当前位置: 仪器信息网 > 行业主题 > >

接收头

仪器信息网接收头专题为您提供2024年最新接收头价格报价、厂家品牌的相关信息, 包括接收头参数、型号等,不管是国产,还是进口品牌的接收头您都可以在这里找到。 除此之外,仪器信息网还免费为您整合接收头相关的耗材配件、试剂标物,还有接收头相关的最新资讯、资料,以及接收头相关的解决方案。

接收头相关的资讯

  • 将微型光谱仪连接手机 让这个世界更透明
    以色列创业公司Consumer Physics最近风光无限,因为他们的产品SCiO在Kickstarter上成功众筹了276万美元,支持者达到了12,958名。从2014年年初到现在,SCiO在Kickstarter上成功众筹的项目中排名第四(按照众筹金额,前三位分别为:Pono Music、The Music、The Dash)。 SCiO在Kickstarter上成功众筹的项目中排名第四   SCiO的形状就像我们日常使用的U盘,它通过蓝牙4.0和与智能手机连接。使用SCiO时,只需在离物体10毫米左右的位置轻轻一扫,就能在配对的智能手机上马上看到物质组成的分析结果了。扫描后,数据会上传至云端,算法也会实时处理数据。   也就是说,未来你去酒吧,用SCiO扫一扫就可以知道有没有人在你的酒中下药,去水果店买水果的时候就可以知道哪只瓜更甜,你还可以在喝牛奶之前了解它所含的热量。 Consumer Physics两位联合创始人Dror Sharon(左)与Damian Goldring(右)   其实SCiO取得如此轰动的效果并非因为它的技术很牛,它可以扫描、分析任何物质,全都依赖产品上的微型光谱仪,这项技术已经存在了100多年了,SCiO只是让它使用起来更便利,价格更易于接受。SCiO还未完成众筹的时候,我就对它做了报道,很多粉丝问我,SCiO和传统的光谱仪相比,测试的精度会不会存在较高的误差,Consumer Physics的CEO Dror Sharon近期接受我的专访时说道,在让SCiO转变成消费级的产品的时候必须对一些东西做了权衡,但是测试所得的数据还是与传统光谱仪差不多的。 使用SCiO时,只需在离物体10毫米左右的位置轻轻一扫,就能在配对的智能手机上马上看到物质组成的分析结果了   Consumer Physics的团队希望SCiO让整个世界会更透明一些,为了早点达到这个目标,他们正在忙碌,将产品尽快送到Kickstarter的铁杆粉丝的手中,他们还在建立数据库,完善功能和开发包。Consumer Physics的媒介负责人Yael Hezroni告诉我:&ldquo 你知道吗,我们团队都快疯掉了,每天我们收到成千上万封邮件和各种电话,但是我们还是要尽量给到每个人非常个性化的答复&rdquo 。   Yael牵线,我通过邮件专访了Dror。让我感到惊讶的是Dror与联合创始人Damian Goldring早在20年前就开始酝酿如何让用户更好地了解周围的物理世界。Dror告诉我,20年前就开始考虑与Damian合开一家公司开发一款手持、可以告诉你你周围的物理世界这样的产品。在漫长的20年中,这个想法变来变去,但是核心一直不曾变过。   &ldquo 开始的时候,我们遇到了很多的问题和挑战:什么样的技术最能帮助我们达到目标?怎样把产品做小,价格更亲民?我们能验证这个想法的可行性吗?我们应该从何处开始做?还有很多很多问题&hellip &hellip &rdquo   最终,Dror制定了一个计划,来解决遇到的每个挑战。但他们专注解决两个问题:   要证明他们是可以制作一个个头小、低成本的光谱仪。   证明用了这个特别的光谱仪,他们可以创造出一些有趣、有意义的功能。   SCiO原型机的诞生仰仗了Consumer Physics公司的超级天才团队,他们可以同时处理很多棘手的问题-这是一个小个头、低成本的光谱仪,它的基本功能都是围绕食物展开的。这个过程包括复杂的光学和工程设计,控制部件的电路和电子设计,实时信号处理,短波设计和服务器-用户系统的建立,还有设计一些功能,比如,建立数据库、改善分析算法、生产能力、检测系统质量还有其他一大堆问题要解决。 Dror的团队已经开发了几代SCiO的原型机,目前已经开始量产   Dror的团队已经开发了几代SCiO的原型机,目前已经开始量产。Dror向我介绍,他们正在打响十二分精神,努力提升产量。虽然过程非常熬人,但是Dror还是觉得值得的!&ldquo 团队中的每个人都有机会与他人合作去解决极为复杂的问题,作为团队中的一员,能够不断突破创造出这样创新的产品是非常让人感到非常兴奋的事情了&rdquo ,Dror说。未来Dror期望SCiO有更多的使用场景,接下来他们会给到900个开发者机在他们的平台上开发app的机会。   &ldquo 但是长期,我希望SCiO的传感技术可以嵌入每一步智能手机、可穿戴设备或者其他的联网设备,我们收集的数据越多,那些不确定性就越少,我们的产品对于用户来说价值就会更大&rdquo ,Dror最后告诉我。   除了Dror,我还与Consumer Physics的系统和项目经理Omer Keilaf交流了很多,他和Consumer Physics的联合创始人Damian Goldring是校友,是他主动前线让我认识Yael的。从Dror的回答,我感到他并没有因为繁忙有一丝敷衍。Omer也是一个效率极高的人,他总是能够在我发出邮件后,10几分钟给到回复,还努力帮我从中协调。他与Yael都非常期待我的文章,都很想知道中国记者是怎么看他们的。   总之,对于我来说整个过程是让人兴奋的,也让我感到到了以色列人的高效与责任心。   采访Dror Sharon之后,我也陷入了思考之中,SCiO从想法到量产,这个过程的难度和遇到的挑战可想而知,为什么他们就可以同时处理那么多硬件创业过程中各种难易不等、琐碎的事情呢?为什么国内很多团队都死在过程中,不能像他们那样做成这件事呢?   看了联合创始人Damian Goldring的简历,我明白了一点。Damian除了是电光材料和纳米光子学的专家,拥有以色列特拉维夫大学电光材料和纳米光子学的博士学位,还在以色列空军服过役,这是很典型的以色列风格的人生轨迹,他们在军队里被训练要同时可以处理很多极为棘手的事情。
  • 生态环境部:日本应接受公开透明的国际监测监督
    据报道,国际原子能机构日前发布了日本福岛核污染水处置综合评估报告。生态环境部(国家核安全局)相关负责人就此事回答记者提问。问:近日,国际原子能机构发布了日本福岛核污染水处置综合评估报告,您怎么看?答:外交部发言人已经代表中国政府表明了态度,这份报告未能充分反映所有参加评估工作各方专家的意见,有关结论未能获得各方专家一致认可。日方在排海的正当性、净化装置的可靠性、监测方案的完善性等方面还存在诸多问题。日方应正视各方正当合理关切,切实以科学、安全、透明的方式处置核污染水,并尽快建立一套包括日本邻国等利益攸关方参与的长期国际监测机制。问:针对日本福岛核污染水排海有关辐射监测安排,生态环境部从专业角度怎样评价?答:日方当前的监测安排还存在以下问题:一是核污染水排放前的监测有延迟,无法第一时间判断排放是否合格,由此可能导致不达标的核污染水直接排入海洋。二是核污染水混合后监测可能造成不合理稀释,日方将10罐核污染水混合后取样监测,可能造成高浓度的核污染水被低浓度的核污染水稀释成达标的核污染水。三是应有公开透明的长期国际监测,日本福岛核污染水排海关乎全球海洋环境和公众健康,应接受利益攸关方参与的公开透明的国际监测监督,而不应仅仅安排日方主导下的“摆样”式的监测。问:针对日本福岛核污染水排海,我国海洋辐射环境监测的安排是怎样的?答:我部高度重视日本福岛核污染水排海问题。2021年、2022年先后组织开展了我国管辖海域海洋辐射环境监测,摸清了目前相关海域海洋辐射环境的本底情况。针对日本福岛核污染水排海后的海洋辐射环境监测,我部已经作出部署,如果发现异常将及时预警,切实维护我国家利益和人民健康。问:网传我国核电厂氚排放是日本福岛核污染水氚排放的6.5倍,事实如何?答:事实上,日本福岛核污染水和世界各国核电厂正常运行液态流出物有本质区别。一是来源不同,二是放射性核素种类不同,三是处理难度不同。日本福岛核污染水来自于事故后注入熔融损毁堆芯的冷却水以及渗入反应堆的地下水和雨水,包含熔融堆芯中存在的各种放射性核素,处理难度大。相比之下,核电厂正常运行产生的废水主要来源于工艺排水、地面排水等,含有少量裂变核素,严格遵守国际通行标准,采用最佳可行技术处理、经严格监测达标后有组织排放,排放量远低于规定的控制值。要高度警惕这种“恶人先告状”、企图混淆视听、蒙混过关的图谋。我们反对的是日本福岛核污染水排海,从来没有反对核电厂正常运行排放。日本福岛核污染水有关误导宣传代替不了事实真相,方案设计代替不了工程实践,口头承诺代替不了真实结果,精心包装的方案掩盖不了企图转嫁危害的图谋,有限的选择性抽查代替不了长期公正的国际监督。
  • 【独家】世界首届透射拉曼国际医药研讨会视频首次公开
    由英国Cobalt公司举办的“世界首届透射拉曼国际医药研讨会”,是世界首届关于透射拉曼在药物定量分析领域应的专题研讨会,吸引了来自全球医药企业瞩目。近日,英国Cobalt公司首次公开了英国Actavis,比利时Janssen和美国Bristol-Myers Squibb三位专家的Presentation视频。英国阿特维斯Dr Julien Villaumié - R&D Senior Scientist,分享如何使用TRS100进行制剂的含量均匀度分析,并获得英国药监部门审批的过程。Obtaining regulatory approval for QC batch release by transmission Raman: Bulk assay, uniformity and identificationDr Julien Villaumié – R&D Senior Scientist, Actavis, UK比利时杨森Dr Tom van den Kerkhof – Senior Scientist,分享TRS100用于CU分析及多晶定量的方法。Transmission Raman Spectroscopy for CU and Polymorphic Content Determination - Strategy and Approach of J&JDr Tom van den Kerkhof – Senior Scientist, Janssen, Belgium美国百时美施贵宝Dr Gary McGeorge – Senior Principal Scientist,分享使用TRS100进行多层包衣药片的定量分析的研究。Quantitative analysis of pharmaceutical bilayer tablets using transmission Raman spectroscopyDr Gary McGeorge – Senior Principal Scientist, Bristol-Myers Squibb, USA点击“阅读原文”观看Seminar视频https://www.cobaltlight.com/trs100seminar关于Seminar“世界首届透射拉曼国际医药研讨会”,是英国Cobalt公司举办的,世界首届关于透射拉曼在药物定量分析领域应用的专题研讨会,于2015年12月3日圆满落幕。该Seminar吸引了70多位制药企业专家代表共聚牛津大学凯瑟琳学院,其中Actavis,Bristol-Myers Squibb, Janssen, GSK and AbbVie等制药公司在报告中分享了Coablt TRS100透射拉曼光谱仪的使用经验。英国药监局Medicines & Healthcare Products Regulatory Agency的专家Dr Abigail Moran - Senior Pharmaceutical Assessor,从产品监管方面、方法申请与审批等方面与大家分享观点。Cobalt TRS100 透射拉曼光谱仪——用于片剂、胶囊和粉剂等样品的定量分析Cobalt的 TRS100透射拉曼系统是新一代的实时、非破坏性、成分均一性测试系统。操作简单,TRS100的自动分析技术代替了固体制剂费力的液相检测方法,可以快速、*的完成片剂、胶囊、粉剂和其它剂型的定量分析而无需样品制备。将完整的片剂或胶囊置于样品盘上,用透射拉曼系统扫描,每个样品的扫描可在1s或者更短时间内完成。特点 Features分析快速 1sFast Analysis on tablets, capsules and powders定量分析Robust Quantitative Analysis无需耗材No Consumables应用 ApplicationsQC 定量分析(CU)Quantitative Analysis in QC labR&D 药物发现/配方研究/拉曼分析Drug Discovery, Formulation Development, General Spectroscopy tool in R&D生产过程控制,药品实时/在线检测Real-time Release Testing, In-process Checking in Manufacturing Process晶型分析Polymorphism, Development of amorphous API formulations Atability Testing上海凯来实验设备有限公司为英国Cobalt公司产品在中国及香港地区总代理关于凯来上海凯来实验设备有限公司成立于2004年,主要经营进口实验室仪器,总部位于上海张江高科,目前在北京,广州,成都,杭州,南京,青岛等地设有办事处。凯来最值得骄傲的地方,是拥有一支专业、年轻、充满活力的团队,员工都具备扎实的专业基础,认真负责的态度。我们的关注点不仅在于销售,更在于提供完善的售后服务与解决方案。凯来致力于成为一个专业、灵活、周到的生命科学和化学分析实验室仪器供应商,以快捷的业务模式为客户提供性能卓越、质量可靠、价格合理的产品和服务。更多信息请登录凯来官方网站:www.chemlabcorp.com扫一扫,关注凯来官方微信:SHChemLab
  • Moku:Go轻松助力校园无线电接收实验的教学
    Moku:Go轻松助力校园无线电接收实验的教学Moku:Go将10几种实验室仪器结合在一个高性能设备中,具有2个模拟输入、2个模拟输出、16个数字I/O和可选的集成电源。 一. 介绍本实验的目的是介绍调幅无线电接收器的基本原理,并演示使用锁相放大器的基本原理。你将使用Moku:Go的锁定放大器、数字滤波器、频谱分析仪和集成电源来设计和优化AM无线电接收器。调幅(AM)无线电,虽然在很大程度上被调频(FM)无线电所取代,但它仍然是通过无线电波传输信息中非常有用的一种方法。本实验设计并实现一个调幅无线电接收器。可以学习到如何找到本地AM无线电频率,并使用锁定放大器实现无线电接收器。图1显示了使用频谱分析仪在澳大利亚堪培拉接收到的AM无线电信号。图1 堪培拉地区频谱分析仪的例子 扫码查看产品详情二. 背景2.1 调幅广播在调幅收音机中,信号的振幅是经过调制的;与调幅收音机相比,调频收音机的信号频率是经过调制的。这种差异可以从图2中看出,在调幅调制波形中,波的振幅明显变化,而在调频调制波形中,正弦波的频率随时间变化。两种类型的无线电传输都有优点和缺点。商业调幅广播电台工作在535kHz至1605kHz的范围内,因此与调频广播相比,其覆盖范围通常更大在88-108 MHz范围,但它更容易受到噪声的影响,与基于音乐的广播节目相比,更适合谈话广播。图2 使用Moku:Go上的波形发生器的调幅波形和调频波形示例。 AM收音机通过使用正弦载波工作,该载波由消息信号(音频信号)调制;正在发送的信息就是这个音频。在这种类型的调制中,载波的振幅被信息信号被改变(因此称为AM)。特定无线电台的调制信号在频域中可以清楚地被视为尖峰(例如图1),尽管在时域中通常很难看到。Moku:Go的FIR滤波器生成器可以帮助我们在无线电台周围设置一个窄带通滤波器,去除电台以外的几乎所有信号。图3给出了一个例子,FIR滤波器生成器挑选出一个大约600 kHz的AM无线电台。蓝色轨迹中可以清楚地看到用语音信号调制的AM载波。红色的轨迹(天线输入)表明,如果没有窄带通,就不可能接收这个或任何其他电台;事实上,该信号完全由截图所在办公室的可调光LED照明的~25 kHz开关控制。 图3 FIR滤波器生成器将AM广播电台(蓝色轨迹)与背景信号(红色)隔离开来。 为了接收和收听消息信号,无线电接收器需要接收特定的AM无线电频率并对其进行解调,以从消息信号中分离出载波信号。简单AM无线电接收器的框图如图4所示。图4 调幅无线电接收器框图接收器通过使用无线电天线检测无线电波来工作;然而,这种信号通常相对较弱,因此需要一个RF放大器来增强信号,以便进一步处理。由于天线将捕捉所有可能的频率,因此需要一个调谐器来找到所需的特定频率。 图5 LC电路原理图示例 2.2 模拟解调模拟解调调谐器通常由一个LC(电感电容)电路组成,如图5所示。根据所用的电感和电容,电路将在特定频率下谐振。高于和低于该谐振频率的所有其他频率将被阻挡。消息信号可以被整流为仅给出DC信号,并通过二极管和旁路电容器从载波中解调。该信息信号然后可以被放大并发送到扬声器、耳机等。2.3 锁定放大器锁定放大器是一种功能强大的器件,可以从噪声背景中分离出调制信号,在我们的情况下,是从一系列信号中分离出特定的AM信号。这意味着锁定放大器可以作为无线电接收器,因为它包含无线电接收器的几个关键部件。Moku:Go的锁定放大器能够通过使用相敏检波器(PSD)解调调制信号,例如无线电波。它使用与载波信号频率相同的正弦参考信号。它可以跟踪参考信号的任何变化,因此能够跟踪频率漂移。PSD将两个信号相乘或“混合”在一起,产生两个信号的和项和差项。所需频率和参考信号由相同的频率组成,因此频率之间的差异为零。因此,所需的无线电波信号被设置为DC。混合信号然后通过低通滤波器发送,该低通滤波器去除调制信号的交流分量。这仅留下与信号幅度成比例的DC信号,在这里,信号然后可以使用直流放大器放大。输出幅度可以从通过混频器和低通滤波器发送的信号中找到。这些可以在直角坐标或极坐标中找到。振幅R可以通过坐标之间的转换得到,其中 。对于AM信号,只需要振幅或R(在极坐标中);信号的相位可以忽略。三. 实验前练习找到并详细列出你所在地区的AM电台列表。你觉得什么信号会最强?为什么?实验装置成分:○ Moku:Go [2x]○ 天线○ 扬声器○ 低噪声放大器(可选)1○ 鳄鱼夹○ 实验室程序3.1 第一部分确保您拥有最新版本的在地址:Moku: desktop app2将磁性电源适配器插入每个Moku:去等待前面的LED变成绿色。这些最初的步骤将解决Moku:Go #1的配置问题。将天线连接到Moku:Go的输入1,如图6和图7所示。图6 第一部分照片Moku:去设置 1、常用的30分贝LNA。如需完整的物料清单,请联系我们。2、Moku:Go可以通过三种不同的方式连接到笔记本电脑:以太网、USB-C和Wi-Fi。请参考Moku:Go Quick StartGuide 如何连接你的Moku:去你的电脑。一旦连接,Moku:Go将出现在Windows或MacOS应用程序的设备选择屏幕上。图7 Moku:go:设置第1部分 双击频谱分析仪。找到调幅范围,并随意平均频谱,以改善图表。找到最主要的调幅无线电信号频率,你可以通过添加一个跟踪光标来完成。信号应在小于2 MHz的范围内。频谱分析仪和设置配置的示例如图8所示。 图8 如何配置频谱分析仪 ○ 将您的扬声器连接到Moku:Go #1的输出1。○ 返回仪器选择屏幕,双击锁定放大器。打开示波器部分,确保可以看到A和b。○ 将探针A添加到输入1(天线)○ 将探头B添加到输出1(扬声器)在图9中可以看到锁定放大器仪器页面的一个例子。 图9 锁定放大器解调AM广播电台的示例。上面(红色)的轨迹是天线信号,下面(蓝色)的轨迹是音频。 改变本地振荡器到你最主要的调幅信号的频率。首先将低通滤波器设置为12kHz。根据需要改变极性和增益。您可能需要改变低通滤波器和增益,以改善信号并产生尽可能清晰的声音。小心不要让信号饱和。图10给出了堪培拉地区各种变量的设置示例。 图10 堪培拉地区锁定放大器设置示例。 3.2 第二部分在第2部分中,我们将使用第二个Moku:Go作为数字滤波器来进一步增强接收到的无线电信号。将扬声器连接电缆移至Moku:Go #2的输出2。将一根电缆从Moku:Go #1的输出1连接到Moku:Go #2的输入2。这种设置可以在图11和图12中看到。 图11 Moku的照片:去设置第2部分 图12 Moku:go:设置第2部分 返回主屏幕,双击Moku:Go #2的图标。双击数字滤波器框。数字滤波器盒界面如图13所示。 图13 数字滤波器盒用户界面 将探针A添加到输入2,将探针B添加到输出2。首先,将滤波器改为贝塞尔带通滤波器,并根据需要改变增益。改变频率,仅隔离信息信号,即音乐或声音,从而尝试去除低频噪音。试着瞄准音乐和声音产生的频率。图14给出了堪培拉地区的数字滤波器盒变量。 图14 堪培拉地区的数字滤波器盒示例 3.2 第3部分将低噪声放大器连接在天线和Moku:Go #1的输入1之间。为低噪声放大器供电,将鳄鱼夹连接到电源连接和Moku:Go #1的背面。设置如图15所示。图15 Moku的框图:设置第3部分 确保它连接到PPSU2或类似的12 V电源。单击 打开电源,并将电压设置为12 V。电源弹出窗口可能如图16所示。 图16 PPSU的例子 根据需要改变数字滤波器盒和锁定放大器的变量,以产生尽可能清晰的信号。尝试改变你所在区域的其他AM信号,你能通过改变锁定放大器和数字滤波器盒中的变量来优化你的音质吗?3.3.1 摘要本实验探索在Moku:Go上使用锁定放大器作为AM无线电接收器。锁定放大器是一个强大的工具,帮助学生了解如何从嘈杂的背景中解调信号。此外,学生还能够学习如何利用许多其他工具进一步提高信号清晰度。在Moku: App中,通过截屏或文件共享可以轻松发布和报告结果。您可以通过点击屏幕顶部的云图标来完成此操作。Moku的好处:Go面向教育工作者和实验室助理有效利用实验室空间和时间易于实现一致的仪器配置专注于电子设备而非仪器设置最大限度地利用实验室助教的时间个人实验室,个人学习通过屏幕截图简化评估和评级对于学生来说各个实验室按照自己的节奏加强理解和保留便携式,选择实验室工作的速度、地点和时间,无论是在家里、在校园实验室,甚至是在熟悉的Windows或macOS笔记本电脑环境中进行远程协作,同时使用专业级仪器。3.3.2 Moku:Go演示模式您可以在Liquid Instruments网站下载适用于macOS和Windows的Moku:Go应用程序。演示模式操作不需要任何硬件,并提供了使用Moku:Go的一个很好的概述。关于昊量光电:上海昊量光电设备有限公司是目前国内知名光电产品专业代理商,也是近年来发展迅速的光电产品代理企业。除了拥有一批专业技术销售工程师之外,还有拥有一支强大技术支持队伍。我们的技术支持团队可以为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等工作。秉承诚信、高效、创新、共赢的核心价值观,昊量光电坚持以诚信为基石,凭借高效的运营机制和勇于创新的探索精神为我们的客户与与合作伙伴不断创造价值,实现各方共赢!
  • 1分钟带你了解手机热像仪
    作为“破案高手”的手机互联型红外热像仪,不仅能清晰地显示物体的红外热图,并能实现快速的数字视频传输,操作方式更具人性化和智能化,具备非常强的作业机动性,适合在测温目标分布广泛的野外、大型建筑等场合进行热像拍摄、温度测量与分析。那么,什么是手机热像仪?工作原理是怎么样的?作用有哪些?又是如何赋能专业人士及相关领域的?本文对这些问题一一解答,以飨读者。红外辐射在物理学中,凡是高于绝对零度(0K,即-273.15℃)的物质都可以产生红外线(以及其他类型的电磁波),现代物理学称之为黑体辐射(热辐射)红外谱段波长在0.76-1000μm之间,其中0.76-3.0μm为反射红外波段,3-18μm为发射红外波段。中红外、远红外和超远红外是产生热感的原因,所以又称热红外。手机热像仪手机热像仪是一种将红外探测与图像融合的技术,通过手机镜头捕捉物体发出的红外辐射能量并转换为视频信号。然后由软件系统对这些数据进行分析,再利用图像处理软件将这些信息还原成肉眼所见的图像。工作原理使用光电设备来检测和测量辐射并在辐射与表面温度之间建立相互联系。所有高于绝对零度(-273°C)的物体都会发出红外辐射。热像仪利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形,反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。热像仪分类按探测原理分:光子探测型(利用光子在半导体材料上产生的电效应进行成像)和热探测型(利用探测元件吸收入射的红外辐射能量而引起温升进行成像)按工作温度分:制冷式(探测器中集成了一个低温制冷器给探测器降温)和非制冷式(不需要低温制冷,采用的探测器通常是以微测辐射热计为基础)按运动方式分:机械扫描型(一维的线状分布的焦平面,在这些焦平面上的感光器件成像)和凝视成像型(二维的平面分布的焦平面,让焦平面上的感光元器件发生光电反应成像)按是否测温分:测温型(可以直接从热图像上读出物体表面任意点的温度数值,有效距离较短)和非测温型(只能观察到物体表面热辐射的差异,有效距离比较长)仪器特点• 非接触测量设备,可以使设备本身的温度场不受干扰。• 所显示出的图像非常直观,能帮助快速找出发热的问题所在。• 成像的反应速度较快,通常不超过1秒,效率较高。• 检测隐蔽性很好,而且能够实现非接触的检测不识别,还不受电磁干扰,能近距离跟踪热目标。局限因素• 红外热成像仪靠温度的差别来成像,如果所测物体的温差不是很大的话,那么成像的对比度会比较低,分辨细节能力变差。• 有一定的穿透性,但穿透性不强,无法透过墙体,也无法对玻璃等透明障碍物后面物体的温度进行探测。检测方法和依据表面温度判断法:参考GB763-90《交流高压电器在长期工作时的发热》的有关规定A 危急热缺陷(Ⅰ):电气设备表面温度超过90°C,或温升超过75°C或相对温差(温差)超过55°CB 严重热缺陷(ll):电气设备表面温度超过75°C,或温升超过65°C或相对温差(温差)超过50°C。C 一般热缺陷(lll):电气设备表面温度超过60°C,或温升超过30°C或相对温差(温差)超过25°C。D 热隐患(W):电气设备表面温度超过50°C,或相对温差《温差)超过20°C。相对温差判断法A 温差:用同一检测仪器相继测得的不同被测物或同一被测物不同部位之间的温度差。B 相对温差:两个相应测点之间的温差与其中较热点的温升之比的百分数。设备管理• 危急缺陷:设备发生了直接威胁安全运行并需立即处理的缺陷。• 严重缺陷:对人身或设备有严重威胁,暂时尚能坚持运行但需进行处理的缺陷。• 一般缺陷:指性质一般,情况较轻,对安全运行影响不大,可列入月度计划检修处理的缺陷。• 热隐患:视现场情况跟踪监视或安排处理。• 电流致热的设备测量温升小于10°C时,只记录在案,不必确定故障性质。
  • 个人送检农产品实际操作难 官方机构不接受
    简仁山 作   “五一”节前,南方日报记者走访广州部分超市,发现不少“绿色食品”、“无公害农产品”销售火爆。这些经过认证的农产品价格相比普通农产品贵上一倍。记者随机购买了一些“无公害农产品”,呈送第三方检测机构进行检测,不料遭遇推托。   购买送检过程全公证   记者在广州市华润万家天河公园店观察到,散装销售的西兰花每公斤7元,番茄每公斤9元,而透明袋包装的“无公害”西兰花每公斤19元,“无公害”番茄每公斤18元。尽管价格高出一倍,在专柜购买“无公害”标示农产品的市民仍络绎不绝。   日前,南方日报记者在华润万家五羊新城店选取了部分标有“无公害农产品”标示的农产品,呈送第三方检测机构进行检测。南方公证处人员对采购、送检过程进行全程公证。记者将购买到的样品送至广州京诚检测技术有限公司,委托其检测产品是否符合无公害食品标准。这批样品主要包括东升牌青圆椒、油麦菜、生菜、绿色荷豆及圣迪乐村牌鸡蛋等。   东升牌4种蔬菜包装上均有“无公害农产品”的标识。圣迪乐村牌鸡蛋的包装上注明“绿色食品级安全绿色蛋”。京诚检测人员表示,将依据相关标准对样品进行乐果、敌敌畏、氯氰菊酯、氰戊菊酯等农药残留成分以及铅、镉、汞、铬、无机砷等重金属成分的检测。   送检物重金属未超标   在该检测机构一周后出具的检验报告显示,虽然所有产品都合格,但4种蔬菜样品均检测出铅、镉、铬等重金属成分,但均在相关标准允许范围内。   “在现实自然环境和技术条件下,要生产出完全不受有害物质污染的商品蔬菜很难。无公害蔬菜实际上是指将蔬菜中某些有害物质控制在标准允许的范围内。”京诚检测人员向记者表示,送检蔬菜样品并不违反“无公害农产品”的标准。   官方机构不接受个人送检   记者此次送检过程可谓一波三折。起初,记者联系了广东省和广州市多个职能部门下属的官方检测机构,但相关机构都表示,其只接受政府部门的委托检测,不接个人业务。   记者又联系部分外资、本土的第三方检测机构,其中一家机构表示可以接单。谁料第二天当记者再度联系该机构时,其业务人员又声称,刚刚请示该机构领导,由于“最近业务比较繁忙”,无法接单。   “很多送检产品的生产企业是大客户,搞不好会惹来麻烦,影响未来的合作。”广东国家级检测中心有关负责人私下透露说,在去年底发生个人送检白酒塑化剂事件后,检测机构行业就形成了默契,不接受个人送检,尤其是食品类敏感产品的个人送检业务。   5种样品检测费5000元   如果消费者想要证明最终检测报告是某公司的产品,还需要对购买、送检过程进行公证。多家公证机构表示不受理以个人名义的委托公证业务。最终,记者只能以报社“非企业法人”的名义进行公证,并提供报社营业执照和法人代表的身份证明等一系列文件。   相关费用也不便宜。记者此次送检5种样品合计价格约200多元,但每个样品的重金属成分检测费就要120元,农药残留成分检测费用则为每项200元,合计费用约5000元左右,而公证费1500元左右。   检测门槛和成本过高,是导致民众维权处于被动的重要原因。据广州京诚检测技术有限公司相关负责人介绍,其收费标准在行业内尚处于中下游水平。   小贴士   认证农产品哪种更安全   据调查,目前广州市面上销售的认证农产品主要为“无公害农产品”、“绿色食品”、“有机食品”3种。   “无公害农产品”是指产地环境和生产过程符合国家相关标准,有毒有害物质残留量控制在安全质量允许范围内,安全质量指标符合《无公害农产品(食品)标准》的产品。   “绿色食品”是指该产品拥有经过中国绿色食品发展中心的“绿色食品”质量证明商标。绿色食品在生产过程中允许使用农药和化肥,但对化学物质成分和用量的规定通常比无公害标准严格。   “有机食品”指根据国际有机农业生产要求和相应的标准生产加工的、并通过独立的有机食品认证机构认证的农副产品。其要求有机蔬菜在其生产加工过程中绝对禁止使用农药、化肥、除草剂、合成色素、激素等人工合成物质。
  • 小菲课堂|红外热像仪镜头是由什么制成的?
    一直以来由于红外热成像仪可以将肉眼不可见的物体表面温度变成能直接看到的热图像所以,红外热像仪广泛应用于电子或机械设备等潜伏性热隐患的检测那么,红外热像仪的镜头藏着什么奥秘?是如何将温度转换成热图像的呢?下面,小菲带你来揭秘~红外热像仪镜头是由锗类等物质或其他在红外光谱中吸收率和反射率低的材料制成的。但是为什么要使用这些特殊的成分而不是像玻璃这样更普通的物质呢?红外热像仪的工作方式与普通可见光相机不同。普通相机的功能或多或少与人眼相同,接收可见光谱中的辐射并将其转换为图像。但是,红外热像仪是利用热量(即红外线或热辐射)而不是可见光拍摄图像。红外辐射的表现与可见光差别较大。所以,红外热像仪的镜头需要用不同于普通相机的材料制成。在可见光世界中,一种特定材料的性质可能与它在红外世界中的性质无关。例如,玻璃在可见光谱中对辐射极为透明,但在红外世界中,长波红外(8-14uM),玻璃是完全不透明的:反之亦然, 锗是一种类似于硅的半金属元素,在可见光世界中是完全不透明的:但是在红外世界中却是透射率很高的物质:正因如此,FLIR红外热像仪的镜头是由锗或其他在红外光谱中是近乎透明的材料制成的。为了方便将热辐射转变成热图像所以红外热像仪的镜头是由锗类物质构成
  • 海克斯康推出世界最小红外触发测头
    世界最小的红外触发测头海克斯康M&h IRP40.50   小型-精密-优质,为紧凑空间提供   应医疗技术、电子、牙科行业及其他领域的需求,越来越多的制造商开始应用迷你型加工中心,用于加工具有复杂几何形状和微小形位公差的复杂工件。但是,在机床加工过程中,囿于机床Z轴和刀具库的空间太小而无法安装机床触发测头,导致这些微小零部件的在机测量往往无法实施。直径仅为25mm和长度仅为44.2mm(不含刀柄和测针)的IRP40.50红外触发测头,适用于任何小型加工中心,它为机床Z轴方向留下了充足的安全空间,该款测头不仅仅具有高精度优势,还充分考虑到微小特征所能承受的低触测力局限,其触发力仅为0.7N(XY)。   HDR(高数据速率)红外线传输   即使是小小的IRP40.50,也采用了已被实践证明的HDR红外传输技术。该技术确保屏蔽干扰信号,只处理本系统内的信号,由此保证了可靠快速的红外传输。   可靠的激活   M&h IPR40.50凭借测头与接收器之间的双向信号激活,该过程采用单独的信号代码,就像机械方式一样的安全。同时,也能确保测头在被储存到刀具库时能够及时关闭。   经济节能型   IPR40.50迷你测头采用了m&h新开发的电子技术,这使得IPR 40.50具有更低的能耗,电池更换的时间延长,这不但减少了维护工作量,还节省电池费用,在降低用户费用的同时还保护了我们的地球环境。
  • 双利合谱开始接收高光谱测试服务,欢迎报名~
    四川双利合谱科技有限公司是一家集光学、精密机械、电子、计算机技术于一体的高科技企业,由北京卓立汉光仪器有限公司和合利科技发展有限公司共同合资成立。结合双方近10年在推扫式高光谱系统以及LCTF(可调液晶滤光片)高光谱系统的国际领先技术实力,为广大客户提供全面的高光谱系统解决方案。目前国内已经成功在农业遥感、工业分选、刑侦物证鉴定、机载、考古、食品检测等领域处于高光谱应用的领先地位。在庆祝双利合谱公司成立三周年之际,为了让来自不同领域的学者能更好地了解和应用高光谱技术,双利合谱即日起开始着手接收客户的高光谱测试服务。 目前双利合谱主要接收高光谱测试服务的产品有显微高光谱成像(400-1000nm)、室内暗箱高光谱成像(400-1000nm、900-1700nm、1000-2500nm)、户外便携式高光谱成像(400-1000nm、900-1700nm)、户外无人机高光谱成像(400-1000nm)。详情请联系我们的销售人员!
  • EMC快速测量接收机PMM9010F
    基于最先进的数字技术和最新国际无线电干扰测量接收机的技术要求,PMM公司率先推出前瞻性的快速测量接收机PMM9010F,本接收机内置多种检波器并行运行,改变以往长时间的QP、AV测试方式,智能化测量系统数十秒内可以完成测试并且生成多种格式报告。而且接收机本身内置前置放大器、限幅器、衰减器、信号源、锂电池,整机重量仅有2kg左右,极大的方便了现场测试和特殊移动式测量,接收机本身附带存储设备,随机附带操作系统,终身免费升级维护,此款接收机在行业内具有突破性的发展,打破了传统接收机的落后技术。
  • 当今速度最快的认证级EMI测量接收机发布暨技术研讨会
    我们如何在25秒内完成认证级EMI传导全频段测试 &mdash &mdash 当今速度最快的认证级EMI测量接收机发布暨技术研讨会! 这次新发布的接收机有两个主要特点: 速度非常快:25秒完成扫描!(9KHz~30MHz,准峰值检波器1秒驻留时间) 本底噪声非常低:低达 -30dBuV 在25秒内完成9K~30MHz认证级EMI测试扫描!我们如何做到? 从最初的模拟式接收机,到后来的数字式接收机。电磁兼容的EMI测试经历了质的飞跃。今天我们再次迎来跨越式的发展,第二代数字式接收机面世:FFT时域分析测量接收机&mdash &mdash 9010F! 将离散傅立叶变换功能引入全数字式接收机,一次采集多点频率,信号一经采集,即被进行16次FFT分析。确保了信号分析的时效性,即我们所说的&ldquo 实时分析&rdquo ;也确保了结果的准确性。 基于这台时域分析测量接收机的补充,我们可为用户提供更为完善的EMI测试解决方案。例如,一些EUT不能支持长时间满负荷运转,使用9010F组成的测试系统,您只需要不到30秒即可完成全兼容测试。9010F还可扩展频率下线至10Hz,满足军品测试的需求。 此次技术研讨会,我们系统集成的团队将携带由9010F组成的测量系统到现场,来自意大利的Michele Zingarelli博士与您深入探讨测量技术原理的同时,为您做现场测试/演示。 技术研讨会时间及地点安排如下: 6月11日 12日 14日 15日 18日 20日 21日 北京 西安 成都 重庆 武汉 长沙 杭州 北京信测科技诚挚的邀请您,会议免费。请将《回执单》回传或发至邮箱。 全国服务热线:400-890-9010 传真:010-8482 9240 电邮:info@xutec.cn 网页:www.xutec.cn 北京信测科技有限公司 Beijing XUTEC Technology Co.,Ltd.
  • 2017国家自然科学基金项目申请集中接收情况
    p   2017年度国家自然科学基金项目(以下简称科学基金项目)申请集中接收期间,国家自然科学基金依托单位(以下简称依托单位)共提交各类项目申请190871项,因逾期申请、缺少电子版申请书等原因不予接收的项目申请31项,实际接收项目申请190840项,有关统计数据见表1。 /p p style=" text-align: center " 表1 2017年度科学基金项目申请情况统计 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/7155c2bf-0d5e-44c5-88f1-f5dcc725a00a.jpg" title=" 1.jpg" / /p p   * 2017年部分重大项目在集中接收期接收。 /p p    strong 1 按项目类型统计 /strong /p p   2017年项目申请量与2016年同期相比增加17997项,增幅为10.41%,其中7类项目增幅在10.0%以上。面上项目申请量增加6243项,增幅8.43% 重点项目增加230项,增幅8.27% 青年科学基金项目增加7796项,增幅11.07% 地区科学基金项目增加1779项,增幅12.57% 优秀青年科学基金项目增加454项,增幅10.29% 国家杰出青年科学基金项目增加251项,增幅10.32% 海外及港澳学者合作研究基金增加25项,增幅6.48% 国际(地区)合作研究与交流项目申请量增加150项,增幅17.65% 国家重大科研仪器研制项目(自由申请)增加2项,增幅为0.34%。此外,部分联合基金项目、重大项目和重大研究计划项目也在集中接收期接收。其中联合基金项目申请3303项,重大项目申请30项,重大研究计划申请208项。有关统计数据见表2。 /p p style=" text-align: center " 表2 2017年度科学基金项目申请同比增长情况统计* /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/66d4ebde-85e7-4bdd-854d-9732384ec50f.jpg" title=" 2.jpg" / /p p   * 2017年度部分联合基金项目、重大研究计划项目和重大项目在集中接收期接收。 /p p    strong 2 按项目管理部门统计 /strong /p p   2017年度各项目管理部门的项目申请量均有不同程度的增长,其中医学科学部的项目数量和增幅均最为显著。有关统计数据见表3。 /p p style=" text-align: center " 表3 2017年度科学基金项目申请情况统计 /p p style=" text-align: center " (按项目管理部门) /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/68777201-af40-4d20-a40d-3af33df33328.jpg" title=" 3.jpg" / /p p    strong 3 按依托单位隶属关系统计 /strong /p p   截至2017年5月5日,教育部、工交农医国防以及地方省市自治区等所属依托单位的申请量较去年同期均有不同程度增加,增幅分别为9.69%、1.17%和14.80%。中国科学院申请量较去年同期略有下降,降幅为0.38%。地方省市自治区所属依托单位的申请量仍居榜首,共计申请99927项,占总申请量的52.36%,继2016年度后占比再次超过50%。有关统计数据见表4。 /p p style=" text-align: center " 表4 2017年度科学基金项目申请情况统计 /p p style=" text-align: center " (按依托单位隶属关系) /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/5e6cc321-1711-4aba-b397-fcedb364dfca.jpg" title=" 4.jpg" / /p p    strong 4 按依托单位统计 /strong /p p   2017年度共有2395个依托单位申请项目,比2016年度增加109个。其中申请量在200项(含)以上的依托单位有239个,同比增加27个 申请量超过1000项的依托单位有24个,同比增加1个。申请量排序前20位的全部为高等学校,其申请量占全部申请量的19.94%,排序前100位的依托单位申请量占全部申请量的46.66%。申请量排序前20位的依托单位中,部分依托单位增幅较大,其增量主要来自于医学相关学科。有关统计数据见表5。 /p p style=" text-align: center " 表5 2017年度科学基金项目申请量前20名依托单位申报情况统计 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201705/insimg/4a4a0893-83f7-4592-baa2-7af7cb131958.jpg" title=" 5.jpg" / /p
  • 用于纳米级表面形貌测量的光学显微测头
    用于纳米级表面形貌测量的光学显微测头李强,任冬梅,兰一兵,李华丰,万宇(航空工业北京长城计量测试技术研究所 计量与校准技术重点实验室,北京 100095)  摘 要:为了满足纳米级表面形貌样板的高精度非接触测量需求,研制了一种高分辨力光学显微测头。以激光全息单元为光源和信号拾取器件,利用差动光斑尺寸变化探测原理,建立了微位移测量系统,结合光学显微成像系统,形成了高分辨力光学显微测头。将该测头应用于纳米三维测量机,对台阶高度样板和一维线间隔样板进行了测量实验。结果表明:该光学显微测头结合纳米三维测量机可实现纳米级表面形貌样板的可溯源测量,具有扫描速度快、测量分辨力高、结构紧凑和非接触测量等优点,对解决纳米级表面形貌测量难题具有重要实用价值。  关键词:纳米测量;激光全息单元;位移;光学显微测头;纳米级表面形貌0 引言  随着超精密加工技术的发展和各种微纳结构的广泛应用,纳米三坐标测量机等精密测量仪器受到了重点关注。国内外一些研究机构研究开发了纳米测量机,并开展微纳结构测量[1-4]。作为一个高精度开放型测量平台,纳米测量机可以兼容各种不同原理的接触式测头和非接触式测头[5-6]。测头作为纳米测量机的核心部件之一,在实现微纳结构几何参数的高精度测量中发挥着重要作用。原子力显微镜等高分辨力测头的出现,使得纳米测量机能够实现复杂微纳结构的高精度测量[7-8],但由于其测量速度较慢,对测量环境要求很高,不适用于大范围快速测量。而光学测头从原理上可以提高扫描测量速度,同时作为一种非接触式测头,还可以避免损伤样品表面,因此,在微纳米表面形貌测量中有其独特优势。在光学测头研制中,激光聚焦法受到国内外研究者的青睐,德国SIOS公司生产的纳米测量机就包含一种基于光学像散原理的激光聚焦式光学测头,国内也有一些大学和研究机构开展了此方面的研究[9-11]。这些测头主要基于像散和差动光斑尺寸变化检测原理进行离焦检测[12-13]。在CD和DVD播放器系统中常用的激光全息单元已应用于微位移测量[14-15],其在纳米测量机光学测头的研制中也具有较好的实用价值。针对纳米级表面形貌的测量需求,本文研制了一种基于激光全息单元的高分辨力光学显微测头,应用于自主研制的纳米三维测量机,可实现被测样品的快速瞄准和测量。1 激光全息单元的工作原理  激光全息单元是由半导体激光器(LD)、全息光学元件(HOE)、光电探测器(PD)和信号处理电路集成的一个元件,最早应用于CD和DVD播放器系统中,用来读取光盘信息并实时检测光盘的焦点误差,其工作原理如图1所示。LD发出激光束,在出射光窗口处有一个透明塑料部件,其内表面为直线条纹光栅,外表面为曲线条纹全息光栅,两组光栅相互交叉,外表面光栅用于产生焦点误差信号。LD发出的激光束在光盘表面反射回来后,经全息光栅产生的±1级衍射光,分别回到两组光电探测器P1~P5和P2~P10上。当光盘上下移动时,左右两组光电探测器上光斑面积变化相反,根据这种现象产生焦点误差信号。这种测量方式称为差动光斑尺寸变化探测,焦点误差信号可以表示为  根据焦点误差信号,即可判断光盘离焦量。图1 激光全息单元  根据上述原理,本文设计了高分辨力光学显微测头的激光全息测量系统。2 光学显微测头设计与实现  光学显微测头由激光全息测量系统和光学显微成像系统两部分组成,前者用于实现被测样品微小位移的测量,后者用于对测量过程进行监测,以实现被测样品表面结构的非接触瞄准与测量。  2.1 激光全息测量系统设计  光学显微测头的光学系统如图2所示,其中,激光全息测量系统由激光全息单元、透镜1、分光镜1和显微物镜组成。测量时,由激光全息单元中的半导体激光器发出的光束经过透镜1变为平行光束,该光束被分光镜1反射后,通过显微物镜汇聚在被测件表面。从被测件表面反射回来的光束反向通过显微物镜,一小部分光透过分光镜1用于观察,大部分光被分光镜1反射,通过透镜1,汇聚到激光全息单元上,被全息单元内部集成的光电探测器接收。这样,就将被测样品表面瞄准点的位置信息转换为电信号。在光学显微测头设计中选用的激光全息单元为松下HUL7001,激光波长为790 nm。图2 光学显微测头光学系统示意图  当被测样品表面位于光学显微测头的聚焦面时,反射光沿原路返回激光全息单元,全息单元内两组光电探测器接收到的光斑尺寸相等,焦点误差信号为零。当样品表面偏离显微物镜聚焦面时,由样品表面反射回来的光束传播路径会发生变化,进入激光全息单元的反射光在两组光电探测器上的分布随之发生变化,引起激光全息单元焦点误差信号的变化。当被测样品在显微物镜焦点以内时,焦点误差信号小于零,而当被测样品在显微物镜焦点以外时,焦点误差信号大于零。因此,利用在聚焦面附近激光全息单元输出电压与样品位移量的单调对应关系,通过测量激光全息单元的输出电压,即可求得样品的位移量。  2.2 显微物镜参数的选择  在激光全息测量系统中,显微物镜是一个重要的光学元件,其光学参数直接关系着光学显微测头的分辨力。首先,显微物镜的焦距直接影响测头纵向分辨力,在激光全息单元、透镜1和显微物镜之间的位置关系保持不变的情况下,对于同样的样品位移量,显微物镜的焦距越小,样品上被测点经过显微物镜和透镜1所成像的位移越大,所引起激光全息单元中光电探测器的输出信号变化量也越大,即测量系统纵向分辨力越高。另外,显微物镜的数值孔径对测头的分辨力也有影响,在光波长一定的情况下,显微物镜的数值孔径越大,其景深越小,测头纵向分辨力越高。同时,显微物镜数值孔径越大,激光束会聚的光斑越小,系统横向分辨力也越高。综合考虑测头分辨力和工作距离等因素,在光学显微测头设计中选用大恒光电GCO-2133长工作距物镜,其放大倍数为40,数值孔径为0.6,工作距离为3.33 mm。  2.3 定焦显微测头的实现  除激光全息测量系统外,光学显微测头还包括一个光学显微成像系统,该系统由光源、显微物镜、透镜2、透镜3、分光镜1、分光镜2和CCD相机组成。光源将被测样品表面均匀照明,被测样品通过显微物镜、分光镜1、透镜2和分光镜2,成像在CCD相机接收面上。为了避免光源发热对测量系统的影响,采用光纤传输光束将照明光引入显微成像系统。通过CCD相机不仅可以观察到被测样品表面的形貌,而且也可以观察到来自激光全息单元的光束在样品表面的聚焦情况。  根据图2所示原理,通过光学元件选购、机械加工和信号放大电路设计,制作了光学显微测头,如图3所示。从结构上看,该测头具有体积小、集成度高的优点。将该测头安装在纳米测量机上,编制相应的测量软件,可用于被测样品的快速瞄准和高分辨力非接触测量。图3 光学显微测头结构3 测量实验与结果分析  为了检验光学显微测头的功能,将该测头安装在纳米三维测量机上,使显微物镜的光轴沿测量机的Z轴方向,对其输出信号的电压与被测样品的离焦量之间的关系进行了标定,并用其对台阶高度样板和一维线间隔样板进行了测量[16]。所用纳米三维测量机在25 mm×25 mm×5 mm的测量范围内,空间分辨力可达0.1 nm。实验在(20±0.5)℃的控温实验室环境下进行。  3.1 测头输出电压与位移关系的建立  为了获得光学显微测头的输出电压与被测表面位移(离焦量)的关系,将被测样板放置在纳米三维测量机的工作台上,用精密位移台带动被测样板沿测量光轴方向移动,通过纳米测量机采集位移数据,同时记录测头输出电压信号。图4所示为被测样板在测头聚焦面附近由远及近朝测头方向移动时测头输出电压与样品位移的关系。图4 测头电压与位移的关系  由图4可以看出,光学显微测头的输出电压与被测样品位移的关系呈S形曲线,与第1节中所述的通过差动光斑尺寸变化测量离焦量的原理相吻合。当被测样板远离光学显微测头的聚焦面时,电压信号近似常数。当被测样板接近测头的聚焦面时,电压开始增大,到达最大值后逐渐减小;当样板经过测头聚焦面时,电压经过初始电压值,可认为是测量的零点;当样品继续移动离开聚焦面时,电压继续减小,到达最小值时,电压又逐渐增大,回到稳定值。在电压的峰谷值之间,曲线上有一段线性较好的区域,在测量中选择这段区域作为测头的工作区,对这段曲线进行拟合,可以得到测头电压与样板位移的关系。在图4中所示的3 μm工作区内,电压与位移的关系为  式中:U为激光全息单元输出电压;∆d为偏离聚焦面的距离。  3.2 台阶高度测量试验  在对光学显微测头的电压-位移关系进行标定后,用安装光学显微测头的纳米三维测量机对台阶高度样板进行了测量。  在测量过程中,将一块硅基SHS-1 μm台阶高度样板放置在纳米三维测量机的工作台上,首先调整样板位置,通过CCD图像观察样板,使被测台阶的边缘垂直于工作台的X轴移动方向,样板表面位于光学显微测头的聚焦面,此时测量光束汇聚在被测样板表面,如图5所示。然后,用工作台带动样板沿X方向移动,使测量光束扫过样板上的台阶,同时记录光学显微测头的输出信号。最后,对测量数据进行处理,计算台阶高度。图5 被测样板表面图像  台阶高度样板的测量结果如图6所示,根据检定规程[17]对测量结果进行处理,得到被测样板的台阶高度为1.005 μm。与此样板的校准结果1.012 μm相比,测量结果符合性较好,其微小偏差反映了由测量时温度变化、干涉仪非线性和样板不均匀等因素引入的测量误差。图6 台阶样板测量结果  3.3 一维线间隔测量试验  在测量一维线间隔样板的过程中,将一块硅基LPS-2 μm一维线间隔样板放置在纳米测量机的工作台上,使测量线沿X轴方向,样板表面位于光学显微测头的聚焦面。然后,用工作台带动样板沿X方向移动,使测量光束扫过线间隔样板上的刻线,同时记录纳米测量机的位移测量结果和光学显微测头的输出信号。最后,对测量数据进行处理,测量结果如图7所示。  根据检定规程[17]对一维线间隔测量结果进行处理,得到被测样板的刻线间距为2.004 μm,与此样板的校准结果2.002 μm相比,一致性较好。  3.4 分析与讨论  由光学显微测头输出电压与被测表面位移关系标定实验的结果可以看出:利用在测头聚焦面附近测头输出电压与样品位移量的单调对应关系,通过测量测头的输出电压变化,即可求得样品的位移量。在图4所示曲线中,取电压-位移曲线上测头聚焦面附近的3 μm位移范围作为工作区,对应的电压变化范围约为0.628 V。根据对电压测量分辨力和噪声影响的分析,在有效量程内测头的分辨力可以达到纳米量级。  台阶高度样板和一维线间隔样板测量实验的结果表明:光学显微测头可以应用于纳米三维测量机,实现微纳米表面形貌样板的快速定位和微小位移测量。通过用纳米测量机的激光干涉仪对光学显微测头的位移进行校准,可将测头的位移测量结果溯源到稳频激光的波长。实验过程也证明:光学显微测头具有扫描速度快、测量分辨力高和抗干扰能力强等优点,适用于纳米表面形貌的非接触测量。4 结论  本文介绍了一种用于纳米级表面形貌测量的高分辨力光学显微测头。在测头设计中,采用激光全息单元作为位移测量系统的主要元件,根据差动光斑尺寸变化原理实现微位移测量,结合光学显微系统,形成了结构紧凑、集测量和观察功能于一体的高分辨力光学显微测头。将该测头安装在纳米三维测量机上,对台阶高度样板和一维线间隔样板进行了测量实验,结果表明:该光学显微测头可实现预期的测量功能,位移测量分辨力可达到纳米量级。下一步将通过多种微纳米样板测量实验,进一步考察和完善测头的结构和性能,使其更好地适合纳米三维测量机,应用于微纳结构几何参数的非接触测量。作者简介李强,(1976-),男,高级工程 师,主要从事纳米测量技术研究,在微纳米表面形貌参数测量与校准、微纳尺度材料力学特征参数测量与校准、复杂微结构测量与评价等领域具有丰富经验。
  • 中国地大(武汉)验收930万多接收杯等离子体质谱
    6月3日上午,中国地质大学(武汉)&ldquo 大型多接收杯等离子体质谱仪(Nu Plasma 1700)&rdquo 通过校内专家组验收。专家组由副校长唐辉明,地质过程与矿产资源国家重点实验室、地球科学学院、监察处、资产与实验室设备处负责人及相关专家组成。   专家组在听取仪器负责人李明博士对仪器购置,安装调试,性能检测及试运行等基本情况的汇报后,到现场考察了仪器运行环境,查看了相关运行记录,对相关问题进行了质询。经过充分讨论,专家组一致认为:仪器采购过程符合学校相关规定,仪器各项性能指标与标书及技术协议一致,厂商在货物检验通过后进行了相关的安装调试及培训,仪器验收相关资料齐全、管理制度上墙、安全卫生及环保措施到位,技术管理人员综合素质高,仪器运行记录规范,实验室环境良好,符合验收条件,同意通过验收。   据了解,此次购置的&ldquo 大型多接收杯等离子体质谱仪&rdquo ,价值930.5万元,是目前中国地质大学(武汉)价值最高、重量最大的仪器设备,是固体地球科学最具潜力和最为重要的科学仪器之一。多接收杯等离子体质谱仪综合了等离子体的高电离温度和磁式多接收质量分析器的优势 测试数据精确度和准确度高 使高电离能的元素(如W、Hf、Th、Cu、Zn)的高精度同位素分析成为现实,极大地开拓了同位素年代学和地球化学的研究领域。该设备将广泛应用于地质矿产、土壤、生态环境、材料等领域,极大地提升中国地质大学(武汉)科研平台水平,促进中国地质大学(武汉)地球科学及相关学科的创新性科学研究和人才培养。
  • 世界首台兆瓦级高温超导感应加热装置!!!
    由我国研制的世界首台兆瓦级高温超导感应加热装置,日前在黑龙江正式投用。该装置可以利用加热新技术,对大尺寸金属工件快速高效加热,节能减排,带动企业高质量发展。这台兆瓦级高温超导感应加热装置正在处理一块重达500多公斤的铝锭。过去,温度从20℃加热到403℃,至少需要9个小时。现在,通过应用这个装置,只需十分钟就可以完成。据了解,高温超导感应加热装置是利用了超导体在低温下可实现稳定的零电阻超导态的特性,不仅可以用于铝、铜等非铁磁性有色金属型材挤压、锻压,还能用于熔炼、高端合金热处理等。与原来普遍采用的电阻炉相比,这套装置能将传统工频感应炉的能效转化率提升一倍,节能50%,碳排放减少一半以上。
  • 扫描电镜的探头新解——安徽大学林中清32载经验谈(6)
    p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 【作者按】形貌衬度、Z衬度、晶粒取向衬度、二次电子衬度、边缘效应、电位衬度等是形成扫描电镜表面形貌像的几个重要衬度信息。对这些衬度信息的接收离不开探头。本文将就扫描电镜两种主要探头的构造、工作原理及其接收的样品信息进行详细探讨。 /span /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-size: 18px color: rgb(0, 176, 240) " 一、二次电子探头 /span /h1 p style=" text-align: justify text-indent: 2em " 目前教科书的观点认为:二次电子探头接收的样品表面信息主要是二次电子。真实情况是否如此呢? /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong 1.1二次电子图像所拥有的特性 /strong /span /p p style=" text-align: justify text-indent: 2em " A) 二次电子能量很低(低于50ev),从样品表面溢出的深度浅,在样品中的扩散范围小。适合用于表现样品表面形貌像的极细小细节(小于10nm)。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/3edeb286-6abb-4bf7-8b3a-008c9ab1551f.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " B)二次电子能量低,在样品表面的溢出量容易受到静电场(荷电)的影响,出现图像局部或全部异常变亮、磨平、变暗并伴随图像畸变的现象,即样品图像的荷电现象。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/fb564107-ab21-4b67-9812-18699dec50be.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: justify text-indent: 2em " C)二次电子的产额受平面斜率影响较大,边缘处产额最高,形成所谓的二次电子衬度及边缘效应。这些衬度信息会形成信息的假象,也有助于分辨某些特殊的样品信息。 /p p style=" text-align: justify text-indent: 0em " span style=" text-indent: 2em " /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/51c0d3a0-49ba-412e-96ee-f789a068425d.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " D) 二次电子图像的Z衬度一般表现较差。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/9d2c7e97-f6a9-4de1-b054-9b8e5101f0f5.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong 1.2二次电子探头的组成及工作原理 /strong /span /p p style=" text-align: justify text-indent: 2em " 二次电子能量弱(低于50ev),要想获取二次电子信息就必须采用高灵敏探头。利用敏感度极强的荧光材料接收弱信号,再以光电倍增管对弱信号做百万倍的放大,将能量极弱的二次电子信息转化为能被电子线路处理的电子信息。 /p p style=" text-align: justify text-indent: 2em " 这种设计是目前解决这一难题的最佳方案。二次电子探头的基本构造正是以这个思路为基础来设计。 /p p style=" text-align: justify text-indent: 2em " strong 1.2.1 Everhart-Thornley探测器的结构组成 /strong /p p style=" text-align: justify text-indent: 2em " 由金属网收集极、闪烁体、光导管、光电倍增管和前置放大电路组成的探测器被称为Everhart-Thornley探测器。一直以来都是各厂家用于接收二次电子的主流探测器。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/2f6dd144-afab-427d-99c2-96f6565bc641.jpg" title=" 5.png" alt=" 5.png" / /p p style=" text-align: justify text-indent: 2em " strong 1.2.2 Everhart-Thornley探测器的工作原理 /strong /p p style=" text-align: justify text-indent: 2em " 位于探头最前端的收集极是由金属网构成,其上加有200V的正偏压以捕获更多的二次电子。进入收集极的二次电子由加载在闪烁体金属铝膜上的10KV电压加速在闪烁体上产生一定数量的光子。由闪烁体产生的光子经过光导管的全反射进入光电倍增管阴极,在阴极上转换成电子。这些电子由打拿极的不断倍增,经阳极输出高增益低噪音的电信号。该信号由紧贴阳极的前置放大器放大后,从探测器输出。 /p p style=" text-align: justify text-indent: 2em " 探测器本身无法将到达探测器的高能量背散射电子从低能量的二次电子中分离,但通过改变收集极偏压可以将低能量的二次电子给阻绝在探头外面。其接收的信息特性完全取决于到达探头的信息组成,如果信息中二次电子含量大则图像偏向于二次电子的图像特性,如果背散射电子含量大则结果偏向于背散射电子的图像特性。 /p p style=" text-align: justify text-indent: 2em " 将探头的收集极变成负偏压,则我们可以获得偏向于背散射电子的图像。但是图像信号衰减较多,图像质量较差。 /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 176, 240) " 1.3二次电子探头的位置与成像特性 /span /strong /p p style=" text-align: justify text-indent: 2em " 高分辨场发射扫描电镜中,二次电子探头(ET探头)往往被置于仪器的两个位置:镜筒及样品仓。虽然各电镜厂家探头的具体位置有差异,但其结构是基本一致。探头位置不同,获取的图像性质差异也非常大。下面就以日立冷场电镜S-4800二次电子探头的位置设计为例来加以说明。 /p p style=" text-align: justify text-indent: 2em " strong 1.3.1& nbsp S-4800二次电子探头的位置设计 /strong /p p style=" text-align: justify text-indent: 2em " 在冷场扫描电镜S-4800中标配了两个二次电子探头。这两个探头的结构和性能完全一致,仅仅在电镜中安装的位置有所差异。一个位于样品仓,另一个位于物镜的上方。 /p p style=" text-align: justify text-indent: 2em " 如下图所示: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/6b4fc92d-a161-48eb-938a-cdc27b8be3a5.jpg" title=" 6.png" alt=" 6.png" / /p p style=" text-align: justify text-indent: 2em " strong 1.3.2 上、下探头的工作过程及获取图像的特性 /strong /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " 1.3.2.1上探头接收的样品信息 /span /p p style=" text-align: justify text-indent: 2em " 扫描电镜EXB系统的结构是在物镜磁场(B)上方正对着上探头设计一个电场(E)。该电场的作用是将物镜磁场吸上来的背散射电子、二次电子混合信息中能量较弱的二次电子分离出来,推向上探头。这个过程如同碾米机进行米、糠分离时吹风机的作用一样。故上探头获取信息是较为纯正的二次电子。背散射电子也可以通过位于物镜内的电极板转换成二次电子被上探头接收,通过调节电极板上加载的电压来选择到达上探头的信息特性。这种间接接收的背散射电子有其一定的特点,但损耗大,大部分情况下信号量不足。 /p p style=" text-align: justify text-indent: 2em " 下面组图为上探头接收的四种信息特性。 /p p style=" text-align: justify text-indent: 2em " & nbsp /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/312e9fc9-364e-47b7-aa0f-f4a6759f8a69.jpg" title=" 7.png" alt=" 7.png" / /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/6ccf7e3c-4ea6-4df7-a35f-702c3461675e.jpg" title=" 8.png" alt=" 8.png" / /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " 1.3.2.2上探头的工作过程 /span /p p style=" text-align: justify text-indent: 2em " 高能电子束轰击样品产生各种电子信息被物镜磁场吸收送往物镜上方。工作距离越小被物镜俘获的样品电子信息越多,其中二次电子和背散射电子是呈现扫描电镜表面形貌信息的主要信号源,将被拿出来单独讨论。 /p p style=" text-align: justify text-indent: 2em " 二次电子和背散射电子混合信息被物镜磁场送到位于物镜上方的电场,能量弱的二次电子受电场影响从混合信息中被分离出来并推送到位于物镜上方的上探头,背散射电子由于能量较强,电场对其影响较小,将穿过电场轰击位于电场上方的电极板,产生间接二次电子也会被上探头接收到,但其含量较小不是主要信息。 /p p style=" text-align: justify text-indent: 2em " 位于物镜中的电极板通过调整加载电压来选择进入物镜的信息类型。低角度(LA)背散射电子可由电极板转换成二次电子被上探头接收,形成所谓间接的LA背散射电子像。 /p p style=" text-align: justify text-indent: 2em " 电极板加载+50V电压,将吸收低角度的二次电子和背散射电子,抑制低角度电子信息进入镜筒(U)。 /p p style=" text-align: justify text-indent: 2em " 电极板加载0V,将由其转化成二次电子的低角度背散射电子和低角度二次电子信息都送入镜筒。上探头接收的是各种角度二次电子和低角度背散射电子的混合信息。其混合比例将随着电极板电压的降低,背散射信息逐渐增多(U,LA0)。 /p p style=" text-align: justify text-indent: 2em " -150V时,二次电子被全部压制,此时上探头接收到的是纯的低角度背散射电子所激发的二次电子信息(U,LA100)。 /p p style=" text-align: justify text-indent: 2em " 位于镜筒内的能量过滤器,会将二次电子以及低角度背散射电子所形成的二次电子给抑制,此时上探头或顶探头接收的是高角度背散射电子信息(U,HA)。 /p p style=" text-align: justify text-indent: 2em " 图像特性:Z衬度充分,其他都不足。由于高角度背散射电子产额少,对样品及束流的要求都较高。目前在束流较低的冷场扫描电镜中取消这个功能,只在束流较高的regulus8200系列冷场电镜中保留顶探头设计。但适用的样品并不多。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/54aea59e-1225-4703-a62d-324fa54bf35c.jpg" title=" 9.png" alt=" 9.png" / /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " 1.3.2.3下探头的位置及其图像特性 /span /p p style=" text-align: justify text-indent: 2em " & nbsp 下探头位于场发射扫描电镜样品仓位置。示意图如下: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/17380253-5429-4944-af61-5caa22457c69.jpg" title=" 11.png" alt=" 11.png" / /p p style=" text-align: justify text-indent: 2em " 下探头位于样品仓中,因此也称样品仓探头。它与样品之间没有任何阻碍物,激发出来的样品信息可以不受影响的到达该探头。下探头本身不能对到达探头的背散射电子信号加以甄别,其图像特性取决于到达探头的信息特征。二次电子居多,就偏向二次电子的图像特性;背散射电子居多,则偏向于背散射电子的图像特性。 /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp 样品仓探头接收的样品信息以低角度信息为主,背散射电子含量占主导。对样品信息的接收效果取决于探头与样品之间形成的固体角,样品的位置十分关键,存在一个最佳工作距离。各厂家的最佳工作距离各不相同,日立电镜是15mm。下探头位于样品的侧向,图像特性:形貌衬度好,立体感强;荷电影响小;Z衬度好;细节易受信号扩散影响,高倍清晰度不足,10纳米以下细节很难分辨。& nbsp /p p style=" text-align: justify text-indent: 2em " 不同厂家的样品仓探头位置不同,因此最佳工作距离以及探头、电子束、样品之间的夹角都会略有不同。形成的图像在空间感及高分辨能力上存在差异。样品仓真空度也是样品仓探头分辨力的主要影响因素之一。 /p p style=" text-align: justify text-indent: 2em " 日立冷场扫描电镜下探头的成像实例: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/b5917c9d-9e59-41fb-82c6-4c3fd3475cab.jpg" title=" 12.png" alt=" 12.png" / /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/decfd495-8ec1-490e-b6e8-c6735f4f5ad9.jpg" title=" 13.png" alt=" 13.png" / /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " 1.3.2.4上、下探头的图像特性对比实例 /span /p p style=" text-align: justify text-indent: 2em " 上、下探头结构一致,仅仅由于安装位置不同导致其成像特性也不一样,充分掌握这些差异将有利于你选择正确的测试条件。下面将通过几组对照图来加以阐述: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/c911ae27-5aac-4936-a791-5f3f37126870.jpg" title=" 14.png" alt=" 14.png" / /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/7388deb2-be2f-472d-9c96-52b873fb089c.jpg" title=" 15.png" alt=" 15.png" / /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/169e28be-1208-4ae4-ace5-96820e80cb8b.jpg" title=" 16.png" alt=" 16.png" / /p p style=" text-align: justify text-indent: 2em " 从以上各组对照图可以清晰看到,上探头二次电子信息特征极为强烈,而下探头偏重背散射信息。这些特点使得该两种探头获得的样品信息差异较大,各自都有适合的样品及所表现的样品信息。在各自适用的范围内对方都无可替代。 /p p style=" text-align: justify text-indent: 2em " 根据个人多年的测试经验,下探头获取的样品信息虽然在10纳米细节观察上有所欠缺,但获取的信息更为充分。本着初始图像以信息量是否充分为主的原则,15mm工作距离选用下探头测试,常常被用做扫描电镜测试时的初始条件。以该条件下获取的形貌像为参考,依据样品的信息需求以及对上、下探头成像特性的正确认识,再做进一步调整。 /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-size: 18px color: rgb(0, 176, 240) " 二、背散射电子探头 /span /h1 p style=" text-align: justify text-indent: 2em " strong 2.1背散射电子的图像特性 /strong /p p style=" text-align: justify text-indent: 2em " 高能电子束受样品原子核及核外电子云的库仑势影响,发生弹性和非弹性散射后溢出样品表面,形成样品背散射电子。其特点是:能量大(与入射电子相当),产额受样品原子序数、密度以及晶体材料的晶体结构及晶粒取向影响较大,是形成样品Z衬度和晶粒取向衬度信息的主要信号源。 /p p style=" text-align: justify text-indent: 2em " 背散射电子按信号溢出角分为高角度和低角度两种类型。 /p p style=" text-align: justify text-indent: 2em " 高角度背散射电子的Z衬度更为明显,但整体产额很低,仅在束流较大的场发射扫描电镜上配置了接收该信息的探头。探头位于镜筒中物镜的正上方(或称T),适用样品并不多。扫描电镜日常采集的主要是低角度背散射电子。 /p p style=" text-align: justify text-indent: 2em " 高角度背散射电子相较于低角度背散射电子,Z衬度更为明显,但其产额较低。由于该信息最佳接收位置在样品正上方,探头、样品以及入射电子束在一条线上,故空间形貌较差。低角度背散射电子Z衬度略弱,但产额大,形貌像更好。 /p p style=" text-align: justify text-indent: 2em " 要充分接收低角度背散射电子信息,探头需要与样品形成一定角度。相对于高角度背散射电子,低角度背散射电子形成的图像空间感好,表面形态及细节信息较充分,但Z衬度略差,不如高角度背散射电子明显。以下是分别以二次电子和高、低角度背散射电子为主所形成的形貌像比较。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/cf857ded-2b46-4cfa-b30e-df25d2f6cbcb.jpg" title=" 17.png" alt=" 17.png" / /p p style=" text-align: center text-indent: 0em " strong style=" text-align: center text-indent: 0em " 碳复合金颗粒的二次电子、高角度背散射电子、低角度背散射电子对照 & nbsp & nbsp & nbsp /strong span style=" text-align: center text-indent: 0em " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " strong 2.2背散射电子探头的构造及工作原理 /strong /p p style=" text-align: justify text-indent: 2em " 环形半导体背散射电子探头是最经典的背散射电子探头。该探头采用环状硅基材料做成,构造形式是半导体面垒肖特基结二极管或p-n结二极管,如下图: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/c6983a61-7f15-42c3-849e-c0b3f78c0f4f.jpg" title=" 18.png" alt=" 18.png" / /p p style=" text-align: center text-indent: 0em " strong 图片节选自《微分析物理及其应用》 丁泽军 /strong /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp & nbsp 背散射电子在硅基探测器中激发大量的电子-空穴对。同样加速电压下,电子-空穴对的产量和背散射电子强度形成一定的对应关系。并由此形成对应的电信号,经处理后在显示器形成样品的背散射电子图像(Z衬度像或晶粒取向衬度像)。 /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp & nbsp 硅基材料形成电子-空穴对,需要信号激发源有一定的能量(肖特基结对5KV以下电子有大增益,P-N结对10KV电子才有大增益),能量较小的二次电子很难在该探头上产生信息,故探头形成的图像带有强烈的背散射电子图像特性。 /p p style=" text-align: justify text-indent: 2em " 为了获取低能量的背散射电子信息,背散射电子探头改用YAG晶体或在探头上做一层薄膜如FEI的CBS,这些改变都对探头获取低能量背散射电子有利,形成的图像细节更丰富。但探头灵敏了,干扰也会增多,Z衬度也会减弱。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/a6b2de85-8984-486a-8940-122ff5311cf1.jpg" title=" 19.png" alt=" 19.png" / /p p style=" text-align: justify text-indent: 2em " strong span style=" text-indent: 2em " 2.3各种探头接收背散射电子信息的结果对比 /span /strong /p p style=" text-align: justify text-indent: 2em " 传统硅基P- N结背散射电子探头对加速电压的要求高(10KV以上),它获取的背散射电子信息不易受低能量信息的干扰。Z衬度分明,荷电影响极小,但图像的细节呆板,表面细节信息缺失严重,较高倍时图像的清晰度差。 /p p style=" text-align: justify text-indent: 2em " 钨灯丝扫描电镜,电子枪本征亮度差,要获得高质量形貌像所需的电子束发射亮度,加速电压必须在10KV以上。P-N结背散射电子探头正好与其互相匹配,故被广泛使用。 /p p style=" text-align: justify text-indent: 2em " 场发射扫描电镜本征亮度大,低加速电压下进行高分辨形貌像测试是常态,P-N结背散射电子探头与其匹配度差。而CBS和YAG探头的功能和样品仓探头比起来Z衬度优势并不明显,二次电子的接收效果又不如,个人认为完全可以用样品仓探头来完美的替代背散射电子探头。 /p p style=" text-align: justify text-indent: 2em " 如前所述,二次电子探头也能接收大量背散射电子。它所获取的图像性质取决于到达探头的信息组成,如果背散射电子信息居多,它就偏向背散射电子的图像特征,二次电子居多就偏向二次电子图像特征。二次电子探头适合在不同加速电压(几百伏到30KV)下获取背散射电子图像。 /p p style=" text-align: justify text-indent: 2em " 低加速电压有利于取得是浅表层信息;高加速电压有利于取得较深层信息。探头的适用范围越广,测试条件的选择越充分,获取的样品信息越完整。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/de1afe4f-f593-4e4e-88d0-92b7ec8a573e.jpg" title=" 20.png" alt=" 20.png" / /p p style=" text-align: justify text-indent: 2em " 背散射探头通过电子-空穴对的转移来传递信息,运行速度较二次电子探头(光电转换)慢很多。在进行聚焦、像散、对中操作时,图像对操作的反应滞后严重,须在慢速下调整。整个操作麻烦,精确的高倍调整更为困难。 /p p style=" text-align: justify text-indent: 2em " 背散射电子探头往往置于样品与物镜之间,推进推出操作麻烦且易引发探头和样品间碰撞,对探头造成损伤。对该位置的占有,也会给后期分析设备安装带来麻烦。随着能谱仪、EBSD性能的突飞猛进,背散射电子探头对成分及结构组成分析的作用大大衰减,且成本不低,信息量少,使用率低。 /p p style=" text-align: justify text-indent: 2em " 个人观点:背散射探头连鸡肋都算不上,基本可以抛弃。 /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" color: rgb(0, 176, 240) font-size: 18px " strong 结束语 /strong /span /h1 p style=" text-align: justify text-indent: 2em " 探头是扫描电镜获取样品表面形貌信息的关键部件。其性能高低对形成样品高质量、高分辨的表面形貌像至关重要。 /p p style=" text-align: justify text-indent: 2em " 探头主要有两大类:二次电子探头、背散射电子探头。传统的观点认为:二次电子探头主要用来接收样品的二次电子信息,背散射电子探头接收的是背散射电子信息。 /p p style=" text-align: justify text-indent: 2em " 实践经验告诉我们这个观点并不正确。二次电子探头的图像性质取决于到达探头的信息组成。到达探头的信息以背散射电子信息为主则图像倾向背散射电子图像特性,二次电子信息为主则是二次电子的图像特性。 /p p style=" text-align: justify text-indent: 2em " 高分辨场发射扫描电镜常规设计有两个二次电子探头,分别位于样品仓和镜筒内部。不同位置的探头获取样品表面形貌信息的组成差异很大。镜筒内探头获取的基本都是二次电子信息,样品仓探头则是以背散射电子为主的混合信息。 /p p style=" text-align: justify text-indent: 2em " 改变工作距离对探头获取样品信息的影响极大,工作距离越小越有利于上探头获取样品的二次电子信息,大工作距离有利于样品仓探头获取样品的混合信息。 /p p style=" text-align: justify text-indent: 2em " 工作距离对样品仓探头接收样品信息的影响并不是越大越好,而是有一个最佳工作位置。最佳工作位置设计的越合理,你获取的样品信息也就会越丰富。 /p p style=" text-align: justify text-indent: 2em " 传统的半导体背散射电子探头由于需要较大的激发能,故能量较弱的二次电子很难在探头上产生信号,该探头获取的背散射电子图像较为纯净。早期的硅基P-N结半导体背散射探头激发能要求较高(10KV)所以它形成的图像呆板,细节分辨差,表面信息少,但Z衬度强烈,不易受荷电影响。 /p p style=" text-align: justify text-indent: 2em " 高加速电压对充分获取样品表面信息不利,为了提高探头获取表面信息的能力,出现许多低电压背散射探头(CBS\YAG)。但个人认为:低电压背散射电子探头的成像效果不如样品仓探头来的细腻,设计合理的样品仓探头完全可以替代背散射探头的功能。 /p p style=" text-align: justify text-indent: 2em " 要掌握好仪器设备,对各功能部件的充分认识是基础。希望通过本文,能和大家一起对扫描电镜的信息接收系统有个重新认识。对探头以及工作距离的正确选择必定会为你带来更为丰富的样品信息。 span style=" text-indent: 2em " & nbsp /span /p p style=" text-align: justify text-indent: 2em " strong 参考书籍: /strong /p p style=" text-align: justify text-indent: 2em " 《扫描电镜与能谱仪分析技术》张大同2009年2月1日& nbsp span style=" text-indent: 2em " 华南理工出版社 /span /p p style=" text-align: justify text-indent: 2em " 《微分析物理及其应用》 丁泽军等 & nbsp & nbsp & nbsp 2009年1月& nbsp span style=" text-indent: 2em " 中科大出版社 /span /p p style=" text-align: justify text-indent: 2em " 《自然辩证法》 & nbsp 恩格斯 & nbsp 于光远等译 1984年10月& nbsp span style=" text-indent: 2em " 人民出版社& nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " 《显微传》 & nbsp 章效峰 2015年10月& nbsp span style=" text-indent: 2em " 清华大学出版社 /span /p p style=" text-align: justify text-indent: 2em " 日立S-4800冷场发射扫描电镜操作基础和应用介绍 span style=" text-indent: 2em " & nbsp 高敞 2013年6月 /span /p p style=" text-align: justify text-indent: 2em " strong 作者简介: /strong /p p style=" text-align: justify text-indent: 2em " img style=" max-width: 100% max-height: 100% float: left width: 75px height: 115px " src=" https://img1.17img.cn/17img/images/202003/uepic/741ca864-f2b8-4fc3-b062-2b0d766c5a7b.jpg" title=" 扫描电镜的探头新解-林中清.jpg" alt=" 扫描电镜的探头新解-林中清.jpg" width=" 75" height=" 115" border=" 0" vspace=" 0" / 林中清,87年入职安徽大学现代实验技术中心从事扫描电镜管理及测试工作。32年的电镜知识及操作经验的积累,渐渐凝结成其对扫描电镜全新的认识和理论,使其获得与众不同的完美测试结果和疑难样品应对方案,在同行中拥有很高的声望。2011年在利用PHOTOSHIOP 对扫描电镜图片进行伪彩处理方面的突破,其电镜显微摄影作品分别被《中国卫生影像》、《科学画报》、《中国国家地理》等杂志所收录、在全国性的显微摄影大赛中多次获奖。& nbsp & nbsp /p p style=" text-align: justify text-indent: 2em " strong 延伸阅读: /strong /p p style=" text-align: justify text-indent: 2em " strong /strong /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200218/522167.shtml" target=" _self" style=" color: rgb(0, 176, 240) border: none text-decoration: underline " span style=" color: rgb(0, 176, 240) " 二次电子和背散射电子的疑问(下)——安徽大学林中清32载经验谈(5) /span /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200114/520618.shtml" target=" _self" style=" color: rgb(0, 176, 240) border: none text-decoration: underline " span style=" color: rgb(0, 176, 240) " 二次电子和背散射电子的疑问[上]-安徽大学林中清32载经验谈(4) /span /a /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) text-decoration: underline " strong /strong /span /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191224/519513.shtml" target=" _self" style=" color: rgb(0, 176, 240) border: none text-decoration: underline " span style=" color: rgb(0, 176, 240) " 电子枪与电磁透镜的另类解析——安徽大学林中清32载经验谈(3) /span /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191126/517778.shtml" target=" _self" style=" text-decoration: underline " span style=" color: rgb(0, 176, 240) " 扫描电镜放大倍数和分辨率背后的陷阱——安徽大学林中清32载经验谈(2) /span /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191029/515692.shtml" target=" _self" style=" color: rgb(0, 176, 240) border: none text-decoration: underline " span style=" color: rgb(0, 176, 240) " 扫描电镜加速电压与分辨力的辩证关系——安徽大学林中清32载经验谈 /span /a /p
  • 中国复眼成功“开眼” 拍摄世界首张基于分布式雷达的三维月面图
    位于重庆市两江新区的超大分布孔径雷达高分辨率深空域主动观测设施,也就是中国复眼,近日完成一期工程的安装调试和开机观测工作,成功拍摄出世界首张基于分布式雷达的三维成像月面图。据了解,超大分布孔径雷达类似于很多小天线合成一个大天线,虽然单一雷达功率有限,但是由于雷达和雷达之间的功率叠加,因此可以实现超远程探测功能。据介绍,与中国天眼不同的是,中国复眼可以自己发射电磁波,并能接收回波,从而对太阳系内的小行星和类地行星进行观测。中国复眼项目由北京理工大学重庆创新中心牵头建设,一期工程通过实现对月的高分辨率成像观测,验证了大系统分布式的工作模式,为后续的二期和三期工程奠定了基础。计划三期工程建成后,由上百台雷达组成的大科学装置探测距离能达到1.5亿公里,实现我国在深空探测雷达领域保持50年的领先优势。
  • 卫生部直接调查奶粉致性早熟案 称接受举报
    8月10日,卫生部新闻发言人邓海华(右二)在回答记者的提问   据中国卫生部12日的最新消息,应湖北省要求,卫生部正在直接调查婴儿性早熟个案。卫生部已委托有关技术机构对湖北省从患儿家中和市场上采集的相关奶粉样品进行检测。同时,卫生部已请中国疾病预防控制中心牵头,成立由内分泌、儿科、妇幼、食品安全等领域9名专家组成的专家组,会同有关地方,对婴儿性早熟个案进行专题研究。   近日,有媒体报道湖北发现3名女婴有“性早熟”特征,3名婴儿都食用过同一种奶粉,家长怀疑是奶粉中的雌激素导致婴儿异常。 8月10日卫生部表示,已责成湖北省食品安全监管领导小组办公室尽快核查并妥善处理。很快,卫生部又明确表示已直接介入调查。   此外,一些消费者反映,在将疑有问题的奶粉进行送检时,遭遇“送检无门”,检验机构不接受个人送检。对此,卫生部有关负责人指出,根据食品安全法的规定,协会组织、消费者可以委托食品检验机构对疑有问题的食品进行检验,但应选择法律规定的有资质的检验机构。   这位负责人同时表示,由于种种原因,现实中的确存在检验机构不接受个人送检的情况。比如有些检验机构不具备送检项目的检测资质或能力 一些机构担心样品的来源,担心有目的不纯的送检 还有一些机构怕承担法律责任,不想介入纠纷等。   这位负责人说,消费者如果怀疑食品有问题,可以向卫生部门举报,卫生部门接到举报应组织进行检验。   【各地情况】   洛阳十余儿童查出早熟特征 均长期食用圣元奶粉   儿保科的何荣大夫告诉我们,这几天来检查是否出现性早熟特征的孩子明显增多,仅9日、10日两天就有20余个。这些孩子的家长说,其子女均长期食用圣元奶粉。在这20多个孩子中,一半以上有乳房发育情况。   湖南一女婴现性早熟体征 曾喝12罐圣元牛奶   株洲市醴陵市建设西路的漆女士反映,其4个月大的小孩喝了3个月的圣元牛奶后,与武汉三女婴相似,出现了乳房大、外阴充血等症状,医生称已出现早熟体征。   郑州出现圣元婴儿性早熟 湖北抽检涉事奶粉   郑大三附院儿保科,有6个家长带着自己的宝宝来检查,这些孩子都吃圣元奶粉。 “确实有3个不到一岁的女婴的乳房开始发育。”王伟博士说,但不能确定就是奶粉惹的祸。   广东4名宝宝“性早熟” 平时都喝圣元奶粉   广州三名宝宝做了脊柱、盆腔B超等检查,发现盆骨等发育在正常范围内,但乳房确实有小硬块,诊断为典型单纯乳房早发育。无独有偶,佛山一宝宝也出现了类似症状。   北京一女婴被诊断为性早熟 曾饮圣元奶粉半个月   有家长反映一岁大的女婴被诊断为性早熟,此前该女婴已饮用圣元奶粉半个月。
  • PALL Minimate 系统客户试用活动开始接受预定
    您还在用透析的方式做样品的浓缩、脱盐、缓冲液交换吗?   试试TFF切向流超滤系统吧,快速,方便达到实验目的。   PALL minimate 实验室超滤切向流系统,现在全面开始接受客户试用预定。   接受预定时间:即日起-2012年12月31日 系统试用时间:即日起-2013年5月31日   1.活动对象,针对目前实验室没有Minimate 系统的新客户.   2.试用的时间:从到货起,10个工作日。试用结束后,寄出的邮费由客户承担。   3.系统中,为了保证您实验的准确性,需要配套的膜包,我们不提供试用,请另行购买。   4.申请方式:完整填写”Minimate系统申请单”承诺,在试用期限内完整归还系统,否则视为购买。填写后,将申请单发至:lab_china@ap.pall.com   5.PALL承诺我们将慎重审核每个申请单,并对合格的申请客户,尽快寄出系统。   6.在通过申请后,将签字的“Minimate”系统申请单 交给现场的PALL同事。   颇尔公司提供业界领先的切向流过滤(TFF)技术,以满足日益增加的生物技术和生物工艺过程中的多样性需求并应对各种挑战。这些产品的设计目的是在保证过滤效果一致以及获得最高过滤量的前提下,简化处理过程并使处理过程呈流水线化。   切向流超滤(TFF)能快捷、高效地进行生物分子的分离与纯化处理 可用于低至10毫升、高达数千升样品溶液的浓缩和脱盐处理 也可以用于不同大小生物分子的分离、细胞悬液收集、以及发酵液和细胞裂解液的澄清。 MinimateTM 实验室切向流超滤系统 快速处理20ml-1000ml样品   应用:   ●蛋白质、肽或核酸(DNA/RNA/寡核苷酸)的浓缩和脱盐   ●从澄清后的细胞培养介质中回收抗体或重组蛋白   ●处理对应金属敏感得酶和分子   ●分离不同尺寸的生物分子   ●浓缩病毒或基因治疗载体   ● 柱层析前的样品制备   ●凝胶过滤后的样品浓缩   ●去除水、缓冲液、介质溶液中的致热源   主要系统特点   ●即插即用, 容易清洗,轻松维护   ●高浓缩系数-将高达1升(甚至更多)的样品浓缩到5mL升之低。   ●生物安全性。   ●样品损失降至最低   PALL公司保留对该活动的解释权,产品详情以及minimate膜包资料,请下载:颇尔切向流超滤系统手册   附件1 minimate系统产品试验申请单.doc   附件2 颇尔切向流超滤系统手册.pdf
  • 科技部:科研项目和资金管理将简化流程接受监督
    1月9日电,科技部部长万钢9日表示,科研项目和资金管理改革是科技管理改革的重要突破口,今年将简化项目管理流程,并完善信息公开制度,接受社会监督。   记者从当日在京召开的全国科技工作会议上获悉,2013年国家科研项目和资金管理改革迈出了新步伐。科技部会同财政部研究起草了《关于改进加强中央财政科研项目和资金管理的若干意见》,制定了《国家科技计划及专项资金后补助管理规定》。科技部还会同中组部等9家单位开展了改进&ldquo 科研项目评审、人才评价、机构评估&rdquo 工作,经初步梳理整合,&ldquo 三评&rdquo 项目压缩28%,评审机制进一步完善。   万钢指出,目前科技管理方式与快速增长的科研资金和日益复杂的科技创新活动还不相适应,面向科学研究、技术开发和创新活动的分类管理机制尚未真正建立,科技管理的效率和质量需要进一步提升。他透露,今年科技工作的一项重点任务就是要落实科研项目和资金管理改革意见,统筹规划、分类指导,重大项目要突出国家目标、基础前沿项目要突出创新导向、公益性项目要聚焦重大需求、市场导向类项目要突出企业主体。   此外,还将完善信用管理制度,建立倒查机制。将查实的严重不良信用记录者记入黑名单并进行相应处理 健全经费巡视检查机制和过程监管,建立责任倒查机制,根据出现的问题倒查项目管理部门相关人员,查实后依据相关规定严肃处理。
  • 安东帕全面接手Petrotest中国区业务
    2012年3月,奥地利安东帕公司成功收购德国Petrotest集团 (现为Petrotest GmbH, A Company of Anton Paar)以后,经过一年与代理商的业务转型过渡,现在安东帕中国已经全面接手Petrotest产品在中国区的所有业务。并于2013年1月1日起终止对前代理商德祥科技有限公司在大中华区的授权协议。 奥地利安东帕有限公司(ANTON PAAR GMBH)是一家以研制工业及科研专用之高品质测量和分析仪器为主导的企业,在测量技术方面的多个领域处于世界领先地位。公司成立于1922年,总部位于奥地利格拉茨,至今已有八十余年的历史。用户包括全球最大的软饮料、啤酒公司以及食品、石油化工企业等。 Petrotest公司是有着悠久历史的家族企业。在1873年由Berthold Pensky独自创办(注:宾斯基-马丁闭口闪点仪发明人之一)。这家公司成为以宾斯基-马丁方法测试石油产品闪点著称的仪器公司,其客户是遍布全球的石油精炼,生物燃料,汽车、沥青、化工、饮料、食品行业等行业。 Petrotest集团的产品对安东帕的产品线而言是完美的补充。两家公司对现有技术的结合将产生积极的协同作用并更有利开发中新型的测量仪器。我们的战略目标很明确:为石油领域实验室的用户提供更为全面的测量仪器,我们要成为更多行业用户首选的合作伙伴。 目前Petrotest公司产品涵盖闪点测试、馏程测定、燃料油检测(胶质、氧化 安定性测定、蒸汽压测定、铜片腐蚀等),润滑油测定(抗乳化性能、泡沫特性、防锈测定、摩擦磨损等),沥青测定(软化点、延度、脆点、针入度等),针、锥 入度测定等。依托于安东帕公司精湛的制造工艺,以及一贯的研发投入,Petrotest公司将会在今后为行业客户提供更优质的产品和服务。 拳头产品简介: 安东帕petrotest全自动闭口、开口闪点测定仪 宾斯基马丁闭口闪点方法的创始人,拥有140年历史,久经考验的各类闪点测定仪 安东帕Petrotest全自动常压蒸馏馏程测定仪 宾斯基马丁闭口闪点方法的创始人,拥有140年历史,欧洲最著名的石化测试仪器制造商之一,精确、可靠、稳定、耐用的常压蒸馏馏程测定仪 Petrotest产品将为安东帕公司在中国市场的迅猛发展添砖加瓦,并致力于提供更全面完整的行业解决方案。安东帕对petrotest的前景寄予厚望,并将在2013年为中国客户创造更有专业水准的服务,取得更卓越的成就。
  • 世界首台套井下大功率电加热提干装置 试验成功
    截至3月20日,在曙采超稠油蒸汽驱杜84-33-69井现场,辽河油田采油工艺研究院井下大功率电加热提干装置,自1月11日成功投运,已连续平稳运行70天,加热功率突破1兆瓦,在每小时5.5吨的注汽速度下,井底蒸汽干度提高36%。超稠油蒸汽驱杜84-33-69井现场这标志着世界首台套1兆瓦井下大功率电加热蒸汽提干装置试验成功,迈出了辽河油田实现能耗及碳排总量双控降的坚实一步,在国内外稠油热采领域开辟出一条崭新的绿电消纳、降碳减排之路。研究背景作为国内陆上最大的稠油生产基地,辽河油田主要通过蒸汽锅炉实现注蒸汽热采开发,期间产生的热损失会极大增加能耗和碳排放量,严重制约油田绿色低碳转型发展。油田生产现场为实现国家“碳达峰、碳中和”目标,辽河油田围绕集团公司“清洁替代、战略接替、绿色转型”发展战略,加大清洁能源替代和控碳减碳力度,油田公司加大了井下大功率电加热技术攻关力度,按照 400千瓦、1兆瓦、3兆瓦“三步走”战略部署开展技术攻关与应用,助力辽河油田实现绿色转型发展。井下大功率电加热技术采油院企业高级专家张福兴表示:“以往稠油注汽都是在井口烧天然气,这套装置通过电加热器实现井口内外转换,可以在井下对蒸汽进行二次加热,相当于一个地下的清洁锅炉,大大提高了加热效率,可以通过降低锅炉出口干度的方式减少天然气用量,与此同时通过电加热达到提升井底蒸汽干度的效果。”井下大功率电加热技术工作原理看似简单,但每次技术升级难度极大。十三年的攻关历程,才带来了井下大功率电加热技术的成功突破。2011年:率先研发出150千瓦、450℃电点火装备,在多个油田推广应用90余井次,增油降本效果显著。2021年:成功研发出国内领先的400千瓦井下大功率电加热提干技术。2022年:着手研究1兆瓦井下大功率电加热技术。2023年:成功研发出世界首台套1兆瓦井下大功率蒸汽提干装置。从400千瓦到1兆瓦,意味着什么?张福兴表示,这是革命性、颠覆性的突破。科研人员多次深入现场在没有任何成熟经验借鉴参考下,科研团队通过成百上千次理论计算、仿真模拟及室内试验,历时15个月研发,成功突破450℃高温、4千伏高电压绝缘、每米5000瓦高功率密度、外径38毫米极限预制工艺、井口长期高温高压密封技术等7大行业性难题,总体技术达到国际领先水平。项目组计划在深层SAGD、超稠油蒸汽驱开展包括杜84-33-69井在内的3口井先导试验3年,试验期内预计总节约天然气36.75万方,累增油1.2万吨。下一步,项目组将依托集团公司科技专项《稠油大幅度提高采收率关键技术研究》及板块公司先导试验项目《稠油开发井下大功率电加热技术研究与试验方案》,推动传统地面燃气锅炉向新型井下清洁蒸汽发生器转变,在规模推广1兆瓦大功率电加热技术的基础上,加快攻克3兆瓦井下蒸汽发生技术,全面提升电气化率,完成能耗结构调整、实现绿色转型发展。到2030年,井下大功率电加热技术将在辽河油田超稠油蒸汽驱、深层SAGD等领域实现规模应用。从世界首座电热熔盐储能注汽试验站到世界首台套1兆瓦井下大功率电加热蒸汽提干装置,永攀科研高峰的辽河人不惧失败不畏挑战再次攻克难关创造奇迹。
  • 杰青/优青公布|2023国家自然科学基金集中接收申请项目评审结果
    最新出炉!杰青415、优青630项!8月24日最新消息,国家自然科学基金委员会发布了《关于2023年国家自然科学基金集中接收申请项目评审结果的通告》。关于2023年国家自然科学基金集中接收申请项目评审结果的通告2023年国家自然科学基金项目申请集中接收期间,国家自然科学基金委员会(以下简称自然科学基金委)共接收项目申请304333项,经初审和复审后共受理303329项。根据《国家自然科学基金条例》、国家自然科学基金相关项目管理办法和专家评审意见,经自然科学基金委委务会议审批,资助面上项目20321项、重点项目751项、重点国际(地区)合作研究项目74项、青年科学基金项目22879项、优秀青年科学基金项目630项、优秀青年科学基金项目(港澳)25项、国家杰出青年科学基金项目415项、创新研究群体项目43项、地区科学基金项目3538项和外国学者研究基金项目109项(包括外国优秀青年学者研究基金项目50项、外国资深学者研究基金项目59项)。集中接收期间接收的其他类型项目正在评审或审批过程中。依托单位科学基金管理人员和申请人可于8月24日以后登录科学基金网络信息系统(https://grants.nsfc.gov.cn)查询相关申请项目评审结果。自然科学基金委将于8月24日至25日使用report@pro.nsfc.gov.cn电子邮箱向申请人发送申请项目批准资助通知、不予资助通知以及专家评审意见。随后,将向相关依托单位寄发纸质项目资助结果通知,并附资助项目清单和不予资助项目清单。未获资助的申请人如对不予资助决定有异议,可向自然科学基金委提出不予资助项目复审申请,相关注意事项详见附件。欢迎各依托单位和科研人员对国家自然科学基金项目评审工作提出意见和建议。附件:2023年国家自然科学基金不予资助项目复审工作注意事项国家自然科学基金委员会2023年8月22日 附件2023年国家自然科学基金不予资助项目复审工作注意事项按照《国家自然科学基金项目复审管理办法》(以下简称《办法》,详见自然科学基金委官方网站首页“政策法规”栏目)规定,申请人如对不予资助决定有异议,可向自然科学基金委提出不予资助项目复审申请。相关注意事项如下。一、提出复审申请1.不予资助项目复审申请接收工作自8月24日开始,9月13日16时截止。2.不予资助项目复审申请人登录科学基金网络信息系统(以下简称信息系统,https://grants.nsfc.gov.cn),在线填写不予资助项目复审申请表。登录用户名和密码如有遗忘,可向本单位科研管理部门索取。3.不予资助项目复审申请人打印1份复审申请表,确认纸质与电子复审申请表内容一致,并在纸质复审申请表上签字后,以快递方式寄送(以邮戳日期为准)相关科学部综合与战略规划处。二、受理复审申请自然科学基金委各科学部负责受理复审申请。请注意,具有《办法》第八条所列以下情形之一的复审申请将不予受理:(一)非项目申请人提出复审申请的;(二)提交复审申请的时间超过规定截止日期的;(三)复审申请内容或者手续不全的;(四)对评审专家的评审意见等学术判断有不同意见的。对不予受理的复审申请,由科学部告知复审申请人不予受理决定和原因。三、审查复审申请1.自然科学基金委各科学部负责受理和审查复审申请,审查依据是《办法》、国家自然科学基金相关类型项目管理办法和《2023年度国家自然科学基金项目指南》。2.自然科学基金委相关科学部将在11月1日前,将复审审查结果书面通知申请人。3.依托单位科研管理部门可通过信息系统随时查看本单位复审申请人复审申请的提交情况与处理结果。非集中接收期受理项目的不予资助复审工作参照上述程序进行。
  • 台积电2024-2025年将接收超60台EUV光刻机
    7 月 1 日消息,据台媒《工商时报》报道,台积电将在 2024~2025 年接收超 60 台 EUV 光刻机,而其今明两年在 EUV 光刻机上的投入将超 4000 亿新台币(IT之家备注:当前约 896.61 亿元人民币)。报道表示,ASML 的 EUV 光刻机目前供应紧张,从下单到交付的整体周期已达 16~20 个月。台积电今明两年将分别下达约 30 和 35 台的 EUV 光刻机订单,这些订单中的大部分将从 2026 年开始交付。台媒援引供应链消息指出,ASML 对 2025 年产能的规划是 20 台 High-NA EUV 光刻机、90 台 EUV 光刻机和 600 台 DUV 光刻机。 ASML 目前最先进的 0.33NA EUV 光刻机 NXE:3800E根据台积电官方路线图,其目前已规划的最先进工艺 16A 将于 2026 年量产,仍采用传统 0.33NA EUV 光刻机。换句话说,台积电暂未考虑在量产制程中导入 High-NA。虽然 ASML 方面已确认将在 2024 年内向台积电交付 High-NA EUV 光刻机,但这一机台仅用于制程开发目的。台媒也表示,台积电暂无在 2025~2026 年引入量产用 High-NA EUV 光刻机的规划。
  • 赛默飞71万欧元中标中科院多接收等离子体质谱仪
    中国科学院地质与地球物理研究所多接收等离子体质谱仪采购项目中标公告   招标编号:OITC-G12032167   采购人名称:中国科学院地质与地球物理研究所   采购代理机构全称:东方国际招标有限责任公司   采购项目名称:中国科学院地质与地球物理研究所多接收等离子体质谱仪采购项目   定标日期:2012年5月22日   招标公告日期:2012年6月11日   公告信息如下:   第1包 多接收等离子体质谱仪 1套   中标供应商名称:赛默飞世尔科技(中国)有限公司   中标金额:71万欧元   评标委员会成员名单:戴琳、蒋秀高、孙家跃、李振声、谭明   本项目联系人:窦志超   联系电话:010-68725599-8447   感谢各供应商对本项目的积极参与,未获中标的供应商请于即日起5个工作日内到我公司办理保证金退回事宜。   东方国际招标有限责任公司   2012年6月11日
  • 800万!浙江大学多接收电感耦合等离子体质谱仪采购项目
    项目编号:ZUPC-GK-HW-2022018G项目名称:多接收电感耦合等离子体质谱仪预算金额:800.0000000 万元(人民币)最高限价(如有):800.0000000 万元(人民币)采购需求:多接收电感耦合等离子体质谱仪 一套,详见标书文件。合同履行期限:合同签订后8个月内。本项目( 不接受 )联合体投标。
  • 关于实验室移液器吸头,你一定要知道的
    关于实验室移液器吸头,你一定要知道的——梅特勒-托利多RAININ移液器吸头小贴士 1.使用合适的吸头:为确保更好的准确性和精度,建议移液量在吸头的35%-100%量程范围内。 2.吸头的安装:对于大多数品牌的移液器,特别是多道移液器,安装吸头并非易事:为追求良好的密封性,需要将移液套柄插入吸头后,左右转动或前后摇动用力上紧。也有人会用移液器反复撞击吸头来上紧,但这样操作会导致吸头变形而影响精度,严重的则会损坏移液器,所以应当避免出现这样的操作。RAININ(瑞宁)的多道移液器没有O型环,配合有前挡点的吸头,只需轻压一下即可达致理想密封,实在是多道移液器使用者的福音。 3.吸头浸入角度和深度:吸头浸入角度控制在倾斜20度之内,保持竖直为佳;吸头浸入深度建议如下所示:移液器规格 吸头浸入深度2μL和10 μL 1 mm20μL和100 μL 2-3 mm200μL和1000 μL 3-6 mm5000 μL和10 mL 6-10 mm 4.吸头润洗:对常温样品,吸头润洗有助于提高准确性;但是对于高温或低温样品,吸头润洗反而降低操作准确性,请使用者特别注意。 5.吸液速度:移液操作应保持平顺、合适的吸液速度;过快的吸液速度容易造成样品进入套柄,带来活塞和密封圈的损伤以及样品的交叉污染。 专家建议: 1、移液时保持正确的姿势;不要时刻紧握移液器,使用带指钩的移液器帮助缓解手部疲劳;有可能的话经常换手操作。2、定期检查移液器的密封状况,一旦发现密封老化或出现漏液,须及时更换密封圈。3、每年对移液器进行1-2次校正(视使用频率而定)。4、绝大多数移液器,在使用前和使用一段时间后,要给活塞涂上一层润滑油以保持密封性;而对于RAININ常规量程的移液器,不涂润滑油也同样拥有理想的密封性。
  • 生化类检测试剂全国联采开启,江西牵头开展
    又一全国高值医用耗材集采启动!7月10日,江西医保局发布《关于糖代谢等生化类检测试剂拟集采品种的公示》,江西省拟牵头开展糖代谢等生化类检测试剂集中带量采购,初步遴选出32个品种,公示时间截至7月16日。这是国家医保局集采提质扩面相关文件下发后,2024年首个全国性的体外诊断试剂集采项目。此前,福建牵头开展血管组织闭合用结扎夹联盟采购已经开始。5月14日,国家医保局发布《关于加强区域协同做好2024年医药集中采购提质扩面的通知(医保办发〔2024〕8号)》。这个被业界称为“8号文件”的通知指出,按照“一品一策”的原则,适时开展新批次国家组织高值医用耗材集采。其中明确:江西牵头开展生化类体外诊断试剂联盟采购、安徽牵头开展肿瘤标志物等体外诊断试剂联盟采购、广东牵头开展超声刀头联盟采购、浙江牵头开展乳房旋切针联盟采购、福建牵头开展血管组织闭合用结扎夹联盟采购、河南牵头开展冠脉切割球囊等联盟采购、河北牵头开展血管介入等耗材联盟采购,项目均被列为国家医保局重点指导项目。此前,福建牵头开展血管组织闭合用结扎夹联盟采购已经启动。根据江西发布的公告,目前已经初步遴选出32个品种并进行公示,涉及糖代谢、离子微量元素、血脂和脂蛋白、肝功类、胰腺类、肾功类6个类别。7月14日,北京中医药大学卫生健康法治研究与创新转化中心主任邓勇接受人民日报健康客户端记者采访时介绍,国家医保局在集采品种选择上加强统筹协调,加大扩围力度,减少国家和地方集采品种间交叉重叠,做到国家和地方互为补充,体现了集采工作提质扩面的决心,患者的医疗费用负担将进一步减轻。
  • 世界首台三代核电AP1000主泵第三次中间试验成功
    据国家核电技术公司最新消息,世界首台第三代核电AP1000屏蔽电机主泵第三次中间试验,于美国当地时间2010年5月17日在位于宾夕法尼亚州匹兹堡市的美国科蒂斯怀特(CURTISS-WRIGHT)公司EMD主泵制造厂取得成功,向取得最终鉴定试验成功迈出了重要一步。   此次试验于当地时间5月13日正式启动,至5月17日,主泵冷态运行试验、热态性能试验、电机性能试验、转子刚度试验等试验项目全部完成。试验结果达到了设定的8个期望目标,即:惰转曲线平滑 轴承没有出现异常噪音 没有出现过度振动 推力瓦载荷探头所测数据表明推力载荷均匀分布 轴向推力载荷在推力轴承允许范围内 径向轴承所受载荷在径向轴承允许范围内 水力性能显示扬程和流量在要求范围内 压力扫描结果表明转子弯曲非常小,可接受。   EMD和西屋公司将在未来12个月内完成主泵的最终鉴定试验,以满足主泵按合同进度向我国第三代核电自主化依托项目浙江三门核电站一期工程和山东海阳核电站一期工程按期供货的进度要求。   相关专家表示,AP1000核电反应堆冷却剂循环泵要求采用立式、单级、离心式整体封闭式屏蔽电机泵,功率达到5500千瓦。   专程赴美见证该项试验的国家核电技术公司董事长王炳华指出,AP1000屏蔽电机主泵技术引进和设备制造国产化,是我国第三代核电技术引进中最关键的课题。本次中间试验取得成功,是我国第三代核电自主化依托项目核岛关键设备制造进程中实现的一项重大突破。   王炳华介绍,第三代核电AP1000屏蔽电机主泵具有更高的先进性,加大了电机功率,设计要求做到60年运行期间无需维修。作为首次应用于核电站建设的AP1000屏蔽电机主泵,需要做一系列的台架试验来验证其设计和制造性能。
  • 美国康塔仪器公司全面接手DT产品的中国业务
    美国康塔仪器公司全面接手DT产品的中国业务 (2010年7月31日) 2010年7月,美国康塔仪器公司(Quanatachrome Instruments)与美国分散技术公司(Dispersion Technology, Inc)签署协议,由康塔公司中国分部负责 DT全系列产品在中国及其周边地区的市场,销售及服务。 美国分散技术公司(DTI)成立于1996年,主要开发和生产用超声技术表征异相系统的科学仪器,包括在高浓体系中测定粒度分布,Zeta电位,流变性质,以及多孔固体材料的孔隙率等参数。典型的高浓体系包括CMP浆料、纳米分散系统、陶瓷浆料、电池浆料、水泥、药品乳液、水煤浆、钻井泥浆等等。作为超声粒度分析方法的技术领导者,DTI产品成为超声粒度分析的ISO标准,并且已经出版两本科学著作。 美国康塔仪器公司与DTI有着长期友好合作关系,并在欧洲成功推广DT产品十余年。现任美国康塔仪器公司中国区经理的杨正红先生,作为国内知名的粒度分析专家十分关心超声粒度分析技术的发展,并早在1999年就拜访过该公司,并结识了该公司总裁Andrei Dukhin 博士。今天,这项技术终于可以被全面引入中国,为中国的科学和技术的现代化助力。由此,康塔公司与DTI的合作由欧洲开始向整个亚洲地区扩展。 为什么要关注声学? 数代胶体科学家如果不结合声学能成功吗? 事实上,声学的用处可能至今没有被广泛了解。胶体中的声学现象引起了许多知名的科学家的注意,如:斯托克斯,瑞利,麦克斯韦,亨利,廷德尔,雷诺,德拜。另一个鲜为人知的事实是:散射理论的创始人洛德&bull 瑞利把他很重要的一本书命名为&ldquo 声音理论&rdquo 他把散射理论中的计算方式主要运用到了声音,而不是用在光学的研究中。在他的工作中,只在一两段&ldquo 为什么天空是蓝的&rdquo 的探讨中用到了光的知识。 如果声学很重要,那为什么在胶体科学中却长久不为人所知? 声学方法得不到传播,可由一些综合因素来解释:廉价的激光单色光光源,产生单频声束所遇到的技术问题,理论计算的复杂性, 原始数据复杂的统计分析。随着计算机的快速发展和新理论研究方法的出现,今天这些问题中的大多已经解决。 利用超声仪器会得到哪些信息? 对于胶体体系,超声技术会提供关于颗粒表征的三个重要领域的信息: 粒径分布,流变学和电动学。 一个声谱仪能测量超声波的衰减,声音的传播速度和(或)声阻抗。所检测到的声学性质包含了胶体的粒度分布,体积浓度以及胶体结构和热力学性质的信息。我们能通过运用相应的理论假设和先前的一些参数从中提炼出这些信息。所以,声谱仪不仅仅是一个粒度分析的仪器,通过施加在胶体上的声波和压力,我们根据其响应还可以阐释胶体的流变学性质。 超声技术比起传统表征技术有哪些优势? 超声技术有很多优势。与传统的表征方法相比,超声技术的一个最大优点就是超声波能够穿透高浓悬浮液进行传播,因而不用任何稀释即可表征原浓体系。超声法的这个特性对于粒径分布分和&zeta 电位测量均适用。传统技术所需要的稀释会破坏聚集或絮凝,所以在相应稀释系统中测得的粒径分布无法正确代表原浓样品中的相应粒径分布信息。 避免稀释对于&zeta 电位的表征特别关键,因为这个参数代表的是粒子与其周围液体的性质,稀释改变了悬浮液介质进而导致&zeta 电位的改变。 第二,声学理论是非常完善和精确的,其对于污染物的敏感度相对于基于光的传统测量技术来说要小得多,因为粒子在新样品中的高浓度与前样中任何一种小的残留相比占绝对优势。它是一种相当快速的技术。通常一次单一粒径测量能够在几分钟内完成,另外,这种特性能够测量流动体系,使得声衰减技术对于在线监控粒径方面具有很强吸引力。 第三个超声法与传统胶体表征方法相竞争的领域是流变学领域,这是超声应用的新领域。我们可以轻而易举的列出超声法与传统流变仪相比的两个优点。首先超声测量法没有破坏性,能帮助我们获得最高频率的流变性质信息而且保持样品的完整性。第二个优点是,除了能表征剪切黏度,还具有表征体积黏度的能力。Stokes在150年前就已经发现了这个原理,体积黏度对体系的结构特征更灵敏,但是它不能用基于剪切力测定技术的旋转流变仪进行测量,超声波衰减是已知的唯一能够表征这个重要流变参数的技术。 DT 的超声探头使得粒度和zeta电位测量和维护像进行pH值测量一样简单、快速和方便,其代表性的型号包括: DT-1200型高浓度粒度及Zeta电位分析仪:  - 所检测粒径范围款从5nm至 1000um  - 可测量Zeta电位、超声波频率、电导率、pH、温度、声衰减、声速、电声信号,动态迁移率、等电点(IEP)和流变性质(选件)  - Zeta电位测量范围:无限制, 低表面电荷可低至0.1mV, 高精度(± 0.1mV)  - 允许样品浓度:0.1~50%(体积百分数)以上  - pH 范围:0.5~13.5 DT-300系列探头式多频电声Zeta电位分析仪:  - 电导率范围:0.0001~10 S/m  - 温度范围: 50℃  - 最大黏度:20,000厘泊  - 电位滴定和体积滴定,滴定分辨率0.1&mu l DT-600 超声流变仪  - 纵向黏度(Longitudinal viscosity )范围(cP): 0.5-20000 ± 3%  - 体积黏度&ndash 牛顿体系 (cP) : 0,5-100 ± 3%  - 液体可压缩性 104/Pa-1: 1-30 ± 3%  - 牛顿试验&ndash MHz 范围 - - 任意 欢迎致电美国康塔仪器公司北京代表处垂询! 电话:800-810-0515 网址:www.quantachrome-china.com
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制