当前位置: 仪器信息网 > 行业主题 > >

计米器

仪器信息网计米器专题为您提供2024年最新计米器价格报价、厂家品牌的相关信息, 包括计米器参数、型号等,不管是国产,还是进口品牌的计米器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合计米器相关的耗材配件、试剂标物,还有计米器相关的最新资讯、资料,以及计米器相关的解决方案。

计米器相关的资讯

  • 亚纳米皮米激光干涉位移测量技术与仪器
    1 引 言激光干涉位移测量技术具有大量程、高分辨力、非接触式及可溯源性等优势,广泛应用于精密计量、微电子集成装备和大科学装置等领域,成为超精密位移测量领域中的重要技术之一。近年来,随着这些领域的迅猛发展,对激光干涉测量技术提出了新的测量需求。如在基于长度等量子化参量的质量基准溯源方案中,要想实现1×10−8 量级的溯源要求,需要激光干涉仪长度测量精度达0. 1 nm 量级;在集成电路制造方面,激光干涉仪承担光刻机中掩模台、工件台空间位置的高速、超精密测量任务,按照“ 摩尔定律”发展规律,近些年要想实现1 nm 节点光刻技术,需要超精密测量动态精度达0. 1 nm,达到原子尺度。为此,国际上以顶级的计量机构为代表的单位均部署了诸如NNI、Nanotrace 等工程,开展了“纳米”尺度测量仪器的研制工程,并制定了测量确定度在10 pm 以下的激光干涉测量技术的研发战略。着眼于国际形势,我国同样根据先进光刻机等高端备、先进计量的测量需求,制定了诸多纳米计量技术的研发要。可见,超精密位移测量技术的发展对推进我国众多大高端装备具有重要战略意义,是目前纳米度下测量领域逐步发展的重大研究方向。2 激光干涉测量原理根据光波的传播和叠加原理,满足相干条件的光波能够在空间中出现干涉现象。在激光干涉测量中,由于测量目标运动,将产生多普勒- 菲佐(Doppler-Fizeau效应,干涉条纹将随时间呈周期性变化,称为拍频现象。移/相移信息与测量目标的运动速度/位移关系满足fd = 2nv/ λ , (1)φd = 2nL/ λ , (2)式中:fd为多普勒频移;φd为多普勒相移;n 为空气折射率;v 和L 为运动速度和位移;λ 为激光波长。通过对干涉信号的频率/相位进行解算即可间接获得测量目标运动过程中速度/位信息。典型的干涉测量系统可按照激光光源类型分为单频(零差式)激光干涉仪和双频(外差式)激光干涉仪两大类。零差式激光干涉测量基本原理如图1 所示,其结构与Michelson 干涉仪相仿,参考光与测量光合光干涉后,经过QPD 输出一对相互正交的信号,为Icos = A cos (2πfd t + φ0 + φd ) , (3)Isin = A sin (2πfd t + φ0 + φd ) , (4)式中:(Icos, Isin)为QPD 输出的正交信号;A 为信号幅值;φ0 为初始相位。结合后续的信号处理单元即可构成完整、可辨向的测量系统。图1 零差激光干涉测量原理外差式激光干涉仪的光源是偏振态相互垂直且具有一定频差Δf 的双频激光,其典型的干涉仪结构如图2 所示。双频激光经过NPBS 后,反射光通过偏振片发生干涉,形成参考信号Ir;透射光经过PBS,光束中两个垂直偏振态相互分开,f2 光经过固定的参考镜反射,f1 光经运动的测量镜反射并附加多普勒频移fd,与反射光合光干涉后形成测量信号Im。Ir = Ar cos (2πΔft + φr ) , (5)Im = Am cos (2πΔft + φm ), (6)式中:Δf、A 和φ 分别为双频激光频差、信号幅值和初始相位差。结合式(5)和式(6),可解算出测量目标的相位信息。图2 外差激光干涉测量原理零差式激光干涉仪常用于分辨力高、速度相对低并且轴数少的应用中。外差式激光干涉仪具有更强的抗电子噪声能力,易于实现对多个目标运动位移的多轴同步测量,适用于兼容高分辨力、高速及多轴同步测量场合,是目前主流的干涉结构之一。3 激光干涉测量关键技术在超精密激光干涉仪中,波长是测量基准,尤其在米量级的大测程中,要实现亚纳米测量,波长准确度对测量精度起到决定性作用。其中,稳频技术直接影响了激光波长的准确度,决定激光干涉仪的精度上限;环境因素的变化将影响激光的真实波长,间接降低了实际的测量精度。干涉镜组结构决定光束传播过程中的偏振态、方向性等参数,影响干涉信号质量。此外,干涉信号相位细分技术决定激光干涉仪的测量分辨力,并限制了激光干涉仪的最大测量速度。3. 1 高精度稳频技术在自由运转的状态下,激光器的频率准确度通常只有±1. 5×10−6,无法满足超精密测量中10−8~10−7的频率准确度要求。利用传统的热稳频技术(单纵模激光器的兰姆凹陷稳频方法等),可以提高频率准确度,但系统中稳频控制点常偏离光功率平衡点,输出光频率准确度仅能达2×10−7量级,无法完全满足超精密测量的精度需求。目前,超精密干涉测量中采用的高精度稳频技术主要有热稳频、饱和吸收及偏频锁定3 种。由于激光管谐振腔的热膨胀特性,腔长随温度变化呈近似线性变化。因此,热稳频方法通过对谐振腔进行温度控制实现对激光频率的闭环调节。具体过程为:选定稳定的参考频标(双纵模激光器的光功率平衡点、纵向塞曼激光器频差曲线的峰/谷值点),当激光频率偏离参考频标时,产生的频差信号用于驱动加热膜等执行机构进行激光管谐振腔腔长调节。热稳频方法能够使激光器的输出频率的准确度在10−9~10−8 量级,但原子跃迁的中心频率随时间推移受腔内气体气压、放电条件及激光管老化的影响会发生温度漂移。利用稳频控制点修正方法,通过对左右旋圆偏振光进行精确偏振分光和对称功率检测来抑制稳频控制点偏移的随机扰动,同时补偿其相对稳定偏置分量。该方法显著改善了激光频率的长期漂移现象,阿伦方差频率稳定度为1. 9×10−10,漂移量可减小至(1~2)×10−8。稳频点修正后的激光波长仍存在较大的短期抖动,主要源于激光器对环境温度的敏感性,温差对频率稳定性的影响大。自然散热型激光器和强耦合水冷散热型激光器均存在散热效果不均匀和散热程度不稳定的问题。多层弱耦合水冷散热结构为激光管提供一个相对稳定的稳频环境,既能抑制外界环境温度变化对激光管产生的扰动,冷却水自身的弱耦合特性又不影响激光管性能,进而减小了温度梯度和热应力,提高了激光器对环境温度的抗干扰能力,减少了输出激光频率的短期噪声,波长的相对频率稳定度约为1×10−9 h−1。碘分子饱和吸收稳频法将激光器的振荡频率锁定在外界的参考频率上,碘分子饱和吸收室内处于低压状态下(1~10 Pa)的碘分子气体在特定频率点附近存在频率稳定的吸收峰,将其作为稳频基准后准确度可达2. 5×10−11。但由于谐振腔损耗过大,稳频激光输出功率难以超过100 μW 且存在MHz 量级的调制频率,与运动目标测量过程中产生的多普勒频移相近。因此,饱和吸收法难以适用于多轴、动态的测量场合。偏频锁定技术是另一种高精度的热稳频方法,其原理如图3 所示,通过实时测量待稳频激光器出射光与高精度碘稳频激光频差,获得反馈控制量,从而对待稳频激光器谐振腔进行不同程度加热,实现高精度稳频。在水冷系统提供的稳频环境下,偏频锁定激光器的出射光相对频率准确度优于2. 3×10−11。图3 偏频锁定热稳频原理3. 2 高精度干涉镜组周期非线性误差是激光干涉仪中特有的内在原理性误差,随位移变化呈周期性变化,每经过半波长,将会出现一次最大值。误差大小取决光束质量,而干涉镜组是决定光束质量的主导因素。传统的周期非线性误差可以归结为零差干涉仪的三差问题和外差干涉仪的双频混叠问题,产生的非线性误差机理如图4 所示,其中Ix、Iy分别表示正交信号的归一化强度。其中,GR为虚反射,MMS 为主信号,PISn 为第n 个寄生干涉信号,DFSn 为第n 阶虚反射信号。二者表现形式不完全相同,但都会对测量结果产生数纳米至数十纳米的测量误差。可见,在面向亚纳米、皮米级的干涉测量技术中,周期非线性误差难以避免。图4 零差与外差干涉仪中的周期非线性误差机理。(a)传统三差问题与多阶虚反射李萨如图;(b)多阶虚反射与双频混叠频谱分布Heydemann 椭圆拟合法是抑制零差干涉仪中非线性误差的有效方法。该方法基于最小二乘拟合,获得关于干涉直流偏置、交流幅值以及相位偏移的线性方程组,从而对信号进行修正。在此基础上,Köning等提出一种基于测量信号和拟合信号最小几何距离的椭圆拟合方法,该方法能提供未知模型参数的局部最佳线性无偏估计量,通过Monte Carlo 随机模拟后,其非线性幅值的理论值约为22 pm。在外差干涉仪中,双频混叠本质上是源于共光路结构中双频激光光源和偏振器件分光的不理想性,称为第1 类周期非线性。对于此类周期非线性误差,补偿方法主要可以从光路系统和信号处理算法两个方面入手。前者通过优化光路可以将非线性误差补偿至数纳米水平;后者通过椭圆拟合法提取椭圆特征参数,可以将外差干涉仪中周期非线性误差补偿至亚纳米量级;两种均属补偿法,方法较为复杂,误差难以抑制到0. 1 nm 以下。另一种基于空间分离式外差干涉结构的光学非线性误差抑制技术采用独立的参考光路和测量光路,非共光路使两路光在干涉前保持独立传播,从根本上避免了外差干涉仪中频率混叠的问题,系统残余的非线性误差约为数十皮米。空间分离式干涉结构能够消除频率混叠引起的第1 类周期非线性误差,但在测量结果中仍残余亚纳米量级的非线性误差,这种有别于频率混叠的残余误差即为多阶多普勒虚反射现象,也称为第2 类周期非线性误差。虚反射现象源自光学镜面的不理想分光、反射等因素,如图5所示,其中MB 为主光束,GR 为反射光束,虚反射现象普遍存在于绝大多数干涉仪结构中。虚反射效应将会使零差干涉仪中李萨如图的椭圆产生畸变,而在外差干涉仪中则出现明显高于双频混叠的高阶误差分量。图5 多阶虚反射现象使用降低反射率的方法,如镀增透膜、设计多层增透膜等,能够弱化虚反射现象,将周期非线性降低至亚纳米水平;德国联邦物理技术研究院Weichert等通过调节虚反射光束与测量光束间的失配角,利用透镜加入空间滤波的方法将周期非线性误差降低至±10 pm。上述方法在抑制单次的虚反射现象时有着良好的效果,但在面对多阶虚反射效应时作用有限。哈尔滨工业大学王越提出一种适用于多阶虚反射的周期非线性误差抑制方法,该方法利用遗传算法优化关键虚反射面空间姿态,精准规划虚反射光束轨迹,可以将周期非线性误差抑制到数皮米量级,突破了该领域10 pm 的周期非线性误差极限。3. 3 高速高分辨力相位细分技术在激光干涉仪中,相位细分技术直接决定系统的测量精度。实现亚纳米、皮米测量的关键离不开高精度的相位细分技术。相位的解算可以从时域和频域两个角度进行。最为常用的时域解算方法是基于脉冲边缘触发的相位测量方法,该方法利用高频脉冲信号对测量信号与参考信号进行周期计数,进而获取两路信号的相位差。该方法的测量速度与测量分辨力模型可表达为vm/dLm= Bm , (7)式中:vm 为测量速度;dLm 为测量分辨力;Bm 为系统带宽。在系统带宽恒定的情况下,高测速与高分辨力之间存在相互制约关系。只有提高系统带宽才能实现测量速度和测量分辨力的同时提升,也因此极度依赖硬件运行能力。在测量速度方面,外差激光干涉仪的测量速度主要受限于双频激光频差Δf,测量目标运动产生的多普勒频移需满足fd≤Δf。目前,美国的Zygo 公司和哈尔滨工业大学利用双声光移频方案所研制的结构的频差可达20 MHz,理论的测量速度优于5 m/s。该方法通过增加双频激光频差来间接提升测量速度,频差连续可调,适用于不同测量速度的应用场合,最大频差通常可达几十MHz,满足目前多数测量速度需求。从干涉结构出发,刁晓飞提出一种双向多普勒频移干涉测量方法,采用全对称的光路结构,如图6所示,获得两路多普勒频移方向相反的干涉信号,并根据目标运动方向选择性地采用不同干涉信号,保证始终采用正向多普勒频移进行相位/位移解算。该方法从原理上克服了双频激光频差对测量速度的限制,其最大测量速度主要受限于光电探测器带宽与模/数转换器的采样频率。图6 全对称光路结构在提升测量分辨力方面,Yan 等提出一种基于电光调制的相位调制方法,对频率为500 Hz 的信号进行周期计数,该方法实现的相位测量标准差约为0. 005°,具有10 pm 内的超高位移测量分辨力,适用于低速测量场合。对于高速信号,基于脉冲边缘触发的相位测量方法受限于硬件带宽,高频脉冲频率极限在500 MHz 左右,其测量分辨力极限约为1~10 nm,难以突破亚纳米水平。利用高速芯片,可以将处理带宽提升至10 GHz,从而实现亚纳米的测量分辨力,但成本较大。闫磊提出一种数字延时细分超精细相位测量技术,在硬件性能相同、采样频率不变的情况下,该方法利用8 阶数字延迟线,实现了相位的1024 电子细分,具有0. 31 nm 的位移测量分辨力,实现了亚纳米测量水平。该方法的等效脉冲频率约为5 GHz,接近硬件处理极限,但其测量速度与测量分辨力之间依旧存在式(7)的制约关系。德国联邦物理技术研究院的Köchert 等提出了一种双正交锁相放大相位测量方法,如图7所示,FPGA 内部生成的理想正交信号分别与外部测量信号、参考信号混频,获取相位差。利用该方法,可以实现10 pm 以内的静态测量偏差。双正交锁相放大法能够处理正弦模拟信号,充分利用了信号的频率与幅值信息,其测量速度与测量分辨力计算公式为vm/0. 1λ0= Bm , (8)dLm/0. 5λ0=Bs/dLc, (9)式中:Bs为采样带宽;dLc为解算分辨力。图7 双正交锁相方法测量原理可见,测量速度与测量分辨力相互独立,从原理上解决了高测速与高分辨力相互制约的矛盾,为激光干涉仪提供了一种兼顾高速和高分辨力的相位处理方法。在此基础上,为了适应现代工业中系统化和集成化的测量需求,美国Keysight 公司、Zygo 公司及哈尔滨工业大学相继研发出了光电探测与信号处理一体化板卡,能够实现高于5 m/s 的测量速度以及0. 31 nm 甚至0. 077 nm 的测量分辨力。此外,从变换域方面同样可以实现高精度的相位解算。张紫杨等提出了一种基于小波变换的相位细分方法,通过小波变换提取信号的瞬时频率,计算频率变化的细分时间,实现高精度的位移测量,该方法的理论相位细分数可达1024,等效位移精度约为0. 63 nm。Strube 等利用频谱分析法,从信号离散傅里叶变换(DFT)后的相位谱中获取测量目标的位移,实现了0. 3 nm 的位移测量分辨力。由于采用图像传感器为光电转换器,信号处理是以干涉条纹为基础的,适用于静态、准静态的低速测量场合。3. 4环境补偿与控制技术环境中温度、气压及湿度等变化会引起空气折射率变化,使得激光在空气中传播时波长变动,导致测量结果产生纳米量级的误差。环境误差补偿与控制技术是抑制空气折射率误差的两种重要手段。补偿法是修正空气折射率误差最常用的方法,具有极高的环境容忍度。采用折光仪原理、双波长法等可以实现10−7~10−8 量级的空气折射率相对测量不确定度。根据Edlen 经验公式,通过精确测定环境参数(温度、湿度和大气压等),可以计算出空气折射率的精确值,用于补偿位移测量结果,其中温度是影响补偿精度的最主要因素。采用高精度铂电阻传感器,设备可以实现1 mK 的温度测量精度,其折射率的补偿精度可达10−8量级,接近Edlen 公式的补偿极限。环境控制技术是保证干涉仪亚纳米测量精度的另一种有效方法。在现行的DUV 光刻机中,采用气浴法,建立3 mK/5 min 以内恒温、10 Pa/5 min 以内恒压、恒湿气浴场,该环境中能够实现10−9~10−8 量级空气折射率的不确定度。对于深空引力波探测、下一代质量基准溯源等应用场合,对激光干涉仪工作的环境控制要求更为严苛,测量装置需置于真空环境中,此时,空气折射率引入的测量误差将被彻底消除。4 激光干涉测量技术发展趋势近年来,超精密位移测量的精度需求逐渐从纳米量级向亚纳米甚至皮米量级过渡。国内在激光干涉仪中的激光稳频、周期非线性误差消除和信号处理等关键技术上均取得了重大的突破。在LISA 团队规划的空间引力波探测方案中,要求在500 万千米的距离上,激光干涉仪对相对位移量需要具有10 pm 以内的分辨能力。面对更严苛的测量需求,超精密位移测量依然严峻面临挑战。激光干涉测量技术的未来发展趋势可以归结如下。1)激光波长存在的长期漂移和短期抖动是限制测量精度提升的根本原因。高精度稳频技术对激光波长不确定度的提升极限约为10−9量级。继续提升激光波长稳定度仍需要依托于下一阶段的工业基础,改善激光管本身的物理特性,优化光源质量。2)纳米级原理性光学周期非线性误差是限制激光干涉仪测量精度向亚纳米、皮米精度发展的重要瓶颈。消除和抑制第1 类和第2 类周期非线性误差后,仍残余数十皮米的非线性误差。由于周期非线性误差的表现形式与耦合关系复杂,想要进一步降低周期非线性误差幅值,需要继续探索可能存在的第3 类非线性误差机理。3)测量速度与测量分辨力的矛盾关系在动态锁相放大相位测量方法中得到初步解决。但面对深空引力波探测中高速、皮米的测量要求,仍然需要进一步探索弱光探测下的高分辨力相位细分技术;同时,需要研究高速测量过程中的动态误差校准技术。高速、高分辨力特征依旧是相位细分技术今后的研究方向。全文下载:亚纳米皮米激光干涉位移测量技术与仪器_激光与光电子学进展.pdf
  • 新型纳米级激光发生器新型研发成功
    p style="line-height: 1.75em "  据美国劳伦斯伯克利国家实验室研究人员报告说,他们找到一种新的方法,可用于制作纳米尺度的线材以及色彩可调谐的纳米级激光发生器。/pp style="line-height: 1.75em "  这些线材最小直径200纳米,融入多种其他材料,能够发出明亮和稳定的激光,有望应用于光电子领域,实现数据传输等应用。/pp style="line-height: 1.75em "  这项研究由劳伦斯伯克利国家实验室研究员兼加利福尼亚大学伯克利分校化学教授杨培东主持。借助一种简单的化学浸渍溶剂工艺,研究人员让材料“自我组合”成纳米晶体、板材和线材。/pp style="line-height: 1.75em "  研究人员在美国《国家科学院学报》上发表论文介绍说,他们把一种含铅薄膜浸入含有铯、溴和氯的甲醇溶剂,再将溶剂加热至50摄氏度,所形成的含铯、铅和溴的晶体结构线材直径在200纳米至2300纳米之间,长度在2微米至40微米之间。/pp style="line-height: 1.75em "  杨培东说:“让人惊异的是,这其中的化学过程相当简单。”相比之下,如果以标准工艺制作纳米线材,需要昂贵的仪器和高温等苛刻条件,效果却未必理想。/pp style="line-height: 1.75em "  在激光实验中,纳米线材作为激光发生器被置于一块石英基底上,在另外一个激光发生器激发下发出光线。研究人员确认,接受单个脉冲持续时间极短(仅为1秒钟的10万万亿分之一)的可见紫色激光脉冲激发后,纳米级激光发生器发出的光线超过10亿个周期,显示出极为稳定的性能。/pp style="line-height: 1.75em "  按照杨培东的说法,这是据他所知迄今为止第一个完全以无机材料、即不含碳材料制作的纳米级激光发生器。而且实验表明,这种激光器发出的光线在一定范围内可调谐,包括可见绿光和蓝光等波段。/pp style="line-height: 1.75em "  借助透视电子显微镜,研究人员发现,纳米线材的晶体结构与天然生成的钙钛矿相似,类似于盐,易受空气中水分的侵蚀。针对这一缺陷,杨培东设想,可以用聚合物或其他材料涂覆纳米线材,保护它免受侵蚀。/pp style="line-height: 1.75em "  纳米级激光发生器所使用的这类纳米新材料,在开发新一代高效太阳能电池中同样显现应用前景。杨培东说,创制纳米级激光发生器有望为这些材料开拓一个全新前沿应用领域。/ppbr//p
  • 大米食味计:评估其食味品质【恒美新品】
    点击了解更多→大米食味计:评估其食味品质【恒美新品】,大米食味计是一种用于检测米饭口感和质量的专业设备,通过对大米的物理和化学属性进行测量和分析,以评估其食味品质。 大米食味计通常采用近红外光谱技术来分析大米样本,这是一种无损检测技术,可以通过测量光谱吸收和反射率来推断样品的化学成分和物理属性。除了近红外光谱技术,大米食味计还可能采用其他分析方法,如色谱、质谱、核磁共振等,以进一步提供关于大米成分和品质的信息。 大米食味计可以检测米饭的颜色、气味、大小等指标,同时还可以模拟出嚼口感、硬度、致韧性、滋味值、湿度、韧性等口感指标,对大米口感和品质进行全面的评估。在米饭供应链中,大米食味计测定仪也可以作为一个有效的工具,帮助米饭生产和销售企业优化供应链,降低成本和风险,提高服务质量和满意度。
  • 日本开发波长为0.15纳米的原子级激光器
    据《日刊工业新闻》报道,日本电气通信大学、理化学研究所、东京大学等多个大学和研究机构组成的研究团队,最近成功开发波长为0.15纳米的原子级激光器。据称,该激光器的波长是目前世界最短,比现有最短波长激光器的波长小一个数量级。该研究成果已发表在英国《自然》杂志电子版。  研究团队在20微米厚的铜箔上照射X射线,使其产生X射线激光,从而通过微小材料制成高效X射线激光器。据报道,该X射线激光器的研制成功,首次在硬X射线区实现了利用原子能级差的原子级激光器。该激光器在可视光至近红外光谱有广泛应用,但较难使用于包括X射线在内的短波长领域。  研究团队利用X线自由电子激光设备(SACLA:SPring-8 Angstrom Compact Free Electron Laser )去除围绕原子核旋转的电子中最靠近原子核的一个电子,通过几乎同时射入的弱X射线,成功激发了被称为傅立叶极限的理想激光。  报道称,该研究成果的意义还在于,利用作为导线的铜箔可实现理想的X射线激光器,预示了将来使用电路板铜线实现X射线激光器的可能性。
  • 《自然》:世界最小纳米激光器在美问世
    研究人员最近展示了一种有史以来最小的激光器,其包含一个直径仅为44纳米的纳米粒子。该器件因能产生一种称为表面等离子的辐射而被命名为“spaser”。这项新技术可允许光子局限在非常小的空间内,一些物理学家据此认为,就像晶体管之于现今的电子产品,spaser也许将成为未来光学计算机的基础。 美国诺福克大学材料研究中心物理学教授米哈伊尔诺基诺夫表示,现今最好的消费电子产品可在大约10吉赫兹的速度上运行,但未来的光学器件的运行速度可达到几百太赫兹范围。一般来说,光学器件难以实现小型化,是因为光子无法限定在比其一半波长更小的区域内。但以表面等离子形式与光作用的器件就能将光限定在非常紧密的位点上。 诺基诺夫说,目前科学家们正在基于等离子的新一代纳米电子设备的理论研究上努力探索。与以前的其他等离子器件不同的是,spaser能有效地产生和放大这些光波。诺基诺夫及同事在近期的《自然》杂志上发表了此项研究成果。 spaser包含一个直径仅为44纳米的单纳米粒子,激光器的其他不同部分的功能则与常规激光器无异。在普通激光器中,光子通过可放大光线的增益介质在两个镜面间反弹。而spaser中的光则围绕一个等离子形式的纳米粒子核中的金球表面进行反弹。 此中的挑战是确保这种能量不会快速从金属表面消散。诺基诺夫及其团队通过在金球上喷涂嵌有染料的硅层来实现这一要求。硅层可作为增益媒介。来自spaser的光可作为等离子体保持在限定区域,亦可作为可见光范围的光子离开粒子表面。像一个激光器一样,spaser必须“泵”入必要的能量,研究人员利用光脉冲轰击粒子来达到这个目的。 常规激光器的大小取决于其使用的光波长,反射面间的距离不能小于光波长的一半,在可见光范围大约为200纳米。spaser则是利用等离子体解决了此局限。诺基诺夫说,spaser也许将能做到一个纳米大小,但任何小于这一尺寸的纳米粒子,其功能就会丧失。 美国乔治亚州大学物理学教授马克斯托克曼称,和目前最快的晶体管相比,spaser虽具有同等的纳米尺度,但其速度要快上1000倍,这为制造速度超快的放大器、逻辑元件和微处理器提供了可能。 诺基诺夫则表示,spaser不仅能在光子计算机领域找到用武之地,也能在现今使用常规激光器的领域得到应用。更为现实的应用领域就是磁性数据存储业。现今用于硬盘的磁性数据存储介质已达到其物理极限,扩展其存储能力的方法之一就是在其记录过程中用非常小的光点对介质进行加热,而这必须使用纳米激光器才能做到。
  • 硅表面生长纳米激光器技术问世
    据美国物理学家组织网近日报道,美国加利福尼亚大学伯克利分校科学家利用新技术直接在硅表面生长出了极微小的纳米柱,形成一种亚波长激光器,这一成果将为制造纳米光学设备如激光器、光源检测仪、调制器、太阳能电池等带来新的突破。  硅材料奠定了现代电子学的基础,但它在发光领域还有很多不足之处。工程人员转向了另外一族名为III-V半导体的新材料,以此来制造光基元件,如发光二极管和激光器。  加利福尼亚大学伯克利分校的研究人员通过金属—有机化学蒸发沉积的方法,在400摄氏度条件下,用一种III-V族材料铟镓砷在硅表面生长出纳米柱。这种纳米柱有着独特的六角形晶体结构,能将光线控制在它微小的管中,形成一种高效导控光腔。它能在室温下产生波长约950纳米的近红外激光,光线在其中以螺旋形式上下传播,经过光学上的相互作用而得以放大。  研究人员指出,将III-V和硅结合制成单一的光电子芯片面临的最大障碍是,目前制造硅基材料的工业生产设备无法与制造III-V设备兼容。“要让III-V半导体在硅表面上生长,与硅制造设备兼容是关键,但由于经济和技术方面的原因,目前的硅电子生产设施很难改变。我们选用了一种能和CMOS(互补金属氧化半导体,用于制造集成线路)兼容的生长工艺,在硅芯片上成功整合了III-V纳米激光器。传统方法生长III-V半导体,要在700摄氏度或更高温度下进行,这会毁坏硅基电子元件。而新工艺在400摄氏度下就能生长出高质量III-V材料,保证了硅基电子元件正常发挥功能。”主要研究人员、加州大学伯克利分校电学工程与计算机科学教授康妮张-哈斯南说。  张-哈斯南还指出,这种亚波长激光器技术将对多科学领域产生广泛影响,包括材料科学、晶体管技术、激光科学、光电子学和光物理学,促进计算机、通讯、展示和光信号处理等领域光电子学的革命。“最终,我们希望加强这些激光的特征性能,以实现光子和电子设备的结合。”
  • 纳米级量子传感器实现高清成像
    日本东京大学科学家最近利用六方氮化硼二维层中的硼空位,首次完成了在纳米级排列量子传感器的精细任务,从而能够检测磁场中的极小变化,实现了高分辨率磁场成像。氮化硼是一种含有氮和硼原子的薄晶体材料。氮化硼晶格中人工产生的自旋缺陷适合作为传感器。(a)六方氮化硼中的硼空位缺陷。空位充当用于磁场测量的原子大小的量子传感器,对磁场敏感,像一个纳米“磁针”。(b)量子传感器纳米阵列的光致发光。通过分析响应微波的光致发光强度的变化,研究人员可测量每个传感器点的磁场。图片来源:东京大学研究团队研究团队在制作出一层薄的六角形氮化硼薄膜后,将其附着在目标金丝上,然后用高速氦离子束轰击薄膜,这样就弹出了硼原子,形成了100平方纳米的硼空位。每个光点包含许多原子大小的空位,它们的行为就像微小的磁针。光斑距离越近,传感器的空间分辨率就越好。当电流流经导线时,研究人员测量每个点的磁场,发现磁场的测量值与模拟值非常接近,这证明了高分辨率量子传感器的有效性。即使在室温下,研究人员也可检测到传感器在磁场存在的情况下自旋状态的变化,从而检测到局部磁场和电流。此外,氮化硼纳米薄膜只通过范德华力附着在物体上,这意味着量子传感器很容易附着在不同的材料上。高分辨率量子传感器在量子材料和电子设备研究中具有潜在用途。例如,传感器可帮助开发使用纳米磁性材料作为存储元件的硬盘。原子大小的量子传感器有助于科学家对人脑进行成像、精确定位、绘制地下环境图、检测构造变化和火山喷发。此次的纳米级量子传感器也将成为半导体、磁性材料和超导体应用的“潜力股”。
  • 科学家刷新纳米线激光器波长调谐纪录
    在国家自然科学基金纳米科技重大研究计划的重点项目等支持下,湖南大学教授邹炳锁领导的纳米光子学小组与美国亚利桑那州立大学教授宁存政领导的纳米光子学小组合作,成功演示了调谐范围从500到700纳米范围调谐的半导体激光芯片,创下了一个新的纳米线激光器调谐范围的世界纪录。相关文章发表在最近一期的《美国化学会杂志》上。  宽调谐的半导体激光器拥有许多从光谱技术、光通讯,到芯片原位的生物或分子检测的用途。但实现这样的激光器一直很困难,主要是外延生长的半导体微结构的晶格失配有限,不能大幅度成分调节,因而对半导体带边影响有限,而发光受制于半导体的带边,因此无法实现大范围调谐。邹炳锁领导的纳米光子学小组成员潘安练采用一维纳米结构生长技术,可以将晶格失配大部分驰豫掉或全部消除,这样,可能得到大范围成分调节的半导体纳米线或带。  纳米线沿一个方向布满整个基片,成分均匀变化,可以看到一个连续颜色可变的激光发射带。除了激射外,这样的合金半导体还可能在光伏太阳能电池、分子和生物检测等方面得到很大应用。  邹炳锁领导的团队近年一直致力于一维半导体纳米结构光子学研究,并在国内率先开展纳米线光波导和纳米激光器等方面的研究,处于国内领先和国际先进水平,在多功能半导体纳米结构光子学的研究上取得了多项重要的研究成果。如潘安练、邹炳锁等教授首次合成发光颜色可以在可见光波段可调的半导体合金纳米带和纳米线,率先实现光在纳米线内长程(百微米量级)光波导,实现了硫化镉纳米线常温下的受激发射现象等。小组成员陈克求教授、王玲玲教授等对一维波导理论的研究也取得了重要成果。该小组已有多篇论文在国际著名学术期刊上发表。
  • 佳航仪器发布密度计 密度仪 U型密度仪Digipol-D50新品
    Digipol-D50密度计提高效率创新点: 1:自动化集成,实现一键测定功能; 2:内置帕尔贴控温,提高精度和稳定性; 3:高清视频避免气泡影响; 4: 可通过打印机直接打印数据; 5: 符合21CFR Part 11、审计追踪、药典及电子签名。 Digipol-D50全自动密度计采用U型管振荡法原理,完美结合Peltier精确控温技术和高清视频摄像技术,不但为用户提供准确、稳定、可靠的测试结果,还为用户带来高效便捷的测试感受。高清视频可方便看到样品中是否有气泡影响,采用脉冲激发,高精度检测技术,方便用户准确快速测得样品密度及密度相关参数。使用领域: 密度计在化工、石化、食品、医药研究中据有重要地位,是食品、药品、香料、日化、石油及其他液体样品测试的必备仪器。主要技术指标: 测量范围:0 g/cm3 至 3 g/cm3分辨率 :±0.00001g/cm3重复性 :±0.0001g/cm3准确度 :±0.0003g/cm3进样方式 :全自动(兼容手动)是否带视频:是控温方式 :帕尔贴控温控温范围 :5℃-45℃控温稳定度:±0.02℃显示方式 :10.4寸FTF彩色触摸彩屏数据存储 :16G输出方式:USB,RS232,RJ45,SD卡,U盘 用户管理:有/三级权限管理审计追踪:有电子签名:有自定义方法库:有导出文件验证高等级防护MD5:有WIFI打印:有多种文件格式导出:PDF和Excel尺 寸:480 mm x 320 mm x 200 mm(长 *宽*高)重 量:8kg电 源:110V-230V 50HZ/60HZ创新点:1:自动化集成,实现一键测定功能; 2:内置帕尔贴控温,提高精度和稳定性; 3:高清视频避免气泡影响; 4: 可通过打印机直接打印数据; 5: 符合21CFR Part 11、审计追踪、药典及电子签名。密度计 密度仪 U型密度仪Digipol-D50
  • Queensgate仪器推出双传感器技术 实现亚纳米级分辨率
    【2013年1月10日,上海】Elektron Technology公司旗下品牌Queensgate近日宣布推出其革命性新款双传感器技术(Dual Sensor Technology)。这一尖端的控制技术与以往相比,可实现更快、更准确以及更稳定的显微镜物镜聚焦。 全新双传感器技术克服了传统纳米定位系统的限制,可提供更快的阶跃响应,提高有效载荷出现变化时的稳定性,并且显著增加自动显微术应用时的机械带宽。     NPC-A-1110DS 独立式模拟单轴闭合环路传动装置  Queensgate推出的双传感器技术彰显了纳米定位技术领域的阶跃性变化是目前业内最尖端的控制技术之一。目前Queensgate的OSM-Z- 100B 100μm目标扫描机构以及NPC-A -1110DS独立式模拟单轴闭合环路传动装置已率先采用这一革命性创新技术系统。其中最新的OSM-Z-100B 100μm目标扫描机构,它将双传感器技术与Queensgate著名的电容纳米传感器(NanoSensors?)的卓越性能结合在一起,以非凡的聚焦稳定性实现亚纳米级分辨率。这项突破性的技术能够应用于各种袖珍模拟和数字控制器,其操作简便,为用户提供顶尖性能。 OSM-Z-100B 100 μm 目标扫描机构  Queensgate 是Electron Technology公司的下属品牌,成立于1979年的英国伦敦,是一家为高科技为工业领域提供纳米定位和感应技术的解决方案商。公司服务于全球客户并为其提供技术领先且质量卓越的纳米定位技术已超过30年。公司设计团队将领先的研究成果运用到具有革命性意义的全新纳米定位系统中。 即使在当今这个全球新技术瞬息万变的环境下,Queensgate 依然处于该领域的前沿地位。凭借着卓越的技术,出色的品质为诸多领域,例如微系统、通信、半导体技术、生物技术以及航空航天技术等领域提供相关支持,并与扫描电子显微镜完美结合,实现微纳米尺度的操纵。
  • 尖端纳米科技的互融未来——2019中科大· 牛津仪器纳米技术论坛侧记
    2019年11月6日,“2019 中科大牛津仪器纳米技术论坛”在合肥中国科学技术大学成功召开。论坛由牛津仪器与中国科学技术大学(以下简称“中科大”)联合举办,国内外学术及应用科学家共聚一堂,共同交流了纳米科技前沿成果及相关的检测手段。 中科大微尺度物质科学研究中心副主任侯中怀致欢迎辞 2018年,中科大与牛津仪器联合开展了第一届纳米技术论坛,相比于去年,今年的论坛更加聚焦应用,不仅从中科大内部邀请优秀学者作最新科技的演讲,而且从外校也邀请到了著名专家分享他们的研究成果,论坛获得了参会嘉宾们的高度赞誉。英国驻上海领事馆科技创新领事Stephen Brennan、中科大微尺度物质科学研究中心副主任侯中怀、中科大微纳研究与制造中心副主任周成刚、牛津仪器中国区总经理张鹏出席盛会并致辞。安徽大学葛炳辉教授、中国科学院合肥物质科学研究院强磁场科学中心杜海峰研究员、中国科学技术大学王鹏飞副研究员做特邀报告,分享了纳米科技结构调制、磁性纳米材料表征,以及纳米材料在生命科学、量子检测等方面的最新成果。牛津仪器的应用科学家也在会上介绍了EDS、EBSD、原子力显微镜、VR/AR光学元件等牛津产品在纳米科技领域的最新应用方案。 英国驻上海总领事馆科技创新领事Stephen Brennan谈中英科技合作 周成刚主任在接受采访时高度肯定了本届论坛,认为是牛津仪器搭建的一个很好的合作交流平台。“通过这个机会,我们可以和牛津仪器的应用科学家们一同探讨最新技术与应用难点。”周成刚说,他表示牛津仪器与中科大合作已久,2014年双方在中科大成立联合实验室,2015年开首次中科大设立“明日之星”奖学金,先后曾有18位中科大优秀学子获奖,本届论坛又有6位新星抱得奖金归。通过这些合作,不仅为牛津仪器赢得了更好的商业口碑,更让双方在先进科学、技术经验等方面实现了融合互助和共利双赢。 颁发“明日之星”证书 辩证统一中的不可或缺——纳米未来看仪器 科学仪器对于科学研究的意义是什么呢?王鹏飞研究员认为,两者是辩证统一的共生关系,科学仪器是科学研究非常重要的工具,同时也是科学技术不断迭代、积累、突破、成熟后的成果。而对于纳米科技而言,想要取得突破性的前沿成果,更是离不开仪器设备的不断创新进步。 “例如量子精密测量,就是一个很前沿的仪器研发方向。该技术的载体是金刚石里面的固态点缺陷,可以用其作为空间分辨率非常高的探针,在大气环境下完成对纳米样品的高精度测量。”王鹏飞说。这种技术可以让诸多领域的科学研究向前迈一大步,例如:在生命科学里可以把传统磁共振这种宏观的方法推进到纳米尺度;在材料学领域,可以通过新的磁场表征手段,对纳米级新材料实现结构解析;在信息学领域,可以测量纳米尺度的微波,助力微电子、晶体管的研发。 左至右第一行:周成刚主任(中科大),葛炳辉教授(安徽大学) 第二行:杜海峰教授(中科院),王鹏飞研究员(中科大) 第三行:周宏敏主任(中科大),竺仁博士(牛津仪器) 第三行:眭孟乔博士(牛津仪器),黄承扬博士(牛津仪器) 尖端科学研究都是做前人所未做,经常会有非常特殊的个性化需求,该怎样创新仪器技术,才能直击科学家的痛点呢?周成刚提出,仪器设备厂商与科研院所之间可以大力开展更多有关仪器设备性能改造和提升方面的合作。通过合理的开放共享和联合研究,将更多的先进技术和特殊特征集成到现有仪器设备上面,进而加速科学仪器的研发升级进程。 现场有奖竟答环节获奖观众 张鹏也表示,牛津仪器不仅是英国的牛津仪器,更是中国的牛津仪器,世界的牛津仪器,本次论坛是公司与中科大合作一个从点到面的里程碑,未来,将进一步加强与以中科大为首的科研院所的深度合作,为中国的科研和工业发展作出自己的贡献。 走向小、远、低、强——牛津仪器未来在中国 近两年,虽然中国制造业普遍增长乏力,但中国仍是牛津仪器业绩最好的市场,并且还在持续快速增长,目前已在牛津仪器全球业绩中占比达到约20%。大学和科学院所是牛津仪器的主要增长点,究其原因,牛津仪器中国区总经理张鹏表示,中国的发展已经进入了产能过剩阶段,而牛津仪器始终专注于尖端科研、技术和产品,因此能够在高科技领域维持强势增。 牛津仪器中国区总经理张鹏 纳米科技正是牛津仪器增长迅猛的主要领域和未来布局的重心之一。牛津仪器7大产品部门中,有5个的产品都与纳米科技相关。采访中,张鹏特别分享了牛津仪器未来在中国发展的战略目标——走向小、远、低、强。 走向小:走向微观结构,深耕微纳领域,牛津未来的产品研发和收购战略都将以此为基点展开。针对纳米研究,2019年牛津仪器升级了Aztec Live系统包括透射能谱和软件系统,实现了原位实时表征;此外还升级了可对大样品进行高精度测量的原子力显微镜。 走向远:牛津仪器的相机在中国的天文行业占有绝对优势,最新研发的大视野、高帧频、低读出噪声的sCMOS相机可以应用于太阳研究、轨道碎片追踪、天梯目标研究和系外行星搜寻。 走向低:牛津仪器的设备可以提供接近绝对零度的极低温设备,能够为量子研究和凝聚态物理提供充分的助益。 走向强:牛津仪器在强磁场领域也是世界领先,结合牛津仪器的低温技术,可以高效率制备并表征二维材料和半导体材料,尤其是现在非常热门的第三代半导体材料。 除了产品升级换代,走向小、远、低、强之外,为了更好地为中国用户服务,张鹏表示,牛津仪器同时在不断升级中国的应用团队,输送更多的工程师去总部培训。现在有些业务线的应用产出率甚至高于了总部。“我们不单单是要销售极致的产品,更多地是为中国科研用户提供极致的服务,帮助客户取得突破性的科研成果。”张鹏说。 合影留念
  • 齐碳科技获批纳米孔测序试剂医疗器械备案证
    6月28日,齐碳科技自主研发的测序反应通用试剂获得由成都市药品监督管理局颁发的第一类体外诊断试剂备案证书,备案证编号:川蓉械备20240058,同时获得第一类医疗器械生产备案资质。测序反应试剂是纳米孔测序平台中的重要一环,能够为测序反应提供上机测序所必要的反应环境,与纳米孔基因测序仪、测序芯片一起组成纳米孔基因测序体系,实现对核酸文库样本的高效精准测序。就在一周前,齐碳科技自动化样本制备系统QPrenano-32刚刚获得了由四川省药品监督管理局颁发的二类医疗器械注册证书,可谓双喜临门。
  • 超精密高速激光干涉位移测量技术与仪器
    超精密高速激光干涉位移测量技术与仪器 杨宏兴 1,2,付海金 1,2,胡鹏程 1,2*,杨睿韬 1,2,邢旭 1,2,于亮 1,2,常笛 1,2,谭久彬 1,2 1 哈尔滨工业大学超精密光电仪器工程研究所,黑龙江 哈尔滨 150080; 2 哈尔滨工业大学超精密仪器技术及智能化工业和信息化部重点实验室,黑龙江 哈尔滨 150080 摘要 针对微电子光刻机等高端装备中提出的超精密、高速位移测量需求,哈尔滨工业大学深入探索了传统的共 光路外差激光干涉测量方法和新一代的非共光路外差激光干涉测量方法,并在高精度激光稳频、光学非线性误差 精准抑制、高速高分辨力干涉信号处理等多项关键技术方面取得持续突破,研制了系列超精密高速激光干涉仪,激 光真空波长相对准确度最高达 9. 6×10-10,位移分辨力为 0. 077 nm,光学非线性误差最低为 13 pm,最大测量速度 为 5. 37 m/s。目前该系列仪器已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测 试领域,为我国光刻机等高端装备发展提供了关键技术支撑和重要测量手段。 关键词 光学设计与制造;激光干涉;超精密高速位移测量引 言 激光干涉位移测量(DMLI)技术是一种以激光 波长为标尺,通过干涉光斑的频率、相位变化来感知位移信息的测量技术。因具有非接触、高精度、高动 态、测量结果可直接溯源等特点,DMLI 技术和仪器被广泛应用于材料几何特性表征、精密传感器标定、 精密运动测试与高端装备集成等场合。特别是在微电子光刻机等高端装备中嵌入的超精密高速激光干涉仪,已成为支撑装备达成极限工作精度和工作效率的前提条件和重要保障。以目前的主流光刻机为例,其内部通常集成有 6 轴至 22 轴以上的超精密高速激光干涉仪,来实时测量高速运动的掩模工件台、 硅片工件台的 6 自由度位置和姿态信息。根据光刻机套刻精度、产率等不同特性要求,目前对激光干涉的位移测量精度需求从数十纳米至数纳米,并将进一步突破至原子尺度即亚纳米量级;而位移测量速度需求,则从数百毫米每秒到数米每秒。 对 DMLI 技术和仪器而言,影响其测量精度和测量速度提升的主要瓶颈包括激光干涉测量的方法原理、干涉光源/干涉镜组/干涉信号处理卡等仪器关键单元特性以及实际测量环境的稳定性。围绕光刻机等高端装备提出的超精密高速测量需求,以美国 Keysight 公司(原 Agilent 公司)和 Zygo 公司为代表的国际激光干涉仪企业和研发机构,长期在高精度激光稳频、高精度多轴干涉镜组、高速高分辨力干涉信号处理等方面持续攻关并取得不断突破, 已可满足当前主流光刻机的位移测量需求。然而, 一方面,上述超精密高速激光干涉测量技术和仪器 已被列入有关国家的出口管制清单,不能广泛地支撑我国当前的光刻机研发生产需求;另一方面,上述技术和仪器并不能完全满足国内外下一代光刻机研 发所提出的更精准、更高速的位移测量需求。 针对我国光刻机等高端装备研发的迫切需求, 哈尔滨工业大学先后探索了传统的共光路双频激光干涉测量方法和新一代的非共光路双频激光干涉测量方法,并在高精度激光稳频、光学非线性误差精 准抑制、高速高分辨力干涉信号处理等关键技术方 面取得持续突破,研制了系列超精密高速激光干涉 仪,可在数米每秒的高测速下实现亚纳米级的高分辨力高精度位移测量,已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测试领域。该技术和仪器不仅直接为我国当前微电子光刻机研发生产提供了关键技术支撑和核心 测量手段,而且还可为我国 7 nm 及以下节点光刻机研发提供重要的共性技术储备。高精度干涉镜组设计与研制 高精度干涉镜组的 3 个核心指标包括光学非线性、热稳定性和光轴平行性,本课题组围绕这 3 个核心指标(特别是光学非线性)设计并研制了前后两代镜组。 共光路多轴干涉镜组共光路多轴干涉镜组由双频激光共轴输入,具备抗环境干扰能力强的优点,是空间约束前提下用于被测目标位置/姿态同步精准测量不可或缺的技术途径,并且是光刻机定位系统精度的保证。该类干涉镜组设计难点在于,通过复杂光路中测量臂和参考臂的光路平衡设计保证干涉镜组的热稳定性,并通过无偏分光技术和自主设计的光束平行性测量系统,保证偏振正交的双频激光在入射分光及多次反射/折射后的高度平行性[19- 20]。目前本课题组研制的 5 轴干涉镜组(图 11) 可实现热稳定性小于 10 nm/K、光学非线性误差小于 1 nm 以及任意两束光的平行性小于 8″,与国 际主流商品安捷伦 Agilent、Zygo 两束光的平行性 5″~10″相当。 图 11. 自主研制的共光路多轴干涉镜组。(a)典型镜组的3D设计图;(b)实物图非共光路干涉镜组 非共光路干涉镜组在传统共光路镜组的基础上, 通过双频激光非共轴传输避免了双频激光的频率混叠,优化了纳米量级的光学非线性误差。2014 年,本课题组提出了一种非共光路干涉镜组结构[2,21],具体结构如图 12 所示,测试可得该干涉镜组的光学非 线性误差为 33 pm。并进一步发现基于多阶多普勒 虚反射的光学非线性误差源,建立了基于虚反射光迹精准规划的干涉镜组光学非线性优化算法,改进并设计了光学非线性误差小于 13 pm 的非共光路干涉镜组[2-3],并通过双层干涉光路结构对称设计保证热稳定性小于 2 nm/K[22- 25]。同时,本课题组也采用多光纤高精度平行分光,突破了共光路多轴干涉镜组棱镜组逐级多轴平行分光,致使光轴之间的平行度误差 逐级累加的固有问题,保证多光纤准直器输出光任意 两个光束之间的平行度均小于 5″。 图 12. 自主设计的非共光路多轴干涉镜组。(a)典型镜组的3D设计图;(b)实物图基于上述高精度激光稳频、光学非线性误差精准抑制、高速高分辨力干涉信号处理等多项关键技 术,本课题组研制了系列超精密高速激光干涉仪 (图 17),其激光真空波长准确度最高达 9. 6×10-10 (k=3),位移分辨力为 0. 077 nm,最低光学非线性误差为 13 pm,最大测量速度为 5. 37 m/s(表 2)。并成功应用于上海微电子装备(集团)股份有限公司 (SMEE)、中国计量科学研究院(NIM)、德国联邦物理技术研究院(PTB)等十余家单位 ,在国产光刻机、国家级计量基准装置等高端装备的研制中发挥了关键作用。 图 17. 自主研制的系列超精密高速激光干涉仪实物图。(a)20轴以上超精密高速激光干涉仪;(b)单轴亚纳米级激光干涉仪;(c)三轴亚纳米级激光干涉仪超精密激光干涉仪在精密工程中的实际测量, 不仅考验仪器的研制水平,更考验仪器的应用水 平,如复杂系统中的多轴同步测量,亚纳米乃至皮 米量级新误差源的发现与处理,高水平的温控与隔 振环境等。下面主要介绍超精密激光干涉仪的几 个典型应用。 国产光刻机研制:多轴高速超精密激光干涉仪 在国产光刻机研制方面,多轴高速超精密激光 干涉仪是嵌入光刻机并决定其光刻精度的核心单元之一。但是,一方面欧美国家在瓦森纳协定中明确规定了该类干涉仪产品对我国严格禁运;另一方面该类仪器技术复杂、难度极大,我国一直未能完整掌握,这严重制约了国产光刻机的研制和生产。 为此,本课题组研制了系列超精密高速激光干涉测量系统,已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测试领域,典型应用如图 18 所示,其各项关键指标均满足国产先进光刻机研发需求,打破了国外相关产品对我国 的禁运封锁,在国产光刻机研制中发挥了重要作用。在所应用的光刻机中,干涉仪的测量轴数可达 22 轴以上,最大测量速度可达 5. 37 m/s,激光真空 波 长/频 率 准 确 度 最 高 可 达 9. 6×10−10(k=3),位 移 分 辨 力 可 达 0. 077 nm,光 学 非 线 性 误 差 最 低 为 13 pm。 配 合 超 稳 定 的 恒 温 气 浴(3~5 mK@ 10 min)和隔振环境,可以对光刻机中双工件台的多维运动进行线位移、角位移同步测量与解耦,以满足掩模工件台、硅片工件台和投影物镜之间日益复杂的相对位置/姿态测量需求,进而保证光刻机整体套刻精度。图 18. 超精密高速激光干涉测量系统在光刻机中的应用原理及现场照片国家级计量基准装置研制:亚纳米精度激光干涉仪 在国家级计量基准装置研制方面,如何利用基本物理常数对质量单位千克进行重新定义,被国际知名学术期刊《Nature》评为近年来世界六大科学难题之一。在中国计量科学研究院张钟华院士提出的“能量天平”方案中,关键点之一便是利用超精密激光干涉仪实现高准确度的长度测量,其要求绝对测量精度达到 1 nm 以内。为此,本课题组研制了国内首套亚纳米激光干涉仪,并成功应用于我国首套量子化质量基准装置(图 19),在量子化质量基准中 国方案的实施中起到了关键作用,并推动我国成为首批成功参加千克复现国际比对的六个国家之一[30- 32]。为达到亚纳米级测量精度,除了精密的隔振与温控环境以外,该激光干涉仪必须在真空环境 下进行测量以排除空气折射率对激光波长的影响, 其测量不确定度可达 0. 54 nm @100 mm。此外,为了实现对被测对象的姿态监测,该干涉仪的测量轴 数达到了 9 轴。图 19. 国家量子化质量基准及其中集成的亚纳米激光干涉仪 结论 近年来,随着高端装备制造、精密计量和大科学装置等精密工程领域技术的迅猛发展,光刻机等高端制造装备、能量天平等量子化计量基准装置、 空间引力波探测等重大科学工程对激光干涉测量技术提出了从纳米到亚纳米甚至皮米量级精度的 重大挑战。对此,本课题组在超精密激光干涉测量方法、关键技术和仪器工程方面取得了系列突破性进展,下一步的研究重点主要包括以下 3 个方面: 1)围绕下一代极紫外光刻机的超精密高速激光干涉仪的研制与应用。在下一代极紫外光刻机中,其移动工件台运动范围、运动精度和运动速度将进一步提升,将要求在大量程、6 自由度复杂耦合、高速运动条件下实现 0. 1 nm 及以下的位移测量精度,对激光干涉仪的研发提出严峻挑战;极紫外光刻机采用真空工作环境,可减小空气气流波动和空气折射率引入的测量误差,同时也使整个测量系统结构针对空气- 真空适应性设计的复杂性大幅度增加。2)皮米激光干涉仪的研制与国际比对。2021年, 国家自然科学基金委员会(NSFC)联合德国科学基 金会(DFG)共同批准了中德合作项目“皮米级多轴 超精密激光测量方法、关键技术与比对测试”(2021 至 2023 年)。该项目由本课题组与德国联邦物理技术研究院(PTB)合作完成,预计将分别研制下一代皮米级精度激光干涉仪,并进行国际范围内的直接 比对。3)空间引力波探测。继 2017 年美国 LIGO 地面引力波探测获诺贝尔物理学奖后,各国纷纷开展了空间引力波探测计划,这些引力波探测器实质上就是巨型的超精密激光干涉仪。其中,中国的空间引力波探测计划,将借助激光干涉仪在数百万公里距离尺度上,实现皮米精度的超精密测量,本课题组在引力波国家重点研发技术项目的支持下,将陆 续开展卫星- 卫星之间和卫星- 平台质量块之间皮米级激光干涉仪的设计和研究,特别是皮米级非线性实现和皮米干涉仪测试比对的工作,预期可对空间引力波探测起到积极的支撑作用。本课题组在超精密激光干涉测量技术与仪器领域有超过 20 年的研究基础,建成了一支能够完全自主开发全部激光干涉仪核心部件、拥有完整自主知识产权的研究团队,并且在研究过程中得到了 12 项国家自然科学基金、2 项国家科技重大专项、2 项 国家重点研发计划等项目的支持,建成了超精密激光测量仪器技术研发平台和产业化平台,开发了系列超精密激光干涉测量仪,在国产先进光刻机研发、我国量子化质量基准装置等场合成功应用,推动了我国微电子光刻机等高端装备领域的发展,并将通过进一步研发,为我国下一代极紫外光刻机研 发、空间引力波探测、皮米激光干涉仪国际比对提供支撑。全文详见:超精密高速激光干涉位移测量技术与仪器.pdf
  • 牛津仪器纳米级等离子体工艺研讨会在京召开
    仪器信息网讯 2013 年5 月14 日,由牛津仪器等离子技术公司主办的“牛津仪器纳米级等离子工艺研讨会”在北京举行,来自广大企业及科研院所的160余名用户参加了此次会议。会议现场  会议就微纳米技术在科研领域的新发展、未来的加工趋势、微纳米结构及器件应用等内容进行了探讨和交流。牛津仪器商务发展总监 Frazer Anderson先生  牛津仪器商务发展总监Frazer Anderson先生首先介绍了牛津仪器及牛津仪器等离子体技术公司的基本情况。牛津仪器的业务主要分为纳米分析部、工业分析部和服务三大部分。其业务收入目前38%来自亚洲、32%来自欧洲、北美占27%,其他区域占3%。  牛津仪器等离子体技术公司属于纳米分析部,作为等离子体与沉积处理系统的领导供应商,成立于1982年,拥有超过30年的工艺经验,超过6000件的工艺库,能刻蚀、沉积或使用超过50%的元素周期表中的自然界元素。应用领域包括高亮度发光二极管(HBLED)、微机电系统MEMS、第三代光伏发电及下一代半导体技术等。拥有遍布全球的销售服务网络,并在英国、德国、中国、美国、日本、新加坡等设立了分公司与办事机构。中科院半导体所半导体集成技术研究中心主任 杨富华教授  杨富华教授介绍了中科院半导体所、半导体技术研究中心、纳米技术在中科院半导体所的应用、半导体所采用的牛津仪器等离子体技术公司的产品使用情况等。他表示举办这样的交流会对于科研人员更好的了解相关领域的前沿动态及技术交流很有帮助。等离子体技术对于未来的科研工作非常重要,我们的研究人员一定要懂得仪器的使用原理,更好的操作仪器,获取出色的研究成果。同时他提出对于仪器公司来说,要想提高在中国的市场占有率,需要在仪器质量、价格、服务及技术打包方案等方面做更多的关注。牛津仪器MEMS首席工艺科学家 Mark McNie先生  Mark McNie在报告中主要介绍了深硅刻蚀和低温纳米刻蚀技术在微机电系统(MEMS)中的应用。目前微机电系统的主要应用领域包括微机械、微流体、传感器及生物医药等领域。其发展趋势主要在于一体化和复杂化。台湾工研院微系统技术中心经理 Dr.Lin Ching-Yuan  Lin Ching-Yuan博士在报告中指出微机电系统(MEMS)的市场规模到2017年将达到210亿美元,其2011年的市场规模为102亿美元,年均复合增长率将达到13%。未来在消费品和生物应用领域将发挥重要的角色,晶圆级的组合结构设计、3D一体化设计将成为MEMS的发展趋势,MEMS技术在半导体及移动电话领域的应用需求依然强劲。牛津仪器首席技术官 Dr. Mike Cooke  Mike Cooke博士介绍了ALD(Atomic layer deposition)原子层沉积系统及其应用。ALD是一种可以将物质以单原子膜形式一层一层的镀在基底表面的方法,该技术作为一种先进的薄膜生长技术,已经在高介电和半导体薄膜生长等多方面得到了应用。新型高介电栅介质材料,纳米材料和纳米技术以及3D电子器件等是推动ALD发展重要的需求动力。  另外,此次交流会中Mike Cooke博士还就纳米薄膜加工工艺面临的问题及解决方案作了介绍。牛津仪器III-V族刻蚀应用首席工艺科学家 邓力刚博士  邓博士在报告中介绍了激光干涉、光谱发射技术在III-V族刻蚀中的应用,这两种技术均可以很好的用于刻蚀监测及控制刻蚀深度。III-V 族刻蚀工艺优化中应注意了解材料特点,保持腔体干净,另外好的掩膜对于获取良好的刻蚀结果也十分重要。牛津仪器HBLED产品经理 Dr.Mark Dineen  Mark Dineen博士介绍说PlasmaPro 1000 Astrea刻蚀设备,可以为PSS, GaN 和AlGaInP提供大批量刻蚀提供解决方案。牛津仪器在高亮度发光二极管(HBLED)产业中已具备15年以上的供应设备经验, HBLED制造业要求高产量、高性能和低使用者成本, PlasmaPro1000 Astrea大批量刻蚀设备完全符合以上要求。牛津仪器Ion Beam产品经理 梁杰荣博士  梁杰荣博士介绍说,Ion Beam(离子束)技术可广泛的用于金属、氧化物和半导体的刻蚀与沉积。随着离子源栅网设计技术的持续改进,将使离子束技术更好的用于纳米结构的精细刻蚀。高离子能量及低压操作将为高质量的光学涂层和金属沉积提供理想的环境。中科院半导体所 王晓东教授  王晓东教授介绍了Ion Beam Optofab3000 离子束沉积的应用情况。Optofab3000型离子束溅射系统的离子束能量可达几十至1000eV,被溅射出的原子带有10-20eV的能量,比蒸发镀膜高约100倍,薄膜的粘附性及致密度显著提高,靶材的表面原子逐层被撞出来,薄膜以原子层级生长,均匀性好。牛津仪器半导体设备部区域销售经理王宏主持会议  会议中,与会人员在听取报告后,还就自己感兴趣的问题同专家进行了沟通和交流。现场还特别设置了墙报展,各位专家分别将自己的研究内容同与会人员就行了探讨。现场交流撰稿编辑:秦丽娟
  • MGD磁导向钻井技术,通过多种测量仪器实现地下“厘米级”导航
    太空对接不易,入地连通更难。工程技术研究院具有完全自主知识产权的MGD磁导向钻井技术,利用井下探管实时检测人工磁场或井下落鱼的磁场分布特征,将测量的微弱磁信号采集、处理,利用定位算法模型及工程解释软件,给出钻头与目标靶点的相对距离、相对方位和相对井斜。在明确相对位置关系后,调整井眼轨迹走向,最终实现井眼空间位置的“厘米级”高精度导航。定向井技术是当今世界石油勘探开发领域最先进的钻井技术之一。它是应用特殊井下工具、测量仪器和工艺技术有效控制地下井眼轨迹,使钻头沿着特定方向钻达预定目标的常规钻井工艺技术。随着全球油气田开发的深入推进,通过复杂井型建立油气通道,已成为提高单井产量、提高采收率、降低综合成本的重要技术手段之一,尤其是在煤炭地下气化、超稠油开采、中低熟页岩油原位开发等需要精确定位邻井位置的情况下,最终以U型井、平行井、小井距水平井簇、立体井网等复杂井型完钻,解决其高精度“测、定、导”一体化关键技术难题。该技术起源于美国,最初是为了实现对井喷失控井进行压井作业而开发的一项技术,后又衍生出有源和无源两大类型多种型号的精确磁导向技术与配套工具。近年来,MGD磁导向钻井技术被规模化应用,源于该技术具备以下几个方面优势。精准对接是建设U型“地下锅炉”的基础。U型井是由一口水平井与直井连通构成的井组,在煤层气开采中可实现水平井排水和直井采气;在煤炭地下气化中可实现可控后退式点火;在地热开发中可实现取热不取水。与压裂、射孔相比,井眼对接是最直接、有效的连通方式。精密平行是搭建水平井“地下炼厂”的关键。平行井是由2口以上相互平行的水平井构成的井组,在超稠油SAGD开发中,可降黏提采50%以上;在低熟页岩油原位转化中,有希望动用潜力巨大的页岩油资源;与常规水平井相比,水平段间距的精密度提高了99.7%(千米水平段井间误差由10米左右降至0.3米以内)。精确导钻是敷设非开挖“地下管网”的前提。非开挖是在入土和出土小面积开挖情况下,敷设、更换和修复各种地下管线的施工新技术,不会破坏绿地、植被、建筑物,不会影响居民的正常生活和工作秩序。与传统开挖施工相比,施工速度可提高60%,综合成本可降低40%,入土和出土点偏差±1米。老井精细处置是保障“地下粮仓”密封完整的核心。救援井是在发生井下复杂、通道丢失时通过伴行跟踪实现目标井重入的一种技术,尤其适用于解决精细处置储气库疑难老井封堵、老油田涌水冒油、井喷失控等问题,筑牢油气安全环保第二道防线。MGD磁导向钻井技术已在储气库、地热、稠油等六大领域实现了规模化工业应用,累计推广了近500口井,创造直接和间接经济效益数十亿元。该技术解决了储气库复杂老井“封天窗”技术难题,使老井封堵作业成本下降90%,并为国内首座海上储气库冀东油田南堡1号储气库、辽河储气库群等重大工程提供了支撑利器。2023年,该技术支撑了中国石油深层U型地热井、国防管道铺设、重大塌陷救援等10余个重点项目,创造了2810米最深储层千米对接、2520米非开挖穿越等13项国内纪录。“十四五”期间,该技术有望在中低熟页岩油原位开发、煤炭地下气化、老油田提高采收率、干热岩开发等多个领域实现推广应用,助力构建“地下炼厂”“地下锅炉”等新能源开发新模式。面向未来,MGD磁导向钻井技术将接续研发,实现提档升级,推动磁导向技术与工具向着谱系化、自动化、信息化方向发展,具备万米深井井喷救援能力,并积极开拓丛式井网防碰、疑难复杂老井一体化处置、大埋深定向钻等新领域新业务,为超深层油气资源勘探开发、干热岩采热储能耦合开采等国家战略性新兴产业及未来产业提供关键核心技术支撑。(本文作者系工程技术研究院非常规油气工程研究所副所长、正高级工程师)
  • 长光华芯联合中科院苏州纳米所共建“氮化镓激光器联合实验室”
    11月29日,苏州半导体激光创新研究院与中科院苏州纳米所“氮化镓激光器联合实验室”在苏州长光华芯正式揭牌成立。苏州半导体激光创新研究院负责人、长光华芯董事长闵大勇,与中科院苏州纳米所党委书记邓强、技术转移中心主任冀晓燕等参加揭牌仪式并交流座谈。氮化镓是第三代半导体中具有代表性的材料体系,氮化镓蓝绿光激光器未来在激光显示、有色金属加工等诸多领域都有巨大的应用优势以及不可替代的作用。“基于氮化镓的蓝绿光激光器,是第三代半导体光电器件中最具技术难度和产业高度的关键产品。”闵大勇介绍说,长光华芯正处于上市后的快速发展阶段,建设“氮化镓激光器联合实验室”是研究院围绕核心的半导体激光器领域所做的一个重要的横向业务扩展,将长光华芯核心的半导体激光器从短波红外和近红外领域拓展到可见光领域。中科院苏州纳米所党委书记邓强表示,要发展半导体及光电子,既需要研发能力,也需要区域聚集。“长光华芯拥有良好的科研平台,对市场需求也有敏锐的嗅觉,是科研项目产业化的典型。希望通过建立联合实验室,双方强化前端的技术科研能力、后端技术、工艺、质量水平,通过市场需求引导定向技术研究,突破前端技术,提升产品水平,促进市场牵引和成果转化,打造最强的创新联合体。”苏州高新区管委会副主任、虎丘区副区长吴旭翔表示,当前,苏州高新区正全力建设世界级光子创新中心,打造千亿级光子产业创新集群。此次上市企业与研究所联手,共同攻克前沿技术难题,将有力推动“东纳米”和“西光子”在高端创新资源的强强联合,打造“太湖光子中心”建设范例。据悉,“氮化镓激光器联合实验室”将以氮化镓激光器的前沿物理基础和技术研究为牵引,整合纳米所学科力量,攻坚克难,共同凝练并合作开展相关方向的导向性研究,率先填补国内在氮化镓的蓝绿光激光器等第三代半导体光电器件领域的空白,全力构建中国激光产业链的完整性、领先性。
  • 纳米传感器可在几分钟内检出残留农药
    瑞典卡罗林斯卡学院研究人员开发出一种微型传感器,可在几分钟内检出水果上的农药。在《先进科学》杂志一篇论文中描述的该项概念验证技术,使用由银制成的火焰喷涂纳米粒子来增强化学物质的信号。研究人员希望这些纳米传感器可帮助人们在食用前发现农药残留。 卡罗林斯卡医学院微生物学、肿瘤和细胞生物学系首席研究员乔治索特里奥称,在欧盟销售的所有水果中,多达一半含有大量与人类健康问题有关的农药残留。然而,目前用于在消费前检测单一产品上农药残留的技术,相关传感器成本高,制造工艺繁琐,在实践中受到限制。为克服这个问题,研究人员开发了廉价且可重复使用的纳米传感器,用于监测在售水果的农药残留。 新纳米传感器采用了表面增强拉曼散射(SERS)技术,可将金属表面上生物分子的信号增强超过100万倍。研究人员此次通过使用火焰喷涂(一种成熟且具有成本效益的金属涂层沉积技术)创建了一种SERS纳米传感器,将银纳米粒子的小液滴输送到玻璃表面。火焰喷涂在大面积上快速生产均匀的SERS薄膜,消除了可扩展性的关键障碍之一。 然后,研究人员微调了单个银纳米粒子之间的距离,以提高它们的灵敏度。为了测试其检测能力,他们在传感器顶部涂上一层薄薄的示踪染料,并使用光谱仪来揭示它们的分子指纹。研究表明,传感器可靠且均匀地检测到了分子信号,并且在2.5个月后再次测试时其性能保持不变,这证明了它们的耐用性和大规模生产的可行性。 为测试传感器的实际应用,研究人员对它们进行了校准,以检测低浓度的对硫磷—乙基,这是一种在大多数国家被禁止或限制使用的有毒农业杀虫剂。研究人员将少量对硫磷—乙基放在苹果上,随后用棉签收集残留物,棉签浸入溶液中以溶解农药分子。溶液滴在传感器上后,传感器可在5分钟内检测到农药残留,而不会破坏水果。 研究人员希望探索这种纳米传感器是否可应用于其他领域,例如在资源有限的环境中发现特定疾病的生物标志物。
  • 日本东京大学研制纳米级量子传感器,实现高分辨率磁场成像
    日本东京大学科学家利用六方氮化硼二维层中的硼空位,首次完成了在纳米级排列量子传感器的精细任务,从而能够检测磁场中的极小变化,实现了高分辨率磁场成像。氮化硼是一种含有氮和硼原子的薄晶体材料。氮化硼晶格中人工产生的自旋缺陷适合作为传感器。研究团队在制作出一层薄的六角形氮化硼薄膜后,将其附着在目标金丝上,然后用高速氦离子束轰击薄膜,这样就弹出了硼原子,形成了100平方纳米的硼空位。每个光点包含许多原子大小的空位,它们的行为就像微小的磁针。光斑距离越近,传感器的空间分辨率就越好。当电流流经导线时,研究人员测量每个点的磁场,发现磁场的测量值与模拟值非常接近,这证明了高分辨率量子传感器的有效性。即使在室温下,研究人员也可检测到传感器在磁场存在的情况下自旋状态的变化,从而检测到局部磁场和电流。此外,氮化硼纳米薄膜只通过范德华力附着在物体上,这意味着量子传感器很容易附着在不同的材料上。高分辨率量子传感器在量子材料和电子设备研究中具有潜在用途。例如,传感器可帮助开发使用纳米磁性材料作为存储元件的硬盘。原子大小的量子传感器有助于科学家对人脑进行成像、精确定位、绘制地下环境图、检测构造变化和火山喷发。此次的纳米级量子传感器也将成为半导体、磁性材料和超导体应用的“潜力股”。(a)六方氮化硼中的硼空位缺陷。空位可充当用于磁场测量的原子大小的量子传感器,对磁场敏感,就像一个纳米“磁针”。(b)量子传感器纳米阵列的光致发光可反应磁场的变化。图片来源:东京大学研究团队
  • Science:X射线激光器给生物分子拍部纳米电影
    威斯康星大学Milwaukee分校的研究团队,用X射线激光器以慢动作的形式展示了一个光敏性生物分子的快速动态。&ldquo 人们能够在这一技术的基础上,以原子水平的空间分辨率和超快的时间分辨率制作纳米世界的电影,&rdquo 领导这项研究的Marius Schmidt教授说。  研究人员将PYP蛋白(photoactive yellow protein)作为模式系统,PYP是一种蓝光感受蛋白,在特定细菌的光合作用中起作用。PYP蛋白捕获蓝光光子之后,会经过一系列中间结构获得光子的能量,然后再回到初始状态。PYP光循环的绝大多数步骤已经被人们研究过了,是验证新方法的理想模型。  为了获得PYP的动态快照,研究人员制造了微小的PYP晶体,这些晶体的直径大多小于0.01毫米。他们在LCLS(目前最强的X射线激光器)系统中喷射这些微晶体,并用精确同步的蓝光脉冲启动它们的光循环。LCLS生成了极短极密集的X射线快照,捕捉到了PYP在光循环不同阶段的形态改变,分辨率达到了前所未有的0.16纳米。随后研究人员将自己获得的快照组成视频,展示了慢动作的PYP光循环。  这项研究再现了PYP光循环的所有已知过程,验证了这个新技术的可靠性,同时还揭示了PYP光循环的更多细节。这一技术的时间分辨率非常高,能揭示不到1皮秒的分子活动,这是以前无法想像的。  &ldquo 这是一个真正的突破,&rdquo 文章的共同作者Henry Chapman教授说。&ldquo 我们现在可以在原子水平上对动态过程进行时间分辨研究。&rdquo   与其他方法相比,X射线激光器在研究超快分子动态时有着更多的优势。该技术能生成世界上最明亮的X射线,提供飞秒级别的时间分辨率。X射线激光器成像时使用新鲜样本,样本中不会积累辐射伤害,而且特别适合研究非常小的晶体。实际上,一些很难结晶的生物分子只能用X射线激光器进行研究。另外,晶体小也有助于分子的同步,使人们能更灵敏的检测到分子发生的改变。换而言之,X射线激光器能够揭示其他方法无法企及的分子动态。
  • Berkeley实验室开发出快速、准确的纳米级传感器
    p  想象一下,有一天也许可以在你自己的厨房快速检测你的食物是否携带任何致命的微生物。该项研究在劳伦斯伯克利国家实验室(Berkeley实验室)进行,现在正在被Optokey公司商业化。/pp  Optokey是位于California 州Hayward的一家新公司,已经开发出一种基于a title="" href="http://www.instrument.com.cn/zc/34.html" target="_self"strong拉曼光谱/strong/a的微型传感器,可以实现分子水平上的快速、准确地检测或诊断。“我们的系统可以做化学、生物学、生物化学、分子生物学、临床诊断、和化学分析等工作”,公司总裁和创始人Fanqing Frank Chen说。“我们的系统应用起来非常便宜,而且人为干预很少。”/pp  这项技术基于表面增强a title="" href="http://www.instrument.com.cn/zc/34.html" target="_self"strong拉曼/strong/a光谱(SERS),虽然SERS是一个高灵敏的分析方法,但结果不容易重现。Berkeley实验室的科学家Chen和他的同事们开发了一种解决这个问题的方法,他们称为“纳米等离子体谐振”的技术,利用这种技术测量纳米结构活性表面光子间的相互作用进行化学和生物传感,使测量方法更加可靠。/pp  “在Optokey,我们能够大规模生产这种纳米等离子体谐振器晶片,” Chen说。“我们从研发领域转变为工业生产。”/pp  这种微型传感器使用微流体控制系统实现“芯片上的实验室”自动化液体取样。“我们利用从高科技半导体制造方法中获得的知识控制芯片的成本、体积和准确性”,制造副总裁Robert Chebi说, Robert Chebi在微电子行业具有丰富的经验,曾在Lam Research and Applied Materials工作。“我们也利用激光和光学领域的所有知识开发这项专业的基于拉曼的检测方法。”/pp  Chebi将Optokey的产品称为“生化的鼻子”,或先进的纳米光子自动化系统,检测灵敏度为单分子水平,远优于当今市场上的传感器。“今天的检测和诊断方法还远不够完美——检测限在PPM(百万分之)和PPB(十亿分之几),”他说。“此外,我们的系统可以在几分钟内提供信息,甚至连续同步,而其他方法,如果样品必须被送到另一个实验室可能需要几小时甚至几天。”/pp  对于应用,他说,潜在的应用非常广阔,包括食品安全、环境监测(液体和气体)、医疗诊断和化学分析等。Optokey的客户包括一个欧洲公司(食品安全),中国石化公司(杂质的检测)和一家德国公司(即时诊断等)。/pp  “我想我们处在一个重大转变期间,” Chen说。“我们预计产品是紧凑型的,自动化的,还可以相互关联,它可以进入学校、餐厅、工厂、医院、救护车、机场、甚至战场。”/pp  Chen关注的下一个目标市场是智能家居,在这个领域纳米光子传感器不仅可以用来检测食物,还可以扫描空气和水中的污染物。经过Los Alamos国家实验室和纽约大学西奈山医院的培训, Chen开始作为一个生物化学家致力于生物医学设备的研究工作。他加入Berkeley之后,学习了量子点有关知识(一种具有独特属性的纳米晶体),并开始探索它们在生物学中的应用。这些导致了他对纳米材料的进一步调查和研究。/pp  最终,Chen和他的团队开发了约20项专利,包括混合生物纳米材料。导致Optokey成立的最关键的发现就是纳米等离子体谐振器,它极大地改善了拉曼光谱信号及可靠性。这项技术最初在实验室中用于前列腺癌生物标志物的快速、准确地检测,此项检测使用传统的方法具有较高的假阳性。/pp  Optokey是一家私人公司,约10人。除了Chen,另一个联合创始人Richard Mathies,(加州大学伯克利分校的化学教授、世界知名的拉曼光谱专家)。公司成立于2010年, 2013年正式运营。/p
  • 上海积利科学仪器有限公司公司赢得国家纳米中心离心场项目合同
    近日,我们上海积利科学仪器有限公司赢得了中科院国家纳米科学与技术研究中心的离心场+多角激光散射联用仪项目的合同,具体配置:离心场CF2000,PN3621型21角度激光散射检测器、示差折光检测器、四通道紫外检测器。该仪器主要用于对各种材质的纳米材料的尺寸分布和绝对尺寸进行分析表征,还具有将尺寸相同、密度不同的样品分离开来的能力,具备了未知样品的化学组成分析能力。这也是我们继中国计量科学研究院纳米材料研究所的CF2000+PN3621项目之后,赢得的又一个离心场CF3项目。
  • 鸡西美食酸汤子致9人死亡!米酵菌酸检测仪器有这些
    p style="text-align: justify text-indent: 2em line-height: 1.5em "strong style="text-indent: 2em "仪器信息网讯 /strongspan style="text-indent: 2em "10月19日,/spanspan style="text-indent: 2em "黑龙江省鸡西市鸡东县某家庭聚餐食用“酸汤子”引发中毒,事故死亡人数升至9人。/spanbr//pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="text-indent: 2em "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/6c050244-7764-4720-8e79-7382e6347cf7.jpg" title="8718367adab44aedb2a5fa35b11c8701a08bfb7c.jpg" alt="8718367adab44aedb2a5fa35b11c8701a08bfb7c.jpg"//pp style="text-align: justify text-indent: 2em line-height: 1.5em "strong酸汤子致死9人,年轻人挑剔的口味救了自己一命/strong/pp style="text-align: justify text-indent: 2em line-height: 1.5em "酸汤子是用玉米水磨发酵后做成的一种粗面条,当地称之为酸汤子。据了解,10月5日早上,该家庭成员亲属共12人参加了聚餐,家里长辈9人全部食用了酸汤子,span style="color: rgb(192, 0, 0) "strong3个年轻人因不喜欢这种口/strongstrong味没有食用躲过一劫/strong。/span到了中午,9位食用了酸汤子的长辈陆续出现身体不适,已经造成8人抢救无效身亡。根据黑龙江省卫健委食品处发布的消息,鸡西食物中毒事件经流行病学调查和疾控中心采样检测后,在玉米面中检出高浓度米酵菌酸,同时在患者胃液中亦有检出,初步定性为由span style="color: rgb(192, 0, 0) "strong椰毒假单胞菌/strong/span污染产生米酵菌酸引起的食物中毒事件。/pscript src="https://p.bokecc.com/player?vid=BAC1ABE6F23FA9489C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=350&playerid=621F7722C6B7BD4E&playertype=1" type="text/javascript"/scriptp style="text-align: center line-height: 1.5em text-indent: 0em "酸汤子美食的制作曾经于美食栏目被播出/pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="color: rgb(0, 0, 0) "strong米酵菌酸一旦中毒,病死率高达40%一100%/strong/span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "据了解,米酵菌酸耐热性极强,span style="color: rgb(192, 0, 0) "strong即使用100℃的开水煮沸或用高压锅蒸煮也不能破坏其毒性/strong/span,进食后即可引起中毒,对人体的肝、肾、心、脑等重要器官均能产生严重损害。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/38990c87-7ddc-461a-a78e-5b127f22f6f0.jpg" title="23643c44-3113-498b-bea0-5a6448950887.jpg" alt="23643c44-3113-498b-bea0-5a6448950887.jpg"//pp style="text-align: center "米酵菌酸分子式/pp style="text-align: justify text-indent: 2em line-height: 1.5em "专家表示,食用了含有米酵菌酸的食物后,span style="color: rgb(192, 0, 0) "strong病死率高达40%-100%/strong/span。/pp style="text-align: justify text-indent: 2em "仪器信息网紧跟时事热点,第一时间整理米酵菌酸的检测方法及仪器设备供广大用户了解学习,欢迎补充。/pp style="text-align: justify text-indent: 2em line-height: 1.5em "span style="color: rgb(0, 0, 0) "strong米酵菌酸的检测方法及仪器设备/strong/span/pp style="text-align: justify text-indent: 2em line-height: 1.5em "近年来,国家对于检测米酵菌酸的方法主要有高效液相色谱法和薄层色谱测定法。具体检测步骤请扫码关注strong“/strongspan style="color: rgb(0, 112, 192) "strong3/strongstrongi生/strongstrong style="text-indent: 2em "仪社/strong/spanstrong style="text-indent: 2em "”/strongspan style="text-indent: 2em ",后台回复“/spanspan style="text-indent: 2em color: rgb(0, 112, 192) " strong酸汤子/strong/spanspan style="text-indent: 2em "” 即可查看/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 145px height: 145px " src="https://img1.17img.cn/17img/images/202010/uepic/f0c65ffd-c8d9-4815-a663-3716f9640dc3.jpg" title="3i生仪社 二维码.jpg" alt="3i生仪社 二维码.jpg" width="145" height="145"//pp style="text-align: justify text-indent: 2em line-height: 1.5em "主要的仪器设备有:(点击查看相应仪器专场,下载仪器信息网APP输入仪器关键字随时随地查仪器)/pp style="text-align: justify text-indent: 2em line-height: 1.5em "strong1、a href="https://www.instrument.com.cn/zc/23.html" target="_blank"span style="color: rgb(0, 112, 192) "高效液相色谱仪,带二极管阵列检测器/span(点击查看仪器详情)/a/strong/pp style="text-align: justify text-indent: 2em line-height: 1.5em "strong2、/stronga href="https://www.instrument.com.cn/zc/157.html" target="_blank"strongspan style="color: rgb(0, 112, 192) "天平:感量为0.01g和0.01mg/span(点击查看仪器详情)/strong/a/pp style="text-align: justify text-indent: 2em line-height: 1.5em "strong3、a href="https://www.instrument.com.cn/zc/399.html" target="_blank"span style="color: rgb(0, 112, 192) "固相萃取装置/span(点击查看仪器详情)/a/strong/pp style="text-align: justify text-indent: 2em line-height: 1.5em "strong4、a href="https://www.instrument.com.cn/zc/394.html" target="_blank"span style="color: rgb(0, 112, 192) "超声波震荡器/span(点击查看仪器详情)/a/strong/pp style="text-align: justify text-indent: 2em line-height: 1.5em "strong5、a href="https://www.instrument.com.cn/zc/400.html" target="_blank"span style="color: rgb(0, 112, 192) "旋转蒸发仪/span(点击查看仪器详情)/a/strong/pp style="text-align: justify text-indent: 2em line-height: 1.5em "strong6、a href="https://www.instrument.com.cn/zc/517.html" target="_blank"span style="color: rgb(0, 112, 192) "氮吹仪/span(点击查看仪器详情)/a/strong/pp style="text-align: justify text-indent: 2em line-height: 1.5em "strong7、a href="https://www.instrument.com.cn/ca/show/s-H4902.html" target="_blank"span style="color: rgb(0, 112, 192) "微孔有机滤膜/span(孔径0.45μm)(点击查看仪器详情)/a/strong/pp style="text-align: justify text-indent: 2em line-height: 1.5em "strong8、a href="https://www.instrument.com.cn/zc/966.html" target="_blank"span style="color: rgb(0, 112, 192) "涡旋振荡器/span(点击查看仪器详情)/a/strong/pp style="text-align: justify text-indent: 2em line-height: 1.5em "strong9、a href="https://www.instrument.com.cn/zc/960.html" target="_blank"span style="color: rgb(0, 112, 192) "恒温水浴锅/span(点击查看仪器详情)/a/strong/p
  • 宁波材料所研发的水下矢量推进器成功完成深海4500米级海试
    近日,由中国科学院深海科学与工程研究所主持的中科院A类先导项专项研发的深海底多功能移动作业系统在我国南海进行了海上试验。中国科学院宁波材料技术与工程研究所精密驱动与智能机器人团队参与了该项目,并提供了2套水下矢量推进器,实现了深海底爬行式多功能移动作业平台的入水出水定向、海水中调姿和海底爬行辅助推进等多项功能,顺利完成预定的各项任务和考核指标。   深海底爬行式多功能移动作业系统设计最大工作水深4500米,可在深海底实现爬行作业,属于有缆深海作业装置。该装置由光电缆提供电源动力和长距离通信,然而在作业装置的下放和回收过程中易由于海流和浪涌影响而产生不可控的旋转,不仅有损坏光电缆的风险,而且可能导致作业装置无法回收等严重问题。因此需要调姿系统时刻保持作业装置的准确航向,避免其翻转、倾覆。   为保证深海底多功能作业系统在布放与回收时的姿态控制,宁波材料所精密驱动与智能机器人团队将推进和姿态调整功能集成到一个系统,研制了基于对转双转子电机的水下矢量推进器。该推进器使用永磁同步双转子电机直接驱动对转螺旋桨,可解决传统推进装置重量大、效率低、噪声大、易侧翻或侧滚等问题,提高了水下作业装置的平稳性;矢量调姿系统采用三自由度并联机构和直线驱动系统改变推进方向,可显著增强水下作业装置的调姿灵活性和机动性。   该团队成功研发了深海电动推杆、新型矢量调节机构、对转双转子直驱电机及基于碳化硅的高效率电机控制器等功能部件,攻克了深海环境下并联机构及推进器的耐压、防腐、密封等技术难题,完全实现了推进器的国产化。研制的矢量推进器额定功率3kW,额定输出推力800N,电机效率达到82%以上;推进器的矢量姿态调节角度最大达到±30°,通过调节左右2套推进器的推力,可实现水下作业装置的定向精度优于0.1°。与传统的单桨推进器相比,该矢量推进器具有效率高、推力大、可调姿、噪音低等优点,可广泛应用于水下潜航器、作业装置等的推进和调姿。   此次海试由探索二号试验船担任母船,宁波材料所精密驱动与智能机器人团队2名科研人员参航。水下矢量推进器搭载于深海底爬行式多功能作业系统,完成了一系列功能与性能验证测试,达到了4500米级深海装备标准,通过了现场海试专家组的考核,圆满完成了试验任务。
  • 采用大连化物所技术的国内首台4500米级深海原位荧光传感器海试成功
    p  由大连化物所关亚风研究员、耿旭辉副研究员带领的微型分析仪器研究组与中科院深海所共同研制的我国首台4500米级深海示踪剂原位荧光传感器工程样机于2月18日海试成功,大连化物所于近日收到设备参航证书。/pp  在深海勇士号/探索一号西南/中印度洋TS10-03科考航次中,该工程样机搭载“深海勇士”号载人潜水器SY145潜次进行海底试验,最大试验深度为2450米。该仪器是我国首台应用于深海原位探测的荧光传感器,它的成功研发将提升我国对深海中目标流的轮廓和分布范围,包括对冷泉、热液羽流扩散的探测能力,具有重要科学价值。/ppbr//pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 415px " src="https://img1.17img.cn/17img/images/201912/uepic/b6f61c9a-9698-47fe-a775-b6eabfc79c8b.jpg" title="297b308acbabd1e4c93f9dd3d14cff7d.jpg" alt="297b308acbabd1e4c93f9dd3d14cff7d.jpg" width="600" height="415" border="0" vspace="0"//pp  基于大连化物所微型分析仪器研究组在高灵敏荧光检测器多年的学术积累,该仪器进一步提高了检测灵敏度,检测灵敏度与国际上最高水平相当。另外,在深海条件下,仪器面临高压(约245个大气压)等极端条件,这对传感器的性能提出了苛刻的要求。该团队与中科院深海所合作,通过科学设计,反复验证,成功研发出满足深海极端条件应用的原位荧光传感器。  /pp  该项目是中科院战略性A类先导专项“深海/深渊智能技术及海底原位科学实验站”的子课题,大连化物所负责深海原位有机组分气相色谱-质谱联用仪与荧光传感器研发。/p
  • 物理所等二维纳米材料锁模全光纤激光器研究获进展
    p  超短脉冲激光具有峰值功率高、作用时间短、光谱宽等优点,在基础科学、医疗、航空航天、量子通信、军事等领域有着广泛的应用。特别是近年快速发展的飞秒光纤激光器由于结构简单、成本低、稳定性高以及便于携带等特点,表现出越来越广泛的应用前景。目前光纤锁模激光器,包括其它类型的固体激光器,要实现稳定的锁模运行,更多时候还得依靠可饱和吸收体,但由于可饱和吸收体所带来的激光损伤及损耗等问题,不仅制约着所能产生的激光脉宽与功率,也会影响到长期运行的可靠性。因此研究发展具有高损伤阈值及低损耗的新型可饱和吸收体,倍受激光专家及材料专家的关注。近十多年来,随着凝聚态物理与材料制备技术的发展,碳纳米管、石墨烯、拓扑绝缘体等材料作为可饱和吸收材料相继成功地应用于激光锁模中,特别是新发展起来的二维纳米材料由于具备窄带隙、超快电子弛豫时间和高损伤阈值等特点,表现出优良的可饱和吸收特性,利用该材料的锁模激光研究也成为人们广泛关注的热点研究内容之一。/pp  中国科学院物理研究所/北京凝聚态物理国家实验室(筹)光物理重点实验室L07组一直致力于超快激光的研究,近年来针对小型化飞秒激光的发展,先后实现了多类晶体及光纤激光的可饱和吸收被动锁模。通过使用脉冲激光沉积方法将锑化碲拓扑绝缘体材料均匀生长在拉锥光纤的表面所形成的可饱和吸收体,首次实现了光纤激光的混合锁模,得到了70 fs的输出脉冲结果。通过使用具备超短电子弛豫时间的二硫化钨作为可饱和吸收材料,结合减小拉锥光纤的纤芯直径,得到了67 fs锁模脉冲输出,验证了该混合锁模光纤激光具有脉宽更短、定时抖动更低等优点。此外针对暗孤子产生技术的限制,通过理论计算Ginzburg- Landau方程中光纤激光器的增益、损耗、色散和非线性等参数的关系,理论分析了暗孤子脉冲形成的动力学机制,获得了信噪比高达94 dB的结果,实验上实现了最宽光谱的暗孤子脉冲输出。/pp  最近该研究组与北京邮电大学合作,将二硫化钨作为饱和吸收材料用于光纤激光锁模,进一步实现了脉宽246 fs的锁模脉冲激光输出,据知这是迄今为止过渡金属硫化物全光纤锁模激光器所产生的最短脉宽报道。相关结果发表在新出版的一期Nanoscale(2017, 9: 5806)上,并被该杂志选为Highlights进展作为Inside front cover论文刊出(如图所示),论文第一作者为刘文军,通讯作者为北京邮电大学教授雷鸣及中科院物理所研究员魏志义。/pp  该项研究获得了科技部“973”项目(2012CB821304)及国家自然科学基金项目(批准号11674036, 11078022 和 61378040)的支持。/pp  相关论文:/pp  [1] Wenjun Liu, Lihui Pang, Hainian Han, Wenlong Tian, Hao Chen, Ming Lei, Peiguang Yan and Zhiyi Wei, 70 fs mode-locked erbium doped fiber laser with topological insulator, Scientific Reports, 6 (2016) 19997./pp  [2] Wenjun Liu, Lihui Pang, Hainian Han, Mengli Liu, Ming Lei, Shaobo Fang, Hao Teng and Zhiyi Wei, Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers, Optics Express, 25 (2017) 2950-2959./pp  [3] Wenjun Liu, Lihui Pang, Hainian Han, Wenlong Tian, Hao Chen, Ming Lei, Peiguang Yan and Zhiyi Wei, Generation of dark solitons in erbium-doped fiber lasers based Sb2Te3 saturable absorbers, Optics Express, 23 (2015) 26023-26031./pp  [4] Wenjun Liu, Lihui Pang, Hainian Han, Zhongwei Shen, Ming Lei, Hao Teng and Zhiyi Wei, Dark solitons in WS2 erbium-doped fiber lasers, Photonics Research, 4 (2016) 111-114./pp  [5] Wenjun Liu, Lihui Pang, Hainian Han, Ke Bi, Ming Lei and Zhiyi Wei, Tungsten disulphide for ultrashort pulse generation in all-fiber lasers, Nanoscale, 9 (2017) 5806-5811./pp style="text-align: center "img width="300" height="395" title="W020170616579709764036.png" style="width: 300px height: 395px " src="http://img1.17img.cn/17img/images/201706/noimg/9d1831a1-51e9-41cb-a069-261a0f0bc4cb.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "图:Nanoscale(2017, 9: 5806)论文被选为该期Inside front cover论文刊出/pp/pp/p
  • 布鲁克纳米表面仪器部开通优酷视频专辑
    布鲁克纳米表面仪器部开通优酷视频专辑Bruker Nano Surfaces YouKu Channel &mdash 欢迎订阅优酷上Bruker Nano Surfaces的相关视频,观看最新的AFM产品和相关技术进展,以及历届网络研讨会和培训资料,精彩内容持续更新中!http://i.youku.com/u/UNDU0NDQ5MTEy
  • 揭秘速生鸡专供上海肯德基等快餐企业
    相关截图  11月18日消息:今天,中央电视台在《朝闻天下》节目中曝光了山东一些养鸡场违规使用抗生素和激素来养殖肉鸡,并提供给肯德基、麦当劳等快餐企业的新闻。  “速生鸡”,无疑是这段时间网络的热点之一,但这些肉鸡究竟是如何速生的呢?央视记者在暗访时发现,一些养殖户为了使得肉鸡能够快速生长,违规使用了金刚烷胺等抗病毒药品。同时,地塞米松等激素类药品也成为催生肉鸡生长的秘密“武器”。这些在我国兽药管理条例中违规使用的药品,让白羽鸡在40天能长5斤。  那么这些问题鸡肉如通过何检疫检验上餐桌的呢?央视记者发现,养殖户在交给屠宰场之后,由屠宰企业的检测人员来编造养殖纪录。从屠宰企业的官方网站上提供的信息来看,主要供给肯德基、麦当劳等快餐企业。  从央视记者跟随屠宰场供货商的情况来说,货车在抵达中国百胜餐饮集团上海物流中心之后,有关人员只是根据屠宰场提供的证明,并没有进行再次的检验而直接卸货,并输送到了相关的快餐企业。  对于“速生鸡”事件,东方网记者将进行进一步的跟踪采访。
  • 布鲁克纳米表面仪器部冬季原子力显微镜基础培训
    布鲁克纳米表面仪器部将于11月21-25日在北京举办原子力显微镜(AFM)基础培训,培训地点:北京海淀区中关村南大街11号光大国信大厦5楼培训室。本次培训的主要内容是AFM的基础应用,面向的对象是AFM初学者,欢迎新老客户莅临参加。为了保证培训质量,让每一位学员都有上机操作的机会,学到真正对自己的科研有价值的东西,本次培训课程席位有限,请根据实际需要选择课程。本次培训课后有认证考试,学员可以选择参加,通过认证考试者可获得Bruker颁发的BCSO(Bruker Certified SPM Operation)认证证书。本次培训课程对所有质保期内以及持有Service Contract的客户免费。欲了解培训报名详情,欢迎各位老师及同学拨打我们的客服电话021 5172 0837详询。布鲁克纳米表面仪器部,经过了二十多年的发展,始终在AFM领域里处于领先的地位。为了对客户在实验过程中遇到的各种问题进行快速响应,公司投入数百万美元在北京建成了客户服务中心,为中国数千名Bruker AFM用户提供电话咨询、远程协助和培训服务。为了减少宕机时间,公司在北京建成维修中心,提供主流AFM产品的本地快速检测和维修服务。
  • 新品研发|液体密度计内置大容量存储器【恒美】
    液体密度计是一种用于测量液体密度的仪器,对于多个领域都有重要的检测帮助。 首先,液体密度计在化工领域的应用非常广泛。在化工生产过程中,需要对各种液体进行密度测量,以确保产品质量和生产效率。液体密度计可以快速准确地测量液体的密度,帮助化工企业实现生产过程的自动化控制,提高生产效率和质量。 产品链接https://www.instrument.com.cn/netshow/SH104275/C549000.htm 其次,液体密度计在食品工业中也有着广泛的应用。在食品加工过程中,需要对各种饮料、乳制品、油脂等液体进行密度测量,以确保产品的质量和口感。液体密度计可以方便快捷地测量液体的密度,为食品企业提供准确的测量数据,帮助企业控制产品质量和成本。 此外,液体密度计在医药领域也有着重要的应用。在药品研发和生产过程中,需要对各种药物溶液进行密度测量,以确保药品的质量和安全性。液体密度计可以精确地测量药物溶液的密度,为医药企业提供准确的测量数据,帮助企业研发和生产高质量的药品。 总之,液体密度计在化工、食品、医药等多个领域都有着广泛的应用,对于液体的密度测量有着重要的帮助。
  • 纳米温度计可揭秘原子尺度热散逸
    据物理学家组织网近日报道,一个由美国密歇根大学等单位研究人员组成的国际小组开发出一种纳米级的&ldquo 温度计&rdquo ,能从原子尺度测量热散逸,并首次建立了一种框架,来解释纳米级系统的热散逸现象。这一成果为开发体积更小、功能更强的电子设备扫除了一项重要技术障碍。相关论文发表在《自然》杂志上。 电流通过导电材料时会产生热,理解电子系统中热是从哪里产生的,有助于工程师设计性能可靠而高效的计算机、手机和医疗设备等。在较大线路中,人们很容易理解热是怎样产生的,但对纳米尺度的终端,经典物理学却无法描述热和电之间的关系。这些设备可能只有几个纳米大小,或由几个原子构成。 原子与单分子接点代表了电路微型化的最终极限,也是测试量子传输理论的理想平台。要描述新功能纳米设备的电荷与能量传输,离不开量子传输理论。在今后的20年,计算机科学与工程人员预期可能会在&ldquo 原子&rdquo 尺度开展工作。但由于实验条件限制,人们对原子设备的热散逸与传播还了解甚少,也为开发新型纳米设备带来了很大障碍。 该研究领导者、密歇根大学机械工程和材料科学与工程副教授普拉姆德· 雷迪说:&ldquo 目前晶体管已经达到极小量度,在20或30纳米级别。如果该行业继续按照摩尔定律的速度发展下去,线路中晶体管体积缩小的速度是其密度的两倍,如此离原子级别已经不远。然后,最重要的事情就是要理解热量散播和设备电子结构之间的关系,如果缺乏这方面的知识,就无法真正掌控原子级设备,我们的研究首次揭示了这一领域。&rdquo 雷迪实验室博士生李宇哲(音译)等人开发出一种技术,特制了一个稳定的原子设备和一种纳米大小的温度计,将二者结合做成一种圆锥形工具。在分子样本线路中,圆锥形工具和一片黄金薄片之间能捕获一个分子或原子,以研究其热散逸。他们通过实验显示了一个原子级系统的变热过程,以及这一过程与宏观尺度变热过程的不同,并且设计了一个框架来解释这一过程。 雷迪解释说,在可接触的宏观世界里,当电流通过导线时,整个导线都会发热,与其相连的所有电极也是如此。相比之下,当&ldquo 导线&rdquo 是纳米大小的分子,而且只和两个电极接合时,温度升高主要发生在二者之一中。&ldquo 在原子级设备中,所有热量集中在一个地方,很少会到其他地方。&rdquo 雷迪说:&ldquo 我们的研究还进一步证实了物理学家列夫· 朗道提出的热散逸理论的有效性,并深入理解了热散逸和原子尺度的热电现象之间的关系,这是从热到电之间的转变。&rdquo
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制