当前位置: 仪器信息网 > 行业主题 > >

量水器

仪器信息网量水器专题为您提供2024年最新量水器价格报价、厂家品牌的相关信息, 包括量水器参数、型号等,不管是国产,还是进口品牌的量水器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合量水器相关的耗材配件、试剂标物,还有量水器相关的最新资讯、资料,以及量水器相关的解决方案。

量水器相关的论坛

  • 求助纯水器国内市场销量

    各位大神:求助3个问题:1.有谁知道纯水器在国内市场每年大概有多少台的销量?2.国内纯水器的市场容量有多大?国产仪器和进口仪器都算在内。3.纯水器的主要应用领域有哪些?谢谢各位

  • 【求助】请教五日生化需氧量的曝气水

    请问大家做五日生化需氧量的曝气水是现用现曝气的吗?如果曝气后再放置一两天可以吗?曝气后放置几天曝气水的溶解氧会变吗?做五日生化的曝气水到底如何做比较好呢?

  • 一种实时检测变压器绝缘油中微水含量的传感器

    摘要阐述了变压器油中微水的状态及危害,论述了变压器绝缘油中微水的测试方法,以期为变压器绝缘油中微水监测提供参考。关键词变压器 绝缘油 微水监测[img=QQ图片20220126094803,461,300]http://news.isweek.cn/wp-content/uploads/2022/01/QQ图片20220126094803-461x300.png[/img]目前电力变压器不仅属于电力系统最重要的和最昂贵的设备之列,而且也是导致电力系统事故最多的设备之一。变压器在发生突发性故障之前,绝缘的劣化及潜伏性故障在运行电压的作用下将产生光、电、声、热、化学变化等一系列效应及信息。因此,国内外不仅要定期做以预防性试验为基础的预防性维护,而且相继都在研究以在线监测为基础的预知性维护策略,以便实时或定时在线监测与诊断潜伏性故障或缺陷[1-4]。变压器绝缘油中微水的含量也是确定变压器绝缘质量的参数。[b]变压器在线智能诊断设备能够自动采集、分析油中微水的含量并得出故障原因[/b],提供解决方案,使用户及时解决变压器中存在的隐患,防止事故发生。[b]变压器油中微水的状态及危害[/b]变压器在运输、贮存、使用过程中都可能由外界进入或油自身氧化产生水,产生的水分会以下列状态存在:一是游离水。多为外界入侵的水分,如不搅动不易与水结合。不影响油的击穿电压,但也不允许,表明油中可能有溶解水,需立即处理。二是极度细微的颗粒溶于水。通常由空气中进入油中,急剧降低油的击穿电压。介质损耗加大,真空滤油。三是乳化水。油品精炼不良,或长期运行造成油质老化,或油被乳化物污染,都会降低油水之间的界面张力,如油水混合在一起,便形成乳化状态。加破乳化剂。其危害:一是降低油品的击穿电压。100~200mg/kg击穿电压大幅度降至1.0kV,油中纤维杂质极易吸收水分,在电场作用下,在电极间形成导电的“小桥”,因而容易击穿。二是使介质损耗因数升高。悬浮的乳化水影响最大,不均匀。三是促使绝缘纤维老化,绝缘纤维的分子是葡萄糖(C6H12O6)分子,水分进入纤维分子后降低其引力,促使其水解成低分子的物质,降低纤维机械强度和聚合度。实验证明,120℃,绝缘纤维中的水分每增加1倍,纤维的机械强度下降1/2,当温度升高,油中的水增加,纤维的水降低,温度降低,则相反。因此,应监视油中的微水,进而监视绝缘纤维的老化。四是水分助长了有机酸的腐蚀能力,加速了对金属部件的腐蚀。综上所述,油中含水量愈多,油质本身的老化、设备绝缘老化及金属部件的腐蚀速度愈快,监测油中水分的含量,尤其是溶解水的含量十分必要。为确保变压器:安全可靠的运行,需要实时测量矿物油基变压器油的击穿电压、含水量和温度,为此工采网推荐[b]德国Passerro [/b][u]在线击穿电压传感器[/u][b] 绝缘油测试装置 BDVB TrafoStick TS4x :[/b][u]BDVB TrafoStick TS4x[/u]传感器是专为变压器现场永久使用而开发的,专门用于持续实时测量矿物油基变压器油的击穿电压、含水量和温度。变压器介电强度的自动实时监测可以观察变压器的安全状态,识别趋势,最重要的是,及时采取措施提高变压器和整个供电区域的安全性。[img=德国Passerro 在线击穿电压传感器 绝缘油测试装置,300,300]https://www.isweek.cn/Thumbs/300/0220114/61e123e4a356e.jpg[/img][b]德国Passerro 在线击穿电压传感器 绝缘油测试装置 BDVB TrafoStick TS4x 参数:[/b][table=673][tr][td]测量参数[/td][td] [/td][/tr][tr][td]击穿电压(BDV)[/td][td]10kV ~ 120kV ( ± 2.5%)[/td][/tr][tr][td]含水量(WC)[/td][td]2 ppm ~ 80 ppm (± 2%)[/td][/tr][tr][td]温度[/td][td]-40 ~ 120 ± 0,2°C[/td][/tr][tr][td]测量间隔[/td][td]max. 0.1s[/td][/tr][tr][td]工作环境[/td][td] [/td][/tr][tr][td]环境温度[/td][td]-20°C ~ 70°C[/td][/tr][tr][td]油温范围[/td][td]-20°C ~ 85°C[/td][/tr][tr][td]工作压力[/td][td]高达3bar[/td][/tr][tr][td]输入和输出[/td][td] [/td][/tr][tr][td]电源[/td][td]4.5V ~ 7.5V(5.0V建议值)[/td][/tr][tr][td]输出[/td][td]数字协议[/td][/tr][tr][td]接口[/td][td]MODBUS TCP/IP[/td][/tr][tr][td]内部数据记录能力[/td][td]动态锁存缓冲器缓存链(64-256-1024)[/td][/tr][tr][td]一般信息[/td][td] [/td][/tr][tr][td]电缆[/td][td]标准MODBUS(可变长度)[/td][/tr][tr][td]外壳材料[/td][td]EN-AW-6063[/td][/tr][tr][td]机械连接[/td][td]Parker RI1EDX3/471[/td][/tr][tr][td]测量区材料[/td][td]EN-AW-7075[/td][/tr][tr][td]装配外壳类别[/td][td]IP68[/td][/tr][tr][td]控制软件( Windows 7及更高版本)[/td][td]Ver. 2.0[/td][/tr][tr][td]绝对最大额定值[/td][td] [/td][/tr][tr][td]最大工作电压[/td][td]9.0V[/td][/tr][tr][td]工作温度[/td][td]-40°C ~ 100°C[/td][/tr][tr][td]最大压力[/td][td]5bar[/td][/tr][tr][td]储存温度(不带MODBUS电缆)[/td][td]-65°C ~ 150°C[/td][/tr][/table]

  • 广州部分企业废水总铬含量超标200多倍

    7月8日,广州市环保局在其官方网站同时发布了《广州市国控企业今年一季度污染源监督性监测结果的公告》和《广州市国控企业今年二季度污染源监督性监测结果的公告》。《公告》显示:重金属超标问题最为严重,且多为五金企业以及电镀企业。其中,广州市从化鳌头兴华电镀厂一季度废水总铬含量超标274倍,广州市启诚五金工艺有限公司一季度废水总铬含量超标222倍。  广州市环保局此次监测项目涉及废水、废气和重金属三大类,重金属超标问题最为严重。 第一季度共监测23家企业,便有10家的污水重金属超标;第二季度监测21家企业中,亦有7家企业污水重金属超标。重金属超标的企业主要为电镀企业和五金企业,多“寄生”在番禺区,超标污染物均为铬。  其中,第一季度,广州市从化鳌头兴华电镀厂,其含铬废水车间处理后的总铬含量达到137mg/L,相当于标准限值0.5mg/L的274倍,含镍废水车间处理后的六价铬也是标准限值的56.2倍。广州市启诚五金工艺有限公司,其含铬废水车间处理后污水总铬达111mg/L,相当于标准的222倍,含镍废水车间处理后污水含六价铬为标准的193倍。到了第二季度,排放情况虽然有所好转,但前者含铬废水车间处理后总铬仍为标准的2.42倍,六价铬达标准限值的17.42倍;后者含铬废水车间处理后总铬超标仍达25.6倍。  广州市环保局副局长、新闻发言人谢明表示,今后除了加大处罚力度,将根据市政府的要求进一步公布污染排放企业名单,让全市人民知道到底是谁在污染空气、水和土地。

  • 检测器积水造成的基线不良

    检测器积水造成的基线不良

    案例: Shimadzu的GC2014,FPD检测器。仪器运行一段时间,更换了色谱柱,然后点火,发现基线不良。 稍作说明,一开始比较平直的基线,是系统开启,未点火的状态。 图中间部分是点火信号,基线突然跳起很高,表示检测器内火焰产生。然后基线回落,表示火焰熄灭。 接着系统自动进行第二次点火,基线再次上跳,如果点火成功,基线就会维持在一个较高的电压水平上。 注意最后一段,基线发生了不规律的跳动,仔细观察,这个跳动的速率并不太快,所以可能不是电气问题。http://ng1.17img.cn/bbsfiles/images/2013/06/201306212154_446887_1604036_3.jpg 猜测是FPD火焰不稳定造成的,打开检测器上盖,发现检测器内有大量水。 将水吹干,再次点火,仪器正常。 看来,可能是更换色谱柱的时候,检测器降温,但是没有关闭氢气空气,造成检测器内积水。再次开机点火,水造成了检测器出口不畅通,影响了火焰稳定性。

  • 循环冷却水机报警,红灯亮,温控器无显示或显示8.88原因

    若发现循环冷却水机报警,红灯亮,温控器正常显示水温或者温控器无显示或显示8.88,此时,可以判断为流量报警。当出现红灯亮,温控器正常显示水温时,你可短接出入水口,若报警解除,这说明内部水循环正常工作,可判断是外部水循环出现问题;若循环冷却水机仍继续报警,则判断为循环冷却水机内循环出现问题。当出现红灯亮,温控器无显示或闪烁显示8.88时,我们可以先断开水泵电源线,若温控器正常显示水温,则可以判断为,请更换水泵;若温控器不能正常显示水温或闪烁显示8.88,则可判断为水泵电源故障。

  • 光纤式的微量水测量技术

    光纤式的微量水测量技术

    光纤湿度法微量水测量技术,是近几年来微量水分测量领域的重大技术革新。目前,该产品被应用于天然气、石化化工和工业气体等领域,为复杂工况下的露点分析提供了全新的解决思路。光纤湿度传感器的表面为具有不同反射系数的氧化硅和氧化锆构成的层叠结构,通过先进的热固化技术,使传感器表面的孔径控制在0.3nm, 0.28nm的水分子可以渗入。控制器发射出一束790-820nm的近红外光,通过光纤电缆传送给传感器,进入到传感器的水分子会改变光的反射系数,从而引起波长的变化,该变化量与介质的水分含量成相应的比例关系。通过测量接收到的光的波长,就可以得到介质的露点及水分含量。http://ng1.17img.cn/bbsfiles/images/2013/01/201301301658_423666_2681602_3.jpg该技术的特点1.可以直接在工况压力下测量,得到工况露点及微量水含量光纤式微量水分析仪,可以直接测量高达250Bar压力下的微量水含量/工况露点,无需减压。2.可以采用直插式安装,无需取样预处理系统该类仪器可采用直插式安装方式,简化了系统复杂性,降低了故障率和维护量。3.探头不受甘醇、H2S,HCL等腐蚀性物质影响,可以测量腐蚀性介质。光纤式微量水传感器采用氧化锆和氧化硅材质,机械强度高,而且不受H2S、HCL腐蚀。4.无需标定,系统无漂移由于采用坚固的探头材质,且性能非常稳定,传感特征曲线无漂移。无需周期标定,系统没有日常维护需求。5.探头使用寿命非常长,可达10年以上,而传统测量技术的传感器使用寿命通常仅为2年左右。6.测量精度高,一般可达±0.01ppm以上(具体与介质有关)。7.光纤需要做好保护,否则容易折断。

  • 【原创大赛】测定水和污水中生化需氧量(BOD)的微生物传感器快速测定法

    1.1主题内容本标准规定了测定水和污水中生化需氧量(BOD)的微生物传感器快速测定法。本标准规定的生物化学需氧量是指水和污水中溶解性可生化降解有机物在微生物作用下所消耗溶解氧的量。1.2适用范围本标准适用于地表水、生活污水和不含对微生物有明显毒害作用的工业废水中BOD的测定。的测定。 1.3干扰及消除水中以下物质对本方法测定不产生明显干扰的最大允许量为:Co2+5mg/l;Mn2+5mg/l;Zn2+4mg/l;Fe2+5mg/l;Cu2+2mg/l;Hg2+2mg/l ;Pb2+5mg/l;Cd2+5mg/l;Cr6+0.5mg/l;CN-0.05mg/l;悬浮物250mg/l。对含有游离氯或结合氯的样品可加入1.575g/l的亚硫酸钠溶液使样品中游离氯或结合氯失效,应避免添加过量,对微生物膜内菌种有毒害作用的高浓度杀菌剂、农药类的污水不适用本测定方法。2术语2.1生化需氧量在一定条件下,微生物分解存在于水中的某些可被氧化物质,特别是有机物所进行的生物化学过程中消耗溶解氧的量。2.2微生物菌膜将丝孢酵母菌在保持其生理机能的状态下封入膜中,称之为微生物菌膜或固定化微生物膜。2.3微生物传感器微生物传感器是由氧电极和固定化微生物膜组成。可检测微生物在降解有机物时引起的氧浓度的变化。2.4流通式水样或清洗液在蠕动泵的作用下连续不断的将样品或清洗液在单位时间内按一定量比送入测量池中。2.5间断式(加入式)将缓冲溶液加入到测量池中,使微生物传感器(微生物菌膜)与缓冲溶液保持接触状态,然后加入定量的被测水样,测得被测水样的BOD值。2.6恒温控制装置微生物电极的反应性能依赖于一定的温度条件,因此要求在试验过程中要有一稳定的温场,该装置在仪器中称之为恒温控制装置。2.7清洗液(缓冲溶液)清洗液是由磷酸二氢钾和磷酸氢二钠配置而成。其主要作用是作为缓冲液调节样品的PH值,清洗和维持微生物传感器使其正常工作,并具有沉降重金属离子的作用。3原理测定水中BOD的微生物传感器是由氧电极和微生物菌膜构成,其原理是当含有饱和溶解氧的样品进入流通池中于微生物传感器接触,样品中溶解性可生化降解的有机物受到微生物菌膜中菌种的作用,而消耗一定的氧,使扩散的氧电极表面上氧的质量减少。当样品中可生化降解的有机物向菌膜扩散速度(质量)达到恒定时,此时扩散到氧电极表面上氧的质量也达到恒定,因此产生一个恒定电流。由于恒定电流的差值与氧的减少量存在定量关系,据此可换算出样品中生化需氧量。[/fon

  • 卡尓费休微量水

    卡尔费休库仑法测微量水,20PPm以下,梅特勒DL32,求各位如何校正仪器,如用标准水,请发图推荐,如进纯水,请发进样针图片或型号,真心感谢您的帮助!

  • 石油中含水的危害和微量水分的意义

    [font=&][size=18px]水的相对分子能量比油的相对分子能量小得多,气化后体积猛增,使系统压力降增加,动力消耗随之增加,因此油品中含量高,会使装置操作波动,造成冲塔。并且由于含水带入的无机盐(Call2、MgCl2)还会加剧装置的腐蚀。轻质燃料油中含水会使冰点、结晶点升高,导致油品低温水动性变差,造成油品在低温下分析出冰粒而堵塞过滤器及油路,尤其是航煤和柴油中的含水,会造成供油中断,酿成严重事故。润滑油中含水,会破坏润滑膜,使润滑不能正常进行,增加机件的磨损。水分带入的无机盐还会增加润滑油的腐蚀性,加剧机件的腐蚀。当使用含水的润滑油在温度较高的环境下工作时,由于水的汽化就会破坏润滑膜。重整原料油中水含量超标,会使催化剂中毒,由于油中过多的水占据了催化剂的酸性中心,破坏了酸性中心金属中心的平衡,使催化剂活性下降甚至失活,影响催化剂使用寿命。因此,水分含量是各种油品标准中不可缺少的质量指标。[/size][/font][font=&][size=18px] 测定油品中的水分可提供准确的计量油品的数量,即检尺后减去水量,就可得知整个容器中油的实际上数量。测出油品中的水分,可根据其含量的多少,确定脱水的方法,以防止造成以下危害:如石油产品中的水分蒸发时要吸收热量,会使发热量降低;轻质石油中的水分会使燃烧过程恶化,并能将溶解的盐带入气缸内,生成积炭,增加气缸的磨损;在低温情况下,燃料中的水会结冰,堵塞燃料导管和滤清器,阻碍发电机燃料系统的燃料供给;石油产品中有水会加速油品的氧化生胶;润滑油中有水时不但会引起发动机零件的腐蚀,而且水和高于100℃的金属零件接触时会变成水蒸气,破坏润滑油膜。轻质油品密度小,黏度小,油水容易分离。而重质油品则相反,不易分离。进入常减压蒸馏装置的原油要求含水量不大于0.2%~0.5%;成品油的规格标准要求汽油、煤油不含水,轻柴油水分含量不大于痕迹;重柴油水分含量不大于0.5%~1.5%;各种润滑油、燃料油都有相应的控制指标[/size][/font]

  • 激光如何测定油中微量游离水

    有一报道,说美国有激光在线测定航空煤/汽油中微量游离水的方法与仪器,我想激光如何测定油中微量游离水,有什么对应关系?

  • 2016年环境监测仪器销量谁最大?

    国家环境监测事权改革和“十三五”期间的生态环境监测规划对整个环境监测仪器市场有何影响?,2016年环境监测仪器的销售量谁最大?是空气自动检测系统?还是水质自动检测系统?或是其它仪器?

  • 冷水机循环冷却水的制冷量与压缩机功耗的关系

    我们经常会说到冷水机的制冷量,实际上冷水机的名义制冷量是指当环境温度为35℃、冷却水出水温度为7℃时的制冷量。 在实际运行的时候,由于环境温度和冷却水出水温度不同,因此冷水机制冷量和压缩机的耗功也是变化的。不管是风冷式工业冷水机,还是水冷式工业冷水机,它的制冷量随着冷冻水出水温度的提高而增加,随着环境进风温度的提高而减少。 为什么会出现这样的情况呢?这是由于冷却水出水温度提高时,相应工业冷水机的蒸发压力提高,吸气比体积减小,单位容积制冷量和工业冷水机的制冷量均增大;当环境温度提高的时候,工业冷水机制冷系统中的冷凝压力提高,由于蒸发温度不变,它的吸气比体积也保持不变,冷水机的压缩机输气系数减小,单位质量制冷量减少,因此工冷水机的制冷量也随之减少。 工业冷水机的耗功是随着冷却水出水温度的提高而增加,随环境温度的提高而增加,这是由于冷水机的冷冻水温度提高时,蒸发压力提高,如果环境温度不变(即冷凝压力不变),压缩比减小,耗功减少,但这个时候工业冷水机制冷量增加所需要的功率更大,因此压缩机总的耗功仍然是增加的。 如果环境温度提高,冷凝压力提高,在工业冷水机的冷冻水出水温度保持不变(即蒸发压力不变),这个时候压缩比增大,耗功增加,那么由于制冷量减少所需的功率略有减少,但是压缩机总的耗功仍是增大的。

  • K-F法测定微量水

    请问各位,用K-F法测定氯化氢气体中的微量水,氯化氢是否干扰测定。不含有游离氯。还有就是我想采用无水乙醇吸收的方法取样,不知是否可行,还是有其他更好的方法,请指教。(是测定气瓶中的气体)谢谢

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制