混频器

仪器信息网混频器专题为您提供2024年最新混频器价格报价、厂家品牌的相关信息, 包括混频器参数、型号等,不管是国产,还是进口品牌的混频器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合混频器相关的耗材配件、试剂标物,还有混频器相关的最新资讯、资料,以及混频器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

混频器相关的厂商

  • 南京混响声工业设计有限公司2016年成立于南京,专注于振动噪声领域产品研发及运用。南京混响声创始人及核心骨干员工分别来自NI公司,ADLink公司,及跨国公司NVH测试开发部门,平均工作年限15年以上。在测试系统开发、声学实验室建造、测试及CAE仿真运用方面积累了丰富的经验。
    留言咨询
  • 400-860-5168转1446
    北京欧兰科技发展有限公司专业代理、销售世界知名品牌的激光光谱探测系统;燃烧和流体诊断系统;激光多普勒测试系统;材料形变应力分析系统;太赫兹实验系统和组件;表面形貌测量;界面特性分析;液滴气泡分析仪;激光和光电子器件,包括皮秒,纳秒,飞秒,连续波激光器,固体激光器,气体激光器,半导体激光器,染料激光器,光学元件,精密位移台,压电陶瓷纳米制动器,纳米位移台,CCD相机,激光参数测量等仪器和设备。 主要产品有:和频光谱测量系统,四波混频光谱测量系统,皮秒时间分辨光谱测量系统,纳秒激光光谱测量系统;激光差分雷达 粒子成像测速系统(PIV);平激光诱导荧光PLIF分析系统,激光诱导白炽光LII分析系统;激光喷雾诊断系统;激光多参量联合测量系统;激光相位多普勒干涉仪PDI(PDPA, PDA), 激光多普勒测速仪(LDV);光学(激光)应力和形变分析系统;太赫兹时域光谱测量系统,太赫兹发射器和接受器组件;椭偏仪,布儒斯特角显微成像分析仪,表面等离子体共振成像分析仪,波导模分析仪,接触角测量仪,液滴气泡分析仪;高/中/低功率半导体泵浦和闪光灯泵浦的调Q/锁模飞秒/皮秒/纳秒固体激光器 准分子激光器,二氧化碳激光器,通讯用激光器 超快、超高帧频(增强型)CCD相机,增强型及特种CCD相机;各种光学材料和镜片,特种衍射光学元件;非线性晶体,红外晶体,激光晶体;各种电控和手动精密位移台,纳米位移台;激光能量计,功率计,激光光束品质分析仪;激光器电源及附件。 这些产品已经被广泛应用于物理、化学、材料、通讯、制造、能源、航空航天等领域。 我公司的产品技术先进,质量可靠,性能稳定。所代理的厂家不仅具有一流的产品和技术,还具备极强的产品研发能力,可以针对用户的实际应用需求提供最佳设计及配套硬件系统,高性价比的完整解决方案。 我公司始终坚持“诚信、合作,效率”的经营原则,竭诚为国内广大用户提供专业咨询以及快捷、优质、完善的产品应用咨询和技术支持服务。 “您的需求永远是我们的动力;您的满意永远是我们的目标!”
    留言咨询
  • 美国PTI公司在同美国SD公司合并后,作为其相对独立的PIND事业部,于1982年正式向中国地区销售了第一台PIND设备,经过30多年的发展目前已成为国内PIND测试的行业标准。美国SD公司于2015年在中国地区设立了PIND办事处(成都频德仪器有限公司),全面负责中国地区PIND产品的售前售后服务,办事处主要职责是规范国内PIND销售市场,为用户提供本地化、及时高效技术支持服务。国内办事处设在成都,拥有3名专业工程技术人员及1名行政人员,全面负责国内PIND销售及技术服务。为满足用户临时生产急需,办事处长期备有备用振动台、控制器、台面及专用电池等可供用户免费借用。包括 4511系列 和FELIX系列
    留言咨询

混频器相关的仪器

  • 德思特DS迷你混频器40GHz射频混频器TS-MX40000PRO40GHz集成LO宽频微波混频器TS-MX40000PRO是一款宽带高性能通用微波双平衡混频器,集成25GHz-40GHz可编程LO发生器。LO频率可通过前部控制装置设置,或通过USB或以太网提供的windows PC应用程序设置。利用其超低噪声的内部OCXO控制参考源,LO信号具有极低的相位噪声。TS-MX40000PRO不需要额外的布线和单独的笨重、昂贵的高频信号源,因此是一种方便的上变频器、下变频器或通用混频器,具有可编程的本地振荡器和独立的控制。参数:集成25-40GHz本地振荡器混频器RF频率范围:18-41GHz混频器IF频率范围:5-18000MHz低转换损耗:12dB typicalIP3:20dBm输入P1dB:+10dBmLO到RF的隔离度:35dBLO到IF的隔离度:30dB typ.RF到IF的隔离度:12-30dB典型的回波损耗: 6dB上变频和下变频相位噪声:30GHz @ 10KHz: 85dBcRF输入功率:+18dBm参考频率1:±10PPB 10MHz高稳定性OCXO参考频率2:100MHz低噪声VCXO特点:双USB-C供电内部±10ppb OCXO 10MHz基准以太网、USB和按钮控制谐波过滤的LO源精密的2.92mm射频端口,SMA中频端口明亮、高效的OLED显示屏可调节的LO功率外部MCX参考输入/输出简单而有效的控制界面电压和温度监测包括PC控制软件坚固的铝制外壳应用:一般的微波实验室应用接收器开发VSAT电子对抗通信应用卫星上行链路/下行链路雷达系统国防/电子战空间应用毫米波技术5G测试Ka波段研究
    留言咨询
  • 德思特DS迷你混频器6GHz射频混频器TS-MX6000PRO6 GHz宽带集成LO射频混频器上变频、下变频或通用混频器,带有可编程的谐波滤波本地振荡器和独立控制TS-MX6000PRO 参数 :集成1.0-6.5GHz本地振荡器混合器RF频率范围:1.5-6.5GHz混频器IF频率范围。1-2000MHz典型的LO到RF的隔离度:30dB典型的LO到IF的隔离度:15-20dB相位噪声,6GHz @ 10KHz: 92 dBcLO频率步长:2Hz低转换损耗: 8dB 典型值回波损耗:12dB典型IP3:10dBm输入P1dB:1dBm上变频、下变频LO谐波水平: -35dBc参考频率:10MHz混频器特点:微小的频率步长极低的LO相位噪声内部280ppb TCXO参考源USB Type-C供电紧凑、坚固的全金属外壳明亮、高效的OLED显示屏可调节的LO功率行业标准的虚拟COM端口50欧姆黄金SMA端口外部MCX参考输入(10MHz)高性能的LO谐波滤波本地振荡器输出端口(MCX)性能 Vs. 标准MX6000C LO相位噪声降低20dB以上 频率步长小1000倍 内部参考源稳定性提高10倍 更少的LO谐波和杂散成分 更宽的频率范围
    留言咨询
  • 波导基本平衡混频器 400-860-5168转2560
    基本特征· 频率范围: 25 &ndash 170 GHz· 无需调谐· 宽 IF 带宽· 最低转换损耗· 低LO 功率偏压样本模型频率(GHz)频率范围 RF / LOIF 带宽 典型转换损耗 -1(dB) TypicalLO功率(dBm) -2VTBM-28-FB26.5 &ndash 40· 对于窄带版本达到10%· 或者全波导带宽(*除了 WR08和 WR06混频器)· 对于窄带或固定LO模式达到20GHz· 对于全波段RF/LO模式限 于大约4GHz 6+10到+13VTBM-15-FB50 &ndash 75 7VTBM-12-FB60 - 90 7.5VTBM-10-FB75 &ndash 110 8VTBM-0890 &ndash 140 10VTBM-06110 &ndash 170 12备注:1. 数值取决于精确的RF/LO频率和LO功率。(*全带RF/LO 90-140和110-170GHz混频器并不可用).2. 低LO功率,DC偏压,窄带和全带混频器也可作为定制产品,联系厂商。3. 特殊定制:WG-waveguide size RF-RF frequency range, IF-IF frequency range,LO-LO frequency range CL-conversion loss available LO power4. 技术或询价:
    留言咨询

混频器相关的资讯

  • 石墨烯太赫兹外差混频探测器研究获重大进展
    p  中国电子科技集团有限公司第十三研究所专用集成电路国家级重点实验室与中国科学院苏州纳米技术与纳米仿生研究所、中国科学院纳米器件与应用重点实验室再次合作,在高灵敏度石墨烯场效应晶体管(G-FET)太赫兹自混频(Homodyne mixing)探测器的基础上,实现了外差混频(Heterodyne mixing)和分谐波混频(Sub-harmonic mixing)探测,最高探测频率达到650 GHz,利用自混频探测的响应度对外差混频和分谐波混频的效率进行了校准,该结果近期发表在碳材料杂志Carbon上(Carbon 121, 235-241 (2017))。/pp  频率介于红外和毫米波之间的太赫兹波(Terahertz wave)在成像、雷达和通信等技术领域具有广阔的应用前景,太赫兹波与物质的相互作用研究具有重要的科学意义。高灵敏度太赫兹波探测器是发展太赫兹应用技术的核心器件,是开展太赫兹科学研究的重要手段与主要内容之一。太赫兹波探测可分为直接探测和外差探测两种方式:直接探测仅获得太赫兹波的强度或功率信息 而外差探测可同时获得太赫兹波的幅度、相位和频率信息,是太赫兹雷达、通信和波谱成像应用必需的核心器件。外差探测器通过被测太赫兹信号与低噪声本地相干太赫兹信号的混频,将被测信号下转换为微波射频波段的中频信号后进行检测。与直接探测相比,外差探测通常具备更高的响应速度和灵敏度,但是探测器结构与电路更加复杂,对混频的机制、效率和材料提出了更高的要求。/pp  天线耦合的场效应晶体管支持在频率远高于其截止频率的太赫兹波段进行自混频探测和外差混频探测。前者是直接探测的一种有效方法,可形成规模化的阵列探测器,也是实现基于场效应晶体管的外差混频探测的基础。目前,国际上基于CMOS晶体管实现了本振频率为213 GHz的2次(426 GHz)和3次(639 GHz)分谐波混频探测,但其高阻特性限制了工作频率和中频带宽的提升。/pp  石墨烯场效应晶体管因其高电子迁移率、高可调谐的费米能、双极型载流子及其非线性输运等特性为实现高灵敏度的太赫兹波自混频和外差混频探测提供了新途径。前期,双方重点实验室秦华团队和冯志红团队合作成功获得了室温工作的低阻抗高灵敏度石墨烯太赫兹探测器,其工作频率(340 GHz)和灵敏度(~50 pW/Hz1/2)达到了同类探测器中的最高水平(Carbon 116, 760-765 (2017))。此次合作进一步使工作频率提高至650 GHz,并实现了外差混频探测。/pp  如图1所示,工作在650 GHz的G-FET太赫兹探测器通过集成超半球硅透镜,首先通过216、432和650 GHz的自混频探测,验证了探测器响应特性与设计预期一致,并对自混频探测的响应度和太赫兹波功率进行了测试定标。在此基础上,实现了本振为216 GHz和648 GHz的外差混频探测,实现了本振为216 GHz的2次分谐波(432 GHz)和3次分谐波(648 GHz)混频探测。混频损耗分别在38.4 dB和57.9 dB,对应的噪声等效功率分别为13 fW/Hz和2 pW/Hz。2次分谐波混频损耗比216 GHz外差混频损耗高约8 dB。/pp  此次获得混频频率已远高于国际上已报道的石墨烯外差探测的最高工作频率(~200 GHz),但中频信号带宽小于2 GHz,低于国际上报道最高中频带宽(15 GHz)。总体上,目前G-FET外差混频探测器性能尚不及肖特基二极管混频器。但是,无论在材料质量还是在器件设计与工艺技术上,都有很大的优化提升空间。根据Andersson等人预测,G-FET的混频转换效率可降低至23.5 dB,如何达到并超越肖特基二极管混频探测器的性能指标是未来需要重点攻关的关键问题。/pp  图3所示为基于432 GHz的直接探测以及二次谐波探测的透射成像图对比,分谐波探测时的透射成像显现出比直接探测更高的动态范围,可达40 dB。/pp  该研制工作得到了国家自然科学基金项目(No. 61271157, 61401456, 61401297等)、国家重点研发计划(2016YFF0100501, 2014CB339800)、中科院青促会(2017372)、中科院苏州纳米所纳米加工平台、测试分析平台和南京大学超导电子学研究所的大力支持。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/c73fe96e-7527-4de4-8f95-ff4e6c2935aa.jpg" title="1.jpg"/ /pp style="text-align: center "图1:650 GHz天线耦合的G-FET太赫兹外差混频探测器br//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/70869861-507f-4a27-91dc-64a7cf6c6185.jpg" title="2.jpg"//pp style="text-align: center "图2:(a)准光耦合的外差混频探测系统示意图 (b)216 GHz外差混频探测的中频频谱br//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/15463ac0-04f0-4c63-9091-fee1013ca466.jpg" title="3.jpg"//pp style="text-align: center "图3:(a)分别采用432 GHz直接探测和本振为216 GHz的2次分谐波探测对树叶进行的透射成像效果对比 (b)采用本振为216 GHz的2次分谐波探测对柠檬片的透视成像。/p
  • 国内首个室温太赫兹自混频探测器问世
    记者日前从中科院苏州纳米所获悉,该所成功研制出在室温下工作的太赫兹自混频探测器,从而填补了该类探测器的国内空白。  据了解,作为人类尚未大规模使用的一段电磁频谱资源,太赫兹波有着极为丰富的电磁波与物质间的相互作用效应,不仅在基础研究领域,而且在安检成像、雷达、通信、天文、大气观测和生物医学等众多技术领域有着广阔的应用前景。目前,室温微型的固态太赫兹光源和检测器技术尚未成熟,众多太赫兹发射&mdash 探测应用还处于原理演示和研究阶段。室温、高速、高灵敏度的固态太赫兹探测器技术是太赫兹核心器件研究的重要方向之一。  自2009年起,苏州纳米所秦华、张宝顺、吴东岷课题组就致力于太赫兹波&mdash 低维等离子体波相互作用及其调控研究。该团队在2009年年底取得突破性进展,在GaN/AlGaN高电子迁移率晶体管的基础上研制成室温工作的高灵敏度高速太赫兹探测器,首次实现了对1000GHz的太赫兹波的灵敏检测。  经过3年多的技术攻关,研究团队进一步突破了太赫兹天线、场效应混频和器件模型等关键技术,掌握了完整的场效应自混频太赫兹探测器技术。  目前,苏州纳米所研制的太赫兹探测器探测频率达到800~1100GHz,电流响应度大于70mA/W,电压响应度大于3.6kV/W,等效噪声功率小于40pW/Hz0.5,综合指标达到国际上商业化的肖特基二极管检测器指标,并成功演示了太赫兹扫描透视成像和对快速调制太赫兹波的检测。  据介绍,该项技术可进一步发展成大规模的太赫兹焦平面成像阵列和超高灵敏度的外差式太赫兹接收机技术,为发展我国的太赫兹成像、通信等应用技术提供核心器件与部件。
  • 2012太赫兹科学仪器及前沿技术专题研讨会在京成功召开
    仪器信息网讯 2012年8月8日-9日,由中国仪器仪表学会、“太赫兹光电子学教育部重点实验室”、《现代科学仪器》编辑部主办的2012太赫兹科学仪器及前沿技术专题研讨会在北京紫玉饭店成功召开。本次会议的宗旨是为太赫兹科学仪器研制开发提供技术交流平台,为太赫兹仪器选购提供技术咨询,并为太赫兹仪器使用提供技术支撑。本次研讨会特别邀请到电子科技大学刘盛纲院士、天津大学姚建铨院士等太赫兹研究领域的多名专家学者做精彩报告,吸引了来自各科研院所、仪器公司的近100位代表参会。会议现场  开幕式由太赫兹光电子学教育部重点实验室主任张存林教授主持,中国仪器仪表学会副理事长兼秘书长吴幼华先生,电子科技大学刘盛刚院士分别为大会致辞。中国仪器仪表学会副理事长兼秘书长吴幼华先生电子科技大学刘盛纲院士  首先,吴幼华先生代表主办方对各位代表表示热烈的欢迎。并介绍到,太赫兹科学仪器涉及的领域很广,专业性很强,是非常重要的交叉前沿领域,其技术进步为技术创新、国民经济发展和国家安全提供了一个非常诱人的发展机遇。  电子科技大学刘盛纲院士在致辞中指出,“重要的科学成就必须以实验研究为基础,在国际上重要的仪器设备是一流大学所必备的条件。近几年,中国也越来越多的认识到科学仪器的重要性。在过去的十几年中,日本人拿了6个诺贝尔奖,以色列拿了两个诺贝尔奖,我们相信中国一定会拿诺贝尔奖,但是不知什么时候。我们有很多好的思想,只是做不出实验结果来,我们国家要想成为科技大国,加强对仪器设备的支持是非常必要的。此外,中国的太赫兹技术发展非常快,也得到了国家自然科学基金委的大力支持,不过目前还存在一些问题,如投资不太集中等”。国家自然科学基金委员会信息科学部张兆田主任  在开幕式中,国家自然科学基金委员会信息科学部张兆田主任还做了《信息优先资助领域及其基金资助工作》的相关报告。在报告中,张兆田主任介绍了信息科学的发展规律与特点,发展状况与未来发展趋势、重点优先发展领域等。其中,新型毫米波与太赫兹器件就是其优先发展的领域之一,其研究内容包括太赫兹核心器件及阵列检测器、微结构太赫兹功能器件;新型太赫兹探测技术等。此外,张兆田主任还介绍了信息科学部的部门设置、资助方针、资助格局、资助项目类型、项目受理评审过程等相关内容。首都师范大学物理系张岩主任  此外,首都师范大学物理系张岩主任也介绍了太赫兹科学仪器及前沿技术专题研讨会的会议组织等相关情况。  大会报告 技术发展篇太赫兹光电子学教育部重点实验室主任张存林教授报告题目:基于飞秒激光的太赫兹时域光谱仪开发  张存林教授在报告中详细介绍了国家重大科学仪器设备开发专项“基于飞秒激光的太赫兹时域光谱仪开发”的相关情况。介于微波和红外之间的太赫兹是物理与信息领域重大科学技术问题,太赫兹波谱是反应分子结构和空间阵列的指纹谱。太赫兹时域光谱仪未来将向宽谱、高能量、小型化的方向发展,在科研及食品药品鉴定和检测方面具有很重要的应用价值和前景,对经济社会发展、民生改善具有很重要的支支撑作用。在市场方面,近三年来,已经有上百家应用单位有着明确的应用需求。据2010年度太赫兹市场报告的预期,太赫兹在医学、安全和制造业领域相关产品的经济效益到2020年将可达到数千万到数亿美元,市场总额可达到数十亿美元。张存林教授还介绍说按此推算,“基于飞秒激光的太赫兹时域光谱仪开发”项目完成后,若中国市场可占到10%的全球市场份额,预期经济效益也将达到数亿美元。由此,也将拉动中关村高科技示范区高端仪器制造业及相关产业产值约10亿元人民币/年。上海大学马国宏教授报告题目:太赫兹脉冲的产生及波前控制研究  马国宏教授介绍到目前THz波的研究主要包括THz源、THz检测和THz传输等方面,要使THz波的研究成果得到广泛的应用,尤其是将THz技术应用到远红外光谱学中,有必要研究THz脉冲的波前控制以及各种THz光子学器件的工作原理,从而实现对THz辐射的人工调控。随后,马国宏教授介绍了上海大学超快光子学实验室近年来在THz波的产生、THz的主动和被动控制、THz光子学和THz自旋电子学等方面开展的一系列研究工作。其中,主要探讨了利用THz波与各种微结构相互作用实现THz波前的控制,包括THz偏振控制、抗反射、全吸收设计、THz全禁带光子晶体以及THz磁共振器件等。中科院紫金山天文台副研究员张文先生报告题目:太赫兹高灵敏超导热电子探测器技术  张文先生谈到,太赫兹波段存在丰富的分子转动谱线和原子精细结构谱线,通过对这些分子谱线的高频率分辨率观测,可以研究天文、大气和深空探测等领域的重要科学问题。超导HEB混频器是1HTz以上灵敏度最高的相干探测器,已经成功应用到Herschel空间卫星、SOFIA天文台和地面APEX望远镜开展天文观测研究。张文先生所在系统改进了超导HEB热电子混频器的热点模型,深入理解其机制,率先实现了4K闭环制冷环境下的超导HEB混频实验;并研制国际上最高频率(5.3HTz)天线耦合超导HEB混频器,灵敏度率先突破5倍量子噪声极限。此外,张文先生还介绍了其课题组在太赫兹超导HEB混频器应用方面的研究工作。天津大学姚建铨院士报告题目:太赫兹技术及太赫兹仪器的发展趋势  姚建铨院士在报告中介绍到,随着太赫兹科学技术的飞速发展,对太赫兹科学仪器也不断提出新的需求,不仅推动了太赫兹科学仪器的快速发展,也催发了太赫兹前沿技术的不断涌现。同时,太赫兹科学仪器的前沿技术也表征着太赫兹科学仪器的先进性和尖端性,引领着太赫兹科学仪器的进一步发展。在这一部分内容中姚建铨院士介绍了太赫兹技术国内外研究及应用概况,光学太赫兹辐射源研究及太赫兹功能器件-微结构材料的应用等方面的情况。并且指出,微结构光学材料在激光技术、THz技术等方面可望实现传输、源、开关、放大、滤波、调制、吸收、偏振等功能,有十分重要的科学价值及实际意义。如果将微结构材料施加各种场(电、磁、声、光、热、机械等)作用可望产生新现象、出现新机理、实现新功能、制成新器件。此外,姚建铨院士还介绍了基于法布里-珀罗干涉仪的THz波长测试法及THz傅立叶变换光谱仪的相关研究工作。首都师范大学赵国忠教授报告题目:太赫兹波产生探测及太赫兹时域光谱技术  赵国忠教授谈到,对于太赫兹光谱应用来说,获得宽带太赫兹辐射至关重要,目前,实验室使用的宽带太赫兹辐射源以光整流和电导天线为主。随后详细介绍了基于飞秒激光的宽带光电导天线的设计、研制,光电导天线温控系统和太赫兹辐射测量装置的研制,光电导天线太赫兹辐射特性等方面的研究工作。另外,半导体表面太赫兹辐射可以提供方便的宽带太赫兹源,进一步研究非常必要。其中,富含缺陷的氮化铟有望代替砷化铟成为高效、实用的宽带太赫兹辐射源。此外,赵国忠教授还指出太赫兹发射光学的研究也有助于探索半导体表面和内部的载流子动力学。  此外,北京理工大学胡伟东教授、哈尔滨工业大学(威海)田兆硕教授、中国计量科学研究院孙青博士等也就太赫兹技术现状及研究进展做了精彩的报告。北京理工大学胡伟东教授报告题目:Progress in the Terahertz Pulse 3D Imaging System (220GHz)哈尔滨工业大学(威海)田兆硕教授报告题目:THz激光F-P旋转透过率研究中国计量科学研究院孙青博士报告题目:太赫兹光谱与功率计量技术  大会报告 应用篇首都师范大学沈京玲教授报告题目:太赫兹光谱技术在毒品检测中的应用研究  沈京玲教授介绍到,太赫兹波能够用于毒品检测和识别是基于下列两个事实:多数毒品在太赫兹波段具有特征吸收;多数包装材料如纸张、织物、塑料、木头,对太赫兹波是透明的。将两者结合起来,使太赫兹技术非常适于进行毒品的无损检测应用。随后,沈京玲教授详细的介绍了所在课题组近年来在毒品检测识别方面的相关工作:应用太赫兹光谱和成像技术对毒品进行品种鉴定和含量分析,完成了确定毒品纯度和有效成分含量的理论和实验方法;对隐藏在信封和包裹中的毒品进行探查;建立了含有38种纯度在90%以上的毒品的太赫兹光谱数据库等。上海理工大学副院长朱亦鸣教授报告题目:基于太赫兹技术的药物分析与检测  朱亦鸣教授介绍到,国内外现有药物检测技术手段无法有效的检测出假药,而且无法做到在线式检测。太赫兹波处于微波电子学与红外光子学的交叉、过渡区域,是被公认的有重要科学价值和巨大应用前景的频率窗口。太赫兹技术先后被列为“改变未来世界的10种技术”及“2011年六大类电子类新技术”之一,是分析分子有机功能基团最有效的手段。基于这些优势,朱亦鸣教授所在课题组利用时域太赫兹波谱系统对中西药做了相关检测,结果显示太赫兹光谱技术对各种药物鉴别率可达90%,扫描速度达到1s/片,可以做到无损探测及真正的在线检测和分析,并且结合HIPHOP模型,还可以进行药理基团的解析。中国石油大学(北京)赵卉博士报告题目:太赫兹技术在油气光学中的应用  赵卉博士在报告中介绍说,油气光学是研究油气物质的光学性质、光在油气介质中的传播规律和光学技术在油气领域应用的科学。它是在石油与天然气工程、地球探测与信息技术、材料科学与工程、物理学、光学工程等学科发展与支持的基础上建立起来的一个新兴交叉学科。针对国家重大需求,并且基于太赫兹与油气物质相互作用的认知,赵卉博士所在课题组建设了以油气资源、石油化工为研究对象的太赫兹波谱与探测技术平台,开发了油品光学性能透射式测试装置,岩石光学性能透射式测试装置,基于对岩石有机质、干酪根、基础油、汽油等多种体系的太赫兹频段特征吸收带的认知,建立了石油化工产品太赫兹光谱特性和理化性能之间的关系,为太赫兹技术在油气领域的应用提供了实验基础。  此外,中科院上海微系统所谭智勇博士、中科院工程物理研究院流体物理研究所助研朱礼国先生也就太赫兹技术的应用做了精彩的报告。中科院上海微系统所谭智勇博士报告题目:太赫兹量子器件及其成像应用中科院工程物理研究院流体物理研究所助研朱礼国先生报告题目:超快太赫兹光谱在研究太阳能光伏材料中的应用  除了以上各位专家的报告之外,安捷伦科技(中国)有限公司叶伟斌先生,脉动科技有限公司陆明先生,先锋科技股份有限公司Albert Rsdo-Sanchez先生、Patrick F. Tekavec先生,顶尖科仪(中国)股份有限公司贺雪鹏先生也介绍了公司的产品特点及研发情况。安捷伦科技(中国)有限公司叶伟斌先生报告题目:安捷伦毫米波测试解决方案脉动科技有限公司陆明先生报告题目固体THz源和异步采样THz时域光谱系统先锋科技股份有限公司Albert Redo-Sanchez先生报告题目:Terahertz Instrumentation Status and Market Outlook先锋科技股份有限公司Patrick F. Tekavec先生报告题目:High Power THz sources顶尖科仪(中国)股份有限公司贺雪鹏先生报告题目:飞秒光纤激光器及其在太赫兹光谱学中的应用  报告会之后,与会代表参观了首都师范大学太赫兹光电子学教育部重点实验室,相关工作人员为与会代表详细介绍了实验室整体概况,并就相关仪器及其研究的课题同与会代表进行了深入的沟通。与会代表参观太赫兹光电子学教育部重点实验室太赫兹光电子学教育部重点实验室部分仪器设备与会代表合影

混频器相关的方案

混频器相关的资料

混频器相关的试剂

混频器相关的论坛

  • PULSAR三重平衡射频混频器

    [font=Calibri][font=宋体]三重平衡射频混频器是常见的电子元器件,通常用于微波射频和通信系统中的变频和混频进行操作。三平衡射频混频器根据精准匹配和平衡数个电源电路,实现高效线性和低损耗的混频功效。无线通讯中的三平衡微波射频混频器、机载雷达和卫星通讯要为信号分析处理和调制解调提供可靠的解决方案领域发挥着重要的作用。[/font][/font][url=https://www.leadwaytk.com/article/5139.html]PULSAR[/url][font=Calibri][font=宋体]三平衡混频器使用[/font][font=Calibri]2[/font][font=宋体]个适配优良的四二极管环。因此,它们提供比[/font][font=Calibri]DBM[/font][font=宋体]设计更宽的[/font][font=Calibri]LO/RF[/font][font=宋体]带宽。但更关键的是,[/font][font=Calibri]TBM[/font][font=宋体]提供更高的高动态范围和更低的失帧。[/font][/font]

  • RADITEK波导混频器

    [url=https://www.leadwaytk.com/article/5222.html]RADITEK[/url][font=宋体][font=宋体]波导混频器为毫米波通信接收器提供关键建设模块,是通过将极高频信号的频率下变频为适用的射频频率,从而实现性价比较高的信号分析处理。此外,[/font][font=Calibri]RADITEK[/font][font=宋体]波导混频器还极为适用于测试及测量应用领域,以便将信号频率变频至目前装置可量化的频率水平。[/font][/font][font=宋体][font=Calibri]RADITEK[/font][font=宋体]提供世界上最广泛的产品线和最好的性能,及其极为激进的价格结构。[/font][/font][font=宋体][font=宋体]?[/font][font=Calibri]1.2ghz[/font][font=宋体]至[/font][font=Calibri]440ghz[/font][font=宋体]的各种波导平衡混频器,[/font][font=Calibri]wr430[/font][font=宋体]至[/font][font=Calibri]wr2[/font][/font]

  • Princeton Microwave L波段混频器

    特征:Watkins-Johnson替换紧凑型直流至 3000 MHz无源二极管混频器有许多不同的外壳和尺寸可供选择。密封模块出色的单元间重复性低转换损耗低噪音系数[font=微软雅黑, &][color=#333333]Princeton Microwave是一家领先的微波技术公司,专门从事微波设备和解决方案的研发、制造和销售。立维创展代理Princeton Microwave品牌产品,了解更多相关产品信息请访问立维创展ldteq.com[/color][/font]-50oC至100oC标准符合RoHS标准型号:PmT-1400B-10PmT-1400B-13PmT-1400B-17PmT1000HPmT1010PmT1020HPmT1030HPmT1050HPmT1070HPmT3000PmT3010PmT3020PmT3030

混频器相关的耗材

  • PB1319光纤耦合太赫兹光混频器
    PB1319系列太赫兹光混频器在一个实用、坚固、光纤耦合的封装中提供成熟的低温砷化镓半导体技术。这些光混频器是按照ISO:9000制造标准制造的,采用全激光焊接组件,其中包括泵浦激光器的集成光学透镜和太赫兹硅透镜。PB1319光混合器具有稳定的特性,即使温度低至4.5开氏度。PB1319光混频器通常用于相干光混合系统,用于太赫兹辐射的产生和检测。它们有多种配置以及定制安装或配置,是带有集成光学透镜和准直太赫兹硅透镜的激光焊接组件。工作波长780-855nm技术参数应用签名识别Ø 生物制品Ø 化学药品分子光谱学固态光谱学太赫兹成像材料表征太赫兹连续波的产生和探测 特征坚固的包装设计,采用全焊接结构偏振保持光纤耦合最佳性能的内部镜头用于自由空间低损耗耦合的高电阻率超半球集成30 V稳压二极管,用于防静电保护高回波损耗的角度接口 在780nm至855nm波长下工作提供定制配置 产品规格(标准光混合器) 参数最小值典型值最大值单位操作箱温度*-4025+85℃工作光波长760-855nm有效太赫兹光谱100-3000GHz20V偏置,25℃时的暗电流-0.3.5µA变送器上的偏置电压-2025V2 0GHz时的太赫兹功率**.020.10.5µW太赫兹功率动态范围***@ 100 GHz@ 1000 GHz *** -- 7050 -- dB平均光泵浦功率-3040mW780nm时的光回波损耗2040-dB 产品规格(低温光混合器) 参数最小值典型值最大值单位操作箱温度*4.5300350K工作光波长760-785nm有效太赫兹光谱100-3000GHz20V偏置,25℃时的暗电流-0.3.5µA变送器上的偏置电压-2025V2 0GHz时的太赫兹功率**.020.10.5µW太赫兹功率动态范围***@ 100 GHz@ 1000 GHz *** -- 7050 -- dB平均光泵浦功率-3040mW780nm时的光回波损耗2040-dB
  • Koflo螺纹不锈钢静态混合器
    Koflo螺纹不锈钢静态混合器 Koflo螺纹不锈钢静态混合器尺寸为1/4“-2”,不锈钢静态混合器由316 / 316L不锈钢制成,带有6或12个混合元件。所有混频器均准确焊接到Schedule 40外壳中,并配有NPT外螺纹端。 典型应用聚合物稀释化学混合水处理pH调节 特征外壳:Schedule 40 316 / 31 6L不锈钢元素: Koflo Blade™ 316 / 316L型不锈钢端接:机加工NPT外螺纹(螺纹端)工业级的材料和工艺确保了在苛刻条件下的长使用寿命和耐用性。Koflo螺纹不锈钢静态混合器技术采参数型号管径-MNPT端元件数量长度重量1 / 4-40-3-6-21/4英寸63英寸0.151 / 4-40-3-12-21/4英寸126英寸0.33 / 8-40-3-6-23/8英寸64英寸0.23 / 8-40-3-12-23/8英寸128英寸0.41 / 2-40-3-6-21/2英寸65英寸0.351 / 2-40-3-12-21/2英寸1210英寸0.753 / 4-40-3-6-23/4英寸67英寸0.73 / 4-40-3-12-23/4英寸1213英寸1.331-40-3-6-21英寸69英寸1.251-40-3-12-21英寸1217英寸2.451.5-40-3-6-21.5英寸613英寸3.21.5-40-3-12-21.5英寸1226英寸6.12-40-3-6-22英寸617英寸5.552-40-3-12-22英寸1233英寸10.85
  • Zurich苏黎世SHFSG 8.5 GHz 信号发生器
    Zurich Instruments SHFSG 信号发生器可以直接产生频率范围从 DC 到 8.5 GHz 的量子比特控制信号,具有 1 GHz 的无杂散调制带宽。 SHFSG 使用双超外差技术进行频率上变频,无需混频器校准并节省系统调校时间。每个 SHFSG 带有 4 或 8 个具有 14 位垂直分辨率的模拟输出通道。 SHFSG 可经 LabOne 、其 API 或 LabOne QCCS 软件控制,支持大小从几个量子比特到几百个量子比特的量子计算系统。当由 PQSC 同步时,多个 SHFSG 可以在 Zurich Instruments QCCS 中组合以实现对多量子比特系统的控制。得益于先进的定序器、低延迟信号处理链和低相位噪声频率合成器,可以实现具有最小延迟和高保真度的多量子比特门操作。SHFSG与用于量子比特实时读取的 SHFQA 量子分析仪一起,他们是集成了微波生成和分析的第二代仪器。技术参数应用量子计算应用使用单量子比特和多量子比特门操作对量子比特进行相干操作量子比特谱和表征用于纠错的实时、低延迟和全局反馈支持的量子比特类型超导量子比特自旋量子比特/超导谐振腔混合体NV 色心Qubits、qutrits 和 ququads特点高保真量子比特操作从 DC 到 8.5 GHz 的频率范围使单个 SHFSG 能够生成各种单和多量子比特门。与基于 IQ 混频器的传统方法相比,SHFSG 的超外差频率转换方案在更宽的频带上运行,具有更好的线性度和更少的杂散信号。这意味着 SHFSG 生成无杂散、稳定的信号,而无需用户花时间进行混频器校准或系统维护。基于专为量子比特控制设计的合成器的性能,SHFSG 在整个输出频率范围内提供低相位噪声和低时序抖动,确保量子比特门操作在保真度方面实现量子处理器的全部潜力。每个 SHFSG 包含 4 个低相位噪声合成器,对应于 SHFSG-4 变体中的每个通道 1 个合成器和 SHFSG-8 变体中的每个通道对 1 个合成器。用于高效工作流程的高级定序器即使在需要复杂信号时,SHFSG 也支持最少使用波形数据。用户以脉冲描述的形式向 LabOne QCCS 软件提供所需信号,然后该软件以最节省内存的方式自动对 SHFSG 进行编程。即使对于依赖多个 SHFSG 的多量子位系统,这种方法也可确保以最少的仪器通信时间完成复杂的调整和校准程序。循环和条件分支点的支持进一步实现了量子纠错和主动复位,而实时相位更新使实现虚拟 Z 门成为可能。凭借每通道高达 98 kSa 的波形存储器、处理高达 16k 序列指令的能力和 2 GSa/s 的采样率,SHFSG 为量子位控制提供可定制的多通道 AWG 信号。可扩展的系统方法SHFSG 的每个通道都有自己的 AWG 内核,用于创建相位和时序可编程波形,因此单个 SHFSG-8 仪器可以控制 8 个单独的量子位。为了执行全局纠错等高级协议,可以将多个SHFSG (用于量子位控制)与多个 SHFQA(用于量子位读出)结合使用。 Zurich Instruments ZSync 接口通过中央PQSC 可编程量子系统控制器将 SHFSG 和 SHFQA 相互连接起来; LabOne QCCS 软件优化了仪器之间的通信,从而简化了协议执行。通过 PQSC 可以同步多达 18 个 SHFSG,从而实现多达 144 个量子位的协调控制。即通过一个PQSC同步 SHFSG 可以与LabOne QCCS软件进行编程,以 LabOne ,或与其的API的Python,C,MATLAB时,LabVIEW™ 和.NET -让用户决定如何愿意将SHFSG成新的或现有的设置。功能说明规格信号输出射频输出数量4(SHFSG-4 型号)8(SHFSG-8 型号)频率范围直流 - 8.5 GHz信号带宽1.0 GHz输出范围 (dBm)-30 dBm 至 +10 dBm输出阻抗50 欧姆合成器数量4(两种型号)数模转换14 位,6 GSa/s(内部 3x 插值后)输出电压噪声密度-135 dBm/Hz(1 GHz,10 dBm,偏移 200 kHz)-140 dBm/Hz(4 GHz,10 dBm,偏移 200 kHz)-144 dBm/Hz(6 GHz,10 dBm,偏移 200 kHz)-144 dBm/Hz(8 GHz,10 dBm,偏移 200 kHz)输出相位噪声-90 dBc/Hz(6 GHz,载波偏移 1 kHz)-98 dBc/Hz(6 GHz,载波偏移 10 kHz)-100 dBc/Hz(6 GHz,载波偏移 100 kHz)输出电平精度±(1 dBm 的设置)无杂散动态范围(不包括谐波)74 dBc(1 GHz,0 dBm)66 dBc(4 GHz,0 dBm)60 dBc(6 GHz,0 dBm)65 dBc(8 GHz,0 dBm)输出最差谐波分量-40 dBc(1 GHz,10 dBm)-40 dBc(4 GHz,10 dBm)-38 dBc(6 GHz,10 dBm)-36 dBc(8 GHz,10 dBm)标记和触发器标记输出每个通道 1 个,前面板上有 SMA 输出标记输出电压0 V(低)、3.3 V(高)标记输出阻抗50 欧姆标记输出上升时间300 ps(20% 至 80%)触发输入每个通道 1 个,前面板上的 SMA触发输入阻抗50 欧姆 / 1 千欧姆波形生成AWG 磁芯每个通道 1 个波形垂直分辨率14 位模拟 + 2 位标记波形记忆每通道 98 kSa序列长度每个 AWG 内核 32k 条指令AWG 采样率2 GSa/s最小波形长度32个点一般的尺寸449 x 460 x 145 毫米(19 英寸机架)17.6 x 18.1 x 5.7 英寸重量15 公斤(33 磅)电源供应交流:100-240 V,50/60 Hz支持的时钟频率(外部或内部)10 MHz 或 100 MHz连接器前面板和后面板的 SMA 用于触发、信号和外部时钟32 位 DIO1 ZSync1 GbEUSB 3.0维护 USB 这些规范已翻译成英文。请注意,产品规格的官方参考始终是用户手册。下载
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制