制造的新卓越中心。   凭借先进的三维坐标计量技术,海克斯康计量PTS分部成功助力该项目的实施。先进的坐标测量技术包,包括快速可靠的Leitz扫描技术、开放且灵活的QUNIDOS测量软件和I++模拟器的脱机编程许可。借助于这些先进的技术,MTU航空发动机将测量时间削减超过50%。据悉,为了匹配中心内顶级的整体叶盘制造,将在该中心安装使用8台带有转台的Leitz PMM-C测量机。   更多关于该卓越中心的信息,请点击查看:   http://www.mtu.de   http://www.youtube.com   关于海克斯康计量   海克斯康计量为工业计量提供了完善的产品和服务,包括汽车、航空航天、能源和医疗等领域。从产品开发、设计到加工、装配和最终验收,我们为用户提供贯穿产品全生命周期的可操作测量信息。   凭借遍布全球的20多个测量产品制造基地、70个提供技术服务与方案展示的精密计量中心,以及分布于五大洲的100多个分销合作伙伴所组成的网络,确保客户完全掌控其生产流程、提升产品质量并提高生产效率。   海克斯康计量隶属于海克斯康(Nordic exchange: HEXA B www.hexagon.com)。海克斯康是全球领先的规划、测量和可视化技术供应商,协助客户规划、测量和定位对象,实现数据的优化处理与展现。   更多信息,请访问www.hexagonmetrology.com.cn。
  • 美国北极星成像发布美国北极星成像X射线系统 X3000型工业CT新品
    动态和高精度X3000 是北极星成像公司的最新标准系统。无论检测小型还是大型零部件,X3000 都是客户的完美选择,因为该紧凑型系统具备通常只有较大型 X 射线或 CT 系统上才拥有的独特功能。系统功能X 射线能量源:10 kV - 240 kV几何放大率: 3000x系统整体最大分辨率:~500 nm19.5 in (50 cm) 直径 x 24 in (61 cm) 高度的最大尺寸扫描CT 软件遵循5步向导快速重建三维模型全面的采集、处理和存档程序,带有用户友好的界面高性能图像处理和尺寸测量功能符合DICONDE标准非专有多图像格式计算机断层扫描采集模块三维计算机断层扫描重建和可视化可选的四维计算机断层扫描提供 vorteX, subpiX, 和 mosaiXX射线源电压范围:10 kV - 240 kV最小焦斑大小:~500 nmX 射线管类型:纳米焦点,微米焦点,微型焦点可选的双射线管头配置X 射线探测器数字 X 射线探测器类型:平板 (DDA)平板探测器尺寸:最大 16 in x 16 in (40 cm x 40 cm)级别选项:标准、高级或 ASTM控制转台最大样品重量:75 lb (34 kg) 标准控制台行程:垂直 =24 in (61 cm)水平 (x-轴) = 13 in (33 cm)旋转 = 360° 连续标称部件封套:直径:19.5 in (50 cm) 高度:24 in (61 cm)支持自动扫描的可编程动作控制,带有自动图像处理和存档功能*同时提供 独立版本机柜外部尺寸:103.5 in (263 cm) 宽度 x 51.9 in (132 cm) 深度 x 79 in (201 cm) 高度重量: 9500 lb (4300 kg)机柜特点:带有护盖的电缆接入端口,内部照明,32 in x 59 in (81 cm x 150 cm) 电动滑动检测观察门,安全光栅钢/铅/钢结构达到或超过 21 CFR 1020.40 和 EN 61010-2-091 2012标准触摸屏操作附带一套人体工程学桌椅具体规格因射线管、探测器和其他可选配置而异。创新点:X3000 是北极星成像公司的最新标准系统。无论检测小型还是大型零部件,X3000 都是客户的最佳选择,因为该紧凑型系统具备通常只有较大型 X 射线或 CT 系统上才拥有的独特功能。 美国北极星成像X射线系统 X3000型工业CT
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制