当前位置: 仪器信息网 > 行业主题 > >

咪头

仪器信息网咪头专题为您提供2024年最新咪头价格报价、厂家品牌的相关信息, 包括咪头参数、型号等,不管是国产,还是进口品牌的咪头您都可以在这里找到。 除此之外,仪器信息网还免费为您整合咪头相关的耗材配件、试剂标物,还有咪头相关的最新资讯、资料,以及咪头相关的解决方案。

咪头相关的资讯

  • 来自东北的神秘力量——黄桃罐头
    黄桃罐头不是药,却能给你一点儿甜 🍑 “躺平”后的疫情势头猛烈,各式各样的药品早已成为紧俏货。而出人意料的是,黄桃罐头也冲上了热搜。全国人民,无论东南西北,都感受了一把来自东北的“神秘力量”。不少网友在“囤货”的同时,也来了一波“回忆杀”。当孩童时期的黄桃罐头穿越岁月,在今日引发新的风潮,它所唤起的,早已不仅仅是罐头本身的味道,更是一种精神力量。在记忆里,黄桃罐头是生病时的甜蜜犒赏、馋嘴时的稀缺零食、不可复制的童年味道。有博主调侃,黄桃罐头是治感冒的“新型罐装特效药”。黄桃罐头能治病听起来有些玄学,但更多的是一种情怀。以至于面对新冠病毒时,有网友喊出“买不买药不重要,黄桃罐头不能少”的话。这也是它虽身为罐头食品,如今却被算在药物储备里的原因。 黄桃罐头里的“情感寄托”,是疗愈的开始 黄桃罐头是物资匮乏年代下的产物。“小的时候生病了,家里人都会喂给我一些黄桃罐头吃,凉凉的,甜甜的,吃完会舒服很多。”对于很多东北人来说,发烧感冒时吃黄桃罐头,已成为治病环节的一部分,甚至可以戏称为“东北玄学”。然而事实上,感冒发烧吃罐头,只是东北人民在物资匮乏年代的无奈之举。过去发烧感冒时,医生除正常开药外,还会嘱咐吃点水果罐头,其实是因为罐头里含糖。白糖有利尿等作用,有助于身体恢复,但在当时白糖很金贵,所以用水果罐头来代替。在替代糖以外,水果罐头又是新鲜水果的“替身”。过去东北水果稀有,几乎只有苹果、梨、桃子,又难以运输和储存。因此,方便储存、口感甜而不腻,又可补充水、糖分和维生素C的水果罐头,成为生病中的东北人首选的营养品。而让黄桃罐头时至今日再度爆火的根源,可能就是“桃”与“逃”的谐音梗了。在抛梗与接梗的互动中,一些人的焦虑情绪找到了释放的出口,幽默细胞重新占领高地。黄桃罐头里“罐装”进了网友们的集体乐观。心情愉悦了,人面对感冒、发烧等症状时,一定程度上也会更加坦然和豁达。 为黄桃罐头“正名”:罐头食品的不安全?不新鲜? 黄桃罐头虽然火了一把,但罐头食品其实长期以来一直收到人们的偏见。罐头食品一般都有“超长待机”的能力,因而不少人会以为,罐头保质期长主要是因为添加了许多防腐剂。其实不然,罐头食品并不需要添加防腐剂。关于罐头的新鲜问题,我们要先来看看罐头食品的定义。根据《食品安全国家标准-罐头食品》(GB7098-2015):罐头食品是指以水果、蔬菜、食用菌、畜禽肉、水产动物等为原料,经预处理、装罐、密封、加热杀菌等工序加工而成的无菌罐装食品。首先,罐头的标准化生产和保鲜技术经过数百年的进化发展,已经相当成熟。罐头的制作主要分为六个步骤:原料预处理→装罐和预封→排气→密封→杀菌→冷却。经过加工后的罐头食品一般能常温储存12个月以上。这种保鲜能力主要靠的是“排气、密封、杀菌”这三个关键步骤。它们能最大程度地杀灭让食物腐烂变质的微生物。也就是说,罐头食品的保鲜根本不需要添加防腐剂。就算有,也非常非常少。所以,罐头食品的超长保质期是因为其特殊的工艺和包装特性,市面上常见的罐头包装:马口铁、玻璃瓶、各种软包装等,都是完全的密封包装,可以使灭过菌的食品处于真空状态下,阻隔外界污染进入,防止细菌等的再次滋生,在常温条件下保存也不会变质。 罐头保鲜的关键 之:卷封质量 先前提到,罐头食品是在食物完成灌装及密封后进行杀菌,把罐头内的细菌杀灭,同时阻止罐头外的细菌进入罐头,使罐头食品处在无菌状态下保存,自然就可长时间保存了。显然,罐头的密封性是至关重要的,它取决于罐体与罐盖材料的隔绝性和罐体与罐盖之间的卷封质量。而铝制包装的材料密闭性都很好,因而影响其密封性能的关键,就在于罐子与盖子的接缝处的密封性,也就是卷封紧密性。卷封,即罐体和盖子的结合部位,是至关重要的密封位置。卷封结构是由罐子翻边,和盖子卷缘压合成形,形成一个罐身和盖子相互钩叠,缝隙处由密封胶密封的结构。1. 无损卷封检测卷封工艺通过控制结构尺寸和紧密度来达成卷封的质量。检测方式分传统投影检测和无损检测。投影检测即在卷封上沿直径方向切割出卷封坡面,在投影仪上通过放大测量的方式。这种检测方式需要损耗罐头产品。而无损检测,顾名思义,就是不损耗罐头产品,通过X光对卷封进行测量的一种方案。无损卷封检测系统检测效率高,对检测环境也很友好。工业物理旗下CMC-KUHNKE可提供无损的卷封检测设备,XTS系列。XTS系列产品采用X光传射金属时,其衰减与材料的密度和厚度成比例。卷封特有的结构形成了各个位置材料不同厚度的叠加,非常使用X光检测技术的应用。设备可配置为在线或离线版本,从生产线或独立传送带上进行全自动罐装检测,满足不同的产线需求。检测项目可包含紧密度、卷封厚度、埋头深度、罐高、卷封宽度、身钩长度、盖钩长度、搭接长度、卷封顶隙、搭接率、身钩率、盖钩率等。此外,设备可以自动识别并测量卷封的内部结构及紧密度,可测多达100多个数据点,并通过串行接口导出测量数据。其中,实验室版本的 SEAMscan XTS - X射线紧密度扫描仪可检测二重卷封结构尺寸,也可精确测量卷封内部的皱纹度(全球唯一专利)。盖钩皱纹度的检测结果会自动发送到电脑数据库,电脑可以实时显示卷封质量变化趋势,并分析结果。整个测量过程仅需要70秒。戳下方视频,让您更直观地感受这台X射线紧密度扫描仪的简单便捷⬇ ️ X射线穿过二重卷封,探测盖钩形状的微妙变化。电脑通过程序算法分析卷封内部各个部位的变化情况,以确定是否对卷封的密封情况造成影响。检测结果可以显示为紧密度百分比,亦或是皱纹度或紧密度平均值的形式显示。通过运行Virtual Seam Teardown&trade (卷封虚拟拆卸)功能,可以看到身钩和盖钩彼此叠接的真实情况,是以往无法想象的。 2. 在线卷封视觉检测 而由于罐子的特性,空罐或卷封在加工过程中可能产生一些变形的外部缺陷,在卷封抽检尺寸时,可能出现未抽检的样品存在缺陷的情况。工业物理已经为这种情况准备了解决方案:Eagle Vision在线卷封视觉检测。Eagle Vision卷封视觉检测系统,用于检测罐子整圈卷封的外观视觉效果。系统采用在卷封周边布置的相机对卷封进行检测,对存在外观瑕疵的卷封进行剔除。系统架设在卷封机后的输送线上,对产品进行100%在线全检,但不影响生产线的生产效率。 容易被忽略的关键因素:罐子顶空气体分析 影响罐头新鲜度的另一大因素,就是罐头内的顶空气体分析。这里还有一个“冷知识”。其实,顶空气体的英文“Headspace”最早就是形容罐头食品内的顶部气体。而针对罐装食品及饮料厂商,工业物理也可提供罐内的微量顶空气体分析。Systech Illinois 希仕代GS系列顶空分析仪可选配一个坚硬罐体采样台,支持刚性罐和铝罐测试,以便使用标准针式探头进行准确分析。45° 角的适配器也可用于帮助测量小体积的顶空。对铝罐内顶空气体的分析测量,确保为您定制适用于您产品类型的夹具。 工业物理:守护每一罐香甜与安心 经过以上重重步骤,一罐罐经过严格监控的黄桃罐头,就可在无菌状态下有效的长时间保存了。因此,黄桃罐头的新鲜度与营养价值是完全无需担心的。黄桃罐头不是药,但它能给你一点儿甜,让你回味起儿时感冒了捂在被窝里不用上学,有家人疼爱的那份美好。吃完一罐,砸吧砸吧嘴,感觉又能支棱起来,面对一切,当然,黄桃虽好,也不能多吃。工业物理提醒您,在食用时,要注意适量,特别是咳嗽时不要食用,有可能会加重症状。而工业物理能做的,是提供各类卷封测试、顶空测量、磨损检测、罐外观视觉检测、铝罐硬度测试等全面的罐体检测方案,为您守护每一罐香甜与安心。点击此处,您可跳转阅读完整版工业物理罐体检测应用✨
  • “艳妆”猪头肉出锅的奥秘
    “艳妆”猪头肉出锅的奥秘 ——揭开一些熟食加工小作坊的“公开秘密” 从2010年9月开始,浙江义乌开始推行肉类熟食工厂化生产。图为义乌华统肉制品有限公司开足马力生产第二天上柜的肉类熟食。   “都是猪头肉,怎么颜色差别这么大啊,有的红得不正常,有的颜色发黑。”近日,山东蓬莱市民张女士反映,丈夫爱吃猪头肉,可她最近发现几家熟食店以及超市和流动摊点所卖的猪头肉的颜色都不一样,有的鲜艳得吓人,有的“红得发紫发黑”。“我在家自己做的猪头肉也放了些调料,但是颜色挺白的,这究竟是怎么回事儿?”针对张女士的困惑,笔者进行了一番调查走访。   颜色差别大   笔者走访了蓬莱市区几家熟食店、饭店和大型超市的肉食区发现,同样是猪头肉,其颜色的深浅却不一样。超市及一些饭店所卖的猪头肉颜色多偏浅、呈棕色,表面干燥,而小熟食店卖的多颜色鲜亮、发红,一些流动摊点所卖的“酱猪头肉”红得都有些发黑,看着有肥腻感。价格也差别较大,超市内销售的猪头肉多为品牌熟食,每公斤在40元以上,流动摊点的一般不足40元1公斤。“猪头肉脱油脱脂的,绝对健康,来一点儿?”北关路某大型超市肉食区一名销售人员告诉笔者,超市内的品牌熟食都是厂家配送,当笔者问销售人员是否有添加剂时,她说:“这些熟食从出厂到进超市要经过好几道检查,绝对安全。”   “只要放些调料、盐,慢慢炖就可以了。”当笔者问到猪头肉的制作方法时,画河附近一家熟食店老板警惕地看了笔者一眼,含糊地回答。再追问具体配料,老板不再理会。在金水街的一些流动摊点,笔者看到有小贩正在贩卖刚刚煮好的猪头肉。笔者看到,不光内部的瘦肉,就连表面的肥肉都发红,肉表面还挂着酱油颜色的汁液。“这是用特制的酱汤煮的。”小贩说。问酱汤的配料,小贩称是家传秘方,不肯透露。   凭感觉添加   “要想猪头肉卖相好看,一般都需要一种添加剂,学名叫亚硝酸钠。”从事熟食行业多年的陈先生向笔者详细介绍了猪头肉的制作过程。他透露,如果不放亚硝酸钠,煮出来的肉会发白,顾客不喜欢。据陈先生介绍,在煮猪头肉的时候加入亚硝酸钠已经成为小熟食店之间“公开的秘密”,“放上它煮猪头肉易烂,而且色泽红润。”   至于用量,陈先生说也不会严格地称,基本上都是凭感觉进行添加,“肉多就多放一点儿,肉少就少放一点儿,一般一锅用一小撮儿,二三克左右吧,一般说只要不大量放,也没有多大的坏处。”“猪头肉煮好后,还有一道上色的工序,我用的是麦芽糖,而有的人用色素。”陈先生说。   据了解,亚硝酸钠又称工业盐,在工业、建筑业中广为使用,它虽被应用于食品添加剂,具有防腐保鲜作用,但是对人体有害。亚硝酸钠是致癌物质。因而,我国在GB2760《食品添加剂使用卫生标准》中,对亚硝酸盐的使用范围和使用量作了严格控制。标准规定,在肉制品中,亚硝酸钠的最大使用量为每公斤0.15克,残留量不得超过每公斤0.03克。笔者查阅相关资料了解到,我国因亚硝酸钠导致的中毒事件屡有发生。   亚硝酸钠随便买   蓬莱市是否有卖亚硝酸钠的地方?亚硝酸钠的使用标准究竟有什么规定?近日笔者进行了暗访。在蓬莱登州市场一家调味品店,笔者就相关问题询问了店主。   “我想煮一些猪头肉,一般该买些什么添加剂啊?”笔者问。“这要看你想要达到什么效果了?”店主回答说。“还有很多种吗?”笔者又问。“那当然了,有可以让肉容易煮烂的,比如嫩肉粉,有用来上色的,可以买亚硝酸钠。”店主说,猪头肉店的人经常大批量来进购亚硝酸钠。店主拿出一包亚硝酸钠,笔者看到,这些用于食品添加剂的亚硝酸钠呈白色小颗粒状,外观与食盐很相似,背面明确地写着控制用量:腌制畜、禽肉类罐头、肉制品不得超过0.15克/公斤,肉制品残留量不得超过0.03克/公斤,与国家规定的限制用量一致。   当笔者问及怎么控制用量时,店主表示:“我只知道煮猪头肉用这个,至于怎么用,用多少,那就得你自己看着办,自己控制了。”笔者还了解到,相对来说,不正规的小作坊在生产食品的过程中对这些食品添加剂的用量控制更随意。“他们也都是凭感觉来的,没出过什么问题,你就放心用吧。”该店主说。   山东蓬莱市质监部门有关专家提醒消费者,病从口入,采购食品时请多留个心眼儿,尽量到各类食品许可证齐全的销售点购买,不要购买流动摊点上的散装熟食,不要食用色泽异常鲜亮的肉制品。
  • 用于纳米级表面形貌测量的光学显微测头
    用于纳米级表面形貌测量的光学显微测头李强,任冬梅,兰一兵,李华丰,万宇(航空工业北京长城计量测试技术研究所 计量与校准技术重点实验室,北京 100095)  摘 要:为了满足纳米级表面形貌样板的高精度非接触测量需求,研制了一种高分辨力光学显微测头。以激光全息单元为光源和信号拾取器件,利用差动光斑尺寸变化探测原理,建立了微位移测量系统,结合光学显微成像系统,形成了高分辨力光学显微测头。将该测头应用于纳米三维测量机,对台阶高度样板和一维线间隔样板进行了测量实验。结果表明:该光学显微测头结合纳米三维测量机可实现纳米级表面形貌样板的可溯源测量,具有扫描速度快、测量分辨力高、结构紧凑和非接触测量等优点,对解决纳米级表面形貌测量难题具有重要实用价值。  关键词:纳米测量;激光全息单元;位移;光学显微测头;纳米级表面形貌0 引言  随着超精密加工技术的发展和各种微纳结构的广泛应用,纳米三坐标测量机等精密测量仪器受到了重点关注。国内外一些研究机构研究开发了纳米测量机,并开展微纳结构测量[1-4]。作为一个高精度开放型测量平台,纳米测量机可以兼容各种不同原理的接触式测头和非接触式测头[5-6]。测头作为纳米测量机的核心部件之一,在实现微纳结构几何参数的高精度测量中发挥着重要作用。原子力显微镜等高分辨力测头的出现,使得纳米测量机能够实现复杂微纳结构的高精度测量[7-8],但由于其测量速度较慢,对测量环境要求很高,不适用于大范围快速测量。而光学测头从原理上可以提高扫描测量速度,同时作为一种非接触式测头,还可以避免损伤样品表面,因此,在微纳米表面形貌测量中有其独特优势。在光学测头研制中,激光聚焦法受到国内外研究者的青睐,德国SIOS公司生产的纳米测量机就包含一种基于光学像散原理的激光聚焦式光学测头,国内也有一些大学和研究机构开展了此方面的研究[9-11]。这些测头主要基于像散和差动光斑尺寸变化检测原理进行离焦检测[12-13]。在CD和DVD播放器系统中常用的激光全息单元已应用于微位移测量[14-15],其在纳米测量机光学测头的研制中也具有较好的实用价值。针对纳米级表面形貌的测量需求,本文研制了一种基于激光全息单元的高分辨力光学显微测头,应用于自主研制的纳米三维测量机,可实现被测样品的快速瞄准和测量。1 激光全息单元的工作原理  激光全息单元是由半导体激光器(LD)、全息光学元件(HOE)、光电探测器(PD)和信号处理电路集成的一个元件,最早应用于CD和DVD播放器系统中,用来读取光盘信息并实时检测光盘的焦点误差,其工作原理如图1所示。LD发出激光束,在出射光窗口处有一个透明塑料部件,其内表面为直线条纹光栅,外表面为曲线条纹全息光栅,两组光栅相互交叉,外表面光栅用于产生焦点误差信号。LD发出的激光束在光盘表面反射回来后,经全息光栅产生的±1级衍射光,分别回到两组光电探测器P1~P5和P2~P10上。当光盘上下移动时,左右两组光电探测器上光斑面积变化相反,根据这种现象产生焦点误差信号。这种测量方式称为差动光斑尺寸变化探测,焦点误差信号可以表示为  根据焦点误差信号,即可判断光盘离焦量。图1 激光全息单元  根据上述原理,本文设计了高分辨力光学显微测头的激光全息测量系统。2 光学显微测头设计与实现  光学显微测头由激光全息测量系统和光学显微成像系统两部分组成,前者用于实现被测样品微小位移的测量,后者用于对测量过程进行监测,以实现被测样品表面结构的非接触瞄准与测量。  2.1 激光全息测量系统设计  光学显微测头的光学系统如图2所示,其中,激光全息测量系统由激光全息单元、透镜1、分光镜1和显微物镜组成。测量时,由激光全息单元中的半导体激光器发出的光束经过透镜1变为平行光束,该光束被分光镜1反射后,通过显微物镜汇聚在被测件表面。从被测件表面反射回来的光束反向通过显微物镜,一小部分光透过分光镜1用于观察,大部分光被分光镜1反射,通过透镜1,汇聚到激光全息单元上,被全息单元内部集成的光电探测器接收。这样,就将被测样品表面瞄准点的位置信息转换为电信号。在光学显微测头设计中选用的激光全息单元为松下HUL7001,激光波长为790 nm。图2 光学显微测头光学系统示意图  当被测样品表面位于光学显微测头的聚焦面时,反射光沿原路返回激光全息单元,全息单元内两组光电探测器接收到的光斑尺寸相等,焦点误差信号为零。当样品表面偏离显微物镜聚焦面时,由样品表面反射回来的光束传播路径会发生变化,进入激光全息单元的反射光在两组光电探测器上的分布随之发生变化,引起激光全息单元焦点误差信号的变化。当被测样品在显微物镜焦点以内时,焦点误差信号小于零,而当被测样品在显微物镜焦点以外时,焦点误差信号大于零。因此,利用在聚焦面附近激光全息单元输出电压与样品位移量的单调对应关系,通过测量激光全息单元的输出电压,即可求得样品的位移量。  2.2 显微物镜参数的选择  在激光全息测量系统中,显微物镜是一个重要的光学元件,其光学参数直接关系着光学显微测头的分辨力。首先,显微物镜的焦距直接影响测头纵向分辨力,在激光全息单元、透镜1和显微物镜之间的位置关系保持不变的情况下,对于同样的样品位移量,显微物镜的焦距越小,样品上被测点经过显微物镜和透镜1所成像的位移越大,所引起激光全息单元中光电探测器的输出信号变化量也越大,即测量系统纵向分辨力越高。另外,显微物镜的数值孔径对测头的分辨力也有影响,在光波长一定的情况下,显微物镜的数值孔径越大,其景深越小,测头纵向分辨力越高。同时,显微物镜数值孔径越大,激光束会聚的光斑越小,系统横向分辨力也越高。综合考虑测头分辨力和工作距离等因素,在光学显微测头设计中选用大恒光电GCO-2133长工作距物镜,其放大倍数为40,数值孔径为0.6,工作距离为3.33 mm。  2.3 定焦显微测头的实现  除激光全息测量系统外,光学显微测头还包括一个光学显微成像系统,该系统由光源、显微物镜、透镜2、透镜3、分光镜1、分光镜2和CCD相机组成。光源将被测样品表面均匀照明,被测样品通过显微物镜、分光镜1、透镜2和分光镜2,成像在CCD相机接收面上。为了避免光源发热对测量系统的影响,采用光纤传输光束将照明光引入显微成像系统。通过CCD相机不仅可以观察到被测样品表面的形貌,而且也可以观察到来自激光全息单元的光束在样品表面的聚焦情况。  根据图2所示原理,通过光学元件选购、机械加工和信号放大电路设计,制作了光学显微测头,如图3所示。从结构上看,该测头具有体积小、集成度高的优点。将该测头安装在纳米测量机上,编制相应的测量软件,可用于被测样品的快速瞄准和高分辨力非接触测量。图3 光学显微测头结构3 测量实验与结果分析  为了检验光学显微测头的功能,将该测头安装在纳米三维测量机上,使显微物镜的光轴沿测量机的Z轴方向,对其输出信号的电压与被测样品的离焦量之间的关系进行了标定,并用其对台阶高度样板和一维线间隔样板进行了测量[16]。所用纳米三维测量机在25 mm×25 mm×5 mm的测量范围内,空间分辨力可达0.1 nm。实验在(20±0.5)℃的控温实验室环境下进行。  3.1 测头输出电压与位移关系的建立  为了获得光学显微测头的输出电压与被测表面位移(离焦量)的关系,将被测样板放置在纳米三维测量机的工作台上,用精密位移台带动被测样板沿测量光轴方向移动,通过纳米测量机采集位移数据,同时记录测头输出电压信号。图4所示为被测样板在测头聚焦面附近由远及近朝测头方向移动时测头输出电压与样品位移的关系。图4 测头电压与位移的关系  由图4可以看出,光学显微测头的输出电压与被测样品位移的关系呈S形曲线,与第1节中所述的通过差动光斑尺寸变化测量离焦量的原理相吻合。当被测样板远离光学显微测头的聚焦面时,电压信号近似常数。当被测样板接近测头的聚焦面时,电压开始增大,到达最大值后逐渐减小;当样板经过测头聚焦面时,电压经过初始电压值,可认为是测量的零点;当样品继续移动离开聚焦面时,电压继续减小,到达最小值时,电压又逐渐增大,回到稳定值。在电压的峰谷值之间,曲线上有一段线性较好的区域,在测量中选择这段区域作为测头的工作区,对这段曲线进行拟合,可以得到测头电压与样板位移的关系。在图4中所示的3 μm工作区内,电压与位移的关系为  式中:U为激光全息单元输出电压;∆d为偏离聚焦面的距离。  3.2 台阶高度测量试验  在对光学显微测头的电压-位移关系进行标定后,用安装光学显微测头的纳米三维测量机对台阶高度样板进行了测量。  在测量过程中,将一块硅基SHS-1 μm台阶高度样板放置在纳米三维测量机的工作台上,首先调整样板位置,通过CCD图像观察样板,使被测台阶的边缘垂直于工作台的X轴移动方向,样板表面位于光学显微测头的聚焦面,此时测量光束汇聚在被测样板表面,如图5所示。然后,用工作台带动样板沿X方向移动,使测量光束扫过样板上的台阶,同时记录光学显微测头的输出信号。最后,对测量数据进行处理,计算台阶高度。图5 被测样板表面图像  台阶高度样板的测量结果如图6所示,根据检定规程[17]对测量结果进行处理,得到被测样板的台阶高度为1.005 μm。与此样板的校准结果1.012 μm相比,测量结果符合性较好,其微小偏差反映了由测量时温度变化、干涉仪非线性和样板不均匀等因素引入的测量误差。图6 台阶样板测量结果  3.3 一维线间隔测量试验  在测量一维线间隔样板的过程中,将一块硅基LPS-2 μm一维线间隔样板放置在纳米测量机的工作台上,使测量线沿X轴方向,样板表面位于光学显微测头的聚焦面。然后,用工作台带动样板沿X方向移动,使测量光束扫过线间隔样板上的刻线,同时记录纳米测量机的位移测量结果和光学显微测头的输出信号。最后,对测量数据进行处理,测量结果如图7所示。  根据检定规程[17]对一维线间隔测量结果进行处理,得到被测样板的刻线间距为2.004 μm,与此样板的校准结果2.002 μm相比,一致性较好。  3.4 分析与讨论  由光学显微测头输出电压与被测表面位移关系标定实验的结果可以看出:利用在测头聚焦面附近测头输出电压与样品位移量的单调对应关系,通过测量测头的输出电压变化,即可求得样品的位移量。在图4所示曲线中,取电压-位移曲线上测头聚焦面附近的3 μm位移范围作为工作区,对应的电压变化范围约为0.628 V。根据对电压测量分辨力和噪声影响的分析,在有效量程内测头的分辨力可以达到纳米量级。  台阶高度样板和一维线间隔样板测量实验的结果表明:光学显微测头可以应用于纳米三维测量机,实现微纳米表面形貌样板的快速定位和微小位移测量。通过用纳米测量机的激光干涉仪对光学显微测头的位移进行校准,可将测头的位移测量结果溯源到稳频激光的波长。实验过程也证明:光学显微测头具有扫描速度快、测量分辨力高和抗干扰能力强等优点,适用于纳米表面形貌的非接触测量。4 结论  本文介绍了一种用于纳米级表面形貌测量的高分辨力光学显微测头。在测头设计中,采用激光全息单元作为位移测量系统的主要元件,根据差动光斑尺寸变化原理实现微位移测量,结合光学显微系统,形成了结构紧凑、集测量和观察功能于一体的高分辨力光学显微测头。将该测头安装在纳米三维测量机上,对台阶高度样板和一维线间隔样板进行了测量实验,结果表明:该光学显微测头可实现预期的测量功能,位移测量分辨力可达到纳米量级。下一步将通过多种微纳米样板测量实验,进一步考察和完善测头的结构和性能,使其更好地适合纳米三维测量机,应用于微纳结构几何参数的非接触测量。作者简介李强,(1976-),男,高级工程 师,主要从事纳米测量技术研究,在微纳米表面形貌参数测量与校准、微纳尺度材料力学特征参数测量与校准、复杂微结构测量与评价等领域具有丰富经验。
  • 奥林巴斯FlexoFORM扫查器:管道弯头点蚀和堆焊分层缺陷检测的秘密武器
    使用相控阵技术检测管道弯头的优势和劣势相控阵(PA)技术具有多个优势特性:数据分辨率高,成像质量好,以及覆盖区域大。当检测人员使用相控阵仪器检测管线时,通常会感受到检测效率的提高,因为相控阵技术提供的图像更容易判读,可以获得更高的检出率,而且检测结果受操作人员技能的影响更小。以前在管道弯头的相控阵检测中,主要是由于物理方面的一些限制,这些优势特性没有完全体现出来。管道弯头表面形状从拱腹的凹面到拱背的凸面的变化,以及所需覆盖的较大的管径范围,对于现有的相控阵设备来说,尤其是难于解决的问题。由于大型刚性相控阵探头不适于检测管道弯头的曲面,因此检测人员需要选择较小的常规UT探头进行逐点抽查,而这种检测方式需要在管道上画出栅格,并记下每个栅格区域的检测结果。这种方式有以下几个缺点:缓慢乏味,高度依赖操作人员的技能,而且检测人员无法获得由相控阵技术提供的易于判读的图像。使用常规UT小底面探头完成管道弯头的腐蚀成像操作使用射线成像方法检测堆焊管道弯头的难题为了保护输送腐蚀性液体的管道,可以在管道的内壁涂上一层防腐材料。例如,碳钢管道的内壁通常会以堆焊方式覆盖一层金属,如:镍基合金。带有堆焊层的管道非常容易产生点蚀和分层缺陷,因此定期检查至关重要。除了常规UT检测之外,检测堆焊管道的一种典型的方法是射线成像。然而,使用射线成像技术检测管道弯头存在着几个缺点。首先,进行射线成像检测之前,必须要停止管道中液体的流动,清空管道,拆下弯头,并将弯头送至其他地方进行检测。其次,检测过程会持续大约1天半的时间,因此从时间方面看,这种方式可谓效率低下,也因而增加了成本。第三,这种检测方式会给操作人员带来一些风险,如:管道弯头通常处于离地面较高的位置,非常沉重,而且管道内的物质处理起来较为危险。使用FlexoFORM扫查器检测管道弯头的相控阵解决方案为了解决堆焊管道弯头检测中存在的固有问题,奥林巴斯开发了一种用于检测管道弯头的柔性超声相控阵探头和扫查器,即FlexoFORM解决方案。这种创新型探头和扫查器解决方案可以对整个管道弯头进行高分辨率的厚度成像操作,从而可使检测人员更容易地对管道弯头的状态做出准确的判读。根据FlexoFORM扫查器所提供的准确信息,检测人员可以迅速可靠地评估管道弯头的剩余使用寿命,并制定维修和维护的要求。FlexoFORM解决方案包含3个主要部分:一个柔性相控阵探头、局部水浸楔块(用于检测多种不同直径的管道),以及一个可提供相对于工件表面的定位信息且可平稳移动的扫查器。 FlexoFORM解决方案的组件堆焊管道弯头的点蚀和分层检测的结果检测人员使用射线成像方式对堆焊管道弯头进行完整的扫查,要花费一天多的时间才能完成,而使用FlexoFORM解决方案,则只需要比射线成像少得多的时间在现场就可以完成检测。FlexoFORM扫查器可以在管线仍然操作的状态下对管道弯头进行扫查,从而不仅可以节省时间,还节省了成本。此外,这种方案还解决了从管道上拆下弯头并将弯头送到射线成像检测地点所涉及的一些安全问题。本文所述实例中所使用的被测样件是一段内壁包有镍质堆焊层的碳钢管道。管道弯头的外径为16英寸,壁厚为23毫米。FlexoFORM扫查器探头使用一个由4个晶片形成的声束孔径,提供1 × 2毫米的分辨率。包括准备时间在内,整个弯头的检测时间约为35分钟。在不同堆焊通道之间的结合处出现的点蚀为了证明FlexoFORM扫查器可以提供清晰准确的结果,我们使用了一个来自生产线的样本进行比较。管道样本在长度方向上被一切两半,我们可以看到堆焊通道,以及在两种焊接通道之间的结合处产生的点蚀缺陷。OmniScan仪器上的C扫描和B扫描图像表明由相控阵技术提供的高分辨率图像如何有助于检测人员轻松地解读和诊断弯头上的缺陷。操作人员可以更容易地辨别堆焊层中的点蚀和未熔合缺陷。两种焊接通道之间的结合处被标记为易受点蚀的区域,特别是当堆焊层和基底材料之间出现了未熔合的地方。这种信息可使检测人员更好地评估管道弯头的剩余使用寿命,并优化检测计划。C扫描和B扫描中的数据表明弯头存在着点蚀和堆焊层未熔合缺陷FlexoFORM扫查器解决方案的优势特性的总结FlexoFORM相控阵解决方案有助于检测人员解决管道弯头检测中的一些难题,并成功探测到堆焊管道的点蚀和分层缺陷。检测人员可以在现场无需停止管道操作的情况下,对其整个弯头进行扫查。柔性相控阵探头利用相控阵技术可以使检测人员观察到高级、高清图像,而且,扫查器的编码器还有助于为整个管道弯头的厚度进行成像操作。这种解决方案的性价比很高,使用方便,而且可用于检测多种直径的管道。
  • 钢的淬透性硬度检测 | 乔米尼 | JOMINY
    淬透性硬度检测乔米尼 | Jominy乔米尼 | Jominy硬度检测前言淬透性是衡量淬火能力的一种以试验为依据的指标,指在规定条件下用试样淬透层深度和硬度分布来表征的材料特征,它主要取决于材料的临界淬火冷速的大小。钢材淬透性好与差,常用淬硬层深度来表示。钢材的可淬透性及其稳定性决定了钢材的主要热处理工艺性能。淬透性好的钢材,可使钢件整个截面获得均匀一致的力学性能以及可选用钢件淬火应力小的淬火剂,以减少变形和开裂。影响钢材淬透性的主要因素有:钢材的化学成分、淬火加热温度、冷却介质的特性、冷却的方式方法、零件的外形尺寸以及加热方式等。淬透性乔米尼末端淬火钢的淬透性是由奥氏体在淬火期间分解为铁素体,珠光体、贝氏体以及马氏体的不同冷却速度所决定的。淬透性通常采用顶端淬火试验测定(或称Jominy试验)。1938年,乔米尼(Jominy) 和伯格霍尔德(Boegehold) 首先用渗碳钢做了乔米尼末端淬火试验。不久之后,乔米尼末端淬火试验形成了标准,即1S0642、ASTM A255 和 SAE J406,我国是GB225,即“钢的淬透性末端淬火试验法”。顶端淬火时冷却速度由淬火端沿试棒逐渐减小,组织和硬度随之相应地变化,由此得到的硬度变化曲线称为淬透性曲线或Jominy曲线。试验圆棒的尺寸通常是:直径25mm,长 100mm, 一端带有法兰。有时根据需要,试验圆棒的尺寸会有所改变。乔米尼硬度的测定和准备试样准备在平行于试样轴线方向上磨制出两个相互平行的平面,磨削深度应为0.4mm~0.5mm。磨制硬度测试平面时,应采用能供充足冷却液的细砂轮进行加工,以防止任何可能的加热而引起试样组织发生变化。硬度检测应采取措施以保证在测试硬度期间试样和支座之间良好的刚性周定。硬度计上试样的移动装置应能准确对准硬度测试平面的中心线,并使压痕位置精度在土0.1mm以内。硬度压痕点应沿平面的中心线分布。可用GB/T4340.1的维氏硬度HV30测量结果来代替HRC硬度测试。应保证在第一个平面上的硬度压痕的凸起边缘不会影响第二个平面的测试。硬度测量点为绘制表示硬度变化曲线的有两种检测法:1)通常测量离开淬火端面1.5mm、3mm、5mm、7mm、9mm、11mm、13mm、15mm前8个测量点和以后间距为5mm的硬度值(如上图所示)。淬透性的表示方法
  • 两千米下深海照样看得透 厉害了中国科技
    p   犹如对浩瀚星空的痴迷,人类对于海洋深处的探索也从未止步。静水流深,在广袤神秘的深海,海水的运动有着怎样的规律?海温变化如何影响气候?如何更加清晰地观测海洋的动态并进行准确的预报? /p p   近日召开的“透明海洋”科技创新工程新闻发布会,让“透明海洋”的概念走近公众。“透明海洋”就是通过建立海洋立体观测系统,获取海洋环境综合信息,建立预测系统,掌握海洋环境变化,实现目标海域“看得清、查得明、报得准”。透明海洋工程实施4年了,目前进展如何? /p p   构建了全球首个马里亚纳海沟观测网,成功回收万米综合潜标 /p p   马里亚纳海沟是目前世界上已知的最深海沟,位于菲律宾东北、马里亚纳群岛附近的太平洋洋底,最深处深度约为1.1万米,堪称地球第四极。 /p p   这里历来是世界深海研究的焦点,更是难点。海沟的特殊性质使其海洋动力过程、生物地球化学过程、生物种群分布及起源、地球深部碳循环与开阔大洋相比具有不同的特性。马里亚纳海沟是探索海洋动力过程、物质与能量输运、生物地球化学过程、壳幔结构及极端环境下物种起源的最佳天然窗口,同时是研究深海科学与技术的最佳场所。 /p p   作为“透明海洋”工程的重要成果之一,科学家们正是在这里,实现了首次将“人类的眼睛”放入万米深海——他们构建起全球第一个马里亚纳海沟海洋科学综合观测网,还成功回收了世界首套万米综合潜标,使深海状态变化不再神秘。 /p p   山东省科技厅巡视员徐茂波在会上宣布了包括这一成果在内的一系列成绩:已经成功研发三项世界首创性技术,研制出两项填补国内空白的技术,并有两项技术打破国外垄断。 /p p   青岛海洋科学与技术国家实验室由中国海洋大学等5家驻山东高校和科研单位共同发起筹建,也是目前“透明海洋”工程的实施者。据中科院院士、青岛海洋国家实验室主任吴立新介绍,海洋占地球表面的71%,84%的海洋水深超过2000米。遗憾的是,人类对2000米以下的海洋的了解多局限于“点和线”,不够全面和立体。吴立新希望通过“透明海洋”工程,可以把2000米以下海洋看通看透。 /p p   徐茂波介绍,目前,“透明海洋”工程从四个方面进行了规划:一是技术突破。着重加强深海观测系统关键设备与技术研发,特别是水下浮力平台观测技术,形成核心自主产品,提升观测能力,突破国外封锁。二是观测网拓展。着力提高观测网的时空分辨率,从单一观测拓展为多要素综合观测,形成立体、实时、多学科的观测网。三是理论创新。深入开展西太平洋—中国海—印度洋与极地环境、气候、资源的协同研究,力争在海洋环境多尺度变化机理及气候资源效应等方面取得重大原始创新。四是预测系统构建。逐步有序构建起西太平洋—中国海—印度洋气候预测系统以及针对国家具体要求的区域预测系统,形成多层次、多学科、多目标的预测体系。 /p p   想把海洋看通透,需要稳定的全球观测系统。为此,青岛国家海洋实验室联合中国海洋大学等科研机构,成功研制出4000米深海自沉浮式剖面探测观测浮标,使我国具备了对全球海洋4000米持续观测能力。项目组还成功完成对世界上最大规模的区域海洋潜标观测网——南海、西太平洋潜标观测网的维护及扩充,在国际上首次实现了对蕴含丰富多尺度动力过程的南海深海盆的全面覆盖及完整监测。这些研发加速了观测装备国产化,有的子项目甚至可以做到所用设备均为自主研发。 /p p   降低海洋灾害强度,带动工程装备等产业转型升级 /p p   据青岛海洋国家实验室不完全统计,“透明海洋”工程相关课题目前已获得了超过6亿元科技资金支持。除了加深对海洋的认识,还有一项重要功能就是开展海洋科技基础性、公益性的关键技术研究和突破,影响和改善民生。 /p p   青岛海洋国家实验室教授陈显尧介绍,近年来,由大型绿藻浒苔形成的绿潮在南黄海连年暴发,长达10年之久,对山东、江苏沿岸的旅游业和海水养殖业造成了巨大危害。每年夏季,受绿潮影响的地区,政府部门都需要投入大量人力、物力,对沿海一线绿藻进行收集、打捞和处理。“透明海洋”工程构建了渤黄东海高分辨率精细化短期预报系统,根据卫星遥感反演的浒苔生物量和其他观测数据,建立了浒苔漂移的短期预报,可以实现对一周内浒苔的漂移路径及覆盖范围的定量预报。2017年系统进一步应用到黄海浒苔的预警预测中,基于系统预报的浒苔漂移路径及覆盖范围影响,有关单位向青岛市政府提出在浒苔漂移过程中对关键区域进行先期打捞拦截,减缓了浒苔大范围侵入青岛沿海,从而降低了灾害强度。 /p p   徐茂波表示,近几年,美国、加拿大、日本、欧盟等国家和地区,都在加快制订并实施全球海洋立体观测系统计划,因此建设中国的全球海洋立体观测网的需求十分迫切。这不仅对国家海洋国土安全、海洋资源利用和海洋保护开发具有重大意义,对山东省发展海洋经济同样具有推动作用。 /p p   山东省科技厅海洋科技处处长孙高祚认为,“透明海洋”工程可以及时反映近海以及远洋海洋资源开发状况和开发潜力信息,为实现海水养殖、远洋渔业等合理有序开发提供科学依据 可以及时提供海洋的环境和气候信息,为港口运输、海上捕捞、海上油气开发等作业活动提供安全生产保障。还可以通过对海洋资源环境信息的综合运用,对海洋经济发展前景作出预测。对于山东来说,“透明海洋”工程产生新技术、形成新动能,将会带动山东省海洋观测、海洋工程装备、海洋油气资源开发等产业转型升级。 /p p   多学科协同创新,将建立准确的海洋模拟系统 /p p   根据吴立新的构想,“透明海洋”工程共分为海洋星簇、海气表面、深海星空、海底透视、海洋模拟器5个子计划,分别通过卫星遥感、水下机器人、超算等技术,实现对海洋表层、海洋深处、海底等的立体观测,建立可靠准确的模拟系统,实现真正意义上的透视。 /p p   “这是一项复杂的大科学工程,需要诸多学科的协同创新。”吴立新说,这绝不是一个省份、一所科技机构所能支撑的。 /p p   以深海星空计划为例,吴立新希望能制造出综合多种传感器、智能可控的几千个水下机器人,可以实现水下组网与导航。这项工作不仅难度大、花费高,更需要材料、能源、自动控制、通信等多个学科的协同研发。在海洋深处,如何完成大数据高速传输、如何实现超长续航、智能观测等技术,都是吴立新团队目前正在攻关的难题。 /p p   2017年底,美国国防部高级研究计划局公布了“海基物联网”构想,根据该构想,美国海军可以通过部署数量众多的小型低成本浮标传感器来形成分布式网络,从而在广阔的海洋上实现持久的态势感知。这一构想与我国“透明海洋”工程大致相似,“我们提出时间更早,并已经成功开展前期研究工作,我们已经走在了前面。”吴立新说。 /p p   吴立新这样描述“透明海洋”工程的未来:“科学家在实验室就能知道全球海洋正在发生的事情,如海洋的温度变化、水声通道的变化、鱼群的变化等,并能做出预测,国家海洋利益拓展到哪里,‘透明海洋’工程就建设到哪里。” /p
  • 海克斯康推出革新性测量软件PC-DMIS Touch
    近日,海克斯康计量推出全新PC-DMIS Touch - 一款专用于便携式关节臂测量机的革新性测量软件。利用高分辨率的多点触控(Multi-Touch)技术,用户能够直接与测量程序、特征变量和报告模板进行互动。   PC-DMIS Touch为完成测量任务提供了一个全新的操作方式:在所有测量任务里,测量特征的图形始终显示在界面的中央,恰好在它被需要的位置上。PC-DMIS Touch凭借直观的&ldquo 面孔方式&rdquo 组织测量规划特征,相对传统的工作平台提出了一个全新的概念。通过这个方式,引导用户使用全套检测工具,例如特征或特征组的构造、2D和3D的尺寸报告、形位公差设定等等。每个任务都通过一个简单而协调的工作流程完成,PC-DMIS Touch可以帮助用户从图形窗口的列表中选择已测特征、测量新特征或者根据需求任意组合。   PC-DMIS Touch的实时报告生成功能使得检测报告的创建更容易。测量特征时,用户可以选择在报告中显示全部或者部分数据,同时,更新特征理论值和公差数据。通过快速右滑按键,提供即时的报告访问功能,包括统计视图,可以看出测量特征针对其相应的公差需求如何叠加起来。   &ldquo PC-DMIS Touch代表了检测软件的未来,充分利用了操作系统和硬件技术的最新进展。&rdquo 海克斯康计量PC-DMIS软件部门总裁Ken Woodbine先生说,&ldquo 用户体验包括,全触控操作、在色彩引导下完成测量任务等,提供了身临其境的体验,使得任何用户都可以轻松而迅速的完成他们的工作。&rdquo   PC-DMIS Touch将率先使用在便携式关节臂测量机上,尔后将普及到固定式的三坐标测量机。
  • 精密测量仪器厂商瑞霏光电完成B+轮融资,深圳高新投领投
    近日,苏州瑞霏光电科技有限公司(以下简称:瑞霏光电)完成B+轮融资,由深圳高新投领投。瑞霏光电CEO张华表示,本次融资将主要用于研发新技术、扩大产品线、提升品牌影响力以及市场拓展等方面。公开资料显示,瑞霏光电成立于2018年,是一家专注于机器视觉和三维检测技术的高新技术企业。公司旗下拥有自由曲面光学三维检测仪、晶圆薄膜应力测量仪、三维测量显微镜、外观缺陷检测仪以及精密光学镜头等产品,广泛应用于半导体晶圆、智能汽车电子系统、精密光学、AR/VR产品等高端制造生产线。深圳高新投作为知名投资机构,长期关注高新技术企业和创新型项目。本次投资瑞霏光电,是深圳高新投在机器视觉和三维检测领域的又一重要布局。深圳高新投合伙人李强表示,瑞霏光电的技术实力和市场潜力使其成为该领域的佼佼者,相信未来将为投资者带来丰厚回报。
  • 透射电镜主流厂商大揭秘
    p   作者:汪玉玲 /p p   本文仅代表作者个人观点 /p p   如今的透射电子显微镜市场主流厂商包括日本电子,日立和FEI。除了上述三家之外,德国的蔡司(Zeiss)公司也在电子光学仪器领域占有一席之地。本文带你全面了解透射电镜厂商的前世今生。 /p p    span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " strong 1 你不知道的日本电子株式会社JEOL /strong /span /p p   首先介绍一下老大哥日本电子株式会社JEOL。 /p p   提起日本电子,大家应该都不陌生,目前在我国各大科研院所都不难看到JEOL电镜的影子。日本电子株式会社是一家世界顶级的科学仪器生产制造商。能在这么多的仪器制造商中鹤立鸡群室有原因的,日本电子有着非常丰富且高端的产品线,生产的都是技术含量非常高的科技产品,电子显微镜,核磁共振,质谱仪,X射线光电子能谱,俄歇电子能谱等。是世界上有且仅有的一家企业可以同时生产这些高端仪器产品的企业。 /p p    strong 透射电子显微镜 /strong /p p   日本电子生产透射电子显微镜的历史算得上是非常悠久,它的前身是1949年5月在东京成立的日本电子光学实验室有限公司,成立同年就推出了第一代透射电子显微镜—JEM-1透射电子显微镜,见下图。 /p center p style=" text-align:center" img style=" width: 500px height: 334px " title=" " alt=" " src=" http://5b0988e595225.cdn.sohucs.com/images/20180105/65d5174298474dea9d7f6baf29abeb8c.jpeg" height=" 334" hspace=" 0" border=" 0" vspace=" 0" width=" 500" / /p /center p style=" text-align: center " strong JEM-1透射电子显微镜 /strong /p p    strong 你知道吗? /strong /p p   其实,我们国家也在同时期开始了透射电镜的研发工作,算起来起步并不算晚,但是由于之后一些年的各种历史原因,不得不中断了。现在,日本已经是毫无疑问的电镜生产大国,而我们国家的电镜发展却只有个别在国家资助下的小规模研究(之后的文章会有专项介绍),这么重要的科研设备掌握在别人的手里,为长远考虑,国产电镜的发展必须跟上才行。 /p p   1961年该公司正式改名为日本电子株式会社(JEOL Ltd.),日本电子是在二战后开始透射电镜研发,并且是以电子显微镜起家的。六十余年的技术沉淀让它的电镜产品不断的发展壮大,逐渐得形成了它的品牌影响力,成为了全球市场市场上的领头羊。 /p p   2009年,日本电子成立六十周年庆,推出了当时世界上分辨率最高的商业化球差校正透射电镜JEM-ARM200F,透射模式分辨率达0.19nm,STEM-HAADF的分辨率可达0.078nm,这款产品大获成功,开启了球差校正的新时代。如下图, /p p    /p center img alt=" " src=" http://5b0988e595225.cdn.sohucs.com/images/20180105/1a4762c278d74239aa3a94f4b48213bc.jpeg" height=" 287" width=" 249" / /center p   第一台JEM- ARM200F安装在德州大学圣安东尼奥分校University of Texas at San Antonio,2010年1月安装结束,二月初就获得了惊人的实验结果。该仪器展示了JEOL实打实的超级稳定性和超高分辨率。2010年,西安交通大学也购入了中国首台该型号的电镜,也是中国大陆第一台STEM球差校正透射电镜。之后,上海交通大学,武汉大学,东北大学,中国科技大学,中科院大连化物所,中科院物理所,神华集团低碳清洁能源研究所等也陆续上马。目前,中国大陆已经有十几台该型号电镜,相信前方大批的高能科研成果也正在路上…… /p p   2014年,日本电子再次引领潮流,发布了终极分辨率的大杀器——新一代球差校正透射电镜JEM-ARM300F,也称为GRAND ARM,这是一款300kV原子分辨级透射电子显微镜,是JEM-ARM200F的升级版,采用了日本电子独自研发的十二级像差校正器,分布率达到 0.05nm,STEM-HAADF的分辨率可达0.063nm,日本电子再一次把商业化的透射电镜推向了一个新的极限,巩固了自己在电子显微镜领域的世界领先地位。 /p p    strong 日本电子的成功的原因 /strong /p p   1. 研发与制造技术的长期积累。一台JEM-ARM300F有三万多个零配件,最佳的电子显微镜表现能力要求每一个零件都能做到百分之百。 /p p   2. 销售和售后服务保障。日本电子有较为成熟的销售和售后服务渠道,可以保证高品质的维修配件的流通速度和高素质的产品服务工程师。 /p p   3. 电镜专业人才培养。日本电子虽然是一家仪器制造商,但是却在一直通过各种活动对青年科研人员提供资助,例如,风户研究基金会,早在1969年就成立了,目的就是鼓励和推广电子显微镜领域的学习和研究。 /p p   随着我国科技的逐步发展,中国的电镜市场已经越来越大,成为了全球第一大市场,但是中国所使用的透射电子显微镜却全部都是进口的,这种现象应该引起我们所有电镜小工匠们的深思。 /p p    span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " strong 2 关于FEI的那些“小事儿” /strong /span /p p   接下来介绍JEOL在透射电镜领域最有力的竞争者——FEI。FEI是一家美国的高科技公司,是为全球纳米技术团体提供解决方案的创新者和领先供应商, “TOOLS FOR NANOTECH”,生产的产品主要面向半导体、数据存储、结构生物学、材料和工业领域。 /p p    strong FEI的透射电镜历史 /strong /p p   1971 /p p   FEI公司成立于1971年,仅从年份上上看,似乎它起步要比JEOL要晚很多,但是FEI生产透射电子显微镜的历史可不是从1971年开始的。要知道美国的FEI公司开始并不是做透射电子显微镜的,最初它只致力于提供高纯,单一取向晶体作为场发射材料。 /p p   1997 /p p   事情发生在1997年,香港回归了,这一年,除了这件大事还发生了一件小事:FEI和荷兰的飞利浦电子集团电子光学公司(PEO)宣布合并其全球业务,飞利浦电子集团成为了FEI的最大股东。由此FEI开始了电镜产业领袖之路。 /p p   1949 /p p   在透射电镜的商业化历史上,1949年有着重要的意义。飞利浦电子光学公司在这一年向世界推出了全球第一台商用透射电子显微镜 “EM100”,要知道JEOL的第一台JEM-1也是在1949年推出的。可以说,飞利浦电子光学公司一直是举世公认的电镜产业领袖之一。 /p p   2009 /p p   FEI公司最新发布第二代球差校正电镜Titan G2 60-300透射电镜,这是Titan系列电镜中一项革命性产品。FEI Titan系列产品是FEI的明星系列,自2005年推出,包括有Titan G2 60-300,Titan3 G2 60-300,Titan Krios和Titan ETEM (环境透射电镜)。该系列产品以其具有突破性的稳定优异的性能获得了商业上的巨大成功。 /p p   Titan G2 60-300它的STEM分辨率可达0.08nm,Titan3 G2 60-300可达0.07nm,它是世界上唯一能够同时实现亚埃分辨率及分析型机靴(S-TWIN)的透射电镜,而且是世界上唯一的300kV Cs球差校正透射电镜。 /p p   在我国,该系列的电镜普及率也是相当高的,清华大学,浙江大学,中科院金属所,重庆大学,西安交通大学,中南大学,东南大学,深圳大学,广西大学等科研院所及高校,都装备了该系列的球差校正透射电镜,随着国内科学技术的进一步发展,相信越来越多的镜子会在这片土地上生根发芽,开花结果。 /p p    strong 你知道吗? /strong /p p   美国总统奥巴马曾经在西海岸技术巡视时去Intel,在他们的TEM实验室里亲自经历了一把,他说:“我看到了一些原子。”从图片上就可以看到,他使用的就是正是FEI Titan系列的球差透射电镜。 /p p   2016:FEI出嫁了! /p p   与JEOL不同,FEI公司的发展历经多次的收购与合并,通过这样的强强联合,使自己的实力越来越强大。 /p p   1996年:收购美国ElectronScan公司及其“环境扫描(ESEM)”技术 收购位于捷克布尔诺的Delmi公司 /p p   1997年:FEI和飞利浦电子光学合并其全球业务 /p p   1999年:新的FEI购并美国Micrion公司 /p p   2002年:FEI收购Atomika (SIMS二次离子质谱仪) /p p   2003年:FEI收购Emispec (ESVision) /p p   2016年:FEI 正式出嫁。在2016年5月27日,赛默飞以交易最终金额为42亿美元的聘礼迎娶了电镜制造商FEI公司,这笔交易应该会在2017年年初完成,完成后,FEI将成为赛默飞旗下分析仪器业务中的一员。赛默飞是生命科学领域的领导者,FEI的电子分析技术的加入将与赛默飞的质谱技术结合。相信赛默飞也将利用公司的全球规模和商业化运作进一步推广FEI的产品。 /p p   未来的透射电子显微镜领域,可以预见FEI将在生物领域大放异彩,只是不知道那时候它家的产品该姓什么?赛默飞还是FEI?毕竟都是嫁出去的人了嘛!*(^_^)/* /p p    strong span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " 3 无所不能的HITACHI——日立 /span /strong /p p   接下来主要来谈一下三家主要的透射电镜供应商的最后一家——日立HITACHI。如果说JEOL和FEI算是比较专一型的企业的话,那么Hitachi就是比较博爱了。 /p p   HITACHI /p p   日立是日本的一家超级大国企,可以说它本身就是一个完整的工业体系,涉及的产业从核电站,铁路,军工,到家电,医疗,物流,通信,金融以及各种黑科技(^_?)☆,可以说是无所不做。他的总员工数约32万人,在日本是继丰田汽车之后的第二大的企业。 /p p    strong 日立的历史 /strong /p p   日立的前身是久原矿业日立矿山附属的机械修理厂,1910日立制作所正式成立。在1920年,改组成名为日立制作所株式会社。同样,在之后的第一次世界大战及二次世界大战,给日立提供了很好的发展机会,生产各种军舰,坦克,发了战争财。到1944年,日立已经发展起来了,拥有了11家工厂。 /p center img alt=" " src=" http://5b0988e595225.cdn.sohucs.com/images/20180105/fa3c45af7ced427d93e998728a129f11.jpeg" height=" 300" width=" 444" / /center p style=" text-align: center " strong 日立树—日立集团的统一品牌形象 /strong /p p    strong 你知道吗? /strong /p p   日立树位于夏威夷瓦胡岛,树龄120年,属于雨树,日立每年支付40万美元用于维持该树的摄影资格。日立树含义有几种说法,一般认为是日立有像大树一样广阔的事业群,不过,现在也有人解读为日立把非营利业务放置在巨大的树荫下藏起来。 /p p    strong 日立高新技术 /strong /p p   如上所说,日立的产业和产品十分丰富,子公司也非常多。而日立的电子显微镜部门属于日立高新技术公司。 /p p   2001 /p p   日立高新于2001 年由日立制作所旗下的测量仪器集团、半导体制造设备集团及贸易集团Nissei Sangyo公司合并而成,日立制作所持有日立高新52%的股份。虽说“日立高新”只有十几年的历史,但是其实体则于1947年就已经存在了。现在的日立高新主要提供电子显微镜、全自动生化分析仪、通用分析仪器、半导体元器件检测设备等尖端技术产品,从近两年的市场表现来看,可以说日立高新还是相当成功的。 /p p   2012 /p p   从FEI的发展历史可以看到,并购是一个扩充核心业务、增强企业竞争力的重要策略。然而对于日本企业来说,并购并不多见。但是2012年日立高新的一个并购项目相当成功,2012年5月日立高新收购精工电子旗下全资子公司精工电子纳米科技,成立了日立高新技术科学。精工电子以光、电子线、X射线、热分析为核心技术,特别是它的聚焦离子束技术有很好的历史和评价。同年,日立高新就推出了实时三维结构分析聚焦离子束扫描电镜(FIB-SEM)新品NX9000。 /p p    strong 你知道吗? /strong /p p   日立高新科学仪器营业本部本部长Okada Tsutomu曾说过,尽管日立高新的分析产品有很多,其他仪器的销售台数比电镜多很多,但是销售额却远赶不上电镜业务!可以看出,电镜业务的利润有多大,但是没办法,我们做不出来嘛!!! /p p   日立透射电子显微镜 /p p   目前,日立高新在扫描电镜技术方面积累颇丰,成果也十分显著,但相比较来说,日立在透射电镜尤其是高端透射电镜技术方面却稍逊一筹。 /p p   2015:球差校正透射电镜 /p p   日立推出了一款球差校正透射电镜HF5000,虽然比其他两家企业稍晚一点,但是,这也标志着日立在电镜方面的水平和实力。这台球差校正电镜采用了日立高新经过考验而被认可的冷场发射电子枪技术,达到了亚埃级的空间分辨率(0.1 nm或更低)。另外,它的镜筒和样品台经过了重新的设计。该产品的推出使得日立高新形成了120kV、200kV、300kV全系列的透射电镜产品。 /p center img alt=" " src=" http://5b0988e595225.cdn.sohucs.com/images/20180105/f71329b25fb3443482c4b6a5adba9477.jpeg" height=" 465" width=" 574" / /center p   环境透射电镜 /p p   另一台比较成熟的商用电镜是日立原位环境透射电镜,可以通过特制样品台施加外场刺激,同时进行实时观察。三款环境透射平台分别为H-9500ETEM、HF- 3300ETEM/STEM/SEM,以及HF-3300S Cs-corrected ETEM / STEM / SEM。在我国,浙江大学、西安交通大学、北京化工大学都安装了该系列电镜。 /p p    /p center img alt=" " src=" http://5b0988e595225.cdn.sohucs.com/images/20180105/cd78ef2556b24502beb2733bb5af5d2a.jpeg" height=" 359" width=" 505" / /center p   有人说:中国工业想要比过日本要先比过日立!确实,作为一个有完整工业体系的超级大公司,确实有很多值得学习的地方,中国工业还有很长的路要走。 /p p    strong span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " 4 光学“大咖”——卡尔 蔡司 /span /strong /p p   世界上能生产透射电子显微镜的厂家并不多,除了上述三家之外,德国的蔡司(Zeiss)公司也在电子光学仪器领域占有一席之地。 /p p   蔡司公司是一家老牌光学仪器公司,蔡司的历史相比于其他几家公司的历史都来得悠久。公司名称起源于创始人,德国光学家卡尔· 蔡司(Carl Zaiss),上图为蔡司商标的演变。最后一个大家一定很熟悉,在各种镜头,金相显微镜,扫描电镜上面你会经常见到。 /p p    strong 蔡司的历史 /strong /p p   1846年,卡尔· 蔡司创立了一家精密机械及光学仪器车间,自此开始了蔡司的创奇时代。蔡司凭借其在光学领域的卓越品质,成功的经营了一个世纪,到二战以后,由于政治原因,德国被迫分裂,蔡司公司也被迫一分为二,之后,东德的产品冠名为Carl Zeiss Jena,西德产品冠名为Carl Zeiss,但东、西蔡在设计上都秉承了蔡司的优质传统。正所谓分久必合,到1990年,两个公司又重新重组成一个公司,总部设在奥伯考亨,东西合璧一直到今天,蔡司公司仍然是光学领域的执牛耳者。 /p p    strong 你知道吗? /strong /p p   蔡司公司还是一个非知名的军工企业。二战中德国的狙击枪,最先进的主站坦克 “豹”2A6,德国214型潜艇,性能超凡,他们都装备了蔡司公司的光学设备。因此,在战争年代,各国把光学工业列为战略工业,制造光学玻璃的原材料石英矿成为了战略物资,光学玻璃产业在军事领域的意义不亚于航天技术。 /p p    strong 蔡司——光学领域 /strong /p p   在光学领域,蔡司是毫无疑问的独孤求败。一百多年来,蔡司光学显微镜在各行各业都展现了其强大的魅力。十九世纪末,Robert Koch博士利用蔡司显微镜发现杆菌是导致结核病的原因。1911年,挪威探险家首次踏上南极大陆,他当时用的就是蔡司的望远镜。可以说在医学,生理学,物理学,化学,军事,天文学等多个领域,都不难找到蔡司显微镜的影子。 /p p   strong  蔡司——电子光学领域 /strong /p p   蔡司公司在电子光学领域却并不像它在光学领域如此出色。虽然蔡司公司有很悠久的历史,但是其在电子光学领域要晚于其他几家制造商,蔡司电子光学的前身为LEO(里奥),在透射电镜领域有60多年的经验。蔡司的光学技术是有口皆碑的,它的电子束技术也并不差。在1949年,就制成了世界上第一台静电式透射电镜,1992年制成了第一台带有成像滤波器的透射电镜,2003年制成了第一台具有Loehler照明的200KV场发射透射电镜及第一台具有镜筒内校正Omega能量滤波器的场发射透射电镜。 /p p   目前,蔡司主要的一款透射电镜为LIBRA能量过滤式透射电子显微镜,(libra是天秤座的意思,不知道蔡司为什么以星座来命名他的产品,知道的可以留言给小编哦!)该电镜配备了独特的OMEGA二阶校正能量过滤器和Koehler库勒照明系统。该款电镜有两种配置:LIBRA 200 CS TEM以能量过滤型200KV LIBRA TEM为基础,做了物镜透镜的球差校正。通过使用校正器,可以采集分辨率0.7A的图像。 LIBRA 200 STEM具有为聚光镜配备的校正器,可以用于在扫描模式下对分辨率远远低于1A和极高分辨率下样品化学分析的成像,尤其是EELS。校正后聚光镜允许探针尺寸减小到1A,同时增大强度。此外,独特的单色仪把能量扩散减小到0.15eV。这对于材料科学的基础研究尤其有利(尤其是纳米颗粒的化学分析)。 /p p   蔡司的透射电镜普及率比另外几家较少,国外哈佛大学,德国马普研究所,国内的重庆大学等也装备了该系列蔡司透射电子显微镜。 /p p   透射电镜自发明之日起已经有八十多年的历史了,它的发明对人类的科技工作的贡献不容小觑,但是能成功的进行商业化生产的公司却不多,电镜生产之繁琐复杂可见一斑。除了上述四家公司之外,国内外还有许多企业在朝着这个方向努力,我们也期待电镜国产化的那一天。 /p
  • 茂莱光学IPO获受理:募资4亿元投建高端精密光学产品等项目
    6月23日,上交所正式受理了南京茂莱光学科技股份有限公司(简称:茂莱光学)科创板上市申请。茂莱光学作为精密光学综合解决方案提供商,专注于精密光学器件、光学镜头和光学系统的研发、设计、制造及销售,服务于半导体(包括光刻机及半导体检测装备)、生命科学(包括基因测序及口腔扫描等)、航空航天、无人驾驶、生物识别、AR/VR 检测等应用领域。三大业务稳步增长目前,茂莱光学主要产品覆盖深紫外 DUV、可见光到远红外全谱段,主要包括精密光学器件、光学镜头和光学系统三大类。2019-2021年,茂莱光学实现主营业务分别实现收入 22,189.64 万元、24,616.72 万元和 33,141.07 万元,2020 年度和2021 年度同比分别增长 10.94%和 34.63%。分产品来看,报告期各期,光学器件是报告期内茂莱光学主要的收入来源,光学器件分别实现收入13,277.28 万元、13,567.68 万元和 18,878.17 万元,占营业收入的比例分别为 59.84%、55.10%和 56.95%。茂莱光学称,2021 年,公司光学器件收入较 2020 年增加 5,310.49 万元,同比增长 39.14%。主要系平片收入增加 3,721.09 万元,随着疫情逐步缓解,海外牙科市场被抑制的需求逐渐放量,客户 ALIGN 和 Meopta 对应用于 3D 牙科扫描系统的平片需求量大幅增加,公司对上述客户的平片收入分别同比增加 2,242.39 万元和 760.62 万元,较上年增长154.39%和 242.16%。此外,棱镜收入同比增长 38.31%,主要系客户 ALIGN 对光线折返异形棱镜的需求量增加,向该客户销售的棱镜金额同比增加 807.56 万元;透镜收入同比增长 12.35%,主要系 2021 年全球半导体行业景气度回升,应用于半导体检测领域的康宁集团对应用于半导体检测设备的透镜产品需求量大幅增加。报告期各期,光学镜头分别实现 5,523.54 万元、5,390.59 万元和 6,799.58 万元的收入,占营业收入的比例分别为 24.89%、21.89%和 20.51%。其称,2020 年度,公司光学镜头收入下滑主要原因为航天监测相机镜头及星敏相机镜头收入受客户需求影响大幅下降。而2021年营收增长主要系显微物镜系列收入大幅度提升,受近年来半导体行业呈快速增长趋势的影响,对半导体检测领域的客户 Camtek 收入较去年增加 1,317.71万元,对其销售的一款新品 10 倍显微物镜进入批量交付阶段,且该客户对 5 倍显微物镜等其他多款显微物镜的需求量亦增长较快。另外,报告期各期,其光学系统分别实现 3,102.93 万元、5,287.06 万元和 6,632.52 万元的收入,占营业收入的比例分别为 13.98%、21.47%和 20.01%。茂莱光学表示,2020 年度,公司光学系统业务收入增长主要原因系 AR/VR 检测等下游领域保持市场增长,客户 Facebook 和 Microsoft 积极布局,产品需求相应增加,该产品逐渐得到产业化应用;同时,生物识别光学模组收入增加 480.95 万元,主要系十指扫描仪模组、护照扫描仪模组等高单价的产品收入增加。而2021 年度该业务收入增长主要系随着半导体行业进入快速成长期,下游半导体检测设备需求放量,公司对 KLA 和 Camtek 的此类产品交付量随之增长较快。募资4亿元投建高端精密光学产品等项目招股书显示,茂莱光学此次IPO拟募资4亿元,投建于高端精密光学产品生产项目、高端精密光学产品研发项目以及补充流动资金。其中,高端精密光学产品生产项目计划在江苏省南京市江宁区汤佳路以北、金鑫东路以西地块实施,通过新建 1 栋厂房、1 栋综合楼以及其他附属配套设施,并引进一系列先进生产设备、检测设备及其他辅助设备,实现对光学器件、光学镜头及光学系统等一系列光学产品的产能扩充。而高端精密光学产品研发项目址位于江苏省南京市江宁开发区金鑫东路以西、汤佳路以北,公司计划利用新建的综合楼 B 部分面积,装修改造半导体光刻及半导体测量设备开发实验室、消费类电子商品量产线测量设备开发实验室、300mm 口径及以上大口径激光干涉仪开发实验室、基于新一代光学技术的医疗仪器开发实验室,并配备一系列先进研发和检测设备,同时引进一批高级技术人才,进一步完善和提升公司的技术研发实力。该项目完成后,将形成一系列高标准实验室,并在此基础上重点针对光学主动定心测量系统的原理及实现方式、大数值孔径物镜测量技术的原理及实现方式、200~300mm 大口径干涉仪、300mm 口径干涉仪球面标准镜、镜头像质检测的原理研究与自动化检测设备开发、双频激光测长原理研究与产品开发、点衍射干涉仪原理研究与产品开发、自动对焦的原理研究与设备开发等 30 项技术课题进行研发和改进。茂莱光学认为,公司本次募投项目“高端精密光学产品研发项目”,将建成达到行业先进水平和标准的实验室,进行高端精密光学产品和技术的研发,有助于公司打破国外技术垄断,进一步提高光学加工技术水平,以助力我国半导体(包括光刻机及半导体检测装备)、生命科学(包括基因测序及口腔扫描等)、航空航天等高科技应用领域国产化。对于公司发展战略,茂莱光学表示,公司将始终专注于精密光学器件、光学镜头和光学系统的设计、研发、制造及销售,通过持续不断的技术研发创新,本土及国际市场的开拓,精益运营管理创新和国际化人才团队建设,进一步提高光学器件、光学镜头及光学系统设计、研发、制造及服务水平,为科技应用领域客户提供高精度、高复杂度、高附加值的核心光学器件及解决方案,促进生命科学领域(如基因测序及口腔扫描等)的跨越发展,赋能光刻机及半导体装备升级换代,为航空航天、无人驾驶、生物识别及 AR/VR 检测等领域提供强有力的光学技术支撑。进一步打造公司核心竞争能力和竞争优势,提升公司品牌及国际化形象,保持精密光学行业地位和公司的可持续发展,实现客户价值、员工成长和科技进步的公司使命,实现成为高端光学科技创新应用企业的愿景。
  • 高精密度稻米重金属快速检测仪在长沙投用
    这台设备像给大米进行一次X射线的透视,3分钟之内就能查出被检大米是否重金属超标。   大米是生活必需品,其是否卫生、有没有被重金属污染,是消费者关心的问题。记者昨日在长沙市质量技术监督局了解到,高精密度稻米中重金属快速检测仪今年在长沙投用。这台设备像给大米进行一次X射线的透视,3分钟之内就能查出被&ldquo 体检&rdquo 大米是否重金属超标,相比传统的标准方法两天检测出结果提速了近千倍,极大地便利了粮食质量安全的监测。   更精确:打一&ldquo 枪&rdquo 测超标情况   这台检测仪器由湖南省食品安全生产工程技术研究中心主任彭新凯发明,并联合一家检测技术公司研发,据称是世界上首台能运用多晶X射线衍射技术开发的一款食品重金属快速检测仪,去年12月获国家专利。   记者昨日在实验室看到,这台白色检测仪外型像一台小型微波炉,只有55厘米长、33厘米宽和44厘米高。检测仪的正面是一个显示窗口,像电脑的显示屏。   对于这台检测仪的检测原理,彭新凯形象地解释为:用X射线给大米打了一&ldquo 枪&rdquo ,这一&ldquo 枪&rdquo 直接激发稻谷的重金属原子核,激发了M、K、L等壳层能量波的跃迁。仪器对跃迁产生的荧光光谱进行对应分析,从而判断被检大米含有何种重金属,&ldquo 就像美国登月车用X射线能量射手来检测月球含有哪种元素的原理一样,但仪器检出限由10-3mg/Kg提高到10-8mg/Kg,检测的精度提高了十数万倍,测试的结果符合GB/T5009.15-2003等标准和规定的要求。&rdquo   更便捷:检测步骤减少了,提速近千倍   &ldquo 这种检测仪还有更快速、无污染、零耗材的优点。&rdquo 彭新凯介绍说,根据通用的检测标准要求,农民种植的稻谷进行检测需要送样到市级及以上检测中心才能受检。接受样品之后,检测人员需要进行8个小时以上的浸泡处理,再进行相关的检测,&ldquo 整个流程做完有11个程序,需要两天的时间。而这种仪器是无损检测,操作简便,检测成本低,只要3分钟定性,12分钟定量。无需前处理,轻轻松松就完成。&rdquo   记者了解到,在今年的收粮工作中,望城区新康乡的万亩试验田基地和长株潭的试验田基地都已用上了这种检测仪。这种检测设备只有35公斤重,对于环境没有特殊要求,能在田间地头运用,适合收购现场和鉴定抽查使用,将来还可以用于环境检测、制药企业的产品检测、商超集市等食品检测机构进行运用,&ldquo 在全国的这些机构进行运用,实现产业化量产之后,未来将形成一个产值达十数亿元的检测装备市场。&rdquo 国家粮食局标准质量中心今年在多地进行了测试验证,并组织专家评审之后认为,这种方式可以满足稻米中镉含量快速检测的需要,建议推广使用。   操作简单   记者昨日在实验室采访时,工作人员现场演示了一次仪器的操作过程。   1 将一个5厘米直径的塑料容器里装满约10克稻谷,将容器放在检测仪上方一洞口里,旋紧、盖上。   2 在屏幕上设定测试时间200秒,启动扫描。约3分钟后,显示窗口出现波状图案。   3 完成检测后显示屏上显示检测报告为&ldquo 镉(Cd)的标准要求为:小于等于0.2mg/kg,测试值为0.023mg/kg,测试结果:passed&rdquo 。 注:以上稿件转载自新华社,文中观点不代表本网立场,仅供读者参考。
  • 多项重大科技基础设施建设集中“剧透”—— “大国重器”有哪些“秘密武器”
    3月25日,上海张江第九期“大国重器”发布会在张江药谷举行。张江科技创新的三个主力军“军长”—— 上海同步辐射光源主任、中科院上海应用物理研究所所长赵振堂,中科院上海生科院生化与细胞所副所长、国家蛋白质科学中心上海主任雷鸣,中科院量子信息与量子科技前沿卓越创新中心(上海)主任、中科院院士潘建伟“剧透”了这些国家级重大科技基础设施建设的进程和“秘密武器”。  上海光源:从分子照片到分子电影  “普通的X光就能清晰拍摄出人体的组织和器官,而上海光源释放的光,亮度是普通X光的一千亿倍。通俗说,上海光源就相当于一个超级显微镜集群,能够帮助科研人员看清一个病毒结构、材料的微观构造和特性。”赵振堂说。上海光源是目前世界上性能最好的中能光源之一,为我国材料、生命、环境、医药、物理、化学、地质等学科的基础和应用研究提供了重要支撑。  截至2015年12月,上海光源首批7条线站共开机提供182123小时用户实验机时,支持课题近7000个。  赵振堂介绍,上海光源目前能为科学家拍摄“分子照片”,正在加紧筹备的上海光源线站(二期)工程和X射线自由电子激光试验装置与用户装置,属于“第四代先进光源”,能够对生物活体细胞进行三维全息成像和显微成像,进入“拍摄分子电影”的时代。  蛋白质中心:认识一个蛋白质只要2分30秒  “以前一个科学家可能要花很多年才能认识一个蛋白质。但是在蛋白质中心,借助各式各样的先进设备和仪器,最短仅需2分30秒就能认识一个蛋白质。”雷鸣说,蛋白质中心是当今全球生命科学领域首家综合性的大科学装置。  雷鸣说:“不久前,利用蛋白质中心的冷冻电镜设施,蛋白质中心丛尧研究员与巴斯德所黄忠研究员合作成功分析揭示了手足口病病毒抗体的作用原理。”  就在前几天,蛋白质中心许琛琦研究员在肿瘤免疫治疗研究领域取得了突破性进展,发现了提高T细胞抗肿瘤免疫功能的新方法,为开发新的肿瘤免疫治疗方法奠定了重要基础。  自2014年5月起,蛋白质中心开始试运行陆续接待用户,至今已累计运行超过12万小时,执行用户课题1200多个。  量子卓越中心:100个粒子把全球计算能力甩几条街  “一个粒子在量子相干状态时,就好比让计算机电路同时处于0和1状态。如果利用100个粒子相干操作制造出的量子计算机,其计算能力达到2100,而目前全世界计算机加在一起的计算能力大约是280,未来一台量子计算机超过全世界的计算机。”潘建伟说,如何利用量子进行信息处理和传输,如何搭建起量子传输的“通道”、推进对量子的产业利用,已成为国际物理学争相研究的问题。  量子卓越中心已牵头承担了中科院战略性先导科技专项(A类)“量子科学实验卫星”、中科院战略性先导科技专项(B类)“量子系统的相干控制”、发改委量子保密通信“京沪干线”技术验证及应用示范项目等多项国家重大科技任务,均在顺利实施。今年,量子卫星将在7月发射,“京沪干线”将在下半年开通。  “量子卓越中心的战略目标是,力争15年左右,构建完整的空地一体广域量子通信网络体系,在国防、政务、金融和能源等领域率先加以广泛应用,形成具有国际引领地位的战略性新兴产业和下一代国家信息安全生态系统。”潘建伟说。
  • 高性能碳纳米管透明导电薄膜研究取得进展
    p style=" text-indent: 2em " 透明导电薄膜是触控屏、平板显示器、光伏电池、有机发光二极管等电子和光电子器件的重要组成部件。氧化铟锡(ITO)是当前应用最为广泛的透明导电薄膜材料,但ITO不具有柔性且铟资源稀缺,难以满足柔性电子器件等的发展需求。单壁碳纳米管(SWCNT)相互搭接形成的二维网络结构具有柔韧、透明、导电等特点,是构建柔性透明导电薄膜的理想材料。但已报道SWCNT薄膜的透明导电性能仍与ITO材料有较大差距。 /p p style=" text-indent: 2em " 因此,进一步提高SWCNT薄膜的透明导电特性是实现其器件应用的关键。分析表明,SWCNT透明导电薄膜中的管间接触电阻和管束聚集效应是制约其性能提高的主要瓶颈。一方面,由于SWCNT之间的接触面积小且存在肖特基势垒,载流子在搭接处的隧穿效应较弱,使得管间接触电阻远高于SWCNT的自身电阻;另一方面,虽然SWCNT的直径一般仅为1-2nm,但由于范德华力的作用其通常聚集成直径几十、上百纳米的管束以降低表面能;管束内部的SWCNT会吸光而降低薄膜的透光率,但对薄膜的电导几乎没有贡献。因此,研制高性能SWCNT柔性透明导电薄膜的关键是获得单根分散、低接触电阻的SWCNT网络结构。 /p p style=" text-indent: 2em " 最近,中国科学院金属研究所与上海科技大学物质学院联合培养的博士研究生蒋松在金属所先进炭材料研究部的导师指导下与合作者采用浮动催化剂化学气相沉积法制备出具有“碳焊”结构、单根分散的SWCNT透明导电薄膜(图1A)。& nbsp /p p style=" text-indent: 2em text-align: center " span style=" text-align: center text-indent: 0em " img src=" http://img1.17img.cn/17img/images/201805/insimg/d1a3d102-e0c5-4683-b29e-cc493258961c.jpg" title=" 1 高性能碳纳米管透明导电薄膜研究取得进展 仪器信息网.jpg" / & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /span /p p style=" text-align: center text-indent: 2em " span style=" color: rgb(127, 127, 127) font-size: 14px " 图1. 单根分散、具有碳焊结构的SWCNT网络。 /span /p p style=" text-indent: 2em text-align: center " span style=" color: rgb(127, 127, 127) font-size: 14px " (A)典型TEM照片;(B)单根SWCNT的百分含量统计; /span /p p style=" text-indent: 2em text-align: center " span style=" color: rgb(127, 127, 127) font-size: 14px " (C-D)无碳焊结构的金属性-半导体性SWCNT的I-V传输特性; /span /p p style=" text-indent: 2em text-align: center " span style=" color: rgb(127, 127, 127) font-size: 14px " (E-F)有碳焊结构的金属性-半导体性SWCNT的I-V传输特性。 /span /p p style=" text-indent: 2em " 通过控制SWCNT的形核浓度,所得薄膜中约85%的碳管以单根形式存在(图1B),其余主要为由2-3根SWCNT构成的小管束。进而,通过调控反应区内的碳源浓度,在SWCNT网络的交叉节点处形成了“碳焊”结构(图1A)。 /p p style=" text-indent: 2em " 研究表明该碳焊结构可使金属性-半导体性SWCNT间的肖特基接触转变为近欧姆接触(图1C-F),从而显著降低管间接触电阻。由于具有以上独特的结构特征,所得SWCNT薄膜在90%透光率下的方块电阻仅为41Ω □-1;经硝酸掺杂处理后,其方块电阻进一步降低至25Ω □-1,比已报道碳纳米管透明导电薄膜的性能提高2倍以上,并优于柔性基底上的ITO(图2A-B)。利用这种高性能SWCNT透明导电薄膜构建了柔性有机发光二极管(OLED)原型器件,其电流效率达到已报道SWCNT OLED器件最高值的7.5 倍(图2C-D),并具有优异的柔性和稳定性。 /p p style=" text-align: center text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201805/insimg/31a1c88d-964d-4fda-af47-d5b192bb42f2.jpg" title=" 2高性能碳纳米管透明导电薄膜研究取得进展 仪器信息网.jpg" / /p p style=" text-align: center text-indent: 2em " span style=" font-size: 14px color: rgb(127, 127, 127) " 图2. SWCNT 柔性透明导电薄膜和SWNCT 有机发光二极管。 /span /p p style=" text-indent: 2em " span style=" font-size: 14px color: rgb(127, 127, 127) " (A-B)SWCNT 柔性透明导电薄膜的光学照片及其透明导电性能对比;(C-D)SWCNT 有机发光二极管原型器件的光学照片及其光电性能对比。 /span /p p style=" text-indent: 2em " 该研究从SWCNT网络结构的设计与调控出发,有效解决了限制其透明导电性能提高的关键问题,获得了具有优异柔性和透明导电特性的SWCNT薄膜,可望推动SWCNT在柔性电子及光电子器件中的实际应用。主要研究结果于5月4日在Science Advances在线发表(Sci. Adv. 4, eaap9264 (2018),DOI: 10.1126/sciadv.aap9264)。该研究工作得到了科技部、基金委、中科院等部署的相关项目的支持。 /p
  • 澳科学家利用透射X光显微镜揭秘月球土壤怪异之谜
    澳大利亚土壤学家马莱克-扎比克,利用同步加速器纳米X线体层照相术对土壤样本进行研究   1969年,&ldquo 阿波罗11&rdquo 号宇航员登上月球。在月球尘土层中,他们发现了奇怪的现象。在漫长的岁月变迁中,月球尘土完全处于不受打扰的静止状态,除了偶尔遭到陨石撞击。在遭到扰乱时,月球尘土表现出怪异的行为。月球尘土能够悬浮在地表上方,悬浮时间无法用月球弱引力解释。它们还具有很强的粘性,能够依附在航天服和设备上,就像依附在地表一样。此外,月球尘土也具有抗热特性。在直射阳光照射下,月球地表温度接近水的沸点,但在地下几英尺处,温度则低于水的凝固点。   月球土壤的显微镜照片,纳米颗粒内的气泡清晰可见。这些气泡让月球土壤拥有怪异的特性   一直以来,科学家就未能完全揭开这些与众不同的特性背后的秘密。为了揭开这个谜团,澳大利亚昆士兰科技大学科学与工程学院的土壤学家马莱克-扎比克博士前往台湾,利用纳米显微镜研究月球土壤。在太空竞赛所处的时代,科学家还没有发明这项技术。扎比克表示科学家很久以前就对月球土壤(浮土)的怪异特性进行了研究,但在土壤中发现的纳米和亚微颗粒并没有引起他们的重视,对这些颗粒的来源也没有进行研究。这些颗粒存在于玻璃泡中,玻璃泡是陨石撞击的产物。   扎比克将土壤样本带到台湾,利用一项新技术在不破坏玻璃泡情况下对其进行研究,了解里面的颗粒。这项新技术名为&ldquo 同步加速器纳米X线体层照相术&rdquo ,用于研究纳米材料。纳米X线体层照相术使用透射X光显微镜,能够拍摄纳米颗粒的3D图像。   佩戴3D眼镜时看到的月球土壤中纳米颗粒的3D图像   未佩戴3D眼镜时看到的图像,展示了岩石内的玻璃状颗粒   扎比克说:&ldquo 研究得出的发现让我们感到吃惊。我们原以为会在玻璃泡内发现气体或者蒸汽,就像地球上的玻璃泡那样,月球玻璃泡内存在一个具有高度渗透性的网络,网络由怪异的玻璃状颗粒构成。玻璃泡内的纳米颗粒似乎由陨石撞击月表时形成的熔岩构成。在遭到陨石撞击之后,玻璃泡被毁坏,释放出里面的纳米颗粒。月球表面的岩石也在撞击中遭到破坏并与纳米颗粒混合在一起,形成独特的月球土壤。&rdquo   扎比克指出纳米颗粒的行为遵循与普通物理学原理完全不同的量子物理学原理。因此,含有纳米颗粒的材料会表现出怪异的特征。他说:&ldquo 纳米颗粒体积微小,它们的怪异特征由体积决定,而不是它们的构成。我们对量子物理学了解不多,但根据我们的研究,从玻璃泡中钻出之后,纳米颗粒与其他土壤要素混合在一起,赋予月球土壤与众不同的特性。月球土壤带静电,因此能够悬浮在地表上方。虽然充满化学活性,月球土壤的导热性能很差,地表上的土壤温度可达到160度,地下2米的温度却只有零下40度。此外,月球土壤具有很强的粘性并且易碎,能够磨损金属和玻璃表面。&rdquo   扎比克表示月球并不像地球一样拥有大气层,因此无法降低陨石撞击产生的影响。他说:&ldquo 撞击月表的陨石能够产生非常剧烈的反应,所产生的高温熔化月表岩石。猛烈的撞击导致压力消失,形成真空。气泡在熔化的玻璃岩内形成并发生逃逸,就像软饮料中的气泡一样。我们的研究揭示了这些颗粒如何在这一过程中演化,可能帮助我们找到一种完全不同的纳米材料生产方式。&rdquo 扎比克及其研究小组的研究发现刊登在&ldquo 国际学术研究网络&rdquo 出版社的《天文与天体物理学报》上。
  • 鑫图实时图像拼接和实时景深融合功能将免费为MIchrome显微摄像头用户开放
    搭载MIchrome 5 Pro相机的显微镜在移动载物台的数秒钟时间,如同手机全景摄影一样,完成了显微视频图像到全景拼接的整个过程。 不论4倍、10倍,还是40倍,横轴、纵轴,还是任意角度,MIchrome 5 Pro都能快速准确拼接。 轻快、顺畅、省心! 这样的体验来源于鑫图全新计算成像软件——Mosaic 2.0,不仅提供实时自动拼接功能,还同时提供实时景深融合(EDF)。 得益于鑫图自研的智能拼接算法模型结构,以及大量的显微图像训练和应用测试,Mosaic 2.0 不仅不会出现传统进口软件错拼的尴尬局面,而且和动辄数千美元的定价不同, Mosaic2.0完全向MIchrome 5 Pro用户免费开放。 技术发展到如今高度整合的程度,显微摄像头,尤其是旗舰级别的显微摄像头远不是简单的CMOS芯片、传输控制单片机、成像软件等硬件组合到一起再固定到显微镜接口上那么简单。以鑫图MIchrome 5 Pro为例,鑫图就做了这一技术的原型机,但直到2018年8月,带着智能算法的MIchrome 5 Pro才最终与用户见面。MIchrome 5 Pro的整个方案分为四层,算法、应用、软件层和硬件层。 “鑫图光电的核心竞争力其实是在最上两层,视觉的应用层以及核心的算法能力层。” 鑫图光电高级研发经理赵泽宇博士在发布会上提到,上文提到的实时图像拼接正是集中于这两个层面。 在MIchrome 5 Pro的这套显微成像解决方案中,实际上也涵盖了硬件和软件方面,承担核心图像处理功能的“ISP”就是其中创新意义的典型。 ISP也叫“图像处理引擎”,是目前苹果、华为、谷歌等手机行业一众大佬的竞争天王山所在,谁拿下品质更高的ISP,谁就能向消费者展示一个更精彩的世界。显微成像应用中,这个结合了自动白平衡、自动曝光、高动态范围等复杂算法的处理引擎拥有同样的重要性。 然而日益巨大的ISP算法处理量会让CPU不堪重负,传统方案往往不得不对图像质量进行让步或者导致传输速率急剧下降。 如何开发出更高质量的显微成像ISP,成为各个厂家面临的关键问题。 针对这一问题,作为科学成像领导者的鑫图光电,日前提出了全新的FPGA芯片端全ISP解决方案,创新地将显微行业首个自研ISP集成到28纳米工艺的FPGA芯片中,利用FPGA芯片巨大的并行处理能力完成图像的高速处理,并发布了基于该技术的MIchrome 5 Pro——这款姗姗来迟的显微相机。 可以预见的是,在信息量成十倍百倍增加的显微成像中,计算成像带来的优势将被更多的用户感受到。实时拼接和实时景深融合只是智能显微成像新模式的冰山一角,而鑫图此次发布的MIchrome 5 Pro,针对显微成像从硬件到ISP和算法的一揽子解决方案,作为先锋将居功至伟。产品型号 MIchrome 5 Pro MIchrome 20 MIchrome 6芯片型号 IMX264LQR-C IMX183CQJ-J IMX178LQJ-C芯片尺寸 2/3" 1" 1/1.8"快门方式 Global Rolling Rolling分辨率5MP20MP6.3MP 帧率 35fps@ 15fps@ 40fps
  • 揭秘街头“鲜榨果汁”真相:添加剂勾兑而成
    纯天然果汁(左):果肉纤维很自然地都沉淀在杯子下方。有添加果汁(右):果肉纤维明显地漂在上面,下方液体澄清   纯天然果汁:上方是澄清液,而且没有产生多少泡沫。 有添加果汁:漂浮在上面的纤维呈泡沫状,非常浓稠。   【街头实验】   Leon是一名英国留学生,在他学校外面的超市里有一个卖鲜榨果汁的小店,水果现切现榨,价格也不贵。不过时间一长Leon发现,店员在榨汁之前总是往榨汁机里加一种透明的黏稠液体,店员对此也语焉不详。有一天装这种液体的瓶子空了,店员从柜台下面拿出一个大瓶子把空瓶加满的时候,Leon看到大瓶子上写着这么几个字:柠檬水果原浆。   这个"柠檬水果原浆"究竟是什么水果的浆?加进鲜榨果汁的作用是什么?记者来到这家果汁店,要了两杯鲜榨猕猴桃汁。当店员按照以往的程序榨好了一杯加有"柠檬水果原浆"的果汁之后,记者要求在另外一杯中不要加除了水之外的任何东西。这样,两杯原料完全一致,只有添加物不同的猕猴桃汁就做好了。   甜味剂、果汁粉让"果汁"更果汁   范志红表示,目前很多所谓鲜榨果蔬汁就是使用浓缩果汁、果酱、果汁伴侣、果汁粉之类的复合添加剂勾兑而成,鲜果蔬只是其中一小部分,从它们的实际状态来说,大部分是糖、酸、香精、色素、增稠剂等成分。事实上,目前饭店和饮品店里销售的各种果蔬汁饮品,几乎都属于这种勾兑产品。   为什么在鲜榨的果汁里会有这么多添加的成分呢?范志红表示,商家主要是出于节约成本的考虑,用很少的水果加水后榨汁,榨出来的果汁味道一般都比较淡。而且水果、蔬菜一年四季的品质会发生变化,不能完全满足消费者的口味。所以甜味不足时就加甜味剂,香味不足就加香精,或者加浓缩果汁。   另外,如果没有增稠剂的悬浮作用,水果中的各种成分必然会很快分层,喝起来口感也不太令人满意。果汁伴侣之类复合添加剂的一个重要配料,实际上就是果胶等增稠剂,能让水果中的各种成分均匀地悬浮,口感更细腻也更浓稠。   不是所有的水果都适合榨汁   既然现在市场上的果汁大都是勾兑而成,那么我们能不能自己榨一杯纯天然的果汁呢?范志红表示,自己在榨蔬果汁的时候也应该注意原料的选择,并不是所有的水果都能用来榨汁。真正可以用来榨汁的水果有西瓜、草莓、柑橘、猕猴桃、菠萝、芒果、甜瓜等。这些水果中的汁液比较丰富,比较容易榨成果汁。而像苹果、梨、桃、杏等纤维较多的水果都很难榨出汁来,只能加水打成浆。   很多人喜欢在果汁中添加一些蔬菜,这样既能增加营养,还能调和果汁的甜味。其实,蔬菜的选择也是一门学问。范志红表示,除了番茄、大白菜等几种蔬菜外,其他的蔬菜大部分都有点发涩发苦,或者质地比较坚硬不容易被榨成汁。范志红表示,一杯没有添加的天然果汁,其中的高活性物质很容易被氧化而变色。所以鲜榨果汁做好以后还应该尽快喝掉,避免营养成分的流失。   刚榨好时,两杯果汁在外观上区别不明显,静置一段时间后,差别渐显。   记者请来一位并不知道实验情况的人品尝两杯果汁。品尝后认为,有过添加的猕猴桃汁甜味非常明显,有不属于猕猴桃的酸甜感觉。而没有添加的那一杯果汁,味道比较清淡,感觉是在喝某种植物的汁液,入口有青涩的感觉。   【结果分析】   很显然,"柠檬水果原浆"是一种具有调味作用的添加剂,而且口感较甜。而且加入这种液体的果汁在最初看上去比较浓稠不易分层,即使在放置了一段时间后分层,上面一层也还是显得泡沫丰富。   中国农业大学食品学院教授范志红表示,这种无色黏稠的液体并不是包装上所写的"柠檬水果原浆",而且和水果并没什么关系,其实只是一种用于食品添加的甜味剂。
  • 石照耀教授牵头的重大科研仪器项目“小模数齿轮超精密测量仪器研制”正式启动
    2023年3月18日,由北京工业大学牵头,湖南科技大学、河南科技大学、湖南理工学院、温州大学和中国计量科学研究院共同承担的国家自然科学基金国家重大科研仪器研制项目“小模数齿轮超精密测量仪器研制”(52227809)启动会在湖南科技大学召开。会议承办单位湖南科技大学王卫军副校长、科技处万文处长、机电学院领导,北京工业大学科技发展研究院刘占省副院长,项目负责人北京工业大学石照耀教授,参加单位的项目负责人湖南科技大学赵前程教授、河南科技大学王笑一副教授、湖南理工学院张晓红教授、温州大学周宏明教授、中国计量科学研究院林虎副研究员,以及项目组骨干成员、研究生、来宾等,约40余人出席会议。石照耀教授主持会议。刘占省副院长和王卫军副校长分别致词,充分肯定了本项目的研发价值和对小模数齿轮行业发展的促进作用。石照耀教授做了项目主题报告,围绕研究背景、主要研发内容和技术方案展开,从“为什么”、“做什么”和“怎么做”的角度详细介绍了项目的总体情况。小模数齿轮(模数≤1mm)既是重大装备的核心件,又是民生产品的基础件;然而世界范围内,小模数齿轮基准级检测仪器及样板缺失。本项目将小模数齿轮超精密测量仪器的研制从“可测性”、“精度获取”和“量值传递”三方面展开,解决高精度小模数齿轮测量、量值传递和仪器校准难题,实现超精密测量仪器核心技术自主可控,对推动我国小模数齿轮产业升级意义重大。项目牵头单位骨干成员宋辉旭博士做了“项目任务分解与进度安排”报告,就项目的8大任务(下设42项二级子任务和134项三级子任务)进行了详细讲解,明确了各参加单位的任务,提出了具体的工作要求、考核指标和完成时间节点。同时,宋博士解读了与国家重大科研仪器研制项目相关的项目管理文件和财务管理制度文件,并汇报了项目组制定的相关管理办法。启动会安排了学术交流,中国计量科学研究院林虎副研究员做了“齿轮量值传递与溯源体系”的学术报告。报告从中国计量科学研究院情况介绍、齿轮量值传递与溯源体系、未来的发展与挑战三个方面详细介绍了我国计量体系、量值传递的模式与发展。大会最后,石照耀教授与各参加单位项目负责人共同签署了项目合作协议。项目启动会的正式启动标志着项目已进入到全面执行阶段。
  • 投1.56亿 一精密模具及光学仪器生产基地开建
    5月25日,“四通精密模具及光学仪器生产基地”项目开工仪式在高新区科技工业园举行。  据悉,该项目总占地面积15.49亩,计划总投资15600万元,主要建设两栋10层以上的标准工业厂房,总建筑面积为56823.84平方米,其中地上面积为48151.74平方米,地下停车场面积为8672.10平方米。  项目将于2017年年底竣工投产,预计工业产值达1.26亿元人民币,利税达1200万元人民币。项目建成后,将主要生产精密模具以及光学透镜,包括有汽车产品、家居产品、安防产品、光学球罩、镜片等。产品除部分在国内销售外,主要出口欧洲及东南亚国家。
  • 飞秒激光在ITO薄膜表面诱导周期性透明纳米导线
    使用线偏激光照射金属、半导体、透明介质等材料产生表面周期结构(laser induced periodic surface structures,LIPSS)是一种普遍的现象,LIPSS的周期取决于激光条件和材料的性质,在接近入射激光波长到小于波长的十分之一范围变化。这些周期性纳米结构可用于有效地改变材料的性质,并在表面着色、光电特性调控、双折射和表面润湿性等方面有许多应用。氧化铟锡(indium tin oxide,ITO)具有较宽的带隙,对可见光与近红外波段有很高的透射率,ITO薄膜具有较低的电阻率,是液晶面板、新型太阳能电池等元件的重要组成部分。一直以来,发展制备ITO薄膜的新方法,调控ITO薄膜的光电特性是非常重要的研究课题,而在激光加工领域,使用激光在ITO薄膜诱导LIPSS是一个有效且简便的方法。华东师范大学精密光谱科学与技术国家重点实验室贾天卿教授课题组探究了一种通过飞秒激光直写在ITO薄膜表面加工LIPSS的方法,并详细分析了不同激光参数下加工的ITO薄膜在可见到红外光波段的透射率与其各向异性电导率的变化规律。合适的激光参数可以在ITO薄膜上有效地加工大面积低空间频率的LIPSS,这些LIPSS能够表现出独立纳米导线的特性,并且在电学特性上具有良好的一致性。结果表明,飞秒激光直写过程中并不会改变材料的性质,而且与原始的ITO薄膜相比,具有规则LIPSS的ITO薄膜在红外波段的平均透射率提高了197%。这对于将ITO薄膜表面加工规则的LIPSS作为透明电极应用于近红外波段的光电器件具有重要的意义。如图1,原始ITO薄膜的面电阻各向同性。随着激光能流密度的增加,垂直和水平于LIPSS方向的面电阻迅速增加且变化梯度不同,出现了明显的各向异性导电性,当ITO薄膜表面出现规则且独立的LIPSS结构以后,在一定能流密度范围,ITO薄膜能够在不同方向上显现出单向导电/绝缘的电学特性。图1 扫描速度为3 mm/s时,不同能流密度激光辐照后ITO薄膜的面电阻。图中给出了电学测量中横向(Transverse)与纵向(Longitudinal)的定义通过调节激光的能流密度,可以在一个较大的范围内制备出不同形貌的纳米导线(LIPSS)。图2(a)展示了不同能流密度的飞秒激光加工的纳米导线扫描电镜图像。在能流密度上升的过程中,纳米导线的宽度从537 nm降低到271 nm。纳米导线的高度从平均220 nm降低到142 nm,如图2(b)所示。纳米导线的单位电阻随着能流密度的上升从15 kΩ/mm上升到73 kΩ/mm,这是由于纳米导线的宽度与高度都在同步下降造成的,如图2(c)。图 2 (a)不同能流密度下的纳米导线的扫描电镜图像;(b)纳米导线的高度与宽度随着能流密度的变化情况;(c)纳米导线的单位电阻与电阻率随着能流密度的变化情况如图3,原始厚度为185 nm的ITO薄膜在1200~2000 nm的近红外光谱范围内的平均透射率为21.31%。经过飞秒激光直写后,当能流密度在0.510~ 0.637 J/cm2的范围内,ITO薄膜对于近红外的透过率达到54.48%~63.38%,相较原始的ITO薄膜得到了156%~197%的提高。同时,飞秒激光直写后的ITO薄膜在可见光波段的透过率略微提高且曲线较为平滑。通过调节激光的能流密度,ITO薄膜在近红外的透过率能够得到显著提高,并且能够保持较好的导电性。图 3 扫描速度为3 mm/s时,不同能流密度激光直写后的ITO薄膜的透射率。在0.637 J/cm2时红外波段(1200~2000 nm)透过率为63.38%该工作近期以“Periodic transparent nanowires in ITO film fabricated via femtosecond laser direct writing”为题发表在Opto-Electronic Science (光电科学)。
  • 德国ART纳米级定转子技术改善化妆品活性剂的皮肤渗透性
    德国ART 是全球唯一能采用定转子技术达到纳米级别的品牌,极大满足制药,化妆品,精细化工等行业的高精需求。那么德国ART 是如何利用本创新技术来改善化妆品活性剂的皮肢渗透性的呢? 背景:常规渗透促进剂会损坏皮肤,不能满足FDA要求 皮肤是身体的最外层,它保护身体免受病原体等外界因素的影响,及避免身体过多水份流失,等等。 因此, 健康的皮肤是化学品渗透的有效屏障。 而化妆品的活性剂化学性质不稳定,难溶,低渗透,低生物活性。所以现代化妆品配方的目的,是研究如何将活性剂送至皮肤内。 改善活性剂输送的一个方法是使用渗透促进剂,如:乙醇。这些渗透改善剂的原理是:他们与皮肤屏障相互作用,进而改变皮肤的结构。 这种方法是有效的,但是会损坏皮肤,因此对化妆护理产品我们应该尽量避免这种方法。按照FDA的要求,现代化妆品要在不改变人的身体结构的情况下为我们清洁皮肤,美化个人形象。 能改善活性剂的皮肤渗透性,而不损坏皮肤, 如何实现? -- 使用纳米载体! 能改善活性剂的皮肤渗透性,而不损坏皮肤,甚至有护理皮肤的特性, 如何实现?纳米载体是最好的选择! 由上二图可以看出,纳米颗粒的载体形式,更容易实现皮肤渗透,纳米载体指亚微米级,及纳米级颗粒。纳米载体的特征为:1)体积小;2)目标直接针对皮肤毛囊。这是化妆品乃至药品领域的最新概念。 例如:脂质体,纳米乳剂,脂质纳米颗粒(SLN and NLC),及纳米结晶体(smartCrystals, ARTcrystals)。这些载体的特性是不同的,如:脂质体最适合亲水的活性剂的输送,纳米乳剂和脂质纳米颗粒最适合作亲脂性的活性剂载体,纳米结晶体最适合难溶性化合物。 如何生产纳米载体和纳米化妆品? -- 使用ART纳米技术 对这一创新理念的应用,最重要的一点是如何使大规模生产该配方成为可能,并能同时节约时间和成本。 化妆品的纳米载体可以使用高压分散均质机(HPH)和球磨机(BM)来生产。但是高压均质机和球磨机体积大,能耗高,处理时间长,投资大。 而德国ART-MICCRA 的最新的高精度的定转子系统设备对生产化妆品的纳米载体特别有效。D-27是一个可以24小时连续工作的在线分散系统。 最新技术的水冷电机,利用其超高转速(36,000RPM),及强大的电机功率(2,700W),与超高精度的定转子配合,达到全球独一无二的纳米处理效果, 而只有63分贝的低噪音。 高效率的处理设备,将使用纳米载体以改善活性剂的皮肤渗透性成为可能。这不仅适用于高价格的奢侈化妆品,同时也适用于一般护理产品。 如果将纳米载体与化妆品霜剂再进行分散乳化, 即可获得纳米化妆品。 综上所述, 以前皮肤不能有效使用的难溶性或生物活性剂, 如:黄酮类化合物,现在因为纳米结晶体技术,让化妆品活性剂迈入了新的台阶; 而ART &ndash MICCRA 也让化妆品纳米载体的经济而高效的生产进入了一个新的里程碑。 (本文编辑,摘自德国Cornelia Keck博士的文章。Cornelia Keck博士是University of Appplied Sciences Kaiserslautern大学药理学和药剂学教授;德国ART公司终身科学顾问) 关于语特 和 英国Bibby / 德国ART / 德国CAT ( http://bibbyyt.instrument.com.cn. ) 广州语特仪器科技有限公司专注于搅拌器/分散乳化机等实验室样品制备等通用仪器, 熔点仪/光度计等分析仪器,以及PCR等生命科学仪器。 作为英国比比(Bibby )在中国南方的首代,广东,广西,四川,重庆,云南,海南,贵州和西藏是我司的服务范围。语特公司也是德国ART, 德国CAT 在中国的首代。 英国BIBBY 成立于上个世纪50年代,作为英国最大的实验室科学仪器生产商,世界上拥有最广泛产品系列的实验室仪器制造商之一, 其向全球提供的品牌产品以高品质和高操作性能而著称. 旗下有4个子品牌:Stuart,Techne,Jenway,Electrothermal. l Stuart: 专注于样品前处理等通用实验室仪器,包括: 熔点仪, 菌落计数器, 搅拌器, 混匀器,摇床, 纯水蒸馏器系列; l Techne: 专注于分子生物学研究设备(基因扩增仪和杂交箱), 以及温度控制产品系列(包括水浴和干浴) ; l Jenway: 是紫外/分光光度计, 火焰光度计,色度计等分析仪器的专家; l Electrothermal: 作为有70多年历史的BIBBY的新成员,全球领先的科学仪器提供者,提供电加热套,平行反应设备, 凯氏定氮设备, 电子本生灯系列。其平行反应设备是全球市场领导者。 德国ART 成立于上个世纪,是德国乃至全球最专业的分散乳化专家。 其顶级分散乳化产品从实验室仪器,中试产品到工业设备, 分散头种类极多,可满足客户各类需求;应用领域覆盖了化工,化妆品,制药,食品,环保等各大领域。 德国CAT 成立于上个世纪50年代,是德国样品制备仪器方面的专家之一。其搅拌器,从手持式,教学用,到科研通用型,高粘度型,应有尽有,是CAT的代表产品线; 而今又由普通电子马达走向无刷马达, 引领着搅拌器的研发潮流。
  • 【标准解读】透射电镜图像法测量多相体系中纳米颗粒粒径
    透射电子显微镜(TEM)具有原子水平的分辨能力,它不仅可以在观察样品微观形态,还可以对所观察区域的内部结构进行表征,成为纳米技术研究与发展不可或缺的工具。特别是TEM配合图像分析技术对多相体系中纳米颗粒粒度进行分析具有一定的优势。本文将对已实施的GB/T 42208-2022 《纳米技术 多相体系中纳米颗粒粒径测量透射电镜图像法》进行解读。多相体系是指体系内部不均匀的体系,在物理化学中也称为非均相体系、混相体系或者复相体系。而纳米颗粒受尺寸限制往往存在于材料基体中,形成多相体系来增加整个材料特性,这可能关系到后续产品的性能和安全性,因此对多相体系中纳米颗粒的评价尤为重要。透射电镜能作为最直观、准确的设备能够对样品内部进行评价,在多相体系中的纳米颗粒粒径表征中不可或缺。本标准从很大程度上完善和补充国内现有标准的不足,给出较为完整的多相体系中纳米颗粒粒径分析评价方法,不仅对于多相体系中纳米颗粒的粒径这种需要探讨体系内部的颗粒测量给出了方案,而且对于不同TEM的颗粒测量结果一致性评判具有重要的参考价值。本文件适用于固相多相体系中的粒径测量。考虑到多相体系的多样性,胶体和生物组织中的纳米颗粒,只要样品制备满足透射电子显微镜观察的要求,也适用本文件.一、背景纳米材料由于表面效应、量子尺寸效应、体积效应和量子隧道效应等,使材料表现出传统固体不具有的化学、电学、磁学、光学等特异性能。同时,受到尺寸的限制,纳米材料单独使用的场合有限,往往存在于材料基体中,形成多相体系来增加整个材料特性。但是由于纳米颗粒粒径较小、比表面积较大、表面能较大,极易团聚,致使其在多相体系中很难表征和评价。研究多相体系中纳米颗粒的粒度测量,对优化材料结构,改善材料的性能有着极大的促进作用,对推动纳米材料的应用和发展具有重要的意义。多相体系中纳米颗粒不同于单一的纳米颗粒,它对检测方法、样品处理及样品制备都有较高的要求。扫描电子显微镜和原子力显微镜由于成像原理的问题,不利于多相体系中纳米颗粒的测量。因此在本标准发布之前,国内该内容处于空白,本标准聚焦透射电镜的成像原理,对样品制备、图像获取、图像分析、结果表示、测量不确定度等技术内容给出了充分的、系统的说明。二、规范性引用文件和参考资料本标准在制定过程中,在符合GB/T1.1-2020《标准化工作导则 第1部分:标准的结构和编写》国家标准编写要求的基础上,充分参照了现行相关国家标准中的相关术语及技术内容的表述,包括颗粒系统术语、纳米材料术语、微束分析、粒度分析、纳米技术等各个专业领域;同时,在规范表达上,也充分征求了行业专家、资深从业者、用户的意见和建议,力求做到专业、通俗、易懂。 三、制定过程本标准涉及的领域较为专业,因此集合了国内相关领域的一批权威代表性机构合作完成。牵头单位为国家纳米科学中心,主要参加单位包括国标(北京)检验认证有限公司、北京市科学技术研究院分析测试研究所(北京市理化分析测试中心)、深圳市德方纳米科技股份有限公司、中国计量大学、北京粉体技术协会等。对于标准中的重要技术内容,如实验步骤、不同多相体系样品的制备方法、图像获取方式、图像分析、数据处理等均进行了实验验证,确定了标准中相关技术的操作可行性。四、适用范围本文件适用于固相多相体系中纳米颗粒的粒径测量和粒径分布。胶体和生物组织中的纳米颗粒,只要样品制备满足透射电子显微镜观察的要求,也适用本文件。 五、主要内容本标准描述了利用透射电子显微镜图像处理和分析技术进行纳米颗粒在多相体系中分散的粒径测量方法的全流程,包含了标准所涉及的术语和定义,TEM的成像原理,不同类型样品的制备方法,详尽的实验步骤,结果表示以及测量不确定度的来源,并在附录中针对不同的样品类型给出了实用案例。术语及定义:即包括了纳米颗粒、分散的术语定义,还包括了TEM中明场相、暗场像、扫描透射电子显微图像和高角环形暗场像等几种成像方式的定义。一般原理:利用透射电镜图像评估纳米颗粒在多相体系中的粒径测量,主要基于透射电子显微镜中电子束穿透样品成像的原理,并对图像进行处理,通常需要借助粒径分析软件进行粒径测量,以避免人为因素的干扰。样品制备:纳米颗粒在多相体系中的分散,由于多相体系材料不同,样品制备方法不同,系统的介绍了纳米复合材料的制备、多相固态金属材料的制备以及多相生物材料的制备方法,这包含了超薄切片技术、离子减薄技术、生物染色技术等。实验步骤:包含了装样、仪器准备、图像获取的全过程。需要注意的是根据多相体系材料及其中纳米颗粒的种类和状态的不同,在测试过程中要明确选用明场、暗场、高角环形暗场等合适的成像技术,并保证有足够清晰度和对比度的透射图像,能够准确识别到图像中的纳米颗粒。除此之外,为了使拍摄所得的图像中包含有足够的样品数量进行粒径测量,需要在不同的位置多次拍摄。具体的过程,本标准在附录A中以镍基高温合金多相体系中纳米颗粒为例,给出了详细过程。粒径测量:多相体系中的纳米颗粒的透射电子显微镜图像通常存在背景亮度不均匀、分散相边界与图像背景灰度差小的特点,因此需要图像处理将样品图像从背景中区分出来。总体目标是将数字显微照片从灰度图像转化为由离散颗粒和背景组成的二值化图像。重点采用阈值算法进行单个颗粒的测量。同时,颗粒粒径测量时测量颗粒数量对测量不确定的影响较大,因此需要确认最少测量颗粒数,这也取决于实际的测量需求。在结果表示方面,实验室可以根据实际需求,只评价纳米颗粒粒径的大小,也可以以纳米颗粒的分布范围为评价目标。在标准的附录中给出了两种分布范围方式。不确定度:对多相体系中纳米颗粒的粒径测量的测量不确定度主要来源包含了样品均匀性、样品制备、图像处理和测量所需的颗粒数不足等。在上述基础上,给出了测量报告的信息及内容。本文作者:常怀秋 高级工程师;国家纳米科学中心 技术发展部Email:changhq@nanoctr.c
  • 我司工程师前往中科大安装Tousimis临界点干燥仪
    我司工程师前往中科大安装Tousimis临界点干燥仪Tousimis成立于1962年,总部位于美国马里兰州Rockville, 拥有60余年的临界点干燥仪(Critical Point Dryers, CPD)设备制造经验。Tousimis自成立之初就一直致力于技术革新,引领着临界点干燥设备行业的发展。其临界点干燥仪因技术先进、操作简便、可靠性高而闻名世界,已在化工、材料、生物、制药,MEMS等领域广泛应用。华纳创新是Tousimis在中国的授权代理和技术服务合作伙伴,负责Tousimis临界点干燥仪在全国范围内的销售以及售后服务。我司工程师前往中国科学技术大学工程科学学院,安装Autosamdri® 931临界点干燥仪,并给研究所相关人员培训使用方法。 Tousimis Autosamdri® 931荣获2012年“今日显微学”创新奖。产品特点: 1.25"/2.5"/3.4"等多种样品室尺寸可选可自定义编写程序专利Stasis程序,可设置CO₂ 置换次数.便于其他较难干燥样品。更精准的程序控制,保证干燥结果可重复性。多种样品架可选,最小处理2µ m样品。LCD触屏控制,全自动操作可用于无尘室,多种默认处理程序,也可自定义并重复使用,慢速充液功能,适用于各种易损样品。快速冷却,1.25”样品室冷却时间小于1min内置SOTER&trade 冷凝器分离乙醇和CO₂ 消除静电。外置吹扫后过滤器便于更换,照明灯便于观察整个干燥过程。专利非机械式吹扫搅拌技术,免维护。保质期两年。 Tousimis干燥仪系列还有A系列,B系列,C系列等多种型号干燥仪,不同型号,满足客户不同需求。
  • 可视化原位透射电镜技术 见证纳米颗粒舞动之美
    p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201606/insimg/4afc0317-e9f0-488f-acc8-55f85320fe4d.jpg" title=" Kydt_Wyc_20130514.jpg" width=" 600" height=" 400" border=" 0" hspace=" 0" vspace=" 0" style=" width: 600px height: 400px " /    /p p & nbsp & nbsp & nbsp & nbsp 随着对纳米尺度的理解,中国研究者团队研发了一种可视化的基于原位透射电镜技术,该技术直接将原子尺度的结构和物化性能联系起来,可提供新颖而强大的功能。 /p p   在纳米世界里的生活是很快的,就致力于纳米尺度的基本机制研究而言,其发展更加迅速,这个世界,便是尺寸只有十亿分之一米的原子和离子之类的颗粒的舞蹈。 /p p   随着对纳米尺度的理解,中国研究者团队研发了一种可视化的基于原位透射电镜技术,该技术可以提供新颖而强大的功能,它能够直接将原子尺度的结构和物化性能联系起来。 /p p   在这周AIP出版的Applied Physics Letters期刊里,研究者们说明了他们的发现对新一代科技设备的设计和制造的重要性。这项研究具有广泛的应用潜力,从基于电致色变科技的智能窗到管理能源、信息和环境的新型器件。 /p p   团队负责人、中科院物理所白雪冬研究员介绍道, span style=" color: rgb(0, 0, 0) " “目前,应用于能源、信息和环境方面的新设备的原子机制是一个重要的议题。物化现象中原子过程的实时成像是原位透射电镜技术的任务。我们研究的目标之一是理解从原子尺度可获得的设备的基本原理,另一个目标是探索基于原子过程中原位透射电镜成像的革新的设备。” /span /p p   在诺贝尔奖透射电镜科技中,电子束取代了用于传统电镜中的光束,通过一个金属试样传输。与光学显微镜相比,由于电子具有更短的波长,透射电子显微镜提供给研究者更高的分辨率,以至于他们可以观察到更多的信息。 /p p   白强调了结构和性能之间的关系是材料科学一个根本的关注。然而,研究这种关系的约束之一是使用传统的方法,结构表征和性能测定通常是分开的,对于纳米材料来说尤其如此。他们的创新之处在于将这些步骤结合起来。 /p p   白还说道,“过去的十五年来,我们的研究工作集中于原位透射电镜技术的构造和应用,所以在不同的物理因素(包括电的和光的)下原子尺度的性能都通过透射电镜进行了研究。” /p p   该团队尤其对于应用最广泛的电化学材料之一—氧化钨和其产物的一个关键相转变进行了研究。通过使用他们简化了的内含电化学电池的透射电镜技术,他们的微观的、动态的观察显示了实时的详细机理,涉及了电化学氧化钨纳米线的形成和演变,并且在工业上有很多应用。 /p p   他们的研究最有趣的方面之一是探究离子电迁移过程和其诱导的动态结构转变。他们发现这些与电化学性能密切相关,加深了原位透射电镜成像研究的广泛应用潜力。 /p p   白说道,“新特性和重要的科学问题可以通过原位透射电镜成像来显示,例如,电驱动的氧化还原反应过程,锂离子电池中锂原子的占据位点和电机学反应电池中的物质转移都能从原位透射电镜成像中观察到。” /p p   接下来,研究者们将扩展原位透射电镜原子尺度成像技术,使之与超快光谱结合起来。通过这个扩展,高分辨成像在空间和时间上都将成为可能。 /p p   论文地址: span style=" color: rgb(0, 112, 192) " a href=" https://www.sciencedaily.com/releases/2016/06/160607113110.htm" target=" _blank" title=" " In-situ transmission electron microscopy imaging of formation and evolution of LixWO3 during lithiation of WO3 nanowires /a /span /p p br/ /p
  • 布鲁克海文实验室与洛斯阿拉莫斯共同研发透明纳米薄膜
    美国能源部布鲁克海文国家实验室(Brookhaven)和洛斯阿拉莫斯国家实验室(Los Alamos)于近日宣称,其研究结果表明透明薄膜具有在相对较大面积内吸收光并生产电荷的能力。同时,两家实验室的专家还在《化学材料》(Chemistry of Materials) 期刊上发表了相关文章,称此材料可用于生产透明太阳能电池板或太阳能窗户,从而在实际应用中将吸收的太阳能转换至可使用电力。 六边形的边密集地排列,可吸收强烈光线,也可以方便地进行发电   据称,此种材料是在半导体聚合物中注入富含丰富碳元素的富勒烯(fullerenes)而制成的。在监控条件下,这种材料可以在数微米大的面积上进行自组装并形成如蜂窝状的可重复网格。此蜂窝薄膜是在聚合物/富勒烯混合溶液中滴入微米大小的水滴使其遍布溶液表层而制成的。随着溶剂的蒸发,此聚合物逐渐形成六角型图案,即蜂巢状外观。   “虽然这种蜂窝状图案的薄膜此前曾使用聚苯乙烯等传统聚合物进行制作,但此文章首次提出半导体及富勒烯的混合材料可以有效地吸收光线、产生电荷并进行分离电荷。”布鲁克海文国家实验中心的功能纳米材料首席科学家及物理化学家米尔恰• 科特勒特表示(Mircea Cotlet)。   “此外,由于这种材料的聚合物链只在六角形的边缘处分布稠密,而其余的中心面积则分布非常薄且相对松散,因此其具有较高的透明性。分布稠密的边角处可以更容易地吸收光线并同时促进发电,而中心地带则由于无法吸收足够光线而保持相对透明。”   据CFN材料科学家Xu Zhihua先生表示,此大面积图案可应用在许多方面用来生产能源,包括太阳能窗户、透明太阳能电池板及光显示等。   此蜂窝结构的一致性已被诸多扫描探针和电子显微镜方法验证。此外,结构中的边缘位置、蜂窝中心及网格节点处的光学性质和生产电荷,也已经过共聚焦荧光时间分辨荧光显微镜的测试。   “溶剂蒸发速率越慢,所产出的聚合物就越紧凑,电荷传输效果也就越好,” 科特勒特在讨论聚合物的形成时指出,他还表示,材料的成型程度取决于溶剂的蒸发速率,同时也就决定了材料的电荷传输速率。   科特勒特总结道:“我们的工作使我们更深入地了解了蜂窝结构的光学特性。下一步将是使用这些蜂窝薄膜来制作透明柔性有机太阳能电池及其他设备。”
  • 高精密3D打印技术解决透皮给药微针的加工难题
    行业背景一直以来,我们常用的临床医疗给药方式有口服药剂、注射针剂、外用涂抹等。不同的给药方式会各有优劣。口服药剂服用方便,需要首先通过肠胃吸收,这样药效会有所降低,并且对肝脏等器官产生较强的副作用;注射针剂存在使用不便、产生疼痛、制备成本高、过程复杂等特点。外用涂抹膏药因为皮肤的隔离,药物的吸收效率低,并且给日常生活行动带来不便。临床上一般不同的药物有效成分会根据自身的理化性质、药理学等因素而采用不同的给药医疗方式。随着科技的发展,研究人员逐步开发了一种新型的医疗给药方式——微针透皮给药,它既能实现有效给药,又操作简单并且让患者获得良好体验。上世纪90年代,世界上第一个微针是用硅材料制备而成的。由于硅材料具有脆性,且不适合作为模具来大批量复制,因此近年来微针的制备材料研究的重点逐步转移到金属、陶瓷以及聚合物材料。目前微针透皮给药已经在药物治疗、美容祛斑、整形植发等消费市场领域获得应用推广,并且市场上已经出现一批规模化量产的公司,中国的微针市场给药系统产品主要是国外品牌,医疗方面的以欧美国家居多,美容方面以日韩品牌为主。国际上有3M、Zosano Pharma、Corium、Becton-Dickinson(BD)等;国内有中科微针(北京)、揽微医疗、纳通生物、和心诺泰等。加工方法由于表皮厚度高达1500μm,因此针长度达1500μm足以将药物释放到表皮中。长度较大且直径较粗的针可深入真皮层,容易损伤神经并引起疼痛。微针长度大多数150-1500μm,直径50~250μm,尖端宽度为1~25μm。微针常见的形状是圆锥形、圆柱形、三棱锥、四棱锥等。微针根据种类不同(固体型,包被型,中空型、溶解型等)以及材料的需求,制作的工艺也不一样,硅材料常见加工方法有硅蚀刻;金属材料常见的加工方法激光切割;陶瓷材料加工方法陶瓷烧结光刻。而聚合物材料常用的加工方法是微立体光刻3D打印技术。近些年来3D打印技术获得快速发展,相对于传统加工工艺,3D打印技术能够灵活、自由的设计各种复杂三维的结构。目前市场上普通3D打印技术(SLA、FDM等)加工的精度低,表面粗糙,远远满足不了微针加工技术要求。而双光子激光直写(TPP)3D打印技术,虽然加工的精度高,但是加工幅面小、速度极慢,对于大幅面、规模化生产显然不太适宜。面投影微立体光刻(PμsL)3D打印工艺能够加工并兼顾快速、高精度、大幅面的特点,可以满足上述微针尺寸要求,并且加工出来的微针表面光滑程度高,为微创、无痛的微针治疗效果提供技术支持,也为快速、高效产业化生产提供可行性方案。目前,已经和国内多所科研高校、相关企业进行合作。面投影微立体光刻(PμsL)工艺助力微针的制备面投影微立体光刻(PμsL)基于数字DMD(Digital Micromirror Device)芯片作为动态掩模,通过精密的光路投影系统,在树脂液面进行整面曝光打印。因此,与普通的微立体光固化工艺相比,除了成型精度高以外,打印的速度得到大大提升。由于微针需要具有良好的力学性能和生物相容性才能满足其应用的安全性要求,所以微针的选材、结构设计及其相应的制备技术直接关系到微针的效能。一般而言,微针的表面越光滑,微针才能更好的发挥安全、无痛以及定量释放的优势。下图是深圳摩方材料科技有限公司基于面投影微立体光刻(PμsL)工艺的3D打印系统nanoArch® S130设备加工的阵列微针结构,该微针底部直径0.198mm,高度0.572mm,针尖的最尖端宽度仅0.006mm!加工的微针表面光滑,针尖细节更加明晰。该微针打印材料属于丙烯酸聚合物类固体型微针,通常研究人员使用该聚合物打印出针尖形态阳模,通过二次倒模形成实际需要的医用聚合物材料针尖结构,比如形成溶解型微针。最近,国外研究机构美国罗格斯大学Howon Lee和意大利比萨大学Giuseppe Barillaro合作团队从寄生虫的微钩,蜜蜂的尾刺针,豪猪的针毛研究发现一种具有高组织粘附力的微观倒刺结构。这些复杂的微观结构对于传统加工工艺而言是一种巨大的挑战。研究人员通过4D打印技术制造具有后向曲面倒钩以增强组织附着力的仿生微针。通过系列实验测试发现该种倒刺结构的仿生微针的组织附着力是普通微针的18倍!在组织中具有持续、定量释放药物的行为。文章链接地址:https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.201909197结论尽管目前微针在药物治疗、美容祛斑、整形植发等获得广泛应用,并且衍生一批产业化公司。但是微针治疗市场竞争较为混乱、竞争格局并不明晰、技术水平良莠不齐。我们经常会在一些公共场所见到微针治疗的相关广告。未来随着微加工技术的发展和相关的药理学研究的进展,微针治疗会获得广泛的认可,市场规模扩大、市场竞争更加规范。而高精密3D打印作为一种具有复杂三维、灵活自由、快速设计的微细加工技术,目前已经被众多前沿的科研机构以及知名规模化企业所采用,进一步深化课题研究程度,提高了企业的创新性及生产效益。
  • 高精密3D打印技术解决透皮给药微针的加工难题
    行业背景一直以来,我们常用的临床医疗给药方式有口服药剂、注射针剂、外用涂抹等。不同的给药方式会各有优劣。口服药剂服用方便,需要首先通过肠胃吸收,这样药效会有所降低,并且对肝脏等器官产生较强的副作用;注射针剂存在使用不便、产生疼痛、制备成本高、过程复杂等特点。外用涂抹膏药因为皮肤的隔离,药物的吸收效率低,并且给日常生活行动带来不便。临床上一般不同的药物有效成分会根据自身的理化性质、药理学等因素而采用不同的给药医疗方式。随着科技的发展,研究人员逐步开发了一种新型的医疗给药方式——微针透皮给药,它既能实现有效给药,又操作简单并且让患者获得良好体验。上世纪90年代,世界上第一个微针是用硅材料制备而成的。由于硅材料具有脆性,且不适合作为模具来大批量复制,因此近年来微针的制备材料研究的重点逐步转移到金属、陶瓷以及聚合物材料。目前微针透皮给药已经在药物治疗、美容祛斑、整形植发等消费市场领域获得应用推广,并且市场上已经出现一批规模化量产的公司,中国的微针市场给药系统产品主要是国外品牌,医疗方面的以欧美国家居多,美容方面以日韩品牌为主。国际上有3M、Zosano Pharma、Corium、Becton-Dickinson(BD)等;国内有中科微针(北京)、揽微医疗、纳通生物、和心诺泰等。加工方法由于表皮厚度高达1500μm,因此针长度达1500μm足以将药物释放到表皮中。长度较大且直径较粗的针可深入真皮层,容易损伤神经并引起疼痛。微针长度大多数150-1500μm,直径50~250μm,尖端宽度为1~25μm。微针常见的形状是圆锥形、圆柱形、三棱锥、四棱锥等。微针根据种类不同(固体型,包被型,中空型、溶解型等)以及材料的需求,制作的工艺也不一样,硅材料常见加工方法有硅蚀刻;金属材料常见的加工方法激光切割;陶瓷材料加工方法陶瓷烧结光刻。而聚合物材料常用的加工方法是微立体光刻3D打印技术。近些年来3D打印技术获得快速发展,相对于传统加工工艺,3D打印技术能够灵活、自由的设计各种复杂三维的结构。目前市场上普通3D打印技术(SLA、FDM等)加工的精度低,表面粗糙,远远满足不了微针加工技术要求。而双光子激光直写(TPP)3D打印技术,虽然加工的精度高,但是加工幅面小、速度极慢,对于大幅面、规模化生产显然不太适宜。面投影微立体光刻(PμsL)3D打印工艺能够加工并兼顾快速、高精度、大幅面的特点,可以满足上述微针尺寸要求,并且加工出来的微针表面光滑程度高,为微创、无痛的微针治疗效果提供技术支持,也为快速、高效产业化生产提供可行性方案。目前,已经和国内多所科研高校、相关企业进行合作。面投影微立体光刻(PμsL)工艺助力微针的制备面投影微立体光刻(PμsL)基于数字DMD(Digital Micromirror Device)芯片作为动态掩模,通过精密的光路投影系统,在树脂液面进行整面曝光打印。因此,与普通的微立体光固化工艺相比,除了成型精度高以外,打印的速度得到大大提升。由于微针需要具有良好的力学性能和生物相容性才能满足其应用的安全性要求,所以微针的选材、结构设计及其相应的制备技术直接关系到微针的效能。一般而言,微针的表面越光滑,微针才能更好的发挥安全、无痛以及定量释放的优势。下图是深圳摩方材料科技有限公司基于面投影微立体光刻(PμsL)工艺的3D打印系统nanoArch® S130设备加工的阵列微针结构,该微针底部直径0.198mm,高度0.572mm,针尖的最尖端宽度仅0.006mm!加工的微针表面光滑,针尖细节更加明晰。该微针打印材料属于丙烯酸聚合物类固体型微针,通常研究人员使用该聚合物打印出针尖形态阳模,通过二次倒模形成实际需要的医用聚合物材料针尖结构,比如形成溶解型微针。最近,国外研究机构美国罗格斯大学Howon Lee和意大利比萨大学Giuseppe Barillaro合作团队从寄生虫的微钩,蜜蜂的尾刺针,豪猪的针毛研究发现一种具有高组织粘附力的微观倒刺结构。这些复杂的微观结构对于传统加工工艺而言是一种巨大的挑战。研究人员通过4D打印技术制造具有后向曲面倒钩以增强组织附着力的仿生微针。通过系列实验测试发现该种倒刺结构的仿生微针的组织附着力是普通微针的18倍!在组织中具有持续、定量释放药物的行为。文章链接地址:https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.201909197结论尽管目前微针在药物治疗、美容祛斑、整形植发等获得广泛应用,并且衍生一批产业化公司。但是微针治疗市场竞争较为混乱、竞争格局并不明晰、技术水平良莠不齐。我们经常会在一些公共场所见到微针治疗的相关广告。未来随着微加工技术的发展和相关的药理学研究的进展,微针治疗会获得广泛的认可,市场规模扩大、市场竞争更加规范。而高精密3D打印作为一种具有复杂三维、灵活自由、快速设计的微细加工技术,目前已经被众多前沿的科研机构以及知名规模化企业所采用,进一步深化课题研究程度,提高了企业的创新性及生产效益。官网:https://www.bmftec.cn/links/10
  • 柯力传感领投点联传感天使轮 开拓精密测量传感器市场
    2023年7月,宁波柯力传感科技股份有限公司(“柯力传感”)与深圳点联传感科技有限公司(“点联传感”)正式签署协议,完成天使轮投资。柯力传感是此次点联传感天使轮融资的领投方。   深圳点联传感科技有限公司正式成立于2022年,是由多名清华大学博士领衔的高层次人才硬核团队,精密仪器专业出身,专注传感检测研究15年。   点联传感在精密光学系统、高速硬件电路以及综合检测算法方面有深厚的研究基础,依托底层高速高精度CMOS激光测量传感器技术框架,逐步拓展对射式、反射式以及同轴共聚焦的产品矩阵,实现对工业品形位尺寸的精密检测与定位,提高生产效率与性能。未来,点联传感将在产学研基础上,进一步构建名校传感器成果转化平台,立志解决中国工控及其他领域中高端传感器卡脖子问题。据悉,柯力投资点联传感主要是基于以下三个方面的考虑:   第一、当前国内精密测量传感器的发展仍处于起步阶段,未来是一个确定性的发展机会,是柯力布局传感器行业的重要市场方向。   第二、高精密测量传感器有一定的技术壁垒,需要依赖技术型团队才能打造升级产品,形成品牌。点联传感团队是由多名精密仪器专业出身的博士组成,专业技术能力强。   第三、通过柯力投资与赋能,可以快速提升点联传感的客户拓展能力,整体价值实现1+1>2。   当前,中国制造业正在向高精度、智能化的方向转型升级。高精度工控传感器是制造装备的基础要素,柯力传感对点联传感的投资与赋能,将助力其成为中国制造业转型升级过程中的国内外一流传感器品牌,同时,也将加速柯力从单一物理量传感器向多物理量传感器融合的步伐与进程。
  • 精密测量院开展“八一冰川透视与层析遥感飞行试验”地面测量工作
    近日,精密测量院影像大地测量与地球动力过程团队,开展了国内首次冰川透视与层析遥感飞行试验的地面测量工作,采集了青藏高原八一冰川冰下地形、冰崖等数据,并开展了机载P波段SAR地面定标同步观测,为此次中科院青藏所组织的八一冰川航空遥感试验提供了重要的地面观测资料,也为中科院西北院八一冰川冰芯钻取位置精确确定提供了可靠参考。   精密测量院研究员江利明组织制定了此次地面测量总体方案,并受邀参与了航空遥感方案论证的指导工作。由精密测量院博士后杨波和博士生庞校光、刘易、李晓恩、蒲颂文、闻鑫等6人组建而成的八一冰川空地联合野外观测党员突击队,历时近20天,圆满完成了航空立体测绘像控点和雷达角反射器布设与定位、GPR冰下地形测量、冰崖地面激光三维扫描等地面观测任务。   本次作业难度大、任务繁重,仪器需搬运到海拔高度4800米以上开展陡坡冰面上测量,包括22处像控点与角反射器 GPS-RTK同址观测、7条总长超7公里GPR测线观测和1公里长冰崖激光点云扫描。多数队员首次登上高海拔地区,出现头痛、发烧等不同程度高原反应,但热情高涨,克服了各种困难,坚持完成既定任务。   2023年3~4月,中科院青藏所牵头,联合中科院空天信息院、精密测量院、西北生态环境资源研究院等多家单位,在黑河上游青海省海北藏族自治州八一冰川开展冰川透视与层析遥感航空飞行试验。利用新舟60遥感飞机,同时集成航空遥感系统多波段合成孔径雷达P波段、L波段调频连续波雷达、激光雷达、高分辨率线阵数字航空相机,并同步开展机载SAR地面定标和冰川厚度等地面观测。低频SAR层析技术是青藏高原冰下地形精细重建的一种新途径,可透视冰雪并对冰川内部结构三维成像,此次航空遥感飞行试验为国产P波段冰冻圈卫星的计划论证提供重要支撑。
  • 万事俱备,就等你来——Ciamite2019最新展前剧透
    p style=" text-align: center "   万事俱备,就等你来——Ciamite2019最新展前剧透 /p p style=" text-align: center "   距离7月11日“中国材料大会2019(Ciamite2019)”还剩1天啦 /p p style=" text-align: center "   是时候来一波展前剧透了 /p p    strong 展馆外景 /strong /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/7c8cd093-44f5-4e6a-afb4-3e6f06745a6f.jpg" title=" image002.jpg" alt=" image002.jpg" / /p p    strong 展馆内景 /strong /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 502px height: 405px " src=" https://img1.17img.cn/17img/images/201907/uepic/7046d690-00e1-4ca3-84a2-dcfeb68cab20.jpg" title=" image004.jpg" alt=" image004.jpg" width=" 502" height=" 405" / /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 495px height: 371px " src=" https://img1.17img.cn/17img/images/201907/uepic/9ae580cc-37f6-4040-9c1c-7e8e20bb9979.jpg" title=" image006.jpg" alt=" image006.jpg" width=" 495" height=" 371" / /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 525px height: 393px " src=" https://img1.17img.cn/17img/images/201907/uepic/117bf98a-50d4-4b8d-9edb-b575124634bd.jpg" title=" image008.jpg" alt=" image008.jpg" width=" 525" height=" 393" / /p p    strong 展商搭建最新进度: /strong /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 535px height: 401px " src=" https://img1.17img.cn/17img/images/201907/uepic/4f29c712-071e-4247-aee1-a5e115db4afe.jpg" title=" image010.jpg" alt=" image010.jpg" width=" 535" height=" 401" / /p p strong    /strong strong 安徽贝意克设备技术有限公司 展位号:C1 /strong strong 1 /strong /p p   安徽贝意克设备技术有限公司是一家专注于新材料,新能源设备的研发生产与一体的国家级高新技术企业,合肥市科技小巨人企业,合肥市新能源设备模范企业。公司拥有多名专家顾问,其中千人一位,青年千人两位,教授三位。拥有专利35项,其中发明专利项15项,创造国内空白的有9项,其中8项国际领先。业务涉及领域包括:石墨烯,碳纳米管,高温荧光粉,OLED有机小分子材料,PECVD系统,高低温CVD系统,各种真空气氛管式炉,各种高低温箱式炉等设备。公司拥有国内唯一一家对设备进行终身维护的供应商。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 544px height: 425px " src=" https://img1.17img.cn/17img/images/201907/uepic/4895320f-1459-4ab8-b6d8-8fe93d274770.jpg" title=" image012.jpg" alt=" image012.jpg" width=" 544" height=" 425" / /p p   strong  上海钜晶精密仪器制造有限公司 展位号:B11 /strong /p p   上海钜晶专业从事超高温真空炉、工业炉、实验电炉、硬度计、材料试验机等材料制备检测仪器的研发、生产和销售 为军工航天、科研院所的战略合作伙伴。2014年通过质量体系认证,15年获高企认证 16年联合同济建汽车新材料及制备设备研发中心及研究生实习基地,17年跟随总理出访欧洲,与上海交通大学联合研制成功中国首台蒙皮成形系统。总经理荣膺“2017中国优秀创新企业家”称号。获得多项专利证书和计算机软著等,产品通过欧盟CE认证。 /p p style=" text-align: center " strong img style=" max-width: 100% max-height: 100% width: 545px height: 422px " src=" https://img1.17img.cn/17img/images/201907/uepic/65895068-ec54-4abe-b5e4-c4487fba9bd2.jpg" title=" image014.jpg" alt=" image014.jpg" width=" 545" height=" 422" / /strong /p p strong   苏州飞时曼精密仪器有限公司 展位号:E11 /strong /p p   苏州飞时曼精密仪器有限公司成立于2013年,坐落在美丽的苏州高新区科技城,注册资本3300万,是一家起点高、前瞻性强的研发和制造型高科技企业。公司的核心研究方向为光、机、电、算一体化的微纳米检测设备、先进的医疗仪器,2015年,公司获得江苏省高新技术企业认证,拥有自主知识产权30多项,研发的多款产品被评为高新技术产品,并通过CE、ISO9001、SGS认证。 公司坚持以核心自主专利为基础,高精度微纳米检测仪器产品为核心龙头,技术研发、产品销售、产业升级、技术延伸为赢利点,整合国内外的大学、研究所和企业,打造综合性产业集群。 /p p   国内方面,先后与南京大学联合成立“微纳米测试技术研究中心”,与中科院苏州医工所联合成立“生物医疗工程技术中心”,与江南石墨烯研究院联合建立“石墨烯检测平台” 国外方面,公司与美国AmScope公司、英国Cambridge Microscope公司、意大利ORMA公司、印度Dewinter公司等达成了全球性战略合作。 飞时曼的发展宗旨就是:不断创新,不断突破。 不久的将来,公司在技术层次、核心竞争力方面,都将达到国内领先水平,逐步缩小与国际先进水平的差距,打造成为国际知名品牌。我们将从高科技产品的新起点上出发,逐步树立在全国乃至世界上的地位,全面参与国际竞争,为中国的民族工业做出贡献。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/8a405aa4-4394-421b-ae0c-9728659bf34c.jpg" title=" image016.jpg" alt=" image016.jpg" / /p p    strong 深圳市赛迈特悬浮冶金科技有限公司 展位号:C29 /strong /p p   深圳市赛迈特悬浮冶金科技有限公司是研发悬浮冶金设备的专业性的高科技企业。拥有10项获得授权的专利,包括4项发明专利。2015年中国工程院院士周廉投资赛迈特并担任首席科学家。 公司的业务范围包括:发展悬浮冶金技术,制造悬浮冶金设备 开发利用悬浮冶金技术制造高科技材料的技术,生产高技术材料 利用悬浮冶金技术对外开展技术服务。 在悬浮冶金领域,赛迈特达到了国际先进,国内领先的水平:悬浮能力强——熔池驼峰的高/径比= 2.0~3.0,在熔炼过程没有凝壳,熔炼温度高——最高熔炼温度已经提高到约3600℃,能熔炼包括钨、鉬、钽、铌等各种难熔金属,规格范围宽——熔炼量从20克到50kg的规格系列, 实现了与多种现代技术的结合:例如,同离心铸造、连续拉锭、电弧熔炼、等离子熔炼等技术的结合。 提供熔炼技术服务 赛迈特利用悬浮熔炼样机对外提供材料制备的技术服务,3年多以来,为106个单位熔炼410炉,2654kg的金属和合金,接受服务的单位均为国内外最顶级的研究院所和最著名的高等院校,熔炼的材料几乎都是用其它材料制备手段无法获得或很难获得的技术难度极高的金属和合金。 /p p    strong 展览与会议 /strong /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/d29089bd-e3a2-4f99-a0fb-a3d927e81967.jpg" title=" image018.jpg" alt=" image018.jpg" / /p p   本次大会由“中国材料大会2019”及“第12届国际材质分析、实验室设备及质量控制博览会”(Ciamite2019)两部分组成。其中,“中国材料大会2019”设置了42个分板块分会和3个海峡两岸暨港澳新材料论坛.大会主题主要涵盖了能源材料、环境材料、先进结构材料、功能材料、材料设计、制备与评价等材料领域。届时,将有来自10余名中国科学院和中国工程院院士,50余名欧洲、亚洲和南美等地区著名学府及科研机构的海内外学者等8000余名材料领域专业人士共赴大会。 /p p   7月11日,我们准备好了,你们来吗? /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/ad5120a2-3230-4eda-baca-995ba4ec1a4a.jpg" title=" image020.jpg" alt=" image020.jpg" / /p p br/ /p
  • 新品发布,Micromeritics 推出全新穿透曲线分析仪
    2022年2月,作为材料表征技术的全球领导者,Micromeritics 正式推出全新穿透曲线分析仪(The Breakthrough Analyzer,下称BTA),提供新一代吸附剂的高性能表征方案。BTA 是一套用于模拟工业生成相关条件下精细表征吸附剂性能的强大系统,将成为 Micromeritics 品牌产品的重要部分。BTA 的设计结合了 Micromeritics 在气体吸附方面广受认可的专业知识,以及微反应器和中试装置技术,为气体或蒸汽混合物提供可靠的选择性吸附数据。作为评估下一代吸附剂性能的高效工具,BTA 可广泛应用于气体分离、储存和净化、二氧化碳捕获和能量储存等领域。 Micromeritics 自主研发、专利保护的高性能混合阀将整个系统中的死体积最小化;高精密质量流量控制器确保对成分和流量的精确控制;蒸汽源的独特设计为实验提高了整体效率。每次测量穿透柱中样品仅需0.05 – 2.5克,恒温热箱保证了整个系统准确、均匀的温度,最高温度可达 200°C。而自动样品活化和吸附研究温度可达1,050°C。用户也可以自定义设计实验程序,最高压力可达30 bar。气体检测系统如MS、GC、FTIR等功能可根据实际的应用进行定制。Micromeritics 科学副总裁 Jeff Kenvin 表示:“全新的 BTA 是一种简洁、安全、全自动的台式系统,能让科学家和工程师们轻松生成高质量的穿透曲线。只需使用少量样品,即可获得精确且可重复的数据。毫无疑问,该系统非常具有竞争力。BTA可以进行大量吸附剂研究,包括混合气体研究、竞争吸附评估和高压等温线生成。BTA 将大大加快新吸附剂从研发到商业化的进程。”关于Micromeritics品质、 专业、 可及, 这就是 Micromeritics。Micromeritics 是提供表征颗粒、粉体和多孔材料的物理性能、化学活性和流动性的全球高性能设备生产商。我们能够提供一系列行业前沿的技术,包括比重密度法、吸附、动态化学吸附、压汞技术、粉末流变技术、催化剂活性检测和粒径测定。公司在美国、英国和西班牙均设立了研发和生产基地,并在美洲、欧洲和亚洲设有直销和服务业务。Micromeritics 的产品是全球具有创新力的知名企业、政府和学术机构旗下 10,000 多个实验室的优选仪器。我们拥有世界级的科学家队伍和响应迅速的支持团队,他们能够将 Micromeritics 技术应用于各种要求严苛的应用中,助力客户取得成功。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制