当前位置: 仪器信息网 > 行业主题 > >

摇表

仪器信息网摇表专题为您提供2024年最新摇表价格报价、厂家品牌的相关信息, 包括摇表参数、型号等,不管是国产,还是进口品牌的摇表您都可以在这里找到。 除此之外,仪器信息网还免费为您整合摇表相关的耗材配件、试剂标物,还有摇表相关的最新资讯、资料,以及摇表相关的解决方案。

摇表相关的资讯

  • 日本林纯药公司肯定列表农药混标
    日本林纯药公司创建于1904年,主要生产和经营化学品,包括标准品,电子工业试剂等,林纯药也是日本最大的标准品生产商之一,可以提供3000多种农药兽药及代谢物、内分泌干扰物等标准品。 林纯药公司根据日本厚生劳动省颁布的肯定列表,配置了适用于GC/MS和LC/MS的农药混标,7种GC/MS混标包括354种农药组分,10种LC/MS混标包括282种农药组分(部分组分重复)。这些特别配置的农药混标,可以满足客户同时测定多种农药的需求,满足肯定列表检测的要求。 Normal 0 7.8 磅 0 2 false false false EN-US ZH-CN X-NONE MicrosoftInternetExplorer4
  • ADC药物的深度表征
    抗体偶联药物(antibody-drug conjugate,ADC)是一类通过特定的连接子将靶向单克隆抗体与高杀伤性的细胞毒性小分子药物偶联起来的生物药,以单克隆抗体为载体将小分子细胞毒性药物高效地运输至目标肿瘤细胞中,起到治疗的目的。与传统抗体药相比,ADC药物的结构复杂度和异质性更高,因为添加了多变的有效载荷和连接子1。为确保药物安全性和有效性,ADC的深度表征在其开发过程中至关重要。这不仅包括对mAb的翻译后修饰(PTM)的鉴定和定位,还包括药物偶联的鉴定。由于质谱技术的飞速发展,质谱已经成为ADC药物表征中最广泛使用的方法。完整质量分析是用于确定小分子药物与抗体比率(DAR)的常规方法,而对结合位点的深入表征,通常依赖于bottom-up的方法。现在最广泛采用的碰撞诱导解离(CID)技术能够提供氨基酸序列确认,但是这种能量比较大的碎裂技术也将有效载荷碎裂为更小的片段,从这种方法获得的高度复杂的谱图可能很难解析。而能量更柔和的碎裂方法可以促进此类复杂样品的解析,一种基于电子活化裂解(EAD)2,3的创新、高度可重复的碎裂方法用于分析来自商业化ADC药物的偶联肽。使用10 Hz快速非靶向的数据依赖采集(DDA)方法采集数据,通过此工作流程,一次进样就可以应用基于EAD的碎片进行常规和高级表征。曲妥珠单抗美坦新偶联物(T-DM1)是最早的ADC治疗药物之一,于2013年获得FDA批准用于治疗人表皮生长因子受体2(HER2)阳性转移性乳腺癌。T-DM1是由单克隆抗体曲妥珠单抗和细胞毒素美坦新(DM1)通过不可裂解连接子共价偶联而成(图1)。将单克隆抗体(mAb)的靶标特异性与细胞毒性药物的高效率相结合,可充分利用两个方面的优势,最大限度地减少副作用3。T-DM1是与氨基连接,如连接在曲妥珠单抗的赖氨酸残基的侧链中。先前的完整质量研究表明,T-DM1的平均DAR约为3.5.1,4。但是曲妥珠单抗中有88个赖氨酸残基和4个N端基团,可能会出现450万个以上的不同分子形式1。有效载荷的位点和结构将直接影响药物的功效和安全性,因此将其归类为关键质量属性(CQA),并且需要在开发过程中进行全面表征和严格监控。图1. 细胞毒药物有效载荷和连接子与mAb偶联的示意图。T-DM1由DM1(黑色),靶向连接氨基残基的MCC连接子(linker,蓝色)和单克隆抗体组成。本研究选择了与Zeno&trade EAD相结合的DDA方法。采用这种方法,不仅可以执行常规的肽图分析,而且EAD可以在同一针分析中进行高级表征。此外,Zeno EAD增强了碎片离子的检测能力,从而正确鉴定了低丰度物质。图2展示了在偶联肽SCDK [DM1]THTCPPCPAPELLGGPSVFLFPPKPK上观察到的碎裂模式的例子。在分析中未观察到没有连接子和药物或其部分的肽,表明其完全偶联。获得了此肽段高质量的MS / MS谱图,从而使该特定肽段的MS / MS序列覆盖率达到96.6%。一个更占优势的碎片从 m/z大于500的有效载荷产生(请见图2中的标记)。观察到的有效载荷结构的主要裂解位点是DM1的COO-C键,这种碎裂模式与先前利用CID技术产生的一系列小碎片的数据不同1。较大分子量的药物碎片可以用作特征碎片,以更具体地确认有效载荷的存在,并可以用来确认有效载荷的结构。图2. 应用Zeno EAD得到的偶联肽SCDK [DM1] THTCPPCPAPELLGGPSVFLFPPKPK(z =+4)的碎片数据。来自肽段主链指定偶联肽段离子的全扫描MS / MS数据,以及有效载荷中的碎离子信息。此外,通过将Zeno EAD技术用于增强的碎片离子检测,还可以很好地检测到来自肽段主链的片段信息,从而提供有关肽段的分子完整性的信息。由于酶的空间位阻,抗体上偶联药物的存在会导致样品制备酶解过程中的更多漏切位点。另外,赖氨酸残基和有效载荷之间的结合过程是随机反应,偶联的比率并不总是100%,这导致了多样性和低丰度物质存在。当一个肽段中存在多个潜在连接形式时,鉴定正确的连接位点可能是一个挑战。肽段ASQDVNTAVAWYQQKPGKAPK是这种具有挑战性的另一个例子(图3)。它包含一个漏切位点和一个脯氨酸相邻的N端赖氨酸,导致偶联位点的多种选择。但是,有了从EAD技术碎裂得到丰富、高质量的MS / MS质谱图,就可以实现药物定位的自动匹配(图3A)。由于有效载荷靠近肽的C端,因此检测到的C离子比Z离子丰富(图3A),而未结合的肽显示出来自C端和N端的丰富片段(图3B)。众所周知因为电子活化解离技术不会解离脯氨酸的N端,我们还检测到了除了C15以外的从C3到C17的全系列C片段7。这提供了确凿的证据表明K15未与细胞毒药物偶联。此外,z4,z5和z7表明K18(而非K21)是药物偶联的正确位点。图3. 应用Zeno EAD得到的来自偶联/非偶联肽ASQDVNTAVAWYQQKPGK [DM1] APK(z =+3)的碎片的数据。A:来自肽段主链指定偶联肽段离子的全扫描MS / MS数据,以及有效载荷中的碎离子信息。B:来自肽段主链指定非偶联肽的全扫描MS / MS数据。 连接子显示为蓝色,DM1药物显示为黑色。结论:通过EAD的新型碎裂模式,实现了具有多个潜在位点的多肽中药物偶联的准确定位与传统的MS / MS分析相比,EAD技术获得更丰富的MS/MS碎片信息。应用Zeno EAD技术,即使对于中等强度或极低强度的母离子(例如低丰度的偶联肽),也能获得令人信服的二级碎片和出色的数据质量SCIEX ZenoTOF&trade 7600系统强大、高重现性且易于使用的多重碎裂技术,使用户能够以简单的方式解决具有挑战性的分析问题(CN)Characterization of an antibody-drug-conjugate (ADC) using electron activated dissociation (EAD).PDF点击下载声明:版权为 SCIEX 所有。欢迎个人转发分享。其他任何媒体、网站如需转载或引用本网版权所有内容须获得授权, 转载时须注明「来源:SCIEX」。申请授权转载请在该文章下“写留言”。
  • 张伯礼代表:中药制药水平要提高 仪器设备研发需创新
    p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201803/noimg/9b05d3d0-7c40-44e1-8cc7-edc742c450b6.jpg" title=" 001.jpg" / /p p style=" text-align: center " strong 3月12日,全国人大代表,中国中医科学院院长、天津中医药大学校长张伯礼院士(左)做客新华网2018全国两会特别访谈。新华网 杨锘摄 /strong /p p   12日,全国人大代表,中国中医科学院院长、天津中医药大学校长张伯礼院士做客新华网2018全国两会特别访谈。张伯礼表示,中医药要和现代信息科学“联姻”,如何和现代科技结合,如何把疗效优势数据化、客观化是很重要的研究方向。 /p p strong   以下为访谈主要内容: /strong /p p strong   新华网:在推动中医药高质量发展方面,您还有哪些建议? /strong /p p   张伯礼:经济要高质量发展,学术研究也要高质量发展,不是追求数量,而是要追求质量,中医药也是到了这种地步。基本的医疗机构、医疗体系已经建成了,应该提高医疗服务质量。如今,很多病人还是愿意到大医院排队,而不愿意到基层去就医,因为基层缺好医生。我们对基层的医生要加强培训,三级医疗要互动起来,包括基层医务人员的培训,也包括大医院的大夫要主动走下去,帮助他们、辅导他们,这样才能把基层做强了。基层队伍也要加强继续教育,接受新的方法,掌握新的知识。现在通过网上的教学,已能做到这一点。打开远程会诊系统,疑难病症可以直接传到大医院,大医院再安排固定的医生共同会诊这些病例,能提高基层医疗服务和医生的水平,也方便了患者,这些都是值得推广的模式。 /p p   对于大医院来说,对于中医药的发展关键是提高临床疗效,要用证据说话。中医治病不是包打天下,什么病什么阶段能治,疗效要用证据说话,需要我们提供高质量的、可信的证据,给病人提供科学合理的诊治服务。 /p p    strong 新华网:现在到处都在讲创新,医疗手段也在不断创新,中医如何创新呢? /strong /p p   张伯礼:中医望舌诊、脉诊几千年了,也在与时俱进。现在已有舌诊仪、脉诊仪帮助诊断分析,也有较好应用。还有一批仪器也在积极研制中。今年我有个建议是提高中药制药的水平,同时提出来中医药要和现代信息科学“联姻”,包括一些仪器设备的研制。其实,中医的理念非常好、很先进,如何和现代科技结合,如何把优势数据化、客观化也很重要,相信与现代科技结合后会有更快发展。 /p
  • 两会代表之声|张伯礼代表:促进中药制药装备实现自动化、数字化、智能化升级
    “全面采用AI技术,智慧制药能够为制药企业带来从研发、生产、流通到终端消费全链条的质量提升。”在2023年全国两会上,全国人大代表、中国工程院院士、天津中医药大学名誉校长张伯礼建议,设立生物医药制造重大专项,支持智能制药关键技术与装备研发,鼓励生物制药装备的发展,重点提升生物疫苗等防疫防控产品的应急生产能力。绝大部分企业尚未建立数字化制药生产线生物医药产业是关系国计民生和国家安全的战略性新兴产业,涵盖生物技术产业、制药产业、生物医学工程产业等多个方面。近年来,在利好政策引导下,我国生物医药产业驶入发展“快车道”,一系列新产品新服务为保障人民生命健康提供了新助力。全国人大代表、中国工程院院士、天津中医药大学名誉校长张伯礼。“但总体而言,我国制药产业信息化、智能化水平还不高,绝大部分企业实现了机械化制药,但尚未建立数字化的制药生产线。”张伯礼建议,提升医药制造技术水平,大力扶持行业整体升级。他分析,智能制造能够帮助制药企业增强质量控制、降低质量风险,还可以帮助制药企业提升效率、优化成本。同时,智能制造系统通过生产、质控、物流、营销、人力等环节的互联互通,实现生产资料的最优化调度,提升生产效率。智能制造可以帮助制药企业发展新的运营模式。通过与生产供应上游供应商和下游用户的相关系统对接,制药企业可以合理高效地利用大健康数据、医疗大数据,制定更有针对性的研发方向和市场战略。引领全行业数字化转型,促进药品制造技术升级随着健康中国建设全面推进,居民健康消费升级,要求医药工业加快供给侧结构性改革,更好地满足人民群众的美好生活需求。“建议提高药品、医疗器械全生命周期质量管理水平和产品品质,推动医药工业高端化、智能化和绿色化发展,促进互联网、大数据、区块链、人工智能等新一代信息技术和制造体系融合,提高全行业质量效益和核心竞争力。”张伯礼说。他建议,创新和优化药品审评政策,鼓励在保障药品质量的前提下,积极推进绿色智能制造技术在制药工艺改造与提升中的应用。此外,出台药品优质优价、纳入医保及集采等相关政策,引导企业在工厂设计、生产制造、物流仓储、经营管理等各个环节应用数字化技术,提高精益管理和质量控制水平,鼓励有条件的企业建设智能工厂,引领全行业数字化转型,促进药品制造技术升级。
  • 药物分析新技术系列约稿|气体吸附技术在医药粉体表征中的应用
    药物粉体是大部分药物制剂的主体,其疗效不仅取决于药物的种类,而且很大程度上还取决于组成药物制剂的粉体性能。大量的研究表明,药物粉体的比表面积、孔径分布和真密度等物性参数关系到粉末颗粒的粒径、吸湿性、溶解度、溶出度和压实度等性能,在药品的净化、加工、混合、制片和包装能力中扮演着重要角色。尤其是对于原料药和药用辅料,其比表面积等参数是其性能的重要指标。原料药,作为药物的活性成分,其比表面积会影响其溶出度、颗粒粒径和溶解度等性质。在一定条件下,同等重量原料药的比表面积越大颗粒粒径则越小,溶解和溶出速度也相应加快。通过对原料药比表面积的控制,还可使其达到很好的均匀度和流动性,保证药物含量分布均匀。药用辅料,作为生产药品和调配处方时使用的赋形剂和附加剂,比表面积正是其重要功能性指标之一,它对于稀释剂,粘合剂,崩解剂,助流剂,尤其是润滑剂具有重要意义。例如,对于润滑剂而言,比表面积显著影响其润滑效果,因为润滑剂要起到润滑效果的前提,就是要能均匀地分散在颗粒的表面;一般来说,粒径越小,比表面积越大,越容易在混合过程中均匀分布。由此可见,精准、快速、有效的测试医药粉体的比表面积和真密度等物性参数,一直都是医药研究中不可缺少的关键环节。因此,在美国药典USP和USP,欧洲药典Ph. Eur. 2.9.26和Ph. Eur. 2.2.42以及《中国药典》2020年版四部通则第二批增修订的理化分析内容0991和0992中,都明确规定了药物粉体比表面积的测定方法和固体密度的测定方法。一、气体吸附技术及其应用气体吸附技术是材料表面物性表征的重要方法之一,基于吸附分析能够对原料药、药用辅料和药物制剂的比表面积、孔容及孔径分布、真密度等参数进行精准的分析。进而对药品的有效期、溶解速率与药效等性能做一些基础性的分析,助力医药行业的快速高质量发展。比表面积:主要对于药品有效期、溶解速率和药效有着重要影响。一般来说,比表面积大,其溶解和溶出速度也相应加快,进而保证了药物含量分布均匀;但比表面积过大:会使药物吸附更多的水分,不利于药物的保存和药效的稳定。孔容及孔径分布:对药物崩解、释放和生物利用度有着关键的影响。较大的孔容可在孔道内负载各种药物, 并可对药物起到缓释作用, 提高药效的持久性;此外,一定范围内孔径增大,药物的释放速率也会相应加快。真密度:对粉体药物的流动性,均匀性,压缩性以及离析度、结晶度等有着重要的影响。真密度的大小可作为判断材料的结晶状态以及二元混合物中固体含量百分比;此外,对于优化辊压速度、辊压压力等工艺参数具有一定的指导作用。2、 比表面积和孔径分布表征中的实际应用案例1、 原料药蒙脱石散的比表面积表征蒙脱石,是由膨润土提纯加工而得,因其特殊的层状晶体结构使其具有良好的吸附能力、阳离子交换能力和吸水膨胀能力,在药学上具有独特的优势。其作用机制与其较大的比表面积息息相关。由于其较大的比表面积,因而可对毒害物质具有较强的吸附作用;此外,与消化道黏液蛋白静电结合,对消化道黏膜起保护和修复作用[1]。以下是使用国仪量子V-Sorb X800系列比表面及孔径分析仪对蒙脱石散粉体材料的表征案例,据中国药典2020版四部规定,采用氮气作为吸附质,样品待测面积至少>1m2 ,我们建议不少于0.1g,在105℃下真空加热脱气2小时后进行测试。从图1可以看出,不同种类的蒙脱石散其表面积差距较大,分别为 76.57 m2/g,47.67 m2/g和29.32 m2/g,研究者可以通过比表面积的测试结果来进行基础药性的判断,进而根据药品的实际作用需求来选择相应类型的原料。图1 不同种类的蒙脱石散比表面积测试结果2、 药用辅料硬脂酸镁的比表面积表征硬脂酸镁,呈片状晶体形状,主要用作片剂和胶囊的润滑剂或抗粘剂;由于其不确定的化学组成导致硬脂酸镁具有不同的物理性质,从而影响其润滑功能,其比表面积对硬脂酸镁润滑功能起到关键作用[2]。比表面积越大,其极性越强,附着力越大,可以在颗粒表面形成一层较薄但均匀的硬脂酸镁层,相应的合成物的润滑性就越好;而比表面积较低的硬脂酸镁,容易在颗粒表面富集。润滑性能就会较差。以下是使用国仪量子V-Sorb X800系列比表面及孔径分析仪对硬脂酸镁的表征案例,据中国药典2020版四部规定,采用氮气作为吸附质,样品待测面积至少>1m2 ,我们建议待测面积>5m2,根据美国药典要求,其BET方程的P/P0选点在0.05~0.15之间,其线性拟合度要大于0.9975。从图2可以看出,在经过40℃、80℃和100℃预处理之后,其比表面积测试结果分别为 6.14 m2/g,5.78 m2/g和3.10 m2/g,可以发现不同预处理温度对其表面积测试结果有较大影响,且随着脱气温度升高,其比表面积数值越小,经过分析主要是硬脂酸镁的成分复杂,且熔点较低,较高的脱气温度会造成硬脂酸镁烧结或熔化。图2 不同预处理温度下硬脂酸镁比表面积测试结果3、 纳米氧化锆材料的比表面积和孔径分布表征纳米氧化锆材料是一种白色结晶氧化物,在过去的十年中由于其表面光滑、质地致密,高强耐磨,良好的生物相容性和化学稳定性,因而在医疗硬组织修复领域中很受欢迎。以下是使用国仪量子V-Sorb X800系列比表面及孔径分析仪对纳米氧化锆的表征案例。从图3可以看出,粒径为2.0-2.5 μm(左)和粒径为1.0-1.5 μm(右),其比表面积测试结果分别为18.64 m2/g和19.91 m2/g,可以发现随着粒径的降低其比表面积数值在增加。此外,也对粒径为1.0-1.5 μm的纳米氧化锆材料进行了孔径分布的表征,从图4的N2吸附-脱附等温线可以看出,主要为Ⅱ类等温线,在高点时吸附量陡增,可能存在少量的大孔结构;从BJH介孔孔径分布图来看,样品基本没有介孔结构,但在100 nm-200 nm处存在相对集中的孔径分布,可能含有部分大孔结构,可结合扫描电镜进一步观察确认。从SF-微孔孔径分布图以及N2吸附-脱附等温线图来看,样品存在较为少量的微孔结构,集中分布在0.75 nm,即最可几孔径为0.75 nm。图3 不同颗粒尺寸的纳米氧化锆比表面积测试结果(左:2.0-2.5 μm,右:1.0-1.5 μm)图4 N2吸附-脱附等温线(左)、BJH-孔径分布(中)、SF-孔径分布(右)三、真密度表征中的实际应用案例在医药领域,气相二氧化硅的亲水性可用来消除水肿和降低伤口发炎产生的分泌物;帮助腹泻病人固定和结合水分;在皮肤病学中广泛用作干燥剂,其高吸附性可用来吸附微生物和微小病毒。气相二氧化硅还可作为乳浊液的稳定剂、药物载体,延长药效和促进药物吸收。以下是使用国仪量子G-DenPyc X900系列真密度测定仪对气相二氧化硅材料的表征案例。从图5可以看出,经过不同改性后的气相二氧化硅其真密度数值具有较大的差异,分别为0.154 g/ml,0.299 g/ml和0.382 g/ml,研究者可以在保证药效的前提下,选择相应较轻的二氧化硅进行生产加工。图5 不同改性后的气相二氧化硅的真密度测试结果国仪量子比表面及孔径分析仪国仪量子V-Sorb X800系列产品可以提供超低比表面积和微孔、介孔孔径及其分布的稳定测试,是满足中国药典测试方法的高通量快速经济型仪器;实现来料、出厂成品比表面积快速测试,孔径分布分析,进而进行质量把控,调整工艺参数,预估药品性能等。产品具有测试高效、结果准确、性价比高、自动化操作简单易学等诸多优势。全自动比表面及孔径分析仪V-Sorb X800系列参考文献[1] 次旦卓嘎. 蒙脱石治疗小儿腹泻的临床效果分析[J]. 世界最新医学信息文摘, 2019(79):2.[2] 郭仁庭, 覃忠富,傅长明, 等. 硬脂酸镁的性质、应用及市场前景综述[J]. 企业科技与发展: 上半月, 2011, 000(004):P.15-17.
  • 代表委员建言中医药现代化:创新勿忘守正 加强药材追溯
    “加大中医理论下的创新中药研发力度,不是做西式中药,也不是西化中药,而是符合中医理论和诊疗特点的创新中药。”全国政协委员、成都中医药大学副校长曾芳近日接受记者采访时表示,中医药现代化进程中需要注意保持其理论、方法和技术特色,只有守正才能更好创新。  中医药是包括汉族和少数民族医药在内的中国各民族医药的统称。新冠肺炎疫情期间,中国中医药为抗击疫情作出了巨大贡献。虽然中西医结合、中西药并用的“中国方案”受到越来越多国家关注,但中医药现代化仍面临着药材追溯体系不完善、新技术运用不足等挑战。  2021年2月,中国国务院办公厅印发《关于加快中医药特色发展的若干政策措施》,通过28条政策措施全面加大对中医药的政策支持力度和投入力度。全国两会即将召开之际,多位全国人大代表、政协委员就中医药现代化建言献策。  在曾芳看来,中医理论在现代化的过程中,不仅需要保持其传统精髓,还需要注入新的活力。这需要构建符合现代疾病特点的中医诊疗、康复、养生体系,强化高层次的中医药人才培养,并加大学科交叉建设。  曾芳介绍,当前已有不少科研人员尝试将高新技术引入中医诊断中,在中医药传统理论指导下,通过研发智能装备,提升传统中医的望、闻、问、切的精准度。“不管是中医理论也好,还是诊疗方法,都需要与时俱进,学科交叉是能真正实现中医药高质量可持续发展的重要路径。”  “包括藏医在内的中医药,是经验医学,但是现在学校的教育偏西医化,重理论轻实践,学生毕业后的水平不高,难以行医。”在全国人大代表、四川省甘孜州藏医院副院长江吉村看来,中医药人才培养不能摒弃传统理论和人才培养方式。  江吉村介绍,传统的藏医人才培养,有民间师徒传承、父子传承等,但目前中国的执业医师法提出了学历要求。“西医要求学历可以理解,但是也按照同样的标准要求藏医,对传统的师承模式有伤害。”对此他建议,藏医人才培养除了依赖学校,还应重视民间传承。  安全有效的药材是发展中医药产业的基础。在全国人大代表、好医生集团董事长耿福能看来,建立药材追溯体系是保证中医药质量的关键。应促进中药材标准化种养殖基地的建设,通过中国国家食药监局出台建设标准,知识产权局进行地理标志认证,从源头保证中药材质量。  “长期以来,藏药的安全性很受质疑,给藏药发展带来了很大困难。”江吉村表示,要解决这一困境,需借助现代化的检测检验手段为藏药正名。他呼吁中国国家食药监局对藏药进行大规模的权威检测,并将结果公之于众,为藏药现代化创造更好条件。  据了解,当前中国药典自今已颁布十版,从最初的中药标准的“基源与性状鉴别”,历经采用“显微鉴别”“色谱、光谱技术”“TLC鉴别、HPLC含量测定、DNA、特征和指纹图谱”等新技术。  “药典中医药标准的变化,正是中医药探索现代化发展之路。”耿福能建议,中医药标准应突破以化学为基础的质量标准构建思路,如中药特征图谱、指纹图谱、生物效价、大数据等,建立成为中国自立的创新型质量控制模式,并可为国际社会接受。  江吉村同样表示,单纯以化学标准对中药进行“有效成分分析”,是中医药现代化的误区。他以传统藏药中的复方药举例,一副药包含几十种药材,其中主药起治疗效果,辅药或降低主药的“毒性”,或调理患者身体,“如果只用西药的精细化标准来衡量藏药,是片面的”。
  • 盘点|单抗靶点TOP10及代表药品
    p    span style=" color: rgb(146, 208, 80) " 药物与机体生物大分子结合的部位即药物靶点。当前国际上药物研发领域竞争的焦点之一就是药物靶点的研究和发现。新的药物靶点的发现往往会成为一系列新药发现的突破口,靶点研究对药物研发企业的意义不言而喻。本文对单抗领域TOP10的热门靶点及代表性药品进行盘点与简要分析,如VEGF/VEGFR、TNF-α、CD20、HER2以及白介素家族靶点成员。 /span /p p    span style=" color: rgb(255, 192, 0) " 药物靶点定义: /span 协和医学院药物筛选中心主任杜冠华对药物靶点这样定义:药物靶点是能够与特定药物特异性结合并产生治疗疾病作用或调节生理功能作用的生物大分子或生物分子结构 对物质的结构产生生物效应,在复杂调节过程或作为通路中具有主导作用 病理条件下对物质的表达、活性、结构或特性可以发生改变。 /p p span style=" font-size: 18px " strong   单抗热门靶点TOP10 /strong /span /p p   我们从国内外上市及国内临床三个维度统计了近7年与靶点相关联的药物数/临床试验数总和,得出了关联总数前10的靶点。 /p p style=" text-align: center " img width=" 599" height=" 300" title=" A.jpg" style=" width: 443px height: 237px " src=" http://img1.17img.cn/17img/images/201808/insimg/24aa8bee-9dc0-4490-b61b-db727c57c173.jpg" / /p p style=" text-align: center "   span style=" font-size: 14px "  图:关联国内上市单抗药物数TOP10靶点 /span /p p style=" text-align: center " span style=" font-size: 14px " img width=" 599" height=" 305" title=" D.jpg" style=" width: 425px height: 262px " src=" http://img1.17img.cn/17img/images/201808/insimg/5479a955-b9de-4c7f-8526-154f8c74b67d.jpg" / /span /p p style=" text-align: center "    span style=" font-size: 14px " 图:关联国外上市单抗药物数TOP10靶点 /span /p p style=" text-align: center " span style=" font-size: 14px " img width=" 599" height=" 298" title=" E.jpg" style=" width: 397px height: 263px " src=" http://img1.17img.cn/17img/images/201808/insimg/a31ee332-fbe0-4aeb-9c92-e8ae4654cc00.jpg" / /span /p p style=" text-align: center "    span style=" font-size: 14px " 图:关联国内临床试验数TOP10靶点 /span /p p    span style=" font-size: 18px " strong 国内上市单抗药品作用靶点榜首:VEGF/VEGFR /strong /span /p p   国内上市单抗药品作用的靶点,排名第一的是VEGF/VEGFR,对应上市药品数量达到8个,其中国产药品1个,进口药品7个 strong 。 /strong /p p strong   /strong strong span style=" color: rgb(255, 192, 0) "   /span span style=" color: rgb(255, 192, 0) " (一)VEGF/VEGFR靶点主要作用机制:血管生成信号通路 /span /strong /p p   血管内皮生长因子(Vascular Endothelial GrowthFactor,VEGF),是细胞内刺激血管生成的信号蛋白,具备促进血管新生和再生的功能。VEGF通过与细胞膜表面的血管内皮生长因子受体(VEGFR,又称酪氨酸激酶受体)结合,通过一系列信号通路传导产生生物学效应最终导致血管生成。VEGF家族主要包括5种:VEGFA、VEGFB、VEGFC、VEGFD、VEGFE。 /p p   1971年Folkman首次提出了肿瘤性血管生成理论,肿瘤的生长依赖于肿瘤的血管生成。VEGF(VEGFR)靶点抗体通过特异性结合VEGF(VEGFR),从而抑制下游信号通路,实现抑制血管生成的目的。 /p p    strong span style=" color: rgb(255, 192, 0) " (二)VEGF/VEGFR靶点代表药品 /span /strong /p p   贝伐珠单抗(Bevacizumab)是第一个针对VEGF靶点的人源化的单克隆抗体,具备高亲和力且特异性地结合 VEGF,达到抑制肿瘤血管增生的作用。2004年基因泰克公司的贝伐珠单抗(商品名安维汀Avastin)获得FDA批准上市,用于转移性结肠癌治疗。 /p p   除了实体瘤、湿性黄斑变性(AMD)发病机制中有异常血管生成,针对VEGF血管生成信号通路的靶向药物对该病有明确的治疗效果。上市公司康弘药业(002773.sz)当家品种,康柏西普(商品名朗沐)是我国自主研发的新一代抗VEGF融合蛋白,也是中国首个获得世界卫生组织国际通用名的生物1类新药。 /p p   FDA已经批准的针对VEGF/VEGFR单抗或融合蛋白有贝伐珠单抗、雷珠单抗、阿柏西普、雷莫芦单抗。雷珠单抗是一种抗VEGF单克隆抗体片段,是由基因泰克公司开发于2006年首次通过FDA批准上市,商品名诺适得(Lucentis),用于是视网膜黄斑变性治疗。诺适得是基因泰克旗下首个VEGF单抗安维汀的Fab片段,与安维汀的作用机理一致。 /p p   除了单抗药物,作用于VEGFR的小分子药物对其他酪氨酸激酶也有抑制作用,已经上市的有索拉非尼,舒尼替尼等多个品种。上市公司恒瑞医药(600276.sh)明星产品阿帕替尼,作为民族制药企业自主研发的第一个国家1.1类抗癌新药,也是恒瑞第一个拥有自主知识产权的小分子靶向药物,其作用的靶点就是VEGFR。阿帕替尼也是全球第一个治疗胃癌的小分子靶向药物。阿帕替尼能够高度选择性的与血管内皮生长因子受体2(VEGFR2)结合,阻断信号传导,强效抗肿瘤血管生成,从而抑制肿瘤的生长、转移和散播。 /p p    span style=" font-size: 18px " strong 国产单抗药品作用靶点榜首:TNF-α /strong /span /p p   TNF-α是国产单抗药物最成熟的靶点,在已上市的10个国产单抗药物中,有3个单抗药靶点是TNF-α。 同时,TNF-α也是全球目前销售额排行首位的药品阿达木单抗作用的靶点。在2017年全球药品销售额前十榜单中,有四款药物靶点是TNF-α,其中三款是单抗药物。 /p p   span style=" color: rgb(255, 192, 0) " strong  (一) TNF-α靶点主要作用机制:免疫细胞调节 /strong /span /p p   肿瘤坏死因子-α(Tumor Necrosis Factor-α,TNF-α)是一种主要由单核/巨噬细胞分泌的细胞因子(细胞信号蛋白),在系统性炎症的发生发展中有重要作用。 /p p   TNF有两种类型—TNF-α和TNF-fl,两者有相似的生物学特性,其中TNF-fl主要由T细胞产生,目前对其功能研究不多。 TNF-α由157个氨基酸残基组成,其许多生物学活性都是通过细胞膜上受体介导的。 /p p   TNF-α主要功能是调节免疫细胞,作为一种内源性致热源,可以导致发热、引起细胞凋亡,阻止肿瘤发生和抑制病毒复制等。TNF-α功能失调与多种疾病相关联:比如阿尔茨海默症、银屑病、癌症、重度抑郁、肠炎等。 /p p   span style=" color: rgb(255, 192, 0) " strong  (二) TNF-α靶点代表药品 /strong /span /p p   以TNF-α为靶点的3个国产单抗药物中,最早上市的是中信国健(现改名三生国健)的益赛普,获批时间是2005年,主要用于类风湿性关节炎治疗。最近获批的以TNF-α为靶点国产药物是上市公司海正药业的安佰诺,是一种TNF-融合蛋白单抗产品,同样用于类风湿性关节炎治疗。 /p p style=" text-align: center " img width=" 599" height=" 107" title=" F.png" style=" width: 548px height: 93px " src=" http://img1.17img.cn/17img/images/201808/insimg/a332158e-09a2-414d-b1a7-c5a3c4b8c18e.jpg" / /p p style=" text-align: center "   span style=" font-size: 14px "  表:以TNF-α为靶点的国产单抗药物 /span /p p   在TNF-α靶点药物中就有连续6年霸占全球药品销售额排行榜榜首的阿达木单抗(商品名修美乐Humira)。修美乐是由总部位于美国芝加哥的艾伯维公司(AbbVie)于2002年获得FDA的批准上市。生产厂商艾伯维公司财报显示修美乐 2017年全球销售额达到惊人的184亿美元,较上年增长26.9亿美元,增速仍高达17%。修美乐是全人源化单抗药品,也是全球第一个上市的全人源化单抗药物。 /p p   2017年全球药品销售额前十榜单中,除了排名首位的阿达木单抗靶点是TNF-α,排名第二的来那度胺、排名第四的依那西普单抗以及排名第五的英夫利昔单抗的靶点也是TNF-α。其中来那度胺是小分子靶向药。 /p p   英夫利昔单抗(商品名类克)是由强生、默克和三菱田边公司联合开发的全球第一个TNF-α抑制剂,1998年获批FDA批准上市。类克是一种人鼠嵌合单抗,用于类风湿性关节炎、强制性脊柱炎、银屑病等自身免疫性疾病的治疗。2017年类克全球销售额达到77.6亿美元。依那西普是辉瑞和安进公司联合开发,适应症是类风湿性关节炎、强制性脊柱炎,2017年全球销售额78.9亿美元。 /p p    span style=" font-size: 18px " strong CD20:B细胞主要生命周期表达的膜蛋白,淋巴瘤治疗重要靶点 /strong /span /p p   CD20为大家所熟悉很多都是通过罗氏的明星产品美罗华。美罗华自从问世以来,其与小分子化疗药物的联用已经成为某些特定类型的非霍奇金淋巴瘤的标准治疗方案。美罗华在商业上的巨大成功也让CD20成为药企最热门的药物开发靶点之一。CD20靶点单抗全球销售规模超过70亿美元,是商业价值较大的药物开发靶点之一。 /p p    span style=" color: rgb(255, 192, 0) " strong (一) CD20:主要参与B细胞的增值与分化 /strong /span /p p   CD20(Cluster of Differentiation 20)是位于B淋巴细胞表面的一种跨膜磷蛋白。B淋巴细胞是由骨髓内多能干细胞分化而成,是负责体液免疫的功能细胞,其发育经过祖B细胞(Pro-B),前B细胞(Pre-B),不成熟B细胞(Immature B)以及成熟B细胞(Mature B) 几个阶段。CD20在造血干细胞、祖B细胞以及成熟的浆细胞上并不表达,主要出现在前B细胞到成熟B细胞阶段。 /p p   非霍奇金淋巴瘤B细胞来源的比例占比达到70%,抗CD20的抗体可直接抑制B细胞 生长并诱导其凋亡。CD20在人体细胞中的表达方式、生物学作用和存在形式决定了其成为治疗B淋巴细胞瘤的主要靶点。虽然CD20的功能尚不完全清楚,但有证据表明抗CD20单抗杀伤B细胞来源肿瘤的作用机制主要有三种:抗体依赖的细胞毒作用,补体依赖的细胞毒作用,以及抗体与CD20分子结合引起的抑制细胞生长, 改变细胞周期以及凋亡等直接效应。 /p p    span style=" color: rgb(255, 192, 0) " strong (二)CD20靶点代表药品 /strong /span /p p   以CD20为靶点的单抗药物可以分为三代,第一代利妥昔单抗(商品名美罗华)、替伊莫单抗(商品名泽娃灵),第二代奥法木单抗(商品名Arzerra)以及第三代阿妥珠单抗。利妥昔开创了靶向治疗B细胞淋巴瘤的先河,属于人鼠嵌合单抗 第二代的奥法木单抗是人源化单抗,第三代单抗Fc段被修饰。 /p p   在研数据显示,目前有十几个厂商正在开展针对CD20靶点的单抗研发,单抗研发领域实力较强的几家悉数参与:包括复星集团旗下的复宏汉霖、沃森生物参股的嘉和生物以及向港交所递交上市申请的信达生物、上市公司海正药业、华兰生物等。 /p p   美罗华1997年获得FDA的批准在美国上市,是全球第一个被批准用于非霍奇金淋巴瘤的单抗药物,2000年在国内获批上市。美罗华2017年全球销售额59.7亿美元,位居全球药品销售榜单第8位。在利妥昔单抗类似物的研发竞争中,三生国建的进度最快,已经完成临床研究,正在申报上市。 /p p style=" text-align: center " img width=" 594" height=" 336" title=" A.png" style=" width: 431px height: 247px " src=" http://img1.17img.cn/17img/images/201808/insimg/15f3397f-7610-4177-abf9-1410313e0fd1.jpg" / /p p style=" text-align: center "   span style=" font-size: 14px "  图 美罗华全球销售额(单位:亿美元) /span /p p   奥法木单抗(商品名Arzerra)是第一个全人源化单抗,2009年通过FDA的批准上市。Arzerra 2016年全球销售额5700万美元。受依鲁替尼的竞争,Arzerra 2016年的销售额相比2015年下滑19%。除了奥法木,第二代CD20单抗药物还包括罗氏开发的人源化单抗奥瑞珠。奥瑞珠是首个在多发性硬化领域获得突破性疗法的产品。第三代抗CD20单抗的Fc段经过了糖基化修饰,通过修饰可以提高抗体的特异性以及与抗原结合的亲和力。第三代抗CD20单抗阿妥珠单抗由罗氏研发成功并于2013年获得FDA批准上市。 /p p    span style=" font-size: 18px " strong HER2:乳腺癌药物经典靶点,预后重要指标 /strong /span /p p   HER2是迄今为止乳腺癌研究较为透彻的基因之一,HER2基因的过度表达不仅与肿瘤的发生发展关系密切,也是临床预后的重要指标。 /p p   span style=" color: rgb(255, 192, 0) " strong  (一)HER2:生物学作用通过启动信号通路导致细胞增殖 /strong /span /p p   HER2(人表皮生长因子受体 2)是具有酪氨酸激酶活性的表皮生长因子受体家族的一个成员。受体的聚合作用会导致受体酪氨酸残基的磷酸化,并启动多种信号通路导致细胞增殖和肿瘤发生。大约15%~30%乳腺癌和10%~30%的胃癌会发生HER2基因扩增或过度表达。 /p p   strong span style=" color: rgb(255, 192, 0) "  (二)HER2靶点代表药品 /span /strong /p p   目前国内上市的以HER2为靶点的单抗药物只有1个,就是知名度极高的罗氏生产的赫赛汀,化学名曲妥珠单抗。以HER2为靶点的国内上市药品中还有一个小分子药物,是葛兰素史克公司生产的泰立沙,化学名拉帕替尼,2013年通过CFDA审批上市。泰立沙2007年获得FDA的批准在美国上市。 /p p style=" text-align: center " img width=" 599" height=" 145" title=" B.png" style=" width: 528px height: 115px " src=" http://img1.17img.cn/17img/images/201808/insimg/ece5967d-c7a6-470a-851c-f75a104bd7cb.jpg" / /p p style=" text-align: center "    span style=" font-size: 14px " 表:在FDA获批的HER2靶点药物 /span /p p   赫赛汀是最早上市的HER2靶向药物,主要适应症是HER2阳性乳腺癌。赫赛汀1998年获FDA批准在美国上市,2000年在欧洲上市,2001年在日本上市,2002年中国上市。2017年赫赛汀全球销售额71.44亿美元,位居全球药品销售排行榜第5位。 /p p    span style=" font-size: 18px " strong 白介素/白介素受体家族靶点成员 /strong /span /p p   白介素是由多种细胞产生并作用于多种细胞的一类细胞因子,白介素是目前发现种类最多,调控作用最广泛的一类细胞因子。第一个白介素分子(IL-1)1977年被发现,此后陆续发现了40多种白介素分子。以白介素家族成员为靶点的药物包括融合蛋白、抗体等多种形式。国内上市单抗白介素靶点主要是IL2R和IL-6R。 /p p    span style=" color: rgb(255, 192, 0) " strong (一)IL2R与IL6R生物学作用:免疫调节重要功能因子 /strong /span /p p   IL2R(interleukin-2 receptor)是一种三聚体蛋白,在淋巴细胞等免疫细胞膜表面表达,通过与IL2结合发挥生物学作用。IL2R通过三种形式与IL2结合:通过α链、β链或γ链。这三种IL2R链都是跨膜并延伸到细胞膜内,具有向胞内传递生化信号的作用(α链不参与信号传导)。IL2和IL2R对于免疫系统有重要的调节功能,通过直接作用于T细胞在免疫耐受和维持正常免疫功能方面发挥功能。IL6是一种多功能细胞因子,可以调节细胞生长、分化,并参与免疫应答的生化过程。IL6及其受体的失调与多种疾病的发生有关,比如多发性骨髓瘤、自身免疫性疾病、前列腺癌等。 /p p   span style=" color: rgb(255, 192, 0) " strong  (二)IL2R与IL6R靶点代表药品 /strong /span /p p   IL2R靶点国内上市的药品只有1个,诺华公司生产的巴利昔单抗,商品名舒莱,用于预防肾移植术后器官排斥反应。巴利昔单抗通过与IL2R的α链特异性结合阻断了IL2与IL2R的结合。IL2R在激活的T淋巴细胞表面表达。IL2通过与IL2R结合,介导了T淋巴细胞的活化并引发一系列的病理过程,这一过程恰恰是移植手术后细胞免疫导致的排异反应的关键机制。巴利昔单抗1998年获得FDA批准上市。 /p p   IL6R靶点国内上市的药品也只有1个,罗氏公司生产的托珠单抗,商品名雅美罗,用于类风湿性关节炎的治疗。雅美罗最早于2005年在日本上市,2010年通过FDA审批在美上市,2013年获得进口注册引入国内。 /p p /p
  • 岛津应用:药物片剂表面的异物分析
    在药物的质量管理中,次品的产生原因分析是一项十分重要的工作。虽然异物和污染物的大小和形状不同,最佳的分析方法也存在差异,但在分析药物片剂的缺陷部位时多会用到红外显微镜。 本文使用自动缺陷分析系统 AIM-9000 对药物片剂表面的异物进行了定性分析。在市售的药物片剂表面上发现了微小的异物。使用 AIM-9000 的大视野相机观察片剂的图像。异物的大小约为 100 μm,该异物的测量方法包括:①在固定各片剂的状态下通过直接 ATR 法测量,②用针等采样后通过透射法或ATR 法测量的两种方法。采用显微镜和大视野相机对异物进行观察,研究最佳方法。异物的观察图像异物暴露于片剂表面时采用 ATR 法,掩埋于内部时、或难以与 ATR 晶体接触时采用透射法测量,由此完成了对异物的定性。通过使用 Micro Vice Holder 和 Diamond cell 等配件,能对各种状态的异物进行分析。 了解详情,敬请点击《药物片剂表面的异物分析》关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 新药无止境,创新不落幕 | 新品助力基因治疗药物的表征
    新药无止境,创新不落幕 | 新品助力基因治疗药物的表征史俊霞★ 2020年12月11日,治疗高血脂的inclisiran在欧洲获批上市,不同于罕见病的治疗,而是用于治疗高血脂这类大众疾病的rna药物就格外耀眼了,新冠疫情的肆虐也使得mrna一举成名,未来基因治疗药物开发的潜力是无限的!“基因治疗药物关键考虑因素有哪些?寡核苷酸药物和以mrna为代表的核酸药物研发和生产过程中,如何快速高效表征?辅料的质控如何去做?自动化的smart digest rna酶如何助力质谱完成mrna序列测定?快快参与直播跟专家面对面交流吧!报名参会更有惊喜礼品相送! 扫描二维码免费报名学习 惊喜礼品 旅行茶具电热水杯塑料储存盒 报告详细介绍 automated workflow for mrnasequencing by high resolution lcms2021.10.21 下午4:00-下午5:00 mrna序列测定的挑战 得到正确的mrna序列的tips smart digest rnase t1 mag bulk 酶切mrna实例分享ken cook,ph.d.thermo fisher scientificeu biopharma expert dr. ken cook has 30 years of experience supporting liquid chromatography and mass .previously dr. cook was a lecturer in biochemistry at the university of newcastle-upon-tyne, uk where he focused on protein biochemistry液相色谱耗材技术在基因治疗和预防药物中的表征2021.10.21 下午5:00-下午6:00 基因治疗药物的概况和药物生产考虑的关键因素 核苷和寡核苷酸药物生产中色谱分析案例分享 核酸药物生产中色谱分析案例分享 药物载体的表征史俊霞赛默飞世尔科技中国有限公司高级产品专家 生物制药领域从业12年,擅长蛋白,抗体,多肽,核酸,疫苗等治疗性药物的表征。主要负责生物色谱柱,微升色谱柱以及纳升色谱柱的应用方案开发.
  • 药典委公布2015版药典可注射用辅料各国标准比对表
    p style=" text-align: center " 关于公布《中国药典》2015年版可供注射用辅料各国药典标准比对表的通知 br/ /p p   各级药品检验检测机构、相关企业: /p p   为保障《中国药典》的正确顺利执行,使药品检验检测机构,相关企业深入了解《中国药典》四部中药用辅料标准的变化。现将《中国药典》2015年版可供注射用辅料的各国标准比对表上网发布,本表内容与正式发布的《中国药典》2015版中可能略有差异,实际内容以正式发布的《中国药典》2015年版为准,本表仅供各单位进行参考。 /p p    /p p style=" line-height: 16px " img src=" /admincms/ueditor/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201508/ueattachment/981d4e5d-7971-47f2-b93f-300c818282b8.pdf" 可注射用辅料+各国标准比对【1】.pdf /a /p p br/ /p p style=" text-align: right "   国家药典委员会 /p p style=" text-align: right "   2015年8月12日 /p p br/ /p
  • 德图邀您参观 9.26 - 29.2017 多国仪器仪表展
    9月26日,仪器仪表界的综合交流平台--多国仪器仪表展 将在上海新国际博览中心拉开帷幕。迄今多国展已成功举办27届,而作为全球便携式测量解决方案的领导者,德图仪器中国将再次盛装参展。特此邀请您莅临参观! 2017 中国国际测量控制与仪器仪表展(原名:多国仪器仪表展)2017年9月26日- 29日,上海新国际博览中心德图展位:N1馆 1A127 展位本次德图的展品分为三大主题: 食品与药品:食品安全、医药健康与监管,与你我息息相关,德图可提供全方位的测量解决方案。暖通空调制冷:德图在 HVAC/R 市场深耕多年,测量解决方案丰富、稳定、可靠。节能与环保:烟气分析、烟尘、纳米颗粒、热像监测,德图在节能与环保领域有着广泛应用! 除了常规的经典产品外,德图还将集中展出 2017 年的新品新技术,诚邀您莅临现场参观!
  • 生物大分子药之蛋白表征
    蛋白表征生物大分子药蛋白质是由不同氨基酸连接形成的多聚体,并且通过正确折叠为一个特定构型,发挥蛋白药物的生物学功能。氨基酸序列的特定位置可以与化学基团共价结合,发生蛋白质翻译后修饰,这些翻译后修饰会导致蛋白的结构发生改变,从而影响蛋白药物的生物学活性,所以需要对蛋白的分子量、肽段覆盖率、翻译后修饰等进行检测。精确分子量分析:分子量的检测是鉴定蛋白的第一步,使用高分辨率质谱分析可得到蛋白质的多电荷信号,通过对信号进行去卷积分析,可获得精确分子量数值,并初步判断蛋白的修饰状态。对于抗体药物还可打开轻重链或者去除糖基,分别分析糖基化和去糖基化轻链和重链的分子量。我们推荐THERMO高分辨质谱来进行:Thermo Scientific LTQ-Orbitrap XL 是离子阱和轨道阱高分辨组合质谱仪,通过强大的功能、稳定性以及低运行成本成为蛋白质组学和代谢组学研究的最佳选择,完全超过并替代 Q-TOF系统。通过高分辨、精确质量数测量和多级碎片解析,完成复杂体系成份鉴定和表征。LTQ-Orbitrap XL采用全新HCD八极碰撞反应池,实现信息更丰富的MS/MS应用,包括蛋白质差异定量分析iTRAQ、PTM分析、de novo 序列分析以及代谢组学研究。Thermo Scientific&trade Q Exactive&trade 组合型四极杆 Orbitrap 质谱仪可以快速可靠地识别、定量和确认更多化合物。 本台式 LC-MS/MS 系统将四极杆母离子选择性与高分辨率和准确质量数(HRAM)Orbitrap 检测相结合,提供出色性能和多功能性。 Q Exactive 质谱仪特别适用于非目标或目标化合物筛查,也能够实现广泛的定性和定量应用,可广泛用于药物发现、蛋白质组学、环境和食品安全、临床研究和法医毒理学。2.肽段覆盖率及肽段分析:肽段覆盖率是指检测到的肽段氨基酸数量占该蛋白质总氨基酸数量的比例。蛋白质肽段覆盖率的检测,对于蛋白质类药物的一级氨基酸序列的确证,保证蛋白质类药物的高级结构形成及维持蛋白质类药物性质均具有很重要的意义。3.二硫键分析:二硫键是蛋白质通过各种链间和链内的半胱氨酸连接在一起的化学键,对蛋白质分子保持正确的高级结构,维持必要的生物活性至关重要。所以在蛋白质类药物的结构分析中,二硫键一直是分析的重点。4.N-糖糖型分析:N糖(聚糖与天冬酰胺的氮链相连)是生物药物中,尤其是单抗药物中最广为人知的糖基化形式,其中N-聚糖结构会影响药代动力学、药效学和免疫原性,因此需要对糖型进行分析。另外,抗体结构分析还可以用到毛细管电泳系统,我们推荐BECKMAN PA800 PLUScIEF法测定单抗药物等电点 使用CE(毛细管电泳仪)对样品与已知等电点多肽作为参照物进行cIEF等点聚焦,依据样品与参照肽段的相对迁移时间计算样品的等电点。 cIEF 法测定单抗样品电荷异质体纯度 使用CE(毛细管电泳仪)对样品进行cIEF等点聚焦,而后对主峰纯度进行积分,得出样品电荷异质体纯度。 CE-SDS 法测定单克隆抗体纯度 将样品还原后,使用SDS毛细管电泳电泳与紫外检测器分析,检验轻链或重链的纯度及杂质含量。
  • 技术解读:给药系统的脂质体表征
    马尔文仪器公司的高级应用科学家Pauline Carnell和技术支持经理Mike Kazsuba探讨了纳米颗粒跟踪分析技术以及光散射技术在表征脂质体作为药物载体中的应用及效果。   脂质体是一种重要的给药载体,已获批用于多种治疗配方。脂质体由磷脂质组成,具有单层或多层结构,拥有亲水内层和疏水外层,可制成不同大小的颗粒。这些颗粒可进行生物降解,基本无毒。最为重要的是,它既能封装亲水物质,又能封装疏水物质。此外,通过修饰脂质体表面,还可对特定生理部位进行靶向给药,延长脂质体在体内的留存时间,并可用于设计诊断工具。   正如其他类似的研究,应用脂质体的关键在于确保其物理特性与用途相符。例如,脂质体进入人体后会如何反应?脂质体是否足够稳定从而保证靶向性?粒度是否适合临床应用,或者是否会在血液循环中消失?   了解脂质体制剂的粒度、浓度和zeta电位能帮助人们预测它在生物体内的变化趋势,而带电脂质体与相反电性的分子关系也能通过测量两者产生的聚合物的zeta电位进行监控。这些因素对药物传输的有效性具有显著影响,尤其是当药物配方研究员认为某种脂质体适合传输载体时,应综合考虑以上因素。因此,能提供全面数据的分析系统对配方设计过程大有裨益。纳米颗粒跟踪分析技术和动态光散射技术正是其中两种重要的分析方法,为脂质体研究提供重要信息。   纳米颗粒跟踪分析技术   纳米颗粒跟踪分析技术(NTA)使用激光散射来检验溶液中的纳米粒度。使用该分析方法,研究人员能够观察到单个粒子并跟踪其布朗运动轨迹,从而基于单个粒子在短时间内快速制出每个粒子的粒径分布图。 图1:纳米颗粒跟踪分析技术效果展示图   使用科学数码摄相机可以捕捉溶液中颗粒的散射光,仪器软件可逐帧跟踪每个颗粒的运动轨迹。 图2: 图中光点为布朗运动中的粒子   颗粒的运动速度与由斯托克斯-爱因斯坦方程计算出来的球体等效流体力学半径相关。NTA技术能逐粒计算粒度,且因有影像片段作分析基础,用户可精确表征实时动态。 图3:斯托克斯-爱因斯坦方程   NTA技术能让研究人员在同一时间观察单个纳米颗粒,因此除基础的粒度分析以外,还能测定每个脂质体的相对光散射强度等。将数据结果与另行测得的粒度数据绘成坐标图,能够更加细致地分辨出由不同折射率(RI)或材料构成的颗粒。凭借这一独特功能,研究人员可探究纳米级药物输送载体(如脂质体)所封装的内容是否有所不同:空心脂质体的折射率(光散射能力)可能低于载有较高折射率物质的脂质体。这样的差异让人们得以区分大小相似的脂质体。此外,NTA的单个粒子检测系统使得颗粒浓度测量成为可能。   粒度和zeta电位   脂质体与细胞在体内发生作用的位置很大程度上是由脂质体的粒度决定。掌握脂质体制剂的zeta电位有助于预测脂质体在体内的变化趋势。颗粒的zeta电位是指颗粒在特定媒介中获得的总电荷。以基因治疗为例, zeta电位的测量可用于优化特定脂质体与各种DNA质粒的比率,从而将配方的聚集度降到最低。 图4:阳离子脂质体(带正电)与DNA(质粒)的络合   动态光散射(DLS)是一项相对成熟的、广泛应用的脂质体表征技术。此外,由于zeta电位也是一项重要参数,能够同时测量粒度和zeta电位的分析系统也日渐普及,马尔文仪器公司的Zetasizer Nano系统正是其中之一。一般而言,研究人员使用动态光散射技术测量粒度,采用激光多普勒微电泳技术测量zeta电位。   由颗粒布朗运动产生的光散射也是DLS技术的核心所在。DLS技术测量散射光强度随时间变化产生的波动,并确定颗粒的扩散系数。在此基础上利用斯托克斯-爱因斯坦方程将数据转化为粒度大小分布情况。   使用激光多普勒微电泳技术测量zeta电位时,向分子溶液或颗粒分散液施加电场,这些颗粒便会以一定的速率移动,而该速率正与zeta电位相关。通过测定该速率能够计算出电泳迁移率,并据此算出颗粒的zeta电位和zeta电位分布。   结论   脂质体的物理表征对于理解脂质体在各种应用中的适用性十分重要,快速、可重复的表征是研发及质量管控过程中的一个重要考虑因素。本文介绍的技术能够提供脂质体制剂的粒度、浓度、zeta电位等补充信息。(结束)   作者:马尔文仪器公司高级应用科学家Pauline Carnell、马尔文仪器公司技术支持经理Mike Kazsuba   联系地址:   Malvern Instruments Ltd   Grovewood Road, Malvern   Worcestershire WR14 1XZ UK   T: +44 (0) 1684 892456   F: +44 (0) 1684 892789   www.malvern.com
  • 我国科学家建成并上线发表全球药典草药基因组数据库
    近期,中国中医科学院中药研究所团队建立了全球药典基因组数据库(GPGD)。该数据库是全球首个针对药典收载草药物种的大型基因组学数据库。相关研究成果发表在《Science China-Life Sciences》杂志,标题为“Global Pharmacopoeia Genome Database is an integrated and mineable genomic database for traditional medicines derived from eight international pharmacopoeias”。  该数据库目前已收录903个草药物种的34346条数据,包括867个物种的21872条DNA条形码数据,674个物种的2203个细胞器基因组以及49个物种的55个全基因组数据等,所收录数据涵盖全球八大药典草药物种(中国药典、美国草药典、日本药典、韩国药典、印度药典、埃及药典、欧洲药典以及巴西药典)。该数据库为草药物种鉴定、用药安全、中药资源保护和利用等方面研究提供了资源。数据库访问地址:http://www.gpgenome.com。   注:此研究成果摘自https://link.springer.com/article/10.1007/s11427-021-1968-7
  • 《河南省中医药条例》表决通过:保护支持豫产道地中药材
    近日,《河南省中医药条例》(以下简称《条例》)经省十三届人大常委会第三十二次会议表决通过,将于今年10月1日起施行。道地药材是传统优质中药材的代名词,中医素有“非道地药材不处方,非道地药材不经营”的说法。《条例》中,中药保护与产业发展单独成章,其中明确:县级以上人民政府有关部门应当加强对药用野生动植物资源和其他中药材资源的保护以及道地中药材野生抚育管理。鼓励建立具有地方特色的豫产道地中药材评价体系,支持豫产道地中药材、大宗中药材品种的保护和生产,加强产地生态环境保护,支持豫产道地中药材品种申报地理标志产品。扶持豫西伏牛山区等建设优质中药材生产基地。为保证中药材质量安全,《条例》规定种植养殖中药材须严格控制农药、肥料等农业投入品的使用,禁止使用剧毒、高毒农药和国家禁止使用的其他物质。中药饮片应当按照国家药品标准炮制;国家药品标准没有规定的,应当按照省药品监督管理部门制定的炮制规范炮制。鼓励社会团体、企业制定高于国家标准、行业标准、地方标准的中药材团体标准、企业标准。《条例》还明确:县级以上人民政府及其有关部门应当对来源于经典名方、名老中医验方和医疗机构中药制剂的中药新药研发给予政策和资金支持。省中医药主管部门应当建立健全医术确有专长人员寻访制度,对医术确有专长人员组织开展调查、登记,建立中医药确有专长人员数据库。
  • 瑞士华嘉与晶云药物联合将为中国制药界用户提供药物固态表征领域的一系列高端讲座
    晶云药物科技有限公司(简称晶云)已与华嘉(香港)有限公司—隶属大昌华嘉 (简称华嘉)签订合作协议,将会为华嘉在中国的广大制药界客户,提供药物固态表征领域的一系列高端讲座和培训,以共同推进中国制药界对固态表征仪器在制药界应用和其在药物研发过程中的重要性的了解。 华嘉公司仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器以及流程仪表设备,在中国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。其中固态表征领域的产品就包括粒度仪,密度计,旋光计,接触角测量仪,BET比表面积测量仪等各种高端进口仪器。 “中国政府正在大力增加制药行业的投资力度,以提高中国在药物研发领域的能力和国际竞争力”,晶云首席执行官陈敏华博士说,“在药物的高级研发方面,中国制药业尚处于起步阶段。导致这个现象的部分原因是国内制药行业在对原料药和制剂的研发认知上,与美国和欧洲的制药行业尚有不小差距。虽然不少中国制药公司有能力购买昂贵的固态表征和其它分析仪器,但他们并不一定懂得如何正确的使用这些仪器,合理的阐释实验数据,并深刻理解其所提供的信息和对药物研发的作用。” 苏州晶云药物科技有限公司是中国首家并且也是目前唯一一家专注于药物晶型研究和提供药物固态信息领域研发方案的技术服务公司。晶云的科研人员拥有丰富的原料药和制剂的研发经验。无论是以研发创新药物为主的全球各大制药公司,还是以生产仿制药(包括原料药和制剂)为主的国内各制药公司,晶云都可以成为其在药物固态研发领域的紧密合作伙伴,为其提供药物固态研发领域的各种解决方案,其中包括药物晶型研究,盐型/多晶型/共晶型筛选,单晶的生长和结构鉴定,结晶工艺的优化,手性药物的结晶提纯,临床前制剂的研发,无定形药物制剂的研发等各个方向。晶云不局限于简单的为客户操作实验和提供实验结果,更重要的是给客户提供一个适合其需求并完全满意的全套研发方案。 晶云技术团队在药物晶型研究和药物固态表征领域拥有数十年的丰富经验,曾被邀请为许多全球和国内的制药公司提供该领域的专业技术咨询和培训。晶云即将为华嘉客户提供的讲座和培训不仅包含了药物固态表征技术的基本理论,还将集中讨论如何利用这些仪器解决药物研发生产中碰到的实际问题,并辅以大量的制药行业中的案例分析。晶云和华嘉的一个共同使命就是帮助广大中国制药公司在新药研发领域迅速赶上欧美制药公司水平。相信由两家公司联合举办的讲座和培训将为成为实现这一使命的重要平台。 晶云药物科技有限公司 晶云药物科技有限公司(Crystal Pharmatech)总部设立在苏州工业园区内的生物纳米科技园,在美国新泽西州建有分部。核心团队由中美科学家及管理人员共同组成,拥有在全球前三大制药公司数十年的丰富研发和生产经验。团队利用掌握的核心技术开发出中国在药物晶型研究及提供药物固态信息研发方案的首个高新技术平台,并通过该平台为全球制药公司提供该领域的高级技术研发服务。公司拥有的享有自主知识产权的高新技术和高新仪器,结合团队目前已经完全掌握的该专业领域的核心技术,将保证技术平台不仅可以填补国内在该领域的空白,而且使技术平台处于国际领先地位。公司的业务集中在以药物的固态信息为中心的专业领域,主要包括原料药及其中间体的成盐,共晶和多晶的筛选,原料药和制剂的表征和评估,晶型药物结晶工艺流程的优化和放大,临床前药物制剂的研发,以及上述相关领域内自主知识产权技术和产品的开发,高级技术咨询及其培训等。 想了解更多信息,敬请登陆: http://www.crystalpharmatech.com/ 华嘉(香港)有限公司——隶属大昌华嘉大昌华嘉是一家著名的国际贸易集团,总部位于瑞士的苏黎世。华嘉公司自1900年以来便与中国进行友好贸易往来,业务范围涉及机器、仪器、消费品、纺织品、化工原料等诸多领域。"科技的市场智慧”是对华嘉公司形象的准确概括。高品质的产品,专业的应用及完善的售后服务,对各种客户文化背景的深刻理解以及娴熟的市场贸易技巧使得客户获得的不仅是经济上的利益,而且是技术上的进步。 华嘉公司仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器以及流程仪表设备,在中国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。我们的业务逐年增加,市场不断扩大。华嘉公司在中国设有多个销售,服务网点,旨在为客户提供全方位的产品和服务。 想了解更多信息,敬请登陆:http://www.dksh-instrument.cn/
  • 对于中药农残招标 药企有话说
    药企回应:生产环节不存在农药添加   胡庆余堂第一时间作出回应称,在企业的生产环节,不可能出现添加农药的行为。胡庆余堂新闻发言人陈炜指出,企业在制作过程中一定是会降毒的,不会在生产环节中让农药残留增加。对于药材中的一些残留物质,因为含量很少,所以检测的工作量会非常非常大。   同仁堂、云南白药等则表示正在调查核实。   &ldquo 对于报告中涉及的相关品种,集团正在进行调查核实。&rdquo 北京同仁堂(集团)有限责任公司宣传部负责人郭金凤表示,同仁堂生产的饮片等中药材产品,均是按照国家相关标准生产,并且相关检测很充分。   对于云南白药大药房的中药材检测出几种禁用农药的事情,云南白药大药房公司相关人员也表示正在向高层汇报。   药企有责任控制中药材的农药残留   &ldquo 在生产过程中不添加有毒有害的物质是药企的责任,对于其原料采购它也有义务保护消费者的健康。&rdquo 绿色和平食品与农业项目主任王婧指出,这些药企并不认为这些是自己的责任。   在对同仁堂、云南白药进行调查时发现,一些大的药企,公司有部分自己的基地,这个质量会严格控制。但是,这些远远满足不了中药材的市场需求,仍需从供应商和产地去大量的收购药品。而这部分的药品,企业是完全不负责任的。   记者了解到,服用含毒性高的残留农药药材,可能出现呕吐及头晕等征状,严重情况随时有生命危险。医学专家还指出,毒性较低的农药累积人体,甚至可损害男性生殖系统及儿童神经系统发育。   药企如果对于采购的中药材中农药残留的现象,继续听之任之最终只会对消费者健康造成伤害。   王婧指出:&ldquo 龙头企业有责任控制这些源头,不去使用这些有毒有害的,他们有这个能力去进行相应的管理。&rdquo 她建议,药企可以将对基地的管理模式,通过要求和帮助供应商减少农药的使用,实现像自己基地一样的控制。
  • 华嘉公司将与晶云药物合作举办药物晶型研究与药物固态表征专题技术培训
    瑞士华嘉公司与晶云药物科技有限公司于3月24-25日在苏州联合举办的&ldquo 药物晶型研究与药物固态表征专题培训&rdquo 。 药物晶型研究和药物固态表征在制药业具有举足轻重的意义。一方面,不同晶型的同一药物,在稳定性,溶解度,和生物利用度等生物化学性质方面可能会有显著差异,从而影响药物的疗效。如果没有很好的评估选择最佳的药物晶型进行研发,可能会在临床后期产生晶型的变化,从而导致药物上市的延期而产生巨大的经济损失。由于药物晶型研究的重要性,美国药监局(FDA)对该领域的研发提出了明确要求,在IND和NDA中都要求对药物多晶型现象提供相应的研究数据。对于仿制药公司来说,如何研发出药物的新晶型从而能够打破原创药公司对晶型的专利保护,提早将仿制药推向市场,是近年来一个至关重要的问题,将直接影响到仿制药和原料药公司的市场和国际竞争力。另一方面,能否对药物进行正确的固态表征从而理解药物的固态性质(包括晶型稳定型,晶体表象,粒径分布,比表面积,无定形药物分散剂的稳定型,制剂溶出曲线,原料药和辅料的相容性,手性化合物的纯度等),将直接影响到原料药和制剂的研发和生产工艺,从而影响到药品的质量和销售价格。 药物晶型研究与药物的固态表征在欧美制药界已经是比较成熟并深受重视的领域,但在国内制药界尚属起步阶段。 晶云药物核心技术团队在药物晶型研究和药物固态表征领域拥有数十年的丰富经验,曾被邀请为许多全球和国内的制药公司提供该领域的专业技术咨询和培训。为了满足更多药物公司在该领域的技术需求,让更多的研发人员理解药物晶型研究和药物固态表征的原理和应用,并和同行沟通,更好的了解该领域的研发进展和发展趋势,晶云药物特决定在苏州举办此次为期2天的技术培训。培训的所有费用由晶云承担(除交通住宿外)。 培训课程: l 课程一 题目: 多晶型的控制和认知在原料药的工艺研发中的作用(3小时) 内容:  Ø 多晶型的控制和认知的重要性 Ø 无水多晶型体 i. 构建相图和解析相图 ii. 如何寻找最佳晶型(稳定和亚稳态晶型) iii. 如何有效的确定多晶型混合物中各种晶型的含量或比例 iv. 亚稳态晶型在制药业中的应用条件 v. 多晶型体在原料药上应用 Ø 水合物和溶剂合物 i. 识别和表征水合物及溶剂合物 ii. 水合物和溶剂合物在原料药中的应用及如何保存 iii. 针对水合物和溶剂合物的干燥工艺 Ø 药物多晶型的基本筛选流程 Ø 药物多晶型的稳定性及其热动力学研究 Ø 怎样生产并保持你所需要的晶型 Ø 实例分析 i. 混合晶型系统 ii. 在药品保存中形成了新的水合物/溶剂合物 iii. 如何放大不稳定的晶型的生产工艺 iv. 如何应对临床后期出现的晶型转化 主讲人: 陈敏华博士 l 课程二 题目: 药物多晶型的知识产权和法规(1小时) 内容: Ø 何时和为何要保护多晶型的知识产权 Ø 多晶型体的新药申批(NDA)需要什么信息及怎样填写新药申批 Ø 食品和药物管理局(以美国为例)对多晶型的要求及标准 Ø 如何开发仿制药的多晶型 主讲人:陈敏华博士 l 课程三 题目: 盐类药物的研究(45分钟) 内容:  Ø 什么是盐类药物 Ø 为什么要开发盐类药物 Ø 如何形成盐类药物 主讲人: 张炎锋博士 l 课程四 题目: 药物共晶体(45分钟) 内容: Ø 什么是共晶体 Ø 共晶体药物在制药中的基本应用 Ø 共晶体的稳定性 Ø 如何筛选药物共晶体及其放大工艺 Ø 在制药产业中形成共晶体的现象及其产生的影响 主讲人: 张炎锋博士 l 课程五 题目: 原料药的主要表征手段及对药物研发的重要性(2.5小时) 内容:  Ø 粉末衍射(XRPD) Ø 拉曼光谱 Ø 动态气相吸附(DVS) Ø 比表面积分析 (SA) Ø 表观密度 Ø pKa值的确定 Ø 测量LogD/LogP Ø 差示扫描量热仪及调制差示扫描量热仪 (DSC and MDSC) Ø 热重量分析仪(TGA) Ø 单晶衍射仪(SCXRD) Ø 偏振光显微镜 Ø 固态核磁共振(SSNMR) 主讲人: 陈敏华博士,张炎锋博士和张海禄博士 l 课程六题目: 手性药物的结晶拆分(1小时) 内容: Ø 手性药物结晶拆分的原理及工艺研发的流程和策略 Ø 手性药物结晶拆分在原料药生长中的重要性 Ø 实例分析: 对于不同种类的对映异构体系统(Conglomerate, Racemic compound, Solid solution)和非对映异构体(Diastereomer)进行手性拆分的不同策略的成功应用 Ø 手性分子结晶拆分的发展近况 主讲人: 陈敏华博士 培训安排: 时间:2011年3月24日-25日 地点:苏州工业园区仁爱路158号中国人民大学国际学院(苏州研究院)敬斋 注册报到地点:中国人民大学国际学院(苏州研究院)敬斋 学员人数:20-50人 日程安排: 日 期 时 间 活动内容 3月24号上午 8:00-9:00 注册报到 (含早餐) 9:00-9:20 欢迎致词 9:20-11:00 课程一 11:00-11:15 茶点休息 11:15-12:30 继续课程一 12:30-13:30 午餐 3月24号下午 13:30-15:00 课程二+课程三 15:00-15:20 茶点休息 15:20-16:20 课程三+课程四 16:20-17:30 讨论 17:30---- 自由社交和招待宴会3月25号上午 8:30-10:00 课程五 10:00-10:20 茶点休息 10:20-11:20 继续课程五 11:20-12:20 课程六 12:20-12:30 合影 12:30-13:30 午餐及自由活动 3月25号下午 13:30-17:30 参观晶云技术平台,了解各种仪器的实际操作和应用-理论结合实际 天气:苏州3月底天气凉爽,气候宜人,是一年中旅游的最佳时节,平均最低气温 12.2 ℃,平均最高气温 21.0 ℃。 华嘉客户报名方式(附回执): 电话:4008210778 传真:021-33678466 邮件:helen.jiang@dksh.com 回执单 姓名 性别 人数 单位名称 详细地址 邮政编码 电话 传真 E-mail 留言: 备注:请尽快E-mail 或传真(021-33678466)确认 联系人: 姜丹 公司地址:上海市虹梅路1801号A区凯科国际大厦2208室 邮政编码:200233 电话:4008210778 ;传真:021-33678466 电子邮箱:helen.jiang@dksh.com
  • 杨正红:氮吸附仪表征药物超低比表面积的技术突破
    p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 药物粉体是大部分药物制剂的主体,其疗效不仅取决于药物的种类,而且很大程度上还取决于组成药剂的粉体性能,包括粒度、形状、表面特性等各类参数。药物粉体的比表面积和孔径关系到粉末颗粒的粒径、吸湿性、溶解度、溶出度和压实度等性能,而且最终影响到药物的生物利用度。国家药典委员会已颁布了最新的2020年版中国药典,增加了0991比表面积测定法,并将于2020年12月30日起正式实施。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 用气体吸附法进行比表面和孔径分布测定,对于大多数制药行业的用户还比较陌生。作为毕业于药学院并从事气体吸附比表面和孔径分析20余年的科学工作者,有责任与大家分享一下我对0991的见解及气体吸附法测定比表面的最新技术发展。 /span span style=" font-family: 宋体, SimSun text-indent: 2em " & nbsp /span /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" color: rgb(0, 176, 80) font-size: 18px " strong span style=" color: rgb(0, 176, 80) font-family: 宋体, SimSun " 一、中国药典2020版要求在相对压力P/P sub 0 /sub 为0.05-0.3范围内至少进行3个压力点的测试,且BET方程相关系数需大于0.9975 /span /strong /span /h1 p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 1、有关BET比表面积的测量和计算: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 首先需要明确的是,BET比表面积是通过多层吸附理论(BET方程)计算出来的,而不是测出来的。我们需要测定的是液氮温度下的样品对氮气吸附的等温线,而发生多层吸附的区域多数是在P/P sub 0 /sub 0.05-0.3的范围内,吸附曲线在这里进入平台区(图1)。BET理论恰恰需要这个阶段的吸附数据来计算比表面积。完整的BET报告必须包括比表面值、回归曲线、相关系数和C常数(C值,图2)。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/31a57e2c-4f93-4cd4-89eb-10ed26bc5031.jpg" title=" 0000.png" alt=" 0000.png" / /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 2、有关BET计算的P/P sub 0 /sub 取点: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 众所周知,药典是制药行业的宪法,是基本法,也就是最低标准。0991的相关数据应该引自美国药典USP846,适用于介孔材料。但是,随着近些年纳米科技的发展和新型药品和药用材料的研发成功,已经开始应用多微孔的纳米载体材料控制药物缓释速度,而这些材料的多层吸附区域会前移,也就是可能到P/P sub 0 /sub 为0.01~0.15的范围,这样药典中的取点范围就显得不合时宜了。因此,判断BET计算结果可靠性的标准应该是C值大于0和回归系数大于0.9999。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " (延伸阅读:杨正红:《物理吸附100问》化工出版社,2016年) /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 3、有关BET方程相关系数: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun text-indent: 2em " 回归曲线的相关系数R=0.9975是对吸附等温线测定质量的过于粗放的低端要求,来源于20年前的技术水平。由于比表面测定过程中有许多不可控因素,所以很难获得稳定重复的结果。因此,业内有“BET差5%不算差”的说法,由此,按允许偏差± 5计算: /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " R = (1+0.0500)x (1-0.0500)= 0.997500 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 由于BET的计算是取自多层吸附已经完成,孔中的毛细管凝聚尚未发生的平缓线性阶段数据,这显然是一个到达极限的最低标准。以这么低的标准去进行比表面测定的质量控制,实际上等于没有控制。目前所有的全自动物理吸附分析仪都标榜重复性偏差不超过± 2,这意味着: /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " R = (1+0.0200)x (1-0.0200)= 0.999600 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 也就是说,R值不应该低于0.9996。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 如果按常规质检要求,重复性允许偏差± 1计算,则对R值的最低要求为: /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " R = (1+0.0100)x (1-0.0100)= 0.999900 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 即回归曲线的相关系数不小于四个9(R & gt 0.9999)。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " & nbsp /span /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " strong span style=" font-family: 宋体, SimSun color: rgb(0, 176, 80) font-size: 18px " 二、表征超低比表面积的技术突破 /span /strong /h1 p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 由于真空体积法气体吸附分析仪等温线测定依据的是理想气体方程,影响结果的主要因素不外乎温度、压力和体积。当样品的吸附量远大于这些因素引起的误差时,温度、压力和体积的波动或精度误差(仪器的本底噪音)可以被忽略不计,但是当药品这样的小表面材料所能吸附样品总量不足以克服本底噪音时,就带来了测试结果的不稳定性,甚至测不出来。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 为了解决超低比表面材料的质量控制的痛点问题,我们专门开发设计了iPore 400,该仪器从影响比表面测定的因素入手,严格控制由温度、体积和压力测量带来的误差,采用了一系列新技术,配合全自动智能脱气站,建立了新一代物理吸附仪的技术标准(图3)。它包括: /span /p p style=" text-align:center" span style=" font-family: 宋体, SimSun " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/2260669a-9557-4d2e-b89a-72e7994aee06.jpg" title=" 111.png" alt=" 111.png" / /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " (1)& nbsp 全域自动恒温系统:拥有双路进气预热管路及包括12个静音风扇组成的高精度恒温系统(图4),可根据需要在35-50℃之间设定恒定温度。系统实时显示全区域气路和歧管的温度,避免环境因素带来的误差。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " a)& nbsp 内部整体恒温,可在35-50℃之间设置:真空体积法是通过压力传感器读取压力的变化而计算吸附量的,其准确性和有效精度对温度变化极其敏感,尤其在微孔和超低比表面分析中。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " b)& nbsp 0.02℃温控精度:三个温度传感器,实时显示各区域温度。高精度和高稳定的全恒温控制,可将压力变化控制在0.05%以内,远小于传感器本身的不确定度(0.1%),可彻底避免因环境温度变化造成的分析误差。可根据地区需要和数据对比需要调节恒定温度。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " c)& nbsp 进气预热恒温: 由于涉及安全管理问题,大多数实验室气瓶置于室外,造成吸附气进气温度与室温或仪器内温差距巨大,定量注气失准。该系统消灭了地区差别和早晚温差对钢瓶气造成的误差,尤其为锂电材料,药物材料,膜材料的等小比表面质量控制带来福音。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " d)& nbsp 新型电磁阀:常规电磁阀的发热问题由来已久,严重影响气体定量和压力读数的准确性,该问题在超低比表面和微孔分析时尤为突出。为解决这一问题所开发的带有自锁功能的电磁阀,无需持续供电便可保持开启或关闭状态,发热量等效为零,消除了电磁阀工作中发热引起的测量误差,极大地提升了分析性能。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " (2)& nbsp 压敏死体积恒定技术:通过压力传感器和伺服反馈电梯精确控制液氮液位,保持过程中死体积恒定。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 【专利号:ZL 2019 & nbsp 885784.5】 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 真空体积法物理吸附是在一个密闭空间进行的。自由空间是系统中吸附质分子传递、扩散的区域,如果要精确计算样品的物理吸附量,死体积值是准确采集数据的基础。因为真空体积法的测量基础是压力,吸附量的计算基础是理想气体状态方程,所以吸附质气体在扩散过程中压力差越大,则气体绝对量计算越准确。 系统死体积越小,对压力变化的灵敏度越高,吸附量计算越准确。换句话说,在同样的条件下,系统死体积越小,则仪器测量精度越高。由于在氮吸附分析过程中,液氮是不断挥发的,所以为保证精确计算吸附量,要对死体积进行控制、测量或校准。 /span /p p style=" text-align:center" span style=" font-family: 宋体, SimSun " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/9d9ab2a1-3a09-482c-b996-a84f2e8565d1.jpg" title=" 222.png" alt=" 222.png" / /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " (3)32位芯片及电路系统:采用全新32位芯片及电路系统,相比24位系统,压力传感器分析精度提升30倍以上,确保超低比表面测量的极致精度。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 模数转换器即A/D转换器,简称ADC,它是把连续的模拟信号转变为离散的数字信号的器件。转换精度就是分辨率的大小,因此要获得高精度的模/数转换结果,首先要保证选择有足够分辨率的ADC,同时还必须与外接电路的配置匹配有关。iPore系列不仅采用32位模数转换,而且采用拥有自主知识产权的32位电路设计和制造,从系统上保证了压力传感器精度的进一步提升(见表1)。 /span /p p style=" text-align: center text-indent: 0em " strong span style=" font-family: 宋体, SimSun " 表1 & nbsp ADC芯片转换精度与压力分辨率关系(以1000Torr传感器为例) /span /strong /p table border=" 1" cellspacing=" 0" style=" border: none" align=" center" tbody tr class=" firstRow" td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family: 黑体 font-size: 14px" ADC转换位数 /span /strong strong /strong /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 14px" 16 Bit /span /strong strong /strong /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 14px" 24 Bit /span /strong strong /strong /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 14px" 32 Bit /span /strong strong /strong /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family: 黑体 font-size: 14px" ADC有效位数 /span /strong strong /strong strong /strong /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:宋体 font-size:14px" 15 Bit /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:宋体 font-size:14px" 20 Bit /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:宋体 font-size:14px" 28 Bit /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family: 黑体 font-size: 14px" 压力最小分辨率 /span /strong strong /strong /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:宋体 font-size:14px" 2 Pa /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:宋体 font-size:14px" 0.0079 Pa /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:宋体 font-size:14px" 0.00003 Pa /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family: 黑体 font-size: 14px" 压力有效分辨率 /span /strong strong /strong /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:宋体 font-size:14px" 4 Pa /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:宋体 font-size:14px" 0.12 Pa /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:宋体 font-size:14px" 0.0039 Pa /span /p /td /tr tr td width=" 568" valign=" top" colspan=" 4" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 font-size:14px" *ADC span style=" font-family:宋体" 有效位数是指可靠的转换值 /span /span /p /td /tr /tbody /table p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 这些新技术的采用,带来了意想不到的突破。它不仅可以用氮吸附测定0.005 m sup 2 /sup /g左右的比表面积,大大超越了常规氮吸附的比表面下限极值(0.01m sup 2 /sup /g),而且可以测得微量吸附下的孔径分布(图6)。 /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/202008/uepic/4eb6833c-d410-482b-9d03-8f85c54cd03d.jpg" title=" 444.png" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/202008/uepic/1dbb2a52-49ba-426e-a862-cd25a827530c.jpg" title=" 555.png" / /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-size: 18px " strong span style=" font-family: 宋体, SimSun color: rgb(0, 176, 80) " 三、突破性吸附技术对制药行业的应用意义 /span /strong /span /h1 p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 1.& nbsp 超低比表面样品测定的重复性、重现性和稳定性: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun text-indent: 2em " 仪器的长期稳定性是低比表面材料样品质量检测和质量控制的基础保证。为了验证新技术的准确性和长期稳定性,使用氮气测试比表面标准样品(标称值0.221± 0.013m sup 2 /sup /g,氪吸附)的重复性偏差(表2)。结果表明,iPore 400的即时重复性偏差优于0.1%,一天重复性偏差优于0.6%,四天长期稳定性优于1.0%!性能的全面优化使BET比表面测定长期重复性达到空前水平! /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " iPore 400可以配置6个独立的分析站(图4),具有极高的通量,不仅节省分析时间,提高了分析效率,而且6个站BET测定结果具有高度的一致性,重现性偏差同样优于1%(表3)。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " /span /p p style=" text-align: center " strong span style=" font-family: 黑体 font-size: 14px" span style=" font-family:黑体" 表 /span /span /strong strong span style=" font-family: 黑体 font-size: 14px" 3 /span /strong strong span style=" font-family: 黑体 font-size: 14px" & nbsp /span /strong strong span style=" font-family: 黑体 font-size: 14px" span style=" font-family:黑体" 低比表面石墨样品比表面平行测定实验( /span /span /strong strong span style=" font-family: 黑体 color: rgb(255, 0, 0) font-size: 14px" span style=" font-family:黑体" 红色 /span /span /strong strong span style=" font-family: 黑体 font-size: 14px" span style=" font-family:黑体" 数据是 /span 12次测量结果的标准差) /span /strong /p table border=" 0" cellspacing=" 0" style=" margin-left: 7px border: none" align=" center" tbody tr style=" height:22px" class=" firstRow" td width=" 176" valign=" center" nowrap=" " colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td td valign=" center" nowrap=" " colspan=" 6" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" BET比表面值(m /span /strong strong sup span style=" font-family: 黑体 font-size: 15px vertical-align: super" 2 /span /sup /strong strong span style=" font-family: 黑体 font-size: 15px" /g), & nbsp & nbsp R & gt 0.9999 /span /strong strong /strong /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" 六站测定重现性 /span /strong strong /strong /p /td /tr tr style=" height:19px" td width=" 73" valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" 测定次数 /span /strong strong /strong /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" 站号 /span /strong strong /strong /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" 1 /span /strong strong /strong /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" 2 /span /strong strong /strong /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" 3 /span /strong strong /strong /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" 4 /span /strong strong /strong /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" 5 /span /strong strong /strong /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" 6 /span /strong strong /strong /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" RSD /span /strong strong /strong /p /td /tr tr style=" height:19px" td width=" 73" valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family: 宋体 font-size: 15px" 1 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family: 宋体 font-size: 15px" 定投气量测试 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8781 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8880 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8940 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8825 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8878 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8800 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.54% /span /p /td /tr tr style=" height:19px" td width=" 73" valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family: 宋体 font-size: 15px" 2 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family: 宋体 font-size: 15px" 定压测试 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8767 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8760 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8747 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8747 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8744 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8816 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.25% /span /p /td /tr tr style=" height:19px" td width=" 176" valign=" center" nowrap=" " colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family: 黑体 font-size: 15px" 同站测定重现性,RSD /span /strong strong /strong /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.07% /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.60% /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.96% /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.39% /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.67% /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.08% /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" strong span style=" font-family: 宋体 color: rgb(255, 0, 0) font-size: 15px" 0.61% /span /strong strong /strong /p /td /tr /tbody /table p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 我们用这些新技术对薄膜超低比表面积进行了重复性测定,得到了相当出色的结果 (BET = 0.0307m sup 2 /sup /g)。这为解决超滤膜和纳滤膜的纳米孔分析奠定了基础(图7)。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/0e898529-e557-42aa-8499-f7f6d3993be8.jpg" title=" 666.png" alt=" 666.png" / /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 2.& nbsp 超高比表面样品测定的重复性: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 共价有机框架聚合物(COF)是一种低密度、高比表面、易于修饰改性和功能化的新型人工合成材料。在问世的短短十余年之间,就在气体储存与分离、非均相催化、储能材料、光电、传感以及药物传递等领域展现出优异的应用前景,并且已经发展成为一种纳米药物载体。常规气体吸附法比表面容易测定的范围是5~500 m sup 2 /sup /g之间。因为吸附量巨大,需要长时间的平衡条件,比表面大于1000 m sup 2 /sup /g 的样品重复性控制并不容易做到。为此,对比表面大于2000m sup 2 /sup /g的COF样品比表面进行了长期稳定性测定,结果重复性优于0.07%(图8)! /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 3.& nbsp 能力验证——新技术对超低比表面样品测定重复性的重要性: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 为了比较新技术和现有技术在超低比表面应用中的区别,我们用一种极低比表面的金属氧化物对仪器性能进一步进行了验证,并与其它品牌的测试结果进行了比较(图8)。结果表明,新技术不仅两次测定(图8a和b)相关系数都在0.9999以上,而且BET比表面和吸脱附等温线都能很好地重复;而一旦关闭死体积恒定功能,虽然BET =0 .032并且相关系数(R=0.9987)依然满足药典0991要求(图8c),但其数据质量已经迅速下降,脱附等温线已经发生变形,说明这些采用的新技术相辅相成,缺一不可。而没有这些技术的常规氮吸附分析仪器的噪音已经完全掩盖了该样品的微弱吸附量,无法分辨(图8d)。 /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/202008/uepic/f6863e5f-cd33-488a-97c4-55f51653c09e.jpg" title=" a.png" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/202008/uepic/69859a06-d2f0-4879-9371-d8406940d9b3.jpg" title=" b.png" / /p p style=" margin-top: 0px margin-bottom: 0px text-indent: 2em " span style=" font-family:黑体 font-size:12px" a span style=" font-family:黑体" 和 /span span style=" font-family:Times New Roman" b /span span style=" font-family:黑体" : /span span style=" font-family:Times New Roman" iPore 400 /span span style=" font-family:黑体" 两次测定的结果,比表面积值可以完全重复; /span /span /p p style=" margin-top: 0px margin-bottom: 0px text-indent: 2em " span style=" font-family:黑体 font-size:12px" c span style=" font-family:黑体" : /span span style=" font-family:Times New Roman" iPore 400 /span span style=" font-family:黑体" 关闭死体积恒定功能的结果,可见 /span span style=" font-family:Times New Roman" BET /span span style=" font-family:黑体" 回归系数下降,脱附曲线受液氮挥发导致的死体积变化,已经完全变形 ; /span /span /p p style=" margin-top: 0px margin-bottom: 0px text-indent: 2em " span style=" font-family:黑体 font-size:12px" d span style=" font-family:黑体" :其它品牌仪器所测的结果,吸附量被仪器本身的噪声所掩盖,等温线显示为仪器本底的随机噪声曲线 /span /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 4.& nbsp 在标准“介孔仪器”配置上实现氪吸附: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 药品多为有机化合物,比表面值一般都很低。新版中国药典0991指出,对于比表面积小于 0.2m sup 2 /sup /g 的供试品,为避免测定误差,可选用氪气作为吸附质;也可选用氮气作为吸附质,但必须通过增加取样量,使供试品总表面积至少达到 1m2方可补偿测定误差。氪气(Kr)因其在液氮温度下的饱和蒸汽压特性,是用于小比表面积样品的精密测试方法。但是,进行Kr吸附一般至少需要配备10torr的高精密压力传感器以及分子泵,以分辨P/P sub 0 /sub 在10 sup -5 /sup ~10 sup -4 /sup 的极低压力环境下细微的压力变化,从而保证数据精确且稳定。氪吸附应用到小于0.05 m sup 2 /sup 的绝对表面积计算。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 但是,一般的氪吸附的应用需要配置分子泵和10torr压力传感器,这给企业带来了额外的成本负担。而新技术的突破可以在标准配置(机械泵和1000torr压力传感器)的条件下满足氪吸附的应用要求,P/P sub 0 /sub 下限达到可重复的10 sup -5 /sup (图9),为医药企业节约了检测投资成本! /span /p p style=" text-align:center" span style=" font-family: 宋体, SimSun " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/ad65b4cb-6898-4bbf-8553-8afc66f8b0c1.jpg" title=" c.png" alt=" c.png" / /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 5.& nbsp 用氮吸附完全替代氪吸附: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 其实,在77.4K的氪吸附实际还存在着许多问题,如其吸附层的性质和热力学状态并不明确,是固体还是液体?应该参照何种状态来计算P/P sub 0 /sub ?与此连带的一些问题是,在远远低于三相点温度的环境下,氪作为被吸附相有怎样的浸润特性(因为在BET方法中,假设吸附质相完全浸润)?在77K的氮吸附中,可以观察到几乎所有材料都被完全浸润的特性,但在低于三相点温度时,这种情况可能是不同的。 另一个不确定因素是氪分子的有效横截面积,它非常依赖于吸附剂表面,因此没有被很好地建立起来。从氪的过冷液体密度计算出的横截面面积是0.152 nm sup 2 /sup & nbsp (15.2 Å sup 2 /sup ),但通常会用较大的横截面面积值,甚至高达0.236 nm sup 2 /sup (23.6 Å 2)。采用较多的横截面积值是0.202 nm sup 2 /sup (20.2 Å sup 2 /sup )。除此之外,氪气的成本是氮气的240倍,这意味着氪吸附测定需要高昂的实验成本,会极大加重企业负担。因此,理化联科气体吸附分析技术上的突破带来了药企行业应用的巨大突破,氮吸附已经成功地实现了氪吸附领域的超低比表面积测定(图6~8)。我们用氮吸附成功测定的极限样品是0.0047m sup 2 /sup /g,这意味着只有当试样比表面小于0.005m sup 2 /sup /g时,才需要氪吸附,而这样的样品凤毛麟角。也就是说,一台全部采用上述新技术的仪器可以全部满足药企各种比表面的测定需求。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 6.& nbsp 建立超滤膜孔径(纳米孔)评价的新方法: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 滤膜孔径评价的经典方法是气体渗透法(即毛细管流动法),但这种方法的适用范围是20nm~500μm。超滤膜是一种孔径范围为1-20nm的纳米孔过滤膜,其范围恰恰在气体渗透法能力之外。该膜的孔径范围虽然被气体吸附法所覆盖,但由于膜的吸附量过低,常规的气体吸附法无法实现测定。国外曾经建立起了液氩温度下氪吸附测量膜孔径的方法,但无论仪器、耗材及方法都很难向工厂推广。制药行业中膜技术应用存在的技术瓶颈亟待解决,需要建立快速可行的超滤膜孔径评价方法。实际上,电池隔膜和电子薄膜也存在类似问题。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 气体吸附技术在精度控制上的突破也为纳米薄膜的孔径分布分析带来佳音,这种吸附量极低的孔径分析不再需要液氩温度下的氪吸附,只需要按照常规操作即可(图6右)。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 7.& nbsp 突破传统“介孔仪器”,实现微介孔样品的氮吸附微孔测定: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 新的气体吸附技术标准使1000torr传感器的分辨率提高到了10torr级别,仪器的密封性使机械泵抽空效率发挥到极致。以氮吸附替代氪吸附,以传统介孔仪器成功测定微孔(图10),不仅节约了用户购买仪器的成本,而且降低了用户使用成本;不仅将比表面测定的重复性提高一个数量级,而且微孔分析的重复性也得到充分保障,对MOF/COF样品的研究开发将起到推动作用。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/c02cabde-81b1-42d3-a7f5-5b064c381921.jpg" title=" d.png" alt=" d.png" / /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 8.& nbsp 气凝胶较大介孔和边际大孔的孔径分析取得突破: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 气体吸附法介孔孔径分析的经典方法是BJH法,它是基于以毛细管凝聚理论为基础的KELVIN公式。其基本概念是,当压力增加时,气体先在小孔中凝结, 然后才是大孔。因此,孔径与压力有对应关系。但是,当孔径大于10nm以后(对应P/P sub 0 /sub =0.90),压力上升0.05(P/P sub 0 /sub =0.95),对应的孔径已经是20nm了,并且呈指数上升。如:P/P sub 0 /sub =0.98对应50nm,而0.99则已经是100nm了。因此,虽然ISO15901-2指出气体吸附法的孔径测定上限是100nm,但实际上很少有人能做到30nm以上去,因为压力传感器必须能够密集分辨和探知百万分之一的压力变化,这大大超出了常规压力传感器0.15% 分辨率的标称值。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 气凝胶是一种新型低密度多孔纳米材料,具有独特的纳米级多孔及三维网络结构,同时具有极低的密度(3 500kg/m sup 3 /sup )、高比表面积(200 1000m sup 2 /sup /g)和高孔隙率(孔隙率高达 80 99.8%,孔径典型尺寸为 1 100nm),从而表现出独特的光学、热学、声学及电学性能,具有广阔的应用前景。在医药领域,气凝胶被用于药物可控释放体系。但是,其孔径分布分析却遇到麻烦,因为压汞仪的高压会破环样品的孔结构。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 致病微生物在多孔氧化铝膜上生长不易受到限制,因此氧化铝膜常用于药物敏感性实验(DST)了解病原微生物对各种抗生素的敏感程度或耐受程度来指导临床用药。与气凝胶相反,膜的单位吸附量极低,但孔径可能达到100nm以上。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 由表1可知,32位电路新技术可以极大地提高压力传感器的分辨率,至少可分辨3.9*10 sup -8 /sup 的相对压力变化,因此,我们尝试对气凝胶和氧化铝膜进行孔径分布分析。利用精细投气控制新技术,0.99以上的设点间隔达到0.0002的密度,最高吸附点达到了0.9980(对应孔径559nm),在测试方法上取得新的突破,为建立气凝胶和氧化铝膜孔径分析的新方法奠定了坚实的基础(图11)。 /span /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px text-indent: 0em " span style=" color: rgb(0, 176, 80) font-family: 宋体, SimSun font-size: 18px " 四、总结 /span /h1 p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 工欲善其事,必先利其器! /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 利用气体吸附分析仪进行比表面积质量控制分析时,经常碰到如下问题:不同厂家仪器之间数据不一致;同一型号在不同地域或不同海拔的数据不一致;同一台仪器在白天晚上或春夏秋冬的数据不一致;同一台仪器长期稳定性不好。这些现象已经成为长期困扰行业质量控制的头疼问题。气体吸附分析技术的突破不仅彻底攻克了这个难题,而且使超低比表面分析达到高稳定性、高重复性、高效率;随之产生的功能性扩展,无论用氮吸附代替氪吸附,还是孔径分布测定向介孔两端范围延伸拓展,都为中国企业全面贯彻中国药典0991带来了超高性价比的惊喜! /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/6ca5abfe-f2ab-4486-9fa5-bb34c06304c5.jpg" title=" e.png" alt=" e.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 气体吸附分析技术的突破,为全面贯彻药典新规和GB/T 19587-2017标准,准确测定原料药、药用辅料及其产品的比表面和孔径,进行精确的质量控制或检验,提供了性能全面优化的可涵盖各种药用试品的分析仪器,也为下一代物理吸附分析仪的发展方向树立了新的标杆,建立了新的标准。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family:宋体, SimSun" 作者简介: /span /strong /p p style=" text-align: center " span style=" font-family: 宋体, SimSun " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/b5946e97-b5e2-4749-8815-3ebd6df36529.jpg" title=" f_看图王(1).jpg" alt=" f_看图王(1).jpg" / /span /p p span style=" font-family: 宋体, SimSun " (注:本文由杨正红老师供稿,不代表仪器信息网本网观点) /span /p
  • 小质谱应用速递 | 上海中医药大学中药研究所杨莉团队发表对柑橘药材进行现场分析和快速鉴定的方法
    上海中医药大学中药研究所杨莉团队,在 Rapid Communications in Mass Spectrometry 发表文章《使用小型质谱结合机器学习分析对柑橘药材进行现场分析和快速鉴定》(On-site analysis and rapid identification of citrus herbs by miniature mass spectrometry and machine learning)。文章使用清谱科技便携式小型质谱系统Cell开发了对陈皮、青皮和广陈皮三种药材进行快速现场分析的质谱方法,并结合机器学习分析现场区分三种中药类型。Cell 便携式质谱分析系统背景天然药物的植物来源多样,多物种成分复杂,给分析带来了相当大的挑战。这种固有的复杂性增加了对其进行快速鉴定和分析的难度。橘皮是芸香科柑橘属植物的产物,被广泛用作烹饪原料和传统中药。在中国,橘皮按照采收时间区分,主要分为两种类型:陈皮(Citri Reticulatae Pericarpium,CP)和青皮(Citri Reticulatae Pericarpium Viride,QP。在陈皮(CP)中,以广陈皮质量为最佳,另外广陈皮植物来源为茶枝柑Citrus reticulata ‘Chachi’,其价格与其他陈皮差异较大。因此,不同品种、不同年份的橘皮之间无论是在药用价值还是在价格上都存在明显的差异。所以建立对橘皮种类的快速鉴定方法具有重要的社会和经济意义。实验方法本研究分别开发了LC-MS法和小质谱方法对橘皮进行质谱分析,最后对数据进行多元统计分析。使用LC-MS方法需要先对橘皮粉进行超声提取40分钟,再对提取液进行液相分离,整体分析时间大约需要1小时。小质谱方法中,将1mg橘皮粉直接加入PCS试剂盒的样品槽中,再在试剂槽滴加100uL甲醇,然后将试剂盒直接插入Cell小型质谱仪,检测后即可显示结果;整个过程仅需少量样品,无需前处理和液相分离,仅需1分钟即可完成分析。最终选用小质谱方法进行进一步的分析。图1. 使用Cell小质谱系统对橘皮药材进行分析的流程,与LC-MS分析流程相比,大大节省前处理与色谱分离时间结果与讨论在正离子模式下使用Cell Mini MS质谱系统进行MS和MS/MS扫描,获得不同橘皮药材的质谱图。图2. 使用小型质谱仪分析获得的CP(A)、QP(B)和GCP(C)的正离子MS谱图,以及GCP中的川陈皮素的MS/MS谱图。对Cell Mini MS 采集获得的MS和MS/MS信息进行比对,结合既有文献资料,得到主要的22种化合物列表,列表中显示,有几种化合物仅在广陈皮中检测到:表 1. Cell质谱系统采集获得的代表化合物列表对得到的小质谱数据进行多元统计分析,通过辨别化学相似性或差异性,从而区分 CP、QP 和 GCP 类别。图3 OPLS-DA 模型的得分图(A)和排列图(B)。QP、CP 和 GCP 样品与三种代表性化合物(VIP ≥ 1.5)成对比较的 VIP 值(C)(D)三种代表性化合物。为了更好地预测未知样本,采用了另一种Fisher’s判别法,该方法能准确地将所有样本归入其原始组别。图4. 利用Fisher判别法对柑橘药材进行预测分析本研究也采用机器学习分析法与Cell小型质谱数据相结合,通过提出多重感知器神经网络分类模型对陈皮和广陈皮进行鉴别分析,可快速准确对得到的样本数据进行分类,因此非常适合在市场上对价格差异较大的陈皮和广陈皮进一步进行现场区分。使用小质谱方法,也对不同年份的广陈皮进行研究,有效将广陈皮按照年份分为5年以下和5年以上两个组别,具有良好的可靠性和预测能力。结论本研究介绍了一种创新方法,使用便携式微型质谱仪对青皮(QP)、陈皮(CP)和广陈皮(GCP)进行快速现场分析,能够在每个样品不到1分钟的时间内鉴定出22种化合物。并结合机器学习来现场区分这三种类型,该方法还被用于尝试区分不同年份的广陈皮(GCP)。方法优势:1. 检测需要的样品量小,仅需1mg,适合对珍贵的中药材进行检测;2. 样品制备简单,几乎无需样品前处理;3. 快速实时分析,整个分析流程仅需1分钟;4. 实现现场检测,该方法与微型质谱的便携性相匹配,可实现特征化合物的实地检测。综上所述,该方法使用快速检测流程,可降低检测成本,同时Cell小型质谱系统能适应各种环境,适合对不同地域的中草药进行实时实地检测。这项研究不仅为现场鉴定 QP、CP 和 GCP 建立了可靠的工具,还展现其在柑橘类药材质量保证中的关键作用。这种方法不受地点和环境条件的影响,可广泛应用于其他中药材分析领域,是评估天然药物质量的重要工具。
  • “药物晶型研究与药物固态表征专题技术培训会”前期客户邀请工作顺利完成
    晶云药物科技有限公司(简称晶云)已与华嘉(香港)有限公司—隶属大昌华嘉 (简称华嘉)签订合作协议,将会为华嘉在中国的广大制药界客户,提供药物固态表征领域的一系列高端讲座和培训,以共同推进中国制药界对固态表征仪器在制药界应用和其在药物研发过程中的重要性的了解。 目前, 将于3月24-25日在苏州中国人民大学举办的第一期“药物晶型研究与药物固态表征专题培训”已经顺利完成了前期的准备工作,达到了预期目标,在业内引起广泛关注。 为了使本次培训取得最佳效果,学员人数限定为50人,现已全部申请结束。对于本次未能申请成功的学员,或是因时间原因无法参与的学员,我司不日将举办2期培训,敬请期待。 如欲了解详细信息,或预申请参加第二期培训,请致电:4008210778
  • 您的“仪表人才俱乐部”邀请函,请查收!
    您的“仪表人才俱乐部”邀请函,请查收!哈希公司 现在就点击下方图片或【阅读原文】进入仪表人才俱乐部结识行业新朋友,读取行业“秘籍”!END
  • 国家食药局召开两会代表座谈会
    2011年2月23日,国家食品药品监管局召开在京全国人大代表、政协委员座谈会。出席座谈会的部分在京代表、委员围绕完善食品药品监管机制、加强药品全过程监管、推进基本药物制度实施等话题畅所欲言。   座谈会上,国家食品药品监管局局长邵明立向代表、委员介绍了国家食品药品监管局2010年“两会”建议、提案的办理情况,“十一五”期间食品药品监管的主要进展以及“十二五”监管目标和今年重点工作。国家食品药品监管局副局长李继平主持座谈会。   国家食品药品监管局高度重视建议、提案办理工作。2010年,国家食品药品监管局加强“两会”建议、提案办理前的调研分析,积极邀请代表、委员进行座谈和实地调研。对重点办理件,坚持做到“办理前联系,办理中征求意见,办理后跟踪回访”。座谈会上,代表、委员对国家食品药品监管局“两会”建议、提案办理工作给予高度评价。   食品药品监管工作与百姓健康息息相关,备受代表、委员关注。全国政协委员、中国疾病预防控制中心营养与食品安全所教授李蓉用“有目共睹”四个字评价过去一年食品药品监管工作取得的成绩。全国人大代表、北京友谊医院心胸血管外科主任医师、教授王天佑说:“我来自临床一线,近年来感觉用药放心多了,食品药品监管部门在保证药品安全方面做了大量工作,是百姓的健康卫士。”全国人大代表、农工党北京市委副主委、北京大学肿瘤医院副院长顾晋表示,近年来食品药品监管更科学了,效能更高了。   中国食品药品检定研究院菌种室主任王国治、中国中医科学院艾滋病研究中心常务副主任王健、中国中医科学院中医临床基础医学研究所常务副所长吕爱平等全国政协委员建议,要从进一步完善疫苗质量监管体系、进一步规范网络售药行为、加强中药不良反应监测等方面入手,提升药品监管效能,确保公众用药安全有效。   在新医改中如何确保基本药物制度实施到位,解决百姓“看病难、看病贵”问题?这是九三学社中央办公厅主任徐国权委员和中国中医科学院原党委书记、院长姚乃礼委员共同关注的话题。全国人大代表、北京军区总医院副院长兼皮肤科主任杨蓉娅呼吁,促进院内制剂规范健康发展,同时在基本用药目录设计中要兼顾学科平衡。出席座谈会的军事医学科学院原院长赵达生委员等就建立健全食品安全溯源体系等话题展开热烈讨论。   针对中国医学科学院肿瘤医院内科主任储大同委员关于提升医药产业集中度的建议,邵明立介绍了新修订的《药品生产质量管理规范》出台对提高药品生产企业准入门槛、促进医药产业结构调整的意义。邵明立表示,国家食品药品监管局将在党中央、国务院的坚强领导下,在全国人大、全国政协以及有关部门的大力支持下,按照改革创新、落实责任、增强合力、提高效能的思路,努力推进科学监管,努力做到让代表、委员满意,让人民群众得实惠。国家食品药品监管局将认真梳理代表、委员提出的意见、建议,为加强食品药品监管提供参考。   全国人大常委会办公厅联络局、全国政协提案委员会办公室以及农工党中央、九三学社中央相关负责人出席座谈会。国家食品药品监管局机关相关司局和直属单位负责人参加座谈会。
  • 清华大学药学院胡泽平课题组应邀发表“代谢组学、代谢流技术及肿瘤药理”的综述文章
    清华大学药学院胡泽平课题组应邀发文系统总结了代谢组学和代谢流分析技术的最新研究进展,及其在肿瘤药理学应用中的重要研究进展,包括发现抗肿瘤药物靶点以及生物标记物、揭示药物作用机制和耐药机制、促进精准治疗等。值得一提的是,该综述首次系统地总结绘制了代谢流分析中各种稳定同位素标记示踪物的工作原理及其应用(详见图2),这将为代谢流分析技术在代谢研究领域和肿瘤药理中的广泛应用起到重要的推动作用。  增殖中的肿瘤细胞通常以代谢重塑的方式来提供更多的生物能量和物质,以满足其自身快速增殖的需求。譬如,沃伯格效应(Warburg effect)描述了即便是在有氧的情况下,肿瘤细胞仍然会上调糖酵解途径,并产生更多的乳酸。深入理解肿瘤中的代谢重塑对于我们发现新型治疗靶点,开发抗肿瘤药物有着重大的启示作用 而代谢组学和代谢流技术的发展则极大地促进了我们对于肿瘤代谢的理解。代谢组学能够给我们提供某一静态时刻下的大量代谢物信息,而代谢流分析能够动态地告诉我们某一代谢通路的流量变化。代谢组学和代谢流相辅相成,为我们理解肿瘤代谢打开了全面且动态的崭新视角。  图1. 基于液相色谱-质谱的代谢组学-代谢流分析流程简图  代谢组学分析主要分为三步骤:样品制备、数据采集、和数据处理分析与生物学意义阐释。生物样本经过提取处理后,通过色谱-质谱(mass spectrometry, MS)联用或核磁共振(nuclear magnetic resonance, NMR)来对代谢物进行分析和数据采集。简要数据处理则主要包括通过火山图和热图呈现代谢物的丰度和倍数变化,对代谢物进行通路富集分析。后续则可选择使用同位素标记的代谢流分析来揭示代谢通路的动态变化,并使用体外或者体内模型来进行代谢重塑的功能和机制验证。近年来的代谢组学技术取得一些重要进展,如胡泽平课题组发展的可用于极微量样本(如1,000-5,000个造血干细胞或者60个卵母细胞)的超灵敏代谢组学技术和Sabatini课题组发展的线粒体代谢组学等,都推动了代谢组学在代谢生物学和肿瘤生物学中的应用。  代谢流分析(metabolic flux analysis, MFA)可以动态地揭示代谢通路的流量变化。当一个代谢物产生积累时,可能是由于其生产的增加或者是消耗的减少。基于稳定同位素示踪法的MFA则可以帮助我们测量代谢流量:带有稳定同位素标记的代谢物经过生化反应,则会导致下游代谢产物的标记,产生在特定位置被同位素标记的M+1,… ,M+n代谢物。通过分析下游代谢物的标记模式及被标记代谢物的量,我们可以计算得出感兴趣的代谢通路的流量速度和方向信息。  图2. 稳定同位素标记示踪剂标记葡萄糖代谢通路(节选部分)  例如图2(A)中全13C标记的葡萄糖经过糖酵解反应,生成糖酵解终产物丙酮酸。丙酮酸又可经丙酮酸脱氢酶生成乙酰辅酶A,进入三羧酸循环(TCA cycle)。另外,葡萄糖作为磷酸戊糖途径和丝氨酸生物合成的底物,可以标记这两条代谢途径中的中间产物。通过分析特定通路的下游产物标记,我们可以得到在某段时间内的代谢流量。图2(B)则展示了全13C标记的葡萄糖通过糖酵解代谢为丙酮酸后,可以通过丙酮酸脱氢酶和丙酮酸羧化酶两种方式进入三羧酸循环,从而产生M+2以及M+3的TCA中间产物,进而我们可以分析得到两种酶所介导的不同通路信息。  代谢是高度复杂且受严密调控的动态变化网络。除了基于特定酶、转运体的调控外,通路之间可以通过同一中间产物而产生关联。如果能找到肿瘤细胞中相较于正常细胞而特定依赖的代谢通路,那么我们就可以精确地靶向肿瘤细胞进行治疗和干预。   图3. 促进肿瘤细胞生长的代谢通路及潜在治疗靶点  图3.展示了细胞中复杂的代谢通路,包括葡萄糖的代谢(糖酵解、磷酸戊糖途径)、脂肪酸代谢、核苷酸的合成、叶酸代谢等,其中特别标记了值得调控的关键酶和转运体,以及针对这些作为靶标已进入临床试验或者已经被FDA批准的小分子药物。譬如,在胶质瘤中曾报道过突变的异柠檬酸脱氢酶(IDH)可以介导肿瘤代谢物2-羟戊二酸(2HG)的产生,展示了IDH作为抗肿瘤靶标的潜力,从而引发IDH抑制剂的开发、获批与应用。  代谢组学与代谢流分析也可以在肿瘤药物研发中发挥重要作用,并可贯穿于每一步中:从发现靶点到理解药物作用机理,从耐药机制研究到指导精准治疗。  经过代谢组学分析后,差异代谢物和代谢通路可引导发现潜在的生物标记物和可靶向的代谢依赖性和弱点。潜在的生物标记物可帮助肿瘤的早期诊断、预后和药物有效性预测。通过结合代谢流分析,代谢靶标可以帮助新药研发,或者是帮助科研人员更好地理解现有药物的作用机制,以及如何产生耐药,从而改善现有疗法。药理代谢组学可以用于指导精准治疗 饮食干预疗法则可以作为药物治疗的辅助手段。  图4.代谢组学和代谢流分析技术在肿瘤药物研发和药理学中的应用  尽管代谢组学和代谢流分析极大拓展了我们对于肿瘤生物学的理解,但是领域中依旧存在诸多技术挑战和瓶颈,比如灵敏度不足、精准度不够、难以进行代谢流分析,以及至今无法实现真正意义上的单细胞代谢组学(特别是由于灵敏度的技术瓶颈)等等。相关的技术进步和新型方法开发都将进一步促进代谢组学和代谢流分析技术在不同生物医学背景下的应用。下一阶段的研究需要更好地整合、利用所获取的代谢重塑表型和机制信息,将其转化成更好的抗肿瘤疗法。药物研发方面需要更多地关注肿瘤微环境,尤其是肿瘤细胞与免疫细胞之间的代谢相互作用。多组学整合的应用,包括基因组学、蛋白组学、代谢组学等,将有助于加深我们对于肿瘤生物学的理解和利用,进一步加速抗肿瘤药物的研发。  以上综述文章于2021年3月1日应邀在线发表于国际知名学术期刊《药理学&治疗》(Pharmacology & Therapeutics),题为《代谢组学、代谢流分析与肿瘤药理学》(Metabolomics, metabolic flux analysis and cancer pharmacology),此前,胡泽平课题组曾于2019年获邀在国际知名临床药理期刊《临床药理学&治疗》Clinical Pharmacology & Therapeutics发表代谢组学技术及其在临床药理中应用的相关综述。  清华大学药学院胡泽平研究员与烟台大学药学院王洪波教授为本文通讯作者,2016级药学院本科毕业生梁凌帆与胡泽平课题组2020级博士研究生孙菲分别为本文第一、第二作者。本研究得到了国家自然科学基金委糖脂代谢重大计划重点项目(92057209)、基金委面上项目(81973355)、国家科技部重点研发计划(2019YFA0802100-02, 2020YFA0803300)、清华-北大生命科学联合中心、北京市高精尖结构生物学中心的资助。  点击链接,阅读原文:https://www.sciencedirect.com/science/article/abs/pii/S0163725821000292
  • 华立药业突遭停牌 或“专注”仪器仪表业
    中国证券网讯 2010年3月25日凌晨消息,华立药业的突然停牌再度激起了外界对其资产整合的憧憬。   毫无征兆之下,深交所昨日开盘前突发公告,因华立药业发生对股价可能产生较大影响、没有公开披露的重大事项,经公司申请,华立药业自开市起停牌。对此,华立药业今日正式对外披露称,公司正在筹划对经营有重大影响的重大事项,因该事项目前处于磋商阶段,尚无法详细披露相关信息,故公司股票将从24日起停牌,预计在本月29日披露相关事项并复牌。   “作为华立系‘三驾马车’之一,华立药业如何对旗下资产进行整合一直是投资者关注焦点,而从公司今日表述来看,其所运作的极有可能就是该事宜。”一位长期关注华立药业的分析人士对此称。   除华立药业外,由自然人汪力成实际控制的华立系还拥有昆明制药和武汉健民两家上市公司的控股权。但由于华立药业与昆明制药的青蒿素业务有部分重合且战略目标相似,所以市场一直预期两者可能会进一步整合,即通过资源整合在做强青蒿素产业的同时,也以此避免同业竞争。   华立药业此番筹划重大事项也并不令人意外。记者注意到,华立药业去年5月因股价异动向控股股东进行核实时,华立方面当时便回复称其自2005年以来就存在对下属青蒿素产业进行整合的初步意向,但一直未有实质进展。而更意味深长的是,华立集团去年8月曾从其子公司华芳医药(即华立药业原控股股东)处收购了上市公司23.52%股权,进而“直控”华立药业。华立集团随后在其发布的权益报告书中更是明确表示,集团不排除在未来12个月对华立药业资产和业务进行进一步整合、调整的可能性。   上述分析人士进一步表示,按照当前发展趋势,“华立系”以昆明制药作为青蒿素业务整合平台具有较大可能性,而华立药业或将专注于发展仪器仪表等其他产业。   的确,参照华立药业2009年年报,仪器仪表业务去年为公司贡献了10.12亿元的营业收入,而青蒿素及其药品销售所创造收入则均不足亿元,华立药业预计今年医药业务仍然难以摆脱亏损局面。   此外,就在本次停牌之前,华立药业在今年2月曾与法国SAGEMCOM公司(其在宽频通讯、电讯及仪表等领域居领先地位)商谈过合作事宜,尽管合作最终“无果”,但华立药业大力发展仪表产业的决心由此可见一斑。
  • 动态表面张力测量在药剂学中广阔的应用前景
    点击蓝字关注我们表面张力分为静态(平衡)表面张力和动态表面张力(dynamic surface tension, DST)。静态表面张力是指表面活性剂在界面达到吸附平衡时的最低表面张力,而DST是指表面活性剂在达到平衡吸附前某一时刻的表面张力,是一个变化的值。当研究的液体吸附过程在快速、持续进行, 且短时间内无法达到平衡时, 对液体DST的研究比静态表面张力更有意义。如在农药喷洒、喷墨印刷、织物快速润湿, 以及摄影用薄胶片制备中。图1对比了近10年 (2008~2018年) 国内外发表的以DST为主要考察项的论文数。数据显示国内在DST方面的研究较少且总体波动不大,而国外则呈持续上升趋势。图1 2008~2018 年国内外发表的DST 文章数量对比图研究液体在药物制剂过程中的DST, 可挖掘DST与制剂过程、制剂产品之间的关系, 进而优化制剂过程、改进工艺参数。一、动态表面张力的测定由于对DST时间范围界定的不同,可运用的测量手段也有所不同。王建坤等认为,在达到静态表面张力前的表面张力变化都可算是DST,这个时间范围以几毫秒到几小时计。可用Wilhelmy吊片法、DuNouy吊环法、滴重法、滴体积法、悬滴法、最大气泡压力法测定DST。图2 不同的DST 测定方法的适用时间范围示意图根据Rosen描述的动态吸附过程可知在新表面形成后1 s内,是表面吸附的关键期,体系的DST变化迅速。中药水提液的表面张力在5~100 ms内具有较大变化,大多数在1 s内都已达到平衡。因此,用于测量DST的方法应具有连续、精确、快速测量1 s内数据能力。二、最大气泡压力法通过毛细管将气体注入到待测液体中时,在毛细管的端部重复形成气泡,根据气泡压力的最大值和毛细管半径,计算得到表面张力。通过改变气流流速控制气泡的年龄,可测量不同时间尺度的表面张力。目前实验室中多用KRüSS公司的BP100气泡压力张力仪测定1 s内DST。三、DST 在药物制剂领域的潜在应用价值近10年,DST已受到化工、涂料、印染等领域的广泛关注。药物制剂领域也有很多液体瞬时运动的过程,如喷雾干燥雾化,流化床制粒的粘合剂雾化,关注DST在液体雾化及扩散润湿过程中的作用,是精细控制制剂工艺的手段之一。1DST在雾化过程中的作用雾化是将液体通过雾化器(在一定压力下)喷射进入气体介质中,使之分散并碎裂成小液滴(雾滴)的过程。赵辉等考察了相同条件下,农药药液在不同时间点(0.023、0.124、0.483和0.998 s)的DST与雾滴体积中径(D50)的关系;发现D50随着喷雾液的DST值的降低而降低,二者呈线性相关,但二者的相关系数k 随DST 测定时间的延后而变差。0.023 s时的DST与D50相关系数高达0.9848,时间>1 s后,只有0.7135。利用动态表面张力仪测试了66种常见中药的水提液,发现所有提取液的DST在1 s内均有下降,但下降程度不同,且提取液雾滴粒径D50与94 ms时测得的DST存在一定相关关系,该结论还在进一步实验确证中。2DST在扩散润湿过程中的作用DST不仅影响药物制剂领域的雾化过程,对扩散润湿过程同样有显著的影响。喷雾干燥与流化床制粒过程中,液体雾化后雾滴在接触相表面的扩散润湿受两大因素影响:一是雾滴的性质,二是接触相的性质。在喷雾干燥黏壁问题中,从DST角度分析,半湿性黏壁现象是由于雾滴与干燥塔壁接触后迅速出现自发润湿,经塔壁的高温干燥后出现黏壁。因此,可从两方面促使雾滴与干燥塔接触后出现快速回缩以改善此黏壁现象。一是增大雾滴DST,二要选择合适的喷雾干燥塔内侧材料。从待喷液分析,应适当降低待测液浓度、进液温度,以增大雾滴DST,或添加疏水性辅料促使快速回缩的发生以改善干燥塔半湿性黏壁。四、 结语综上所述,DST作为一项重要的物理参数,在细微之处影响着药物制剂的品质与生产。关注DST对制剂过程的影响,拓展固有的药剂研究思路是十分必要的。参考文献施晓虹,李佳璇,洪燕龙,赵立杰,冯怡,王优杰. 动态表面张力在药剂学研究中的应用前景[J].国际药学研究杂志,2019.
  • 【直播日程公布】表面分析技术在生物医药领域的应用
    表面分析技术包括飞行时间二次离子质谱,扫描探针显微镜,X射线光电子能谱等技术,在生物医药的生产和研发过程中,对于药物,细胞等表面和一定深度的成份信息的表征具有非常重要的意义,也是生物医药领域必不可少的分析表征手段。基于此,仪器信息网网络讲堂将于2022年9月23日举办“表面分析技术在生物医药领域的应用”网络研讨会,特邀5位专家带来精彩分享!为相关从业人员搭建沟通和交流的平台,促进相关仪器技术及应用的发展。日程全览,点击报名时间专家09:30韩东(国家纳米科学中心 研究员)主要研究方向:纳米生物医学成像与表征、生命复杂流体与管理、生物力药理学。《生物型原子力显微镜表面分析技术在活体样品上的应用》报告摘要:21年经验,纯干货分享!纳米成像表征技术的源头应用与适应性改造生物活体纳米成像、表征设备功能群针对关键科学问题的新手段、新技术研发关于细胞的力学模型10:00樊友杰(布鲁克 应用工程师)《高速原子力显微镜在生物表面表征中的应用》报告摘要:快速原子力的发展克服了传统原子力速度上的局限,高空间分辨率的同时在毫秒尺度上研究生化动力学过程成为可能。介绍商业化的视频级速度的生物型原子力显微镜在生物样品领域里的成像,在使用非常小的作用力同时得到亚分子级结构的分辨率。介绍快扫型原子力在探索不同的天然和人工聚合物动力学过程的一些实例,还有原位研究细胞膜表面的动力学过程,及二维光敏蛋白质晶体细菌视紫红质的动态过程。介绍JPK最新的力学成像模式“定量成像模式(QI™ )”Bruker生物型原子力的全针尖扫描模式可以从结构上非常好地与现代主流倒置显微镜进行无缝偶合。10:30王化斌(中科院重庆绿色智能技术研究院 研究中心主任/研究员)中国科学院首批岗位特聘研究员,重庆市高分辨三维动态成像检测工程技术研究中心主任;长期从事光谱、成像及力学方面的研究工作。《原子力显微镜在生物样品成像和力学测量中的应用》报告摘要:介绍原子力显微的不同成像模式及应用实例分享原子力显微镜不同力学分析技术及应用情况11:00蔡斯琪(岛津企业管理(中国)有限公司 产品专员)《XPS表面分析技术在生物医药领域中的应用》报告摘要:X射线光电子能谱仪是表面分析领域中一种崭新的分析技术,通过测量固体样品表面约10nm左右被激发出光电子的动能,进而对固体样品表面的元素成分进行定性、定量及价态分析。报告中主要介绍XPS原理、技术特点以及XPS在生物材料及医疗器械等领域的应用,旨在让科研工作者对XPS表面分析技术在生物医用领域的应用有所了解。11:30周江涛(苏黎世联邦理工学院 助理研究员)主要研究兴趣有原子力显微镜及相关显微成像分析技术,在生物纳米纤维材料的形成机理和应用的研究。《原子力显微镜在成像及与光热谐振结合的微纳表面化学分析技术》报告摘要:简要原子力显微镜的原理及应用示例重点介绍原子力显微镜与可见/红外光结合的光热谐振技术,以及他们在纳米尺度的高灵敏度表面化学结构分析点击图片,即可免费参会,和嘉宾线上互动!特别感谢布鲁克、岛津对本次会议的大力支持!
  • 四小名助|快速核酸药物表征全攻略来了
    又到周五啦!四小名助如约而至,给大家带来色谱耗材相关的实用技术小贴士。内容涉及色谱柱及前处理产品选择、使用、维护保养等内容。实用干货,不容错过!FAST mRNA快速核酸药物表征核酸药物不但将药物治疗拓展到了蛋白质之前的基因层面,mRNA 疫苗体液免疫与T 细胞免疫的双重免疫机制,提高了免疫活性。同时放大制备更容易。这些优势使得核酸药物成为继小分子药物,蛋白药物,抗体药物后的新一代创新药物。2018 年后Patisiran 药物的递送技术解决了小核酸药物面临的给药效果差,脱靶造成副作用的难题,更是迎来了核酸药物研发的新高潮。新guan疫情中核酸疫苗的成功更是拓宽了核酸药物的应用潜力。新赛道上如何快速表征核酸药物,话不多说,直接上干货。选对耗材是关键核苷/寡核苷酸分析和制备色谱柱的选择(点击查看大图)核酸分析色谱柱的选择(点击查看大图)滑动查看更多寡核酸药物分析全助攻寡核苷酸药物中,根据作用机理可以分为反义核苷酸,小干扰RNA,微小RNA,小激活RNA,信使RNA,适配体等,这些药物由于容易被核酸酶降解,延长半衰期的考虑,会做一些修饰,如硫代PEG修饰等等。在固相合成过程中也会有些杂质需要监控,针对这些需求,相应的方法开发和方案展示如下:01DNAPac RP分析寡核苷酸药物关键杂质滑动查看更多(点击查看大图)02DNAPac PA系列阴离子交换柱分析寡核苷酸药物关键杂质滑动查看更多(点击查看大图)核酸药物分析全助攻核酸药物特别是mRNA在新guan疫情大流行期间,同样发挥了巨大的作用,在核酸成产过程中,质粒纯度测定, mRNA序列测定,mRNA帽子结构确定,mRNA的PolyA测定,mRNA的降解产物的研究等等这些需求,对于分析技术提出了更高要求,专用DNAPac系列反相色谱柱和离子交换色谱柱可以满足这些检测需求。01mRNA原液检测攻略滑动查看更多(点击查看大图)核酸药物载体的表征核酸药物的成功,离不开药物递送技术的突破,不同基质,不同官能团的色谱柱在纳米脂质体组成的测定,腺相关病毒组成以及聚乙酰亚胺残留的检测中各显神通,点击下面详图获得。01纳米脂质体的表征滑动查看更多(点击查看大图)02腺相关病毒载体的表征滑动查看更多(点击查看大图)工艺监控在寡核苷酸和核酸生产工艺中,会用到一些有机溶剂等其他原料,这些原料如何检测,点击下图查看:滑动查看更多(点击查看大图)一键获得★ 这么多应用是不是有些眼花缭乱了呢,贴心的核酸项目分析选择手卡,扫描以下二维码,即可一键获得如需合作转载本文,请文末留言。这样的应用图书馆不来了解一下?点击进入小程序完成注册即刻抽取盲盒好礼
  • 两会之声|代表建议建言 推动中药产业高质量发展
    近年来,国家大力支持中医药行业发展。2022年全国两会期间,不少代表委员对如何推动中药产业高质量健康发展建言献策。如全国人大代表、晨光生物董事长卢庆国和全国人大代表、湖南时代阳光药业执行董事唐纯玉均对中成药集采的推进提出有关建议。卢庆国认为,湖北等19省区联盟中成药集采的成功,为更多的中成药实行集采打开了通道。随着中成药集采的推广普及,必将对中成药行业的转型升级产生巨大的推动作用。中成药企业想在集采中中标,必须在质量保证的前提下,形成激烈的价格竞争,所以集采将倒逼中成药行业放弃原来重营销、轻科研、轻管理的模式,大幅削减营销费用。在保证产品质量的前提下,依靠科技创新、依靠管理提升大幅度降低药品的加工成本,才有可能在竞争中胜出。唐纯玉则建议,稳妥推进中成药集中带量采购。“鉴于目前中成药质量和疗效等评价体系不够完善,建议稳妥推进中成药集采。尤其是对日均费用较低的品种,一则该类品种价格低廉,难以承受降价压力;二则该类产品的使用,本身也是对医保基金的一种保护。”根据年度需求量测算,湖北省牵头的19省区联盟中成药集中带量采购预计每年可节约药品费用超过26亿元。卢庆国认为,目前中成药集采刚刚在部分省、市启动,所覆盖的省份还不够多、药品品种还比较少。“过去一段时间,出于生存和发展的需要,中成药企业花大力气在药品销售上,具有庞大的销售队伍,产生高昂的销售费用,同时企业高质量发展的要素——科技创新和企业管理提升反而被忽视。这样下去,将对中成药行业的健康、可持续发展形成很大的威胁。”卢庆国建议,扩大中成药集采的品种范围,加快推进各地中成药集采进程,尽快实现中成药集采的最大化,助推中药产业高质量、健康、可持续发展。作为中药产业中的创新产品,中药配方颗粒因服用方便逐步受到市场认可,并快速增长。数据显示,我国中药配方颗粒的规模近300亿元。然而,由于历史原因,过去要求试点企业研制的中药配方颗粒品种必须超出400个,随后各省审批的几十家试点企业也沿用过去的每家均超出400个以上的品种。随着更多企业的加入,每家企业生产数百种配方颗粒,在形成竞争格局的同时,行业争抢原料、重复研发、重复生产的散乱局面正在形成。卢庆国建议,推动中药配方颗粒实行集采,可以单品种进入集采,充分发挥专业化的竞争优势,助推中药配方颗粒的健康发展。同时,明确中药配方颗粒可单品种流通组方,审批资质不受品种数量限制,鼓励企业做一种或几种最擅长的中药配方颗粒产品。中成药治疗优势病种的研究很重要。唐纯玉在《关于充分发挥中成药临床优势作用,解决关键瓶颈的建议》中提及,中医药尤其是中药产业的发展,面临着压力与挑战,中药工业主营业务收入从2017年开始持续下降,中药工业在整个医药产业所占比重也从29%下降到22%。唐纯玉表示,必须从国家层面集中解决影响中成药临床使用的两个关键性瓶颈,一是中成药治疗优势病种的研究,真正确定中成药在临床使用中的优势;二是进行中医药的系统卫生经济学研究,建立符合我国两套医疗体系独特优势的医保支付相关政策及措施。“如不能解决关键瓶颈,即使在集采中能够中标,中成药肯定会持续被从综合医院的临床使用中挤出,中成药临床治疗优势病种的作用将无从发挥,中药产业发展将会持续低迷,势必将影响我国中医药事业的高质量健康发展。”唐纯玉说道。对此,唐纯玉建议,在加强中医优势专科建设的同时,要加强中成药治疗优势病种的研究。卫健委应会同中医局制定政策与措施,进行全面部署,对各企业和有关学会、协会已开展的研究,纳入统筹安排,给予肯定与支持。同时开展中医药卫生经济学研究,与目前所开展的药物经济学研究形成互补与借鉴。
  • 70位药械代表被约谈!旨在规范供应商销售行为
    为保证药械购销活动的廉洁性,防止不正当竞争。近日,北京中医药大学房山医院纪委在西二楼会议室组织召开了药品、医用耗材供应商廉洁承诺集体约谈会。其中50余家药品、医用耗材供应商被约谈。本次约谈,传达了中纪委 《深挖彻查医疗腐败》、《关于开展医疗行业作风建设工作专项行动的实施方案》、《2020年纠正医药购销领域和医疗服务中不正之风工作要点》等文件精神,旨在进一步斩断黑色链条、压缩灰色空间、从源头上遏制购销领域的不正之风,规范供应商及其业务人员的营销行为。随后,义乌市中医医院对20余家药械供应商进行集体约谈。本次约谈,医院传达了《义乌市中医医院医药代表接待日工作制度》、《义乌市中医医院医学装备及器械代表商业活动接待制度》,并与到会药械耗材供应商代表签订了《药品、医疗设备、医用耗材销售廉洁承诺书》。被约谈的药械供应商,均表示将严格遵守反商业贿赂各项规定,服从医院管理,依法合规经营,配合和支持医药购销领域突出问题专项整治工作。坚决杜绝以“回扣”或“提成”等违规违法方式开展器械耗材的推销营销,规范廉洁购销行为,杜绝商业贿赂,做到合理合法的正常合作。如有违反承诺行为,愿意接受停药,取消中标资格,记入不良行等惩罚。业内普遍认为,随着药品耗材集采等监管政策逐渐落地,中国药械领域的市场格局会发生根本性的变化。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制