当前位置: 仪器信息网 > 行业主题 > >

剥片机

仪器信息网剥片机专题为您提供2024年最新剥片机价格报价、厂家品牌的相关信息, 包括剥片机参数、型号等,不管是国产,还是进口品牌的剥片机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合剥片机相关的耗材配件、试剂标物,还有剥片机相关的最新资讯、资料,以及剥片机相关的解决方案。

剥片机相关的资讯

  • 和晟发布九工位电池片剥离试验机新品
    上海和晟九工位电池片拉伸测试仪测试过程中采用全数字化力量、位移、速度三闭环控制,采用日本松下交流伺服马达及控制驱动系统,配合美国铨力高精度传感器加台湾TBI高精密滚珠丝杆传动,本试验机可安装九个力量传感器,配合我公司自主研发专用软件,可达到九个传感器同时使用,并且测试数据可同时显示在电脑软件上,操作无误差,方便好用。本试验机采用调速精度高、性能稳定的日本松下数字式交流伺服马达及驱动控制系统;特别设计的同步齿型带减速系统和滚珠丝杠副带动试验机的移动横梁运动;以Windows为操作平台的基于数据库技术的控制与数据处理软件采用了虚拟仪器技术代替传统的数码管、示波器,实现了试验力、试验力峰值、横梁位移、试样变形及试验曲线的屏幕显示,所有的试验操作均可以在计算机屏幕上以鼠标输入的方式完成,具有良好的人机界面,操作方便;插装在PC机内的双通道全数字程控放大器实现了真正意义上的物理调零、增益调整及试验力测量的自动换档、调零和标定,无任何模拟调节环节,控制电路高度集成化,完全取消了电位器等机械调整器件,结构简单,性能可靠。上述各项技术的综合应用,保证了该机可以实现试验力、试样变形和横梁位移等参量的闭环控制,可实现恒力、恒位移、恒应变、等速度载荷循环、等速度变形循环等试验。用户可以使用PC机专家系统自主设置恒应力、恒应变、恒位移等控制模式,各种控制模式之间可以平滑切换。程控模式满足国家标准GB/T6497-1986《地面用太阳能标准一般规定》、GB/T6495.2-1996、GB/T6495.5-1996为试验数据的再分析、数据库管理、网络传输等后处理提供了方便。 由于该试验机实现了试验过程的自动控制和试验结果的信息化处理,可使操作人员方便、自主地设置试验程控步骤。在进行拉伸试验时,可以使试验者清晰地观察低碳钢、铸铁等整个试验过程。通过在不同曲线段的反复加载,由力—位移(变形)曲线,可以直观的验证虎克定律和观察冷作硬化现象。对无明显物理屈服现象的材料,可以选用滞后环法或逐步逼近法测定规定非比例延伸强度。 本试验机专业用于太阳能行业电池片180度剥离强度试验,卧式结构省空间,操作方便;九工位同时拉伸可减少人工操作及节约测试时间。本机采用电脑控制,专业测试程序用于数据分析处理,结合高分辨率力量采集传感器及高精数据处理芯片,呈现于客户直观的的性能曲线及客户要求的处理后数据值使更直观准确了解产品性能,从而提高产品质量。 二、技术规格:1、 试验力50kg内任选;2、试验机准确度等级:0.5级;3、试验力测量范围:0.2%—100FS;4、试验力示值相对误差:示值的±1%以内;5、试验力分辨力:试验力的1/±300000(全程分辨力不变);6、位移示值相对误差:示值的±0.5%以内;7、位移分辨力:0.001mm;8、力控速率调节范围:0.1-5%FS/S;9、力控速率相对误差:设定值的±1%以内;10、横梁速度调节范围:0.05—1000mm/min;11、横梁速度相对误差:设定值1%以内;12、恒力、恒变形、恒位移控制范围:0.5%--100FS;13、恒力、恒变形、恒位移控制精度:设定值18、主机重量:约140kg19、 拉力角度应为180±2度;20、 要求定速度、定位移、定荷重等控制方式可选;21、 根据负荷大小自动切换到适当的量程,以确保测量数据的准确度;22、 要求自主拆卸调整传感器及夹具部件,可做五工位测试;23、 要求控制程序灵敏度高,满足高频次使用连贯性;24、 配置专用电脑;25、 测试软件要求中英文兼备;26、机台配备标准铝合金机架。 三、软件测试功能简介A.载荷位移曲线;载荷、时间曲线;位移、时间曲线;应力、应变曲线。B.根据各国对试片的要求编辑相应的测试标准,填写试品资料,编辑测试方法,并可供日后测试选择。C.自动储存本次试验结果,并可将其编辑为报表打印输出。有公式编辑功能,可对多个已测试的曲线进行对比。D.可设定小数点位数,各物理量单位及密码保护等。E.自动清零:计算机接到试验开始指令,测量系统便自动清零;F.自动回归:自动识别试验力,活动横梁自动高速返回初始位置;G.自动存档:试验资料和试验条件自动存盘,杜绝因突然断电忘记存盘引起的资料丢失;H.测试过程:试验过程及测量、显示、分析等均由微机完成;I.显示方式:数据和曲线随试验过程动态显示;J.结构再现:试验结果可任意存取,可对数据曲线再分析;K.曲线遍历:试验完成后,可用鼠标找出试验曲线逐点的力值和变形数据,对求取各种材料的试验数据方便实用;L.结果对比:多个试验特性曲线可用不同颜色迭加、再现、放大、呈现一组试样的分析比较;M.曲线选择:可根据需要选择应力应变、力时间、强度时间等曲线进行显示和打印;N.批量试验:对参数相同的试验一次设定后可顺次完成一批试样的试验;O.试验报告:标准格式;P.限位保护:具有程控和机械两级保护;Q.过载保护:当负载超过额定的10%时自动停机;紧急停机:设有急停开关,用于紧急状态切断整机电源;自动诊断:系统具有自动诊断功能,定时对测量系统,驱动系统进行过压、过流、超温等到检查,出现异常情况即刻停机;R.试验主机和微机独立操作。创新点:本试验机可安装九个力量传感器,配合我公司自主研发专用软件,可达到九个传感器同时使用,并且测试数据可同时显示在电脑软件上,操作无误差,方便好用。 九工位电池片剥离试验机
  • 芯片上“长”出原子级薄晶体管
    美国麻省理工学院一个跨学科团队开发出一种低温生长工艺,可直接在硅芯片上有效且高效地“生长”二维(2D)过渡金属二硫化物(TMD)材料层,以实现更密集的集成。这项技术可能会让芯片密度更高、功能更强大。相关论文发表在最新一期《自然纳米技术》杂志上。这项技术绕过了之前与高温和材料传输缺陷相关的问题,缩短了生长时间,并允许在较大的8英寸晶圆上形成均匀的层,这使其成为商业应用的理想选择。新兴的人工智能应用,如产生人类语言的聊天机器人,需要更密集、更强大的计算机芯片。但半导体芯片传统上是用块状材料制造的,这种材料是方形的三维(3D)结构,因此堆叠多层晶体管以实现更密集的集成非常困难。然而,由超薄2D材料制成的晶体管,每个只有大约三个原子的厚度,堆叠起来可制造更强大的芯片。让2D材料直接在硅片上生长是一个重大挑战,因为这一过程通常需要大约600℃的高温,而硅晶体管和电路在加热到400℃以上时可能会损坏。新开发的低温生长过程则不会损坏芯片。过去,研究人员在其他地方培育2D材料后,再将它们转移到芯片或晶片上。这往往会导致缺陷,影响最终器件和电路的性能。此外,在晶片规模上顺利转移材料也极其困难。相比之下,这种新工艺可在8英寸晶片上生长出一层光滑、高度均匀的层。这项新技术还能显著减少“种植”这些材料所需的时间。以前的方法需要一天多的时间才能生长出一层2D材料,而新方法可在不到一小时内在8英寸晶片上生长出均匀的TMD材料层。研究人员表示,他们所做的就像建造一座多层建筑。传统情况下,只有一层楼无法容纳很多人。但有了更多楼层,这座建筑将容纳更多的人。得益于他们正在研究的异质集成,有了硅作为第一层,他们就可在顶部直接集成许多层的2D材料。
  • 生物医学玻璃的激光微加工—芯片实验室
    相信大家在部分科幻电影或动漫中,常常能看到可以植入人体的芯片,用来监控身体各个参数、增强人体机能和神经反应。芯片一旦植入,普通人就变身成为神秘特工或战士。而现实中随着马斯克的脑机接口正在一步步迈向临床,AlphGo把人类棋手完虐等以前只能在科幻电影中见到的“未来科技”,逐步在现实生活中出现的时候,拥有“小身材有大智慧”的AI芯片似乎也能够梦想照进现实了。事实上,如今已有一些“芯片实验室(Lab-on-a-chip)”出现了,并且其发展速度是非常快的!芯片实验室什么是“芯片实验室(Lab-on-a-chip)”?简单地说,能够将整个在实验室中进行的基本操作单位集成到简单微系统上的技术就叫“芯片实验室”。“芯片实验室”中的芯片是作为流体在其中流动的微通道图案,可被模塑或刻蚀。微通道和外部宏观环境之间的连接需要通过若干孔,这些孔穿透芯片,具有不同的尺寸,用于将流体注入芯片或从芯片中移除。在微流控芯片中,根据实验需要,流体被混合、分离或引导。终结果可形成自动复合系统,从而实现高通量检测。在生物医学应用领域,芯片实验室可以实现快速诊断。芯片实验室技术有望成为一种重要的诊断工具。这些微型化的设备使医疗保健服务提供方可以使用非常少量的试剂和测试样本执行一系列诊断测试。此外得益于它们的便携性,还可以在远离实验室环境的现场进行测试。制作芯片实验室(Lab- on-a-chip)或微流控芯片(Microfluidic chip)的材料主要是玻璃,受限于芯片的微尺度特性,在制备过程中,对玻璃进行激光微加工有着很高的要求。制作芯片实验室的大挑战之一是在玻璃芯片内部加工高精度管道、容器和阀门。挑战:玻璃微加工由于其脆性和透明性,玻璃中进行微小的特征加工进行是相当困难的。如果使用常规工具手段,实际上是不可能的。但是快激光器可以胜任这种加工。当脉冲持续时间低于几十皮秒时,激光与材料的相互作用进入冷烧蚀状态,加工质量和精度会变得很高。常规的微制造方法,例如光刻,压印和软蚀刻,已经用于制备微流体芯片。然而,当要实现具有多功能集成的复杂微流控芯片时,这些方法将面临巨大挑战,因为它们需要太多工艺步骤,并且成本很高。刻蚀来啦▲由NKT Photonics的ORIGAMI XP飞秒激光制备的芯片实验室样品大功率快激光脉冲穿透玻璃。紧聚焦的飞秒激光脉冲可以经济地生产具有多功能的通用微流控芯片。短脉冲宽度提供了令人难以置信的峰值功率,即使在透明材料中,也可以进行表面和块状材料内部的改性以进行划线。▲飞秒激光加工的芯片沟道特写快激光确保加工的高精度和高质量。通过利用激光的高度空间选择性,可以将相互作用区域地设置在材料的特定局部区域。这使得飞秒加工技术可以在透明材料中以微尺度对复杂的三维形状进行非常高分辨率的图案化和雕刻。▲深度小于10 μm的沟道特写NKT快激光器可以实现非常精细的深度和通道宽度控制飞秒级短脉冲宽度比材料中的电子-声子耦合过程都短,因此短的飞秒脉冲宽度,意味着在飞秒时间尺度传递能量,这能很好的抑制热影响区的形成和热损害。这种“冷烧蚀”方式实现了高精度和高分辨率的微加工处理,并具有的处理可靠性。紧密聚焦的光束可以在微尺度上非常高分辨率地对复杂形状进行微加工。▲用ORIGAMI XP飞秒激光处理过的芯片实验室样品的特写图片展示为芯片中直径约0.6 mm的圆形储集层NKT Photonics:我们来提供NKT Photonics的快激光提供的短脉冲非常适合用于制备芯片实验室器件。我们强烈建议将ORIGAMI XP用于玻璃和其他透明材料的激光加工。ORIGAMI XP是一款集成、单箱、微焦级飞秒激光器。激光头、控制器和空气冷却系统都集成在一个小巧而坚固的包装中,体积小,甚至可以放在手提行李中! ORIGAMI XP系统基于紧凑的啁啾脉冲放大技术平台,能够在1030 nm处提供高达75μJ的脉冲能量,5 W的平均功率以及小于400 fs的脉冲持续时间。 特点:• 风冷,单箱体,易于集成• • 双输出波长模块• 的脉冲能量和指向稳定性• 工业,坚固的设计• 可以任意方向安装• 实时脉冲能量测量和控制?• 高可靠性• 亦可用水冷 北京凌云光技术集团作为NKT Photonics公司在中国的战略合作伙伴,多年的合作中NKT Photonics公司与凌云始终如一,为客户不断提供更稳定、更先进、更前沿的技术,如果您对以上产品感兴趣,请拨打400 898 0800 电话问询!
  • 伯东 inTEST 高低温测试机应用于车规级芯片测试
    车规级芯片的特殊要求,决定研发企业在芯片设计之初就要考虑多层面问题:芯片架构,IP选择,前端设计,后端实现,各合作伙伴的选择;从设计全周期考虑产品零失效率以及车规质量流程和体系的建立。一套芯片,从设计到测试、到前装量产的每一个环节都有着考验。获得车规级认证也需要花费很长的时间。而在车规级芯片可靠性测试方面,ThermoStream ATS系列高低温测试机有着不同于传统温箱的独特优势:变温速率快,每秒快速升温/降温15°C,实时监测待测元件真实温度,可随时调整冲击气流温度,针对PCB电路板上众多元器件中的某一单个IC(模块),单独进行高低温冲击,而不影响周边其它器件。伯东inTEST高低温测试机应用于车规级芯片测试案例国际某知名半导体芯片设计公司在汽车行业拥有30年的经验,为汽车电子市场的领先制造商,其产品包括动力系统、车身系统和安全驾驶系统等芯片。不同于一般的半导体或者消费级芯片,车载芯片的工作环境要更为严苛,因此在芯片流片回来后,要经受一系列的功能验证,性能和特性测试,高低温测试,老化测试,模拟长生命周期的压力测试等等,看芯片是否符合相关标准,确保其真正达到车规级。根据客户的要求,在温度上需要考虑零下 40 度到 150 度的极端情况, 同时搭配模拟和混合信号测试仪,设定不同的温度数值, 检查不同温度下所涉及到的元器件或模块各项功能是否正常.经过伯东推荐,合作客户采用美国inTEST高低温测试机ATS-545,测试温度范围 -75 至 +225°C, 输出气流量 4 至 18 scfm, 温度精度 ±1℃, 快速进行在电工作的电性能测试、失效分析、可靠性评估等。通过使用该设备,大幅提高工作效率,并能及时评估研发过程中的潜在问题。高低温测试机 inTEST ATS-545 测试过程:1. 客户根据各自的特定要求,将被测芯片或模块放置在测试治具上, 将 ATS-545 的玻璃罩压在相应治具上 (产品放在治具中)。2. 操作员设置需要测试的温度范围。3. 启动 ThermoStream ATS-545, 利用空压机将干燥洁净的空气通入高低温测试机内部制冷机进行低温处理, 然后空气经由管路到达加热头进行升温,气流通过玻璃罩进入测试腔. 玻璃罩中的温度传感器可实时监测当前腔体内温度。4. 在汽车电子芯片测试平台下,ATS-545快速升降温至要求的设定温度,实时检测芯片在设定温度下的在电工作状态等相关参数,对于产品分析、工艺改进以及批次的定向品质追溯提供确实的数据依据。Temptronic 创立于 1970 年, 在 2000 年被 inTEST 收购, 成为在美国设立的超高速温度环境测试机的首家制造商. 而 Thermonics 创立于1976年, 在 2012 年被 inTEST 收购, 使 inTEST 更强化高低温循环测试以及温度冲击测试领域的实力. 在 2013 年 inTEST Thermal Solutions 用崭新的研发技术发展出独创的温度环境测试机, 将 Temptronic TPO 系列以及 Thermonics PTFS 系列整合进化成 inTEST ThermoStream ATS 超高速温度环境测试系列产品. 上海伯东作为 inTEST 中国总代理, 全权负责 inTEST 新品销售和售后维修服务.
  • 国产77吉赫兹毫米波芯片封装天线测距创纪录
    记者从中国电科38所获悉,在2月17日召开的第68届国际固态电路会议(ISSCC 2021)上,该所发布了一款高性能77GHz(吉赫兹)毫米波芯片及模组,在国际上首次实现两颗3发4收毫米波芯片及10路毫米波天线单封装集成,探测距离达到38.5米,刷新全球毫米波封装天线最远探测距离纪录。  该款芯片在24毫米×24毫米空间里实现了多路毫米波雷达收发前端的功能,创造性地提出一种动态可调快速宽带chirp信号产生方法,并在封装内采用多馈入天线技术,大幅提升了封装天线的有效辐射距离,为近距离智能感知提供了一种小体积和低成本解决方案。  此次发布的封装天线模组包含两颗77GHz毫米波雷达芯片,该芯片面向智能驾驶领域对核心毫米波传感器的需求,采用低成本CMOS(互补金属氧化物半导体)工艺,单片集成3个发射通道、4个接收通道及雷达波形产生等,主要性能指标达到国际先进水平,在快速宽带雷达信号产生等方面具有特别优势,芯片支持多片级联并构建更大规模的雷达阵列。基于扇出型晶圆级封装是封装天线的一种主流的实现途径,国际上的大公司都基于该项技术开发了集成封装天线的芯片产品。  下一步,中国电科38所将对毫米波雷达芯片进行进一步优化,根据具体应用场景提供一站式解决方案。  ISSCC被认为是集成电路领域的“奥林匹克盛会”,于1953年由发明晶体管的贝尔实验室等机构发起成立,在60多年历史中,众多集成电路史上里程碑式的发明都在这里首次亮相。
  • 国产示波器厂商面临芯片卡脖子,拟IPO融资2亿开展芯片研发
    近日,国产电子测试测量仪器厂商深圳市鼎阳科技股份有限公司发布IPO招股说明书,拟募资约3.4亿多元,其中2亿多元用于高端通用电子测试测量仪器 芯片及核心算法研发项目。针对高端电子测试测量设备可能发生的卡脖子问题,鼎阳科技本次募集用于高端通用电子测试测量仪器芯片及核心算法研发项目的资金投资情况如下,招股书显示,在高端通用电子测试测量仪器芯片及核心算法研发项目中,芯片研发主要集中于4GHz 数字示波器前端放大器芯片、高速ADC芯片、低相噪频率综合本振模块和40GHz宽带定向耦合器模块等部分的设计。这些芯片属于信息链芯片。据了解,信号链芯片主要包括放大器、数模转换类,其中转换器属于其中技术壁垒最高细分品类。转换器是由模拟电磁波转换成0101比特流最关键的环节,具体又可以分为ADC和DAC两类,ADC作用是对模拟信号进行高频采样,将其转换成数字信号;DAC的作用是将数字信号调制成模拟信号。其中ADC在总需求中占比接近80%。ADC/DAC是整个模拟芯片皇冠上的明珠,核心难度有两点:抽样频率和采样精度难以兼得(高速高精度ADC壁垒最高)以及需要整个制造和研发环节的精密配合。ADC关键指标包括“转换速率”和“转换精度”,其中高速高精度ADC壁垒最高。数据转换器主要看两个基本指标,转换速率和转换精度。转换速率通常用单位sps(Samples per Second)即每秒采样次数来表示,比如1Msps、1Gsps对应的数据转换器每秒采样次数分别是100万次、10亿次;转换精度通常用分辨率(位)表示,分辨率越高表明转换出来的数字/模拟信号与原来的信号之间的差距越小。高性能数据转换器需具备高速率或高精度的数据转换能力。鼎阳科技是一家专注于通用电子测试测量仪器的开发和技术创新的企业,目前已研发出具有自主核心技术的数字示波器、波形与信号发生器、频谱分析仪、矢量网络分析仪等产品,具备国内先进通用电子测试测量仪器研发、生产和销售能力。该公司依与示波器领域国际领导企业之一力科和全球电商平台亚马逊建立了稳定的业务合作关系。其自主品牌“SIGLENT”已经成为全球知名的通用电子测试测量仪器品牌,主要销售区域为北美、欧洲和亚洲电子相关产业 发达的地区。该公司先后承担国家部委、深圳市和宝安区研发及 产业化项目合计9项,现有专利167项(其中发明专利106项)和软件著作权30项,公司2017年、2018年连续两年被评为深圳市宝安区创新百强企业,2020年被广东知识产权保护协会评为广东省知识产权示范单位。招股书显示,鼎阳科技向境外采购的重要原材料包括 ADC、DAC、FPGA、处理器及放大器等 IC 芯片,该等芯片的供应商均为美国厂商。截至本招股说明书签署日,公司在产产品或在研产品所使用的芯片中,美国TI公司生产的四款 ADC 和一款 DAC 属于美国商业管制清单(CCL)中对中国进行出口管制的产品,需要取得美国商务部工业安全局的出口许可。公司已经取得这五款芯片的许可,其中四款芯片的有效期到 2023 年,其余一款芯片的有效期到2025年。报告期内,这五款芯片中仅两款用于具体产品,且实现销售。美国近期将 I/O≥700 个或 SerDes≥500G 的FPGA从《出口管制条例》中移出许可例外,国内厂商若购买相关FPGA则需要取得美国商务部工业安全局的出口许可。目前鼎阳科技研发、生产尚不需要该等 FPGA,但由于公司产品结构逐步向更高档次发展,对 ADC、DAC、FPGA、处理器及放大器等IC芯片的性能要求逐步提高,公司后续研发及生产所使用的IC芯片等原材料亦可能涉及美国商业管制清单中的产品。目前我国由于高端芯片,特别是模拟芯片等受制于人,使得电子测试测量仪器厂商在技术升级的过程中困难重重。高端电子测试测量仪器对模拟芯片的性能提出了更高的要求,目前国产芯片无法满足需求。而ADC芯片的产业链和半导体产业的一样,其产业链庞大而复杂,可以分为:上游支撑产业链,包括半导体设备、材料、生产环境;中游核心产业链,包括 IC 设计、 IC 制造、 IC 封装测试;下游需求产业链,覆盖工业、通信、消费电子、航空、国防及医疗等。聚焦ADC领域,全球主要供应商仍是TI、ADI为首的几家国际大厂,而高性能ADC在军用领域、高端医疗器械以及精密测量等领域起着至关重要的作用,因此ADC技术的国产替代对于我国各下游产业的发展意义重大。
  • 集成有亚波长光栅的台面型InGaAs基短波红外偏振探测器
    红外辐射(760nm-30μm)作为电磁波的一种,蕴含着物体丰富的信息。红外光电探测器在吸收物体的红外辐射后,通过光电转换、电信号处理等手段将携带物体辐射特征的红外信号可视化。其具有全天候观测、抗干扰能力强、穿透烟尘雾霾能力强、高分辨能力的特点,在国防、天文、民用领域扮演着重要的角色,是当今信息化时代发展的核心驱动力之一,是信息领域战略性高技术必争的制高点。众所周知,波长、强度、相位和偏振是构成光的四大基本元素。其中,光的偏振维度可以丰富目标的散射信息,如表面形貌和粗糙度等,使成像更加生动、更接近人眼接收到的图像。因此偏振成像在目标-背景对比度增强、水下成像、恶劣天气下探测、材料分类、表面重建等领域有着重要应用。在短波红外领域,InGaAs/InP材料体系由于其带隙优势,低暗电流,和室温下的高可靠性已经得到了广泛的应用。目前,一些关于短波偏振探测技术的研究已经在平面型InGaAs/InP PIN探测器上开展。然而,平面结构中所必须的扩散工艺导致的电学串扰使得器件难以向更小尺寸发展。同时,平面结构中由对准偏差导致的偏振相关的像差效应也不可避免。与平面结构相比,深台面结构在物理隔离方面具有优势,具有克服上述不足的潜力。中国科学院物理研究所/北京凝聚态物理国家研究中心E03组长期从事化合物半导体材料外延生长与器件制备的研究。E03组很早就开始了对近红外及短波红外探测器材料与器件的研究,曾研制出超低暗电流的硅基肖特基结红外探测器【Photonics Research, 8, 1662(2020)】,研究过短波红外面阵探测器小像元之间的暗电流抑制及串扰问题【Results in Optics, 5, 100181 (2021)】等。最近,E03组研究团队的张珺玚博士生在陈弘研究员,王文新研究员,邓震副研究员地指导下,针对光的偏振成像,并结合亚波长光栅制备技术,片上集成了一种台面型InGaAs/InP基PIN短波红外偏振探测器原型器件。该原型器件具有的深台面结构可以有效地防止电串扰,使其潜在地实现更小尺寸短波红外偏振探测器的制备。图1是利用湿法腐蚀和电子束曝光等微纳加工技术制备红外探测器及亚波长光栅的工艺流程。图2和图3分别是制备完成后的红外探测器光学显微镜图片和不同取向的亚波长光栅结构SEM图片。图1. 集成有亚波长Al光栅的台面型InGaAs PIN基偏振探测器的工艺流程示意图。图2. 两种台面尺寸原型器件的光学显微镜图片 (a) 403 μm×683 μm (P1), (b) 500 μm×780 μm (P0)。图3. 四种角度 (a) 0°, (b) 45°, (c) 90°, (d) 135° Al光栅形貌。图4是不同台面尺寸的P1和P0器件(无光栅)在不同条件下的J-V特性曲线和响应光谱。在1550 nm光激发,-0.1 V偏压下,P1和P0器件的外量子效率分别为 63.2% and 64.8%,比探测率D* 分别达到 6.28×1011 cm?Hz1/2/W 和6.88×1011 cm?Hz1/2/W,表明了原型器件的高性能。图4. InGaAs PIN原型探测器(无光栅)的J-V特性曲线和响应光谱。(a) 无光照下,P1和P0的暗电流密度Jd-V特性曲线;不同入射光功率下,(b) P1和(c) P0的光电流密度Jph-V特性曲线,插图是-0.1V下光电流密度与入射光功率之间的关系曲线; (d) P1和P0的响应光谱曲线。图5表明器件的偏振特性。从图5可以看出,透射率随偏振角度周期性变化,相邻方向间的相位差在π/4附近,服从马吕斯定律。此外, 0°, 45°, 90°和135°亚波长光栅器件的消光比分别为18:1、18:1、18:1和20:1,TM波透过率均超过90%,表明该偏振红外探测器件具有良好的偏振性能。图5. (a) 1550 nm下,无光栅器件和0°, 45°, 90°和135°亚波长光栅器件的电学信号随入射光极化角度的变化关系;(b) 光栅器件透射谱。综上所述,研究团队制备的台面结构InGaAs PIN探测器,其响应范围为900 nm -1700 nm,在1550 nm和-0.1 V (300K) 下的探测率为6.28×1011 cmHz1/2/W。此外,0°,45°,90°和135°光栅的器件均表现出明显的偏振特性,消光比可达18:1,TM波的透射率超过90%。上述的原型器件作为一种具有良好偏振特性的台面结构短波红外偏振探测器,有望在偏振红外探测领域具有潜在的广泛应用前景。近日,相关研究成果以题“Opto-electrical and polarization performance of mesa-structured InGaAs PIN detector integrated with subwavelength aluminum gratings”发表在Optics Letters【47,6173(2022)】上,上述研究工作得到了基金委重大、基金委青年基金、中国科学院青年创新促进会、中国科学院战略性先导科技专项、怀柔研究部的资助。另外,感谢微加工实验室杨海方老师在电子束曝光等方面的细心指导和帮助。物理所E03组博士研究生张珺玚为第一作者。
  • 科研人员提出一种生成“又宽又薄”光片的新方法
    3月26日,中国科学院深圳先进技术研究院光电工程技术中心李剑平团队在知名光学期刊Optics Letters上发表最新研究成果。研究团队提出了一种生成薄而宽的准无衍射激光光片的光瞳掩模优化设计方法。博士后研究员唐城博士为论文第一作者,正高级工程师李剑平博士为通讯作者。 光片荧光显微术(light sheet microscopy)是活体生物成像的一场革命。通过将激发激光限制于显微物镜景深范围附近的光片薄层,既可以减少显微成像的离焦模糊,又可以减少光漂白和光毒性,极大地提高了图像的清晰度,延长了生物样品的观测时间。通过逐层扫描样品或光片可形成三维图像。使用面阵数字相机的上百万个像素对焦平面中的目标断层进行并行采样,具有极高的采样速度;结合流式进样方法还可以实现高通量流式显微成像。由于其高清、无损、三维、快速等特点,光片荧光显微术是表征活体细胞、组织、胚胎和器官的理想手段。 然而,光片显微术的成像性能受限于光片的光学属性,其成像分辨率受限于光片的厚度,成像视场受限于光片的宽度。而光片的厚度和宽度因光波固有的衍射属性相互制衡。薄光片支持高分辨率,但衍射发散快、有效宽度窄,限制了成像视场;厚光片衍射发散慢,支持大视场成像,但限制了分辨率。光的衍射属性导致成像分辨率和视场构成一对天然矛盾,限制了光片显微成像中生物个体的大小及表征通量。高分辨率大视场显微成像需要薄而宽的光片,这种光片具有无衍射性质。无衍射光片必然伴有旁瓣,旁瓣对成像构成离焦背景噪音。因而基于无衍射光片的显微荧光成像须控制旁瓣的影响。用于生成“更宽更薄”光片的光瞳掩膜及其使用方法示意图 科研团队供图 针对这一问题,研究者提出了一种数值优化方法,可以用来设计一种叫做光瞳掩膜的衍射光学器件,以生成薄而宽的光片。该衍射光学器件通过调制振幅或相位,可以调控光片的厚度、宽度和旁瓣,从而突破高斯光束传播规律的限制,在仅使用廉价的柱透镜和掩模板的基础上就实现了薄而宽的光片。 该方法巧妙提出了一个光片质量的全局评价因子,用以表征光片厚度、无衍射范围和旁瓣之间的制衡关系。理论和实验表明,优化后的掩模可将静态光片无衍射范围扩大50%,同时使其旁瓣低于20%。据此生成的新型静态光片可以在不牺牲轴向分辨率的前提下,对样品实现更大视野成像。
  • 操控片上飞秒光脉冲传播的新方法
    随着高度集成化的纳米光子器件的发展,人们开始追求在更小空间尺度(如纳米尺寸)、更快时间尺度(如飞秒尺度)上灵活操纵片上光信号的方法。通过在纳米空间尺度和飞秒时间尺度上对光信号的操纵,不仅能够为光与物质相互作用的超快动力学过程研究提供新方法、新思路,还能为超高时空分辨的光学探测和成像,以及片上超快光信号处理、传输、精密波前调控和光谱测量提供有效的研究平台,因此在光子芯片器件、量子信息处理、光子神经网络与人工智能、超快光学波前测量等领域具有广泛应用前景。在空间尺度方面,近年来人们通过研究超材料、超表面等人工微纳结构来精确调控光波前,已经能够在纳米空间尺度上自由控制光信号的传播特性,例如让光信号沿着艾里光束的抛物线轨迹进行传播,应用于显微成像、光镊、光通信等领域。在时间尺度方面,传统的动态调控设备(如空间光调制器SLM)和动态调控材料(如电光材料)受制于材料的响应速度,难以达到飞秒量级。而随着飞秒激光脉冲整形技术的发展,频域调控逐渐成为超快时域调控的主要手段。将飞秒脉冲频域调控方法与人工微纳结构相结合,就有望实现极小时空尺度(飞秒时间尺度、纳米空间尺度)下的光场产生和调控,创造出很多新颖的时空光场并拓展新应用。深圳大学的袁小聪、闵长俊教授团队将脉冲频域调控与纳米结构空间调控相结合,提出了基于时空傅里叶变换(FT)的片上光脉冲调控方法,可用来操纵片上光脉冲的时空传播轨迹,让脉冲在不同时刻展现出不同的传播特性,从而使得极小时空尺度下的光场时空特性操控成为可能。FT作为一种常用的数学工具,已经被广泛应用于光学相关的应用中,如白光的光谱测量、脉冲整形和全息等。该团队研究发现,通过片上纳米聚焦结构调控空间域FT,可实现光场空间分布的构建;再通过光的色散效应来调控时域FT,可实现飞秒脉冲时域上的波前整形;最后将时空FT结合就有望同步调控飞秒脉冲传播的时空特性。为了验证这个方法,该团队以金属表面传播的表面等离激元(SPP)作为例子,理论研究了时空FT方法对飞秒SPP脉冲时空传播轨迹的调控效果。SPP作为一种可以突破光学衍射极限的光学表面波,不仅可以提供纳米尺度的空间分辨,还能够极大增强局域电磁场,因此被广泛应用于片上光子器件、光存储、光学传感、光镊、拉曼增强等领域。而由飞秒激光激发的飞秒SPP脉冲,同时具备纳米尺度的空间分辨能力与飞秒尺度的时间分辨能力,在极小时空尺度下的光场调控,以及光与物质相互作用的研究中具有重要价值。该团队基于金属膜上时空FT纳米结构的设计和入射光色散的调制,成功展示了多种新颖的时空光学效应,包括:将传统SPP聚焦形成的单个焦点逐步弯曲,形成一个环形分布的时空焦点;产生SPP-Airy脉冲并灵活控制其在不同时刻的传播方向,形成S形的时空传播路径(图1)。图1 时空傅里叶变换结构激发和调控飞秒SPP脉冲传播的示意图与传统片上光学调控方法只能调控空间、时间其中一个维度相比,这种时空FT方法提升了光脉冲调控的自由度,尤其在时域方面提供了更加出色的调控效果,为超快片上光学信息处理提供了新思路,在超快光子调控器件等领域有重要应用价值。
  • 一体化芯片同时集成激光器和光子波导,有望催生更精确原子钟实验,用于量子领域
    美国加州大学圣巴巴拉分校与加州理工学院的科学家携手,开发出了首款同时集成激光器和光子波导的芯片,向在硅上实现复杂系统和网络迈出了关键一步。此类光子芯片有助科学家开展更精确的原子钟实验,减少对巨型光学工作台的需求,也可用于量子领域。相关论文已发表于近日出版的《自然》杂志。实验概念图图片来源:《自然》网站集成电路出现后,科学家们开始将晶体管、二极管和其他组件集成在一个芯片上,这大大提高了芯片等的潜力。在过去几年里,光子学领域的科学家一直希望能实现同时集成激光器和光子波导。为研制出此类芯片,工程师们开发了插入式隔离器,以防止可能会出现的导致芯片不稳定的反射。但这种方法需要使用磁性材料,而这也会引发新的问题。在最新研究中,科学家找到了解决这些问题的方法,创造出了第一个真正可用的集成芯片。研究人员首先在硅衬底上放置一个超低损耗氮化硅波导,随后在波导管上覆盖多种硅,并在其上安装了低噪声磷酸铟激光器。通过将两个组件隔离开,防止了蚀刻过程中对波导的损坏。研究团队通过测量芯片的噪声水平来测试其性能,结果令人满意,随后他们用其制造出一个可调谐的微波频率发生器。
  • 科技世博安保篇
    图为上海举行水上消防应急救援综合演练。新华社发   从来没有哪项重大活动的区域范围会如此之广,囊括浦江两岸、动员全上海、辐射长三角 从来没有哪项重大活动的交通保障,创纪录地持续那么长时间——184天 从来没有哪项重大活动包含2万多个场次并吸引7000万人参观,2010上海世博会面临着前所未有的挑战。   184天护卫世博,天天都是顶级的安全保障,犹如吹响军号、子弹上膛,绷紧神经毫不松懈 184天,天天都要让连接世博与世界的信息网络通畅,阐释“城市,让生活更美好”的世博理念 184天,上海这个特大型城市每天都在迎接公共安全的挑战,要保障游客们各方面的安全,更要从容应对意外突发事件。   为了世博会的平安,上海已在食品安全、公共安全、应急防范、自然灾害防御等方面设立了44个项目开展科技攻关。多种“新式武器”进驻世博园区,一系列保障世博安全的科技成果对此给出了漂亮的回答,为世博会筑造了一道完美的“防火墙”。   “科技保安”为世博站岗   成功世博,平安为先。中共中央政治局委员、世博安保指挥部总指挥上海市委书记俞正声掷地有声:“在这场大考面前,我们必须成功。”   这就是命令,这就是行动的号角。   一项项安全科技创新技术应时而生:食品安全的快速检测、流行病防治与医疗急救、反恐防恐综合系统、突发性事故防范与应急、强对流天气的精细预报……   2010年上海世博会有7千多万国内外观众将涌入上海,其中有85%以上将在世博园区内用餐,食品安全刻不容缓。   园区内现有3个世博食品安全检测实验室,拥有一系列先进设备,58项快速检测技术用于食品安全。所有进入世博园区的食物原料都会100%开箱,对农药残留和瘦肉精以及可能出现的有毒、有害物质等指标将进行现场快速检测和实时监控。“世博食品物流追溯系统”应用RFID技术,可以清楚地查到每道食品原料的生产日期、保质期、来源地等重要信息,出问题保证能“追查到底”。   上海世博园日均40万人流和川流不息的配套物流,要进行严格的安防监控。世博会门票里也隐藏着“科技卫士”:一枚集成电路芯片。门票芯片采用了非接触式射频技术,既能让参观者快速入园,并能实现客流统计、安全管理等功能。   在世博园的所有通道口,都采用门票芯片的技术及毒品炸药探测仪、液态违禁品检查仪等违禁物品探测系统,严格地进行安全检查,并随时与中央数据库交换检查数据,人人过滤、人人清查。   园区内安装了人脸识别项目采集与对比系统以及“电子围栏”。“电子围栏”定位精度高、误警率低、空间识别范围广、环境适应性强,可以实施全天候、全方位的监控。   世博场馆内处处活跃着各种机器人“矫健”的身影:车底检查机器人主要活动在临时停车场、重大活动等场合 反恐排爆机器人出现在各种突发涉爆、涉险事件的现场 微声爬壁机器人擅长“飞檐走壁”,主要在楼宇、飞机表面进行侦察作业,是面向反恐侦察开发的紧凑型侦察系统 水下机器人承担起世博期间水域安全保障的重任,能对水下悬浮、沉底或附着在其他物体上的不明可疑物进行近场探测和处置,具备超强水下排查处置手段。   海陆空三栖覆盖全城,处理紧急突发公共事件。气象部门已为此编织起“天罗地网”,即一个由两颗气象卫星加密观测,整个长三角地区的雷达、自动气象站、综合气象观测站等“全员”参与的气象综合观测体系正在形成。智能交通和一张特别的“传感网”——无线智能交通ITS传感网将使世博期间的上海中心城区及周边交通更为顺畅。世博园区、世博巡逻艇、世博大巴内等区域都将配备摄像头“全球眼”时刻保卫园区安全。轨道交通20类反恐防范预案也已制定,毒气、放射性物品探测系统将24小时“上班”。   和电熨斗差不多大小、比警犬鼻子更灵敏的人造“狗鼻子”——SIM系列爆炸物探测器,10万亿个空气分子中只要出现1个炸药分子,探测器就能检测出来,这比训练有素的警犬还要敏感1个数量级,为上海的安保工作提供有力的武器。   智能交通系统,强对流预警系统,智能疏散照明系统……在公共交通,气象保障,场馆安全保障,处处都可以看到科技大显身手,它们像一个个忠实的卫士,严密地注视着世博园区,守卫着世博的安全。   科研梦想在世博中绽放   每一项科技成果的背后,都承载着一个科技团队的共同梦想:科技,让世博更安全!2010年世博会上,上海科研人员的自主研发是“平安世博”实现的中坚力量。   “瘦肉精问题”、“毒猪油问题”、“苏丹红问题”、“三聚氰胺问题”以及最近的“地沟油”问题。食品安全问题频频曝光,“民以食为天”,如何保障食品安全,这是全社会的热望。   上海交大植物分子生物学和生物安全实验室,张大兵团队花了整整两年时间,经过不断的实验、改进,农药快速检测试剂盒等五个科研产品诞生了。   在这之前,我国农药残留检测关键的乙酰胆碱酯酶主要依赖进口,而从家蝇头部蛋白提取,纯度低,稳定性、灵敏度较差。张大兵率先带领团队利用基因工程重组技术成功研制具有我国自主知识产权的高效乙酰胆碱酯酶,基于该重组酶而研制出农药残留快速检测试剂盒。这一试剂盒目前已在上海、北京等13个省市的检测机构广泛应用,上海江桥、北蔡等农贸市场也有它的身影。   为了让农药检测能真正具备“火眼金睛”,张大兵团队不断进行改进。很快,适用于家庭和个人的“新型农药残留速测卡”被研制出来 最新产品是“农药残留生物传感器”,其外形酷似U盘,可以快速、直观地“读出”待测食物中所含农药成分及具体含量。除了农药检测,针对瘦肉精快速检测的“免疫试纸条”,食源性致病菌快速检测技术,对转基因食品的监测技术……   “天气预报要准确,首先必须精细化的观测。也许我们还达不到百分之百的准确,但我们将付出百分之百的努力。”上海世博会举办期间的5—10月正值上海主汛期,是台风、暴雨、强对流天气、雷电、高温等高影响天气的频发期,准确、及时的天气预报让世博会更精彩,上海市气候中心谈建国副主任表示。   世博园区建筑物、道路、黄浦江、绿化等局地环境的不同往往会造成温度和湿度等局地环境气象要素的差别。此外,人体在是否有阳光照射等不同的局地环境下的实际感觉也大不一样。因此,对世博园区小尺度环境气象预报提出了更大的挑战。   “最难的就是精细化的观测布点,要综合考虑园区下垫面的情况才确定在哪里适合安装什么样的气象监测仪器。”没有可以参照的模板,只能靠自己摸索,通过精细化的模拟,综合考虑世博园区特殊下垫面,气象部门已经建成了针对世博园区精细化的观测网,能够精确到场馆和片区。开发上海城市边界层数值模式系统不仅能对城市温度、风场、相对湿度、体感温度和紫外线进行预报,同时也为诠释上海城市热岛、干岛和湿岛的变化提供了手段。他告诉记者,2007年10月特奥会在上海举办期间,上海市气象局就曾利用这一项目研发技术首次对举行特奥会开闭幕式的上海体育场和江湾体育中心开闭幕期间,体育场周边的温度、风场和体感舒适度进行精细化预报和服务。   “城市边界层数值模式系统还可以用于不同风向下烟火燃放扩散进行评估,可以为世博会开幕期间针对不同的风向风速下焰火燃放方案的准备提供依据。”谈建国表示。   上海的世博会因为他们而更安全,也因为他们而精彩。   展望科研的“后世博时代”   创新是世博会最永恒的主题,世博会从来都是高科技的舞台。世博科技如何才能“永不落幕”呢?   “这些成果也许在世博会中是配角,甚至是幕后英雄,但它们的生命力将很长。”上海市科委主任寿子琪说,世博科技专项取得的效果,将在2010年以后很长一段时期内,产生持续效应,这是科技支撑世博更深远一层的意义。经过世博会大规模的示范应用,这些技术必将在集成度和产业化方面更上一层楼。   “让天气预报变得更准确、更便民。”世博会期间建立的覆盖长三角地区、上海市区、世博园区的三级气象监测预警网络将在世博后继续为民众服务,其地面自动站网的间距平均小于5公里,从天、地、空全方位捕捉天气变化的动态信息。依托高性能计算机,运用世博会期间开发的强对流天气的短时临近预报、台风路径和强度预报、大雾监测预报、雷电监测预报等技术,将提供更加精细化的天气预报体系。   精细化、人性化将是将来天气预报的宗旨。“今日气温偏高,易中暑,请注意防范” “目前大气扩散能力好,风力适中,适合燃放烟花”……中暑指数和燃放烟花指数等气象服务都可以通过公共信息LED显示屏、园区广播、导向触摸屏、信息亭、预警信号灯光发布系统等向公众发布。气象专报可以做到1小时更新1次。不久的将来,老百姓在日常的每一天都能享受到这样的精准天气预报了。   “吃荤的怕激素,吃素的怕毒素,喝饮料怕色素,能吃什么心中没数。”食品添加剂、农药残留、抗生素超标等食品安全问题已成为严峻的社会问题。   “今后的食品安全快速检测仪器将具备更高的灵敏度、特异性,能同时分析多种污染物,操作简便易掌握,而且微型便携。”张大兵告诉记者。目前,上海已在全国率先建立了食品安全监管快速检测体系,30分钟内可完成大部分食品的安全检测。上海还将建立“供博食品可追溯信息系统”和“食品安全信息追溯平台”,实现食品安全信息全程溯源,从根源上解决食品安全问题。   出现在世博园区的直接饮用水也将在世博会出现在部分上海市民家庭里。上海一直都是水质性缺水城市,饮水问题是市民关注的热点。世博期间修建的青草沙水源地位于长江口南北港分流口长兴岛北侧,是国内最大的边滩水库。青草沙工程应用科技创新逾百项在江心成库、深水筑堤、水库防渗、地基处理、取输水建筑等关键环节上,有效控制了水体富营养化,保障了上海市民饮用水的水质。建成后,水坝每天的供水量达到719万吨,全市直接受益人口超过1000万人。此外,地处上海中心城区南部的世博浦西园区内的南市水厂经升级改造后,不仅可以向世博园区每天提供50万吨直接饮用水,同时也向上海黄浦、卢湾、徐汇、静安、长宁等区域以及闵行、普陀部分地区提供优质自来水。   世博安保科技,将在世博后继续惠泽公众,演绎更安全健康的明天。
  • 官宣!欧波同集团全新宣传片正式发布
    欧波同集团全新宣传片今日正式发布!欧波同以丰富的国际资源为背景,经过近二十年的经验积累和技术沉淀,成为国内领先的材料分析数字化解决方案服务商。放眼世界,扎根中国,坚持“以实验更简单”为使命,围绕物理测试、化学分析、软件与人工智能、标准物质、第三方检测等业务线为客户提供全方位优质服务。当科技成为人类智慧的延伸,我们在瞬息万变的时代中看见彼此。智能与材料分析技术在科技巨流中奔涌,在这里,再微小的粒子都熠熠生辉,在这里,数据的生命力被无限放大。新技术、高效率、智能化——蓬勃而生。我们打破固有模式,用智慧重塑材料微观世界的联系;我们将科技的杠杆无限延长,将智慧嵌入到材料分析技术的每一个细节。在材料分析领域,我们既是亲历者,也是开创者;在未来微观世界,我们将用智能去触达想象的极限!我们是欧波同!材料分析数字化解决方案服务商!欧波同集团全新宣传片:欧波同集团成立于2003年,是一家材料分析数字化解决方案服务商。在持续发展的过程中,欧波同集团始终坚持“让实验更简单”的发展主线,不断完善在工业领域能够提供的多样技术服务。旗下拥有科学仪器销售、智慧实验室解决方案、第三方检测服务、技术服务等业务板块。在我国科研领域发展的关键时期,欧波同充分利用互联网大数据概念,通过持续的科研投入,掌握计算机视觉和图像识别技术,实现AI技术和工业分析技术的跨界融合,加快工业分析领域的场景化发展进程。
  • 可变色“心脏芯片”随时监测心脏搏动
    p   最近发表于美国《科学· 机器人学》杂志上的一篇论文显示,研究人员将大鼠心肌细胞培养在反蛋白石结构的水凝胶薄膜上,反蛋白石结构水凝胶具有有序的纳米结构,可像蛋白石一样反射特定的波长,表现为鲜艳的结构色。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201804/insimg/15becc39-6ade-4089-89d2-a62b4851a5cf.jpg" title=" NewsDataAction.png" / /p p   中国东南大学生物科学与医学工程学院赵远锦教授对新华社记者说,像果冻一样的水凝胶很柔软,细胞在其表面固定生长后,细胞的收缩与舒张可引起水凝胶材料同步收缩与舒张,并伴随着有序纳米结构晶格的周期变化,表现为结构色的改变。 /p p   “变色龙改变颜色正是通过自身细胞对有序纳米结构的调控实现的,受此启发,我们提出并实现利用细胞来调控结构色。”赵远锦说。 /p p   赵远锦说,将“活体”结构色水凝胶材料集成到微流控芯片中,构建出具有微生理可视化功能的“心脏芯片”,就能通过芯片颜色变化来监测心脏搏动。这一新技术为药物筛选及单细胞生物学等研究提供了崭新平台。 /p p   研究人员说,除心肌细胞外,平滑肌等具有收缩功能的细胞都可以用来实现这种功能。 /p
  • 实验室技能小课堂--显微镜玻片的制作
    导读显微镜玻片做不好,哎呀,心痛!怎么办?实验技能小课堂开课了!!✨今天小编给大家总结了显微镜玻片的不同制作方法,希望能和大家一起渡过难关。 01涂片法 涂片材料有单细胞生物、小型藻类、血液、细菌培养液、动植物的疏松组织等。涂片时应注意:(1)载玻片要持平。(2)涂层须均匀且薄。(3)固定,可用化学固定剂或干燥法(细菌)固定。(4)染色,染色液要盖住全部涂面。(5)冲洗,用吸水纸吸干或烤干。(6)封片。 02压片法 将生物材料置于载玻片和盖片之间,施加一定压力,将组织细胞压散的一种制片方法,一般过程:(1)取材。(2)固定:取材后立即压片观察,可不作单独固定处理;取材后不立即视察,可将材料用固定液固定。(3)离析:对细胞团用水解分离液处理。(4)染色。(5)压片:将材料放在载玻片上,加一滴清水或染液,盖上盖玻片用拇指轻轻压片。(6)观察。 03切片法 观察机体各部的微细结构时常用,其中以石蜡切片最为常见。其制备程序大致如下:(1)取材与固定:取得新鲜材料后,切成适当的小块立即投入固定剂中进行固定。(2)脱水、透明与包埋:把固定好的材料的水分脱掉,经透明处理后,再浸入已融化的石蜡中进行浸透、包埋。(3)切片与染色:用切片机切成薄片,贴于载玻片上。脱蜡后进行染色。(4)封固:滴加中性树胶和盖片进行封固备用。
  • 济南兰光参与编制的《包装材料 塑料薄膜、片材和容器的有机气体透过率试验方法》正式
    济南兰光机电技术有限公司作为主要起草单位,与国家包装产品质量监督检验中心(济南)、山东质量检验协会共同编制的《包装材料 塑料薄膜、片材和容器的有机气体透过率试验方法》(GB/T 28765-2012)国家推荐性标准近日由国家质量监督检验检疫总局发布,并于2013年5月1日正式实施。 常见有机气体如苯、酯、醇、酮、醛、醚等在渗透过程中会与多数薄膜材料发生反应,出现溶胀现象,导致材料的结构特性发生改变,进而影响其阻隔性,这也是当 前全球尚无有机气体透过率检测的方法标准的缘由之一。在该领域的研究中,一种定量测试方法&mdash &mdash 均衡法应用最广,对此,负责本标准起草的研究团队对该种方法 的仪器化可行性进行为期两年的全面分析及数据验证工作,肯定了该方法在实现检测及量化该测试指标上均可满足要求,同时提出了同样具有科学性和应用性的全新 测试方法&mdash &mdash 真空法。这在一方面有助于对当前实验室已在使用的均衡法测试给予使用指导,另一方面通过两种试验方法可进一步验证测试数据有效性。 当前包装容器的整体检测技术发展很快,由于容器测试与薄膜测试仅在测试腔的结构存在差异,其他测方面并无改动,因此容器有机气体透过率测试技术也被引入此标准中,进而拓宽了本标准的检测对象种类。 《包装材料 塑料薄膜、片材和容器的有机气体透过率试验方法》涵盖了均衡法和真空法两种试验方法,是国际上首项有机气体透过率测试方法标准,为科学的评价食品、药品、 化妆品包装材料的有机气体透过率(即保香性能)提供了一种可量化的检测手段,同样也标志着济南兰光机电技术有限公司在包装材料有机气体渗透研究领域的学术 水平处于全国领先地位。
  • 宁波大学研发“海上芯片实验室”
    日前,宁波大学教授苏秀榕主持的国家海洋公益性行业科研专项&ldquo 重要海域致病性细菌基因芯片检测技术研究开发与示范&rdquo 项目,成功研发出&ldquo 海上芯片实验室&rdquo ,能直接从海水中快速、高通量检测出多种致病菌,可用于海水养殖场、海水浴场、陆源排污口、港口航道等海洋环境致病菌的实时监控。   该产品由芯片、试剂盒、检测软件、便携式检测仪等部分组成,拥有检测低浓度致病菌能力,检测数据可靠、携带方便。采样后约6~8小时即可完成致病菌的检测和鉴定,并通过网络实时将数据传到岸上实验室分析。目前,该产品正处于业务化示范阶段。
  • 博士风采---顺义电视台将在近期黄金时间播出胡克博士专题片
    北京市顺义电视台最近连续三次来到莱伯泰科公司拍摄莱伯泰科公司总裁胡克博士的专题片,专题片将介绍胡克博士从插队、上大学、从事地质工作、留学美国、成为科学家到创办莱伯泰科的人生历程,专题片还将回顾胡克博士五年前来到北京顺义空港开发区创建莱伯泰科公司的过程,着重介绍胡克博士带领莱伯泰科公司从几个人的不知名小企业成长为落户在北京市顺义区的**高新企业,为顺义经济的发展所作的贡献。 胡克博士本科毕业于中国地质大学,博士毕业于美国爱荷华州立大学化学系,师从**教授、ICP-MS发明人R.S. Houk博士,曾任美国热电TJA公司首席科学家,现为莱伯泰科控股公司总裁兼北京莱伯泰科公司董事长。 专题片将于2007年10月10日晚上7点55分黄金时段在顺义电视台一套播出,当天下午在顺广传媒上视频播出。
  • 博奥生物生物芯片数据分析专题培训讲座开班
    博奥生物信息培训班 第一期生物芯片数据分析专题培训讲座开班啦! 本次博奥生物举办的生物芯片数据分析培训讲座,以最优惠的价格为学员提供最实用的数据分析解决方案! 博奥生物芯片数据分析案例剖析及方案分享,让您思路更清晰! 为您提供免费软件应用等公共资源及操作指导,实用才是硬道理! 培训讲座内容安排: 2013.09.05 课程描述 上午:9:00-10:00 生物芯片技术及应用简介 1、生物芯片技术介绍及发展现状 2、博奥生物芯片平台及相应的典型案例介绍 上午:10:45-12:00 生物芯片数据分析解决方案 1、生物芯片常用数据分析手段介绍 2、数据分析典型案例剖析及整体解决方案培训 3、常用软件及公共资源分享 下午:1:30-4:00 常用生物信息软件实际操作培训 1、生物芯片平台给出数据介绍 2、实践培训:Mev、cytoscape、coexpress等经典的数据分析软件及绘图软件的培训 下午:4:00-5:00 参观博奥生物,探讨交流 1、博奥生物芯片平台展厅介绍 2、邀您探讨数据分析疑问,拓宽新的科研思路 培训对象 需要使用高通量技术特别是芯片技术进行科研的老师 需要加强生物信息分析思路,并能使用常用软件进行数据分析的老师 讲师介绍: 赵建晴博士:博奥生物微阵列服务部研究科学家 张杨工程师:博奥生物科技事业部生物信息应用工程师 培训费用: 800元/人(含午餐) 优惠措施: 1:在2013年08月25日前报名,可享受8折优惠。 2:博奥生物的仪器用户可享受1名免费培训名额。 3:相同单位报名超过1人的,从第2人起享受5折优惠。 缴纳注册费账户信息: 用户名:博奥生物有限公司 开户行:中国银行北京上地支行 帐号:3376 5602 2586 培训资料: 包括培训教材、培训证书(生物芯片北京国家研究中心印)、培训学员通讯录、精美礼品一份。 注意事项: 学员自备笔记本电脑,为保证教学质量,每期仅招收20位学员。 报名方式: 请您填写客户培训回执表,发送到qiandu@capitalbio.com邮箱中,我们收到回执表后3天内给予回复。 报到时间及住宿安排: 请于2013年9月5日9点前报到,如需住宿请在回执表中注明,公司可代为安排宾馆,费用自理。 具体路线: 1、北京站-博奥生物:地铁2号线到东直门换乘城铁13号线到西二旗站下车,坐521路/205路/112路到生命科学园站下车。 2、北京西站-博奥生物:步行至地铁军事博物馆馆站,地铁1号线复兴门站换乘地铁2号线,地铁2号线到西直门换乘城铁13号线到城铁西二旗站下车,坐521路/205路/112路到生命科学园站下车。 3、机场大巴至回龙观下车,乘出租车到生命科学园。 联系方式: 联系人:杜倩 电话:010-80726868转8246 15910764175 邮箱:qiandu@capitalbio.com 客户培训回执表: 姓名: E-mail: 单位: 电话: 地址: 邮编: 是否需要住宿: 是 否 备注:如果需要住宿,请注明入住时间 您感兴趣的领域:
  • SiC与AI芯片市场爆发,先进封测等技术亟需加速发展——访布鲁克应用经理渠波
    2024年3月20日至22日,备受瞩目的SEMICON China 2024在上海新国际博览中心隆重举行。作为全球规模最大、规格最高、最具影响力的展会,有1100家企业参展,覆盖芯片设计、制造、封测、设备、材料、光伏、显示等产业链,是半导体行业的开年盛会。展会期间,仪器信息网有幸采访到了布鲁克(北京)科技有限公司应用经理渠波老师。在采访中,渠老师从多个角度讲述布鲁克在半导体量测领域的发展现状和技术方案,针对成熟制程、先进制程和爆发式增长领域分别给出了布鲁克未来的发展规划,以及面对复杂的国际形势,布鲁克针对不同地区的发展所作出的策略规划等话题进行了深入探讨和交流。以下是现场采访视频:仪器信息网:本次是贵公司第几次参加Semicon China,参会感受如何?渠波老师:大家好,我是布鲁克半导体产品线的中国应用经理,布鲁克参加半导体展,从90年代就开始参加,已经接近30年的历史了。仪器信息网:本次参会,贵公司带来了哪些半导体量测或缺陷检测等方面的解决方案或产品?其采用的主要原理或技术有哪些,有哪些创新?渠波老师:布鲁克的话它的量测技术方案覆盖了半导体领域的多种材料以及产业链的各个环节。从产业链的各个环节来说的话,包括晶圆片的制造,集成电路、IC厂、IC的制造环节,还有后面的封测环节。从材料的角度上来说的话,包括硅基晶元的制造,化合物半导体的制造以及未来的新出现的一些新材料,布鲁克都提供了相应的解决方案,比如是说在硅基制造领域的话,我们提供了前端的硅晶圆的缺陷检测以及这个摇摆曲线或者晶体质量的检测,在IC制造里面从外延到金属膜,这些的质量控制,我们都提供了相应的技术解决方案。在封测领域的话,现在我们也逐渐整合,提供了缺陷检测良率提升,包括焊点,然后金属桥接这些缺陷的分析,以及相应的表面轮廓的这些测量检测方案,所以整体上来说的话覆盖了整个的产业链。那么在化合物半导体领域的话,在碳化硅领域、氮化镓外延以及新出现的氧化镓金刚石,还有氮化铝这些宽禁带半导体的新材料的研发方面都提供了相应的解决方案。仪器信息网:相关产品主要有哪些具体的应用?解决了用户的哪些痛点?渠波老师:因为在整个产业链上面,每一个技术环节都提出了不同的要求,所以就代表的痛点是不一样的。我举一些我们SEMICON展览会过程中重点推出的几款设备,相应的客户的痛点和我们提供的解决方案。比如是在硅基晶圆制造,还有新型的化合物半导体,包括氮化镓、碳化硅晶圆的缺陷检测的方面,我们就推出了无损穿透式的缺陷形貌像的检测技术,它是无损检测,而且的话可以看到内部的不可视的缺陷,就可以把原来在缺陷检测里面用光学检测只能看表面的痛点,以及腐蚀法检测看表面,检测周期长,破坏性检测的痛点都解决了。那么在光照修复领域的话,随着新的先进节点的成本的提高和技术的难度的增加,那么在中间光照制造的时候的话,难免的一些缺陷,又不能把这些光照进行损毁或者抛弃。所以一般来说的话是希望通过先进的光照的修复手段,解决先进光照的良率的事情。所以我布鲁克的话就提供了不同的先进光照的修复手段,既有机械式的光照修复,然后也有激光的这种化学式的光照修复,然后包括特有的光照的干法清洗技术手段,那么也解决了光照厂遇到的各个痛点,提供了整个完整的技术解决方案。那么在表面轮廓、表面形貌的制造技术方案方面,我们也提供了新一代的更高端的自动化的AFM的技术,那么在硬件上面选用了精度更高的样品台,然后在这个扫描的探针组合上面更为精密,然后整体一致化更好调整,同时的话用气浮式的这个平台,然后移动的速度非常快,所以从而解决了精度、测量速度,在集成电路制造过程中,遇到的生产效率低,很难进行产业在线监测的这些痛点。那么同时的话还为 AFM开发了很多新的测量技术,包括很小的通道,然后包括沟道的侧壁的检测,我们都提供了相应的新的技术解决方案。那么在近期的话爆发式增长的先进封测领域的话,我们也推出了封测的缺陷检测的在线全检的技术手段,那么这个技术手段的话,在国外的一些新的制程厂里面都已经开始推广普及,那么我们也希望的话,中国的2.5D和3D的封测发展的机会中的话,能够更好地普及技术,然后为封测产业的良率提升和这个功率电子以及人工智能电子芯片的加速发展,能够起到布鲁克的贡献。仪器信息网:您认为当前半导体行业对量测和缺陷检测设备的最大需求是什么?渠波老师:最大的需求的话,我会想分三个方面,那么第一个方面的话是成熟的制程,第二个方面的话是新研发的先进制程,第三个方面的话是近期出现爆发式增长的一些领域。那么在成熟制程领域的话,我认为可以更好的吸收借鉴先进厂在这些制程领域的量测方案。那么在先进的制程的研发和产业化的建设过程中的话,需要我们打开我们的思路,不要固守原来我们已有的一些检测手段。针对这个检测新制程里面遇到的一些新结构新材料的监控需求的挑战,要创造性的开发一些新的测量手段,然后的话把它做到精准和快速和稳定的指标,然后再把它放到产业化的使用里面去,要完成从研发到产业化转化的整个过程。那么最近的话也出现了一些爆发式的市场,包括碳化硅的集成电路的市场,包括工艺电子、人工智能芯片的发展,然后以及对相应的3D封装的需求。那么在这些领域的话,检测的手段的发展速度显然没有和市场的爆发同步,相对来说有一些迟滞,这些方面的话需要加快,然后解决它相应的痛点。仪器信息网:贵公司在过去一年中,在中国市场取得了怎样的成绩?在2024年又有哪些战略或市场规划?渠波老师:2023年布鲁克实现了稳健的增长。2024年我们的预估也是非常正面和积极的。那么在市场战略规划方面的话,针对本地的半导体市场的发展规律,我举两个比较重要的两个战略规划,一个方面的战略规是针对我们新建的这些FAB厂,如何更好的提高良率,这方面的需求布鲁克会侧重在这方面提供更多的推广和技术方案的提供。第二个方面是布鲁克在封装封测领域已经有很好的产品的系列,然后的话会加强中国在2.5D和3D先进封测这方面的量测技术方案的提供。就在这两个方面的话,我们战略规划会侧重加强。仪器信息网:近年来,中美科技战愈演愈烈,特别是美日荷出口半导体设备的管制越来越严。面对全球市场的变化,贵公司有哪些长远的战略规划?渠波老师:形势应该会还会持续,短期之内很难看到改变。那么当然作为布鲁克跨国公司在不同的国家或者地区面临的市场形势和技术节点都是不一样的。那么布鲁克的话本地的服务团队会基于本地技术节点的需求和用户的具体需求,提供力所能及的服务,然后同时的话会积极的把我们本地的客户需求和总部进行反馈沟通,然后争取更大的空间做好新技术的推广和产业化的贡献。
  • 蔡司推出新一代全自动数字玻片扫描系统
    蔡司Axioscan 7兼顾扫描性能和应用自由度 德国耶拿|2021年4月7日|蔡司研究显微镜解决方案 蔡司发布了新一代全自动数字玻片扫描系统Axioscan 7,用于显微镜样品的自动数字化成像。蔡司Axioscan 7继承了前一代产品 Axio Scan.Z1的优越性能,又几乎在各个方面都进行了重大改进:新型采集引擎,可实现更高的扫描速度;更广泛的成像模式,可提供更大的应用灵活性;拓展了高级荧光成像的性能;以及大大改善了用户体验。 在生命科学研究实验室,公共成像平台和药物研究中,自动而可靠对玻片进行高质量数字显微成像的需求不断增长。蔡司Axioscan 7通过将持续的高速扫描和简单的操作与针对不同应用领域的个性化选项相结合,满足多种应用领域对可靠的长时间扫描性能以及高品质成像质量的需求。 全新明场反差成像方法更全面的展现样品特征 蔡司Axioscan 7能够在不同的明场成像模式之间自动切换,以适应不同应用的要求,同时保持最佳的扫描性能。完全支持圆偏光和线偏光成像,从而开辟了一系列新的实验和成像模式组合。TIE是一种新的用于在透明样品中产生对比度的方法,增加了相位和浮雕反差,丰富了成像模式。TIE可以在常规明场模式下检测到几乎没有对比度的透明组织,因此可以保护样品免于漂白,并以非常快的聚焦速度加速荧光成像过程,从而有利于使用敏感的荧光染料进行实验。 高效荧光成像 当涉及多色荧光成像时,速度,温和处理和最佳波长至关重要。蔡司Axioscan 7采用快速且可重现的LED照明,快速滤光轮和多色的荧光滤块,可有效分离各种荧光通道。两种光源——超快7色LED光源蔡司Colibri 7和白光LED光源X-Cite Xylis ——为选择合适波长提供了灵活性。新设计的用于多色荧光成像的荧光滤块可实现清晰的光谱区分,分离多色荧光。 高级相机提高图像质量 新的玻片扫描系统配备了蔡司Axiocam产品组合中最高级别的Peltier制冷相机,以先进的成像性能支持明场和荧光应用。蔡司Axiocam 705 color相机具有每秒55帧的采集速度和广阔的视野范围,可以快速完成明场和偏振成像任务。蔡司Axiocam 712 mono相机像素尺寸小(3.45 µm),可以充分利用高数值孔径物镜的分辨率潜力,并具有非常低的读出噪声,这使其成为高级荧光成像应用的首选。 有价值的投资对高通量和批量筛选能力的需求推动了自动化仪器的发展。蔡司Axioscan 7可以在不牺牲灵活性或高质量图像的情况下实现自动化,为公共成像平台吸引大量客户。这种新型玻片扫描系统能够满足从组织切片中多色荧光染色到岩石切片中偏光等多种多样的应用需求,吸引了生命科学和地质学等领域的用户。蔡司Axioscan 7产品设计强大,适合的用户群体广泛,在机时利用率方面表现出色,因此可迅速收回成本。 蔡司全自动数字玻片扫描系统 Axioscan 7,配置蔡司Colibri 7用于荧光成像 蔡司Axioscan 7可一次性对100张相似样品或混合多种应用的样品进行数字化采集 适合生命科学应用的蔡司Axioscan 7
  • 第十一场研讨会 | 使用正切、反切和平面切割方式制备逻辑和存储器件的TEM薄片样品
    主题:Prepare Top-down, Inverted and Planar TEM lamella from Logic and Memory Devices演讲人:Lukas HladikLukas Hladik 是失效分析半导体研发实验室的FIB-SEM、表征和去层/电子探针解决方案的产品经理。Lukas毕业于捷克布尔诺理工大学,获得物理工程和纳米技术硕士学位。他于2012年加入TESCAN ORSAY HOLDING,担任Plasma FIB-SEM的应用专家,长期从事与全球半导体行业有关的工作。时间段1:5月12日,下午3:00–4:00 (北京时间)时间段2:5月13日,上午1:00–2:00 (北京时间)全球集成电路(IC)行业不仅面临着对电子器件需求的持续增长,而且还需要面对器件性能和能耗的提高——并且于此同时还要减少其占用空间。为了达到这一目的,TEM样品制备已成为失效分析过程中不可避免的一部分。当今3D结构的器件需要通过多个方位观察才能对缺陷进行定位。越来越精细的尺寸则决定了必须使用反切TEM薄片的方式才能获得10纳米以下的样品厚度。由于缺陷大小往往已达到纳米级别,就需要使用STEM(扫描透射电子探头)从平面方向上对TEM薄片进行观测。因此,TEM薄片提取过程可能需要多个操作步骤,甚至需要将样品室泄真空后再倒置或平面放置样品。TESCAN SOLARIS通过一种专利设置解决了这些问题,只需要一个简单的操作步骤,就可以将块状样品的薄片转移到TEM网格上,并且不需要样品室泄真空或重新放置样品。最重要的是,这种方法不需要安装任何额外的硬件。本次研讨会上,您可以深入了解TESCAN SOLARIS及其辅助系统如何在半导体失效分析实验室环境中半自动化、高质量、低束流损伤地完成样品制备。如您对本场研讨会感兴趣,点击“我要报名”立即报名参会吧!说明:为了让更多的用户可以参与到本次研讨会中,每一场研讨会都有两个时间段可供选,内容相同,与会者可自行选择报名参加其中一个时间段的研讨会。TESCAN FIB-SEM SOLARIS
  • 兰伯艾克斯|类器官与微流控芯片的“医工结合”
    器官芯片是由光学透明的塑料、玻璃或柔性聚合物等构成的微流控细胞培养设备,包括由活细胞组成的灌注空心微通道,通过体外重建组织器官水平的结构功能,再重现体内器官的生理和病理特征。器官芯片在类器官的基础上,更加有效的模拟药物代谢、器官之间的相互作用。器官芯片完美诠释FDA微生理系统概念 如下图中的肺器官芯片,是目前模拟肺部体外生理功能的最优模型,其上下两层被生物膜所分开。上层为肺细胞,流通的是空气;下层为肺毛细血管细胞,流通的是培养液。两边为真空侧室,通过循环吸力来使得两侧的真空通道进行伸缩,从而带动膜上细胞的收缩,实现传统培养皿不可能实现的呼吸功能。开发新药的研发成本模型 器官芯片的核心技术之一微流控,是指精确控制微量流体,甚至创建浓度梯度,利用微流体技术使营养物质和其它化学信号以可控的方式运动和传递,可构建和模拟人体组织微环境。美国NIH、FDA和国防部曾在2011年牵头推出 “微生理系统” 计划,把器官芯片技术的开发和应用上升到国家战略层面。来源:Vunjak-Novakovic, et al., (2021). Organs-on-a-chip models for biological research. Cell 微流控芯片的常用材料包括PDMS(聚二甲基硅氧烷)、玻璃、硅、PMMA等。PDMS材料无毒透明、成本低廉,但存在非特异性地吸收小分子的问题。玻璃和硅材料可达纳米级加工精度,但成本较高。目前学界已围绕各种热塑性塑料展开相关探索,如聚氨酯、环烯烃聚合物和共聚物等。来源:Organs-on-Chips Market and Technology Landscape 2019✦ 类器官的培养✦ 类器官培养是一种模拟人体器官结构和功能的培养技术,具有广阔的应用前景。然而,类器官培养的过程比较漫长且试剂昂贵,需要借助专业的设备才能实现。 兰伯艾克斯的LAB-MI二氧化碳摇床式培养箱是一种适用于类器官培养的设备,具有独特的优势。该设备采用先进的摇床技术,能够更好地适应类器官3D生长的特性,促进细胞增殖和分化。此外,该设备还具有稳定的二氧化碳环境控制功能,能够为细胞提供更加真实的生长环境。 兰伯艾克斯作为一家研发制造能力强的公司,可以配合微流控、器官芯片、组织工程等应用定制开发,为类器官培养提供更加专业的解决方案。
  • 博奥领衔起草的4项生物芯片标准通过审定
    国家食品药品监督管理局日前审定通过了“体外诊断用蛋白质微阵列芯片”、“生物芯片用醛基基片”、“体外诊断用DNA微阵列芯片”和“激光共聚焦扫描仪”等4项生物芯片行业标准,该标准由博奥生物有限公司暨生物芯片北京国家工程研究中心领衔负责起草,并将于2011年6月1日起施行。   中国工程院院士、生物芯片北京国家工程研究中心主任程京介绍说,生物芯片技术作为一项多学科交叉的高新技术,已广泛应用于生命科学、医学和临床医疗、卫生防疫、药物筛选、食品安全等多个领域。目前,我国生物芯片技术在研究开发和生产应用方面已经实现了跨越式发展,并具备了一定的产业化规模,制定行业标准就显得尤为重要,可以使生物芯片产业规范化管理得到有序发展。   据了解,我国生物芯片研发现已经历10个年头的发展,基本建成了集技术创新、成果转化、综合服务、人才培养于一体,具有国际先进水平的生物芯片研究、开发和产业化基地。作为产业化规模最大的博奥生物现已建立起了包括基因、蛋白质、细胞和组织“四位一体”的系统化生物芯片技术服务平台,研制开发出了具有自主知识产权的疾病诊断生物芯片、配套仪器设备、试剂耗材、软件数据库等4个系列近60项具有较强国际竞争力的产品,其中多种芯片产品属国际首创,并出口20多个国家和地区。
  • 直播预约:零距离云参观芯片失效分析实验室
    现代社会的日常生活已经离不开半导体,任何电子产品都要用到半导体!简单的如发光二极管,复杂的比如电脑手机的计算芯片存储芯片都属于半导体产业!半导体行业是一个资金密集型、技术密集型的行业,其生产工艺复杂,设备精密度要求高,整体流程涉及到成百上千道工序。随着半导体制造工艺越来越高,其制造难度及品质管控也在呈指数级增长。半导体制造工艺的复杂性在于:生产步骤多达上千步,每道工序工艺参数多达上千,每道工序良率要求极高。以上特点使得半导体制造成为了不折不扣的高端制造业。试想,对于一种包含1000道工序的半导体工艺技术来说,若是每一道工序产品良率为99.9%,则最终的产品良率仅为36.7%。也因此,半导体每一道工艺都几乎要求达到零失误。因此,半导体行业呈现出来材料纯度要求高、制造精度要求高,制作过程复杂等特点。而这也对企业的污染检测、失效分析等技术水平都提出了极高的要求。工程师如何寻找芯片中的缺陷?8月17日下午,仪器信息网走进宝藏实验室第12站,将带领广大网友走进北京软件产品质量检测检验中心,零距离感受半导体如何进行失效分析。报名方式扫描下方二维码预约视频号直播:本期看点• 芯片失效分析工作如何进行(主要工作方法、主要工作流程等)• 对话资深失效分析工程师、仪器企业工程师、集成电路编审,圆桌探讨行业前景!嘉宾平台简介智能产品检测实验室主要提供安全检测、可靠性检测、智能产品失效分析等服务,致力于电子半导体、芯片制造、集成电路、新材料、航空航天等领域。平台拥有包括聚焦离子束系统(FIB/SEM/EDS)、X射线检测系统 (2D/CT)、InGaAs微光显微镜(EMMI)、超声波扫描显微镜(SAT)、点针工作台等多种分析加工设备。
  • 东南科仪成功引进红外快速水分测定仪专用玻纤膜片
    使用红外快速水分测定仪测定固体水分是快速而稳定的水分测定方法,在农业生产,经济作物,化学品,食品工业质量监控和中间体质控中应用广泛,塞多利斯MA系列产品是此类仪器的典型代表,在世界范围内得到了广泛的应用,但是,由于半固体和固体物质加热过程中容易结块,挥发不完全,所以,膏状物和液体的水分测定使用红外快速水分测定仪就不太方便,现在,这个问题已经成功解决,东南科仪引进一种玻璃纤维海绵状薄膜,可以将液体比如:牛奶,豆奶,巧克力等均匀吸附,借助表面张力完美分散,有利于水分的挥发,对测定膏状物质:比如:巧克力,酸奶,奶酪等产品的水分也非常方便。 这种玻璃纤维片本身含水量在0.1%以下,性质惰性,只产生表面粘附和径向分散作用,不会永久吸附,不会对测定结果造成不利影响,切割直径为~90mm,可满足赛多利斯MA系列和其他品牌的水分测定仪的使用需要。包装:100片/包(销售和价格咨询: 13380008123) 相关链接:[赛多利斯产品简介] 德国赛多利斯电子称量器具和红外快速水分测定仪,其先进的超级单体传感器, 优质可靠的集成电路和显示器件技术, 精湛的制造工艺,使其能长年稳定可靠地工作而勿须特别维护, 与其它同类产品相比, 可以一当十, 由东南科仪向用户推荐并经销的MA系列红外快速水份测定仪正在烟草行业数十家企业和质监站中应用, 积累了丰富的使用经验, 被使用者誉为 "是对该行业的一大贡献"。 德国赛多利斯MA系列红外水分测定仪是先进的红外干燥器(模拟电烘箱)和精密电子天平及数据处理技术相结合的智能型产品, 其测定水分的原理基于干燥失重法, 与国标方法测定水分的过程具有原始的相关性, 因此, 与重现性和准确度均无法保证的电容法, 电阻法相比, 其测定结果准确, 可靠, 快速, 操作简便, 仪器本身勿须标定,测定结果勿须修正。为保证测定精度, MA-45,MA-50, MA-100均采用电子反馈系统自动调整加热功率, 使干燥加热的温度波动能够控制在± 1℃内。 赛多利斯全部中高端产品内置标准的RS-232C数据传输接口和打印驱动程序, 配打印机或电脑可不需要硬件改动实现结果的输出和统计数据,对数据进行集中统一管理, 实现测定与数据管理现代化。
  • 等离子体显微镜载玻片“揭示”了癌细胞的颜色
    纳米载玻片为无染色细胞分析提供了一条清晰的途径。图1 一种新的显微镜载玻片可以转换介电常数的微妙变化,显示引人注目的颜色对比度澳大利亚的研究人员开发了一种显微镜载玻片,可以通过“揭示”癌细胞的颜色来改善癌症诊断。由澳大利亚的拉筹伯大学(La Trobe University )高级分子成像研究委员会卓越中心的布莱恩阿贝(Brian Abbey)教授及其同事首创的所谓纳米载玻片(NanoMslide),是一种等离子体活性的显微镜载玻片,可以将样品介电常数的细微变化转化为鲜明的颜色对比。阿贝和他的同事已经使用纳米载玻片在组织中辨别癌细胞,其灵敏度优于一些用于临界诊断的商业生物标志物。正如研究人员在《自然》(Nature)杂志上报道的那样:“这项技术的广泛应用以及它与标准实验室工作流程的结合,可能会证明其应用范围远远超出组织诊断。” 几十年来,研究人员已经知道,由于细胞内蛋白质分布和整体形状的差异等因素,癌细胞倾向于以不同于健康细胞的方式与光相互作用。虽然在生物成像过程中,通常会将染色剂和染料添加到透明的生物样品中,以生成彩色图像,但这些染料往往会改变样品的性质。考虑到这些点,阿贝和同事使用最新的纳米制作技术,来创建一个可以操纵光线和“添加”颜色的等离子体主动显微镜载玻片。图2载玻片在玻璃表面结合了几层精细印刷的金属,以操纵光与细胞的相互作用。结果是在显微镜下观察组织时,大大增强的对比度纳米制剂在墨尔本纳米制造中心(MCN)制作,该中心是澳大利亚国家制造设施(ANFF)的一部分。正如阿贝所强调的:“通过开发一种特殊的纳米涂层,我们改进了普通显微镜载玻片的表面,并将其转化为一个巨大的传感器。”他补充道:“真正引人注目的是,传感器的结构只有几百纳米宽,但在几十厘米或更大的范围内重复的精度惊人。”当样品放置在载玻片上,通过可见光激活载玻片时,就将介电常数转变为颜色对比度的变化。正如阿贝及其同事在《自然》杂志上所写:“非凡的光学对比度涉及光与金属表面自由电子集体振荡的共振相互作用,称为表面等离子体激元。”当透射光通过载玻片上的一组波长光阑时(载玻片与薄电介质试样接触),光谱发生了变化。当使用标准透射亮场显微镜对样品进行成像时,这会导致与局部样品厚度和/或介电常数相关的空间分辨颜色分布,从而产生显著的颜色对比效果。图3 使用纳米载玻片来观察未染色的癌组织。 [拉筹伯大学]根据阿贝的说法,这可能意味着很难通过等离子体增强的颜色对比度在可见光透射图像中清楚地看到光学透明样品中的特征。他说:“纳米载玻片使组织呈现出美丽的全彩对比,使得在一张玻片上更容易区分多种类型的细胞。”。研究人员利用小鼠模型和患者组织,与乳腺癌病理学家一起测试了他们的纳米载玻片。在小鼠模型中,研究人员确信从样本中看到的一些表明癌细胞的特定颜色。在对患者组织进行更复杂的病理学评估时,纳米载玻片也表现强劲,优于一些商业生物标记物,这些标记物被用作边界诊断的辅助手段。“这是我第一次看到癌细胞突然出现在我面前,”艾比的同事、彼得麦克卡勒姆癌症中心的贝琳达帕克(Belinda Parker)教授说。她补充道:“我们所做的只是取一段乳腺癌组织,放在载玻片上,在传统光学显微镜下观察。我们可以很容易地将癌细胞与周围的正常组织区分开来。”。“这张幻灯片还将乳腺癌与其他非癌性异常区分开来,这对早期癌症诊断有很大的希望。”研究人员现在也在测试他们的液体活组织切片载玻片,并希望扩大生产,这将使他们能够探索进一步的应用,并生产出进一步临床验证所需的载玻片数量。阿贝说:“这项技术也可能对不断增长的数字病理学空间产生巨大的好处,在那里,纳米载玻片产生的鲜艳色彩可以帮助开发下一代人工智能算法来识别疾病的迹象。”。该项研究发表在《自然》杂志上。符斌 供稿
  • PAS发布PAS CONCEPT 96 高通量薄片固相微萃取新品
    德国PAS Technology是一家集研发和销售自动样品处理的技术的公司,专注于无溶剂萃取技术,提供从采样到解析的一系列自动化解决方案。公司总部位于图林根州的马格达拉,可以为全球的客户提供优质的服务,并与微萃取领域的权威教授Janusz Pawliszyn及其研发团队合作,成功开发了CONCEPT 96及CONCEPT NT等产品。涉及的行业包括:医疗实验室、环境分析、食品分析、空气分析和饮用水分析系统。产品名称:CONCEPT 96——Coated Blade SPME System高通量薄片固相微萃取产品介绍:CONCEPT 96 高通量薄片固相微萃取有多种固定相介质可选,如C18、C8、C4、Pan-C18、Si、DEAE、C18-NH2-、C18-Diol-等多达20多种,96片萃取薄片可进行任意组合使用,用于样品筛选。该系统特别适合少量液体样品,组织培养液,体液等中的组分的富集萃取。尤其对于复杂基质的全血样品,可选用生物兼容性的专属萃取薄片,萃取时,血浆蛋白、血细胞不被吸附,而只萃取富集其中的小分子物质;经过活化后,可反复多次使用。产品特点:采用Coated Blade SPME,也称Thin thim SPME技术,涂层薄片微萃取技术,相较与传统的熔融石英材料的固相微萃取技术,已成为一种极具吸引力的样品制备技术。在TFME中,采用高表面积/体积比的平面薄片作为萃取相。在这种结构下,萃取相的表面积增加,而涂层的厚度保持不变或变薄,这使得与其他微萃取方法相比,在无需延长采样时间的情况下提高了灵敏度。高通量薄片固相微萃取CONCEPT 96系统,此系统既满足了自动化的要求,也保证了高通量的需求(可同时平行处理96位样品)。 CONCEPT 96高通量薄片固相微萃取应用领域:用于药物代谢研究、蛋白质组学研究、药物筛选、人体体液分析、环境监测、食品中微生物毒素检测、法医毒化鉴定分析等领域。创新点:目前市面上微萃取技术有熔融石英材料的固相微萃取技术,相较于传统的SPME技术,因传统的SPME技术的涂层量有限约0.5微升(受涂层厚度,表面积,长度等因素影响),导致吸附的样品量受到限制。PAS CONCEPT 96高通量薄片固相微萃取,采用新型技术Coated Blade SPME,也称Thin thim SPME,涂层薄片微萃取技术,可以大大增加表面积从而增加吸附量。在TFME中,与圆柱型的萃取头相比,这种薄片式形状的萃取相采用高表面积/体积比的平面薄片,在这种结构下,萃取相的表面积增加,而涂层的厚度保持不变或变薄,这使得无需延长采样时间的情况下提高了灵敏度。其次,该技术原理是将其吸附剂涂在扁平排列的薄片中,吸附剂可与样品直接接触,可减少溶剂带来的低回收率的影响,实现预处理、提取、清洗、解析等步骤。即使是非常复杂的样品(如均质后的动物或植物组织中的分析物),样品也会根据其亲和力进入萃取相。最后, CONCEPT 96自动化薄片固相微萃取系统,可直接在96孔板上同时萃取和解析样品,尽可能的减少大量的位移,有研究报道,平均每个样品分析时间不大于2.2min,体现了高通量和高效率,也满足了自动化的要求。相比于传统方法每个样品的分析时间需要30min左右,CONCEPT 96大大提高了分析效率。 涂层薄片固定相介质类型选择多,如C18、C8、C4、Pan-C18、Si、DEAE、C18-NH2-、C18-Diol-等多达20多种,96片萃取薄片可进行任意组合使用,用于样品筛选。应用于特别适合少量液体样品,组织培养液,体液等中的组分的富集萃取。高通量薄片固相微萃取作为少溶剂微萃取领域中的新技术,在非挥发性有机物分析中能发挥重要作用。 PAS CONCEPT 96 高通量薄片固相微萃取
  • 北京大学王兴军团队提出:全芯片化的微波光子频率测量系统
    移动通信、雷达、卫星遥感、电子对抗以及基础仪器科学等领域的进步,促使着微波系统向着高频、宽带、大动态范围、多功能的方向发展。面对这些新的发展需求,传统的微波技术在微波信号的产生、传输、处理、测量等各个方面均面临巨大挑战。微波光子学融合了微波技术和光电子技术,即利用光电子学的方法处理微波信号,可以突破传统射频电子器件的性能瓶颈,被认为是下一代各类微波系统应用的解决方案之一。传统微波光子系统一般使用分立的光电子器件与电学模块搭建链路,这使得微波光子系统样机或产品具有重量大、功耗高、稳定性差等不足。因此,实现微波光子系统的微型化、片上化和集成化,是推动微波光子技术真正落地与广泛应用的关键,也是近年来学术界和产业界关注的焦点。然而,目前已报道的研究工作仍未能实现微波光子系统的完全芯片化集成,需要借助分立的光电子器件(例如:激光器、调制器等)或电子器件(例如:电学放大器等)来构建完整的系统链路,这在成本、体积、能耗、噪声方面严重制约着微波光子技术的工程化与实用化。鉴于此,近日,北京大学电子学院区域光纤通信网与新型光通信系统国家重点实验室王兴军教授研究团队提出了融合硅基光电子芯片、磷化铟芯片和 CMOS 电芯片的多芯片平台混合集成方案,首次实现了微波光子系统光-电链路的完全集成化拉通。基于该技术方案,研究团队设计实现了一款全芯片化的微波光子频率测量系统,整体尺寸约为几十 mm²,功耗低至 0.88 W,可实现对 2-34 GHz 宽频段微波信号瞬时频率信息的快速、精准测量。该成果发表在 Laser & Photonics Reviews,题为“Fully on-chip microwave photonic instantaneous frequency measurement system”。北京大学博士研究生陶源盛与北京大学长三角光电科学研究院杨丰赫博士为论文的共同第一作者,王兴军教授为论文通讯作者。该团队设计的全芯片化微波光子频率测量系统原理如图1所示,他们在硅光芯片上有源集成了高速调制器(用于微波信号加载)、载波抑制微环、可调谐光学鉴频器和光电探测器等器件。基于磷化铟平台实现高性能的分布式反馈(DFB)激光器,并通过端对端对接耦合方式与硅光芯片实现互连。为在保证系统测量精度的条件下降低对后端采样与处理电路的要求,他们将硅光芯片的弱光电流输出通过金线键合的方式直接连接至 CMOS 跨阻放大芯片的输入。经跨阻放大后的电信号,仅需通过低速采样电路采集,通过离线处理即可还原出输入高频微波信号的瞬时频率信息。图1:全芯片化的微波光子频率测量系统。(a)系统三维示意图;(b)磷化铟激光器芯片与硅光芯片的光学显微图;(c)系统整体的集成封装实物图。图源:Laser Photonics Rev.2022, 2200158, Figure 1面向电子对抗、雷达预警等实际应用场景,研究人员们在实验演示了该全芯片化微波光子频率测量系统对多种不同格式、微秒级快速变化的微波信号频率的实时鉴别。如图 2 所示,依次是对 X 波段(8-12 GHz)范围内的跳频信号(Frequency hopping, FH)、线性调频(Linear frequency modulation, LFM)和二次调频(Secondary frequency modulation, SFM)三类信号的频率-时间测量结果,误差均方根仅 55-60 MHz,是迄今为止同类型集成微波光子系统所展示出的最佳性能。图2:复杂微波信号频率的动态测量结果。(a)跳频信号(Frequency hopping, FH)的频率测量;(b) 线性调频(Linear frequency modulation, LFM)的频率测量;(c)二次调频(Secondary frequency modulation, SFM)信号的频率测量图源:Laser Photonics Rev.2022, 2200158, Figure 4未来展望 本工作所提出的多平台光电混合集成工艺方案,除适用于微波测量应用,对于研究微波信号产生、信号处理、信号传输等其他各种类型微波光子系统的集成化、微型化也具有很高的参考价值,为推动微波光子技术的工程化应用提供了一种通用性的解决方案。
  • 玻璃芯片:使用注意事项、清洗步骤、堵塞检查及常规处理方法
    玻璃芯片使用注意事项1. 玻璃芯片及玻璃芯片夹具如图所示,安装时需按夹具使用说明操作。2. 生成微滴粒径大小取决于玻璃芯片结构十字剪切口的下游宽度,客户依据需要选择合适玻璃芯片。3. 通入的液体必须经过0.45 μm滤膜过滤以防止芯片堵塞。4. 使用完毕后必须按照规定步骤对玻璃芯片进行清洗和干燥。5. 玻璃芯片为玻璃材质,使用过程中需避免磕碰损坏。6. 硅胶塞使用时须定期更换,如通二氯甲烷溶液(需每次更换)。清洗步骤1.在A和C口处连接液体排出管,在B口中通入2 mL分散相溶剂(这里特指水包油实验,如易析出的溶质PLGA,可通入二氯甲烷溶剂溶解且必须滤膜过滤),以此将易析出的溶质快些排出;2.在B口中,通入60s空气,将1中通入的溶剂排出;3.在B口中,通入5 mL去离子水滤膜过滤,将易溶于水的物质排出;4.在B口中,通入5 mL异丙醇滤膜过滤 5.在B口中,通入60s空气干燥。玻璃芯片堵塞检查及常规处理方法1.在使用或清洗过程中,发现流道中有杂质,需及时处理,如改变液体进入口冲出流道中的杂质;若仍无法解决,可参考“堵塞的玻璃芯片处理方法”。2.若从一个端口通入液体时,发现液体无法从另外两个端口流出:① 需要从夹具中取出玻璃芯片,检查三个端口(A、B和C)是否堵塞;②若端口堵塞,需用尖嘴镊子取出杂质;若三个端口无堵塞现象,则需要把芯片放置在显微镜下观察,检查流道内是否有较大杂质堵塞;若仍无法解决,可参考“堵塞的玻璃芯片处理方法”。堵塞的玻璃芯片处理方法1.若杂质可溶于油相溶剂(水包油实验,如溶于二氯甲烷)且芯片未完全堵死,如PCL、PLGA和PLA(由于二氯甲烷的挥发而析出),可直接通入二氯甲烷以溶解流道中的杂质;若芯片完全堵死,可将芯片泡于二氯甲烷中,使得杂质被慢慢溶解;2.若玻璃芯片中的杂质是水相中的PVA(水包油实验,PVA为表面活性剂),或者加热易溶解于水(如海藻酸钠,油包水实验)的杂质:可直接将玻璃芯片置于90°C水浴锅中,一段时间后,取出并用洗耳球或从芯片的一端口将溶解后的杂质吹出;3.若杂质为长条纤维状,卡在十字剪切口且与BC线垂直,在B口和C口交替通入水或异丙醇(此外溶液需0.45 μm滤膜过滤),以此将杂质通过A口排出;4.若杂质为块状,可视情况从一个端口(或水等其他溶剂)加大压力将块状杂质排出;此方法仅作参考,不一定完全能将杂质排出;5.若玻璃芯片被堵但未完全堵死(不符合方法1),可以选择在芯片中通入浓硫酸(浓硫酸腐蚀硅胶塞,用完需立即更换)以碳化杂质;若玻璃芯片已被完全堵死,可将芯片泡在浓硫酸中以碳化杂质;此方法仅针对于有机物,其他无机物不适用;6.若芯片已完全堵死,可将玻璃芯片上放置于电热板上200 °C(温度过高易损坏玻璃芯片)加热,用于碳化杂质疏通流道;此方法仅针对于有机物,其他无机物不适用。以上方法仅供参考,具体问题需视情况而定。
  • 华测检测蔚思博金桥芯片实验基地正式开业
    据华测检测消息,12月5日,华测检测认证集团股份有限公司在上海浦东金桥产业园举办华测蔚思博(CTI-VESP)金桥芯片实验基地的开业典礼。  华测检测集团总裁申屠献忠表示,芯片半导体分析与测试一直是华测集团重点投资的战略发展领域。自2019年起至今,在该领域,华测已在上海金桥、浦江、张江、合肥、中国台湾新竹布局了五大实验室,此次新建的金桥实验室基地是其中规模最大、服务能力最全面的RA/ESD专业实验室。未来华测集团和华测蔚思博将在芯片半导体战略赛道上持续投入,包括拓展FA能力,为半导体客户群体提供一站式解决方案。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制