当前位置: 仪器信息网 > 行业主题 > >

霍尔槽

仪器信息网霍尔槽专题为您提供2024年最新霍尔槽价格报价、厂家品牌的相关信息, 包括霍尔槽参数、型号等,不管是国产,还是进口品牌的霍尔槽您都可以在这里找到。 除此之外,仪器信息网还免费为您整合霍尔槽相关的耗材配件、试剂标物,还有霍尔槽相关的最新资讯、资料,以及霍尔槽相关的解决方案。

霍尔槽相关的资讯

  • 半导体情报,科学家首次在量子霍尔绝缘体中发现奇异的非线性霍尔效应!
    【科学背景】近年来,尽管量子霍尔效应的线性响应特性得到了广泛研究,但高阶非线性响应仍然是一个未被充分探索的领域。特别是在二维材料如石墨烯中,量子霍尔态的非线性响应尚未被深入研究。量子霍尔态不仅具有绝缘体体和导电手性边缘态的特征,而且在不同的量子霍尔态下,可能会表现出复杂的非线性行为,这些行为对于理解边缘态的电子-电子相互作用具有重要意义。为了解决这一问题,为了解决这一问题,复旦大学何攀, 沈健,日本九州大学Hiroki Isobe,新加坡国立大学Gavin Kok Wai Koon,Junxiong Hu,日本理化研究所新兴物质科学中心Naoto Nagaosa等教授合作发现,在石墨烯的显著量子霍尔态下,存在明确的第三阶霍尔平台。这一平台在广泛的温度、磁场和电流范围内保持稳定,并且在不同几何形状和堆叠配置的石墨烯中均可观察到。第三阶霍尔效应的高度对环境条件不敏感,但与器件特性相关。此外,第三阶非线性响应的极性受磁场方向和载流子类型的影响。作者的研究揭示了量子霍尔态的非线性响应是如何依赖于器件特性的,并提出了一个新的视角来理解边缘态的性质。【科学亮点】(1)实验首次观察到石墨烯中量子霍尔态的第三阶霍尔效应,获得了第三阶霍尔效应的清晰平台。该平台在显著的量子霍尔态(\( \nu = \pm 2 \))中展现出,且在广泛的温度、磁场和电流范围内保持稳定。(2)实验通过测量不同几何形状和堆叠配置的石墨烯器件,发现第三阶霍尔效应的平坦值与环境条件无关,但与器件特性相关。具体结果包括:&bull 第三阶霍尔效应的电压平台高度与探针电流的立方成正比,而第三阶纵向电压保持为零。&bull 该效应在磁场变化(至约5T)和温度变化(至约60K)下保持稳健。&bull 第三阶非线性响应的极性依赖于磁场方向及载流子类型(电子或空穴),并且其值在反转磁场方向时会改变符号。&bull 非线性霍尔平台的稳健性提供了关于边缘态的新见解,并可能违背量子霍尔电阻的精确量化。【科学图文】图1:在经典和量子域中,线性霍尔效应和非线性霍尔效应示意图。图2:在量子霍尔态quantum Hall states,QHSs内,三阶非线性霍尔平台的观测结果。图3:在量子霍尔态QHSs内,三阶霍尔效应的立方电流依赖性。图4:磁场和温度,对量子霍尔态QHS三阶非线性响应的影。【科学启迪】本文的研究为量子霍尔效应(QHE)中的非线性响应提供了新的视角,揭示了量子霍尔态(QHSs)中第三阶霍尔效应的显著平台。这一发现不仅扩展了作者对量子霍尔现象的理解,也对探索二维材料中的非线性电输运提供了新的途径。首先,实验首次在单层石墨烯中观察到稳定的第三阶霍尔效应平台,表明在量子霍尔态下,电子之间的相互作用可能导致非线性现象的出现。这种非线性响应在不同环境条件(如磁场和温度)下保持稳定,且在多种几何形状和堆叠配置的石墨烯器件中均能观察到。这表明该效应具有较强的普适性和稳健性。其次,研究发现第三阶霍尔效应的电压平台与探针电流立方成正比,而其幅度对环境条件变化表现出较强的稳健性。这一特性挑战了量子霍尔电阻的精确量化,提示作者在量子霍尔态的研究中需要考虑更高阶的非线性效应。这种非线性响应的发现不仅提供了关于边缘态性质的新见解,还可能揭示出与传统线性量子霍尔效应不同的物理机制。此外,本文的研究结果对未来探索量子霍尔系统的高阶响应具有重要启示。其他填充因子的量子霍尔态中的非线性响应,以及在其他量子霍尔系统中的应用,仍需进一步研究。这一发现为理解电子-电子相互作用、边缘态带曲率等物理现象提供了新的方法,也可能为研究分数量子霍尔效应的非线性响应开辟新的方向。原文详情:He, P., Isobe, H., Koon, G.K.W. et al. Third-order nonlinear Hall effect in a quantum Hall system. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01730-1
  • 客户案例丨霍尔德电子水质检测仪实操培训 为水质安全保驾护航
    为切实加强水质监测能力,提升公司职工的专业素质,进一步做好水质监测及预警工作,江西铜业技术研究院有限公司购置了霍尔德电子生产的台式水质检测仪器和智能消解仪,并邀请霍尔德电子技术人员为化验员开展了为期三天的水质检测业务培训,为进一步提高水质检测工作质量,增强水质监测中心化验员水质检测业务能力打下了基础。培训仪器培训内容1.仪器设备管理仪器的分析原理和工作原理、仪器组成部分和主要功能、仪器操作规程&校准规程、常见故障排查、仪器维护保养、常用备品备件&耗材清单等。2.仪器设备期间核查 仪器设备的期间核查、期间核查的实施步骤、期间核查的常用方法、期间核查的常用方法、期间核查的结果处理、实施期间核查注意要点等。培训会上,霍尔德电子技术人员先对设备的调试、使用、保养等方面进行了讲解教学,然后一对一指导参会人员操作使用水质检测设备,确保参训人员能够正确、熟练地操作仪器,保证检测结果的有效性和准确性。通过本次培训,使培训人员基本掌握了水质检测设备的操作使用、水质检测流程和有关水质检测工作要求,达到预期效果,取得积极成效。
  • 中国科学家首次发现量子反常霍尔效应 影响重大
    图一,量子反常霍尔效应的示意图,拓扑非平庸的能带结构产生具有手征性的边缘态,从而导致量子反常霍尔效应      图二,理论计算得到的磁性拓扑绝缘体多层膜的能带结构和相应的霍尔电导      图三,在Cr掺杂的(Bi,Sb)2Te3拓扑绝缘体磁性薄膜中测量到的霍尔电阻   中新社北京3月15日电 (记者 马海燕)北京时间3月15日凌晨,《科学》杂志在线发文,宣布中国科学家领衔的团队首次在实验上发现量子反常霍尔效应。这一发现或将对信息技术进步产生重大影响。   这一发现由清华大学教授、中国科学院院士薛其坤领衔,清华大学、中国科学院物理所和斯坦福大学的研究人员联合组成的团队历时4年完成。在美国物理学家霍尔1880年发现反常霍尔效应133年后,终于实现了反常霍尔效应的量子化,这一发现是相关领域的重大突破,也是世界基础研究领域的一项重要科学发现。   由于人们有可能利用量子霍尔效应发展新一代低能耗晶体管和电子学器件,这将克服电脑的发热和能量耗散问题,从而有可能推动信息技术的进步。然而,普通量子霍尔效应的产生需要用到非常强的磁场,因此应用起来将非常昂贵和困难。但量子反常霍尔效应的好处在于不需要任何外加磁场,这项研究成果将推动新一代低能耗晶体管和电子学器件的发展,可能加速推进信息技术革命进程。   美国科学家霍尔分别于1879年和1880年发现霍尔效应和反常霍尔效应。1980年,德国科学家冯克利青发现整数量子霍尔效应,1982年,美国科学家崔琦和施特默发现分数量子霍尔效应,这两项成果分别于1985年和1998年获得诺贝尔物理学奖。   相关链接   “量子反常霍尔效应”研究获突破   中国科学网   由中国科学院物理研究所和清华大学物理系的科研人员组成的联合攻关团队,经过数年不懈探索和艰苦攻关,最近成功实现了“量子反常霍尔效应”。这是国际上该领域的一项重要科学突破,该物理效应从理论研究到实验观测的全过程,都是由我国科学家独立完成。   量子霍尔效应是整个凝聚态物理领域最重要、最基本的量子效应之一。它是一种典型的宏观量子效应,是微观电子世界的量子行为在宏观尺度上的一个完美体现。1980年,德国科学家冯克利青(Klaus von Klitzing)发现了“整数量子霍尔效应”,于1985年获得诺贝尔物理学奖。1982年,美籍华裔物理学家崔琦(Daniel CheeTsui)、美国物理学家施特默(Horst L. Stormer)等发现“分数量子霍尔效应”,不久由美国物理学家劳弗林(Rober B. Laughlin)给出理论解释,三人共同获得1998年诺贝尔物理学奖。在量子霍尔效应家族里,至此仍未被发现的效应是“量子反常霍尔效应”——不需要外加磁场的量子霍尔效应。   “量子反常霍尔效应”是多年来该领域的一个非常困难的重大挑战,它与已知的量子霍尔效应具有完全不同的物理本质,是一种全新的量子效应 同时它的实现也更加困难,需要精准的材料设计、制备与调控。1988年,美国物理学家霍尔丹(F. Duncan M. Haldane)提出可能存在不需要外磁场的量子霍尔效应,但是多年来一直未能找到能实现这一特殊量子效应的材料体系和具体物理途径。2010年,中科院物理所方忠、戴希带领的团队与张首晟教授等合作,从理论与材料设计上取得了突破,他们提出Cr或Fe磁性离子掺杂的Bi2Te3、Bi2Se3、Sb2Te3族拓扑绝缘体中存在着特殊的V.Vleck铁磁交换机制,能形成稳定的铁磁绝缘体,是实现量子反常霍尔效应的最佳体系[Science,329, 61(2010)]。他们的计算表明,这种磁性拓扑绝缘体多层膜在一定的厚度和磁交换强度下,即处在“量子反常霍尔效应”态。该理论与材料设计的突破引起了国际上的广泛兴趣,许多世界顶级实验室都争相投入到这场竞争中来,沿着这个思路寻找量子反常霍尔效应。   在磁性掺杂的拓扑绝缘体材料中实现“量子反常霍尔效应”,对材料生长和输运测量都提出了极高的要求:材料必须具有铁磁长程有序 铁磁交换作用必须足够强以引起能带反转,从而导致拓扑非平庸的带结构 同时体内的载流子浓度必须尽可能地低。最近,中科院物理所何珂、吕力、马旭村、王立莉、方忠、戴希等组成的团队和清华大学物理系薛其坤、张首晟、王亚愚、陈曦、贾金锋等组成的团队合作攻关,在这场国际竞争中显示了雄厚的实力。他们克服了薄膜生长、磁性掺杂、门电压控制、低温输运测量等多道难关,一步一步实现了对拓扑绝缘体的电子结构、长程铁磁序以及能带拓扑结构的精密调控,利用分子束外延方法生长出了高质量的Cr掺杂(Bi,Sb)2Te3拓扑绝缘体磁性薄膜,并在极低温输运测量装置上成功地观测到了“量子反常霍尔效应”。该结果于2013年3月14日在Science上在线发表,清华大学和中科院物理所为共同第一作者单位。   该成果的获得是我国科学家长期积累、协同创新、集体攻关的一个成功典范。前期,团队成员已在拓扑绝缘体研究中取得过一系列的进展,研究成果曾入选2010年中国科学十大进展和中国高校十大科技进展,团队成员还获得了2011年“求是杰出科学家奖”、“求是杰出科技成就集体奖”和“中国科学院杰出科技成就奖”,以及2012年“全球华人物理学会亚洲成就奖”、“陈嘉庚科学奖”等荣誉。该工作得到了中国科学院、科技部、国家自然科学基金委员会和教育部等部门的资助。(中科院物理研究所 作者:薛其坤等)
  • 非互易霍尔效应:Pt器件的频率混合新突破!
    【研究背景】非相互作用电荷传输是一种重要的物理现象,因其在探索量子对称性及在量子计算、通信等领域的潜在应用而受到广泛关注。与传统的电流-电压(I–V)关系线性行为不同,非相互作用传输在纵向方向上的表现为电阻与电流方向相关,导致电阻中存在微小的非相互作用成分。然而,纵向非相互作用传输的电阻通常仅占欧姆电阻的一小部分,使得在直流传输测量中观察这种现象相对困难。因此,许多非相互作用现象的研究主要集中在交流传输测量上。近年来,针对非中心对称极性材料的研究,美国 宾夕法尼亚州立大学Lujin Min,Zhiqiang Mao等团队科学家们提出了一种新型的横向非相互作用电流现象——非相互作用霍尔效应(NRHE)。该效应的出现是由于在施加电流的情况下,极性材料中的几何不对称散射引起的,这与现有的低温现象不同。本研究小组通过聚焦离子束沉积的铂(Pt)在硅基底上制备了微米尺度的霍尔器件,成功观察到了这种横向非相互作用霍尔效应。在实验中,团队设计和制备的聚焦离子束沉积铂微米霍尔器件展示了显著的二次电流-电压特性以及发散的非相互作用性。具体来说,该现象源于聚焦离子束沉积结构内纹理铂纳米颗粒的几何不对称散射。此外,研究表明,这种在聚焦离子束沉积铂电极中产生的非相互作用霍尔效应能够通过霍尔电流注入传播至相邻的导体(如金(Au)和铌磷(NbP)),进一步推动了宽带频率混合及无线微波检测的应用。【表征解读】本文通过多种先进的表征手段揭示了FIBD-Pt器件的非线性霍尔效应(NRHE)及其在宽频段电子频率混合中的应用。首先,通过X射线衍射(XRD)和能量色散X射线光谱(EDX),确认了所合成的NbP单晶具有预期的晶体结构和成分。这些表征手段为后续的NRHE特性研究奠定了基础。在NbP晶体的表面,通过扫描电子显微镜(SEM)和焦点离子束(FIB)技术,成功制造了纳米尺度的电极与微结构,进一步揭示了FIBD-Pt器件的电学性能及其非线性效应。针对NRHE现象,本文采用了低温电子输运测量技术,通过量子设计物理性能测试系统(PPMS)对FIBD-Pt器件进行了电学运输特性测量。通过霍尔电压的响应,确定了FIBD-Pt在室温下展现出强烈的非线性霍尔效应。进一步的研究表明,该现象的产生源于与外加电场相关的非线性相互作用,这为电子频率混合的实现提供了理论支持。通过锁相放大器(SR860)与高精度电流源(Keithley 6221/6220),本文还对该现象的频率混合特性进行了定量研究,证明了FIBD-Pt在125Hz与37Hz频率信号的作用下,能有效生成多达21个不同的频率峰值,涵盖了从基频到多次谐波生成的频率范围。此外,结合微波频率测量,本文还进一步验证了FIBD-Pt器件的无线检测功能。使用Keysight MXG矢量信号发生器与Agilent CXA信号分析仪,本文对FIBD-Pt器件的无线检测能力进行了实验,发现该器件能够灵敏地响应微波频率信号,这为其在无线通讯与传感器技术中的应用提供了可能。通过这些微观表征手段,本文不仅揭示了FIBD-Pt器件在非线性霍尔效应下的宽频段频率混合特性,还发现了其在高频无线检测中的潜力。总之,经过一系列表征手段的深入分析,本文揭示了FIBD-Pt器件在非线性霍尔效应和频率混合中的重要物理机制,为新型电子功能材料的制备提供了宝贵的理论依据与实践指导。通过这些研究,推动了高性能传感器和无线通信设备的发展,尤其是在低功耗、宽频段的电子器件领域中的应用潜力,具有广泛的科学意义与技术前景。【图文速递】图1: 聚焦离子束沉积focused-ion-beam-deposited,FIBD-铂Pt中的非互易霍尔效应non-reciprocal Hall effect,NRHE。图2: 非互易霍尔效应NRHE转移到NbP。图3: 从铂Pt转移的NbP中的较大非线性反常霍尔效应。图4: 聚焦离子束FIB-铂Pt中,非互易霍尔效应NRHE的可能机制,以及通过聚焦离子束FIB扫描方向操纵非互易性霍尔电压的极性。图5: 通过非互易霍尔效应NRHE的宽带混频。【科学启迪】FIBD-Pt材料展示了优异的室温非线性霍尔响应特性,这不仅符合实际应用的要求,还拓展了其在频率混合等新型功能方面的应用。通过将两种不同频率的交流电压施加到NRHE器件上,研究人员观察到了宽频段的电子频率混合效应,包括二次谐波生成、和频生成、差频生成及多波混合组件。这一现象的出现验证了NRHE在无线电频率探测和信号处理中的潜力。此外,研究还表明,通过对材料的优化和合理设计,NRHE能够扩展至吉赫兹范围,显示了其在高频应用中的巨大前景。该研究不仅为电子器件的设计提供了新的思路,也为无线传感器、信号处理及其他高频技术的实现开辟了新的方向。这些发现对未来的科技创新具有重要的推动作用。原文详情:Min, L., Zhang, Y., Xie, Z. et al. Colossal room-temperature non-reciprocal Hall effect. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-02015-7
  • 重磅推出丨霍尔斯HPB Mini平行生物反应器
    一款智能高效的实验室平行生物反应器霍尔斯(HOLVES)于今年9月初推出的最新系列平行生物反应器,本周正式进入定制阶段,作为一家创新的生命科学公司,研发和生产出多款实验室科研设备,霍尔斯(HOLVES)团队表示此次新品,将为您的科研工作带来跨越式的进步。用于微生物发酵的平行高通量研究HPB Mini系列产品是一款科研型实验室平行生物反应器,是实验室实现高通量筛选的一款科研利器。非常适合条件摸索和工艺优化,提高了生物培养实验的准备效率,配置更灵活、操作更容易,运行成本低。可以广泛运用于实验室细菌发酵、细胞培养和酶生化反应。产品优势:模块化BBM搭建设计:得益于新总线技术层面的应用,产品可实现积木模块化BBM搭建设计,主控制器可控制搭建的所有BBM模块,无需更换控制器和硬件。目前可以实现BBM模块:补料泵模块、自动进气模块、尾气模块等专业模块搭建,系统可根据需求定制独家方案。 自由扩充反应堆数量: 以2组为一个单位,最多可以扩充至64组,搭配霍尔斯(HOLVES)先进的平行控制软件,可多平台同时监控数据、操控设备。 智能自动化管理: 设备融合霍尔斯(HOLVES)多项独家专利技术,实际应用在功能管理系统中,包括H-Mix®搅拌系统、Feed-Sup®补料系统、Smart-SC®智能顺控、Meta-Tri®审计追踪等在内,让设备真正实现智能自动化管理。 值得信赖的品质: 秉承霍尔斯(HOLVES)一贯的验收把关,精选国内外知名品牌部件,只为用户打造合适的系列方案。如果您对HPB Mini平行生物反应器感兴趣,可以点击此处查看咨询,也可直接联系我们!
  • 仪器新应用,科学家首次揭示双层石墨烯中的分数量子霍尔效应!
    【科学背景】分数量子霍尔效应是一种在强磁场下发生的量子相变,其中电子在二维材料中以特殊的方式组织,表现出量子化的电导特性。此效应下的准粒子称为任何子,它们具有分数量子电荷,并在交换位置时显示出分数统计,这为研究量子物理的基本问题提供了独特的视角。阿贝尔任何子表现出简单的分数统计,而非阿贝尔任何子则具有更复杂的交换行为,这些特性可以通过量子干涉实验进行探测。然而,尽管已有大量研究探索了量子霍尔状态下的电子干涉,实际操作中仍存在一些问题。例如,传统的GaAs/AlGaAs基干涉仪在调节干涉状态和处理库伦相互作用方面存在局限,这限制了对分数量子霍尔态的深入研究。为了解决这些问题,研究者们将目光转向了具有更高调节能力的石墨烯基干涉仪。双层石墨烯的高迁移率和电气调节特性使得其在分数量子霍尔效应研究中表现出色。近期,以色列魏茨曼研究所Yuval Ronen教授团队在双层石墨烯平台上成功构建了Fabry-Pérot干涉仪(FPI),该装置能够在单一Landau能级内通过精确的电静态调节动态地切换干涉状态,从库伦主导状态到Aharonov-Bohm干涉状态。本研究解决了在分数量子霍尔态下量子干涉的具体实现问题。通过在双层石墨烯基FPI中进行实验,作者能够在填充因子ν=1/3的分数量子霍尔态下观察到纯净的Aharonov-Bohm干涉模式。当电荷密度和磁场变化时,作者不仅观察到常数填充条件下的干涉现象,还在常数密度条件下发现了相位跳跃。这些跳跃表现出准粒子在干涉回路中积累的相位与回路内电子数的关系,验证了e/3准粒子的分数统计特性。【科学亮点】(1)实验首次构建并测量了基于范德华力的双层石墨烯Fabry-Pérot干涉仪(FPI),在分数量子霍尔效应(FQHE)中实现了从库伦主导到Aharonov-Bohm(AB)干涉的动态调节。该装置利用高迁移率双层石墨烯导电层,通过精确的电静态调节,允许在单一Landau能级内实现这一调节。(2)实验通过调节磁场和电子密度,探测了填充因子ν=1/3的分数量子霍尔态下的AB干涉现象。在保持常数填充因子的情况下,作者观察到纯净的AB干涉模式,确认了准粒子电荷为e/3。(3)当实验从常数填充的条件转向常数密度的条件时,干涉模式中出现了相位跳跃的演变。这些相位跳跃对应于准粒子在干涉回路中添加或去除的离散事件。(4)作者还发现,干涉准粒子所积累的相位可以表示为2π〈N〉,其中〈N〉为回路内的电子数。这个观察验证了准粒子遵循分数统计的预期,并为研究阿贝尔任何子提供了新的平台。【科学图文】图1: 基于双层石墨烯的法布里-珀罗干涉仪Fabry–Pérot interferometer,FPI。图2:可调谐整数量子霍尔效应 integer quantum Hall effect,IQHE干涉态,从库仑作用主导Coulomb-dominated,CD到阿哈勒诺夫-玻姆Aharonov–Bohm,AB态。图3:在1/3分数填充处的AB干涉。图4:恒定填充和恒定密度之间可调性。【科学结论】本文的研究通过在高迁移率双层石墨烯的基础上构建并测量范德华力Fabry-Pérot干涉仪(FPI),作者成功地在一个Landau能级内动态调节了从库伦主导到Aharonov-Bohm(AB)干涉的状态。这一实验不仅验证了在填充因子ν=1/3下的Aharonov-Bohm干涉模式,还揭示了在常数填充条件下的纯净干涉图样和在常数密度条件下的相位跳跃现象。这些发现表明,干涉准粒子所积累的相位可以被理解为2π〈N〉,其中〈N〉为回路内电子数,这为理解准粒子的分数统计特性提供了新的视角。通过这种精确的调节能力和测量手段,作者为研究阿贝尔任何子和探索更复杂的非阿贝尔统计奠定了坚实的基础。双层石墨烯所展示的偶数分母分数量子霍尔态的潜力,预示着未来在这一领域的广泛应用前景,为进一步的研究和技术发展提供了有力的支持。参考文献:Kim, J., Dev, H., Kumar, R. et al. Aharonov–Bohm interference and statistical phase-jump evolution in fractional quantum Hall states in bilayer graphene. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01751-w
  • 仪器新应用,科学家首次揭示双层石墨烯中的分数量子霍尔效应!
    【科学背景】分数量子霍尔效应是一种在强磁场下发生的量子相变,其中电子在二维材料中以特殊的方式组织,表现出量子化的电导特性。此效应下的准粒子称为任何子,它们具有分数量子电荷,并在交换位置时显示出分数统计,这为研究量子物理的基本问题提供了独特的视角。阿贝尔任何子表现出简单的分数统计,而非阿贝尔任何子则具有更复杂的交换行为,这些特性可以通过量子干涉实验进行探测。然而,尽管已有大量研究探索了量子霍尔状态下的电子干涉,实际操作中仍存在一些问题。例如,传统的GaAs/AlGaAs基干涉仪在调节干涉状态和处理库伦相互作用方面存在局限,这限制了对分数量子霍尔态的深入研究。为了解决这些问题,研究者们将目光转向了具有更高调节能力的石墨烯基干涉仪。双层石墨烯的高迁移率和电气调节特性使得其在分数量子霍尔效应研究中表现出色。近期,以色列魏茨曼研究所Yuval Ronen教授团队在双层石墨烯平台上成功构建了Fabry-Pérot干涉仪(FPI),该装置能够在单一Landau能级内通过精确的电静态调节动态地切换干涉状态,从库伦主导状态到Aharonov-Bohm干涉状态。本研究解决了在分数量子霍尔态下量子干涉的具体实现问题。通过在双层石墨烯基FPI中进行实验,作者能够在填充因子ν=1/3的分数量子霍尔态下观察到纯净的Aharonov-Bohm干涉模式。当电荷密度和磁场变化时,作者不仅观察到常数填充条件下的干涉现象,还在常数密度条件下发现了相位跳跃。这些跳跃表现出准粒子在干涉回路中积累的相位与回路内电子数的关系,验证了e/3准粒子的分数统计特性。【科学亮点】(1)实验首次构建并测量了基于范德华力的双层石墨烯Fabry-Pérot干涉仪(FPI),在分数量子霍尔效应(FQHE)中实现了从库伦主导到Aharonov-Bohm(AB)干涉的动态调节。该装置利用高迁移率双层石墨烯导电层,通过精确的电静态调节,允许在单一Landau能级内实现这一调节。(2)实验通过调节磁场和电子密度,探测了填充因子ν=1/3的分数量子霍尔态下的AB干涉现象。在保持常数填充因子的情况下,作者观察到纯净的AB干涉模式,确认了准粒子电荷为e/3。(3)当实验从常数填充的条件转向常数密度的条件时,干涉模式中出现了相位跳跃的演变。这些相位跳跃对应于准粒子在干涉回路中添加或去除的离散事件。(4)作者还发现,干涉准粒子所积累的相位可以表示为2π〈N〉,其中〈N〉为回路内的电子数。这个观察验证了准粒子遵循分数统计的预期,并为研究阿贝尔任何子提供了新的平台。【科学图文】图1: 基于双层石墨烯的法布里-珀罗干涉仪Fabry–Pérot interferometer,FPI。图2:可调谐整数量子霍尔效应 integer quantum Hall effect,IQHE干涉态,从库仑作用主导Coulomb-dominated,CD到阿哈勒诺夫-玻姆Aharonov–Bohm,AB态。图3:在1/3分数填充处的AB干涉。图4:恒定填充和恒定密度之间可调性。【科学结论】本文的研究通过在高迁移率双层石墨烯的基础上构建并测量范德华力Fabry-Pérot干涉仪(FPI),作者成功地在一个Landau能级内动态调节了从库伦主导到Aharonov-Bohm(AB)干涉的状态。这一实验不仅验证了在填充因子ν=1/3下的Aharonov-Bohm干涉模式,还揭示了在常数填充条件下的纯净干涉图样和在常数密度条件下的相位跳跃现象。这些发现表明,干涉准粒子所积累的相位可以被理解为2π〈N〉,其中〈N〉为回路内电子数,这为理解准粒子的分数统计特性提供了新的视角。通过这种精确的调节能力和测量手段,作者为研究阿贝尔任何子和探索更复杂的非阿贝尔统计奠定了坚实的基础。双层石墨烯所展示的偶数分母分数量子霍尔态的潜力,预示着未来在这一领域的广泛应用前景,为进一步的研究和技术发展提供了有力的支持。参考文献:Kim, J., Dev, H., Kumar, R. et al. Aharonov–Bohm interference and statistical phase-jump evolution in fractional quantum Hall states in bilayer graphene. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01751-w
  • 吉林大学采购159.401 万元扫描霍尔探针显微镜
    扫描霍尔探针显微镜项目(项目编号:JDCG2016-212) 组织评标工作已经结束,现将评标结果公示如下:  一、项目信息  项目编号:JDCG2016-212  项目名称:扫描霍尔探针显微镜  项目联系人:王晓平  联系方式:0431-85095975  二、采购人信息  采购人名称:吉林大学  采购人地址:吉林省长春市人民大街5988号即吉林大学东区继续教育学院楼517室  采购人联系方式:王晓平 0431-85095975  三、项目用途、简要技术要求及合同履行日期:  见招标文件  四、中标信息  招标公告日期:2016年06月08日  中标日期:2016年06月30日  总中标金额:159.401 万元(人民币)  中标供应商名称、联系地址及中标金额:  QUANTUM量子科学仪器贸易(北京)有限公司  159.401万元  评标委员会成员名单:  王玲、王智宏、李敏、马鸿佳、徐娓  中标标的名称、规格型号、数量、单价、服务要求:  扫描霍尔探针显微镜  五、其它补充事宜  无
  • 霍尔德新品|真空密封性测试仪操作简便
    霍尔德上市新品啦!2023年12月28日上市了一款密封性测试仪【真空密封性测试仪←点击此处可直接转到产品界面,咨询更方便】密封试验是检测产品泄漏状况的有效检测。在产品包装过程中,由于各种难以预测的因素,封合环节可能会出现疏漏,如漏封、压穿,甚至因材料本身存在的微小瑕疵,如裂缝、微孔,这些都可能形成内外互通的小孔。这样的情况,无疑会对包装内的产品造成潜在威胁,特别是对于食品、医药、日化等对密封性要求极高的产品,其质量的保障更依赖于密封性的完好。真空密封性测试仪专业适用于产品的密封试验,通过试验可以有效地比较和评价软包装件的密封工艺及密封性能,是食品、塑料软包装、湿巾、制药、日化等行业理想的检测仪器。 产品特征 1.具备保压试验模式与梯度试验模式,满足不同材料测试需求; 2.系统采用微电脑控制,抽压、保压、补压、计时、反吹、打印全自动化操作; 3.设备搭配7寸彩色触摸屏,实时显示压力波动曲线,自带微型打印机,支持数据预置、断电记忆,确保测试数据的准确性; 4.试验结果自动统计打印及存储; 5.具备三级权限管理功能,支持历史数据快速查看; 6.采用优质气动元件,性能经久耐用、稳定可靠技术参数 真 空 度 0~-90kPa 分辨率0.01KPA 保压时间0-999999S 精度 0.5级打印机热敏打印机(标配) 针式打印机(选配)真空室尺寸 Φ270mm×210 mm (H) (标配) Φ360mm×585 mm (H) (另购) Φ460mm×330 mm (H) (另购) 气源压力 0.7MPa (气源用户自备)或厂家配备空气压缩机(选配)气源接口 Φ6mm 聚氨酯管 电源 220 V/50Hz 外型尺寸 290mm(L)×380mm(B)×195mm(H) 主机净重 15kg
  • 精密光谱专家、诺贝尔物理学奖得主约翰霍尔受聘华东师大名誉教授
    10月28日,2005年诺贝尔物理学奖获得者约翰霍尔教授从华东师范大学校长俞立中手中接过了名誉教授的证书。   当天,约翰霍尔以“光学频率梳”为题,与华东师大师生分享了他有关科学需求、理念重塑、创新和机缘的故事,以及诸多富有价值、出人意料的实际应用。   “霍尔教授的名字如雷贯耳,今天能够亲眼目睹这位诺贝尔得主和专业大师的风采,我觉得非常幸运。”物理系2008级博士方易说,“而且更幸运的是,我们还近距离地与他进行了交流,例如我们在实验中遇到的瓶颈等,这种经历实在太让人难忘了。”   武愕副教授是华东师大精密光谱科学与技术国家重点实验室的一名青年教师,她去年在德国进行学术交流时,曾与霍尔教授有过近距离的接触。“他是我们这一领域领头羊式的人物。”武愕说,“这次他能够来到学校并受聘为名誉教授,无论对学校还是对我们实验室所有成员来说,都是一次学习交流的宝贵机会。我们与他交流实验室目前在做的项目,他还给我们提出了许多好的建议和想法,受益匪浅。”   讲座结束后,霍尔教授被同学们团团围住。同学们就如何开展交叉学科研究、如何有效进行学术研究、如何将个人兴趣与研究相结合以及霍尔教授获诺贝尔奖经过等问题,与霍尔教授进行了深入的交流。   约翰霍尔教授在精密光谱、光速测量方面的开创性研究成果以及“光学频率梳”的技术发明实现了简单直接的光学频率测量,并已在科学、气象学和诊断性药物领域得到了广泛应用,获得了2005年诺贝尔物理学奖。
  • 安捷伦与 Insight Experience 荣获布兰登· 霍尔集团卓越奖铜奖
    p style=" text-align: center " span style=" color: rgb(31, 73, 125) " 就其在最独特或最具创新性的领导力培养计划领域达到的卓越成就而获奖 /span /p p   2018 年2月6日,北京——安捷伦科技公司(纽约证交所: A)与模拟式领导力培养计划的领先供应商 Insight Experience 在今日共同宣布,他们获得了备受瞩目的布兰登· 霍尔集团最独特或最具创新性领导力发展计划类的卓越奖铜奖。 /p p   安捷伦与 Insight Experience 联合开发了新兴领导者计划 (ELP),旨在加快获选的安捷伦员工就任安捷伦高级领导职位的准备工作。 Insight Experience 采用独特的业务模拟工具快速启动了这项为期 8 个月的计划,计划中着重培养战略思维与团队建设技能。 在整个计划中,参与者们要参与一些战略业务项目,并将学到的技能在项目中付诸实践。 计划中包括评估、培训、社区活动,需要参与者的协作技能和主管部门的积极参与,可以使参与者和管理者拥有一段意义非凡的计划经历。 /p p   安捷伦全球人力资源副总裁 Erica Wright 谈道:“安捷伦一直以来都很注重员工的发展, 我们为新兴领导者计划的实行感到自豪,也很荣幸这项计划能得到布兰登· 霍尔集团的青睐。 ELP 是一项真正独特的计划,能够为公司的新一代领导者提供前所未有的培训机会。” /p p   布兰登· 霍尔集团首席运营官兼奖项负责人 Rachel Cooke 表示:“卓越奖的获得象征着人力资源管理实践对业务或组织机构具有积极的影响力, 许多组织机构都拥有周密的人力资源管理 (HCM) 方案,但只有 HCM 实践真正使业务受益的组织机构才满足卓越奖的标准。 这就是卓越奖计划代表的意义所在,也是布兰登霍尔集团传播的理念所在。” /p p   布兰登?霍尔集团是一家人力资源管理 (HCM) 研究与咨询服务公司,专门提供学习与发展、人才管理、领导力培养、人才招聘和员工管理等关键绩效领域的见解。 /p p   集团设立的奖项由独立的资深高级业内专家、布兰登· 霍尔集团分析师和执行主管构成的评审小组进行评选,依据的标准包括需求切合度、方案设计、功能性、创新性和可测总收益。 布兰登?霍尔集团将于 2018 年 1 月 31 日至 2 月 2 日在美国佛罗里达州棕榈滩花园的 PGA 国家度假村举办 HCM 卓越奖颁奖会,会上将为获奖者颁发奖项。 /p p   关于安捷伦科技公司 /p p   安捷伦科技公司(纽约证交所: A)是生命科学、诊断和应用化学市场领域的全球领导者,拥有 50多年的敏锐洞察与创新,我们的仪器、软件、服务、解决方案和专家能够为客户最具挑战性的难题提供更可靠的答案。在2017财年,安捷伦的营业收入为44.7亿美元,全球员工数为13500人。 /p p   关于 Insight Experience /p p   Insight Experience 成立于 2001 年,旨在打造最前沿的领导力培训与模拟式学习体验模式。 公司的专家团队与其他公司开展密切合作,共同制定涵盖了商业洞察力、战略执行力、均衡领导力和新领导者培养等领域最新商业趋势的一体化方案。 Insight Experience 位于美国马萨诸塞州康科德市。 /p
  • 霍尔德新品:荧光光谱测金仪配备“一键测试”智能软件
    霍尔德上市新品啦!2024年01月19日上市了一款荧光光谱测金仪【荧光光谱测金仪←点击此处可直接转到产品界面,咨询更方便】黄金质量的鉴别主要分为定性检验和定量检验。定性检验,是透过黄金的质地、硬度与质量的细微差异,用我们的肉眼去判断纯度。而定量检验,则通过精确测量黄金的物理特性,将纯度转化为数字,使我们对黄金纯度的理解更加深入、更加明确。光谱测金仪配备“一键测试”智能软件,能一键智能检测20种金属:金,银,铂,钯,铼,铱,钨,镉,铜,镍,锌,铑,钌,铁,钴,锇,铅,锡,铟,锰,是目前市场上最便宜的能检测“铼”元素的光谱仪,能同时显示贵金属百分比纯度、黄金K值。除了检测常见金银铂钯等贵金属外,还能识别“黄金掺铼”;仪器稳定性好、精度高,能区分99.99金和99.90金,适用于黄金回购、珠宝零售、典当质检、大专院校珠宝专业、珠宝教育培训等行业。技术参数分析范围:0.01%~99.99%; 测量精度:0.05%; 高压电源:0~50KV; 光管管流:0uA~1000uA; 摄像头:高清摄像头; 探测器:增强型正比计数管探测器; 多道分析器:多通道模拟; 样品腔尺寸:310*270*90(mm); 测试时间:5~60秒; 测量元素:可检测20种金属:金,银,铂,钯,铼,铱,钨,镉,铜,镍,锌,铑,钌,铁,钴,锇,铅,锡,铟,锰; 分析软件:定性定量分析软件; 环境温度:5℃~30℃; 相对湿度:15%~85%; 电源要求:AC220V士5V,附近无大功率电磁和振动干扰源; 外部尺寸:450*400*390(mm); 额定功率:120W; 重量:36Kg。
  • QD中国样机实验室引进M91快速霍尔测量仪,极低迁移率材料测量速度提升100倍!
    近期,QD中国样机实验室全新引进Lake Shore公司推出的M91快速霍尔测试仪,该快速霍尔测量系统可以与完全无液氦综合物性测量系统-PPMS® DynaCool&trade 无缝连接。全新的M91快速霍尔测量方案采用革新的一体式设计,相比传统的霍尔效应测量解决方案,显著提高了测量的灵敏度、测量速度以及使用便利性。M91将所有必要的测量信号源和锁相等信号处理功能集于一体,在测量低载流子迁移率样品时相比其他测量手段有显著优势。左):完全无液氦综合物性测量系统-PPMS® DynaCool&trade ,右):M91快速霍尔测试仪QD中国样机实验室M91快速霍尔测试仪集成于完全无液氦综合物性测量系统 M91快速霍尔测试仪能够检测样品电极接触状况并确保测量始终处于最佳样品条件下进行。尤其在测量低载流子迁移率材料时,M91可以更快、更准确地完成相关测量。得益于仪器特有的FastHall技术,消除了在测量过程中翻转磁场的必要性,测量速度可达传统方法的100倍,几秒钟内即可精确测量流动性极低的材料,使得该选件在PPMS上的测量效率大幅提升, 即便是在范德堡测量法(vdP)几何接线的测量过程中,也可以更快地分析低载流子迁移率材料样品。M91快速霍尔测试仪可以直观判定样品接触电极质量FastHall可以覆盖更低的载流子迁移率测量范围 产品特点:✔ 采用FastHall技术,在测量过程中无需进行磁场翻转✔ 全自动检查样品引线接触质量,提供完整的霍尔分析✔ 计算范德堡接线样品以及Hall Bar样品相关参数✔ FastHall测量技术在采用范德堡接线时可将载流子迁移率测量极限缩小到0.001 cm2/(Vs)✔ 可在显示屏直观显示检测过程,并具有触摸操作功能实时执行相关测量指令标准电阻套件——M91可以通过DynaCool杜瓦LEMO接口连接进行测量PPMS与M91的集成示例 标准测量模式下 PPMS DynaCool 采用自带样品托进行测量PPMS样品托电极接线方案该联用方案支持范德堡vdPauw 4引线连接以及Hall Bar 6引线连接模式,样品引线通过样品托底部针脚与PPMS样品腔连接并通过杜瓦侧面Lemo接口连接到M91测量单元上。该方案可以快速适配PPMS DynaCool系统并具有标准电阻测量范围(最大10 MΩ),使用常见的PPMS电学测量样品托即可完成相关测试。左):M91通过多功能杆顶部的接口直接连接;右):M91高阻模式PPMS多功能样品杆左) 高精度电学输运样品杆样品台 右) 样品杆顶部接口左):样品板;右):样品板插座此外,针对有高阻小信号测量需求的客户,QD中国样机实验室也匹配了LakeShore提供的高阻测量方案。该方案通过专用的多功能样品杆将样品板电极引线通过同轴电缆从样品腔顶部引出,从而获得更好的信噪比和更大的电阻测量范围(最大200 GΩ)。M91组件自带的MeasureLINK软件与PPMS MultiVu深度集成,可以与MultiVu工作在同一台主机上亦或是同一局域网下的任意一台主机上对系统进行控制。2K温度下使用PPMS 0-9T扫场的砷化镓二维电子气薄膜,采用范德堡测量法横向及纵向电输运测量结果准确反应了材料的整数量子霍尔效应 传统的直流场霍尔效应测量适用于具有较高迁移率的简单材料,但伴随着载流子迁移率的降低,测量难度增加,精度降低。在光伏、热电和有机物等前景广阔的新型半导体材料中,测量难度就增加了不少。 交流锁相技术结合先进锁相放大器和更长测量窗口,可以提取更小的霍尔电压信号,目前常用于探索低迁移率材料。然而,延长测量间隔会增加热漂移效应带来的误差,并且需要更长的时间来获得结果,有时甚至需要数小时。FastHall 技术有效解决了这些问题,甚至可以在几秒钟内精确测量极低迁移率的材料,极大的拓宽了材料研究测试的范围。为了便于广大客户全面了解和亲身体验M91快速霍尔测试仪,QD中国样机实验室引进了该设备样机,现已安装于公司样机实验室并调试完毕。即日起,我们欢迎对该设备感兴趣的老师和同学来访,我们在QD中国样机实验室恭候大家的到来。相关产品1、M91快速霍尔测试仪https://www.instrument.com.cn/netshow/SH100980/C554347.htm2、完全无液氦综合物性测量系统-DynaCoolhttps://www.instrument.com.cn/netshow/SH100980/C18553.htm
  • 霍尔德新一代双通道原子荧光光度计
    霍尔德上市新品啦!2024年02月21日上市了一款双通道原子荧光光度计【双通道原子荧光光度计←点击此处可直接转到产品界面,咨询更方便】双通道原子荧光光度计是一种高灵敏度、低检出限的痕量元素分析仪器。它利用原子荧光谱线作为检测手段,通过测量特定元素在激发光源照射下产生的荧光强度,实现对痕量元素的定量分析。双通道原子荧光光度计是新一代全自动原子荧光光度计。采用注射泵设计,具有高可靠性、高度智能化、高度自动化、免维护的人机交互设计,解决了传统原子荧光的痛点问题。本仪器用途广泛,应用领域包括:食品卫生、城市供排水、环保、农业、冶金、化妆品、医药、地质、商检等痕量及超痕量元素的检测。如:环境样品检测、化妆品中有害元素检验、食品卫生检验、地质、冶金样品检验、城市给排水检测、海洋环境及水产品检测、天然饮用矿泉水检测、教育与科研、临床医学样品检验、中成药品检验、农业环保及农产品检测等。 双通道原子荧光光度计优势特点: 1、测量方式:双通道两灯位,单元素测试、双元素同时测试可选,双元素同时测定,提高仪器分析速度。 2、检测项目:可测定样品中As、Sb、Bi、Hg、Se、Te、Sn、Ge、Pb、Zn、Cd、Au等十几种元素的痕量分析; 3、检测光源:采用集束式脉冲供电方式(方波减少干扰),特制高强度空芯阴极灯,仪器可以自动识别能量自动配比并可调; 4、光学系统:短焦距透镜聚光,无色散全密闭避光调光系统; 5、进样系统:全自动内置式双顺序注射泵进样系统,能够进行自动稀释,在线精确调节还原剂进样量; 6、原子化器:低温自动点燃氩-氢火焰,屏蔽式石英原子化器; 7、保护装置:开机自检,气路自动控制、自动保护、自动报警系统; 8、除蒸气装置:具备化学气相发生气液分离装置,自动去除水蒸气装置;9、捕集阱装置:具备氢化物发生原子荧光检测尾气中有害元素捕集阱装置,有效防止对环境造成的二次污染; 10、专用操作软件:适用于XP/win7/win8/win10的中文窗口操作软件 11、预留升级接口:与液相色谱等装置联用可做As、Se、Sb、Hg等元素形态分析及价态分析; 12、自动标准曲线:自动单点配标准曲线,曲线的线性系数0.999,在线更改进样量; 13、流量精准控制:模块化质量流量计设计,流量通过计算机控制,流量准确,气路安全; 14、采用进口核心部件:日本原装进口光电倍增管;德国费斯托进口的气路阀件系统;法国圣戈班进口的泵管;美国进口的蠕动泵。 15、可选配160位极坐标式自动进样器,实现全自动实验分析,提高检测效率。全自动原子荧光光度计技术参数: 型号 HD-AFS01 HD-AFS02 测量元素 As、Sb、Bi、Hg、Se、Te、Sn、Ge、Pb、Zn、Cd、Au等十几种 测量通道 双通道 进样系统 间歇泵 (结构简单,维护方便,成本低,准确性低于注射泵) 注射泵 (精度比间歇泵高一个数量级,测试精度更高,更稳定) 检出限 AS、Se、Pb、Bi、Sb、Te、Sn:<0.01μg/L Hg、Cd<0.001μg/L Ge<0.05μg/L Zn<1.0μg/L Au<3.0μg/L 测量精度 ≤0.8% ≤0.2% 线性范围 大于三个数量级 自动进样器 160位极坐标式自动进样器(选配)
  • 新品发布|便携式油液颗粒计数器简介【霍尔德】
    霍尔德上市新品啦!2024年01月04日上市了一款便携式油液颗粒计数器【便携式油液颗粒计数器←点击此处可直接转到产品界面,咨询更方便】对润滑油颗粒度的评估,我们通常从两个方面展开:颗粒尺寸分布以及颗粒浓度。通过细致地检测和分析,我们可以深入了解润滑油的清洁度、颗粒污染程度,以及颗粒的细致尺寸和分布情况。通过这样的评估,我们可以精确判断润滑油的有效寿命,洞察设备的健康状况,从而制定出更合适的维护计划。这就好比为设备进行定期体检,提前预警可能存在的问题,预防潜在的故障。而定期监测和控制润滑油颗粒度,无疑是维护设备性能、延长设备寿命的重要手段。这就像是为设备提供了一份全面的保健方案,确保其始终处于最佳状态。便携式油液颗粒计数器是采用国际液压标准委员会指定的光阻(遮光)法计数原理,专门用于现场油液污染度等级快速检测装置。具有体积小、质量轻、检测速度快、精度高、重复性好等优点,可在高温高压等及其恶劣的条件下工作。内置微水传感器和温度传感器,在进行污染度检测的同时,可对水含量和油液温度一并检测。适用于发动机油、齿轮油、变压器油(即绝缘油)、液压油、润滑油、合成油等油液,可广泛应用于电力电厂、航空航天、石油化工、交通港口、钢铁冶金、汽车制造等领域。自动颗粒计数器主要特点:1.采用光阻(遮光)法原理,使用高精度激光传感器,体积小、精度高、性能稳定;2.适用于实验室或现场检测,也可选配减压装置用于在线高压测量,实时监测用油系统中的颗粒污染度;3.可外接压力舱形成正/负压,实现高粘度样品的检测和样品脱气;4.内置数据分析系统,能显示各通道粒径的真实数据并自动判定样品等级;5.管路采用316L及PTFE材料,满足各类有机溶剂及油品的检测;6.具有体积冲洗和时长冲洗模式,方便用户对设备的使用和维护;7.内置ISO4406、NAS1638、SAE4059、GJB420A、GJB420B、ГOCT17216、GB/T14039等颗粒污染度等级标准;8.内置校准功能,可按GB/T21540、ISO4402、GB/T18854等标准进行校准;9.内置数据分析系统,可根据标准自动判定样品等级,具有数据自动处理、打印功能;10.可设定任意报警级别,实现污染度或洁净度检测;11.内置微水传感器和温度传感器;12.中英文输入,一键切换,具有预设、输入、修改、存储功能,操作方便快捷;13.超大存储,可选择存储在仪器内部或外部存储设备中;14.嵌入式设计,高强度外壳,便于携带,适合各类工程机械技术指标:光 源:半导体激光器;检测速度:20-60mL/min;离线检测样品粘度:≤100cSt,粘度高时可选配压力舱;在线检测压力:0.1~0.6Mpa(选配减压装置最高压力可达42Mpa);粒径范围:1~500μm;接口:USB接口、电源接口;数据存储:提供1000组数据存储空间,并支持优盘存储;灵 敏 度:0.8μm或4μm(c);极限重合误差:40000粒/ml;计数体积:1~999ml;计数准确性:误差<±10%;防护等级:IP67;测试时间间隔:1秒~24小时;检测样品温度:0~80℃;水活性参考值:0~1aw(±0.05aw);水含量:0~360ppm(±10%);工作温度:-20~60℃;供 电: AC 220V±10%、50/60Hz;重量:2.5kg; 体积:275×220×107mm
  • 霍尔斯Feed-Sup®补料系统已上线!
    HOLVES一直致力于研发高精度的补料系统,提供多样化的补料方式。目前,全新的Feed-Sup® 已正式上线,相较于前两代系统,Feed-Sup® 在控制方式和补料功能上做出了重大改进和优化,更能有效和精准的实现生物发酵过程中的补料控制,成功做到产品的迭代发展,进一步满足了不同客户的补料要求。Feed-Sup® 补料控制方式的升级Feed 1th采用的是模拟量控制方式,Feed 2th采用的是脉冲控制方式,而Feed-Sup® 在前两者的基础上再次做出改进,采用了RS-485通讯方式,关于三种控制方式的对比,参见往期文章《步进电机驱动方式对蠕动泵精度的影响》。新入控制方式的引入更能有效的实现发酵过程中培养液或发酵基质的补充精度,确保发酵罐中营养物质的浓度、温度或氧气含量,以理想状态支持发酵。Feed-Sup® 补料功能的升级Feed 1th和Feed 2th补料功能基于传统补料过程中手动和按时补料模块的显示和运用,确保补料过程中pH和DO的关联控制,具体的补料功能如下图。(Feed 1th / 2th补料控制主界面)● 常规功能1)补料泵转速和流速的显示系统的主控画面图标和补料控制的主界面均可以实时显示补料泵的转速和泵出液的流速,通过观察即可了解补料泵的运行状态。2)补料的校准和补料管的切换输入设定量,并通过手动补料功能泵出设定量的液体,再将实际泵出的液体体积输入至实际量中,最后点击校准按钮即可实现补料泵的校准。选择补料泵上安装的硅胶管管号,再点击复位按钮切换至目标硅胶管的蠕动泵系数后即可实现16#、19#、25#三种管径的硅胶管切换,以满足不同的补料需求。 3)累计补料量的计算与清除功能系统的主控画面图标可以实时显示发酵过程中的累计补料量,而通过清除按钮还可实现累计补料量的清除,从而自定义累计补料量的记录起始点。● 手动补料设置手动补料时补料泵的转速,加入的料液体积,启动后系统可计算出定速定量后补料泵所需工作的时间,以及显示补料泵剩余的工作时间。● 按时补料输入所需的单位时间补料量、补料泵转速和补料泵工作时间,可得到补料泵的控制周期,进行按时定量补料。● 补料关联pH培养基的碳氮比、营养物质的种类、不同料液中微生物的代谢产物等都会对发酵液的pH造成影响,所以有些时候需要采用补料方式调节pH。在发酵过程中,输入所需的关联转速,以及补料正向关联pH或补料反向关联pH的条件,如下图所示系统即可进行补料单向关联pH。● 补料关联DO同理,补料也会对发酵液的DO造成影响,影响程度的大小随补料情况、菌种状态等因素而定。在发酵过程中,输入所需的关联转速,以及补料正向关联DO或补料反向关联DO的条件,系统即可进行补料关联DO,进行多重调节DO,满足客户多样需求。(Feed 1th / 2th补料关联控制界面)以上为前期产品补料系统,Feed-Sup® 在保留1th和2th的基础上,还更新了方程补料和指数补料功能,一般情况下,高密度发酵是在营养物质限制的条件下进行的,通常是以碳源物质作为限制性营养物质,通过恒速补料、指数补料等补料方式,补加营养物质以实现高密度发酵培养。就大肠杆菌而言,指数补料策略不仅能够让细胞保持恒定的比生长速率生长,而且通过将比生长速率控制在乙酸积累的临界比生长速率下,还能抑制代谢副产物乙酸的积累,从而减小乙酸对发酵培养的副作用。基于以上需求,Feed-Sup® 补料功能设置如下图:(Feed-Sup® 给料控制界面)● 方程补料输入方程补料中的关键参数a和b的数值,以及方程补料所需运行的时间t,即可进行方程补料。● 指数补料输入指数补料中的关键参数F1(0)和μ的数值,以及指数补料所需运行的时间t,启动关联,即可进行指数补料。方程补料和指数补料主要参数的说明如下图:‍(Feed-Sup® 方程补料、指数补料说明)方程补料和指数补料系统的开发和投入使用使得HOLVES在现有产品的补料功能上得到更大升级,满足了客户在实际发酵使用过程中的精准控制及操作便利性,保持科研成果的科学严谨性,也是HOLVES一直致力于生物发酵领域精益求精的发展追求。HOLVES产品在持续更新迭代,以满足不同种类的客户需求,提供更好的产品体验和用户服务,新品持续研发中,敬请关注注:本篇文章内容为霍尔斯HOLVES版权所有,未经授权禁止转载及使用。
  • 我国科学家在反铁磁拓扑绝缘体MnBi2Te4中发现π/2周期的平面霍尔效应
    近日,中国科学院合肥物质科学研究院强磁场科学中心田明亮课题组利用磁输运方法,在本征反铁磁拓扑绝缘体MnBi2Te4中发现体态轨道磁矩产生的四重对称性的平面霍尔效应。相关研究成果发表在Nano Letters上 。  当前,拓扑量子材料由于其独特的性能,在未来低功耗量子自旋器件中颇具应用价值,是相关领域的研究热点。在拓扑材料中,贝里曲率和轨道磁矩是两个基本的赝矢量,对材料物性产生重要影响。轨道磁矩在谷电子学和手性磁效应中具有重要作用,而相比贝里曲率研究,关于轨道磁矩相关新奇物性的研究较少。近年来,本征反铁磁拓扑绝缘体MnBi2Te4受到广泛关注。这个体系具有丰富的物性,如量子反常霍尔效应、拓扑轴子态等,并为探讨轨道磁矩和贝里曲率对量子输运现象的影响提供了良好的平台。  科研人员利用微纳加工技术,制备出基于MnBi2Te4纳米片的Hall-bar器件,通过平面霍尔效应的测量,探究了贝里曲率和轨道磁矩对输运现象的影响。实验发现,在低温下弱磁场(B 10T),平面霍尔效应的周期从π转变成π/2,同时幅值由正变为负。为了阐明π/2周期的物理机制,研究人员进行理论计算。计算结果表明,π/2周期的平面霍尔效应来源于体态Dirac电子的拓扑轨道磁矩,且理论结果与实验结果完全吻合。进一步实验发现,随着温度升高,由于体态和表面态的竞争,平面霍尔效应发生非平庸演化。该研究揭示了轨道磁矩诱导的新颖电磁效应,也为磁性拓扑材料在低功耗自旋电子学中的应用提供了指引。  研究工作得到国家自然科学基金、国家重点研发计划、强磁场安徽省实验室等的支持。  论文链接
  • 霍尔德新品|便携式常量氧气体分析仪的应用和特点
    【便携式常量氧气体分析仪←点击此处可直接转到产品界面,咨询更方便】氧气是不可或缺的生活元素,它的检测仪,就像我们生活中的小守护神,时时刻刻守护着我们的健康。工业生产中,燃烧过程及工艺反应过程中,氧含量的测定和控制,对产品质量、产量及消耗等指标都直接产生重要的影响。因此,氧含量的测定和控制成为了工业生产中的重要环节。随着生产的发展,对氧含量的测量范围和精度要求也越来越高。便携式常量氧气体分析仪应用领域:空分制氮、化工流程、电子行业保护性气体以及玻璃、槽车、充氮、气罐气瓶,建材行业及各种混合气体中氧气含量的便携快速检测分析。便携式常量氧气体分析仪仪器特点:1、仪器采用全中文菜单操作,通俗易懂、简单可靠,越限自身报警(蜂鸣器及屏幕显示),并可随意设置控制方式;2、选用进口传感器,具有寿命长、精度高、响应快等特点;3、无人职守时,定时自动存储功能,可随时查看存储数据;4、内置温度补偿,减小样气温度和环境的变化对测量精度的影响;5、采用新型的气路稳流系统;具有技术先进、精度高、响应快、性能稳定、功能齐全、操作方便、气体分析过程连续等优点;6、配有大功率电池,一次充电保证仪器连续工作25小时以上。
  • 新品发布|低本底多道γ能谱仪的技术原理和参数_霍尔德
    【低本底多道γ能谱仪←点击此处可直接转到产品界面,咨询更方便】低本底多道γ能谱仪原理:采用低本底铅室及低钾NaI(Tl)探头实现对待检测样品的放射性测量,基于高性能数字化能谱仪实现对NaI(Tl)探头的高精度伽马能谱测量,通过上位机能谱测量与分析软件实现对能谱的采集、存储、处理与解谱分析,最终实现对检测样品中放射性核素的识别与放射性比活度的测量。低本底多道γ能谱仪应用领域:医院放射性核素γ能谱测量分析;建材、土壤、生物、地质样品等γ能谱测量分析;建筑材料的快速无损检测;铀矿地质样品镭(铀)、钍、钾含量分析;可按用户要求配备铀、铯、钴、碘等人工核素分析软件。低本底多道γ能谱仪功能特点:1、具备实时快速低能γ射线稳谱技术的低本底数字化能谱仪,可保证开机快速测量以及长期稳定性;传统低本底数字化能谱仪需要人工反复调整谱仪参数才能够工作,且无法长时间稳定工作;2、自带数字化稳谱功能,可选择本底镅源γ射线稳谱、天然特征峰稳谱等数字化稳谱方式;3、支持粒子图谱、能谱曲线、梯形成形信号与原始脉冲信号显示;4、数字化能谱仪具备LIST-MODE模式,可实现粒子事件信息(时间、位置、幅度等)的实时采集,各通道数字化谱仪具备时钟同步功能,同步精度不低于15ns;粒子事件信息可传输到计算机上成谱,从而满足快速移动测量的要求;5、双谱测量:支持能谱与时间谱测量;6、高分辨率:采用16位80MSPS高速高精度模数转换器;7、高数字成形频率:数字成形频率高达80MHz。低本底多道γ能谱仪技术参数:探测器:Φ50×50mmNaI(Tl)晶体;总道数:512、1024、2048、4096、8192、16384道任选,标准道数:2048道;能量分辨率:37Bq/kg):10%;电源:220V(±10%)50Hz;温度范围:+5℃~+40℃;相对湿度:≤90%
  • 【霍尔德新品】放射性低本底γ能谱检测仪的功能特点
    【放射性低本底γ能谱检测仪←点击此处可直接转到产品界面,咨询更方便】环境辐射污染是一种潜在的重大污染源,其危害不亚于显性污染。一旦失控,将对周边居民的生活质量造成不可逆转的影响。比方说,放射源周边的生物或传播媒介被放射性核素污染后,就像带着致命毒素的蛇一样,通过食物链由低级向高级攀升,并在这一过程中不断将毒素富集。这些放射性污染物一旦进入人体,便像埋在人体内部的定时炸弹,时刻威胁着我们的健康。因此,我们必须高度重视环境辐射污染问题,坚决遏制其对我们健康的影响。放射性低本底γ能谱检测仪应用领域:医院放射性核素γ能谱测量分析;建材、土壤、生物、地质样品等γ能谱测量分析;建筑材料的快速无损检测;铀矿地质样品镭(铀)、钍、钾含量分析;可按用户要求配备铀、铯、钴、碘等人工核素分析软件。放射性低本底γ能谱检测仪功能特点:1、具备实时快速低能γ射线稳谱技术的低本底数字化能谱仪,可保证开机快速测量以及长期稳定性;传统低本底数字化能谱仪需要人工反复调整谱仪参数才能够工作,且无法长时间稳定工作;2、自带数字化稳谱功能,可选择本底镅源γ射线稳谱、天然特征峰稳谱等数字化稳谱方式;3、支持粒子图谱、能谱曲线、梯形成形信号与原始脉冲信号显示;4、数字化能谱仪具备LIST-MODE模式,可实现粒子事件信息(时间、位置、幅度等)的实时采集,各通道数字化谱仪具备时钟同步功能,同步精度不低于15ns;粒子事件信息可传输到计算机上成谱,从而满足快速移动测量的要求;5、双谱测量:支持能谱与时间谱测量;6、高分辨率:采用16位80MSPS高速高精度模数转换器;7、高数字成形频率:数字成形频率高达80MHz
  • 霍尔德首发!便携式智能露点仪应用领域有哪些
    【便携式智能露点仪←点击此处可直接转到产品界面,咨询更方便】露点,又称露点温度,是衡量气体绝对湿度的重要标尺。简单来说,它代表着在特定的大气压力下,空气中水蒸气含量达到饱和状态时,凝结成液态水的空气温度。在这个温度下,空气中凝结的水分子会漂浮在空中,形成我们所说的雾,而那些附着在固体表面的水分子,则形成了露。便携式智能露点仪应用领域:广泛用于空分、化工流程、磁性材料、电子行业、建材行业及各种混合气体及其它行业中的各种气体(如氮、氧,氩,氢气等)中露点的快速检测分析。便携式智能露点仪技术参数: 测量原理:进口薄膜电容式陶瓷湿度传感器; 测量范围:-100.0~+20℃\-80.0~+20℃\-60.0~+60℃(量程可选择); 精度:±1.0℃FS; 重复性:±1℃; 稳定性:±1%/7d; 样气流量:(2±0.5)L/min; 响应时间:τ90≤3分钟; 样气压力:0.05MPa≤入压口力≤0.25MPa; 工作电源:12VDC 外形尺寸:300mm(宽)×120mm(高)×270mm(深); 充电电源:(220±22)VAC,(50±5)Hz,充电器自带充电保护功能; 使用寿命:6年(规范操作正常使用条件下); 气路接口:Φ3不锈钢管(可根据客户订制)。仪器特点: 1、320*240真彩TFT屏,显示直观,中英文菜单界面,操作简单方便; 2、选用进口薄膜电容式陶瓷湿度传感器,具有寿命长、精度高、响应快等特点,可根据现场所测背景气选择不同的传感器; 3、定时自动存储功能,可随时查看存储数据; 4、同时显示露点(℃)、体积比(PPMV)、绝对湿度(mg/m3),读数直观,无需人工查表; 5、配有大功率电池,一次充电保证仪器连续工作25小时以上。
  • 霍尔德发布|石墨COD回流消解器采用石墨面均匀加热
    化学需氧量(COD)是一个重要的水质指标,用于衡量水中有机物污染的程度。COD值越高,说明水中含有的需要被氧化的还原性物质越多,也就是有机物污染越严重。在河流污染和工业废水性质的研究中,COD可以作为一个重要的参数来评估水体的污染状况。同时,在废水处理厂的运行管理中,COD也是一个关键的指标,可以用来监测处理效果,确保出水达到环保标准。石墨COD回流消解器主要由主机、冷却装置、加热装置、玻璃器皿等4大部分组成,采用微机技术进行定时控制加热电炉板和风扇,可对12个回流装置同时进行加热。石墨面加热,均匀度更好,更加安全。石墨COD回流消解器采用玻璃毛刺回流管代替球形回流管,并以风冷加水冷技术取代自来水冷却方式。冷却部分主要由毛刺冷凝管和双风机完成,加上上部分球形回流管内冷却水和机内风机的双重作用,确保了样品的回流冷却。符合水质cod《水质化学需氧量的测定重铬酸盐法》HJ828-2017标准。 产品参数1、测量范围:5~800mg/L,800~10000mg/L (经稀释) 2、同时加热样品数量:8-10-12个3、测量时间:不大于2小时 4、测量误差:邻苯二甲酸氢钾标准溶液(500mg/L),相对标准偏不大于5.0%,工业有机废水(500mg/L),相对标准偏不大于8.0%5、环境温度:0~45℃6、准 确 度:COD与经典回流法比对,结果在正常偏差范围内7、加热功率:3000W平均功率:1600W8、温度可调范围:32-400℃9、恒温精度:±2℃10、升温时间:室温至180℃<30min11、采用石墨材质加热板,温度更均匀。
  • 有了“金刚钻”,不惧“瓷器活儿” —访珀金埃尔默中国实验室搬迁项目负责人左欢
    无论是从楼上搬到楼下,还是从一个大陆搬到另一个大陆,实验室搬迁都是一项复杂的工程。因为每次不只是“搬”这个动作那么简单,细想想那些贵重、精密、易损害的仪器;处于冷冻或其他严格封存条件下的实验室样品;各种复杂的管路、连线… … 无不决定了实验室搬迁是个对技术、细节要求极高的“瓷器活儿”。“实验室搬迁的顺利与否,不仅会影响到实验室的科研进程,而且会影响到所在单位的业务进展。因此,不管是学术还是商业实验室,无论是质量控制还是研发实验室,不论实验室里的设备是20台还是2000台,都需要最大程度地缩短实验室中断运行的时间,尽快完成实验室搬迁并使其恢复运行。”珀金埃尔默中国实验室搬迁项目负责人左欢说道。实验室搬迁“三步走”实验室搬迁可以大体分为三个阶段:搬迁前初准备、终准备、搬迁以及仪器搬迁后的校准、调试和设置。初始规划阶段对于实验室搬迁至关重要。 “理想情况下,一旦确定需要新的实验室空间,就应该着手实验室规划,” 左欢介绍说。这个过程包括制定预算和时间表,制定仪器停用和重新投入运行的协议,通知关键的利益相关方,以及众多的后勤准备联系,例如运输。实验室中断和设备停机的代价是非常昂贵的,因此很多实验室都希望在不完全停止运营的情况下完成搬迁。“这可以实现,”左欢说,“但需要制定大量且细致的计划。在不同的阶段进行分段搬迁或在非运行时间进行搬迁可以最大程度减少实验室运营中断。”一旦搬迁计划开始实施,各阶段计划中的每一步流程都必须被严格管理。拥有丰富经验的搬迁服务提供商不仅可以在规划阶段提供帮助,还可以在搬迁期间管理物流。可别小看物流环节,仪器设备必须妥善地进行停机、包装和安全运输,这样才能确保其完成运输后仍处于良好的工作状态,因此服务团队需要有包装所有类型仪器所需的材料和专业知识,并安排适当的运输。任何对细节的忽视,都可能对搬迁的过程产生阻碍。“一些看似简单的细节,比如仪器运输是走货梯还是客梯,都要认真考虑,以便在搬迁中安全地处理仪器。”一旦设备、消耗品和样品移至新的实验室,搬迁后阶段就开始了。“你需要管理仪器的重新调试、验证、确保让仪器和软件正常运行,以便科学家能够尽快开展研究工作。”除此之外,这阶段工作还可能涉及一些基础设施的处理,例如IT连接,温、湿度控制以及水、气体连接。这些服务对于实验室恢复正常运营而言同样必不可少。“实验室搬迁是一个庞大而复杂的项目,需要大量的规划,以及高效的管理者和支持团队。唯有通过整个团队的密切合作,才能确保各阶段的平稳过渡,并最大限度地减少工作流程的中断。”左欢说。率先推出实验室一站式服务理念珀金埃尔默早在20多年前便前瞻性地推出了OneSource即一站式服务理念,为实验室提供包括多品牌仪器维修保养、分析方法咨询服务、设备采购及报废、实验室整体搬迁、实验室IT服务、实验室智能解决方案、验证服务等全面解决方案。“举个例子,当客户有成百上千台仪器的时候,如果每一台仪器都去找原厂做维修,那样会很耗时耗力,我们所提供的一站式服务可以帮助客户解决仪器周边相关联的所有服务,为客户解决问题,简化维护工作,从而让科学家们有更多时间专注于他们的核心科学研究工作。”左欢说道,“让仪器始终保持最佳运行状态是我们的承诺。”了解更多珀金埃尔默OneSource实验室搬迁服务,请点击:https://account.custouch.com/perkinelmer/ppc/lab/客户服务热线:800 820 5046 400 820 5046珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞察。在全球,我们拥有12500名专业技术人员,服务于180多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • 【霍尔德】液体在线式颗粒计数仪保障机械设备正常运行
    【液体在线式颗粒计数仪←点击此处可直接转到产品界面,咨询更方便】根据国内外资料统计,液压润滑系统故障中,70%~85%是由油液中的颗粒污染引起的。因此,液压润滑行业对油液的颗粒污染问题给予了高度重视,对油液的监控也变得至关重要。油液的清洁度直接关系到液压润滑系统的正常运行。液体在线式颗粒计数仪是采用国际液压标准委员会指定的光阻(遮光)法计数原理,专门用于现场在线测量的、油液污染度等级检测装置。具有体积小、质量轻、检测速度快、精度高、重复性好等优点,可在高温高压等及其恶劣的条件下工作。适用于发动机油、齿轮油、变压器油(即绝缘油)、液压油、润滑油、合成油、水基类(水基液压油、水乙二醇等)、醇类、酮类等一切透光溶剂,可广泛应用于电力电厂、航空航天、石油化工、交通港口、钢铁冶金、汽车制造等领域。主要特点:1.采用光阻(遮光)法原理,使用高精度激光传感器,体积小、精度高、性能稳定;2.适用于现场的在线检测,可实时监测用油系统中的颗粒污染度;3.内置数据分析系统,能显示各通道粒径的真实数据并自动判定样品等级;4.标准款可直接耐压100公斤,可选配减压阀用于在线高压测量;5.具有体积冲洗和时长冲洗模式,方便用户对设备的使用和维护;6.内置ISO4406、NAS1638、SAE4059、GJB420A、GJB420B、ГOCT17216、GB/T14039等颗粒污染度等级标准;7.内置校准功能,可按GB/T21540、ISO4402、ISO11171、GB/T18854等标准进行校准,一次测试可以给出所有内置标准结果;8.可独立设定所有标准任意报警级别,实现污染度或洁净度检测;9.RS232或RS485接口,支持标准Modbus协议可连接电脑、上位机、打印机、PC系统或其它设备进行数据监控、处理;10.超大存储,可选择存储在仪器内部或外部存储设备中;11.坚固外型结构,适合复杂工作环境;12.下进上出的模式有利于限度减小在线气泡对测试结果的干扰;13.可连续测试也可任意设置测试时间间隔;14.中英文双系统,客户可自由切换,适合外销出口;15.触屏或者薄膜按键操作,可自由切换,仪器界面可自由控制远端打印机的开关;16.可选接4G/5G模块,支持手机或电脑端远程数据监控、历史数据、曲线查询(选配);17.内置水分和温度传感器模块,可同时输出四种参数信息(选配)技术指标:光源:半导体激光器;流速范围:5-500m/min;检测样品粘度:≤650cSt;在线检测压力:0.1~10Mpa(选配减压装置最高压力可达42Mpa);粒径范围:1~600μm;接口:USB接口、RS232接口、RS485接口;数据存储:提供1000组数据存储空间,并支持优盘存储;灵敏度:1μm或4μm(c);极限重合误差:40000粒/m;计数体积:1~999m;计数准确性:±0.5个污染度等级。
  • 2024 年诺贝尔生理学或医学奖揭晓,还有哪些获奖成果与人类生命健康紧密相关?
    2024 年 10 月 7 日 17 时 30 分(北京时间),2024 年诺贝尔生理学或医学奖正式揭晓。该奖项被授予美国科学家维克托安布罗斯(Victor Ambros)和加里鲁夫昆(Gary Ruvkun),以嘉奖他们对微 RNA (microRNA)的发现以及阐释其在转录后基因调控中所发挥的作用。此奖项的单项奖金为 1100 万瑞典克朗,折合人民币约 744.117 万元。诺贝尔奖最早可追溯到1895年,瑞典化学家、企业家阿尔弗雷德诺贝尔在其遗嘱中设立了五个奖项,以表彰那些在物理学、化学、生理学或医学、文学以及和平上“对人类作最大贡献”的人。2024年诺贝尔各奖项的公布时间诺贝尔奖得主名单通常在每年的10月公布,2024年诺贝尔各奖项的公布时间如下:生理学或医学奖10月7日17:30物理学奖不早于10月8日17:45化学奖不早于10月9日17:45文学奖不早于10月10日19:00和平奖不早于10月11日17:00经济学奖不早于10月14日17:45作为世界上最负盛名的奖项之一,诺贝尔奖见证了诸多为科学界带来重大变革的研究成果。回顾其百年历史,许多研究成果已经深深融入了我们的日常生活。其中,哪些研究成果与人类生命健康息息相关?仪器信息网对近十年来与生命科学有关的诺贝尔生理学或医学奖、诺贝尔化学奖的获奖情况进行了整理。近10年诺贝尔生理学或医学奖:2024年:授予美国科学家维克托安布罗斯(Victor Ambros)和加里鲁夫坎(Gary Ruvkun),以表彰他们发现了微小核糖核酸(microRNA)及其在转录后基因调控中的作用。我们体内所有细胞的 DNA 中都储存着相同的遗传信息。然而,不同的细胞类型,例如肌肉和神经细胞,具有非常不同的特征。这些差异是如何产生的?答案在于基因调控,它允许每个细胞只选择相关的指令,确保每种细胞类型中只有正确的基因组才具有活性。目前已知人类基因组编码超过 1000 个 microRNA,对于生物体的发育和功能至关重要。2023年:颁给了匈牙利裔美国生物学家卡塔琳考里科(Katalin Karikó)和美国科学家德鲁韦斯曼(Drew Weissman),以表彰他们在mRNA疫苗方面作出的贡献。2022年:授予瑞典古遗传学家斯万特佩博(Svante Pä ä bo),表彰他在人类演化以及已灭绝的人类基因组研究上作出的贡献。人类一直对其起源感兴趣。我们来自哪里,我们与先人有何关系?是什么让我们 智人与其他古人类不同?古基因组学通过揭示区分所有现存人类和已灭绝古人类的基因差异,为探索人类的独特之处提供了基础。2021年:授予戴维朱利叶斯(David Julius)和阿登帕塔普蒂安(Ardem Patapoutian),他们发现了温度和触觉的受体。人类面临的最大谜团之一是我们如何感知环境。眼睛如何检测光,声波如何影响我们的内耳,以及不同的化合物如何与我们鼻子和嘴巴中的受体相互作用以及我们如何感受到阳光的温暖、微风的抚摸以及脚下的一片片草叶?大卫朱利叶斯利用辣椒素(一种来自辣椒的刺激性化合物,会引起灼烧感)来识别皮肤神经末梢中对热做出反应的传感器。 Ardem Patapoutian 使用压敏细胞发现了一类新型传感器,可以对皮肤和内脏器官的机械刺激做出反应。 研究发现TRP 通道对于我们感知温度的能力至关重要,Piezo2 通道赋予我们触觉以及感受身体部位的位置和运动的能力。2020年:授予美国科学家哈维阿尔特(Harvey J. Alter)、查尔斯赖斯(Charles M. Rice)以及英国科学家迈克尔霍顿(Michael Houghton),以表彰他们在发现丙型肝炎病毒方面所做出的贡献。2019年:授予美国科学家威廉凯林(William G. Kaelin Jr.)、格雷格塞门扎(Gregg L. Semenza)和英国科学家彼得拉特克利夫(Sir Peter J. Ratcliffe),以表彰他们在研究细胞如何感应和适应氧气供应方面所作出的贡献。2018年:授予美国免疫学家詹姆斯艾利森(James P. Allison)和日本免疫学家本庶佑(Tasuku Honjo),以表彰他们在癌症免疫疗法方面的贡献。该疗法通过刺激人体自身的免疫系统来攻击癌细胞。2017年:颁发给了三名美国科学家杰弗里霍尔(Jeffrey C. Hall)、迈克尔罗斯巴什(Michael Rosbash)和迈克尔扬(Michael W. Young),他们发现了调控昼夜节律的分子机制。2016年:日本科学家大隅良典(Yoshinori Ohsumi)获得该奖,以表彰其发现“细胞自噬机制”的秘密。2015年:一半共同授予威廉坎贝尔(William C. Campbell)和 大村聪(Satoshi &Omacr mura),发现了一种针对蛔虫寄生虫引起的感染的新疗法,另一半授予屠呦呦,发现一种新的疟疾疗法。传统上,氯喹或奎宁被用于治疗疟疾,但随着时间推移,治疗效果逐渐下降。到 20 世纪 60 年代末,根除疟疾的努力以失败告终,疟疾疾病呈上升趋势。在此背景下,屠呦呦将目光投向传统草药,经过对感染疟疾的动物进行大规模草药筛选,青蒿提取物成为备受关注的候选者,然而,初期结果的不一致,令屠呦呦重新查阅古代文献,从中获得线索并成功提取黄花蒿活性成分。屠呦呦是第一个证明青蒿素对受感染的动物和人类体内的疟疾寄生虫都非常有效的人。青蒿素代表了一类新型抗疟药物,能够在疟疾寄生虫发育的早期阶段迅速将其杀死,这也揭示了它在治疗严重疟疾方面具有前所未有的效力。近10年诺贝尔化学奖(不完全统计):2022年:授予美国科学家卡罗琳・ 贝尔托西(Carolyn R. Bertozzi)、丹麦科学家摩顿・ 梅尔达尔(Morten Meldal)和美国科学家卡尔・ 巴里・ 夏普莱斯(K. Barry Sharpless),以表彰他们在点击化学和生物正交化学研究方面的贡献。该成果不仅对化学、纳米科学等领域发展有着重要意义,还为生物分子结构和功能研究提供了强有力的工具。2020年:授予法国科学家埃玛纽埃勒沙尔庞捷(Emmanuelle Charpentier)和美国科学家珍妮弗杜德娜(Jennifer A. Doudna),以表彰她们开发出一种基因组编辑方法——CRISPRCas9基因剪刀。利用这些技术可以极其精确地改变动物、植物和微生物的DNA,对生命科学产生了革命性的影响。2018年:授予美国科学家弗朗西丝阿诺德(Frances H. Arnold)、乔治史密斯(George P. Smith)和英国科学家格雷戈里温特(Sir Gregory P. Winter)。阿诺德因“酶的定向进化”方面的研究获奖;史密斯和温特因“肽和抗体的噬菌体展示技术”方面的贡献获奖。其中,酶的定向进化技术对于生物化学和生物技术领域具有重要意义,而噬菌体展示技术则为抗体的制备和筛选提供了新的方法。2015年:授予瑞典科学家托马斯林达尔(Tomas Lindahl)、美国科学家保罗莫德里奇(Paul L. Modrich)和土耳其裔美国科学家阿齐兹桑贾尔(Aziz Sancar),以表彰他们在“DNA修复的机制研究”方面的贡献。DNA修复是维持生物遗传信息稳定性的重要过程,对于生命的正常运转和疾病的发生发展具有关键作用。
  • 思尔达发布上海思尔达恒温槽/精密恒温槽/水浴/粘度测定新品
    仪器简介:JWC-32C1精密恒温槽是根据石油化工、化纤塑料等行业材料分析和生产检验的需要而专门生产的新型设备,97年全新推出。该机由恒温槽主机及冷源组成,不受环境温度的影响,没有半导体制冷的那种需外接冷却水的麻烦和短寿命的缺陷,可以方便地获得低于室温的恒温值。主机的前后设置了大平面视窗,可一排放置六支毛细管粘度计,后侧平面背景灯,观察毛细管特别清晰,最适于乌氏、奥氏、平氏粘度测试及其它理化实验。调整后毛细管粘度计将自动垂直。冷源也可单独用于其它需冷却的仪器设备及场所。技术参数:● 主要技术指标控温范围: 0~85℃ 数显分辨率: 0.01℃槽温波动: ± 0.01℃ 槽温分布: ± 0.01℃工作室尺寸: 64× 19.5× 34cm3(l× w× h) 视窗尺寸: 47.5× 27cm(l× h)制 冷 量: 220Kcal /h 冷源温度: -15℃(输出短路时)加热功率: 1kw电源: 主机220V10A50Hz 冷源220V6A50Hz外形尺寸: 主机75× 26/38(带灯箱/不带灯箱)× 61cm3      冷源34× 25× 41.5cm3主要特点:● 制冷采用全封闭制冷压缩机,对储冷器制冷,储冷器与恒温槽间由泵及胶管连接冷液的流通,对恒温槽制冷。● 加热采用电加热器,由电子P.I.D调节器实现变功率控制,以平衡制冷量使温度稳定。● 搅拌设置定向导流装置,水流平稳,温度均匀。● 操作面专配粘度测试架,也可根据用户需要定作。创新点:JWC-32C1精密恒温槽设有液晶显示,连续地显示恒温槽的实际温度,数显分辨率、温度分布及波动均控制在± 0.01℃以内,自92年科研成果产业化至今,仍是国内精度较高、功能较全的恒温槽,为执行ASTM、ISO、JIS等国际标准及新国标创造了条件。 JWC-32C1精密恒温槽由恒温槽主机(JWC-32C1)及由压缩机制冷机组组成的冷源(XWC-100/1制冷循环槽)组成,不论环境温度如何,都可方便地获得低于室温的恒温要求,不但保证了在高温季节的使用,还保证了在低温时仍然具有的高精度,而且没有半导体温差电制冷技术所产生的低功效、必须外接保证一定压力的冷水源等的缺陷。冷源另可作独立的冷源使用,向外方提供的最低温度可达-15℃以下。 JWC-32C1精密恒温槽,烤漆机身,不锈钢面,造型美观,操作方便。按下电源开关,恒温槽在机内数字系统的控制下,即自动按照预置的温度进行恒温;面板上发光二极管指示了机内加热的情况,恒温槽前后两侧均设有大面积观察窗,通过后侧背景灯箱乳白色光源,可清晰地观察到槽内整个实验进程。安置在槽顶部的样品架配件,可配合各类实验方便地进行(可能需要协议提供、定作)。 JWC系列精密恒温槽,特别适用于特性黏度、黏数的实验。 上海思尔达恒温槽/精密恒温槽/水浴/粘度测定
  • 可控生长InSb纳米低维结构及其高质量量子器件研究获进展
    窄带InSb半导体材料以高电子迁移率、大朗德g因子和强大的Rashba自旋轨道耦合特征而著称,成为自旋电子学、红外探测、热电以及复合半导体-超导器件中的新型量子比特和拓扑量子比特的材料候选者。   由InSb制成的低维纳米结构如纳米线或2D InSb纳米结构(或量子阱),也因丰富的量子现象、优异的可调控性而颇具潜力。然而,InSb量子阱由于大晶格常数,较难在绝缘基板上外延生长。解决这些问题的方法之一是自下而上独立生长出无缺陷的纳米结构。通过气-液-固(VLS)生长出的2D InSb纳米片结构具有非常高的晶体质量,显示出单晶或接近单晶的优异特性,而在以往研究中其生长过程几乎均是起源于单个催化剂种子颗粒,因而位置、产量和方向几乎没有控制。   荷兰埃因霍温理工大学与中国科学院物理研究所/北京凝聚态物理国家研究中心HX-Q02组特聘研究员沈洁等合作,开发出通过金属有机气相外延(MOVPE)在预定位置以预设数量(频率)和固定取向/排列生长2D InSb纳米结构的新方法(可控生长),并利用低温电输运测量其制备而成的量子器件,观察到不同晶体结构对应的特征结构。   在这一方法中,通过在基底上制备V型槽切口,并精确控制成对从倾斜且相对的{111}B面生长的纳米线进行合并来形成纳米片。纳米片状形态和晶体结构由两根纳米线的相对取向决定。TEM等分析表明,存在与不同晶界排列相关的三种不同的纳米片形态——无晶界(I型)、Σ3-晶界(II型)、Σ9-晶界(III型)。后续的器件制备和输运测量表明,I型、II型在输运上表现出良好的性质,有较好的量子霍尔效应,出现了量子化平台,也有较高的场效应迁移率。   与之相对,III型纳米线因特殊晶界的存在,出现了明显的迁移率降低和较差的量子霍尔行为,且在偏压谱中被观察到象征势垒的零偏压电导谷。这归因于Σ9晶界带来的势垒对输运性质的影响。   研究表明,通过这种方法制备的I型和II型纳米片表现出有潜力的输运特性,适用于各种量子器件。尤其是这种生长方案使得InSb纳米线与InSb纳米片一起生长,具有预定的位置和方向,并可创建复杂的阴影几何形状与纳米线网络形状。   这一旦与超导体的定向沉积相结合,便可用最少的制备步骤产生高质量InSb超导体复合量子器件,为拓扑量子比特和新型复合量子比特提供器件平台。此外,与通过分子束外延(MBE)生长的InSb纳米片相比,采用这一方法生长的InSb纳米片更薄,更有助于量子化现象的出现和增加可调控性。   2月8日,相关研究成果以Merging Nanowires and Formation Dynamics of Bottom-Up Grown InSb Nanoflakes为题,在线发表在Advanced Functional Materials上。研究工作得到国家自然科学基金、中科院战略性先导科技专项、北京市科技新星计划和综合极端条件实验装置的支持。图1.(a)InSb纳米线和纳米片基底的示意图。在InP(100)晶圆上制作v型槽切口(“沟槽”),暴露出(111)B面。金颗粒在InP(111)B切面预先确定的位置上进行曝光制备,InSb纳米线在其上生长。通过在相反的InP(111)B切面上沉积Au颗粒,InSb纳米线将合并,形成(e)纳米桥和(f)纳米片。图2.三种类型的InSb纳米片的晶体取向与最终形貌的关系图4.三种纳米片的低温电输运测量。(a-c)显示了两端电导作为背门电压Vbg和磁场B的函数,即朗道扇形图。插图中显示的是假彩色SEM图像。纳米薄片被Al电极(蓝色)接触,Σ3和Σ9晶界分别用黄色和红色虚线标记。(d-f)为(a-c)在4T、8T和11T处扇图的截线,显示量子化平台存在与否。(g-i)为三种类型纳米片低磁场下微分电导dI/dV与Vbias和Vbg的函数关系,可以看出(i)中存在与晶界对应的零偏压电导谷。(j)由三种不同类型的纳米片制成的8个器件的场效应迁移率,显示三类纳米线不同的迁移率。
  • 第66届诺贝尔奖获奖者大会闭幕
    第66届诺贝尔奖获奖者大会近日在德国波登湖畔的林道闭幕,本届大会共邀请到了29位诺贝尔物理学奖获得者,其中有获得2015年诺贝尔物理学奖的日本物理学家梶田隆章和加拿大物理学家阿瑟麦克唐纳。作为本届大会的合作伙伴国,奥地利总统费舍也出席了会议并讲话。  大会的闭幕式在波登湖的玛瑙岛上举行,风景秀丽的玛瑙岛是诺贝尔奖获奖者大会的创始人贝纳多特伯爵夫妇的私人领地,贝纳多特伯爵是瑞典皇室亲属,这位伯爵一生热衷于赞助科学事业,在1951年创办了第一届诺贝尔奖获奖者大会,此后每年一届从不间断。2004年贝纳多特伯爵去世后,索尼雅贝纳多特伯爵夫人继续领导和组织每年一届的大会,2008年索尼雅病逝后,其女儿贝蒂纳贝纳多特女伯爵又继承了家族的这项事业。  此次大会共邀请了来自80个国家的400多名青年科学家和学生参会,而这是从上万名申请的学者中经过多轮评委评比,精心挑选出来的。参加诺贝尔奖获奖者大会有严格的参会条件,要求有两个以上国际著名学术机构的推荐,有在国际专业杂志上发表的学术论文,有流利的英语会话能力,学生年龄不超过30岁,博士后年龄在35岁以下。中国参加本届大会的境内外人数共29名,是继德国、美国之后参加人数较多的国家。  据中国学生代表团领队,中德科学中心常务副主任陈乐生教授介绍,这是中国第13次派出如此多的青年学者参加诺贝尔奖获奖者大会,中国学者的选拔和组团工作由中德科学中心负责,并得到教育部、中科院的鼎立支持。中德科学中心与诺贝尔奖获奖者大会基金会共同组成评委会,共同审核申请参加会议学者的学术水平。在经过几轮筛选后,还要进行包括英语能力的面试,因此,中国挑选的年轻学者都非常优秀。  从前几届的参会情况看,中国参加过大会的学者中已有三分之二去了美国、德国等国深造,并有被诺贝尔奖得主招为弟子。这些人在国外经过几年的锻炼,将来回国后将挑起大梁,成为国家科技领域的风云人物。陈教授介绍说,改革开放后曾有一批留德的风云人物出现,如现任科技部部长万钢以及路甬祥、韦玉、王大中、林泉。近年来还有一批留德或在德国从事过研究工作的中青年学者成为所在研究领域的领军人物,如潘建伟、卢柯、葛均波等。  记者也随机采访了几位参会的中国年轻学者,请他们谈谈参加大会的感受。来自中国科学技术大学的任亚飞说,感受最深的是与德国诺奖获得者冯克里青教授面对面的交流,大师用深入浅出的语言阐述了量子霍尔效应的原理和发现过程,使这位正在开始从事固体物理研究,年仅23岁的研究生激发起了对量子物理学的浓厚兴趣。他表示参加这次活动不仅能和大师进行学术交流,而且能感受大师现实中最真实、生动的一面。  来自北京大学的蒋庆东表示,参加诺贝尔奖获奖者大会不仅是聆听科学大师的高超演讲,目睹大师的风采,也是一次与其他国家青年学者交流的很好机会。通过交流他感觉到,中国在物理学一些领域并不比欧美差,也有自己一流的论文、一流的学者。这些年国家对科研的投入在不断增长,中国的科研成果在国际上不断获得好评,2015年屠呦呦获得诺贝尔生理学或医学奖,相信中国人获得诺贝尔物理学奖也是早晚的事。  记者还采访了林道诺贝尔奖获奖者大会基金会主席沃夫冈许勒尔博士,他专门负责组织这项活动已经有16年,今年即将退休并出任基金会名誉主席。采访中,他称赞了中国科学中心为每年一届的大会给予很大支持,尤其是与陈乐生、赵妙根两位主任的合作非常愉快。许勒尔博士也期待中国能有更多优秀科学家获得诺贝尔奖。
  • 三位科学家荣获2022年诺贝尔物理学奖
    北京时间10月4日17:45,在瑞典首都斯德哥尔摩,瑞典皇家科学院宣布,将2022年诺贝尔物理学奖授予Alain Aspect、John F. Clauser 和 Anton Zeilinger,以表彰他们在量子信息科学研究方面作出的贡献。获奖者将获得一份证书、金质奖章和奖金。2022年诺贝尔奖各个奖项的奖金是1000万瑞典克朗,按当前汇率,约合650万元人民币。此前,诺贝尔物理学奖已颁发过115次。在第一次世界大战(1914-1918)和第二次世界大战(1939-1945)期间,在1916年、1931年、1934年、1940年、1941年、1942年等六年里,没有颁发诺贝尔物理学奖。从1901年到2021年,约翰巴丁是唯一一位曾两次获得诺贝尔物理学奖的获奖者。这意味着,在2022年之前,共有218人曾获得诺贝尔物理学奖。附此前五年诺贝尔物理学奖得主名单2021年因对我们理解复杂物理系统做出了开创性贡献,日裔美籍科学家真锅淑郎(Syukuro Manabe)和德国科学家克劳斯哈塞尔曼Klaus Hasselmann),与意大利科学家乔治帕里西( Giorgio Parisi),分享了2021年诺贝尔物理学奖。2020年英国科学家罗杰彭罗斯(Roger Penrose)因证明黑洞是爱因斯坦广义相对论的直接结果,德国科学家赖因哈德根策尔(Reinhard Genzel)和美国科学家安德烈娅盖兹(Andrea Ghez)因在银河系中央发现超大质量天体,他们分享了2020年诺贝尔物理学奖。2019年因在我们理解宇宙演化和地球在宇宙中位置的贡献,美国科学家詹姆斯皮布尔斯,和来自瑞士的科学家米歇尔马约尔和迪迪埃奎洛兹,被授予2019年诺贝尔物理学奖。2018年因在激光物理学领域的突破性发明,发明光镊的美国贝尔实验室科学家阿瑟阿什金(Arthur Ashkin),与发明啁啾脉冲放大技术(CPA)的法国巴黎综合理工学院科学家热拉尔穆鲁(Gérard Mourou)和加拿大滑铁卢大学科学家唐娜斯特里克兰(Donna Strickland),被授予2018年诺贝尔物理学奖。2017年因对LIGO探测器(激光干涉引力波天文台)和引力波探测的决定性贡献,美国科学家雷纳韦斯、巴里巴里什和基普索恩被授予2017年诺贝尔物理学奖。2016年因在拓扑相变和物质拓扑相方面的理论发现,均出生在英国、任职于美国三所不同大学的科学家大卫索利斯、邓肯霍尔丹、迈克尔科斯特利茨被授予2016年诺贝尔物理学奖。关于诺贝尔奖1895年11月27日,瑞典著名化学家、硝化甘油炸药发明人阿尔弗雷德伯恩哈德诺贝尔(Alfred Bernhard Nobel)在巴黎签署了他第三份,也是最后一份遗嘱,将财产中的最大一份给了一系列奖项,即诺贝尔奖。诺贝尔奖初始分设物理、化学、生理学或医学、文学、和平等五个奖项。1968年,瑞典国家银行在成立300周年之际,捐出大额资金给诺贝尔基金,增设“瑞典国家银行纪念诺贝尔经济科学奖”,俗称诺贝尔经济学奖。诺贝尔奖的奖金来自诺贝尔所成立基金的利息或投资收益。随着诺贝尔基金的收益变化,诺贝尔奖的奖金有所浮动。2019年每项诺贝尔奖的奖金是900万瑞典克朗,2022年设定为1000万瑞典克朗。
  • 诺贝尔奖量级的发现出在中国实验室
    薛其坤在新闻发布会上   尽管“贵”为清华大学物理系主任,在上周之前的清华校园,薛其坤还不是一个多么引人注意的角色。不止一个见过他的人表示,几乎听不懂这位中科院院士与别人随口说起的科研内容。   事实上,他即将开启一个全新的时代。4月9日,由这位教授领导,来自清华大学、中国科学院物理所与斯坦福大学的科学家们组成的团队宣布,他们从实验中观测到了量子反常霍尔效应。他们的论文,3月15日发表在国际权威学术杂志《科学》上。   对普通人而言,“量子反常霍尔效应”并不仅是一个让人云里雾里的科学名词,它还意味着某种科幻小说般的未来生活:若这项发现能投入应用,超级计算机将有可能成为iPad大小的掌上笔记本,智能手机内存也许会超过目前最先进产品的上千倍,除了超长待机时间,还将拥有当代人无法想象的快速。   这一发现甚至令年过九旬的诺贝尔奖获得者杨振宁都激动了:“这是从中国的实验室里头,第一次做出并发表诺贝尔奖级的物理学论文。”   “那一时刻,我们看到我们深刻的信念,在大自然里果然是被实现了”   普通人几乎没人知道什么叫“量子反常霍尔效应”,但1879年美国物理学家霍尔发现的“霍尔效应”,实际上已经被应用在普通人生活的方方面面:测量磁场,测量运动事故,也可以生产新的器件,比如汽车的里程表、速度表,以及点火系统。   这一次,薛其坤团队的最新发现,在科学家眼中,更是一个极为美妙的现象。   在摆满仪器设备的实验室,清华大学物理系教授王亚愚试图通过一种通俗易懂的方式向外界解释他们的研究。他手持的笔记本电脑屏幕上播放着动画:一个透明的长方体物件内,许多玫红色小颗粒正在横冲直撞。   “如果这是一个一般的金属材料或者半导体材料,那里面的电子运动是非常无序的。它们杂乱无章,互相碰撞。这就引起电子器件的速度降低,而且会使能耗增大。”   虽然肉眼看不到这些到处乱跑的电子,但谁都会在生活中感受到它们的存在,譬如,尽管有风扇“呼啦呼啦”地吹,工作多时的笔记本电脑却还是热得烫手,反应缓慢得像老牛爬坡。   但这些粒子却是可以被科学家们“管”起来,顺着一定规律在材料内老老实实排着队跑步的。   “如果我们在材料上加一个强磁场,非常强的磁场,电子运动就变得有规律了——它们在材料的两端,像高速公路上的汽车一样,这么反向运动,这时候,电子运动速度就变快了。”王亚愚教授解释说。   动画中,玫红色小颗粒乖乖地排在材料两边,一边的队伍向前跑,对面的队伍则向后跑,就像公路上遵守交通规则的往来车辆,在不同的车道里畅通无阻。   在上世纪80年代,这种量子霍尔效应被德国物理学家冯克利青在研究极低温度和强磁场中的半导体时偶然发现。这一成果让他获得了1985年的诺贝尔物理学奖。   只是,要让肉眼都看不到的电子像动画中那样规律地运动,需要极强的磁场:至少得是一个一人高,冰箱一般大小的设备。运作起来非常麻烦,而且极其昂贵。   显然,这不是一件能走出实验室的“降温提速设备”。   这也就是为什么薛其坤的团队在实验中观测到的量子反常霍尔效应是这么重要、又是这么优美了:在零磁场中,材料的反常霍尔电阻达到量子电阻的数值,并形成一个平台,也就是说,在微观世界中,那些原本乱冲乱撞的电子们正循着“高速公路”畅通有序地运动着。这一次,没有强大的磁场。   这一场面证实了科学界等待多年的预言。   “这是量子霍尔家族的最后一位成员,”一位美国科学家在《科学》杂志上撰文称,“不需要外磁场的量子霍尔态的实验观测,使人们终于能够完整地研究量子霍尔效应的三重奏了”。   在得知这一结果的时刻,薛其坤的合作者,曾经预言过自旋量子霍尔效应的斯坦福大学教授张首晟想起了老师杨振宁曾对他们说过的话:任何科学发现,都早已存在于自然界中。   “在发现的那一时刻,我们看到我们深刻的信念,在大自然里果然是被实现了,这种感受是科学家最最大的一种回报。”   那是2012年的10月12日,距离霍尔最初发现这种电磁效应已130年有余,距离薛其坤的团队开始实验,也已整整4年。   “吃饭,睡觉,做研究”   在同行中,已经有300多篇SCI论文发表的材料物理学家薛其坤以勤奋刻苦著称。他有一个“比‘院士’更响亮的名号”,叫“7-11”:早上7点进实验室工作,一直干到晚上11点。在进行实验的4年中,他的团队先后尝试了1000多个拓扑绝缘体样品。   磁性拓扑绝缘体,是实现量子反常霍尔效应的理想系统。要实现量子反常效应,对材料的要求非常高:这种材料必须具有拓扑特性,具有长程铁磁序,体内则必须是绝缘态。按科学家的解释,就好比要求一个人具有刘翔的速度、姚明的高度和郭晶晶的灵巧。   在薛其坤的指导下,研究者们用于实验的拓扑绝缘体样品是以“原子”为单位的:在100万个原子中,只能有一个杂质原子。这1000多个不到小拇指指甲盖大小的特殊实验材料,都需要在超真空环境中慢慢长出来。它们的厚度得是5纳米,高1纳米或是低1纳米都不行。   分散在世界各地的实验团队成员,每天都通过电话和邮件交流实验结果,隔两三周就充分讨论实验的所有细节。不过,在很长一段时间里,它们得不到任何有意义的结果。负责测量反常霍尔效应的王亚愚教授形容,那时他们都“不大好意思见薛老师”。   但团队领导者薛其坤耐得住性子。他是过过苦日子的人。小时候,母亲得到了一条珍贵的牛肉,舍不得吃,一定要等着出外上学的孩子回家,才把已经风干的牛肉慢慢在水里浸开,包了饺子吃。   很多年以后,这个从沂蒙山区走出来的农村孩子还记得,年少时第一次进县城,如何被那里的繁华震惊。他对家乡记者描述说,那心情就像临沂人的一句笑谈,“蒙阴就像是北京一样,是个大地方”。   当时这少年心中的“最高理想”,就是在那个蒙阴县城中“找个工作,娶个媳妇”。这理想人生至少实现了一半,薛其坤后来确实娶到了一个蒙阴媳妇。   另一半人生也许有些超出他最初预想的轨道:在日本和美国留学,35岁晋级教授,41岁成为中科院最年轻的院士之一。“我根本没想到自己会是个科学家……只想有事干,踏踏实实做点事。”   在证实“量子反常霍尔效应”的成果发布后,有网友在微博上对着“薛其坤”这名字大发感慨:当年这个人去他们学校讲座,没人听,他还被拉去充数——近几年,薛其坤曾在复旦大学、山东大学、湖南大学等多所高校,作过以“个人成长的体会”为内容的报告。   他人看来几乎是一帆风顺的履历,在当事人心中则另有滋味:大学毕业后一次次想考研,第一次考哈尔滨工业大学,高等数学只考了39分,落榜 两年后报中科院物理所,物理考了39分,又落榜。   第三年,他终于考上了中科院的物理所。但之后的几年里,这个大龄研究生“整天处在维修仪器的苦恼状态中”。当年,物理所的设备不灵光,常常做不了实验。就算一次次做实验,但得到的数据也总是对不上号。   直到全无日语基础的他被送往日本东北大学联合培养,生活才逐渐顺利了起来。正是在日本导师樱井利夫的要求下,他养成了“7-11”的工作习惯。随后他被樱井先生推荐至美国北卡罗来那州立大学D.E.Aspnes门下做博士后,这位老先生也极有个性,每次实验室外出聚餐,年过六旬的他总会骑着摩托车,带上一个学生,顺着高速公路一路风驰电掣而去。   如今,当薛其坤成为整个研究团队的中心人物后,他也极其擅长发现每一个人的优点,为整个团队鼓劲儿。   留学经历还磨砺了薛其坤“流利的山东口音英语”:“俺没啥子能耐,别人上台不敢讲,俺胆子大,敢讲!”   与薛其坤有接触的人众口一词地描述说,这位科学家风趣幽默,精力充沛。他喜欢踢足球,爱看武侠小说,早年生活中令人愉快的消遣是在楼道里打麻将。而他的研究生们则提到,这位导师每次出差后回北京的第一件事,就是去实验室看看有没有什么新发现,哪怕已经是晚上12点。   在就任清华教授之后的一次采访中,他对记者介绍说,自己的团队来自五湖四海,有着共同的志向。谁知对方问他:您的团队成员有什么共同爱好吗?   这位团队老大思索了片刻之后说:吃饭、睡觉、做研究。   上周,在“证实量子反常霍尔效应”的发布会上,杨振宁为这群中国学者的新发现补充说,有一点值得人们去思考:量子反常霍尔效应实验,全世界很多实验室都在钻研,为什么唯有清华大学与物理所的合作成功了?“我想这与中国整个科研体系的体制,跟中国传统的人文关系都有非常密切的直接关系。”   “这可能是我们两个人人生当中最最喜悦的那一天”   2012年10月12日晚上10点35分,薛其坤接到团队成员、博士生常翠祖的一条短信:“薛老师,量子化反常霍尔效应出来了,等待详细测量。”   实验测量到的数据是一条漂亮的曲线,与理想情况下量子反常霍尔效应的行为完美地吻合。   团队成员观测到的现象,是在接近绝对零度的极低温度下对拓扑绝缘体薄膜进行精密测量后获得的。也就是说,目前要谈论这种现象在生活中的实际应用,还为时过早。毕竟,室温要比实验温度高很多,《科学》杂志上一篇文章也指出,实验材料在其他方面还有不尽人意的地方。   但对为之付出多年努力的科学家们而言,这一结果已经足够令人惊喜。“这可能是我们两个人人生当中最最喜悦的那一天。”张首晟后来在发布会上说。在座的杨振宁听着这个学生的报告,也想起了1956年12月的某一天,吴健雄在电话中告诉他,她发现了宇称是不守恒的。   “我认为是从中国实验室里头一次,做出来了,并发表出来了诺贝尔奖级的物理学论文……这也是整个国家发展的大喜事。”他一遍遍地对着不同的媒体说。   这篇论文发表后,清华大学的一名学生想起来,在从前的一次“文化素质教育讲座”上,曾有学生对薛院士提问:“您是否有志为中国赢得诺贝尔奖?”   “没有想过。”静静地想了一会后,他给出了这样的回答。   “我认为一个不想得诺奖的科学家不是好科学家。”学生不依不饶。   但薛其坤就是没有这样的想法:“我在做科研时,没想过这个问题”。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制