当前位置: 仪器信息网 > 行业主题 > >

深度表

仪器信息网深度表专题为您提供2024年最新深度表价格报价、厂家品牌的相关信息, 包括深度表参数、型号等,不管是国产,还是进口品牌的深度表您都可以在这里找到。 除此之外,仪器信息网还免费为您整合深度表相关的耗材配件、试剂标物,还有深度表相关的最新资讯、资料,以及深度表相关的解决方案。

深度表相关的资讯

  • ADC药物的深度表征
    抗体偶联药物(antibody-drug conjugate,ADC)是一类通过特定的连接子将靶向单克隆抗体与高杀伤性的细胞毒性小分子药物偶联起来的生物药,以单克隆抗体为载体将小分子细胞毒性药物高效地运输至目标肿瘤细胞中,起到治疗的目的。与传统抗体药相比,ADC药物的结构复杂度和异质性更高,因为添加了多变的有效载荷和连接子1。为确保药物安全性和有效性,ADC的深度表征在其开发过程中至关重要。这不仅包括对mAb的翻译后修饰(PTM)的鉴定和定位,还包括药物偶联的鉴定。由于质谱技术的飞速发展,质谱已经成为ADC药物表征中最广泛使用的方法。完整质量分析是用于确定小分子药物与抗体比率(DAR)的常规方法,而对结合位点的深入表征,通常依赖于bottom-up的方法。现在最广泛采用的碰撞诱导解离(CID)技术能够提供氨基酸序列确认,但是这种能量比较大的碎裂技术也将有效载荷碎裂为更小的片段,从这种方法获得的高度复杂的谱图可能很难解析。而能量更柔和的碎裂方法可以促进此类复杂样品的解析,一种基于电子活化裂解(EAD)2,3的创新、高度可重复的碎裂方法用于分析来自商业化ADC药物的偶联肽。使用10 Hz快速非靶向的数据依赖采集(DDA)方法采集数据,通过此工作流程,一次进样就可以应用基于EAD的碎片进行常规和高级表征。曲妥珠单抗美坦新偶联物(T-DM1)是最早的ADC治疗药物之一,于2013年获得FDA批准用于治疗人表皮生长因子受体2(HER2)阳性转移性乳腺癌。T-DM1是由单克隆抗体曲妥珠单抗和细胞毒素美坦新(DM1)通过不可裂解连接子共价偶联而成(图1)。将单克隆抗体(mAb)的靶标特异性与细胞毒性药物的高效率相结合,可充分利用两个方面的优势,最大限度地减少副作用3。T-DM1是与氨基连接,如连接在曲妥珠单抗的赖氨酸残基的侧链中。先前的完整质量研究表明,T-DM1的平均DAR约为3.5.1,4。但是曲妥珠单抗中有88个赖氨酸残基和4个N端基团,可能会出现450万个以上的不同分子形式1。有效载荷的位点和结构将直接影响药物的功效和安全性,因此将其归类为关键质量属性(CQA),并且需要在开发过程中进行全面表征和严格监控。图1. 细胞毒药物有效载荷和连接子与mAb偶联的示意图。T-DM1由DM1(黑色),靶向连接氨基残基的MCC连接子(linker,蓝色)和单克隆抗体组成。本研究选择了与Zeno&trade EAD相结合的DDA方法。采用这种方法,不仅可以执行常规的肽图分析,而且EAD可以在同一针分析中进行高级表征。此外,Zeno EAD增强了碎片离子的检测能力,从而正确鉴定了低丰度物质。图2展示了在偶联肽SCDK [DM1]THTCPPCPAPELLGGPSVFLFPPKPK上观察到的碎裂模式的例子。在分析中未观察到没有连接子和药物或其部分的肽,表明其完全偶联。获得了此肽段高质量的MS / MS谱图,从而使该特定肽段的MS / MS序列覆盖率达到96.6%。一个更占优势的碎片从 m/z大于500的有效载荷产生(请见图2中的标记)。观察到的有效载荷结构的主要裂解位点是DM1的COO-C键,这种碎裂模式与先前利用CID技术产生的一系列小碎片的数据不同1。较大分子量的药物碎片可以用作特征碎片,以更具体地确认有效载荷的存在,并可以用来确认有效载荷的结构。图2. 应用Zeno EAD得到的偶联肽SCDK [DM1] THTCPPCPAPELLGGPSVFLFPPKPK(z =+4)的碎片数据。来自肽段主链指定偶联肽段离子的全扫描MS / MS数据,以及有效载荷中的碎离子信息。此外,通过将Zeno EAD技术用于增强的碎片离子检测,还可以很好地检测到来自肽段主链的片段信息,从而提供有关肽段的分子完整性的信息。由于酶的空间位阻,抗体上偶联药物的存在会导致样品制备酶解过程中的更多漏切位点。另外,赖氨酸残基和有效载荷之间的结合过程是随机反应,偶联的比率并不总是100%,这导致了多样性和低丰度物质存在。当一个肽段中存在多个潜在连接形式时,鉴定正确的连接位点可能是一个挑战。肽段ASQDVNTAVAWYQQKPGKAPK是这种具有挑战性的另一个例子(图3)。它包含一个漏切位点和一个脯氨酸相邻的N端赖氨酸,导致偶联位点的多种选择。但是,有了从EAD技术碎裂得到丰富、高质量的MS / MS质谱图,就可以实现药物定位的自动匹配(图3A)。由于有效载荷靠近肽的C端,因此检测到的C离子比Z离子丰富(图3A),而未结合的肽显示出来自C端和N端的丰富片段(图3B)。众所周知因为电子活化解离技术不会解离脯氨酸的N端,我们还检测到了除了C15以外的从C3到C17的全系列C片段7。这提供了确凿的证据表明K15未与细胞毒药物偶联。此外,z4,z5和z7表明K18(而非K21)是药物偶联的正确位点。图3. 应用Zeno EAD得到的来自偶联/非偶联肽ASQDVNTAVAWYQQKPGK [DM1] APK(z =+3)的碎片的数据。A:来自肽段主链指定偶联肽段离子的全扫描MS / MS数据,以及有效载荷中的碎离子信息。B:来自肽段主链指定非偶联肽的全扫描MS / MS数据。 连接子显示为蓝色,DM1药物显示为黑色。结论:通过EAD的新型碎裂模式,实现了具有多个潜在位点的多肽中药物偶联的准确定位与传统的MS / MS分析相比,EAD技术获得更丰富的MS/MS碎片信息。应用Zeno EAD技术,即使对于中等强度或极低强度的母离子(例如低丰度的偶联肽),也能获得令人信服的二级碎片和出色的数据质量SCIEX ZenoTOF&trade 7600系统强大、高重现性且易于使用的多重碎裂技术,使用户能够以简单的方式解决具有挑战性的分析问题(CN)Characterization of an antibody-drug-conjugate (ADC) using electron activated dissociation (EAD).PDF点击下载声明:版权为 SCIEX 所有。欢迎个人转发分享。其他任何媒体、网站如需转载或引用本网版权所有内容须获得授权, 转载时须注明「来源:SCIEX」。申请授权转载请在该文章下“写留言”。
  • 新品亮相,展位爆满!INCount发布第一天就获专家代表深度好评!
    2023年4月10日起,由中国细胞生物学学会主办的中国细胞生物学学会第十八次全国会员代表大会暨2023年全国学术大会,在江苏苏州盛大举行!宁波力显智能科技有限公司INVIEW作为专业从事超高分辨率显微成像产品生产研发的科技企业,受邀参会并作精彩亮相。值此盛会,力显智能发布了新品——细胞计数仪!正值春日好光景,展台前人才济济!嘉宾老师们都给了INCount极大的肯定,INCount也成为了本次会议吸睛的新起之秀!新品发布期间力显展位吸引了众多行业同仁的驻足参观和交流,吸引众多参展人员深入交流探讨,众多参展人员与代理商经过亲身试用体验和咨询信息后展现出浓厚的兴趣!INCount C全自动细胞计数仪是集高清成像、精准计数、智能分析为一体的细胞计数系统,搭载深度学习智能识别算法,准确分割细胞聚团,实现精准计数及数据可视化:一键开启、快捷方便、8s计数,让细胞计数快人1秒,胜人一筹!准(ACCURATE)1.高清成像600万彩色高帧率CMOS10倍标准物镜0.25 NA值2.智能识别算法确保计数结果准确稳定,准确分割细胞聚团,获得更准确的分析结果 识别重复精度CV5%。3.大样本量细胞统计分析一次可支持6样本各3个视野的成像统计,符合统计学,保障数据准确性。快(EFFICIENT)1.指尖触控触屏操作,简单方便。2.预设多种实验类型实验流程采取一键“宏”模式,预设了台盼蓝、AO/Pl等实验类型,简化手动操作步骤,提高实验效率。3.实现8s样本台盼蓝计数,35s双荧光AOPI计数。智(SMART)1.智能识别结合先进软件和深度学习的智能识别算法,可自动对焦、自动曝光、告别复杂参教设置,最大程度减少用户间操作差异。2.数据可视化内置多种可视化数据分析图像模式3.高性能硬件和配置12核酷睿isCPU,运算快速,分析流畅,智能分析不卡顿。+(AND MORE)1.细胞转染效率分析、细胞周期分析在实现细胞计数的基础上,INcount还可以帮动用户进行组胞转染效率分析和细胞周期分析,精确定量、定性分析,无需第三方分析软件,大大提高实验者效率。2.支持定制支持用户定制,助力更多用户实验。力显的明星产品也是毫不逊色!力显也向业界同仁全面介绍了iSTORM超高分辨率显微成像系统及活细胞成像仪器赛乐微在生物医学领域的创新应用成果,收到了现场专家以及代表用户的一致好评。感谢客户们与专家们的认可客户都说好,才是真的好!在场的客户数就是对我们最好的肯定!关于我们About us 宁波力显智能科技有限公司(INVIEW)是专业从事超高分辨率显微技术和产品研发的科技企业,依托复旦大学的自动控制、新一代信息技术及香港科技大学的生物、光学、图像处理等的技术,拥有光学、生物、自控、机械、信息技术等多领域交叉学科技术团队,将2014年诺贝尔化学奖技术产业化,推出了超高分辨率显微成像系统iSTORM、细胞智能监控助手赛乐微等一系列产品,帮助人们以前所未有的视角观察微观世界,突破极限,见所未见。
  • 中科院:“深度学习”赋能SEM\TEM表征纳米颗粒材料形貌
    获取纳米颗粒定量化形貌信息,是科学家研究纳米颗粒材料性能的重要科研途径,对于推动纳米颗粒材料创新十分重要。扫描电子显微镜(SEM)和透射电子显微镜(TEM)是表征纳米颗粒材料形貌的重要工具。   然而,扫描电子显微镜和透射电子显微镜产生的图像,会因为较大的背景干扰和庞大的纳米颗粒数量,使获取纳米颗粒材料形貌信息变得困难。如何在海量而复杂的图像中实时准确地自动获取纳米颗粒定量化形貌信息成为挑战。   针对这一问题,中国科学院沈阳自动化研究所数字工厂研究室王卓课题组提出了一种基于深度学习的通用框架,用于对前述两种电子显微镜所产生图像中的纳米颗粒形貌进行快速、准确地在线统计分析。 该项研究近期获国际学术期刊Nanoscale (影响因子8.307)封面(Outside Front Cover)刊载,文章题目是A deep learning-based framework for automatic analysis of nanoparticle morphology in SEM/TEM images。 纳米颗粒分割模块结构示意图   该通用框架主要包括纳米颗粒分割模块、纳米颗粒形状提取模块和纳米颗粒形貌统计分析模块三个重要组成部分。其中,在纳米颗粒分割模块的设计中,研究人员将轻量化空洞空间池化金字塔模块、双注意力机制和改进的多尺度渐进融合解码器相融合,能够对纳米颗粒形貌特征进行多尺度多维度的快速捕获和融合,提高该通用框架的实时性和准确性。   试验结果表明,研究人员提出的模型在数据集上测试达到86.2%的准确率,并且将模型部署在嵌入式处理器上处理速度可达11FPS,可以满足电镜端的实时处理需求。
  • 晶泰科技联手北大舒绍坤课题组,CRISPR+细胞表型+深度学习驱动肿瘤研究
    近日,晶泰创新中心与北京大学国际癌症研究院舒绍坤课题组宣布建立合作,双方将基于舒老师课题组的高通量 CRISPR 技术,整合晶泰科技的细胞高内涵 Cell Painting 成像技术与深度学习方法,通过多模态数据融合,共同开展疾病机理及药物作用机制研究。药物发现是理性设计与实验探索相结合的工作,其成功极大依赖于科学家对于疾病机理的深刻理解。随着人工智能和大数据技术的快速发展,已有多家研究机构和公司利用多种维度的生物大数据与机器学习结合,实现多模态数据融合(Multimodal data fusion),并取得长足的发展。该技术能从多个维度对疾病及药物在复杂生物体系内的作用机理进行深入的研究,特别是在靶点发现、苗头化合物发现、药物重定向、活性与毒性评估等领域,拥有巨大的应用前景。然而生物大数据维度与复杂度的提高,使得其对模型的数据处理能力要求也更高。数据采集和处理中的噪音问题,限制了数据利用效率和模型表现,为多模态数据融合的应用带来挑战。本次合作中,北大舒绍坤课题组与晶泰科技将利用各自的技术优势,将多模态数据融合与深度学习算法高效结合。舒绍坤老师及其带领的课题组在肿瘤药物机制研究领域有丰富的经验与独到的见解,可通过高通量的 CRISPR 技术对细胞形成大规模的基因编辑扰动;而晶泰科技自主建立的细胞研发平台 X-Map,能够大规模收集细胞扰动后的高内涵图像数据和转录组数据。两者结合,能基于真实世界的多维度数据获得细胞水平的精确观测,从而建立起不同生理学变化与基因、药物调控之间的对应相关性。这一研究方法相较于动物模型,通量更高、成本更低,可以针对特定的研究体系,快速获得包含更大信息量的高质量研究数据,进一步提高药物研发的效率和成功率。算法方面,晶泰科技在深度学习算法与流程开发、图像分析领域具备独到的优势。配合其全新建立的细胞表型平台,晶泰创新中心自主研发了一套基于 Transformer 架构的 X-Profiler 算法,能针对特定的下游任务进行有效信息的提取,良好应对例如高内涵成像中因为孔板边缘高度变化导致的失焦模糊等问题,剔除数据噪音对模型的影响,提高信噪比(signal-to-noise ratio, SNR),并根据任务自适应调节数据质量控制策略,从而显著提高模型性能。X-Profiler在药物机理研究、毒性评估等多项下游任务中取得突破性结果,相关研究成果的预印版已发表在 BioRxiv 上。双方合作的第一阶段将聚焦于肿瘤治疗新靶点及肿瘤耐药机制的研究,目前已经取得了初步的进展。下一步,相关成果将应用于抗肿瘤耐药性药物的研发,以期为癌症患者带来更加有效的治疗选择。晶泰创新中心聚焦前瞻性核心技术的开发与应用落地,目前已建立 X-Map 细胞研发平台,整合了包括 Cell Painting 在内的细胞影像、转录组建库、自主研发的 X-Profiler 深度学习建模算法等技术。晶泰创新中心将基于 X-Map 细胞研发平台,持续在机理研究、药物筛选、临床前药物评价等领域与药企、科研机构合作,共同开展课题研究与研发合作。晶泰科技联合创始人、首席创新官赖力鹏博士表示,“高质量数据与人工智能技术的结合将成为驱动药物创新的主要力量之一。舒绍坤老师课题组在基于 CRISPR 高通量基因编辑和多组学实验技术的肿瘤机理研究方面有丰富的经验。这些技术和经验将为合作提供宝贵的知识及数据。结合晶泰自身的 X-Map 细胞表型研发平台,我们期待基因编辑、细胞高内涵技术、深度学习方法能在本次合作中展现出突破性价值,带来更好的创新肿瘤治疗方案。”北京大学国际癌症研究院研究员、博士生导师舒绍坤博士表示,“通过高通量CRISPR技术、细胞表型 Cell Painting 平台技术、多组学技术和深度学习多模态融合技术相结合,解析药物靶点功能和机制,能够充分发挥生物大数据和深度学习大模型的优势,是我们课题组和晶泰创新中心十分看好的方向。晶泰创新中心具有开放的合作模式与明确的算法技术优势,深刻理解现有表型技术的优点和瓶颈,为项目提供了高质量的细胞 Cell Painting 图像数据与建模解决方案,为项目推进提供了重要保障。期待两支团队能够在肿瘤药物作用机理的研究合作中获得更多有价值的成果。”● 关于晶泰科技创新中心 ●晶泰创新中心(XtalPi Innovatioin Center) 依托晶泰科技在人工智能、科学计算、自动化方面的技术积累,致力于通过前沿计算与实验技术的融合,推动更多从0到1的行业革新,持续发展AI和自动化实验技术在生命科学、生物材料、农业、能源等相关领域的应用。同时,晶泰创新中心将坚持推动底层科学探索和应用技术突破,加速产学研联合下的商业转化,不断为行业与社会创造价值。
  • 科迈恩科技与安捷伦科技在聚合型药用辅料精细表征领域继续开展深度合作
    一、合作新篇章 近日,科迈恩(北京)科技有限公司与安捷伦科技(中国)有限公司再度围绕基于高分辨质谱的聚合物精细表征技术应用签署深度战略合作。双方将共同致力于推广聚合型化合物智能分析系统Polymer Studio结合高分辨质谱对于药用辅料及其制剂中的复杂组分自动表征与鉴定技术,展示LC-HRMS在以吐温、司盘、脂质体等为代表的聚合型药用辅料的质量评价中的独特优势,为制药行业广大用户提供前沿技术手段及整体解决方案。该项产学研用一体化合作也得到了中国医学科学院/协和医学院药物研究所张金兰教授及其团队的大力支持和肯定。 全新的Polymer Studio药用辅料智能表征分析软件暨数据库的发布填补了现有各国药典关于聚合型药用辅料质量精细表征与一致性评价的空白;缓解了高级药用辅料长期依赖进口的卡脖子问题;提供了抗体药及mRNA疫苗制剂中广泛使用的吐温系列辅料潜在的因氧化等因素导致疫苗失效及细胞毒作用的杂质分析方法,将在聚合型组分复杂体系的高分辨质谱表征这一“聚合物组学”的全新应用领域发挥重要和积极的作用。二、产品亮点1. 可扩展的天然及合成高分子聚合物系列高分辨质谱(MSn)数据库2. 制药领域最全面的聚合型药用辅料及有关物质(杂质)数据库(收载多达2万个化合物单体)3. 专利的高分辨质谱复杂组分精细表征高性能识别算法4. 专业UI界面、丰富、直观的数据分析结果5. 辅料一致性评价报告智能生成三、行业新应用 下一阶段双方将围绕生物、制药、食品、材料等相关高分子聚合物精细表征领域开展深度合作,针对行业Q-TOF质谱重点客户提供差异化解决方案,满足辅料软件用户的品种定制化需求,充分挖掘该分析平台的技术潜力,共同致力解决行业辅料相关质量分析挑战,促进双方人员技术交流和能力提升。 同时,双方还将共同开展相关应用领域公开性质的市场活动,推动企业界领袖、中国科学家及药品监管部门之间的技术交流,引领药用辅料质量分析、评价与控制技术发展趋势,进一步扩大安捷伦科技和科迈恩科技在制药行业及药用辅料质量分析与评价领域的服务能力和影响力。 双方自2019年首次开展战略合作以来,在提升我国药用辅料质控水平方面取得一系列进展。未来,科迈恩科技也将进一步加深与安捷伦科技在制药行业及药用辅料质量分析与评价领域的合作,逐步优化服务水平,完善解决方案内容,持续为行业创新与高质量发展贡献力量。关于科迈恩科技科迈恩科技秉持“让AI为创新分析技术赋能”的愿景,致力于让广大用户受益于大数据和人工智能技术对于检测能力的创新和提高。目前科迈恩科技已在智能化仪器数据分析、快检技术、新药研发、精准医疗、感官评价等工业级AI建模等领域拥有系列化产品或解决方案,涵盖色谱、质谱、光谱、核磁共振等多维分析大数据的融合。所服务的客户覆盖制药、快消品、农产品、临床、石化、环保、交通、汽车制造等诸多领域。关注“科迈恩科技”公众号,了解更多分析检测行业的解决方案如您对科迈恩科技有更多想了解,可通过仪器信息网和我们取得联系!400-860-5168转3905
  • 全国人大代表、华中科技大学校长尤政:依托未来产业科技园 以“四链”深度融合培育新质生产力
    全国人大代表、华中科技大学校长 尤政“进一步完善相关机制,让领军企业充分发挥‘出题人’‘阅卷人’作用,以研发投入为‘指挥棒’,引导高校主动打破信息差,让应用研究成果适应产业需求,赋能壮大企业的科技创新主体地位。”近日,全国人大代表、中国工程院院士、华中科技大学校长尤政在接受上海证券报记者采访时表示,建设未来产业科技园,是解决科研供需对位、探索更高效科研成果转化的全新载体,让一流高校的创新链、人才链优势与一流企业在产业链、资金链的优势共同促进“四链”深度融合。今年全国两会,尤政准备了《依托未来产业科技园 以四链深度融合促战略性新兴产业培育》《加快完善卓越工程师培养机制 筑牢现代化产业体系发展根基》等建议。尤政说,当前,新一轮科技革命和产业变革正重塑全球经济结构,战略性新兴产业成为各国角力的新赛道。我国发表在高水平国际期刊论文数量及被引用次数居于全球前列,如何及时将这些创新成果应用到具体产业和产业链上,培育发展新质生产力,对改造提升传统产业、培育壮大新兴产业、布局建设未来产业、完善现代化产业体系至关重要。  科研成果转化仍存在堵点尤政通过深入调研了解到,近年来,高质量发展已成为经济社会发展的主旋律,创新驱动发展成效日益显现,但是,在科研成果高效转化推进产业升级的这个链条上,仍有一些堵点。首先,科研产出与市场需求的信息不对称。从发明专利的数量上看,我国专利申请量、授权量连续多年位居世界第一,但存在海量的“沉睡专利”等待转化利用。国家知识产权局发布的一项数据显示,2020年,我国有效发明专利产业化率为34.7%。其中,企业为44.9%,科研单位为11.3%,高校为3.8%。与之对应的是,美国高校专利转化率约为50%。其次,专利转移转化的渠道不畅。过去一段时间,高校和科研机构的研究成果,是企业技术创新的来源。除了专利质量、权益分配机制等因素外,转移转化的平台模式不够健全,抬高了专利转让和专利许可的交易成本。最后,缺少满足企业需求的转化平台。当前我国“四链”深度融合的创新生态尚未形成,企业参与“四链融合”的内驱动力不足、研发效率和成果转化率低、科技型企业融资渠道不畅、人才培养与产业需求相对脱节等问题仍较为突出。尤其作为国民经济“压舱石”的国资国企,在科技研发投入和投向方面虽有明确目标,但高效发现并识别符合企业需求的项目并不容易,限制了企业发挥创新主体作用。尤政说,加快国内传统产业向价值链高阶跃升进程,推动新旧动能接续进程,需要企业与高校创新合作方式,组成创新联合体,打造原创技术策源地,以新技术培育新产业,进而推动产业升级。打造科研成果转化全新载体2022年以来,有关部门启动了国家未来产业科技园试点及培育工作,依托高校优势学科,既联系产业需求侧,又连接科技供给侧,通过探索“学科+产业”的创新模式,构建未来产业应用场景,加快集聚人才、技术、资金、数据等创新要素,让一流高校的创新链、人才链优势与一流企业在产业链、资金链的优势结合,共同促进“四链”深度融合。“建设未来产业科技园,是解决科研供需对位、探索更高效科研成果转化的全新载体。”尤政说。围绕为更好发挥平台功能、释放校企联合创新的动能活力,尤政提出相关建议:一是“用为导向”,在研发投入渠道和评价机制上,为科研成果涌现和转化护航。释放创新活力,离不开体制机制的保障,需要教育、科技等主管部门进一步完善相关机制,让领军企业充分发挥“出题人”“阅卷人”作用,以研发投入为“指挥棒”,引导高校主动打破信息差,让应用研究成果适应产业需求,赋能壮大企业的科技创新主体地位。高校自身也在科教协同、产教融合中,壮大学科发展,形成产学研之间的良性循环。二是畅通渠道,为领军企业参与并发挥作用提供便利。实现产业整体跃升的战略目标,关键在于领军企业的牵引。其中,国资央企肩负着科技创新、产业控制、安全支撑的任务,需要瞄准国家重大需求,加强重点领域研发投入,提高应用基础研究投入占比,以颠覆性技术和前沿技术催生新产业、新模式、新动能。无论是在功能实现,还是关注的重点产业领域方面,都与未来科技产业园高度一致。因此,加强领军企业与高校等创新环节的互动,并形成创新联合体,有助于更高效地开展关键核心技术协同攻关,以应用为牵引,加速产品迭代升级,培育壮大经济增长新引擎。三是金融支持,建立基础研究经费的多元化投入机制。以政府引导和金融服务为抓手,建立健全科研成果作价入股等配套机制,精准引导金融机构和社会资本加大产业创新链的资金投入,引导金融机构对重点产业创新链项目给予股权融资支持,促进产业链、创新链、资金链的供需精准对接,为创新驱动发展提供资本支撑。
  • 谱标科技将和天美深度合作,推动国产仪器发展的同时提升高端仪器的技术实力与创新能力
    2020年9月8日,天美集团领导们来我司参观和培训演讲,谱标科技总公司全体业务、客户都参加了此次培训,接下来谱标科技将和天美集团深度合作,为研发实验室分析新仪器作准备,为国产仪器的发展作进一步的努力和推动,为解决实验室建设及检测遇到的一切难题~ 天美集团从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销;为科研、教育、检测及生产提供完整可靠的解决方案。近年来天美集团积极拓展国际市场,先后在新加坡、印度、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线, 以及上海精科公司天平产品线, 三科等国内制造企业、加强了公司产品的多样化。 在这里我们可以更进一步了解SCION 456-GC产品的优势和进样口压力范围、分辨率情况: 实际样品定性定量分析白酒结果:436G有效解决了yi醛拖尾现象,436C-FID陶瓷喷嘴减少拖尾和溶解峰干扰。 - 独特的90°弯曲q0,保护四级杆不被污染- 独特的180°弯曲的碰撞池,提供更高的信噪比;大幅度消除中性噪音;减小交叉污染/串扰 创新是引领发展的第一动力,也是推进中间国制造迈向中间高端的重要手段。我们仪器企业通过科技创新提升资源、产品、服务的价值,减少无效供给,把科技创新真正落实到产业发展上,能真正实现国产仪器的产业化发展,同时也真正的满足市场的需求。 未来,国家将继续大力支持国产仪器企业发展,加大扶持力度,助力国产仪器企业成长壮大。所以国产仪器企业在扩大中、低端仪器领域优势的同时,还要积极提升高端仪器的技术实力与创新能力,不断调整新产品结构,全力推动中国仪器产业发展。
  • 无创荧光显微技术能为大脑深度成像
    来自瑞士苏黎世大学和苏黎世理工大学的研究人员开发出一种称为漫反射光学定位成像(DOLI)的新技术,利用它可以高分辨率、无创观察活体小鼠大脑深部的微血管。该技术具有卓越的分辨率,可看到深层组织,为观察大脑功能提供了强大的光学工具,在研究神经活动、微循环、神经血管耦合和神经退化方面具有广阔的应用前景。相关研究发表在近日的美国光学学会期刊《光学》上。  这种技术利用了1000—1700纳米之间的第二近红外(NIR-Ⅱ)光谱,这一范围光谱的散射较少,可使显微荧光成像的深度达到光扩散深度极限的4倍。  在各种疾病的动物模型中,荧光显微镜经常被用来对大脑的分子和细胞细节进行成像。但此前,由于皮肤和颅骨的强烈光散射影响,荧光显微镜仅限于小体积和高度侵入性的操作。此次研究首次表明,3D荧光显微镜可帮助科学家以非侵入性方式,高分辨率地观察成年小鼠大脑。该显微镜有效覆盖了大约1厘米的视野。  研究人员首先在模仿人体平均大脑组织特性的组织合成模型中测试了这项技术,证明他们可以在光学不透明的组织中获得最深达4毫米的显微分辨率图像。然后,他们在活小鼠身上测试了这项技术。他们给活小鼠静脉注射了荧光微滴,追踪这些流动的荧光微滴可以重建小鼠大脑深部微血管的高分辨率图。观察发现,借助DOLI技术可以完全无创地观察到脑微血管以及血流的速度和方向。  研究人员表示,这种方法消除了背景光散射,并可在头皮和头骨完好无损的情况下进行。他们还观察到相机记录的斑点大小与微滴在大脑中的深度有很大的关系,这使大脑深度分辨成像成为可能。  “在生物医学成像领域,实现深部活体组织的高分辨率光学观测是一个长期的目标。”研究小组组长丹尼尔拉赞斯基说。  现在,研究人员正在努力优化DOLI技术,以提高其分辨率。他们还在开发改进的荧光剂,这些荧光剂更小、荧光强度更高,且在体内更稳定,这将大大提高该技术在清晰度和成像深度方面的性能。
  • 温度如何影响污水深度处理膜污染?
    安徽理工大学地球与环境学院青年教师陶晨与加拿大滑铁卢大学工程学院教授Wayne Parker和不列颠哥伦比亚大学教授Pierre Berube课题组合作,针对安大略省多伦多市Keswick污水回用中心冬季深度处理污染加剧的问题,进行了前期历史数据分析和后期实验研究,厘清了二级生物处理运行温度和深度处理超滤运行温度对膜污染的影响机制。相关研究成果发表于《分离纯化杂志》。二级和深度处理运行温度对膜污染影响机制的示意图 安徽理工大学供图污水深度处理是指城市污水经一级、二级处理后,为了达到一定的回用水标准,使污水作为水资源回用于生产或生活的进一步水处理过程。超滤被认为是一种非常有前景的污水回用处置方式,然而膜污染问题一直是限制其长期稳定运行以及运营成本管控的瓶颈性问题。 “因为膜污染会造成跨膜压差的上升,在维持目标处理效率的前提下,需要提高膜清洗与更换的频率,从而增加运营成本和能源消耗。一般来说,膜污染控制成本占运行成本的20%-30%;其中,膜清洗和膜更换成本分别占膜污染控制总成本的9%-30%和40%-65%。而对于污水深度处理的运行场景来说,这些数据会随着冬季温度的降低,进一步升高。”陶晨向《中国科学报》介绍。近年来,各国学者针对温度对膜污染的影响展开了相关研究,然而研究对象多为膜生物反应器(MBR)工艺。一方面,在深度处理中,因为膜不直接与污泥混合液接触,所以膜污染机理与MBR有很大区别;另一方面,深度处理中膜过滤过程与二级生物过程分开进行,温度对二者造成的影响程度不同且存在交叉影响,值得分别去探讨。此次研究中,陶晨等提出了活性污泥模型与实验结合的方法,通过新颖的实验设计,评价了温度通过影响二级生物过程及其代谢产物,以及温度影响膜固有性质对深度处理膜污染的影响机制。“我们研究发现,将二级生物处理运行温度从20℃降低到8℃,且超滤运行温度为20℃不变时,总膜阻力大幅度增加。这主要是由于二级生物过程在低温下产生的可溶性微生物产物大量增加导致,其中与生物质衰减相关的有机质(BAP)是最主要膜污染物质。”陶晨说。进一步地,降低超滤运行温度时,总膜阻力增加了122%,这一部分膜阻力的增加是由于膜孔径的减小和液体黏度的增加。研究发现,总膜阻力的增加并不是各部分影响的简单叠加,而是存在复杂的交互影响。陶晨说,该工作全面探讨了运行温度对膜污染的影响,为不同温度运行条件下设计膜污染缓解措施提供了理论基础,也为探讨其他极端运行条件下二级生物过程与膜污染间的关系提供了方法借鉴。”审稿人认为:作者研究了实际污水处理厂运行温度对深度处理膜污染的影响机制,区分了造成低温条件下总膜阻力上升的不同原因,是一项有趣的研究工作,对缓解膜污染并减少运行成本提供了理论参考,具有实际意义。
  • 人工智能、机器学习和深度学习的区别和联系
    p  一、人工智能:从概念提出到走向繁荣/pp  1956年,达特茅斯会议上提出了“人工智能”的概念,直到2012年以后,得益于数据量的上涨、运算力的提升和机器学习新算法(深度学习)的出现,人工智能开始大爆发。/pp  目前的科研工作都集中在弱人工智能这部分,并很有希望在近期取得重大突破,主要归功于一种实现人工智能的方法——机器学习。/pp  二、机器学习:一种实现人工智能的方法/pp  机器学习最基本的做法,是使用算法来解析数据、从中学习,然后对真实世界中的事件做出决策和预测。与传统的为解决特定任务、硬编码的软件程序不同,机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务。/pp  机器学习直接来源于早期的人工智能领域,传统的算法包括决策树、聚类、贝叶斯分类、支持向量机、EM、Adaboost等等。从学习方法上来分,机器学习算法可以分为监督学习(如分类问题)、无监督学习(如聚类问题)、半监督学习、集成学习、深度学习和强化学习。/pp  传统的机器学习算法在指纹识别、基于Haar的人脸检测、基于HoG特征的物体检测等领域的应用基本达到了商业化的要求或者特定场景的商业化水平,但每前进一步都异常艰难,直到深度学习算法的出现。/pp  三、深度学习:一种实现机器学习的技术/pp  深度学习本来并不是一种独立的学习方法,其本身也会用到有监督和无监督的学习方法来训练深度神经网络。但由于近几年该领域发展迅猛,一些特有的学习手段相继被提出(如残差网络),因此越来越多的人将其单独看作一种学习的方法。最初的深度学习是利用深度神经网络来解决特征表达的一种学习过程。深度神经网络本身并不是一个全新的概念,可大致理解为包含多个隐含层的神经网络结构。为了提高深层神经网络的训练效果,人们对神经元的连接方法和激活函数等方面做出相应的调整。其实有不少想法早年间也曾有过,但由于当时训练数据量不足、计算能力落后,因此效果不尽如人意。深度学习摧枯拉朽般地实现了各种任务,使得似乎所有的机器辅助功能都变为可能。/pp  四、三者的区别和联系/pp  机器学习是一种实现人工智能的方法,深度学习是一种实现机器学习的技术。目前,业界有一种错误的较为普遍的意识,即“深度学习最终可能会淘汰掉其他所有机器学习算法”。这种意识的产生主要是因为,当下深度学习在计算机视觉、自然语言处理领域的应用远超过传统的机器学习方法,并且媒体对深度学习进行了大肆夸大的报道。/pp  深度学习,作为目前最热的机器学习方法,但并不意味着是机器学习的终点。起码目前存在以下问题:/pp  1. 深度学习模型需要大量的训练数据,才能展现出神奇的效果,但现实生活中往往会遇到小样本问题,此时深度学习方法无法入手,传统的机器学习方法就可以处理 /pp  2. 有些领域,采用传统的简单的机器学习方法,可以很好地解决了,没必要非得用复杂的深度学习方法 /pp  3. 深度学习的思想,来源于人脑的启发,但绝不是人脑的模拟,举个例子,给一个三四岁的小孩看一辆自行车之后,再见到哪怕外观完全不同的自行车,小孩也十有八九能做出那是一辆自行车的判断,也就是说,人类的学习过程往往不需要大规模的训练数据,而现在的深度学习方法显然不是对人脑的模拟。/pp  深度学习大佬 Yoshua Bengio 在 Quora 上回答一个类似的问题时,有一段话讲得特别好,大致意思是,科学不是战争而是合作,任何学科的发展从来都不是一条路走到黑,而是同行之间互相学习、互相借鉴、博采众长、相得益彰,站在巨人的肩膀上不断前行。进入21世纪,纵观机器学习发展历程,可以简单总结为2000-2006年的流形学习、2006年-2011年的稀疏学习、2012年至今的深度学习。未来哪种机器学习算法会成为热点呢?深度学习三大巨头之一吴恩达曾表示,“在继深度学习之后,迁移学习将引领下一波机器学习技术”。/p
  • 荷兰轶诺|智能化测试硬化层深度CHD/SHD/NHD
    在机械众多行业中,需要对重要零部件进行表面硬化处理,尤其是那些高速负荷等受力复杂而繁重条件下的工作零件,如钢件.通过适当的表面热处理方法(以渗碳为例),使零件表层成为高碳层,以便得到高强度、高硬度、高耐磨性和高接触疲劳强度,并与低碳心部的塑性,韧性良好配合,以便改善零件的耐磨性和耐疲劳性,由此提高零部件的质量及寿命。常见的表面处理有:渗碳、氮化、碳氮共渗、火焰淬火、高频淬火、硬质阳极氧化、镀铬等。表面硬化层深度是评判工件表面质量好坏的重要指标,所以测量工件表面硬化层深度尤为重要。钢件硬化层深度测定包括总硬化层深和有效硬化层深度的测定总硬化层深: 从零件表面垂直方向测量到与基体金属间的显微硬度或显微组织没有明显变化的那一硬化层的距离。有效硬化层深: 当钢进行渗碳或碳氮共渗处理后,回火温度不超过200℃,从硬化层表面垂直向心部位置检测至HMV值550的距离。硬化层深度 常用标准如下:ISO2639-2002GB/T9450-2005GB/T5617-2005ISO3754:1976GB/T9451-2005等硬化层深度 -CHD计算方法确定硬度限值的方法有很多。因此,计算 CHD 值的方法也有很多。您选择的程序取决于所采用的硬化工艺。常见的计算方法如下:渗碳或碳部件 (EN ISO 2639)硬度限值 = 550 HVCHD (Eht) = 从表面到硬度为 550 HV 位置点的距离感应淬硬或火焰淬硬部件(EN 10328 和 ISO 3754)硬度限值 = 80% × 表面硬度(min)CHD (Rht) = 从表面到硬度为表面硬度(min) 80% 位置点的距离氮化部件 (DIN 50190-3)硬度限值 = 核心硬度 + 50 HVCHD (Nht, NCD) = 从表面到硬度为核心硬度 + 50 HV 位置点的距离(max)硬化层深度测量选 择 的 测量方法及精确度取决于硬化层的性质和估计的厚度。本篇以轶诺FALCON5000G2为例,介绍显微硬度测量法轶诺FALCON5000G2的IMPRESSIONS 智能软件有内置的CHD/SHD/NHD模板,根据标准规定进行规范化的硬度测试。该测试既可在显微图像下,也可在全景图像下直接开始测试。可单独为 NHD测试设置额外的硬度核心点。按照标准,为了确保测试正确进行,测试点的间距会按照最小距离自动设置。省时测试模式在完成所有压痕后,会自动开始测量,当硬度值达到设置下限后,测试序列会自动停止。智能软件 轶诺IMPRESSIONS软件的目的是让复杂性可控优化操作舒适度轶诺的IMPRESSIONS软件具有一系列标准功能,例如自动测量、自动对焦、报告、测试程序存储等。IMPRESSIONS软件智能图表型用户界面包含了先进的应用程序和易学易用的工作流控制系统,只需3秒即可完成一次简单的设置。IMPRESSIONS 的布局和功能不仅能与您特定的应用要求相匹配,还能满足操作人员的偏好和需求。用户分级管理系统也使工作更加舒适和高效。15英寸纵向电容触摸屏为所有可能的应用程序创造了空间。针对有特殊需求的客户,可再选配一个15英寸纵向或24英寸横向的第二屏幕。针对有教学目的的用户(如高校等),也可通过机器标配的HDMI接口外接高清投影仪。“A P P"型的IMPRESSIONS 4对于应用要求更高的用户, 也许标准应用程序还不够用, 那么, 可以选择“A P P"型的应用式软件IMPRESSIONS 4 .
  • 科学家发现深度神经网络对幻觉轮廓“视而不见”
    近日,中科院自动化所研究员曾毅团队研究发现,从经典的到最先进的深度神经网络都难以像人一样具有较好的幻觉轮廓识别能力。相关研究成果发表于细胞出版社旗下期刊《模式》。神经网络和深度学习模型在过去十年中看似取得巨大成功,在许多给定的视觉任务中在指定方面超过了人类表现。然而,神经网络的性能仍然会随着各种图像扭曲和损坏而降低。一个非常极端的例子是对抗攻击,通过在图片上施加人眼难以察觉的微扰,能够使神经网络模型彻底失效。而人类的视觉系统在这些问题上具有高度鲁棒性,说明深度学习与生物视觉系统相比仍然存在根本性缺陷。为此,曾毅团队提出了一种名为交错光栅扭曲的图像干扰方法,作为量化神经网络模型幻觉轮廓感知能力的工具。结果表明,大多数预训练模型的表现接近随机。另外可以观测到当交错光栅之间的距离较小时,存在一些模型的结果与其他模型的分布有较显著的差别。他们最终发现,使用深度增强技术训练的模型相比其他模型能够显著增强模型对交错光栅扭曲数据集的识别。该研究还招募了24名人类受试者,以评估不同的参数设置下,人类的幻觉轮廓感知能力以及其对数字和图像识别的影响。研究发现,即使是当前最先进的深度学习算法在交错光栅效应的识别上也与人类水平相距甚远。论文第一作者、中科院自动化所工程师范津宇认为,该研究结合了认知科学和人工智能,提出了将传统机器视觉数据集转换成认知科学中的交错光栅幻觉图像,并首次对大量的公开预训练神经网络模型的幻觉轮廓感知能力的量化测量,从神经元动力学角度和行为学角度两个检验深度学习和神经网络模型对幻觉轮廓的感知。“这项研究从认知科学的角度检验和部分重新审视了当前看似成功的人工神经网络模型,并且证明人工神经网络模型与生物视觉处理过程仍然存在着很大差距,大脑运作的机理和智能的本质将继续启发人工智能,特别是神经网络的研究。”曾毅说。在他看来,要想从本质上取得突破,人工智能需要借鉴和受自然演化、脑与心智的启发,建立智能的理论体系,这样的人工智能才会有长远的未来。
  • 研究人员开发出合理化深度学习超分辨显微成像方法
    近年来,以深度学习为代表的计算超分辨方法可在不损失其他成像性能的前提下,提升显微图像分辨率或信噪比,表现出广阔的应用前景。然而,针对生物医学研究必需高保真度、可定量分析的图像要求,深度学习显微成像方法存在三大共性问题:受限于深度学习内秉的频谱频移(spectral-bias)问题,输出图像分辨率无法达到真值(ground truth)水平;受限于超分辨重建、去噪问题的病态性(ill-posed problem)和神经网络模型的不确定性(model-uncertainty),重建或预测结果的真实性无法得到保障;深度神经网络的训练需要大量数据,但高质量训练数据的采集在许多应用场景下极其困难、甚至无法实现。当前,深度学习显微成像方法的研究和发展如火如荼,并表现出超越传统成像性能极限的潜力,但上述问题阻碍了现有深度学习超分辨或去噪方法在生物显微成像实验中的使用。   10月6日,中国科学院生物物理研究所李栋课题组联合清华大学自动化系、清华大学脑与认知科学研究院、清华-IDG/麦戈文脑科学研究院戴琼海课题组,美国霍华德休斯医学研究所博士Jennifer Lippincott-Schwartz,在Nature Biotechnology上,以长文(Article)的形式,发表了题为Rationalized deep learning super-resolution microscopy for sustained live imaging of rapid subcellular processes的论文。该研究提出了一套合理化深度学习(rationalized deep learning,rDL)显微成像技术框架,将光学成像模型及物理先验与神经网络结构设计相融合,合理化网络训练、预测过程,从而实现了高性能、高保真的显微图像去噪与超分辨重建,并结合实验室自主研发、搭建的多模态结构光照明显微镜(Multi-SIM)与高速晶格光片显微镜(LLSM),将传统TIRF/GI-SIM、3D-SIM、LLS-SIM和LLSM的成像速度/时程提升30倍以上,实现了当前国际最快(684Hz)、成像时程最长(最长可达3小时、60,000时间点以上)的活体细胞成像性能,首次对高速摆动纤毛(30Hz)中转运蛋白(IFT)的多种运输行为以及完整细胞分裂过程中核仁液液相分离(liquid-liquid phase separation)过程进行快速、多色、长时程、超分辨观测。Nature Biotechnology针对这一工作同时发表了评述文章(Research Briefing)。   具体而言,李栋/戴琼海研究团队提出的合理化深度学习结构光超分辨重建架构(rDL SIM)不同于现有超分辨神经网络模型的端到端(end-to-end)训练模式,而是采用分步重建策略,首先利用所提出的融合成像物理模型和结构光照明先验的神经网络对原始SIM图像进行去噪和高频信息增强,然后通过经典解析算法进行SIM重建以获得最终的超分辨图像。相比于该团队去年在Nature Methods上提出的超分辨重建神经网络模型DFCAN/DFGAN,rDL SIM可将超分辨重建结果的不确定性降低3~5倍,并实现更高的保真度和重建质量;相比于其他去噪算法(如CARE),rDL SIM可恢复出调制在原始图像中的莫尔条纹,并将高频信息增强10倍以上。   此外,针对晶格光片显微镜、共聚焦显微镜等宽场照明或点扫描成像模态,该团队提出了一种可学习的傅立叶域噪声抑制模块(FNSM)。该模块可以利用OTF信息对显微图像中的噪声进行自适应滤除。科研团队以此构建了嵌入FNSM的通道注意力去噪神经网络架构,并基于显微成像数据本身的时空连续性,提出了时空交织采样自监督训练策略(TiS/SiS-rDL)。该策略无需额外采集训练数据、亦无需保证时序数据具有时间连续性,即可实现媲美监督学习效果的去噪神经网络的训练,解决了实际生物成像实验中高质量训练数据难以获取的难题。   合理化深度学习超分辨显微成像方法可适用于包括2D-SIM、3D-SIM、LLSM等在内的多种显微成像模态,提供高分辨率、高保真的显微图像重建性能,相较于传统方法最多可以提升30倍的成像时程和10倍的成像速度。借助rDL成像技术,研究团队开展了诸多过去的成像手段无法开展的超分辨活体成像实验,并与Lippincott-Schwartz、中科院分子细胞科学卓越创新中心研究员朱学良、中科院遗传与发育生物学研究所研究员何康敏探讨了其潜在的生物学意义,包括:对滴落在玻片上的U2OS细胞贴壁生长过程进行双色、长时程(1小时以上)、超分辨(97nm分辨率)观测,清晰、真实地记录了细胞粘附和迁移的动力学现象,且不干扰这一漫长、脆弱的生命过程;对高速摆动纤毛以当前最快的684Hz成像速率进行长达60,000个时间点的连续超分辨观测,且过程中无明显光漂白或细胞活性损伤,并对纤毛摆动模式和频率进行统计分析;对摆动纤毛及纤毛内转运蛋白(IFT)进行超快、超分辨双色成像,揭示了IFT在行进途中碰撞、重组、掉头等多种新行为;通过对cCAS-DNA与ER进行双色、长时程、超分辨成像,观测到cGAS-DNA在保持与ER持续接触过程中的定向运动、转向或扩散等行为,拓展了对膜性细胞器与无膜细胞器相互作用机制的认知;对HeLa细胞分裂过程中的核仁磷酸蛋白(NPM1)、RNA聚合酶I亚基RPA49及染色质(H2B)进行超长时程(12秒采集间隔,2.5小时以上)的三维超分辨活体成像,实现了对完整有丝分裂过程中NPM1与RPA49两种结构形态变化的三维超分辨活体连续观测,揭示了细胞有丝分裂过程中核仁形成以及NPM1、RPA49两种无膜亚细胞结构的相变、互作规律;以10Hz的全细胞体成像帧率对高尔基体进行长达10,000时间点的连续拍摄,并实现了对完整细胞分裂过程内质网、溶酶体、线粒体等亚细胞结构的三色、高速(秒量级)、超长时程(小时量级,1000个时间点)三维观测,探究了细胞有丝分裂过程中细胞器在子代细胞中的均匀分配机制。   李栋/戴琼海合作团队通过人工智能算法与光学显微成像技术的交叉创新,提出了合理化深度学习超分辨显微成像框架,解决了现有深度学习成像方法分辨率损失、预测不确定性、训练集不易采集等难题,可为多种活体显微成像模态提供30倍以上的成像速度与时程的提升,为细胞生物学、发育生物学、神经科学等领域的发展提供了重要的研究工具。同时,该研究团队所坚持和倡导的人工智能算法与光学成像原理交叉创新、软硬结合的研究思路,为现代光学显微成像的发展开辟了新的技术路径。   研究工作得到国家自然科学基金、科技部、中科院、中国博士后科学基金、腾讯“科学探索奖”、清华大学“水木学者”计划的支持。图1.合理化深度学习超分辨显微成像神经网络架构图2.合理化深度学习超分辨显微成像方法应用概览
  • 科学家开发合理化深度学习超分辨显微成像方法
    光学超分辨显微成像技术使人们能够从微观纳米尺度观测细胞内的动态生命活动,是当今细胞生物学、发育生物学、神经科学等生命科学领域的重要研究工具。基于深度学习的超分辨成像技术在保证成像指标,如速度、时程或视野等性能的前提下,进一步提升了显微图像分辨率或信噪比,表现出更大的应用前景。近日,中国科学院生物物理研究所与清华大学,联合美国霍华德休斯医学研究所等研究团队,在Nature Biotechnology杂志上发表了题为“Rationalized deep learning super-resolution microscopy for sustained live imaging of rapid subcellular processes”的研究论文。该研究提出了一套合理化深度学习显微成像技术框架,将光学成像模型及物理先验与神经网络结构设计相融合,合理化网络训练、预测过程,从而实现了高性能、高保真的显微图像去噪与超分辨重建,并结合实验室自主研发、搭建的多模态结构光照明显微镜与高速晶格光片显微镜,将传统成像速度/时程提升30倍以上,实现了当前国际最快、成像时程最长的活体细胞成像性能,并首次对高速摆动纤毛中转运蛋白的多种运输行为以及完整细胞分裂过程中核仁液-液相分离过程进行了快速、多色、长时程、超分辨观测。综上,本研究提出了一种合理化深度学习超分辨显微成像框架,解决了现有深度学习成像方法分辨率损失、预测不确定性、训练集不易采集等难题。同时,人工智能算法与光学显微成像技术的交叉创新,也为现代光学显微成像的发展开辟了新的技术路径。  原文链接:  https://www.nature.com/articles/s41587-022-01471-3
  • 沈阳自动化所在单目内窥镜深度估计方面获进展
    近日,中国科学院沈阳自动化研究所机器人学国家重点实验室智能腔道手术机器人研究组在单目内窥镜深度估计方面研究方面取得新进展。相关研究成果以A Geometry-Aware Deep Network for Depth Estimation in Monocular Endoscopy为题,发表在Engineering Applications of Artificial Intelligence(EAAI)上。  该研究组提出了几何感知深度估计的框架,设计了梯度、法向和几何一致性损失函数,加强了几何一致性约束并提高了管腔结构的三维重建性能。此外,该团队提出了一套内窥镜合成RGB-D数据集。该数据集描述了在严重的反射和光照变化下的几何解剖结构,并提升了在合成的和真实数据领域的泛化学习能力。   科研人员运用这一方法在EndoSLAM数据集、Colondepth数据集和临床图像上进行详细的实验和分析。实验表明,相比于当前较多使用的SOTA方法,该方法生成了更一致的深度图和更加合理的解剖结构。该研究提出的合成数据集和源代码已开源(https://github.com/YYM-SIA/LINGMI-MR)。   该研究组致力于消化、腹腔、呼吸等人体腔道手术机器人的关键技术及系统研发,先后承担国家重点研发计划和国家自然科学基金重点项目等,在手术机器人的构型创成、感知、控制、手术导航以及智能化等方面取得了多项成果,并完成多台套的典型手术机器人系统,且部分成果已进入临床应用阶段。  研究工作得到国家自然科学基金、国家重点研发计划、辽宁省自然科学基金和沈阳医工结合协同创新项目的支持。几何感知深度估计网络框架
  • 清华站回顾 | 眼见为“实”的深度光谱应用课堂圆满结束!
    6月26日,复享光学深度光谱应用课堂清华篇在清华大学材料学院成功举办!本次活动由清华大学材料学院与复享光学联合主办,针对复享光学自主研发的显微角分辨光谱仪的原理和应用,以线下交流、线上同步答疑的形式为学校师生进行培训宣讲,并由复享光学应用专家提供设备操作教学,吸引了北京诸多著名高校老师学生前来交流学习。独出机杼,别出心裁;复享光学应用专家孙沛智博士以独到的见解和生动的比喻为大家阐述了显微角分辨光谱技术的科学背景及应用案例,大家纷纷表示“秒懂”、“已get”,并引发了在场师生们的广泛交流,针对复享光学显微角分辨光谱仪的强大功能产生了浓厚的兴趣,且对其广阔的应用领域进行了深入探讨。眼见为实,精密测量;在午后的上机演示环节,复享光学应用专家姜自敏博士详细介绍并演示了仪器的操作方法,系统性的讲述了相关应用的实验范例,让ARMS不再是学生们眼中“高冷”的测量仪器,许多同学对ARMS测量结果纷纷表示认可,相约测样。轻松驾驭,相约“顶刊”;复享光学一直以来致力于关注光子技术前沿,积极探索光谱技术的应用场景,通过结合多维光场的感知与关键物质特性的计算重构,再融合先进的深度学习技术,构建AI时代的全面深度光谱分析框架,为诸多先进制造应用场景提供强劲的光学分析引擎,并使之在科研创新、先进制造、薄膜光电和光子集成场景中得到应用普及。未来,复享光学将走进更多高校,与老师、学生们探讨各种专业光谱技术问题,交流最前沿的信息和成果,敬请期待我们的下一站吧~
  • 深度学习助力增材制造梯度力学超材料逆向设计
    由于其特异的宏微观基元拓扑构型,力学超材料在刚度、韧性、减隔振和热膨胀等性能方面显著优于传统均质材料,受到了航空航天、生物医学、电子电路和土木工程等领域的广泛关注。生物体经过长期进化形成的各类器官,与超材料的概念相契合,即通过多层级微结构实现超常物理力学特性,同时生物器官的微结构基元还呈现出梯度渐变、长程无序等特征。目前,针对力学超材料发展的拓扑优化方法和机器学习设计方法,主要面向周期性结构,对于仿生梯度超材料的逆向设计和优化,缺乏高效率、高保真的计算分析方法。 图1深度神经多网络系统实现多属性胞元的定制总体思路框图近期,来自北京理工大学的研究者们提出了一种加速梯度力学超材料逆向设计的深度学习方法。发展了一种由对抗神经网络(GAN)、性能预测网络(PPN)和结构生成网络(SGN)组成的多重网络深度学习框架,如图1所示,可实现力学性能参数和拓扑构型的快速双向映射。基于此深度学习框架,将各向异性材料杨氏模量、剪切模量和泊松比组成的属性空间,类比于R-G-B色彩空间,进而将梯度力学超材料逆向设计转换为色彩匹配问题。利用HTL树脂3D打印(NanoArch S140,摩方精密)制备了超材料结构样件,采用数字图像相关(DIC)方法验证了逆向设计的有效性。相关成果以“A Deep Learning Approach for Reverse Design of Gradient Mechanical Metamaterials”为题发表在《International Journal of Mechanical Sciences》期刊。图2 周期性超材料的应力应变曲线和泊松比应变曲线,其中左侧插图为3D打印试件,右侧插图为有限元分析模型。(a) 正泊松比结构。(b)零泊松比结构。(c)负泊松比结构;该研究中,首先基于拓扑优化方法得到了不同杨氏模量E、泊松比υ和剪切模量G的超材料胞元,并建立对应的属性空间作为数据样本。随后,基于Keras平台搭建了具备三个卷积解码/编码网络的深度神经网络系统,用于实现结构性能评估、结构补充与结构生成。基于拓扑优化样本实现PPN网络的离线训练,同时结合随机结构训练GAN网络以补充胞元属性空间。最后,基于属性空间扩充后的样本进一步训练SGN网络,对于任意的力学参数目标,均可在0.01秒内给出胞元构型,实现了多属性胞元的快速逆向设计。针对优化设计和网络预测得到的特定属性结构进行3D打印(如图2所示),并开展DIC压缩试验表征了其模量与泊松比,验证了算法的准确性和有效性。 图3 相邻胞元结构连通性的实现:(a)单元边界的定义和连接的分类(具有不同颜色的结构表示不同的属性);(b)SGN网络调整初始设计;(c)经过网络匹配得到的最终结构。在超材料胞元快速逆向设计的基础上,创新提出了一种结构像素化方法,通过结构的E-υ-G属性与R-G-B通道一一映射,将结构属性数据库转化为像素数据库。首先基于像素匹配的方式生成满足宏观属性需求的初始设计,随后网络系统根据结构的连通性要求进一步优化胞元结构,保证宏观结构的可制造性,如图3所示。研究者们以髋关节假体为例,开展了梯度超材料结构的快速设计。如图4所示,髋关节假体在人体中主要承受非轴向载荷,如果嵌入骨骼中的部分发生弯曲,受到弯曲拉应力作用的一侧,将牵引其上附着的骨组织,诱发组织损伤。模仿实际骨骼的力学属性分布特征,采用神经网络系统在不同位置自动排列模量与泊松比梯度变化的超材料胞元(图5),从而调整了宏观结构的变形模式,使髋关节植入结构的两侧,均保持在压应力状态,解决了假体界面失效的问题。计算模型基于围绕假体的凹槽,用于模拟假体插入骨骼,固定凹槽的底端并在假体的顶部施加非对称压缩载荷。同时他们还建立了一个多材料模型,每个晶胞区域代表一种材料,材料性质与超材料模型中相同位置的晶胞的E-G-υ一致。两种模型的水平位移计算结果如图5f所示,槽左侧的位移为负,而右侧的位移为正,这表明假体两侧的界面被均匀挤压。假体与骨牢固结合,有效防止界面破坏,梯度结构具有完美的连接状态,类似于超材料模型的设计目标。超材料模型和多材料模型的计算结果高度一致,证实了他们提出的超材料设计方法的准确性,这种有效的连接策略在满足增材制造要求的同时实现了与多材料设计相同的性能。图4 人体髋关节假体的受力状态。(从外到内为皮肤、髋骨和假体。假体受到不对称轴向压缩力作用,中间的粉红色区域被选为目标设计区域。) 图5 深度神经网络系统实现梯度模量/泊松比髋关节结构设计:(a)具有生物相似结构的梯度模量分布;(b)受变形模式启发的泊松比分布;(c)叠加后的最终力学性能分布;(d)GSN网络在像素匹配后调整结构;(e)满足目标模量和泊松比设计要求的超材料髋关节结构。(f)模拟假体受载的位移云图,等效多材料模型(上)和超材料模型(下)。
  • 麻省理工开发出全新光学芯片可实现高效“深度学习”
    p  美国麻省理工学院(MIT)科学家在6月12日出版的《自然· 光学》杂志上发表论文称,他们开发出一种全新的光学神经网络系统,能执行高度复杂的运算,从而大大提高“深度学习”系统的运算速度和效率。/pp  “深度学习”系统通过人工神经网络模拟人脑的学习能力,现已成为计算机领域的研究热门。但由于在模拟神经网络任务中,需要执行大量重复性“矩阵乘法”类高度复杂的运算,对于依靠电力运行的传统CPU(中央处理器)或GPU(图形处理器)芯片来说,这类运算太过密集,完成起来非常“吃力”。/pp  通过几年努力,MIT教授马林· 索尔贾希克和同事开发出光学神经网络系统的重要部件——全新可编程纳米光学处理器,这些光学处理器能在几乎零能耗的情况下执行人工智能中的复杂运算。索尔贾希克解释道,普通眼镜片就能通过光波执行“傅里叶变换”这样的复杂运算,可编程纳米光学处理器采用了同样的原理,其包含多个激光束组成的波导矩阵,这些光波能相互作用,形成干涉模式,从而执行特定的目标运算。/pp  研究小组通过测试证明,与CPU等电子芯片相比,这种光学芯片执行人工智能算法速度更快,且消耗能量不到传统芯片能耗的千分之一。他们还用可编程纳米光学处理器构建了一个神经网络初级系统,该系统能识别出4个元音字母的发音,准确率达到77%。他们的最终目标是,将可编程纳米光学处理器交叉铺成多层结构,构建光学网络神经系统,模拟人脑中神经元执行复杂的“深度学习”运算。/pp  索尔贾希克表示,新光学处理器还能用于数据传输中的信号处理,更快速实现光学信号与数字信号间的转换。未来,在大数据中心、安全系统、自动驾驶或无人机等所有低能耗应用中,基于新光学处理器的复杂光学神经网络将占据重要席位。/p
  • 专家约稿|辉光放电发射光谱仪的应用—涂层与超薄膜层的深度剖析
    摘要:本文首先简单回顾了辉光放电光谱仪(Glow Discharge Optical Emission Spectrometry,GDOES)的发展历程及特性,然后通过实例介绍了GDOES在微米涂层以及纳米超薄膜层深度剖析中的应用,并简介了深度谱定量分析的混合-粗糙度-信息深度(MRI)模型,最后对GDOES深度剖析的发展方向作了展望。1 GDOES发展历程及特性辉光放电发射光谱仪应用于表面分析及深度剖析已经有近100年的历史。辉光放电装置以及相关的光谱仪最早出现在20世纪30年代,但直到六十年代才成为化学分析的研究重点。1967年Grimm引入了“空心阳极-平面阴极”的辉光放电源[1],使得GDOES的商业化成为可能。随后射频(RF)电源的引入,GDOES的应用范围从导电材料拓展到了非导电材料,而毫秒或微秒级的脉冲辉光放电(Pulsed Glow Discharges,PGDs)模式的推出,不仅能有效地减弱轰击样品时的热效应,同时由于PGDs可以使用更高激发功率,使得激发或电离过程增强,大大提高了GDOES测量的灵敏程度,极大推动了GDOES技术的进步以及应用领域的拓展。GDOES被广泛应用于膜层结构的深度剖析,以获取元素成分随深度变化的关系。相较于其它传统的深度剖析技术,如俄歇电子能谱(AES)、X射线光电子能谱(XPS)和二次离子质谱(SIMS)或二次中性质谱(SNMS),GDOES具有如下的独特性[2]:(1)分析样品材料的种类广,可对导体/非导体/无机/有机…膜层材料进行深度剖析,并可探测所有的元素(包括氢);(2)分析样品的厚度范围宽,既可对微米量级的涂层/镀层,也可对纳米量级薄膜进行深度剖析;(3)溅射速率高,可达到每分钟几微米;(4)基体效应小,由于溅射过程发生在样品表面,而激发过程在腔室的等离子体中,样品基体对被测物质的信号几乎不产生影响;(5)低能级激发,产生的谱线属原子或离子的线状光谱,因此谱线间的干扰较小;(6)低功率溅射,属层层剥离,深度分辨率高,可达亚纳米级;(7)因为采用限制式光源,样品激发时的等离子体小,所以自吸收效应小,校准曲线的线性范围较宽;(8)无高真空需求,保养与维护都非常方便。基于上述优势,GDOES被广泛应用于表征微米量级的材料表面涂层/镀层、有机膜层的涂布层、锂电池电极多层结构和用于其封装的铝塑膜层、以及纳米量级的功能多层膜中元素的成分分布[3-6],下面举几个具体的应用实例。2 GDOES深度剖析应用实例2.1 涂层的深度剖析用于材料表面保护的涂层或镀层、食品与药品包装的柔性有机基材的涂布膜层、锂电池的多层膜电极,以及用于锂电池包装的铝塑膜等等的膜层厚度一般都是微米量级,有的膜层厚度甚至达到百微米。传统的深度剖析技术,如AES,XPS和SIMS显然无法对这些厚膜层进行深度剖析,而GDOES深度剖析技术非常适合这类微米量级厚膜的深度剖析。图1给出了利用Horiba-Profiler 2(一款脉冲—射频辉光放电发射光谱仪—Pulsed-RF GDOES,以下深度谱的实例均是用此设备测量),在Ar气压700Pa和功率55w条件下,测量的表面镀镍的铁箔GODES深度谱,其中的插图给出了从表面到Ni/Fe界面各元素的深度谱,测量时间与深度的转换是通过设备自带的激光干涉仪(DIP)对溅射坑进行原位测量获得。从全谱来看,GDOES测量信号强度稳定,未出现溅射诱导粗糙度或坑道效应(信号强度随溅射深度减小的现象,见下),这主要是因为铁箔具有较大的晶粒尺寸。同时还可以看到GDOES可连续测量到~120μm,溅射速率达到4.2μm/min(70nm/s)。从插图来看, Ni的镀层约为1μm,在表面有~100nm的氧化层,Ni/Fe界面分辨清晰。图1 表面镀镍铁箔的GODES深度谱,其中的插图给出了从表面到Ni/Fe界面的各元素的深度谱图2给出了在氩-氧(4 vol%)混合气气压750Pa、功率20w、脉冲频率3000Hz、占空比0.1875条件下,测量的用于锂电池包装铝塑膜(总厚度约为120μm)的GODES深度谱,其中的插图给出了铝塑膜的层结构示意图[7]。可以看出有机聚酰胺层主要包含碳、氮和氢等元素。在其之下碳、氮和氢元素信号的强度先降后升,表明在聚酰胺膜层下存在与其不同的有机涂层—粘胶剂,所含主要元素仍为碳、氮和氢。同时还可以看出在粘胶剂层下面的无机物(如Al,Cr和P)膜层,其中Cr和P源于为提高Al箔防腐性所做的钝化处理。很明显,图2测量的GDOES深度谱明确展现了锂电池包装铝塑膜的层结构。实验中在氩气中引入4 vol%氧气有助于快速溅射有机物的膜层结构,同时降低碳、氮信号的相对强度,提高了无机物如铬信号的相对强度,非常适合于无机-有机多层复合材料的结构分析,而在脉冲模式下,选用合适的频率和占空比,能够有效地散发溅射产生的热量,从而避免了低熔点有机物的碳化。图2一款锂电池包装铝塑膜的GDOES溅射深度谱,其中的插图给出了铝塑膜的层结构示意图[7]2.2 纳米膜层及表层的深度剖析纳米膜层,特别是纳米多层膜已被广泛应用于光电功能薄膜与半导体元器件等高科技领域。虽然传统的深度剖析技术AES,XPS和SIMS也常常应用于纳米膜层的表征,但对于纳米多层膜,传统的深度剖析技术很难对多层膜整体给予全面的深度剖析表征,而GDOES不仅可以给予纳米多层膜整体全面的深度剖析表征,而且选择合适的射频参数还可以获得如AES和SIMS深度剖析的表层元素深度谱。图3给出了在氩气气压750Pa、功率20w、脉冲频率1000Hz、占空比0.0625条件下,测量的一款柔性透明隔热膜(基材为PET)的GODES深度谱,如图3a所示,其中最具特色的就是清晰地表征了该款隔热膜最核心的三层Ag与AZO(Al+ZnO)共溅射的膜层结构,如图3b Ag膜层的GDOES深度谱所示。根据获得的溅射速率及Ag的深度谱拟合(见后),前两层Ag的厚度分别约为5.5nm与4.8nm[8]。很明显,第二层Ag信号较第一层有较大的展宽,相应的强度值也随之下降,这是源于GDOES对金属膜溅射过程中产生的溅射诱导粗糙度所致。图3(a)一款柔性透明隔热膜GDOES深度谱;(b)其中Ag膜层GDOES深度谱[8]图4给出了在氩气气压650Pa、功率20w、脉冲频率10000Hz、占空比0.5的同一条件下,测量的SiO2(300nm)/Si(111)标准样品和自然生长在Si(111)基片上SiO2样品的GODES深度谱[9]。如果取测量深度谱的半高宽为膜层的厚度,由此得到标准样品SiO2层的溅射速率为6.6nm/s(=300nm/45.5s),也就可以得到自然氧化的SiO2膜层厚度约为1nm(=6.6nm/s*0.15s)。所以,GDOES完全可以实现对一个纳米超薄层的深度剖析测量,这大大拓展了GDOES的应用领域,即从传统的钢铁镀层或块体材料的成分分析拓展到了对纳米薄膜深度剖析的表征。图4 (a)SiO2(300nm)/Si(111)标准样品与(b)自然生长在Si(111)基片上SiO2样品的GDOES深度谱[9]3 深度谱的定量分析3.1 深度分辨率对测量深度谱的优与劣进行评判时,深度分辨率Δz是一个非常重要的指标。传统Δz(16%-84%)的定义为[10]:对一个理想(原子尺度)的A/B界面进行溅射深度剖析时,当所测定的归一化强度从16%上升到84%或从84%下降到16%所对应的深度,如图5所示。Δz代表了测量得到的元素成分分布和原始的成分分布间的偏差程度,Δz越小表示测量结果越接近真实的元素成分分布,测量深度谱的质量就越高。但是随着科技的发展,应用的薄膜越来越薄,探测元素100%(或0%)的平台无法实现,就无法通过Δz(16%-84%)的定义确定深度分辨率,而只能通过对测量深度谱的定量分析获得(见下)。图5深度分辨率Δz的定义[10]3.2 深度谱定量分析—MRI模型溅射深度剖析的目的是获取薄膜样品元素的成分分布,但溅射会改变样品中元素的原始成分分布,产生溅射深度剖析中的失真。溅射深度剖析的定量分析就是要考虑溅射过程中,可能导致样品元素原始成分分布失真的各种因素,提出相应的深度分辨率函数,并通过它对测量的深度谱数据进行定量分析,最终获取被测样品元素在薄膜材料中的真实分布。对于任一溅射深度剖析实验,可能导致样品原始成分分布失真的三个主要因素源于:①粒子轰击产生的原子混合(atomic Mixing);②样品表面和界面的粗糙度(Roughness);③探测器所探测信号的信息深度(Information depth)。据此Hofmann提出了深度剖析定量分析著名的MRI深度分辨率函数[11]: 其中引入的三个MRI参数:原子混合长度w、粗糙度和信息深度λ具有明确的物理意义,其值可以通过实验测量得到,也可以通过理论计算得到。确定了分辨率函数,测量深度谱信号的归一化强度I/Io可表示为如下的卷积[12]: 其中z'是积分参量,X(z’)为原始的元素成分分布,g(z-z’)为深度分辨率函数,包含了深度剖析过程中所有引起原始成分分布失真的因素。MRI模型提出后,已被广泛应用于AES,XPS,SIMS和GDOES深度谱数据的定量分析。如果假设各失真因素对深度分辨率影响是相互独立的,相应的深度分辨率就可表示为[13]:其中r为择优溅射参数,是元素A与B溅射速率之比()。3.3 MRI模型应用实例图6给出了在氩气气压550Pa、功率17w、脉冲频率5000Hz、占空比0.25条件下,测量的60 Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) GDOES深度谱[14],结果清晰地显示了Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) 膜层结构,特别是分辨了仅0.3nm的B4C膜层, B和C元素的信号其峰谷和峰顶位置完全一致,可以认为B和C元素的溅射速率相同。为了更好地展现拟合测量的实验数据,选择溅射时间在15~35s范围内测量的深度剖析数据进行定量分析[15]。图6 60×Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) GDOES深度谱[14]利用SRIM 软件[16]估算出原子混合长度w为0.6 nm,AFM测量了Mo/B4C/Si多层膜溅射至第30周期时溅射坑底部的粗糙度为0.7nm[14],对于GDOES深度剖析,由于被测量信号源于样品最外层表面,信息深度λ取为0.01nm。利用(1)与(2)式,调节各元素的溅射速率,并在各层名义厚度值附近微调膜层的厚度,Mo、Si、B(C)元素同时被拟合的最佳结果分别如图7(a)、(b)和(c)中实线所示,对应Mo、Si、B(C)元素的溅射速率分别为8.53、8.95和4.3nm/s,拟合的误差分别为5.5%、6.7%和12.5%。很明显,Mo与Si元素的溅射速率相差不大,但是B4C溅射速率的两倍,这一明显的择优溅射效应是能分辨0.3nm-B4C膜层的原因。根据拟合得到的MRI参数值,由(3)式计算出深度分辨率为1.75 nm,拟合可以获得Mo/B4C/Si多层薄膜中各个层的准确厚度,与HR-TEM测定的单层厚度基本一致[15]。图7 测量的GDOES深度谱数据(空心圆)与MRI最佳拟合结果(实线):(a) Mo层,(b) Si层,(c) B层;相应的MRI拟合参数列在图中[15]。4 总结与展望从以上深度谱测量实例可以清楚地看到,GDOES深度剖析的应用非常广泛,可测量从小于1nm的超薄薄膜到上百微米的厚膜;从元素H到Lv周期表中的所有元素;从表层到体层;从无机到有机;从导体到非导体等各种材料涂层与薄膜中元素成分随深度的分布,深度分辨率可以达到~1nm。通过对测量深度谱的定量分析,不仅可以获得膜层结构中原始的元素成分分布,而且还可以获得元素的溅射速率、膜层间的界面粗糙度等信息。虽然GDOES深度剖析技术日趋完善,但也存在着一些问题,比如在GDOES深度剖析中常见的溅射坑底部凸凹不平的“溅射坑道效应”(溅射诱导的粗糙度),特别是对多晶金属薄膜的深度剖析尤为明显,这一效应会大大降低GDOES深度谱的深度分辨率。消除溅射坑道效应影响一个有效的方法就是引入溅射过程样品旋转技术,使得各个方向的溅射均等。此外,缩小溅射(分析)面积也是提高溅射深度分辨率的一种方法,但需要考虑提高探测信号的强度,以免降低信号的灵敏度。另外,GDOES深度剖析的应用软件有进一步提升的空间,比如测量深度谱定量分析算法的植入,将信号强度转换为浓度以及溅射时间转换为溅射深度算法的进一步完善。作者简介汕头大学物理系教授 王江涌王江涌,博士,汕头大学物理系教授。现任广东省分析测试协会表面分析专业委员会副主任委员、中国机械工程学会高级会员、中国机械工程学会表面工程分会常务委员;《功能材料》、《材料科学研究与应用》与《表面技术》编委、评委。研究兴趣主要是薄膜材料中的扩散、偏析、相变及深度剖析定量分析。发表英文专著2部,专利十余件,论文150余篇,其中SCI论文110余篇。代表性成果在《Physical Review Letters》,《Nature Communications》,《Advanced Materials》,《Applied Physics Letters》等国际重要期刊上发表。主持国家自然基金、科技部政府间国际合作、广东省科技计划及横向合作项目十余项。获2021年广东省科技进步一等奖、2021年广东省高校科研成果转化路演赛“新材料”小组赛一等奖、2021年粤港澳高价值大湾区专利培育布局大赛优胜奖、2020年广东省高校科研成果转化路演赛“新材料”小组赛一等奖、总决赛一等奖。昆山书豪仪器科技有限公司总经理 徐荣网徐荣网,昆山书豪仪器科技有限公司总经理,昆山市第十六届政协委员;曾就职于美国艾默生电气任职Labview设计工程师、江苏天瑞仪器股份公司任职光谱产品经理。2012年3月,作为公司创始人于创立昆山书豪仪器科技有限公司,2019年购买工业用地,出资建造12300平方米集办公、研发、生产于一体的书豪产业化大楼,现已投入使用。曾获2020年朱良漪分析仪器创新奖青年创新入围奖;2019年昆山市实用产业化人才;2019年江苏省科技技术进步奖获提名;2017年《原子发射光谱仪》“中国苏州”大学生创新创业大赛二等奖;2014年度昆山市科学技术进步奖三等奖;2017年度昆山市科学技术进步奖三等奖;多次获得昆山市级人才津贴及各类奖励项目等。主持研发产品申请的已授权专利47项专利,其中发明专利 4 项,实用新型专利 25项,外观专利7项,计算机软件著作权 11项。论文2篇《空心阴极光谱光电法用于测定高温合金痕量杂质元素》,《Application of Adaptive Iteratively Reweighted Penalized Least Squares Baseline Correction in Oil Spectrometer 》第一编著人;主持编著的企业标准4篇;承担项目包括3项省级项目、1项苏州市级项目、4项昆山市级项目;其中:旋转盘电极油料光谱仪获江苏省工业与信息产业转型升级专项资金--重大攻关项目(现已成功验收,获政府补助660万元)、江苏省首台(套)重大装备认定、江苏省工业与信息产业转型升级专项资金项目、苏州市姑苏天使计划项目等;主持研发并总体设计的《HCD100空心阴极直读光谱仪》、《AES998火花直读光谱仪》、《FS500全谱直读光谱仪》《旋转盘电极油料光谱仪OIL8000、OIL8000H、PO100》均研发成功通过江苏省新产品新技术鉴定,实现了产业化。参考文献:[1] GRIMM, W. Eine neue glimmentladungslampe für die optische emissionsspektralanalyse[J]. Spectrochimica Acta, Atomic Spectroscopy, Part B, 1968, 23 (7): 443-454.[2] 杨浩,马泽钦,蒋洁,李镇舟,宋一兵,王江涌,徐从康,辉光放电发射光谱高分辨率深度谱的定量分析[J],材料研究与应用, 2021, 15: 474-485.[3] Hughes H. Application of optical emission source developments in metallurgical analysis[J]. Analyst, 1983, 108(1283): 286-292.[4] Lodhi Z F, Tichelaar F D, Kwakernaak C, et al., A combined composition and morphology study of electrodeposited Zn–Co and Zn–Co–Fe alloy coatings[J]. Surface and Coatings Technology, 2008, 202(12): 2755-2764.[5] Sánchez P, Fernández B, Menéndez A, et al., Pulsed radiofrequency glow discharge optical emission spectrometry for the direct characterisation of photovoltaic thin film silicon solar cells[J]. Journal of Analytical Atomic Spectrometry, 2010, 25(3): 370-377.[6] Zhang X, Huang X, Jiang L, et al. Surface microstructures and antimicrobial properties of copper plasma alloyed stainless steel[J]. Applied surface science, 2011, 258(4): 1399-1404.[7] 胡立泓,张锦桐,王丽云,周刚,王江涌,徐从康,高阻隔铝塑膜辉光放电发射光谱深度谱测量参数的优化[J],光谱学与光谱分析,2022,42:954-960.[8] 吕凯, 周刚, 余云鹏, 刘远鹏, 王江涌, 徐从康,利用ToF-SIMS 和 Rf-GDOES 深度剖析技术研究柔性衬底上的隔热多层膜[J], 材料科学,2019,9:45-53.[9] 周刚, 吕凯, 刘远鹏, 余云鹏, 徐从康, 王江涌,柔性功能薄膜辉光光谱深度分辨率分析[J], 真空, 2020,57:1-5.[10] ASTM E-42, Standard terminology relating to surface analysis [S]. Philadelphia: American Society for Testing and Materials, 1992.[11] Hofmann S. Atomic mixing, surface roughness and information depth in high‐resolution AES depth profiling of a GaAs/AlAs superlattice structure[J]. Surface and interface analysis, 1994, 21(9): 673-678.[12] Ho P S, Lewis J E. Deconvolution method for composition profiling by Auger sputtering technique[J]. Surface Science, 1976, 55(1): 335-348.[13] Wang J Y, Hofmann S, Zalar A, et al. Quantitative evaluation of sputtering induced surface roughness in depth profiling of polycrystalline multilayers using Auger electron spectroscopy[J]. Thin Solid Films, 2003, 444(1-2): 120-124.[14] Ber B, Bábor P, Brunkov P N, et al. Sputter depth profiling of Mo/B4C/Si and Mo/Si multilayer nanostructures: A round-robin characterization by different techniques[J]. Thin Solid Films, 2013, 540: 96-105.[15] Hao Yang, SongYou Lian, Patrick Chapon, Yibing Song, JiangYong Wang, Congkang Xu, Quantification of high resolution Pulsed RF GDOES depth profiles for Mo/B4C/Si nano-multilayers[J], Coatings, 2021, 11: 612.[16] Ziegler J F, Ziegler M D, Biersack J P. SRIM–The stopping and range of ions in matter[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(11-12): 1818-1823.
  • AES/XPS/SIMS/GD-OES(MS)深度剖析定量分析
    溅射深度剖析作为表面分析的常规技术,被广泛应用于膜层结构元素成分随深度变化的表征,但由于溅射、样品粗糙度以及测量信号来源于距样品表面不同的深度等因素的影响,使得测量的深度谱与原始的膜层结构比较可能会有较大的畸变。对测量深度谱数据进行定量分析,不仅可以确定样品的膜层结构,还可以获得其界面粗糙度、元素间的互扩散系数、元素的溅射速率、以及溅射深度分辨率等定量信息。报告讨论了多晶样品深度剖析中溅射诱导粗糙度产生的原因及消除的方法。并以4Si(15nm)/Al(15nm) AES、XPS和ToF-SIMS,以及60Si(3.7nm)/B4C(0.3nm)/Mo(3.0nm) 脉冲-射频-GDOES等深度谱为例,讨论了溅射诱导粗糙度对测量深度谱的影响及其相应的定量分析。同时还提出了将TV正则化与MRI深度分辨率函数结合,对深度谱数据进行反卷积定量分析的新方法,并应用于8Ni(25nm)/Cr(25nm) AES、60Si(3.5nm)/Mo(3.5nm) 脉冲-射频-GDOE和ToF-SIMS深度谱的定量分析,获得的膜层结构与HR-TEM的测量结果相吻合。点击查看视频回放王江涌,博士,教授,1984年武汉大学理论物理专业学士;1989年四川大学原子与分子物理专业硕士;1997年南非自由州大学表面物理专业博士;1998-2001年美国堪萨斯州立大学物理系研究助理;2001-2009年德国马普金属研究所高级研究员;2009年起任汕头大学物理系教授。从事表面分析工作近三十年,在薄膜相变及深度剖析定量分析领域做出了诸多创新性工作。发表英文专著2部,论文150余篇(SCI 110余篇)。现任广东省分析测试协会表面分析专业委员会副主任委员、中国机械工程学会表面工程分会常务委员;《功能材料》、《材料科学研究与应用》与《表面技术》等期刊编委、评委。
  • 新服务上线!仪器深度保养——助力旧机新生
    仪器外壳斑驳,内部管路老化性能跟不上业务发展?想采购新机替换掉“带病”工作的仪器苦于没有预算?上面这些都不是问题!珀金埃尔默都可以为您量身定制专业的深度保养服务。让旧仪器华丽转身,芳华更甚。保养前保养后Avio 200 外部深度保养我们可以提供的是仪器整机级别的深度保养,从外壳到内部管路的整新,光学系统、进样系统、石墨炉等的深度检测维护,乃至整个仪器的硬件性能拓展和提升。保养前保养后Avio 200 内部深度保养该业务将由珀金埃尔默全球领先的太仓工厂提供专业支持,给您带来真正的原厂深度保养!出厂标准:仪器固件和硬件已更新至最新版本,且通过现行珀金埃尔默工厂标准测试。深度保养进行中太仓工厂 ICP 生产线仪器金贵,担心拆装和运输的安全?由经过专业培训的珀金埃尔默工程师提供上门拆机、安装和调试服务,且享受全国(非偏远地区)免费包装和配送。专业物流团队为您的机器保驾护航限时优惠- SALES -即日起至2022年6月30日订购深度保养服务的客户,可享受每台仪器8折的特别礼遇。Q & A问仪器完成深度保养后的保修期是多久?答所有经深度保养过的仪器,均可享受一年的原厂质保期以及一次维护保养,免费提供质保期内仪器正常损坏的维修人工费和备件费。问深度保养怎么收费?答根据仪器的型号和当前的使用状况,先由售后服务工程师上门评估,然后由服务销售根据客户需求及评估报告定制化报价。
  • 院士专家共商智能影像技术趋势,推动产学研用深度融合
    9月16日,以智能影像技术发展趋势及产学研用探讨为主题的2022年未来影像行业峰会在北京召开,峰会由智能图像处理北京市工程研究中心(以下简称“中心”)举办,邀请院士专家以及50余家企业的近百位行业精英,进行了12场专题分享。工程研究中心主任、小米集团高级副总裁曾学忠介绍了中心过去一年取得的成绩,并对未来影像技术在手机、机器人、汽车、XR(扩展现实)以及AIoT等多个行业出现的新需求做了深入分析,并提出对于未来影像的三个思考点:在多维传感,增强影像方向,拓宽影像传感的维度,突破视觉的限制;在AI赋能,计算摄影领域,用AI算法与硬件进行深入结合,突破硬件的限制;在影像互联,计算互通技术上,用互联互通的计算,打破影像采集以及计算的限制。中国工程院院士、中心专家委主任丁文华院士肯定了中心在影像行业的科研牵引作用,并指出影像多媒体领域对前端基础图像处理技术存在极大需求及市场空间,希望今后中心能够持续发挥平台作用,加深影像行业的产学研用协同创新的深度与广度,为产业的进一步发展起到示范带头作用。中心研究中心常务副主任、清华大学脑与认知科学院院长季向阳教授分享了计算影像的技术发展,介绍了计算影像在光谱成像,多传感器融合,光路编码等多个维度上的突破建议,后续将利用中心的平台创新科研机制,更好地将高校科研技术转化到行业。影像硬件技术企业豪威科技、丘钛微电子、奥比中光分别从图像传感器、相机模组、3D相机领域进行了专题分享。豪威科技总经理刘志碧梳理了当前各个行业对图像传感器的技术需求,并对全局快门、Hybrid EVS、微型化相机等行业新技术做了全面分享。丘钛微电子副总裁胡三木分享了相机模组硬件的发展趋势,并对大光圈、防抖、大推力马达、moding等模组工艺的演进进行了分析。奥比中光高级副总裁江隆业分享了3D视觉在各新兴行业的应用情况,并对3D视觉未来的技术发展方向进行展望。新型影像技术企业与光科技、灵明光子、普诺飞思分别从光谱相机、深度相机及动态相机的技术发展路线以及应用场景切入,进行了专题分享;与光科技CEO王宇认为小型化的光谱传感器是未来的技术趋势,并详细介绍了小型化光谱传感器在辅助色差还原、健康检测上的重要作用;灵明光子CTO张超阐述了dToF替代iToF在远距离深度探测场景的明确趋势,并介绍了dToF在汽车、消费、工业等多个领域的应用价值。普诺飞思中国区GM杨雪飞阐述了这种新型传感器相比于FBS相机的巨大优势,并介绍了DVS在超慢动作检测、边缘跟踪以及高级驾驶辅助等场景下的价值。北京邮电大学、极感科技、黑芝麻智能就影像算法进行了主题分享。北京邮电大学计算机学院执行院长马华东教授就视频处理各算法的发展状况做了介绍,并指出了AI视频算法模型轻量化的发展路径。极感科技高级总监林曦在深度计算和分割算法的现状和发展做了分享,提出了未来影像算法芯片化和工程化的方向。黑芝麻智能总监王超就视觉算法在自动驾驶上的应用做了技术分享,从低噪声、大动态、低延迟等场景举例,提出了视觉算法的需求方向。小米手机部副总裁、相机部总经理易彦博士分享了小米在手机、机器人、XR、智能汽车、智能制造五大主要应用场景中影像技术的深度积累,他表示,未来将依托中心持续加大资源投入,联合更多的上下游产业伙伴,围绕影像行业的系统性需求,做好产业协同,提升行业整体竞争力。据了解,智能图像处理北京市工程研究中心由小米集团牵头,联合清华大学等高校与企业于2021年共同组建,该中心的主要发展目标为联合上下游企业、高校和科研院所等机构,开展图像处理软硬件核心技术的开发、验证以及成果转化等全链路的创新,以推动行业共同发展。
  • “深度覆盖的蛋白质组精准鉴定与定量新技术”项目正式启动
    p  10月27至28日,由中国科学院大连化学物理研究所作为主持单位承担的国家重点研发计划“深度覆盖的蛋白质组精准鉴定与定量新技术”项目启动会在生物楼学术报告厅举行。项目负责人张丽华研究员,项目组专家大化所张玉奎院士、中科院高能物理所柴之芳院士,复旦大学杨芃原教授,北京大学刘虎威教授,国家纳米科学中心赵宇亮研究员,国家蛋白质科学中心秦钧研究员,项目指导专家中科院武汉数学物理研究所刘买利研究员,中国人民解放军军事医学科学院甄蓓研究员,科技部高技术研究发展中心主管聂启昌,中科院前沿科学与教育局生命科学处主管路浩,我所职能部门相关人员以及各子课题承担单位的专家和代表70余人参加了会议。/pp  项目启动会由张玉奎主持,大化所科技处副处长张宇首先代表所里致辞。随后,张玉奎为专家颁发聘书,聂启昌介绍了项目管理规定。张丽华向项目专家组汇报了项目的整体情况,各课题负责人分别汇报了各课题的任务目标、研究内容、实施方案以及研究计划等情况。专家组对本项目实施方案进行了审议讨论,对本项目给予了充分的肯定,同时对项目实施提出了合理中肯的建议,对本项目今后的开展具有积极的推动作用。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201710/insimg/ecfb9c48-126a-4791-a0e4-7e9de81626a1.jpg" title="W020171030526310365904_副本.jpg"//pp  国家重点研发计划“深度覆盖的蛋白质组精准鉴定与定量新技术究”项目设置四个课题。课题一、可变剪切和新生肽链组的高灵敏鉴定技术 课题二、基于高效标记和特征肽段的蛋白质组精准定量技术 课题三、基于高效分离的蛋白质组深度覆盖定量技术 课题四、纯化蛋白质的全序列高准确测定技术。通过本项目的实施,将在蛋白质组精准鉴定与定量领域取得一批具有自主知识产权的突破性和创新性研究成果。为推动我国蛋白质科学跨越式发展,并达到国际领先水平提供重要技术支撑。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201710/insimg/8f950f66-961a-4770-914d-bd2ebf603e80.jpg" title="W020171030526310378848_副本.jpg"//p
  • 当AI遇上光学:深度学习如何大幅提升痕量气体分析灵敏度?
    今天七月,Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy (SAA)期刊上发表了一个来自安徽大学周胜副教授课题组的研究成果《Optimized adaptive Savitzky-Golay filtering algorithm based on deep learning network for absorption spectroscopy》。此项工作将深度学习应用在激光光谱气体分析技术上的Savitzky-Golay(简称S-G)滤波抗噪算法,并通过仿真和实验证实该方法能够提升痕量NO2气体分析中光谱信号的信噪比,有助于实现更高灵敏度的气体分析。激光光谱分析是一个很强大的气体分析技术,能够实现非接触式、高精度、高灵敏度、高选择性的痕量气体分析(ppm或ppb量级)。然而,实际操作中所测得的吸收光谱会受到噪声的干扰,导致不准确的测量结果。过去的研究工作中提出了一些抑制噪声的算法,其中S-G滤波算法由于速度快、无需提供过多的参数、且能较好的保留原始光谱的形状和高度,成为近年来较受关注的方法,并且已经在某些应用场景(例如连续血糖监测)证明其面对各类噪声的有效性。S-G滤波算法的性能决定于两个参数:多项式阶数(k)和平均计算的窗口大小(b)。但是,噪声源和吸收光谱在实际应用中是未知的,因此难以获得固定的参数值使得滤波效果达到优。为了解决这个问题,研究人员提出了一种优化的自适应S-G算法,将深度学习网络与传统的S-G 滤波相结合,以提高测量系统的性能。深度学习网路以其非线性映射和建模能力对数据的规律性进行研究,并实现出色的“自我调整”和“跟踪反馈”。相较于传统的S-G算法,经过优化的算法可以调整滤波参数以实现光谱的佳信噪比。图一展示了用于训练S-G滤波算法参数的深度学习网络。这个具有多层感知器的人工智能网络提供了设计上的弹性,可以通过调整层数、神经元数量、和一些优化指标以达到所需的性能。用庞大的数据集进行高效训练后,相应的网络模型将达到最状态。接着,经过训练的网络模型将使用变量数据输入找到好的 k 和 b。 与此同时,输入数据集也将按传统方式计算以获得佳参数k 和 b。通过比较模型预测和人机计算的结果,由人工决定出佳的网络参数。图一 用于计算S-G滤波算法参数的深度学习网络 研究组以NO2为目标气体,选取波数位于1630.1至1630.42 cm-1的吸收谱线,进行了软件仿真和实验测量作为新方法(adaptive S–G filtering, 以下称ASGF)的验证,同时与另一常用的multi-signal averaging filtering(MAF)方法作比较。MAF计算时间长且主要用于白噪声的抑制。仿真结果显示在白噪声干扰的条件下(图二),MAF将信噪比从原始的6.58 dB提升至12.62 dB,新的ASGF算法则能提升至15.51 dB。图三则显示了非白噪声的背景噪声干扰,MAF方法将信噪比从原始的7.14 dB提升至13.22 dB,新的ASGF算法则提升至了更高的17.37dB。 图二 仿真验证ASFG算法在白噪声干扰下的性能表现 图三 仿真验证ASFG算法在其他背景噪声干扰下的性能表现 图四展示了实际实验的设置,它由一个光源、一个带压强控制器的多通气体吸收池、一系列反射镜、一个碲镉汞光电探测器和一台计算机组成。昕虹光电为此项研究工作提供的激光源为Q-Qube型量子级联激光发射头,这是一款热电冷却,空气制冷型,内准直输出的连续波CW室温分布反馈型量子级联激光(DFB-QCL)源,最峰值输出功率为 30 mW,由QC750-Touch型一体化激光驱动器,集温度控制器和低噪声恒流电流控制器驱动于一身,使光源系统发出6.2 μm波长的激光。极低的光学噪声和驱动器稳定性为此实验奠定了高质量信号基础。激光通过多通池由热电致冷型的碲镉汞光电探测器接收,信号传输至电脑后进行数据处理与分析。 图四 用于验证ASGF算法用于痕量NO2气体分析的实验设置 实验设置在压力0.1 atm和温度296 K的氮气中对4 ppm NO2的测量。其测量和过滤后的吸收光谱如图五(a)所示,原始数据测吸收特性淹没在噪声中,而经ASGF算法过滤后的频谱已显着平滑,使识别更容易。研究组对吸收光谱数据与理论Voigt 函数拟合,图五(b)结果表明拟合的R平方值高达0.99934,表明滤波后的吸收光谱与理论形状吻合良好。 图五 实测NO2的吸收光谱和经ASFG算法后的吸收光谱,可以看到滤波后的吸收光谱与理论形状吻合良好 结合了深度学习的神经网络技术,研究组提出的自适应S-G滤波算法表现出显着的滤波效果,在激光光谱气体分析领域中能够大幅改善光谱信号的信噪比。面对大气环境中具有挑战性的痕量气体分子检测,将能提供更优异的灵敏度和可靠性。
  • 我国科学家设计新探针可实现对蛋白质N-端组学深度富集检测
    2月29日,中国科学院上海药物研究所研究员黄河、柳红合作,研究设计合成了一种含有吡啶甲醛片段的可断裂分子探针2PCA-Probe,可实现对蛋白质N-端的深度富集检测。相关研究发表于《美国化学会志》。蛋白质水解是一种广泛存在的翻译后修饰方式,在多种生物过程中发挥重要作用。在正常组织中,大多数蛋白酶的活性受到严格调控,而在肿瘤组织中则往往被异常激活,并通过介导免疫逃逸、肿瘤细胞侵袭等多个途径促进肿瘤的发生发展。通过对蛋白质N-端进行系统检测可获得蛋白水解断裂信息,但现有的N-端组学检测方法存在操作复杂、检测深度不高等缺陷,限制了蛋白水解相关研究的进展。研究团队发现,吡啶甲醛片段与N-端氨基酸可以选择性发生环化反应形成咪唑烷酮结构,还可发生羟醛缩合反应,并由此发现该类标记方法生成的新诊断片段。通过该诊断片段信息,可以规避以往此类探针标记时遇到的限制,即无法标记2位氨基酸为脯氨酸的多肽。利用该方法,研究团队对三对结直肠癌组织和癌旁组织的N-端组进行了深度富集检测,共鉴定到了4686种N端多肽。进一步分析显示,肿瘤组织中的蛋白水解过程较癌旁组织更活跃,且肿瘤组织中发生水解的蛋白主要富集在代谢通路和免疫通路,这可能与肿瘤组织的代谢重编程和免疫逃逸过程相关。该研究建立了一种全新的N-端组深度检测方法,为疾病发病机制中的蛋白质水解过程研究提供了有力的新工具。2PCA-Probe探针结构及标记检测流程 图片来源于《美国化学会志》
  • 应脉医疗又一战略合作,布局Seer高深度无偏蛋白质组学新技术
    2023年8月8日,应脉医疗科技(上海)有限公司(下称:应脉医疗)与上海康昱盛生物科技有限公司(下称:康昱盛)在上海签署战略合作协议,合作推广美国Seer公司的高深度无偏蛋白质组学新技术,助力基于血液的蛋白质组学精准医疗进入新时代,这是应脉医疗继2021年宣布与Seer达成合作进军中国蛋白质组学市场后的又一战略合作。  生物信息巨头布局中国蛋白质组学市场  2021年,Seer宣布与应脉医疗达成独家经销协议,重点是加速公司蛋白质图谱产品套件(Proteograph系统平台)的商业扩张。根据协议条款,应脉医疗将负责Seer Proteograph系统平台在中国的销售、市场营销和客户服务,并为在中国拓展这一颠覆性技术铺平道路。Seer公司拥有专有的纳米粒子(Nanoparticle, NP)技术,让血液蛋白质组在实现深度和通量上的“非特异性选择”方法成为可能。Seer公司提供的Proteograph™XT平台利用经过特殊制作的纳米粒子磁珠,在跨数十个数量级丰度之间,非特异性地结合各类蛋白,无需额外去除高丰度蛋白,再利用高性能的质谱技术,达到高精度测量。在兼顾深度,增强蛋白组分析通量的情况下,实现对大规模血液蛋白的可重复性定量分析,创造了无偏差高通量探寻生物标记物的机会。  作为Seer在中国市场的独家经销商,应脉首席运营官边英男博士表示,非常高兴能与康昱盛达成本次合作,康昱盛具有丰富的客户资源,专业的技术支持。双方将发挥各自在擅长领域的优势,产生一加一大于二的倍增效果,推动创新的血浆蛋白质组学技术在生命科学、医疗健康领域的应用。  康昱盛总经理林建成先生表示,应脉医疗的资源丰富、市场洞察力敏锐。相信高深度无偏蛋白质组学技术具有非常巨大的市场潜力,期待与应脉医疗共同为基于质谱的血浆/血清蛋白质组学研究与应用开启新的篇章。  中国的生命科学和医药市场是世界上规模最大、增长最快的市场之一,并且拥有蛋白质组学的巨大潜力。 随着肿瘤学、神经学和免疫学在全球卫生保健需求的激增,我们需要新的工具来加速对生物学的见解,识别生物标志物,并开发新的治疗方法。Seer提供的无偏、深入和大规模的蛋白质组学平台解决了这一需求,使制药和生物医学研究人员能够发现新的生物标记物,用于诊断和治疗癌症及其他疾病,并更好地了解健康细胞的功能。  关于康昱盛  康昱盛是一家专门提供生物制药领域科学信息整体解决方案的公司。公司由一批多年从事生物医药信息学前沿技术研究、科学咨询、技术服务以及产品研发的科学家于2009年创立。经过10多年的技术积累并得益于我们与国内优秀科研机构的紧密合作,我们拥有一支专业的技术服务团队和资深的专家咨询团队,服务于生物医药领域的各种创新研发型公司、学术科研机构、大学以及政府部门,提供从药物设计分子模拟、生物信息学、化学信息学与研发信息管理系统、化合物毒性预测分析、蛋白质组学、代谢调控分析、二代测序变异与疾病关联分析,到临床前、临床的数据分析以及管理等一系列国际知名的科研软件产品、平台以及成熟的科学信息解决方案。我们目前在中国服务超过900家生物医药行业的企业与学术客户,竭诚为他们研发创新提供强有力的技术服务与产品支持!
  • 清华大学黄翊东团队:基于深度学习的高空间分辨率片上快速光谱成像
    近日,清华大学电子系黄翊东、崔开宇团队以「Deep-learning-based on-chip rapid spectral imaging with high spatial resolution」¹为题在Chip上发表研究论文,提出将深度展开神经网络ADMM-net与基于自由形状的超表面光谱成像芯片相结合,实现了高空间分辨率的片上快速光谱成像,并消除了光谱图像的马赛克现象。光谱成像扩展了传统彩色相机的概念,可以在多个光谱通道捕获图像,在遥感、精准农业、生物医学、环境监测和天文学等领域得到了广泛应用。传统的基于扫描方式的光谱相机存在采集速度慢、体积大、成本高等问题。基于超表面宽带调制和计算光谱重建的片上光谱成像为实现消费级的便携式光谱相机提供了一种很有前景的方案。图1展示了超表面光谱成像芯片的基本结构,由硅基超表面层和带有微透镜的CMOS图像传感器组成,超表面层包含了360 × 440个超表面单元,每个超表面单元对应于成像空间中的一点,入射光经过每个超表面单元的频谱调制后被下方的传感器像素所探测。任一点处的光谱可以由该点附近的若干个光强探测值重建得到,重建过程对应于求解一个欠定线性方程组。现有的光谱图像重建算法需要通过逐点光谱重建来得到整个数据立方,存在计算耗时长和重建图像存在马赛克现象的问题。图1 | 超表面光谱成像芯片的结构示意图由于不同的超表面单元具有不同的光谱调制特性,整个超表面光谱成像芯片在不同波长下具有不同的空间调制特性,因此本文受启发于编码孔径快照式光谱成像算法,采用深度展开神经网络ADMM-net²进行光谱图像的快速重建,其基本架构如图2所示。网络包含K=12个阶段,每个阶段都包含线性变换W()和降噪卷积神经网络(通常采用U-net结构)两部分。网络的输入是包含所有超表面单元光谱调制特性的传感矩阵Φ和测量图像y,输出为重建的光谱图像数据立方。图2 | 深度展开神经网络ADMM-net的基本架构图3展示了利用超表面光谱成像芯片对标准色卡进行实际成像测量后,采用不同算法重建数据立方的结果。从RGB伪彩色图中可以看出,ADMM-net的图像细节重建效果显著优于采用传统的CVX算法进行逐点光谱重建的结果,有效消除了图像的马赛克现象。并且,相比于传统迭代算法GAP-TV³和端到端神经网络λ-net⁴的重建结果,ADMM-net的光谱重建准确性也更优。此外,采用ADMM-net进行单次重建仅需18毫秒,而逐点光谱重建则需要4854秒,本工作在重建速度上实现了约5个数量级的提升。图3 | 对标准色卡进行实际成像测量后,利用不同算法进行光谱图像重建的结果进一步,本工作利用ADMM-net实现了对户外驾驶场景的实时光谱成像,如图4所示,光谱成像速率达到约36帧/秒。从RGB伪彩色图中可见,车辆的色彩重建准确性较好;并且,从第20、100帧图像中的采样点A和B的重建光谱来看,天空和白色车辆的光谱具有明显的差异,有望解决自动驾驶场景中的同色异谱识别问题,避免相撞事故的发生。此外,具有视频帧率的高空间分辨快速光谱成像,也展示出实时光谱成像芯片在机器视觉领域的巨大应用潜力。图4 | 户外驾驶场景的实时光谱成像结果
  • 官方深度揭秘:徕卡华为恋爱史大白!
    p  3月27日,华为发布新旗舰P20系列,其中P20 Pro首创徕卡后置三摄,震惊业界,整体水准领先一两个时代。/pp  华为和徕卡首次合作是2016年初的P9,迄今已经走过整整两年、诞生了P9系列、Mate 9系列、P10系列、Mate 10系列、P20系列五代产品,每一代都有惊人的飞跃。/pp  一个是来自于中国的年轻高科技企业,一个是典型的德国百年老店,华为和徕卡,到底是怎么走到一起的?/pp  华为手机战略与业务发展部部长李昌竹今天特意撰写长文,深度揭秘了华为与徕卡合作幕后的故事。这里华为略加调整,呈现给大家。/pcenterimg style="width: 450px height: 484px " title="" alt="" src="http://imgs.tom.com/tech/201804/CONTENTE10417448DD94A2F.jpg" height="484" hspace="0" border="0" vspace="0" width="450"//centerp  华为认为,在数字时代,这个世界的本质并没有改变,手机照相成像原理、光学设计和图像质量控制的本质并没有改变。/pp  华为一直在思考,如何让手机复制胶片时代那些伟大的照片,让手机拍摄的照片也有“情感”和“思想”。/pp  经过一番研究,华为决定去和这个产业中最顶尖的公司沟通一下,它的名字叫Leica(徕卡)。/pcenterimg alt="" src="http://imgs.tom.com/tech/201804/CONTENT7940889EEEBD4AA4.jpg" height="150" width="600"//centerp  strong为什么是徕卡?/strong/pp  在摄影爱好者心目中,徕卡是一个高山仰止的传奇,不仅仅是因为奥斯卡· 巴纳克在1914年手工制造出第一台用35mm电影胶片的徕卡原型机Ur-Leica,这台现代便携式相机的雏形,更是因为一百年来,徕卡相机一直保持着卓越的品质,有多少摄影师用徕卡相机留下了宝贵的瞬间。/pp  从罗伯特卡帕的“士兵之死”到时代广场的“胜利之吻”,从周恩来总理半身坐像到拳王阿里的出拳照片,徕卡相机始终忠实地记录着历史。/pp  徕卡相机有着出色的光学系统。徕卡镜片的生产工艺非常复杂,除了独特的配料之外,为了让内部应力达到均衡,甚至要花上数月的时间,让光学玻璃的温度逐步降低到可以加工的温度。/pp  徕卡所在的小镇Wetzlar,号称欧洲的“光学硅谷”,一代又一代的光学专家在这里潜心研究,改进设计。/pp  用徕卡相机拍出的照片,图像锐利,色彩饱和,大气沉稳,被摄主体和背景有可分离的立体感,因为镜头的解析力高,图像的过渡层次丰富,有一种特殊的油润感。/pp  经过百年的发展,徕卡形成了其独特的产品文化。徕卡相机从不会让使用者失望,每一个细节都琢磨到极致。徕卡相机是专业技术的象征,是艺术创作的保证,是摄影师敏锐观察力的延伸。当然由于其高昂的价格,徕卡也是奢侈品的代名词。/pp  使用徕卡相机是追求一种品位、一种文化,徕卡是为人一辈子而造的相机。/pp  乔布斯在iPhone 4发布会上曾经这样说:毫无疑问,iPhone 4是其做过的最精密和最漂亮的产品,它就像一台漂亮的老式徕卡相机。/pcenterimg style="width: 450px height: 484px " title="" alt="" src="http://imgs.tom.com/tech/201804/CONTENTF617C4C8606F4B5A.jpg" height="484" hspace="0" border="0" vspace="0" width="450"//centerp  strong一见面就有了化学反应/strong/pp  华为第一次拜访徕卡,是在2014年的夏天。早在2013年底,华为通过邮件和徕卡沟通,表达希望合作的意愿,被礼貌地回绝了。后来又经过几次邮件的沟通,徕卡终于同意见面。/pp  见面是从参观开始的。2014年是徕卡的百年纪念,公司也搬进了刚落成的总部。总部从空中看像是一个“8”和“0”的组合,象征着徕卡的两个主要业务:望远镜和照相机。/pp  徕卡新总部的大厅,是一个对公众开放的小型博物馆,常年有摄影师的作品展览。/pp  在这里,李昌竹第一次近距离地观赏徕卡的全系列相机,第一次发现原来“这些照片”都是用徕卡相机拍的,也是在这里第一次知道了徕卡M Monochrome,那台著名的只能拍黑白照片的数码相机。/pp  一楼大厅和后面的工厂相连,参观者可以透过玻璃窗,观看后面的镜头生产和组装产线。/pp  第一次见面,双方介绍了各自公司的情况,徕卡CEO专门抽出了20分钟来听华为的介绍。双方约定,各自向高层汇报情况,并推动下一次见面。/pcenterimg style="width: 450px height: 484px " title="" alt="" src="http://imgs.tom.com/tech/201804/CONTENTFF25567415B84B21.jpg" height="484" hspace="0" border="0" vspace="0" width="450"//centerp  其实徕卡内部也颇不平静。虽然每年的销售还在平稳增长,虽然还保持着优厚的利润,但徕卡的高层也在思考:徕卡的使命是将优质的图像带给消费者,面对着越来越多的照片图像来自于智能手机的今天,徕卡如何把它的百年积累应用在智能手机上。/pp  为此,它需要一个战略合作伙伴,有相似的文化、愿景、实干的精神、极致的技术。/pp  一个是来自于中国的年轻高科技企业,一个是典型的德国百年老店,一见面便对上了眼,产生了化学反应。/pp  双方高层也互动起来,徕卡CEO专门从德国飞到上海,和华为消费者业务CEO当面敲定细节以加速谈判进程。/pp  经过几轮的深入沟通和评估,双方最后签订了战略合作协议。/pcenterimg style="width: 450px height: 484px " title="" alt="" src="http://imgs.tom.com/tech/201804/CONTENT3922AAEE31374201.jpg" height="484" hspace="0" border="0" vspace="0" width="450"//centerp  strong如何提升镜头模组的良率?/strong/pp  合作一开始双方就成立了技术专家组,分别由徕卡的Dr.Weiler和华为终端的Dr.Yi领导,主要的工作方向是光学设计和图像质量。/pp  手机虽小,五脏俱全。除了尺寸小一点,手机拍照机构的每个部分都和数码相机相对应。/pp  但手机的光学设计,有着天然的限制:塑料镜头的光学素质距离光学镜片有差距 由于尺寸的限制,传统光学镜头的设计经验可能无法完全继承 镜头模组的加工难度较大,必须考虑生产的良率、量产和成本。。/pp  光学系统的设计在高中低各个频段达到均衡,才能保证图像的细节、层次和轮廓的品质,同时徕卡专家在镜头的鬼影和炫光指标上也提出了很高的要求。/pp  鬼影和炫光是指在有较强的光线进入到镜头里,因为在镜片间多次反射,从而在视野中形成了像骷髅头一样的影子(鬼影)和点状的光斑(炫光)。/pp  绝大多数情况下,鬼影和炫光的影响要通过光学系统的设计,尽可能降到最低。/pcenterimg style="width: 450px height: 484px " title="" alt="" src="http://imgs.tom.com/tech/201804/CONTENT3FEBFA4B53BF4213.jpg" height="484" hspace="0" border="0" vspace="0" width="450"//centerp  当徕卡把他们的测试方法介绍给华为的专家和华为的供应商时,华为的人都惊呆了,因为徕卡测试鬼影和炫光用的光源相当于投影机的光源,比华为平时用的测试光源强了几十倍,只有在这种极端的强光源下,才能彻底暴露镜头在鬼影和炫光上的缺陷。/pp  徕卡坚持把徕卡镜头的测试标准用在手机镜头测试,因为这是优秀图像的基础。/pp  一开始的试制良率结果是令人崩溃的,每做出100组镜片,最后只能出品不超过10套符合要求的双镜头模组。/pp  徕卡的专家团队多次和华为一起拜访生产厂家,一起讨论改进方案,充分发挥他们在光学系统设计和生产上的经验,指导华为如何调整镜片形状和间隔,如何考虑周边系统对光学部分的影响。/pp  在大家夜以继日的努力下,良率在不断提升,终于在预定的截止日前,达到了量产的标准。/pp  试产时的每一批次镜头,都要拍摄大量样张做评测。有一次,徕卡专家针对一批和某TOP品牌手机的对比样张,给出了热情洋溢的评测结果,认为镜头的素质已经达到业界一流的水准。/pp  P9/P9 Plus的镜头是真正徕卡品质的镜头,属于SUMMARIT系列(光圈2.2-2.5)。大家可以试一下,用手机对着一个强光源拍照,可以发现很少鬼影和炫光,光晕柔和,稍加调整,就可以拍出不错的“吃光”作品。/pcenterstrongimg style="width: 450px height: 484px " title="" alt="" src="http://imgs.tom.com/tech/201804/CONTENT659702138EB74B76.jpg" height="484" hspace="0" border="0" vspace="0" width="450"//strong/centerpstrong  如何拍出有“徕卡味儿”的照片?/strong/pp  华为负责图像质量的专家发现,虽然双方在客观评估图像质量的测试仪器和平台是一样的,但徕卡使用的测试标准要高很多。/pp  比如,用来测试色彩还原的色卡,华为一般要求准确还原几十个色块就不错了,徕卡的标准是140个色块的准确还原。/pp  要达到徕卡的标准,对手机的器件、ISP算法以及后处理都提出了更高的要求。/pp  图像质量的测试包括颜色、对焦、纹理、噪声、畸变、动态等很多个维度,这是一个系统工程。/pp  同时,对图像的评测分为客观和主观两个部分。客观的指标是可量化可重复的,主观的评测主要是针对有代表性的场景。/pp  华为研发多媒体部有一个专门的图像评测团队,光是有代表性的固定场景就有100多种,还有随机的场景。/pp  图像测评团队每天不仅要拍大量的样片,还会接收大量的Beta测试图片,分析问题。/pp  评测团队的几位同事,几乎不分昼夜地工作,不管华为在美国还是欧洲传回有问题的样片,他们都能第一时间答复,澄清问题,反馈解决方案。/pp  2016年1月到2月间,李昌竹每天都拿着P9样机拍照,在每次升级后都能感觉到照片质量的进步,在一步步向着“徕卡味儿”靠拢。/pcenterimg style="width: 450px height: 484px " title="" alt="" src="http://imgs.tom.com/tech/201804/CONTENT4A033BCDE57A4ED0.jpg" height="484" hspace="0" border="0" vspace="0" width="450"//centerp  strong徕卡加持P9的诞生/strong/pp  2016年4月3日,英国伦敦,华为向来自全球的数百家媒体超过1500名记者发布了P9/P9 Plus,和徕卡联合研发的双镜头拍照系统,成为发布会最大的亮点和关注点。/pp  发布会上,华为邀请了4位国际顶级摄影师,向观众展示了他们用P9拍摄的照片,并分享了使用P9拍照的心得。/pp  4月15日,在上海,华为向中国的消费者发布了P9产品,徕卡的高层以及CEO都参加了发布会并致辞。/pp  P9的双镜头中有一颗是纯黑白感光器件,不仅承担着双目深度图计算、细节捕捉、辅助降噪等功能,而且还可以作为单独的摄像头,拍摄纯黑白照片。/pp  徕卡一百多年黑白影像的调校功力,不仅用在了徕卡M Monochrome上,也用在了P9身上。/pp  另外,P9通过双镜头以及激光测距,能够获得图像的深度图,这就使得通过算法调整焦点和景深成为可能。虽然是算法模拟,但其细腻柔和的焦外虚化效果,很好地烘托了被摄主体。/pp  P9的操作和UI(用户界面)也是华为和徕卡的设计师一起设计,很多操控菜单和徕卡M系列是一样的,字体也和徕卡一样,甚至按快门的声音都是按照徕卡M相机来调校的。/pp  李昌竹指出,华为与徕卡真正突破的,不仅仅是技术,而是从手机拍照到手机摄影的升华,是从影像捕捉到情感表达的跨越。华为和徕卡的合作带给用户的是,有温度的影像故事,有情感的自我表达,有情怀的人文互动。为用户提供高品质的产品,和用户在情感上达到共鸣,始终是华为追求的目标和境界。/pcenterimg style="width: 450px height: 484px " title="" alt="" src="http://imgs.tom.com/tech/201804/CONTENT89B9A9CFA06D438D.jpg" height="484" hspace="0" border="0" vspace="0" width="450"//center
  • 创建军民深度融合的西安模式 建设创新引领的现代产业体系
    centerimg alt="" src="http://epaper.xiancn.com/newxarb/res/2018-03/02/07/res03_attpic_brief.jpg" height="272" width="400"//centerp  西安军民融合产业创新发展的“西安模式”正在加速成型。/pcenterp style="text-align:center"img style="width: 400px height: 565px " title="" alt="" src="http://epaper.xiancn.com/newxarb/res/2018-03/02/07/res07_attpic_brief.jpg" height="565" hspace="0" border="0" vspace="0" width="400"//p/centerp style="text-align: center "strong  漫画中国/东方IC/strong/pp  春节期间一部《红海行动》在全国燃爆,热爱军事的影迷们更是从影片中领略到了无人机在现代战场上的风采。我市的潘祈帆是一名90后小伙子,受到不少军迷们的询问,因为他的公司曾参与了我军几款无人机的研发工作。“不能泄密是前提,但无人机作战的基本原理还是能给朋友们分享的。”/pp  我市80后的女创业者刘晓雅则早在2015年的九三阅兵时便激动地拍下阅兵视频发了朋友圈:“我们做的,我骄傲。”她作为联合创始人的诺维北斗,早已成为我市“民参军”企业的代表之一。/pp  西安,这座军工实力雄厚的城市,如今不仅拥有航空、航天、船舶、兵器、军工电子等优势军工主导产业,“军转民”、“民参军”也逐渐形成了全要素、多领域、高效益的发展格局,军民融合产业创新发展的“西安模式”正在加速成型。/pp  随着西安获批建设国家中心城市,深化军民融合,辐射带动地方经济发展,打造以西安为中心、横贯关中平原的军民融合产业带,建设创新引领的现代产业体系,成为西安的新使命,也为军民融合深度发展指明了方向。/pp  strong勇担国家使命 军民融合的西安实践/strong/pp  早在2015年,西安就成为全国8个全面创新改革试验区域之一,这为我市建设发展提供了新的契机与动力。根据国务院批复的《西安市系统推进全面创新改革试验方案》,相关重点任务就包括以特色产业基地(园区)为平台,建设国家军民深度融合创新示范区。/pp  肩负着军民深度融合发展的国家使命,西安的确有着自身的先天优势。国家发改委新闻发言人孟玮就认为“建设军民融合创新高地”是关中平原城市群发展规划中的一大亮点。因为从发展基础看,关中平原城市群工业体系完整、产业聚集度高,科教资源、军工科技等位居全国前列,航空航天、新材料、新一代信息技术等战略性新兴产业发展迅猛,是全国重要的装备制造业基地、高新技术产业基地、国防科技工业基地。而西安更是其中的龙头。/pp  综观西安发展的诸多重大机遇,军民融合是国家赋予西安最鲜明的改革试验任务。我市要在军民融合体制机制创新、军民资源开放共享、军工科技成果转化、军民融合服务体系、军民融合产业发展等方面形成“西安模式”,加快建设国家军民深度融合示范城市。为不辱使命,将先天优势转化为现实动力,市第十三次党代会报告提出,建设国家军民深度融合示范城市。/pp  为统筹我市军民融合发展,加强顶层设计和战略规划,我市成立了军民融合领导机构、常设办事机构。并出台了《西安市军民融合产业标准化项目扶持管理办法》、《西安市军工资源共享管理暂行办法》等一系列政策措施。同时,开展与本地军工企业、科研院所的干部交流。事实证明,人才的互动促进了信息交流、资源融合和项目合作,为全市军民融合的深度发展营造了良好的氛围。/pp  为鼓励军民融合创新发展,在空间承载上,我市构建以高新区军民融合产业园、经开区军民融合装备制造园、西安国家民用航天产业基地、西安兵器工业科技产业基地等为基础的“两园四基地”。在公共服务上,西安科技大市场搭建了军民融合信息服务平台,汇聚了各类军工和国防类科技资源,吸收“军转民”“民参军”等企业超过350家,吸纳数以百计的科研院所开放共享大型仪器设备,积极促进“产—学—研—用”合作和协同配套。在政府综合配套支持上,我市试行军品研制生产单位政策普惠,帮助“民参军”企业申请预研资金、科研经费,以及技术改造等优惠政策。/pp  经过全市共同努力,西安军民融合在体制机制、承载空间、公共服务、政府配套和主体活力等方面得到了明显优化。在军民深度融合的多个领域寻求重点突破,培育了一批重大创新平台、龙头工程、创新示范企业和新兴产业。/pp  strong发挥三大基地优势 军民融合引领大西安现代产业体系构建/strong/pp  “聚焦‘三六九’,振兴大西安”。盘点西安在军民融合行业中的产业亮点,西安依托西安装备制造业基地、高新技术产业基地、国防科技工业基地优势,不断深化军转民与民参军,军民融合产业园区功能日渐完善,带动作用愈发明显,基本形成了“以军带民、以民促军、军民融合”的多元化、集群化发展格局,创新引领着大西安现代产业体系的构建。据今年的市政府工作报告披露,我市民参军企业达到400家,军民融合产业营业收入突破2000亿元。/pp  在以装备制造为代表的工业领域,我市六大千亿级产业集群加速壮大,汽车产业迈入千亿级。百亿级工业企业总数达到11家。规模以上先进制造业总产值3167.7亿元、增长20.6%。我市创建“中国制造2025”试点示范城市通过国家评估。国家通用航空产业综合示范区已经获批。特别是在航空制造业领域,我市重点发展大型运输机、新舟系列飞机、无人机等整机制造 在航天领域,将加紧实施新一代运载火箭、卫星测控等重大项目 在兵器领域,将重点发展装备制造、新材料、新能源等产业 在电子信息领域,将重点发展通信、集成电路等产业 在船舶领域,将重点发展水中兵器、舰船动力等产业 在核技术领域,将重点发展民用核技术、核燃料、核电设备等产业。以新能源汽车和航空制造等为主的万亿级先进制造业正在积极构建。/pp  我市提出的重点打造“3+1”万亿级支柱性产业,除上述万亿级先进制造业,还包括“以电子信息为主的万亿级高新技术产业”。依托的也正是西安的科教资源优势和国防科技产业优势。/pp  科教资源优势,历来是西安的重大优势,据统计陕西和西安各类科研机构达到1176家,各类高等院校116所,国家级重点实验室22个,国家级工程技术研究中心7个等。其中大量为国防科工院所。国防科技产业更是西安的传统优势产业。我市已经云集军工单位超过110家,从业人员超过20万人,行业门类齐全,基本涵盖了航空、航天、兵器、船舶、电子信息、核技术6大领域,国防科技工业研发和生产能力居全国前列。其中,航天科研生产力量占全国近1/3,航空产业资产规模、人才总量和科技成果占全国近1/4,被称为中国的“航天动力之乡”和“航空城”,拥有集科研、试验、生产于一体的完整军工产业链,具有发展军民融合产业的“先天优势”。“构建科技产业园区、创新基地、公共研发平台、加速器、孵化器、众创空间等多层次、全体系的创新创业载体”被写入了我市“十三五”规划纲要,大量科技创业者在西安的开放沃土上耕耘收获。在高新技术产业中,以人工智能、航空航天、光电芯片、新材料、新能源、智能制造、信息技术、生物医药等为代表的硬科技“八路军”在我市蓬勃兴起,这些既是优势产业关键领域的创新方向,也正是战略性新兴产业的发展方向,是军民融合的重点产业领域。/pp  军民融合的深度发展正在推动传统优势产业转型升级,构建出富有竞争力的现代产业体系,为大西安乃至关中平原城市群追赶超越夯实产业基础。/pp  strong新使命新征程 军民融合发展的 西安模式正在推向深入/strong/pp  雄关漫道真如铁,而今迈步从头越。《关中平原城市群发展规划》提出,以西安全面创新改革试验为牵引,统筹推进军工、科研创新机制改革,做大做强航空、航天、船舶、兵器、军工电子等五大优势主导产业,创新军民融合发展路径,打造军民深度融合发展示范区,努力在创新驱动发展方面走在全国前列。/pp  要打造以西安为中心、横贯关中平原的军民融合产业带,先要做强自身。将建设国家中心城市的使命扛在肩上的西安,在军民深度融合发展的创新之路上加快了脚步。/pp  前不久,《西安市军民融合补短板促发展实施方案》出台,从加大体制机制改革力度、加快推进“军转民”步伐、支持军民融合公共服务平台建设、引进培育军民融合人才等9个方面发力。/pp  刚刚结束的两会上,市政府工作报告指出,要加快推进“两区”建设。聚焦统筹科技资源、深化军民融合两大改革任务,坚持复制推广改革经验与深化提升创新成果同步推进,体现西安特色,形成“西安模式”,2018年我市将积极拓展科技大市场功能,推广“一院一所一校”改革经验,实现全市技术合同交易额达到 850亿元,就地转化率超过30%,研发投入占生产总值比重保持在5%以上的目标。同时,扎实推进国家知识产权强市和运营试点城市建设,支持建好国家知识产权军民融合运营平台和中国(西安)高端装备制造产业保护中心。推动军工企业混合所有制改革和军工科研院所事转企改革,统筹抓好军民融合“两园三基地”建设,积极创建“国家军民融合标准化试点城市”。全年军民融合产业营业收入达到2500亿元以上,民参军企业数达到430家以上。支持高新区自创、自贸“双自联动”发展,打造引领创新发展、支撑开放合作的“双示范”样板区。/pp  为实现这一系列目标,我市计划在金融服务领域,围绕打造丝路国际金融中心的目标,加快建设科技、文化、军民融合3个金融示范区的建设,鼓励发展创业投资、私募股权投资、产业投资等基金,吸引更多境内外金融机构和高层次金融人才向西安聚集。在空间聚集上,坚持产业“特而强”、功能“聚而合”、形态“小而美”、机制“新而活”,突出生产、生活、生态“三生融合”,重点围绕硬科技、文化旅游、军民融合等优势资源,重点加快建设50个左右特色小镇。在产业规划上,推动物联网、虚拟现实、增强现实等新技术与实体经济深度融合。积极发展众创、众包、众扶、众筹等新模式,支持人工智能、增材制造、大数据等新产业聚集发展。/pp  深化军转民民参军,发展五大产业,搭建军民深度融合新平台,以西安全面创新改革试验为契机,建立多层次对接协调机制,创新军民融合发展路径……/pp  面对国家赋予西安的新使命,如今的西安已经在新的征程上,奋力奔跑,勇敢前行!/p
  • 深度融合|仪思奇与彼奥德共建战略同盟
    p style="text-indent: 2em text-align: justify "strongspan style="text-indent: 2em "仪器信息网讯/span/strongspan style="text-indent: 2em " 12月11日,汇聚3000人的碳材料行业盛会——第三届国际碳材料大会在中国· 上海跨采会展中心隆重召开。大会期间,知名颗粒特性表征产品供应商仪思奇(北京)科技发展有限公司和主营物理吸附和化学吸附的国产劲旅北京彼奥德电子技术有限责任公司正式达成战略同盟协议,将进行深度融合,携手共同发展。/span/pp style="text-indent: 2em text-align: justify "根据协议,仪思奇总经理杨正红将出任彼奥德技术总监,并将双方各业务板块和分散资源进行全面融合、统一组织和管理。仪思奇将承担彼奥德海外事业部的角色,彼奥德则将成为仪思奇的研发和生产加工基地。杨正红毕业于北京医学院药学系化学专业,参与过我国第一批国家重点实验室的建设和管理,并担任相关仪器组的组长。他长期担任著名的比表面和孔径分析厂商美国康塔仪器公司的首席代表,曾任康塔克默仪器贸易(上海)有限公司董事总经理,后联合业界几位资深的材料物性分析测试大咖正式创立仪思奇(北京)科技发展有限公司。作为在颗粒特性表征行业浸润20余年的专家,杨正红长年致力于激光粒度仪和比表面分析仪的技术发展和应用推广,为国内各厂商提供建议和咨询,在业内享有盛誉。/pp style="text-indent: 2em text-align: justify "img src="https://img1.17img.cn/17img/images/201812/uepic/205860af-8278-49af-a457-644accab5e0c.jpg" title="123.jpg" alt="123.jpg"//ppbr//pp style="text-indent: 2em text-align: justify "仪思奇成立于2016年8月19日,作为一家中关村高新技术企业,该公司是美国DT超声法粒度和zeta电位分析仪、比利时Occhio仪器公司图像法粒度粒形分析仪和法国CAD公司图像法zeta电位分析仪的中国总代理,也是上述公司的授权中国技术中心或Office。在推广新一代粒度分析技术的同时,仪思奇还致力于寻求将自主研发的仪器技术和高校科研院所仪器研发成果进行快速的产业化,并进行市场化转化。彼奥德成立于2003年1月9日,是一家集项目研发、产品生产、测试咨询于一身的研发制造型科技企业。公司拥有独立的技术研发、产品制造、组装测试及客户服务团队,并拥有完整的CNC数控加工平台与机械设计团队,主营仪器产品有比表面及孔径分析仪、真密度仪、物理及化学吸附仪等。/pp style="text-indent: 2em text-align: justify "“经过考察,我们认为彼奥德是相关行业界内规模程度和团队完善度最好的技术服务型企业之一,具备精密仪器设备的研发与制造所必须的条件。”谈到彼奥德,杨正红这样说到。他表示,自己的团队10多年来与彼奥德有过多次合作,曾一起开发配套产品,并取得良好效果。“彼奥德的领导层和员工平均年龄较低,有冲劲,有想法,开发能力强,做事情兢兢业业,近年来已引起美方的注意和赞誉。” /pp style="text-indent: 2em text-align: justify " img src="https://img1.17img.cn/17img/images/201812/uepic/bf630a3b-f6ff-4aa6-8f75-6afccfb647a6.jpg" title="合影.jpg" alt="合影.jpg"/ /pp style="text-align: center text-indent: 0em "strong彼奥德公司总经理丁辉(左)和仪思奇总经理杨正红(右)在签约后合影留念/strong/pp style="text-indent: 2em text-align: justify "惺惺相惜的能力认可、良好的合作基础、再加上一致的价值观,仪思奇和彼奥德的深度融合和重组可谓水到渠成。杨正红表示,这是一次理念高度契合的优势互补和互利共赢。此次融合,使仪思奇和彼奥德真正形成了“产学研商网”一体的仪器科技创新与服务平台,加速了双方拥有的先进仪器市场化和国产仪器的国际化进程,并对推动仪器行业创新发展产生积极影响。“目前国内仪器界存在着低水平重复和竞争的弊病,我们希望通过这个平台的建立吸引大家相互融合,发挥各自优势,避免恶性竞争,最终能捏紧拳头,形成集团优势,向高水平高技术看齐,以超越国外为目标,为国产仪器的快速腾飞共同奋斗!”/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制