当前位置: 仪器信息网 > 行业主题 > >

婆美计

仪器信息网婆美计专题为您提供2024年最新婆美计价格报价、厂家品牌的相关信息, 包括婆美计参数、型号等,不管是国产,还是进口品牌的婆美计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合婆美计相关的耗材配件、试剂标物,还有婆美计相关的最新资讯、资料,以及婆美计相关的解决方案。

婆美计相关的论坛

  • 【转帖】美战斗机突破音障精彩瞬间:蒸汽形成圆锥云雾

    [size=6][b]美战斗机突破音障精彩瞬间:蒸汽形成圆锥云雾[/b][/size] [url=http://tech.sina.com.cn/][color=#cc0000]新浪科技[/color][/url][align=center][align=center][color=#cc0000][/color][/align][/align][color=#cc0000][img]http://i3.sinaimg.cn/IT/2010/0406/20104692639.jpg[/img][/color]一架在秘鲁太平洋海岸上空飞行的美海军“超级大黄蜂”机身环绕着云雾,被称为“冲击波项圈”或“蒸汽锥”。在特定的大气条件下,物体超音速运动时就会发生这种现象。[img]http://i3.sinaimg.cn/IT/2010/0406/20104692721.jpg[/img]如图,这是一架“超级大黄蜂”战斗机在纽约航空展上,表演时突破音障的精彩瞬间。[img]http://i0.sinaimg.cn/IT/2010/0406/20104692740.jpg[/img]一架美军F/A-18“大黄蜂”战斗机在美海军“星座”号上空超音速飞行、突破音障的精彩瞬间。[img]http://i1.sinaimg.cn/IT/2010/0406/20104693030.jpg[/img]亚特兰蒂斯号航天飞机发射升空时,产生了“蒸汽锥”。  新浪科技讯 北京时间4月6日消息,英国《每日邮报》近日公布了一组美军战斗机突破音障的精彩瞬间照片。战斗机环绕着圆锥形云雾,非常壮观,仿佛经过特效处理似的。不过,当大气条件合适、飞机超音速飞行时,就可能产生这种梦幻般的效果。  一架美国海军“超级大黄蜂”战斗机从“卡尔文森”号航空母舰上起飞,在秘鲁太平洋海岸线上空超音速飞行。当时战斗机的速度达到760英里/小时(约合1223公里/小时),突破音障,在机身周围的蒸汽不断堆积,形成了圆锥般的云雾,被称为“冲击波项圈”或“蒸汽锥”。  这种现象之所以发生,是因为当物体的速度快要接近音速时,周边的空气受到声波叠合而呈现非常高压的状态,因此一旦物体穿越音障后,周围压力将会陡降。空气中的水蒸气,因压力陡降所造成的瞬间低温可能会让气温低于它的露点温度,使得水汽凝结变成微小的水珠,肉眼看来就像是云雾般的状态。但由于这个低压带会随着空气离机身的距离增加而恢复到常压,因此整体看来形状像是一个以物体为中心轴、向四周均匀扩散的圆锥状云团。  此外,“超级大黄蜂”的形状也有利于“蒸汽锥”的产生。“超级大黄蜂”造价达3500万英镑,最高速度为1370英里/小时(2200公里/小时),是音速的1.8倍。  在航天飞机发射时,也经常发生“蒸汽锥”现象。有时,乘客也会看到超音速客机机翼顶端周围出现这种现象。不过,为什么物体突破音障瞬间会发生这种现象,还未有定论。

  • 菌破壁离心,纯化酶

    各位大神们,本人小白一枚,最近在把重组的大肠杆菌破壁离心,取上清过柱子,纯化酶,但是酶活非常低甚至没有了,正在找问题,请各位大神指教啊,(1)用来破壁的液体,一般要用pbs缓冲液嘛,ph多少的,pbs里面要加氯化钠嘛,一般ph是多少?(2)我上的镍柱,结合液是20mmol/L的pbs.ph值为7.4的,里面还加了0.5mlo/L的氯化钠,5mmol/L的咪唑。洗脱液是20mmol/L的pbs.ph值为7.4的,里面加了0.5mlo/L的氯化钠,500mmol/L的咪唑,我这个有没有问题呀。(3)我当时透析用的水,透析了30小时吧,用的转子,里面加的冰,换了4次水,是不是应该也要用缓冲液透析呢,用pbs嘛,那这里面不需要加盐吧。(4)我们这个酶用来降解的物质会跟pbs还有盐酸反应,我也担心测酶活时会受缓冲液影响。请各位大神指教啊(5)这个破壁用的以及透析用的缓冲液需要灭菌或除菌嘛,一般都怎么操作

  • 婆媳禁忌,以后会很有用的【赶快收藏起来吧】

    中国古谚 “以和为贵”,婆媳问题好几千年了也没有解决好 在这给大家一点建议 希望大家家庭和睦!(1)不要和婆婆争老公。妈妈和媳妇一同落水的几率并不高,无论老公多么爱你,你也无法替代她母亲的分量。不要犯这种低级错误。(2)不要在婆婆面前和老公太亲热。“娶了媳妇忘了娘”,这是所有婆婆最大的心病。老公越是疼爱你,婆婆的失落感和忌妒心可能越强烈。(3)不要在婆婆面前使唤老公。婆婆怀胎十月含辛茹苦抚养长大的儿子,凭什么成了你的免费劳动力,呼来喝去?千万别在婆婆面前对老公指手画脚,甚至打骂。(4)不要在老公面前说“你妈”。纵使婆婆没把你当亲生女儿待,但当她听到你在背后用“你妈”来称呼,肯定不痛快,赶紧换成“咱妈”吧。(5)不要和婆婆争辩是非道理。“有理走遍天下”在家庭内部绝对寸步难行,本来就无需判断黑白对错,也没必要争个高低胜负。多说无益,口水不如用来养牙。(6)不要在婆婆面前逞强。千万不能从头发到脚趾都很逞强,觉得你完全可以独撑整个世界,不能得意忘形。“倚小卖小”,适时示弱。(7)不要忘记,婆婆是个女人。所以,她和你一样的细心,一样的敏感,一样的脆弱。如果哪个女人能像男人,心胸稍微豁达一些,可能就万事大吉。(8)不要忽视照顾老公,对老公好就是对婆婆好。每个母亲都希望自己的孩子幸福,找到一个知心伴侣。所以,用行动表示,你会好好照顾她的宝贝儿子。(9)不要让婆婆觉得被冷落,让她意识到她很重要。让婆婆继续发挥母爱的光辉,让她来“指点”你,让她感觉到自己非常重要,活的很有价值。(10)不要以为婆婆“无知”。老年人最怕晚辈说“您什么都不懂,就别跟着瞎掺和了!”这句话如果从媳妇嘴里冒出来,更是一种莫大的轻蔑。(11)不要欺骗婆婆。任何人都讨厌被欺骗,假如小两口啥事都瞒着老人家,或者敷衍了事不说真话,婆婆自然有被排斥的感觉,伤心加气愤一起来。(12)不要吝啬对婆婆的赞美。好媳妇,夸出来;好婆婆,夸出来。由衷地赞美她,赞美她养育了一个好儿子,赞美她精神矍铄,赞美她厨艺精湛,赞美她持家有方。(13)不要和婆婆抢功劳。婆婆的功劳最大,这是软化婆媳关系的润滑剂。虚心向婆婆学习,确保她的“皇太后”地位,万古长青。(14)不要在婆婆面前说“我儿子/女儿……”,而应说成“您孙子/孙女……”。带有强烈归属感的“我儿子”本来没什么错,但是却很容易激怒婆婆,仿佛孩子和爷爷奶奶家没关系,或者觉得带了这么久的孙子白带了。(15)不要忽视孙子/孙女的作用。[/f

  • 【原创】POS机相关知识介绍

    POS机相关知识介绍:POS (Point of sales)的中文意思是“销售点”。它是一种配有条码或OCR码(光字符码)终端阅读器,有现金或易货额度出纳功能的交易设备。POS机的品种分有线POS机、无线POS机和有、无线兼用的POS机。POS机与广告易货交易平台的结算系统相联,可以对商品与媒体交易提供数据服务和管理功能,并进行结算。

  • 【讨论】国内原料药产业危机加重 升级迫在眉睫

    面对今年前3个月原料药贸易总体下滑态势、广交会上医药出口订单缩水以及国际经济景气度滑坡,原料药企业和行业应该如何应对?  不过,行业内仍对2009年原料药产业发展持乐观态度:在国际市场,国内主要的原料药企业的主导地位仍难撼动;国内市场则在新医改语境下,将迎来更大的扩容机遇。   “危”中寻“机”  目前大家谈论最多的一个词就是“危机”。原料药产能全球迁移、新医改下市场扩容等利好因素,无疑将是原料药产业格局又一次重组再发展的机遇。但对于国内原料药企业来说,低水平重复建设以及由此衍生的环保压力,仍是悬在企业头上的“达摩克利斯剑”;此外,日益频繁的国际贸易摩擦,也是对原料药市场的一大考验。   “产能过剩、购买力压缩、行情不稳定和贸易保护主义抬头,给不少企业带来了经营风险。另外,在人民币升值、原辅材料价格大幅上涨、人力成本上升等客观因素影响下,靠劳动密集、规模效益降低成本对医药行业的推动已经接近极限。” 中国化学制药工业协会专家委员会副主任沈贤姬如是说。  而在国内市场,围绕价格展开的竞争依然惨烈。原料药市场的多变坑苦了许多企业,特别是一些中小型企业。新医改背景下,制剂企业对原料药市场感到非常茫然。  值得注意的是,在新医改方案公布之后,面对新机遇和新挑战,“科技创新、转型升级”成为许多企业的核心共识。   “未来原料药市场走势肯定不平坦,但随着国家政策的引导,市场将更加规范,优势企业增速将加快。”石药集团董事长蔡东晨表示,理性研判市场、技术创新是提高市场竞争力的必由之路,企业出手要快,积极利用国家的一些鼓励创新的政策,加强技术联合研究。“一些中小生产企业、医药包装企业以及产品结构不合理的制剂生产企业,要高度重视政府公关,节约成本,同时要找准细分市场,走联合重组之路。”  沈贤姬亦表示,抗生素类、维生素类、解热镇痛药物等品种的生产,短期内没有国家可以取代我国在国际上的地位,但要抗风险、抓机遇,创新升级是不二法门.  结构升级迫在眉睫  据医保商会统计数据显示,今年1~2月份,我国原料药进出口增幅首次出现负增长,进出口为30.69亿美元,同比减少15.16%,占医药保健品类商品同期进出口总额的45.79%。其中,进口金额8.13亿美元,同比减少21.27%;出口金额22.57亿美元,同比减少12.72%。  这是一个非常危险的信号。刚结束的广交会就是一个不争的事实。国际买家的观望情绪影响了购买力或购买周期,部分市场环境在恶化。进一步优化产业结构迫在眉睫。尽管在全球我国原料药价格的比较优势仍然存在,但企业要居安思危,未雨绸缪,坚持“人无我有,人有我优”的特色创新理念,抢夺市场话语权。  当前,产能过剩已成为制约企业发展的首要难题。尽管今年原料药市场仍有增长势头,但产能过剩、低水平的重复建设将是引发新一轮价格战的导火索。“眼光有多远,企业就能走多远。要改变低水平的恶性竞争,关键看企业决策者的战略眼光。只有从长远的角度谋划,企业才能走得更远、更高。”沈贤姬说。  以抗生素为例,本次展会上价位均在50元左右(税前),几乎就是成本价,上游中间体7-ACA、6-APA 的价格继续下滑。  上游原料药价格的大幅攀升,在成本转嫁中给下游企业带来巨大的压力。而(这种压力)如果在终端无法释放,就会反向回馈到上游。为了规避恶性价格竞争给企业造成的伤害、保证市场供需平衡,产业升级是不能避免的。

  • 【转帖】畸形大个草莓吃了伤肾 专家教你识别化学草莓

    生活实例周末,李女士下班回婆家吃饭,看见路边好多人围着两大箩筐草莓在挑选,卖草莓的小贩还不停吆喝“新鲜草莓便宜卖了,十元两斤”。于是她买了四斤草莓去婆婆家。晚饭后一家人围着电视边吃草莓边聊天,年迈的公公患有慢性肾炎多年,长期吃药治疗,看到新鲜的草莓竟爱不释“口”,一个人吃了一斤多,第二天早上,老人因贪吃草莓,导致肾病发作,住进了医院。  现在正是草莓大量上市的季节,又红又大、娇艳欲滴的草莓让人禁不住诱惑,而且吃起来香甜可口,殊不知,这些“光鲜亮丽”的草莓吃多了,可能会对身体造成伤害。尤其对于患有肾病的人来说,小小的草莓可能会给肾脏增加负担,使病情加重。  据南京市第一医院肾内科曹长春主任介绍,草莓含有丰富的维生素和矿物质,还含有葡萄糖、果糖、柠檬酸、苹果酸、胡萝卜素、核黄素等。这些营养素对儿童的生长发育有很好的促进作用,对老年人的健康亦很有益。但是现在有些果农为牟取暴利,在种植过程中滥用膨大剂,使草莓个头很大、颜色特别漂亮,消费者一但吃了膨大剂残留量大的草莓,会对健康造成很大的损伤。尤其是肾病患者,更应当避免过多食用。

  • 苏东坡故居眉山三苏祠 3

    [b][color=#cc0000]苏东坡故居眉山三苏祠 3[/color][/b][img]https://ng1.17img.cn/bbsfiles/images/2024/04/202404231524062336_1117_1841897_3.png[/img]

  • 苏东坡故居眉山三苏祠 1

    [b][color=#cc0000]苏东坡故居眉山三苏祠 1[/color][/b][img]https://ng1.17img.cn/bbsfiles/images/2024/04/202404231522055309_2822_1841897_3.png[/img]

  • 苏东坡故居眉山三苏祠 2

    [b][color=#cc0000]苏东坡故居眉山三苏祠 2[/color][/b][img]https://ng1.17img.cn/bbsfiles/images/2024/04/202404231522345534_8278_1841897_3.png[/img]

  • 苏东坡故居眉山三苏祠 8

    [b][color=#cc0000]苏东坡故居眉山三苏祠 8[/color][/b][img]https://ng1.17img.cn/bbsfiles/images/2024/04/202404231528266773_1128_1841897_3.png[/img]

  • 苏东坡故居眉山三苏祠 6

    [b][color=#cc0000]苏东坡故居眉山三苏祠 6[/color][/b][img]https://ng1.17img.cn/bbsfiles/images/2024/04/202404231527097056_9591_1841897_3.png[/img]

  • 几种酶的酶活力检测方法及结果分析

    几种酶的酶活力检测方法及结果分析

    [align=center]几种酶的酶活力检测方法及结果分析[/align][align=center]西安国联质量检测技术股份有限公司[/align][align=center]安评中心:王涛[/align]大蒜属百合科葱属植物蒜的鳞茎,其风味独特,营养丰富,用途十分广泛。在生产上,大蒜不能通过杂交制种,只能采用其鳞茎繁殖,由于长时间的营养繁殖造成植株体内病毒积累,使得蒜头变小,品种退化,产量降低,大大降低了大蒜的商品价值。大蒜在长期的生长过程中,由于受到病原菌的植物的附着与侵入,会产生自身的抗性机制,其中的保护性反应是复杂的新陈代谢的结果,其生理反应是通过酶催化活动来实现的。这些酶包括抗病性酶超氧岐化酶SOD,多酚氧化酶PPO和过氧化物酶POD等,以及感病性酶纤维素酶和果胶酶。本文主要描述了大蒜苗中的SOD,PPO,POD,纤维素酶和果胶酶的酶活力检测方法,并从酶活的角度分析,大蒜茎尖脱毒技术可以有效提高SOD,PPO,POD等与植物抗病性有关的酶的活性,而与植物感病性有关的酶的活性如纤维素酶和果胶酶的活性有所降低,其中脱毒苗中的SOD,PPO和POD的活性分别比未脱毒苗相应地高出93.37 U/g,19.48 U/gmin和382.55 U/gmin,纤维素酶和果胶酶的活性则分别低出18.29 U/gmin和38.08 U/gmin。这就从植物生理的角度上验证了脱毒大蒜苗抗病和高产的原因。[b]1实验药品及仪器1.1缓冲液的配置[/b]1.1.1磷酸缓冲液的配置首先分别配置母液A、B,再根据质量分数分别取对应的母液,调pH即可。母液A:0.2 mol/L Na[sub]2[/sub]HPO[sub]4[/sub]溶液:称量71.63 g Na[sub]2[/sub]HPO[sub]4[/sub]12H[sub]2[/sub]O,定容至1 L。母液B:0.2 mol/L NaH[sub]2[/sub]PO[sub]4[/sub]溶液:称量31.21 g NaH[sub]2[/sub]PO[sub]4[/sub]2H[sub]2[/sub]O,定容至1 L。0.05 mol/L磷酸缓冲液(pH7.8,内含1%PVP):22.875 mL A +2.125 mL l B+1 g聚乙烯吡咯烷酮(PVP),稀释至100 mL。0.05 mol/L磷酸缓冲液(pH6.0):3.075 mL A + 21.925 mL B,稀释至100 mL。0.1 mol/L磷酸缓冲液(pH6.0):12.3 mL A + 87.7 mL B,稀释至200 mL。1.1.2醋酸缓冲液的配置同磷酸缓冲液一样,先配置母液。母液A:0.2 mol/L HAc溶液:吸取11.5 mL 醋酸溶液,定容至1 L。母液B:0.2 mol/L NaAc溶液:称量27.2 g 三水合乙酸钠,定容至1 L。0.2 mol/L (pH4.6) 醋酸缓冲液:51 mL A + 49 mL B混合均匀即可。0.2 mol/L(pH4.8)醋酸缓冲液:40 mL A + 60 mL B混合均匀即可。1.1.3其他试剂的配置100 umol/L EDTA-Na[sub]2[/sub]溶液:称取0.03721 g EDTA-Na[sub]2[/sub],用磷酸缓冲液定容至1 L。20 umol/L核黄素:称取0.00753 g核黄素定容至1 L。130 mmol/L甲硫氨酸(Met):称取1.9399 gMet,用磷酸缓冲液定容至100mL。750 umol/L氮蓝四唑(NBT):称取0.06133 g NBT,用磷酸缓冲液定容至100 mL。0.1 mol/L邻苯二酚:称取1.1011 g邻苯二酚定容至100 mL。20%三氯乙酸(TCA):称取20 g TCA定容至100 mL。二氧甲基酚即愈创木酚30%H[sub]2[/sub]O[sub]2 [/sub]3,5-二硝基水杨酸显色剂(DNS显色剂):称取2.5 g DNS溶于水中,加入2.5 g氢氧化钠、50 g酒石酸钾钠和100 mL水,加热溶解后再加入0.5 g苯酚和0.125 g无水亚硫酸钠,待全部溶解后冷却,定容至500 mL,贮于棕色瓶中,放置一周后使用,用之前过滤[sup][/sup]。葡萄糖标准液:称取0.54 g葡萄糖定容至500 mL。纤维素底物(CMC):称取0.625 g羧甲基纤维素钠溶于0.2 mol/L (pH 4.6) 醋酸缓冲液中,定容至100 mL。果胶底物:称取0.5 g果胶溶于0.2 mol/L (pH 4.8) 醋酸缓冲液中,定容至100 mL,放置冰箱内冷藏。D-半乳糖醛酸标准液:称取0.1 g D-半乳糖醛酸溶于0.2 mol/L (pH 4.8) 醋酸缓冲液中,定容至100 mL。[b]1.2主要实验仪器[/b]紫外分光光度计 上海精密科学仪器有限公司可见光分光光度计 上海第三分析仪器厂TCL-16C型台式离心机 上海安亭科学仪器厂超净工作台 上海博迅实业有限公司医疗设备厂电热恒温水浴锅 上海跃进医疗器材厂灭菌器 上海申安医疗器械厂海尔冰箱 青岛海尔集团电子分析天平 北京赛多莉斯天平有限公司数显pH计;恒温光照培养箱;制冰机;计时器;[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff][url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url][/color][/url];试剂瓶;容量瓶。[b]2实验方法2.1材料[/b]大蒜脱毒试管苗:采用大蒜茎尖组织脱毒技术,经过3次继代培养所获得的生长健壮脱毒苗。大蒜苗植株:将市售山东金乡大蒜,分瓣去皮后,栽种于花盆中,日光照射,生长两个月之后所得植株。[b]2.2方法[/b]共测两组植株(第一组为大蒜脱毒苗,第二组为大蒜苗植株即未脱毒苗)的五种酶的酶活,这五种酶分别是超氧化物歧化酶、多酚氧化酶、过氧化物酶、纤维素酶和果胶酶,最后将两组酶活数据分别做对应比较。同一植株做三次平行实验,取平均值。[b]3酶活测定3.1超氧物歧化酶(SOD)活力的测定[/b]本实验依据超氧物歧化酶抑制氮蓝四唑(NBT)在光下的还原作用来确定酶活性的大小。在有氧化物质存在下,核黄素可被光还原,被还原的核黄素在有氧条件下极易再氧化而产生超氧阴离子自由基,这种自由基可将氮蓝四唑还原为蓝色的甲腙。后者在560 nm处有最大吸收,而SOD可清除超氧阴离子自由基,从而抑制了甲腙的形成。于是光还原反应后,反应液蓝色愈深,说明酶活性愈低,反之酶活性愈高。3.1.1粗酶液的提取取叶片于预冷的研钵中,加入1 mL 0.05 mol/L磷酸缓冲液(pH 7.8,内含1%PVP)在冰浴下研磨匀浆,匀浆液装入2 mL离心管中,在4000 r/min下离心10 min,取上清液,冷藏待用。3.1.2显色反应取7只5 mL透明度好的试管,用记号笔编号,1为空白管,2~4为测定管,5~7为对照管。各管按照表3-1依次添加试剂溶液,混匀后,将空白管置于暗处,其它各管置于4000 lx日光灯下反应20 min。[align=center]表1 测定SOD活性试剂添加量[/align][align=center]Table 1 The add content of reagent to SOD[/align][table][tr][td][align=center]试剂[/align][/td][td][align=center]用量/ mL[/align][/td][td][align=center]备注[/align][/td][/tr][tr][td][align=center]0.05 mol/L磷酸缓冲液[/align][/td][td][align=center]1.5[/align][/td][td][align=center] [/align][/td][/tr][tr][td][align=center]130 mmol/L Met[/align][/td][td][align=center]0.3[/align][/td][td][align=center] [/align][/td][/tr][tr][td][align=center]750 umol/L NBT[/align][/td][td][align=center]0.3[/align][/td][td=1,2][align=center]总体积为3.0 ml,对照管与空白管加入缓冲液代替酶液[/align][/td][/tr][tr][td][align=center]100 umol/L EDTA-Na[sub]2[/sub][/align][/td][td][align=center]0.3[/align][/td][/tr][tr][td][align=center]20 umol/L 核黄素[/align][/td][td][align=center]0.3[/align][/td][td][align=center] [/align][/td][/tr][tr][td][align=center]酶液[/align][/td][td][align=center]0.05[/align][/td][td][align=center] [/align][/td][/tr][tr][td][align=center]蒸馏水[/align][/td][td][align=center]0.25[/align][/td][td][align=center] [/align][/td][/tr][/table]3.1.3活力测定与计算以暗处管为空白,分别测定其它各管在560 nm波长下的吸光度(OD)。以抑制NBT光化还原的50%作为一个酶活性单位(U)表示。按下式计算SOD的总活性:SOD总活性(U/g)=(A[sub]o[/sub]-A[sub]s[/sub])*V[sub]t[/sub]/ A[sub]o[/sub]*0.5*W*V[sub]1 [/sub](公式3-1)式中:SOD总活性以每克鲜质量的酶单位表示(U/g);A[sub]o[/sub]-照光对照管的吸光度;A[sub]s[/sub]-样品管的吸光度;V[sub]t[/sub]-样品液总体积(mL);V[sub]1[/sub]-测定时样品液用量(mL);W-样品鲜质量(g)。[b]3.2多酚氧化酶(PPO)活力的测定[/b]多酚氧化酶是一种含铜的氧化酶,能使一元酚和二元酚氧化生成醌,其活性可以用比色法测量产物的形成,邻苯二酚是其常用的底物。3.2.1粗酶液的提取取叶片于预冷的研钵中,加入2 mL 0.05 mol/L磷酸缓冲液(pH 6.0),在冰浴下研磨匀浆,匀浆液装入2 mL离心管中,在4000 r/min下离心15 min,取上清液,冷藏待用。3.2.2活力测定与计算取2支试管,一支为空白对照管,对照管中加入1 mL酶液+3 mL 0.05 mol/L(pH 6.0)磷酸缓冲液;另一支为测定管,测定管中加入1 mL酶液+1 mL 0.1 mol/L邻苯二酚+2 mL 0.05 mol/L(pH 6.0)磷酸缓冲液。然后在37 ℃水浴保温10 min,立即冰浴,冷却下来之后,各管加入2 mL 20% TCA终止反应。立即在410 nm波长下测定吸光度,每min测一次,共测3 min。以每min内吸光度变化0.01为酶活性单位(U)。PPO活性(U/gmin)=ΔA*V[sub]0[/sub]/0.01W*V[sub]1[/sub]*t [sub] [/sub](公式3-2)式中:ΔA = A[sub]s[/sub]-A[sub]o[/sub];A[sub]o[/sub]-对照管的吸光度;A[sub]s[/sub]-测定管的吸光度;V[sub]0[/sub]-酶液提取总量(mL);V[sub]1[/sub]-测定时酶液用量(mL);W-样品鲜重(g);t-反应时间(min)。[b]3.3过氧化物酶(POD)活力的测定[/b]选用愈创木酚法,即在过氧化氢存在下,过氧化物酶能使愈创木酚氧化,生成茶褐色物质,可用分光光度计测量生成物的含量。3.3.1反应混合液的制备量取50 mL 0.1 mol/L磷酸缓冲液(pH6.0),加入28 uL二氧甲基酚,加热搅拌至溶解,冷却后再加入19 uL 30% H[sub]2[/sub]O[sub]2[/sub],混合均匀保存于冰箱中。3.3.2粗酶液的提取取叶片于预冷的研钵中,加入5 mL 0.1 mol/L磷酸缓冲液(pH 6.0),在冰浴下研磨匀浆,匀浆液装入2 mL离心管中,在4000 r/min下离心15 min,取上清液,冷藏待用。3.3.3活力测定与计算取2只比色杯,一只加入2 mL反应混合液和1 mL 0.1 mol/L磷酸缓冲液(pH 6.0),作为校零对照;另一只加入2 mL反应混合液和1 mL酶液,立即开启秒表计时器,在470 nm波长下测定吸光度,每隔1 min读数一次。以每min吸光度变化0.01为1个过氧化物酶活性单位(U)。POD活性=△A*Vt /0.01W* V[sub]1[/sub]*t (公式3-3)式中:△A-反应时间内吸光度的变化量;V[sub]t[/sub]-酶液总体积(mL);V[sub]1[/sub]-测定时酶液用量(mL);W-样品鲜重(g);t-反应时间(min)。[b]3.4纤维素酶活力的测定[/b]选用DNS法测定纤维素酶活力。DNS法测定的是纤维素酶对羧甲基纤维素钠(CMC)的糖化能力,其水解产物如纤维二糖和葡萄糖是还原糖,可以将DNS还原成棕红色的氨基化合物,在一定浓度范围内,还原糖的量与该物质溶液颜色的深浅成比例,因此可以用分光光度计进行测定,该方法可表示纤维素酶的总活力。3.4.1绘制葡萄糖标准曲线取5支试管,用记号笔编号后,按表3-2量取试剂,每管分别加入1 mL 2 mol/L氢氧化钠和2 mL DNS显色液,摇匀后置于沸水浴中加热5 min,流水冷却,用蒸馏水定容至10 mL,静置20 min后以1号管为对照于490 nm波长处测吸光度,绘制标准曲线。[align=center]表2葡萄糖标准曲线制作表[/align][align=center]Table 2 Standard curve of Glucose[/align][table][tr][td][align=center]试管号[/align][/td][td]标准葡萄糖溶液(mL)[/td][td]0.2 mol.L[sup]-1[/sup],pH4.6醋酸钠缓冲溶液(mL)[/td][td][align=center]试管中葡萄糖量(umol)[/align][/td][/tr][tr][td][align=center]1[/align][/td][td][align=center]0[/align][/td][td][align=center]5.0[/align][/td][td][align=center]0[/align][/td][/tr][tr][td][align=center]2[/align][/td][td][align=center]0.4[/align][/td][td][align=center]4.6[/align][/td][td][align=center]2.4[/align][/td][/tr][tr][td][align=center]3[/align][/td][td][align=center]0.6[/align][/td][td][align=center]4.4[/align][/td][td][align=center]3.6[/align][/td][/tr][tr][td][align=center]4[/align][/td][td][align=center]0.8[/align][/td][td][align=center]4.2[/align][/td][td][align=center]4.8[/align][/td][/tr][tr][td][align=center]5[/align][/td][td][align=center]1.0[/align][/td][td][align=center]4.0[/align][/td][td][align=center]6.0[/align][/td][/tr][/table]3.4.2粗酶液的提取取叶片于预冷的研钵中,加入2 mL 0.2 mol/L醋酸缓冲液(pH 4.6),在冰浴下研磨匀浆,匀浆液装入2 mL离心管中,在4000 r/min下离心15 min,取上清液,装入离心管中再离心10 min,定容至10 mL,冷藏待用。3.4.3活力测定与计算取3支试管,一支作为空白对照,另2支作为平行样品。样品管中加入50℃预热的酶液1 mL,底物溶液(CMC)4 mL;空白对照管加4 mL底物溶液(CMC)。3支试管放入50℃水浴中,5 min后取出,立即加入1 mL 2mol/L NaOH溶液和2 mL DNS显色剂。摇匀后,空白对照管中加入1 mL酶液,立即将3支试管放入沸水浴中,反应5 min后取出,流水冷却,定容至10 mL,在490 nm波长处测吸光度。用测得的OD值在标准曲线上差得相应的葡萄糖的量,代入下面公式计算活力。以每min催化纤维素水解成1 umol葡萄糖的酶量表示酶活大小(U)。纤维素酶活性(U/gmin)=葡萄糖量/5*E* W (公式3-4)式中:5为反应时间(min);Ew为1 mL酶液中含有的酶量(g);W-样品鲜重(g)。[b]3.5果胶酶活力的测定[/b]选用DNS法测定果胶酶活力。该方法是利用果胶酶在一定温度,时间和条件下水解果胶,释放出还原性D-半乳糖醛酸,与3,5-二硝基水杨酸共热产生棕红色的氨基化合物,即发生显色反应。在一定范围内,水解生成D-半乳糖醛酸的量与吸光度成正比,与果胶酶活力成正比,通过分光光度计测定吸光度,可以计算出果胶酶的活力。3.5.1绘制D-半乳糖醛酸标准曲线取6支试管,编号后依次按照表3-3加入试剂,摇匀后置于沸水浴中反应5 min后,冷却,用蒸馏水定容至10 mL,静置20 min后以1号管为对照于540 nm波长处测吸光度,绘制标准曲线。[align=center]表3[b] [/b]D-半乳糖醛酸标准曲线的绘制[/align][align=center]Table 3 Standard curve of D-Galacturonic acid[/align][table][tr][td][align=center]试管号[/align][/td][td]D-半乳糖醛酸标准液(mL)[/td][td]0.2 mol.L[sup]-1[/sup],pH4.8醋酸缓冲液(mL)[/td][td][align=center]DNS显色液(mL)[/align][/td][/tr][tr][td][align=center]1[/align][/td][td][align=center]0[/align][/td][td][align=center]4.0[/align][/td][td][align=center]2.5[/align][/td][/tr][tr][td][align=center]2[/align][/td][td][align=center]0.2[/align][/td][td][align=center]3.8[/align][/td][td][align=center]2.5[/align][/td][/tr][tr][td][align=center]3[/align][/td][td][align=center]0.4[/align][/td][td][align=center]3.6[/align][/td][td][align=center]2.5[/align][/td][/tr][tr][td][align=center]4[/align][/td][td][align=center]0.6[/align][/td][td][align=center]3.4[/align][/td][td][align=center]2.5[/align][/td][/tr][tr][td][align=center]5[/align][/td][td][align=center]0.8[/align][/td][td][align=center]3.2[/align][/td][td][align=center]2.5[/align][/td][/tr][tr][td][align=center]6[/align][/td][td][align=center]1.0[/align][/td][td][align=center]3.0[/align][/td][td][align=center]2.5[/align][/td][/tr][/table]3.5.2粗酶液的提取与提取纤维素酶的方法相同。3.5.3活力测定与计算取5支试管,用记号笔编号。1、2号管为样品管,分别加入1 mL果胶底物,在48℃水浴中预热5 min,再分别加入4 mL 0.2 mol/L醋酸缓冲液(pH 4.8),之后,1号管中加入1 mL酶液,立即摇匀,在48℃水浴中反应30 min;2号管中加入1 mL酶液,立即放入沸水浴中反应5 min,冷却。分别取1、2管中容液各2 mL于3、4管中,并加2 mL水,2.5 mL DNS显色剂,混匀,沸水浴反应5 min,流水冷却。5号管加入4 mL 0.2 mol/L醋酸缓冲液(pH 4.8),2.5 mL DNS显色剂,静置20 min后以5号管为对照校零,在540 nm波长处测3、4管的吸光度;用测得的(OD[sub]3[/sub]-OD[sub]4[/sub])值在标准曲线上查得相应的D-半乳糖醛酸的量,代入下面公式计算活力。以每min酶作用生成的D-半乳糖醛酸的量为一个酶活单位(U)。果胶酶活性(U/ gmin)=Y*3*N/t* W [sub] [/sub](公式3-5)式中:Y-酶作用生成的D-半乳糖醛酸的量;3-测酶活取了反应液的1/3;N-样品稀释倍数;W-样品鲜重(g);t-反应时间(min)[b]4标准曲线的绘制4.1葡萄糖标准曲线[/b]依照3.4.1步骤,最后测得各个试管中的吸光度依次为0,0.432,0.672,0.865,1.073。按照表4,以葡萄糖浓度为横坐标,490 nm处的OD值为纵坐标,绘制葡萄糖标准曲线(如图1)。[align=center]表4葡萄糖标准曲线[/align][align=center]Table 4 Standard curve of Glucose[/align][table][tr][td][align=center]试管号[/align][/td][td][align=center]1[/align][/td][td][align=center]2[/align][/td][td][align=center]3[/align][/td][td][align=center]4[/align][/td][td][align=center]5[/align][/td][/tr][tr][td][align=center]葡萄糖浓度umol[/align][/td][td][align=center]0[/align][/td][td][align=center]2.4[/align][/td][td][align=center]3.6[/align][/td][td][align=center]4.8[/align][/td][td][align=center]6[/align][/td][/tr][tr][td][align=center]490 nm OD[/align][/td][td][align=center]0[/align][/td][td][align=center]0.432[/align][/td][td][align=center]0.672[/align][/td][td][align=center]0.865[/align][/td][td][align=center]1.073[/align][/td][/tr][/table][align=center][img=,580,219]http://ng1.17img.cn/bbsfiles/images/2018/07/201807010439441511_1108_2904018_3.png!w580x219.jpg[/img] [/align][align=center]图1葡萄糖标准曲线[/align][align=center]Figure 1 Standard curve of Glucose[/align][b]4.2 D-半乳糖醛酸标准曲线[/b]依照3.5.1步骤,最后测得各个试管中的吸光度依次为0,0.211,0.384,0.561,0.743,0.965。按照表5,以D-半乳糖醛酸的量为横坐标,540 nm处的OD值为纵坐标,绘制D-半乳糖醛酸标准曲线(如图2)。[align=center]表5 D-半乳糖醛酸标准曲线[/align][align=center]Table 5 Standard curve of D-Galacturonic acid[/align][table][tr][td][align=center]试管号[/align][/td][td][align=center]1[/align][/td][td][align=center]2[/align][/td][td][align=center]3[/align][/td][td][align=center]4[/align][/td][td][align=center]5[/align][/td][td][align=center]6[/align][/td][/tr][tr][td][align=center]D-半乳糖醛酸的量mL[/align][/td][td][align=center]0[/align][/td][td][align=center]0.2[/align][/td][td][align=center]0.4[/align][/td][td][align=center]0.6[/align][/td][td][align=center]0.8[/align][/td][td][align=center]1.0[/align][/td][/tr][tr][td][align=center]540 nm OD[/align][/td][td][align=center]0[/align][/td][td][align=center]0.211[/align][/td][td][align=center]0.384[/align][/td][td][align=center]0.561[/align][/td][td][align=center]0.743[/align][/td][td][align=center]0.965[/align][/td][/tr][/table][align=center][img=,579,188]http://ng1.17img.cn/bbsfiles/images/2018/07/201807010440011153_826_2904018_3.png!w579x188.jpg[/img] [/align][align=center]图2 D-半乳糖醛酸标准曲线[/align][align=center]Figure 2 Standard curve of D-Galacturonic acid[/align][b]5结果与分析[/b]将所测得的OD值,根据各个公式计算出SOD,PPO,POD,纤维素酶和果胶酶的酶活力,结果如表6所示。再将大蒜脱毒试管苗与未脱毒苗酶活测定结果做成柱状图进行比较,如图3所示。可以看出,脱毒试管苗中的SOD,PPO,POD的活性均高于未脱毒试管苗的对应酶的活性,而这三种酶都与植物的抗病性有关,说明在抗病性上脱毒试管苗强于未脱毒试管苗;纤维素酶和果胶酶的活性则是未脱毒苗比脱毒试管苗高。此外,作为植物抗氧化系统第一道防线的SOD,其活性大小在脱毒试管苗与未脱毒苗中相差93.37 U/g,前者比后者高出约1.5倍,说明经脱毒的试管苗抵御活性氧侵害的能力更高。PPO能催化木质素及其他酚类氧化物的形成,从而构成保护性屏蔽,抵抗抗病菌的入侵,也可以通过形成醌类物质直接发挥抗病作用。脱毒试管苗的PPO活性比未脱毒苗的PPO活性高出19.48 U/gmin,约2.45倍。说明脱毒苗在抵抗抗病菌的入侵方面,能力更强。在植物对病原菌侵染的防卫反应中,POD和SOD都有着极其重要的作用,SOD能有效的清除机体内的超氧自由基,它可以把有害的超氧自由基转化为过氧化氢,而POD可以将过氧化氢分解为完全无害的水,在脱毒试管苗与未脱毒苗中POD的活性均比较大,两者相差382.55 U/gmin,约1.7倍,说明经脱毒的试管苗可以更有效的抵御过氧化氢的毒害。而纤维素酶和果胶酶均与植物的感病性有关,其活性则是未脱毒苗比脱毒试管苗高,分别高出18.29 U/gmin和38.08 U/gmin,约2.4倍和1.2倍,说明脱毒苗的感病几率有所降低。POD不仅可以将过氧化氢分解为完全无害的水,而且还具有多种生理功能,如从叶绿体和细胞质中去除过氧化氢、氧化有毒化合物、合成细胞壁、对各种胁迫的应急、吲哚-3-乙酸的调控、乙烯的生物合成等,还参与了植物酚类的聚合和氧化以及木质素和植保素的合成。因此POD是植物体中活性较高的一种酶,从图3中也可以看出,POD的活性在五种酶中最高。[align=center]表6 大蒜脱毒试管苗与未脱毒苗酶活测定结果[/align][align=center]Table 6 Enzyme activity assay results between virus-free garlic in vitro and not virus-free plantlets[/align][table][tr][td][align=center]酶总活性[/align][/td][td][align=center]SOD[/align][align=center](U/g)[/align][/td][td][align=center]PPO[/align][align=center](U/gmin)[/align][/td][td][align=center]POD[/align][align=center](U/gmin)[/align][/td][td][align=center]纤维素酶[/align][align=center](U/gmin)[/align][/td][td][align=center]果胶酶[/align][align=center](U/gmin)[/align][/td][/tr][tr][td][align=center]脱毒苗[/align][/td][td][align=center]157.46[/align][/td][td][align=center]27.43[/align][/td][td][align=center]610.95[/align][/td][td][align=center]7.77[/align][/td][td][align=center]31.97[/align][/td][/tr][tr][td][align=center]未脱毒苗[/align][/td][td][align=center]64.09[/align][/td][td][align=center]7.95[/align][/td][td][align=center]228.40[/align][/td][td][align=center]26.06[/align][/td][td][align=center]70.05[/align][/td][/tr][/table][align=center][img=,564,289]http://ng1.17img.cn/bbsfiles/images/2018/07/201807010440223303_2970_2904018_3.png!w564x289.jpg[/img] [/align][align=center]图3大蒜脱毒试管苗与未脱毒苗酶活测定结果比较[/align][align=center]Table 3 Comparison of enzyme activity assay results between virus-free garlic in vitro and not virus-free plantlets[/align]

  • 苏东坡故居眉山三苏祠 4

    [b][color=#cc0000]苏东坡故居眉山三苏祠 4[/color][/b][img]https://ng1.17img.cn/bbsfiles/images/2024/04/202404231525217005_3155_1841897_3.png[/img]

  • 苏东坡故居眉山三苏祠 9

    [b][color=#cc0000]苏东坡故居眉山三苏祠 9[/color][/b][img]https://ng1.17img.cn/bbsfiles/images/2024/04/202404231528585514_3793_1841897_3.png[/img]

  • 苏东坡故居眉山三苏祠 5

    [b][color=#cc0000]苏东坡故居眉山三苏祠 5[/color][/b][img]https://ng1.17img.cn/bbsfiles/images/2024/04/202404231526244009_1293_1841897_3.png[/img]

  • 苏东坡故居眉山三苏祠 7

    [b][color=#cc0000]苏东坡故居眉山三苏祠 7[/color][/b][img]https://ng1.17img.cn/bbsfiles/images/2024/04/202404231527424786_537_1841897_3.png[/img]

  • ICP-OES测镁铝波动特别大,、

    最近ICP-OES测矿石样中镁铝波动特别大,同一个国家标准样连续测定的结果差别都很大,只是镁铝,其他元素正常,前辈们有知道原因的吗?

  • 【分享】中国土壤重金属污染严重 土壤环境立法迫在眉睫

    这期报道是中国重金属污染调查系列报道的延续,我们选择关注邻国的经验。上世纪六七十年代,日本经济快速增长,各地环境污染事件不断,其中被称为四大公害的环境病症,就有三起和重金属污染有关。  除了南都记者特赴日本带来的报道,我们还关注了中国本土的土壤污染修复案例。中国正在经历和日本上个世纪同样迅速的经济增长期,污染也在同步增长,新世纪以来,和重金属有关的环境事件愈见频繁。而中国的土壤污染治理也在不断摸索的过程当中。记者从环保部了解到,全国的土壤污染调查已经完成,重金属治理的规划(2010-2015)修编也已上报国务院并于近期公布。土壤的环境立法已经迫在眉睫,我们采访了两位参与立法研究的专家,他们的急迫背后是严峻的现实。  不管是空气中的铅,还是污水里的镉、砷,在逐渐沉淀之后,最后的归属都是土地。科学研究表明,水稻的根系生长于25厘米之上的土壤表层中,而这一层也正好是重金属最富集的所在。  公害病患者相继离世,河流逐渐自我净化,土壤的污染却不会自动解除,即使过千百万年,它仍然稳定地存在,这正是重金属污染的特殊之处。我们可以看到,即使是不乏技术和财力的日本,修复土壤的任务仍未完成。而对于中国,它在未来又会成为怎样困难的一个任务呢?  ■第二页·日本的教训 世纪之“痛”   ■第三页·日本的教训 庶民抗争  ■第四页·中国探索·寻找土地的解药  ■第五页·访谈·土壤污染立法迫在眉睫

  • 菜籽粕分步酶解制备水解产物的研究

    【序号】:1【作者】:姜绍通 罗蕾蕾 潘牧 聂胜德 【题名】:菜籽粕分步酶解制备水解产物的研究【期刊】:《食品科学》【年、卷、期、起止页码】:2009年10期【全文链接】:http://www.cnki.com.cn/Article/CJFDTotal-SPKX200910010.htm

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制