当前位置: 仪器信息网 > 行业主题 > >

苯磺酸

仪器信息网苯磺酸专题为您提供2024年最新苯磺酸价格报价、厂家品牌的相关信息, 包括苯磺酸参数、型号等,不管是国产,还是进口品牌的苯磺酸您都可以在这里找到。 除此之外,仪器信息网还免费为您整合苯磺酸相关的耗材配件、试剂标物,还有苯磺酸相关的最新资讯、资料,以及苯磺酸相关的解决方案。

苯磺酸相关的资讯

  • 麦克仪器给力科学研究-用于脂化生物柴油合成中游离酸的超高交联聚苯乙烯磺酸催化剂
    随着美国麦克仪器的市场份额的逐步壮大,美国麦克仪器已经成为行业科学研究必备仪器,日前英国哈德斯菲尔德大学教授发表了一篇题为&ldquo 用于脂化生物柴油合成中游离脂肪酸的超高交联聚苯乙烯磺酸催化剂 &rdquo 学术文章,已经被Applied Catalysis B: Environmental(115&ndash 116 (2012) 261&ndash 268)收录,在该项研究中,美国麦克仪器ASAP 2020与DVS Advantage仪器成为表征催化剂最强有力的工具,为其研究提供了最具可信度的分析结果。以下列举该文章的摘要以及链接供参考: 链接:http://www.sciencedirect.com/science/article/pii/S0926337311006102 标题:Hypercrosslinked polystyrene sulphonic acid catalysts for the esterification of free fatty acids in biodiesel synthesis 摘要: New sulphonic acid catalysts supported on hypercrosslinked polystyrene have been studied in the esterification of oleic acid with methanol and in the rearrangement of &alpha -pinene to camphene and limonenes. The catalysts have been characterised in terms of specific surface areas and porosities, affinities for water and for cylcohexane vapours, and both concentrations and strengths of acid sites. They have been compared with conventional macroporous polystyrene sulphonic acids (Amberlysts 15 and 35) and SAC-13, a composite between Nafion and silica. The results show that the hypercrosslinked polystyrene sulphonic acids, despite exhibiting relatively low concentrations of acid sites and acid site strengths below those of Amberlysts 15 and 35, are very much more catalytically active than conventional resins in reactions such as the esterification in which high acid site strengths are not required. It is thought that this is due to the highly accessible acid sites throughout the catalyst particles. Reusability studies are reported and it appears that the temperature at which the catalyst is used is important in controlling and minimising catalyst deactivation. 美国麦克仪器公司是世界上第一家将自动表面积分析仪、压汞仪以及沉降式粒度分析仪投放市场的公司。公司主营产品为研究级全自动比表面积与孔隙度分析仪、多站比表面积与孔隙度分析仪、快速比表面积与孔隙度分析仪、流动气体法比表面分析仪、程序升温化学吸附仪、化学吸附仪、压汞仪、高压吸附气体吸附仪、蒸汽吸附仪、密度测量、颗粒技术和颗粒形态分析仪等各种材料表征仪器。 美国麦克仪器产品在1979年进入中国市场,成为中美建交后最早进入中国市场的分析仪器。在为中国用户服务30多年后,于2011年3月在上海成立了麦克默瑞提克(上海)仪器有限公司,专业为中国市场提供美国麦克仪器公司的产品。公司总部设在上海,并在北京、广州、西安分别设有办公室,并设有应用实验室提供各类仪器的演示与操作培训并提供对外做样服务,为广大用户提供完整的实验室解决方案与疑难样品的分析。
  • 吉林省卫生健康委员会对废止《食品安全地方标准 面制食品中十二烷基苯磺酸钠的测定高效液相色谱-荧光检测器法》等7项食品安全地方标准征求意见
    各有关单位:根据《中华人民共和国食品安全法》和《国家卫生健康委办公厅关于进一步加强食品安全地方标准管理工作的通知》(国卫办食品函〔2019〕556号)的规定,经吉林省食品安全专家委员会议通过,我委将废止以下食品安全地方标准,具体废止标准号及标准名称如下:DBS22/010-2013 《食品安全地方标准 面制食品中十二烷基苯磺酸钠的测定高效液相色谱-荧光检测器法》DBS22/013-2013 《食品安全地方标准 植物源性食品中α-玉米赤霉烯醇和赤霉烯酮的测定 液相色谱-质谱/质谱法》DBS22/017-2013 《食品安全地方标准 柑橘类水果及其饮料中橘红 2 号的测定高效液相色谱法》DBS22/018-2013 《食品安全地方标准 鲜(冻)畜肉中鸭源性成分的定性检测PCR 方法》DBS22/003-2012《食品安全地方标准 生牛乳中雄激素的测定气相色谱-质谱法》DBS22/004-2012 《食品安全地方标准 植物油中胆固醇的测定气相色谱-质谱法》DBS22/008-2012 《食品安全地方标准 乳与乳制品中 L-羟脯氨酸的测定》现公开征求意见,如有意见建议请于2023年9月23日前书面反馈我委。联系人:省卫生健康委员会食品安全标准与监测评估处 邢立新联系电话:0431-88906887电子邮箱:1047810177@qq.com吉林省卫生健康委员会2023年9月13日
  • 再度出击,聊聊亚硝胺类和磺酸酯类遗传毒性杂质检测方案
    遗传毒性(Genotoxicity)是指遗传物质中任何有害变化引起的毒性,而不参考诱发该变化的机制,又称为基因毒性。遗传毒性杂质(Genotoxic Impurities, GTIs)是指能引起遗传毒性的杂质,包括致突变型杂质和其他类型的无致突变性杂质。致突变型杂质(Mutagenic Impurities)指在较低水平时也有可能直接引起DNA损伤,导致NDA突变,从而可能引发癌症的遗传毒性杂质[1]。目前遗传毒性列表中有1574种致癌物质,亚硝胺类、磺酸酯类和苯并芘类等属于高遗传毒性物质。近年来,出现多起已上市的药品中发现遗传毒性,继而被召回的案例。  例如某制药企业在欧洲推出的抗艾滋药物Viracept(nelfinavir mesylate),EMA在2007年7月暂停了它在欧洲的所有市场活动,因为在其产品中发现甲基磺酸乙酯超标。经自查,发现存储罐中乙醇残留,放置3个月导致甲磺酸乙酯达到2300ppm,去掉存储罐,增加对甲磺酸乙酯的控制要求低于0.5ppm,EMA对新工艺重新评估,对工厂进行现场检查,2007年10月重新获得上市许可。2018年7月,欧盟药品管理局报道在其对某企业含有ARB药物缬沙坦原料药的药物抽查汇总发现了杂质NDMA,其平均含量达66.5ppm,超过欧盟标 准0.3ppm。随后全球已有包括美国,加拿大,挪威,德国等22个国家召回共2300批该企业的含有沙坦类原料药的降压药。相关药企沙坦原料药中的NDMA经推断疑似来源于药物合成过程中使用的溶剂N,N-二甲基甲酰胺(DMF)与亚硝酸钠在酸性条件下反应产生的微量副产物,即NDMA。随后FDA发布了GCMS测定NDMA和NDEA的方法。2019年3月,又一种亚硝胺类杂质(NMBA)在ARB药物氯沙坦中被发现,但是该物质不能直接被GCMS测定。 9月FDA发表声明,在雷尼替丁中发现NDMA,但是不适用于GCMS方法测定。原因是雷尼替丁结构中,硝基和二甲胺在高温下从母核解离,结合成NDMA,对GCMS法测定产生干扰。  岛津中国创新中心,不仅致力于科研领域,同时时刻关注各行业的发展和社会的需求,秉承着以科学技术向社会做贡献的宗旨不断前行。本项目针对部分亚硝胺类和磺酸酯类遗传毒性杂质在药品原料药中的测定提供检测方法,为行业客户提供参考。针对客户比较关心的几种遗传毒性杂质分别建立了方法,并完成完整的方法学验证。  2019年6月,创新中心率先推出遗传毒性杂质NMBA(N-亚硝基-N-甲基-4-氨基丁酸)LC-MS/MS解决方案。与此同时,对NDMA和NDEA的研究也已在《分析试验室》2020年39卷2期上发表杂质上发表;关于NMBA的研究已在《中国药学杂志》2020年55卷3期上发表。如下将上述研究报告分别简述,供行业客户参考。 1. HS-GC-MS检测原料药厄贝沙坦中N-亚硝基二甲胺和N-亚硝基二乙胺   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,建立了原料药厄贝沙坦中N-亚硝基二甲胺和N-亚硝基二乙胺的同时测定方法。在10~500ng/mL浓度范围内各组分线性关系良好,相关系数均达到0.999以上,100ng/mL标准品溶液连续进样6针,各组分峰面积RSD均小于2.40%。阴性空白样品在40,80,160ng/mL加标浓度时,回收率为100.6%-104.6%,阳性空白样品回收率为101.8%-108.7%。该方法简单方便,顶空进样不污染气化室,能够有效的检测原料药厄贝沙坦中N-亚硝基二甲胺和N-亚硝基二乙胺的含量。 2. 岛津中国推出氯沙坦钾中N-亚硝基-N-甲基-4-氨基丁酸(NMBA)解决方案   本文利用岛津公司LCMS-8050高效液相色谱-三重四极杆质谱联用仪,建立了原料药中氯沙坦钾中NMBA的测定方法。该方法中NMBA在0.1 ~ 50.0 ng/mL范围内线性关系良好,日内和日间的精密度保留时间和峰面积的重复性良好(RSD均小于1.10%,n = 6和n = 18),在低中高3个浓度的平均回收率在94.40 ~ 98.04%之间。该方法简单方便,能够快速有效的检测氯沙坦钾原料药中NMBA的含量。 3. GC-MS内标法测定甲磺酸中甲磺酸甲酯、甲磺酸乙酯、甲磺酸异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标测定甲磺酸中甲磺酸甲酯(MMS)、甲磺酸乙酯(MES)和甲磺酸异丙酯(IMS)的方法并完成方法学验证。在1~10000ng/mL浓度范围内甲磺酸甲酯线性关系良好,在1~100ng/mL内甲磺酸乙酯和甲磺酸异丙酯线性关系良好,相关系数均达到0.999以上,样品平行测定6次,计算各组分含量RSD均小于3.33%。样品在650,850,1000ng/mL加标浓度时,MMS回收率为91.85%-103.09%,在10ng/mL加标浓度时,EMS、IMS回收率为92.21%-105.93%。该方法灵敏度和准确度高,能够有效的检测甲磺酸中MMS、EMS和IMS的含量。 4. GC-MS内标曲线法测定甲磺酸中甲磺酰氯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标测定甲磺酸中甲磺酰氯的方法并完成方法学验证。在1~5000ng/mL浓度范围内甲磺酰氯线性关系良好,相关系数达到0.999,样品平行测定6次,计算组分含量RSD为1.19%。样品在320,400,480ng/mL加标浓度时,甲磺酰氯回收率为100.09%-109.84%。该方法灵敏度和准确度高,能够有效的检测甲磺酸中甲磺酰氯的含量。 5. HS-GC-MS法测定甲磺酸倍他司汀中甲磺酸甲酯、甲磺酸乙酯、甲磺酸异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标,通过碘化钠衍生化,测定甲磺酸倍他司汀原料药中甲磺酸甲酯(MMS)、甲磺酸乙酯(MES)和甲磺酸异丙酯(IMS)的方法并完成方法学验证。在1~250ng/mL浓度范围内MMS和EMS线性关系良好,在1.5~250ng/mL内IMS线性关系良好,相关系数均达到0.999以上,样品加标平行测定6次,计算各组分含量RSD均小于2.40%。样品在80,100,120ng/mL加标浓度时,MMS、 EMS和IMS回收率在93.86%~112.21%之间。该方法操作简单,灵敏度和准确度高,能够有效的检测甲磺酸倍他司汀中MMS、EMS和IMS的含量。 6. HS-GC-MS法测定甲苯磺酸舒他西林中甲苯磺酸甲酯、乙酯、异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标,通过碘化钠衍生化,测定甲苯磺酸舒他西林原料药中甲苯磺酸甲酯(MTS)、甲苯磺酸乙酯(ETS)和甲苯磺酸异丙酯(ITS)的方法并完成方法学验证。在1.5~250ng/mL浓度范围内MTS和ETS衍生化后的碘甲烷(MeI)和碘乙烷(EtI)线性关系良好,在3~250ng/mL内ITS衍生后的(iPrI)线性关系良好,相关系数均达到0.998以上,样品加标平行测定6次,计算各组分含量RSD均小于4.50%。样品在20,40,60ng/mL加标浓度时,MTS、 ETS和ITS回收率在92.50 %~108.13%之间。该方法操作简单,灵敏度和准确度高,能够有效的检测甲苯磺酸舒他西林中MTS、ETS和ITS的含量。 7. HS-GC-MS法测定苯磺酸氨氯地平中苯磺酸甲酯、乙酯、异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标,通过碘化钠衍生化,测定苯磺酸氨氯地平原料药中苯磺酸甲酯(MTS)、苯磺酸乙酯(ETS)和苯磺酸异丙酯(ITS)的方法并完成方法学验证。在1.5~250ng/mL浓度范围内MBS和EBS衍生化后的碘甲烷(MeI)和碘乙烷(EtI)线性关系良好,在3~250ng/mL内IBS衍生后的(iPrI)线性关系良好,相关系数均达到0.999以上,样品加标平行测定6次,计算各组分含量RSD均小于5.46%。样品在5,10,15ng/mL加标浓度时,MBS、 EBS和IBS回收率在85.4 %~104.70%之间。该方法操作简单,灵敏度和准确度高,能够有效的检测苯磺酸氨氯地平MBS、EBS和IBS的含量。 [1] 《中国药典》2020年版四部通则增修订内容:遗传毒性杂质控制指导原则审核稿(新增)
  • 日本:牛磺酸被列为不影响人体健康的物质
    2009年6月23日,日本厚生劳动省发布食安发第0623002号通知:近日,日本厚生劳动省对食品卫生法第11条第3项中所规定的不对人体健康造成影响的物质(厚生劳动省大臣所指定的物质)进行了部分修改。具体情况如下:   第1 修改的摘要   在食品卫生法(1947年法律第233号)第11条第3项的规定的不对人体健康造成影响的物质(厚生劳动省大臣所指定的物质)中追加牛磺酸。   第2 实施、应用日期   自公布之日起开始实施   第3 其他   根据有关确保饲料安全性以及改善质量的法律(1953年法律第35号),由农林水产部指定牛磺酸及制定其标准、规格。
  • 欧盟将全面禁用全氟己烷磺酸
    近日,欧盟委员会在其官方公报上发布法规(EU)2023/1608,对关于持久性有机污染物法规(EU)2019/1021进行修订,正式将全氟己烷磺酸和盐类及其相关物质列入欧盟持久性有机污染物法规禁用物质清单。新法规于官方公报发布后的第20天起生效。全氟己烷磺酸及其盐此前已经于2017年7月7日列入SVHC候选物质清单。现在此类物质被加入《斯德哥尔摩公约》,日后将在全球范围内淘汰。2023年3月,欧洲化学品管理局已经公布了针对超过1万种全氟或多氟烷基类物质的REACH法规限制提案,相关企业必须做好市场评估和化学品替代的准备。全氟和多氟烷基化合物由数千种物质组成,由于其含有极其稳定的碳氟键,使得此类物质具有很强的化学稳定性和表面活性、优良的热稳定性和疏水疏油性,被广泛应用于工业生产和生活消费领域。但此类物质具有蓄积性、生殖毒性、诱变毒性、发育毒性、神经毒性、免疫毒性等多种毒性,是一类具有全身多脏器毒性的环境污染物,目前各国已经在逐步管控此类化合物。
  • 国家市场监督管理总局对《表面活性剂 工业烷烃磺酸盐 直接两相滴定法测定烷烃单磺酸盐含量》等130项拟立项国家标准项目公开征求意见
    各有关单位:经研究,现对《涤棉混纺色织布》等130项拟立项国家标准项目公开征求意见,征求意见截止时间为2024年8月4日。请登录请登录标准技术司网站征求意见公示网页http://std.samr.gov.cn/gb/gbSuggestionPlan?bId=10001901,查询项目信息和反馈意见建议。2024年7月5日相关标准如下:#项目中文名称制修订截止日期1玻璃制品 玻璃容器内表面耐水侵蚀性能 用滴定法测定和分级修订2024-08-042表面活性剂 工业烷烃磺酸盐 直接两相滴定法测定烷烃单磺酸盐含量修订2024-08-043洗涤剂中无机硫酸盐含量的测定 重量法修订2024-08-044首饰 镍释放量的测定 光谱法修订2024-08-045玩具及儿童用品材料中总铅含量的测定修订2024-08-046纸、纸板和纸浆 水抽提液电导率的测定修订2024-08-047瓦楞芯(原)纸修订2024-08-048瓦楞芯纸 实验室起楞后平压强度的测定修订2024-08-049瓦楞纸板修订2024-08-0410瓦楞纸板 边压强度的测定(边缘补强法)修订2024-08-0411瓦楞纸板 厚度的测定修订2024-08-0412医用电气设备 剂量面积乘积仪修订2024-08-0413纸、纸板、纸浆及相关术语修订2024-08-0414纸、纸板和纸浆 包装、标志、运输和贮存修订2024-08-0415造纸原料和纸浆 多戊糖的测定修订2024-08-0416纸板 耐破度的测定修订2024-08-0417纸和纸板 不透明度(纸背衬)的测定(漫反射法)修订2024-08-0418纸和纸板 厚度的测定修订2024-08-0419纸和纸板 孔径的测定修订2024-08-0420纸和纸板 伸缩性的测定修订2024-08-0421纸和纸板 撕裂度的测定修订2024-08-0422纸和纸板 颜色的测定(C/2°漫反射法)修订2024-08-04
  • Detelogy应用分享:化工产品中全氟辛烷磺酸(PFOS)的测定的前处理方案
    全氟辛烷磺酸类物质(PFOS)作为一种重要的全氟化表面活性剂,因其具有疏油疏水的特性,被广泛用于民用和工业产品生产的多个领域,如我们日常熟悉的一次性饭盒,食品塑料包装袋、不粘锅、纺织品、皮革、地毯、油墨行业、消防泡沫、影像材料和航空液压油等产品中都含有它。在生产和使用过程中,PFOS会释放到环境中,研究发现各种环境介质都有PFOS的存在,是最难降解的污染物之一。同时PFOS还被发现能在生物体中蓄积,并可对肝脏、神经和免疫等系统造成一定的损伤。鉴于PFOS具有POPs的这些特征,2009年,PFOS被列入《关于持久性有机污染物(POPs)的斯德哥尔摩公约》,成为受控POPs之一,PFOS污染已成为全球性的环境污染问题。下面以SN/T 2392-2009《进出口化工产品中全氟辛烷磺酸的测定液相色谱-质谱/质谱法》Detelogy提供化工产品中全氟辛烷磺酸的测定的实验方案实验流程01 石蜡样品称取试样约2g(半固体样品需加入约1g硅藻土,搅拌均匀)。放入iQSE-06智能快速溶剂萃取仪萃取池中,池内样品的上下两层均用专用滤膜保护,轻轻压实至池底部,按下面条件进行提取。提取完毕后,将提取液转移至200mL浓缩管中,置于FlexiVap-12全自动平行浓缩仪在40℃水浴中进行浓缩,用甲醇定容至20mL,取1mL溶液用0.2μm滤膜过滤,滤液供LC-MS/MS测定。02 溶剂性涂料及胶粘剂样品称取2g试样于50mL离心管中,加入30mL甲醇,用MultiVortex多样品涡旋混合器振荡提取30min,再超声提取20min。置离心机中,以4000r/min离心10min。吸取上清液于200mL浓缩管中。重复上述提取步骤,合并提取液,置于FlexiVap-12全自动平行浓缩仪在40℃水浴中进行浓缩。用甲醇定容至20mL,取1mL溶液用0.2μm滤膜过滤,滤液供LC-MS/MS测定。03 润滑油样品称取2g,于50mL离心管中,加入5mL甲醇,用MultiVortex多样品涡旋混合器混匀,置离心机中,4000r/min离心10min。上清液待净化。将C18柱固定于iSPE-864全自动智能固相萃取仪。洗脱液置于FV32Plus全自动高通量智能平行浓缩仪于40℃水浴中旋转浓缩。用甲醇定容至20mL,取1mL溶液经0.2μm滤膜过滤,滤液供LC-MS/MS测定。上述智能方案中使用到的仪器
  • 美国公布食品中全氟烷基磺酸盐检测结果及检测方法改进情况
    2023年5月31日,美国食药局(FDA)公布了一般食品供应中的PFAs(全氟烷基磺酸盐)检测结果、海产品相关检测工作的进展以及检测方法改进情况,主要内容如下:   (1)FDA称在2 个鳕鱼和2个虾样本中检测到PFAS,在罗非鱼、鲑鱼和碎牛肉各1个样本中检测到 PFAS.FDA认为在7个样本中检测到的PFAS 暴露水平不太可能对幼儿或一般人群造战健康问题;   (2)对于进口自中国的给蜊罐头,因PFAS问题两家公司发布了自愿召回令,FDA正在继续对边境的有限数量的进口货物和市场上的国内产品进行检测。滤食性动物,如给蜊以及其他双壳克类软体动物(包括牡蛎、贻贝和扇贝),比其他海产品类型有可能积累更多的环境污染物。因此,FDA正在对进口和国产双克类软体动物进行额外采样,以更好地了解商业海产品中的PFAS情况;   (3)FDA将采用高分辨率质谐分析方法进行检测,以测定食品中PFAS情况。
  • 生态环境部关于公开征求《水质 全氟辛基磺酸和全氟辛基羧酸的测定 固相萃取/液相色谱-三重四极杆质谱法》等四项国家生态环境标准意见
    各有关单位:为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,我部组织编制了《生态遥感地面观测与验证技术导则》等四项国家生态环境标准征求意见稿,现征求各有关单位意见。标准征求意见稿及其编制说明,可登录我部网站(http://www.mee.gov.cn)“意见征集”栏目检索查阅。其他各有关单位和个人也可提出意见和建议。请于2022年1月10日前将意见建议书面反馈我部,并注明联系人及联系方式,电子文档同时发送至联系人邮箱。联系人:生态环境部监测司 曹 宇电话:(010)65646228传真:(010)65646236邮箱:zhiguanchu@mee.gov.cn地址:北京市东城区东安门大街82号邮编:100006附件:1.征求意见单位名单2.生态遥感地面观测与验证技术导则(征求意见稿)3.《生态遥感地面观测与验证技术导则(征求意见稿)》编制说明4.固定污染源废气 烟气黑度的测定 林格曼望远镜法(征求意见稿)5.《固定污染源废气 烟气黑度的测定 林格曼望远镜法(征求意见稿)》编制说明6.水质 全氟辛基磺酸和全氟辛基羧酸的测定 固相萃取/液相色谱-三重四极杆质谱法(征求意见稿)7.《水质 全氟辛基磺酸和全氟辛基羧酸的测定 固相萃取/液相色谱-三重四极杆质谱法(征求意见稿)》编制说明8.土壤和沉积物 全氟辛基磺酸和全氟辛基羧酸的测定 液相色谱-三重四极杆质谱法(征求意见稿)9.《土壤和沉积物 全氟辛基磺酸和全氟辛基羧酸的测定 液相色谱-三重四极杆质谱法(征求意见稿)》编制说明生态环境部办公厅2021年12月9日(此件社会公开)附件1征求意见单位名单生态环境部各流域海域生态环境监督管理局监测与科研中心各省、自治区、直辖市生态环境监测站(中心)新疆生产建设兵团生态环境第一监测站各环境保护重点城市生态环境监测站(中心)中国科学院生态环境研究中心中国环境科学研究院中国环境监测总站生态环境部环境发展中心生态环境部南京环境科学研究所生态环境部华南环境科学研究所国家环境分析测试中心河北环境工程学院
  • 关于征求《水质 苯系物的测定 气相色谱法》(征求意见稿)等9项国家环境保护标准意见的函
    环境保护部办公厅函 环办函〔2008〕186号 关于征求《水质 苯系物的测定 气相色谱法》(征求意见稿)等9项国家环境保护标准意见的函 .h1 { FONT-WEIGHT: bold TEXT-JUSTIFY: inter-ideograph FONT-SIZE: 22pt MARGIN: 17pt 0cm 16.5pt LINE-HEIGHT: 240% TEXT-ALIGN: justify } .h2 { FONT-WEIGHT: bold TEXT-JUSTIFY: inter-ideograph FONT-SIZE: 16pt MARGIN: 13pt 0cm LINE-HEIGHT: 173% TEXT-ALIGN: justify } .h3 { FONT-WEIGHT: bold TEXT-JUSTIFY: inter-ideograph FONT-SIZE: 16pt MARGIN: 13pt 0cm LINE-HEIGHT: 173% TEXT-ALIGN: justify } DIV.union { FONT-SIZE: 14px LINE-HEIGHT: 18px } DIV.union TD { FONT-SIZE: 14px LINE-HEIGHT: 18px }    各有关单位:    为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,提高环境管理水平,规范环境监测工作,我部决定修订《水质 苯系物的测定 气相色谱法》等9项国家环境保护标准。目前,标准编制单位已编制完成标准的征求意见稿。根据国家环境保护标准制修订工作管理规定,现将标准征求意见稿和有关材料印送给你们,请研究并提出书面意见,并于2008年6月10日前反馈我部。    联系人:环境保护部科技标准司 谷雪景    通信地址:北京市西直门内南小街115号    邮政编码:100035    联系电话:(010)66556214    传真:(010)66556213    附件:1.征求意见名单     2.《水质 苯系物的测定 气相色谱法》(征求意见稿)     3.《水质 苯系物的测定 气相色谱法》(征求意见稿)编制说明     4.《水质 多环芳烃类的测定 高效液相色谱法》(征求意见稿)     5.《水质 多环芳烃类的测定 高效液相色谱法》(征求意见稿)编制说明     6.《水质 氟化物的测定 茜素磺酸锆目视比色法》(征求意见稿)     7.《水质 氟化物的测定 茜素磺酸锆目视比色法》(征求意见稿)编制说明     8.《水质 氰化物的测定》(征求意见稿)      9.《水质 氰化物的测定》(征求意见稿)编制说明     10.《水质 总硝基化合物的测定 气相色谱法》(征求意见稿)     11.《水质 总硝基化合物的测定 气相色谱法》(征求意见稿)编制说明     12.《水质 梯恩梯、黑索今、地恩梯的测定 气相色谱法》(征求意见稿)     13.《水质 梯恩梯、黑索今、地恩梯的测定 气相色谱法》(征求意见稿)编制说明     14.《水质 梯恩梯的测定 分光光度法》(征求意见稿)     15.《水质 梯恩梯的测定 分光光度法》(征求意见稿)编制说明     16.《水质 银的测定 3,5-Br-PADAP分光光度法》(征求意见稿)     17.《水质 银的测定 3,5-Br-PADAP分光光度法》(征求意见稿)编制说明     18.《水质 银的测定 镉试剂2B分光光度法》(征求意见稿)     19.《水质 银的测定 镉试剂2B分光光度法》(征求意见稿)编制说明   二○○八年五月十三日 主题词:环保 标准 征求意见 函  附件一: 征求意见名单   水利部    住房和城乡建设部    卫生部    国家质量监督检验检疫总局    中国气象局    各省、自治区、直辖市环境保护局(厅)    各省、自治区、直辖市环境监测站(中心)    各环境保护重点城市环境监测站(中心)    新疆生产建设兵团环境监测中心站    中国环境科学研究院    环境保护部南京环境科学研究所    环境保护部华南环境科学研究所    中国环境监测总站    中日友好环境保护中心    中国环境科学学会    中国环境保护产业协会    环境保护部对外合作中心    环境保护部环境工程评估中心    环境保护部环境规划院    环境保护部环境标准研究所    环境保护部标准样品研究所    中国疾病预防控制中心    农业部环境保护科研监测所    中国科学院生态环境研究中心    中国城市规划设计研究院    中国林业科学研究院林业研究所    国家城市给水排水工程技术中心    长江流域水资源保护局    同济大学(环境学院)    天津化工研究设计院    中国气象科学院农气所    北京中兵北方环境科技发展有限责任公司    中国船舶重工集团公司第七一八研究所    上海交通大学    中国兵器装备集团公司    中国化工防治污染技术协会    中国轻工业清洁生产中心    中国皮革和制鞋工业研究院    华东理工大学    泰州市环境监测中心站    上海市浦东新区环境监测站
  • 香港公布火锅汤底检测结果 一样本检出橙黄不合格
    (香港)食物安全中心(中心)最近进行一项普及食品专题调查,评估火锅汤底的食用安全。中心今日(三月三日)公布调查结果,六十七个样本中,有一个样本不及格,整体合格率为百分之九十八点五。   中心发言人表示,鉴于公众对有关内地食肆使用「一滴香」的报道及火锅汤料食用安全的关注,中心在过去三个月亦从本地多间食肆抽取不同种类的火锅汤底(包括预先包装汤底)样本,进行金属杂质、染色料、防腐剂、抗氧化剂及矿物油(例如石腊)等化学检测。在此期间,中心在市面并未有发现「一滴香」出售。   发言人说:「检测结果显示一个样本被检出含不准在食物中使用的染色料『橙黄II』。这种染色料属低毒性,在正常食用情况下,不会对健康造成不良影响。」   他指出,就不及格的样本,中心已作出跟进行动,包括追查有关食物来源,要求有关店铺停售及销毁有问题食品,再抽取样本化验,并向有关贩商发出警告信。如有足够证据,中心会提出检控。   他提醒食物制造商,须按照优良制造规范,使用食物添加剂时,符合法例要求。   发言人又建议市民在享用火锅时,特别留意「食物安全五要点」,以预防经由食物传播的疾病。他亦提醒要注意进食份量及营养均衡的原则。  有关橙黄II   又名酸性橙II 酸性金黄II 橙黄II 2-萘酚偶氮对苯磺酸钠.主要用于蚕丝,羊毛织品的染色,也可用于皮革,纸张的染色。在甲酸浴中可染锦纶。该品可在毛,丝锦纶上直接印花,也可用作指标剂和生物着色。
  • 【知识分享】有关物质超标了,是不是杂质峰被误判了?
    结论分析工作者在药物的有关物质高效液相色谱法的方法开发和检查,应对检验过程中出现的杂质峰予以重视,以免出现误判。结果易被误认为是有关物质的峰包括溶剂峰、有机酸盐峰、无机酸盐峰和辅料峰,本次将举例说明并对这些峰的形成原因进行简单分析。根据药品注册的国际技术要求中杂质的含义,杂质分为有机杂质、无机杂质和残留溶剂。有关物质是杂质的一种,主要是指有机杂质,它可能是原料药合成过程中带入的原料药前体、中间体、试剂、分解物、副产物、聚合体、异构体以及不同晶型、旋光异构的物质,也可能是制剂过程或是在贮藏、运输、使用过程中产生的降解物。有关物质的检查方法很多,主要有薄层色谱法、高效液相色谱法(HPLC法)、气相色谱法和紫外分光光度法等。其中,HPLC法由于分离效果好、专属性强、灵敏度高,在有关物质检查中最为常用。在采用HPLC法对药物进行有关物质分析时,一般要求考察最大杂质峰面积或各杂质峰面积的和,将其与对照溶液的主峰面积(主成分自身对照品法)或总峰面积(面积归一化法)比较,规定应不超过某一特定的数值。但在实际检验过程中,排除配样引进或者是柱子没冲干净这些因素外,色谱图上仍然会出现保留时间较弱的峰,易被误认为是杂质峰,从而造成结果的误判。笔者结合日常检验工作和相关文献,选取了几个具有代表性的品种,将这些易被误认为是杂质峰的峰归纳为溶剂峰、有机酸盐峰、无机酸盐峰和辅料峰,并对这些峰的形成原因进行分析,以期对药物的有关物质HPLC方法的研究和常规检查提供参考。1. 溶剂峰在HPLC法中,由于溶解对照品或供试品的溶剂和流动相在某一波长的吸光值不一样,因此产生了吸光值的变化,表现为出现溶剂峰。溶剂峰可能是正常形状的峰,也可能是倒峰,还有可能是一组奇形怪状的峰。减小该类溶剂峰最有效的方法是使用流动相作为溶剂溶解样品,这样既可以避免样品溶剂和流动相之间任何强度或黏度的不匹配,也可以减少样品分析时基线的漂移。此外,值得注意的是,在进行有关物质分析时,要等基线平稳后,再进空白溶剂。一般进样2次,计算供试品溶液的杂质峰时,溶剂峰位置的峰是不参与计算的。2. 有机酸盐峰《中华人民共和国药典》(以下简称《中国药典》)2020年版(二部)采用HPLC法对苯磺酸氨氯地平的有关物质Ⅱ进行控制。以甲醇-乙腈-0.7%三乙胺溶液(取三乙胺7.0 mL,加水至1000 mL,用磷酸调节pH值至3.0±0.1)(35:15:50)为流动相,色谱柱为十八烷基硅烷键合硅胶柱,检测波长为237nm。标准规定:氨氯地平杂质I峰的峰面积乘以2与其他各杂质峰面积的和应不得大于对照溶液主峰面积的(0.3%)。实际检测时,氨氯地平的出峰时间为17.5min,但是在溶剂峰出峰的位置有响应较高的峰(保留时间3.0min),色谱图见下图。若将该峰判定为杂质峰,则会出现有关物质超标的情况。将苯磺酸配制成一定浓度进样后最终确定该峰为苯磺酸的峰。也有研究采用液相色谱-四级杆飞行时间质谱联用对苯磺酸的出峰予以确证。苯磺酸为一元有机酸,其pKa为0.7,在通常的流动相pH范围内,苯磺酸氨氯地平主要解离为氨氯地平阳离子(被质子化)和苯磺酸阴离子(C6H5SO3-),因此,苯磺酸氨氯地平会出现两个峰,一个是苯磺酸(保留时间较短),一个是氨氯地平。同时,研究表明,采用反相HPLC法同时测定复方感冒药中的多种成分时,对马来酸氯苯那敏色谱峰的识别易出现判断错误,将马来酸的峰误认为是马来酸氯苯那敏。马来酸为二元有机酸,其pKa分别为2.00和6.26,在通常的流动相pH范围内,马来酸氯苯那敏主要解离为氯苯那敏阳离子(被质子化)和马来酸阴离子(HOOCCH=CHCOO-),因此,马来酸氯苯那敏也会出现两个峰。在色谱系统开发过程中,一般会调节流动相pH,与目标化合物pKa相差2个单位以上,使药物全部解离或结合,这样才能准确定量。对于带有机酸根的化合物的液相检测,比如马来酸氯苯那敏、富马酸喹硫平、苯磺酸氨氯地平,在选择的流动相pH条件下,若目标化合物以离子型存在,则马来酸、苯磺酸和富马酸等有机酸也会以盐的形式存在,这些有机酸因含有共轭结构均有紫外吸收,从而在液相条件下也会出现一个色谱峰。因此,做此类物质的有关物质和含量测定时就应注意,不应将有机酸的峰误认为是杂质峰,或者是将有机酸的峰误认为是目标化合物的峰,造成结果的误判。3.无机酸盐峰《中国药品标准》采用HPLC法检测盐酸左氧氟沙星氯化钠注射液的有关物质。以硫酸铜D-苯丙氨酸溶液(取D-苯丙氨酸1.32g与硫酸铜1g,加水1000mL溶解后,用氢氧化钠试液调节pH值至3.5)-甲醇(82:18)为流动相,检测波长为293nm。标准规定,供试品溶液色谱图中如有杂质峰,各杂质峰面积的和不得大于对照溶液主峰面积。实际分析时,在3.3min出现一个很大的峰,色谱图见下图 。经过分析,认为与盐酸稀释后进样的峰位相同,因而在计算有关物质时不应将该峰误认为是杂质峰。笔者在参与针对新版药典用的氢溴酸右美沙芬化学对照品的标化工作中,参照《中国药典》 中氢溴酸右美沙芬胶囊含量测定的方法,对氢溴酸右美沙芬进行有关物质检查,流动相为乙腈-磷酸盐缓冲液(取磷酸和三乙胺各5mL,加水至1000mL)(28:72),检测波长220nm,实际检测时发现在2.5min出了一个很大的色谱峰。为了验证该峰,用溴水稀释后直接进样分析,结果在同样位置出峰。见下图。因此,在结果判定时,应注意不要误将该峰归纳入杂质峰。类似于含有有机酸的药物,含有无机酸的药物在通常的流动相pH条件下也均会发生解离,以盐形式存在的化合物进入液相系统后会以游离碱的形式存在,盐酸和氢溴酸是强酸,也在流动相里解离形成氯离子和溴离子。在对不同水中氯离子含量的比对分析中,用1cm的石英比色皿,取一定浓度的氯化钠标准溶液作为待测液,采用紫外-可见分光光度计,扫描范围280~350nm,确定了氯离子在波长为308.7nm左右处有最大吸收。研究也验证了溴离子在200~220nm波长范围内有较强的紫外吸收。分析原因,可能是氯离子和溴离子有8电子的稳定结构而导致紫外吸收,具体原因还有待进一步分析。
  • 解密“N-二甲基亚硝胺”,浅谈基因毒性杂质
    2018年中旬,长春长生的疫苗案还未彻底了结,缬沙坦原料药事件让N-二甲基亚硝胺(NDMA)又一次上了热搜。 时至今日,风波犹存,欧盟范围内对所有沙坦类药物进行审查。之后EMA通报,分别在印度药企Hetero Labs和Aurobindo Pharma生产的氯沙坦及厄贝沙坦原料药中,同样发现了含量极低的亚硝胺类化合物。美国FDA 仍在继续评估含缬沙坦的药物,并将获得的新信息持续更新「召回范围内的药物清单」和「不在召回范围内的药物清单」。 “治病”?“致病”!众所周知,药品是特殊的商品,它可以预防、治疗、诊断人的疾病。近年来,多种新药例如PD1/PD-L1免疫抑制剂的问世,让攻克癌症不再是梦想。 同时,药品的副作用及其安全性很大程度上决定其使用效果,有时不仅不能“治病”,还可能“致病”,甚至危及生命安全,所以药品生产商和监管部门对药品追溯和管理承担着不可或缺的责任。 揭开“基因毒性杂质”真面目NDMA是亚硝胺化合物的一种,而亚硝胺化合物、甲基磺酸酯、烷基-氧化偶氮等又均为常见的基因毒性杂质。基因毒性杂质(或遗传毒性杂质, Genotoxic Impurity, GTI)一般指能直接或间接损伤细胞DNA,产生致突变和致癌作用的物质,具有致癌可能或者倾向。 基因毒性杂质向来受到了严格的监控,2006年爆发甲磺酸奈非那非(维拉赛特锭)事件后,欧洲药品管理局( EMA)随即颁布了《基因毒性杂质限度指南》,人用药品注册技术要求国际协调会议(ICH)与美国食品与药品监督管理局( FDA)出台了相应的法规,中国国家食品药品监督管理总局也密切跟踪国际药品质量控制技术要求,不断完善现有药典收载技术指南,包括方法学验证、药品稳定性评价指导原则以及药品基因毒性杂质评价技术指南等。 药物合成、纯化和储存运输(与包装物接触)等过程中,多个环节均有产生或有可能产生基因毒性杂质。在工艺研究中采用“避免-控制-清除(ACP)”的策略能够最大限度减少基因毒性杂质对原料药物的影响,从而快速灵敏的监测分析手段变得尤为重要。 这时候,飞飞在此!今天赛默飞借助全新一代LC-QQQ技术,让我们一起助力“解密N-二甲基亚硝胺”。 赛默飞针对药品中基因毒性杂质液质检测解决方案 飞飞芳基磺酸酯类基因毒性解决方案Thermo Scientific™ 全新液相色谱三重四极杆质谱TSQ Fortis™ 平台建立了检测8种磺酸酯类的方法(苯磺酸酯类3个、对甲苯磺酸酯类3个、1,5-戊二醇单苯磺酸酯、 1,5-戊二醇二苯磺酸酯)。本方法灵敏度高、专属性强、稳定性好,可以满足各药企对此类基因毒性杂质的检测要求,可为基因毒性杂质风险监控提供有效的技术支持。结果如下:图1. 8种芳基磺酸酯提取离子流图(点击查看大图) 图2. 部分化合物标准曲线图(点击查看大图) 可以看出实验建立了三重四极杆液质联用仪(TSQ Fortis)分析8种芳基磺酸酯类的检测方法。实验结果表明,基于Thermo Scientific™ TSQ Fortis™ 建立的检测方法不仅具有优异的灵敏度和线性范围,同时具备良好的重现性。本方法可用于芳基磺酸酯类基因毒性化合物的日常分析检测。 飞飞N-亚硝基类基因毒性解决方案Thermo Scientific™ TSQ Fortis™ 针对基因毒性物质10个N-亚硝基化合物建立了稳定灵敏的分析方法。该方法在电喷雾离子化(ESI)条件下即可进行有效检测分析,试验结果优异,该方法稳定,快速,满足日常微量基因毒性物质N-亚硝胺类化合物的分析要求。图3. 10个N-亚硝基化合物的色谱图(5ng/mL)(点击查看大图) 图4. 部分化合物标准曲线图(点击查看大图) 从上图中可以看出建立的方法灵敏,快速和稳定性,色谱峰形良好,同时具备优异的重现性,可以满足药品中日常分析N-亚硝基类基因毒性杂质的检测要求。 飞飞总结语此次的应用案例就分享到这里了,不过难道只有这些?不!后续赛默飞更会带来应对基因毒性杂质的多平台解决方案,令“NDMA们” 无所遁形,敬请期待!扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯
  • 新国标落地实施 | 福立液相精准检测食品添加剂——喹啉黄色素
    / 引言/ 为了降低过度添加食品添加剂而引发的食品安全风险,国家卫生健康委和市场监管总局根据《中华人民共和国食品安全法》的规定联合印发2024年第1号公告,发布了包括GB 2760-2024《食品安全国家标准&ensp 食品添加剂使用标准》在内的47项食品安全国家标准和6项修改单,其中就包括GB 1886.104-2024 《食品安全国家标准 食品添加剂 喹啉黄》,该标准已在2024年8月8日正式实施。 喹啉黄是一种合成着色剂,因其色泽鲜艳、价格低廉、性质稳定等特点,在食品工业中有广泛应用。喹啉黄作为人工合成色素,对人体存在一定的不安全性或有害作用。一些研究表明,该色素可能导致儿童多动症等问题,各国对喹啉黄的使用均有严格的限制和规定,我国GB 2760-2024《食品安全国家标准&ensp 食品添加剂使用标准》规定了喹啉黄在糖果和巧克力制品包衣中最大使用量为0.3g/L、配制酒中最大使用量为0.1g/L。福立仪器依据GB 1886.104-2024 《食品安全国家标准 食品添加剂 喹啉黄》,采用LC5190低压超高效液相色谱仪对喹啉黄开展相关应用,为保障食品安全提供技术支撑,推动食品工业的持续发展。 分析检测方法 01方法概要采用高效液相色谱法,在十八烷基键合柱上,分离被测物质,经紫外检测器检测,以保留时间定性,喹啉黄色素中喹啉黄单钠盐、喹啉黄二钠盐、喹啉黄三钠盐含量测定用面积归一化法定量,非色素有机物的测定用外标法定量02仪器配置 高分离高灵敏高通量 高精度混合效率高精度无损进样超低系统残留优异系统灵敏度E-record智能色谱柱信息跟踪系统LC5190低压超高效液相色谱仪:配备LC5190在线脱气机、LC5190四元低压输液泵、LC5190自动进样器、LC5190柱温箱、LC5190双波长-紫外检测器03色谱柱福立Nuovasil C18-AQ色谱柱,4.6mm×100mm,粒径为3.0µ m 分析检测数据 喹啉黄中喹啉黄单钠盐、喹啉黄二钠盐、喹啉黄三钠盐含量测定 01标准溶液 谱图峰1:2-(2-喹啉基)-茚满基-1,3-二酮三磺酸三钠盐峰2、峰3、峰4、峰5、峰6:2-(2-喹啉基)-茚满基-1,3-二酮二磺酸二钠盐峰7和峰8:2-(2-喹啉基)-茚满基-1,3-二酮单磺酸钠盐02样品溶液典型谱图及两次测定结果说明:标准要求喹啉黄色素中2-(2-喹啉基)-茚满基-1,3-二酮二磺酸二钠盐/%≥80.0,2-(2-喹啉基)-茚满基-1,3-二酮单磺酸钠盐/%≤15.0,2-(2-喹啉基)-茚满基-1,3-二酮三磺酸三钠盐/%≤7.0。从检测结果可知,该样品符合标准要求。 非色素有机物的测定 01标准溶液谱图1.邻苯二甲酸,2.2-甲基喹啉,3.2,6-二甲基喹啉02非色素有机物溶液典型谱图1.领苯二甲酸 2. 2-(2-喹啉基)-茚满基-1,3-二酮三磺酸三钠盐 3-7. 2-(2-喹啉基)-茚满基-1,3-二酮二磺酸二钠盐 8. 2-(2-喹啉基)-茚满基-1,3-二酮单磺酸钠盐 9. 2-甲基喹啉 10. 2-(2-喹啉基)-茚满基-1,3-二酮单磺酸钠盐 11. 2,6-二甲基喹啉03标准曲线04样品溶液典型谱图及两次测定结果说明:标准要求喹啉黄色素中的非色素有机物(2-甲基喹啉、邻苯二甲酸、2,6-二甲基喹啉),w/%≤0.50。从检测结果可知,此样品符合标准规定。 分析检测结果 由以上实验结果可知,采用福立LC5190测定食品添加剂喹啉黄,方法稳定可靠,目标物线性范围良好,有很好的重现性,平行测定结果之差的绝对值满足标准要求,能够对样品进行准确定性定量分析。 色谱质谱分离分析创新生态圈 备注:关于色谱柱与仪器产品购买,请详询销售。
  • 8项国家生态环境标准正式发布,完善相关污染物排放监测工作
    为支撑相关污染物排放标准实施与新污染物治理等工作,近期,生态环境部发布了《环境空气颗粒物(PM2.5)中有机碳和元素碳连续自动监测技术规范》(HJ 1327-2023)等8项国家生态环境标准,所有标准均2024年7月1日起实施。一、环境空气颗粒物(PM2.5)中有机碳和元素碳连续自动监测技术规范 (HJ 1327—2023)本标准为首次发布。本标准自 2024 年 7 月 1 日起实施。本标准规定了环境空气颗粒物(PM2.5)中有机碳和元素碳连续自动监测系统的方法原理与系统组成、技术性能、安装、调试、试运行与验收、系统日常运行维护、质量保证和质量控制、数据有效性判断等技术要求。本标准主要起草单位:中国环境监测总站、上海市环境监测中心、江苏省南京环境监测中心和河南省生态环境监测和安全中心。本标准规定了环境空气颗粒物(PM2.5)中有机碳和元素碳连续自动监测系统的方法原理与系统组成、技术性能、安装、调试、试运行与验收、系统日常运行维护、质量保证和质量控制、数据有效性判断等技术要求。本标准适用于采用热学-光学校正法或热学-光学衰减法的环境空气颗粒物(PM2.5)中有机碳和元素碳连续自动监测系统。二、环境空气颗粒物(PM2.5)中水溶性离子连续自动监测技术规范(HJ 1328—2023)本标准为首次发布。本标准自 2024 年 7 月 1 日起实施。本标准规定了环境空气颗粒物(PM2.5)中水溶性离子连续自动监测系统的方法原理与系统组成、技术性能、安装、调试、试运行与验收、系统日常运行维护、质量保证和质量控制、数据有效性判断、废物处置等技术要求。本标准主要起草单位:中国环境监测总站、河南省生态环境监测和安全中心、河北省石家庄生态环境监测中心、上海市环境监测中心和江苏省南京环境监测中心。本标准规定了环境空气颗粒物(PM2.5)中水溶性离子连续自动监测系统的方法原理与系统组成、技术性能、安装、调试、试运行与验收、系统日常运行维护、质量保证和质量控制、数据有效性判断、废物处置等技术要求。本标准适用于采用离子色谱法的环境空气颗粒物(PM2.5)中水溶性离子(Cl-、NO3-、SO42-、Na+、NH4+、K+、Mg+、Ca2+)连续自动监测系统。三、 环境空气颗粒物(PM2.5)中无机元素连续自动监测技术规范(HJ 1329—2023)本标准为首次发布。本标准自 2024 年 7 月 1 日起实施。本标准规定了环境空气颗粒物(PM2.5)中无机元素连续自动监测系统的方法原理与系统组成、技术性能、安装、调试、试运行与验收、系统日常运行维护、质量保证和质量控制、数据有效性判断等技术要求。本标准主要起草单位:中国环境监测总站、江苏省南京环境监测中心、河南省生态环境监测和安全中心和上海市环境监测中心。本标准规定了环境空气颗粒物(PM2.5)中无机元素连续自动监测系统的方法原理与系统组成、技术性能、安装、调试、试运行与验收、系统日常运行维护、质量保证和质量控制、数据有效性判断等技术要求。本标准适用于采用能量色散 X 射线荧光光谱法的环境空气颗粒物(PM2.5)中无机元素连续自动监测系统,适用目标元素参见附录 A。四、 固定污染源废气 氨和氯化氢的测定 便携式傅立叶变换红外光谱法(HJ 1330—2023)本标准为首次发布。本标准自 2024 年 7 月 1 日起实施。本标准规定了测定固定污染源废气中 NH3和 HCl 的便携式傅立叶变换红外光谱法。本标准主要起草单位:中国环境监测总站、重庆市生态环境监测中心、浙江省生态环境监测中心。本标准验证单位:上海市环境监测中心、山东省生态环境监测中心、福建省环境监测中心站、浙江省绍兴生态环境监测中心、浙江省台州生态环境监测中心、杭州谱育检测有限公司。本标准规定了测定固定污染源废气中 NH3和 HCl 的便携式傅立叶变换红外光谱法。本标准适用于固定污染源有组织排放废气中 NH3和 HCl 的测定。NH3、HCl 的方法检出限均为1mg/m3,测定下限均为4mg/m3。五、固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式催化氧化-氢火焰离子化检测器法(HJ 1331—2023)本标准为首次发布。本标准自 2024 年 7 月 1 日起实施。本标准规定了测定固定污染源有组织排放废气中总烃、甲烷和非甲烷总烃的便携式催化氧化-氢火焰离子化检测器法。本标准主要起草单位:中国环境监测总站、山东省生态环境监测中心、江苏省南京环境监测中心、山东建筑大学。本标准验证单位:上海市环境监测中心、福建省厦门环境监测中心站、西安市环境监测站、内蒙古自治区环境监测总站、广西壮族自治区生态环境监测中心、辽宁省沈阳生态环境监测中心、山东微谱检测技术有限公司。本标准规定了测定固定污染源有组织排放废气中总烃、甲烷和非甲烷总烃的便携式催化氧化-氢火焰离子化检测器法。本标准适用于固定污染源有组织排放废气中总烃、甲烷和非甲烷总烃的测定。本方法测定固定污染源有组织排放废气总烃(以甲烷计)、甲烷的检出限为均为0.4mg/m3,测定下限均为1.6mg/m3。六、 固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式气相色谱-氢火焰离子化检测器法(HJ 1332—2023)本标准为首次发布。本标准自 2024 年 7 月 1 日起实施。本标准规定了测定固定污染源有组织排放废气中总烃、甲烷和非甲烷总烃的便携式气相色谱-氢火焰离子化检测器法。本标准主要起草单位:中国环境监测总站、江苏省南京环境监测中心、山东省生态环境监测中心、新疆维吾尔自治区昌吉生态环境监测站。本标准验证单位:上海市环境监测中心、福建省厦门环境监测中心站、西安市环境监测站、内蒙古自治区环境监测总站、广西壮族自治区生态环境监测中心、辽宁省沈阳生态环境监测中心。本标准规定了测定固定污染源废气中总烃、甲烷和非甲烷总烃的便携式气相色谱-氢火焰离子化检测器法。本标准适用于固定污染源有组织排放废气中总烃、甲烷和非甲烷总烃的测定。本方法测定固定污染源有组织排放废气中总烃(以甲烷计)、甲烷的检出限均为0.2mg/m3,测定下限均为0.8mg/m3。七、水质 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释/液相色谱-三重四极杆质谱法(HJ 1333—2023)本标准为首次发布。本标准自 2024 年 7 月 1 日起实施。本标准规定了测定地表水、地下水、生活污水、工业废水和海水中直链全氟辛基磺酸及其盐类、直链全氟辛酸及其盐类的同位素稀释/液相色谱-三重四极杆质谱法。本标准主要起草单位:国家环境分析测试中心、生态环境部对外合作与交流中心和中国环境科学研究院。本标准验证单位:浙江省生态环境监测中心、广东省生态环境监测中心、湖北省生态环境监测中心站、江苏省泰州环境监测中心、山东省分析测试中心和中持依迪亚(北京)环境检测分析股份有限公司。本标准规定了测定水中全氟辛基磺酸及其盐类、全氟辛酸及其盐类的同位素稀释/液相色谱-三重四极杆质谱法。本标准适用于地表水、地下水、生活污水、工业废水和海水中直链全氟辛基磺酸及其盐类(perfluorooctanesulfonic acid and perfluorooctanesulfonate, PFOS)、直链全氟辛酸及其盐类(perfluorooctanoic acid and perfluorooctanoate, PFOA)的测定。取样量为0.5L,定容体积为1.0ml,进样体积为5.0μl 时,PFOS(以对应酸的浓度计)的方法检出限为0.6ng/L,测定下限为2.4ng/L,PFOA(以对应酸的浓度计)的方法检出限为0.5ng/L,测定下限为2.0ng/L。八、土壤和沉积物 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释/液相色谱-三重四极杆质谱法(HJ 1334—2023)本标准为首次发布。本标准自 2024 年 7 月 1 日起实施。本标准规定了测定土壤和沉积物中直链全氟辛基磺酸及其盐类、直链全氟辛酸及其盐类的同位素稀释/液相色谱-三重四极杆质谱法。本标准主要起草单位:国家环境分析测试中心、生态环境部对外合作与交流中心和中国环境科学研究院。本标准验证单位:浙江省生态环境监测中心、广东省生态环境监测中心、湖北省生态环境监测中心站、江苏省泰州环境监测中心、山东省分析测试中心和中持依迪亚(北京)环境检测分析股份有限公司。本标准规定了测定土壤和沉积物中全氟辛基磺酸及其盐类、全氟辛酸及其盐类的同位素稀释/液相色谱-三重四极杆质谱法。本标准适用于土壤和沉积物中直链全氟辛基磺酸及其盐类(perfluorooctanesulfonic acidandperfluorooctanesulfonate,PFOS)、直链全氟辛酸及其盐类(perfluorooctanoic acid and perfluorooctanoate,PFOA)的测定。取样量为2g,试样定容体积为1.0ml,进样体积为5.0μl 时,PFOS(以对应酸的浓度计)的方法检出限为 0.4μg/kg,测定下限为1.6 μg/kg;PFOA(以对应酸的浓度计)的方法检出限为0.5μg/kg,测定下限为2.0μg/kg。附:1、环境空气颗粒物(PM2.5)中有机碳和元素碳连续自动监测技术规范 (HJ 1327—2023).pdf2、环境空气颗粒物(PM2.5)中水溶性离子连续自动监测技术规范(HJ 1328—2023).pdf3、环境空气颗粒物(PM2.5)中无机元素连续自动监测技术规范(HJ 1329—2023).pdf4、固定污染源废气 氨和氯化氢的测定 便携式傅立叶变换红外光谱法(HJ 1330—2023).pdf5、固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式催化氧化-氢火焰离子化检测器法(HJ 1331—2023).pdf6、固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式气相色谱-氢火焰离子化检测器法(HJ 1332—2023).pdf7、水质 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释_液相色谱-三重四极杆质谱法(HJ 1333—2023).pdf8、土壤和沉积物 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释_液相色谱-三重四极杆质谱法(HJ 1334—2023).pdf《环境空气颗粒物(PM2.5)中有机碳和元素碳连续自动监测技术规范》(HJ 1327-2023)、《环境空气颗粒物(PM2.5)中水溶性离子连续自动监测技术规范》(HJ 1328-2023)、《环境空气颗粒物(PM2.5)中无机元素连续自动监测技术规范》(HJ 1329-2023)等3项标准与采用实验室手工分析方法的现行标准相比,3项标准具有自动化程度高、干扰因素较少等优点,可用于指导我国颗粒物组分自动监测工作的开展,推动环境空气细颗粒物浓度持续下降。《固定污染源废气 氨和氯化氢的测定 便携式傅立叶变换红外光谱法》(HJ 1330-2023)与现行相关监测标准相比,具有灵敏度高、抗干扰能力强等优点,可用于现场快速监测,支撑《大气污染物综合排放标准》(GB 16297-1996)、《玻璃工业大气污染物排放标准》(GB 26453-2022)等标准实施及环境监管执法工作。《固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式催化氧化-氢火焰离子化检测器法》(HJ 1331-2023)、《固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式气相色谱-氢火焰离子化检测器法》(HJ 1332-2023)等与现行相关监测标准相比,具有自动化程度高、抗干扰能力强等优点,可用于现场快速监测,支撑《石油炼制工业污染物排放标准》(GB 31570-2015)、《涂料、油墨及胶粘剂工业大气污染物排放标准》(GB 37824-2019)等标准实施及碳监测评估试点工作。《水质 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释/液相色谱-三重四极杆质谱法》(HJ 1333-2023)、《土壤和沉积物 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释/液相色谱-三重四极杆质谱法》(HJ 1334-2023)等填补了水、土壤和沉积物中相关分析方法标准空白。
  • 8项环境监测标准7月1日起实施!涉及质谱、红外等仪器
    近年来,随着国家对环境保护意识的不断增强,生态环境标准的制定与更新也不断进行中,旨在应对气候变化、生物多样性减少、水资源污染等紧迫的环境问题。这些密集发布的生态环境标准不仅涵盖了空气质量、水质、土壤、污染源等多个方面,还对监测技术、监测仪器的标准化提出了要求,推动社会向绿色、可持续发展模式转型。据不完全统计,自2024年7月1日起,一批与监测技术、仪器等相关的标准正式开始实施了,小编列出了8项标准,供大家查看。一、《环境空气颗粒物(PM2.5)中有机碳和元素碳连续自动监测技术规范》(HJ 1327-2023)为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治生态环境污染, 改善生态环境质量,规范环境空气颗粒物(PM2.5)中有机碳和元素碳连续自动监测工作,制定本标准。本标准规定了环境空气颗粒物(PM2.5)中有机碳和元素碳连续自动监测系统的方法原理与系统组 成、技术性能、安装、调试、试运行与验收、系统日常运行维护、质量保证和质量控制、数据有效性判 断等技术要求。本标准的附录A~附录D 为资料性附录。本标准为首次发布。二、《环境空气颗粒物(PM2.5)中水溶性离子连续自动监测技术规范》(HJ 1328-2023)为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治生态环境污染, 改善生态环境质量,规范环境空气颗粒物(PM2.5)中水溶性离子连续自动监测工作,制定本标准。本标准规定了环境空气颗粒物(PM2.5)中水溶性离子连续自动监测系统的方法原理与系统组成、技术性能、安装、调试、试运行与验收、系统日常运行维护、质量保证和质量控制、数据有效性判断、废物处置等技术要求。本标准的附录A 为规范性附录,附录B~附录F 为资料性附录。本标准为首次发布。三、《环境空气颗粒物(PM2.5)中无机元素连续自动监测技术规范》(HJ 1329-2023) 为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治生态环境污染, 改善生态环境质量,规范环境空气颗粒物(PM2.5)中无机元素连续自动监测工作,制定本标准。本标准规定了环境空气颗粒物(PM2.5)中无机元素连续自动监测系统的方法原理与系统组成、技术性能、安装、调试、试运行与验收、系统日常运行维护、质量保证和质量控制、数据有效性判断等技术要求。 本标准的附录A~附录E 为资料性附录。本标准为首次发布。四、《固定污染源废气 氨和氯化氢的测定 便携式傅立叶变换红外光谱法》(HJ 1330-2023)为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治生态环境污染,改善生态环境质量,规范固定污染源废气中氨(NH3)和氯化氢(HCl)的便携式测定方法,制定本标准。本标准规定了测定固定污染源废气中NH3 和HCl 的便携式傅立叶变换红外光谱法。本标准的附录A 为资料性附录。 本标准为首次发布。五、《固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式催化氧化-氢火焰离子化检测器法》(HJ 1331-2023)为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治生态环境污染, 改善生态环境质量,规范固定污染源废气中总烃、甲烷和非甲烷总烃的测定方法,制定本标准。本标准规定了测定固定污染源有组织排放废气中总烃、甲烷和非甲烷总烃的便携式催化氧化-氢火焰离子化检测器法。本标准的附录A 为资料性附录。本标准为首次发布。六、《固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式气相色谱-氢火焰离子化检测器法》(HJ 1332-2023)为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治生态环境污染, 改善生态环境质量,规范固定污染源废气中总烃、甲烷和非甲烷总烃的便携式测定方法,制定本标准。 本标准规定了测定固定污染源有组织排放废气中总烃、甲烷和非甲烷总烃的便携式气相色谱-氢火焰离子化检测器法。本标准的附录A 为资料性附录。本标准为首次发布。七、《水质 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释/液相色谱-三重四极杆质谱法》(HJ 1333-2023)为贯彻《中华人民共和国环境保护法》《中华人民共和国水污染防治法》和《中华人民共和国海洋 环境保护法》,防治生态环境污染,改善生态环境质量,规范水中全氟辛基磺酸及其盐类、全氟辛酸及其盐类的测定方法,制定本标准。本标准规定了测定地表水、地下水、生活污水、工业废水和海水中直链全氟辛基磺酸及其盐类、直链全氟辛酸及其盐类的同位素稀释/液相色谱-三重四极杆质谱法。本标准的附录A~附录C 为资料性附录。 本标准为首次发布。八、《土壤和沉积物 全氟辛基磺酸和全氟辛酸及其盐类的 测定 同位素稀释/液相色谱-三重四极杆质谱法》(HJ 1334-2023)为贯彻《中华人民共和国环境保护法》《中华人民共和国土壤污染防治法》,防治生态环境污染, 改善生态环境质量,规范土壤和沉积物中全氟辛基磺酸及其盐类、全氟辛酸及其盐类的测定方法,制定 本标准。本标准规定了测定土壤和沉积物中直链全氟辛基磺酸及其盐类、直链全氟辛酸及其盐类的同位素稀释/液相色谱-三重四极杆质谱法。本标准的附录A~附录C 为资料性附录。本标准为首次发布。
  • 【安捷伦】方法目录免费下载 | 应对基因毒性杂质,我们有妙招!
    基因毒性杂质,又称遗传毒性杂质,是指能直接或间接损伤细胞 DNA,产生致突变和致癌作用的物质。其主要来源有:- 原料药合成过程中的起始物料、中间体、试剂、反应副产物;- 药物在合成、储存或者制剂过程中的降解产物;- 部分药物通过激活正常细胞而产生基因毒性物质,如化疗药物顺铂等。有关基因毒性杂质的英文文献报道出现于 2006 年。近年来,对于药物研发而言,基因毒性杂质已经不再是新闻:从沙坦类药物中的叠氮化物、亚硝胺类化合物,到美罗培南中的 318BP、M9、S5,再到阿瑞匹坦中的对甲苯磺酸甲酯、对甲苯磺酸异丙酯等,人们对于特定药物品种中基因毒性杂质的研究不断深入。同时,随着 EMA,FDA 及 CFDA 对于原料药和制剂中的基因毒性杂质监管和控制法规的不断强化,目前对于基因毒性杂质的评估要求无疑正在朝着更为严格的趋势发展。安捷伦作为药物杂质分析领域全面解决方案的领导者,可提供涵盖液相、气相、液质、气质、色谱柱与方案包、计算机认证与合规软件在内的完整基因毒性杂质检测技术。在当前市场背景和法规驱动下,继 2018 年发布《安捷伦基因毒性杂质检测解决方案》后,我们持续对市场动态和用户需求以及法规升级保持高度关注,并针对常见药物基因毒性杂质分析方法进行了系统的更新与梳理,适时推出《安捷伦基因毒性杂质检测简报》。简报对于常见的基因毒性杂质类型如卤代烷烃、磺酸酯/烷基磺酸酯/芳基磺酸酯、氮亚硝胺类化合物、硫酸二甲酯和硫酸二乙酯、氨基甲酸乙酯、肼类及其他近二十几类典型基因毒性杂质的分析进行了系统的方法开发,并对方案特点进行了客观详细的说明和总结,对于从事相关研究的用户来说,将是非常有助益的研究工具。访问 www.agilent.com/zh-cn/technology/yaodian,阅读安捷伦药典系列文章。[本文转自“安捷伦视界”公众号,作者为安捷伦 MKT 和 SDT 团队]关注“安捷伦视界”公众号,获取更多资讯。
  • 首次发布!8项国家生态环境标准2024年7月1日实施 涉及光谱、色谱、质谱等仪器
    为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,生态环境部批准《环境空气颗粒物(PM2.5)中有机碳和元素碳连续自动监测技术规范》、《环境空气颗粒物(PM2.5)中水溶性离子连续自动监测技术规范》、《环境空气颗粒物(PM2.5)中无机元素连续自动监测技术规范》、《固定污染源废气 氨和氯化氢的测定 便携式傅立叶变换红外光谱法》、《固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式催化氧化-氢火焰离子化检测器法》、《固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式气相色谱-氢火焰离子化检测器法》、《水质 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释/液相色谱-三重四极杆质谱法》和《土壤和沉积物 全氟辛基磺酸和全氟辛酸及其盐类的 测定 同位素稀释/液相色谱-三重四极杆质谱法》等8项标准为国家生态环境标准,并予发布。以上8项标准均为首次发布,并于2024年7月1日起实施。可用于现场快速监测,指导空气颗粒物组分连续自动监测工作的开展,填补了水、土壤和沉积物的相关分析方法标准空白。《环境空气颗粒物(PM2.5)中有机碳和元素碳连续自动监测技术规范》(HJ 1327-2023)为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治生态环境污染,改善生态环境质量,规范环境空气颗粒物(PM2.5)中有机碳和元素碳连续自动监测工作,制定本标准。本标准规定了环境空气颗粒物(PM2.5)中有机碳和元素碳连续自动监测系统的方法原理与系统组成、技术性能、安装、调试、试运行与验收、系统日常运行维护、质量保证和质量控制、数据有效性判断等技术要求。本标准适用于采用热学-光学校正法或热学-光学衰减法的环境空气颗粒物(PM2.5)中有机碳和元素碳连续自动监测系统。《环境空气颗粒物(PM2.5)中水溶性离子连续自动监测技术规范》(HJ 1328-2023)为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治生态环境污染,改善生态环境质量,规范环境空气颗粒物(PM2.5)中水溶性离子(Cl-、NO3-、SO42-、Na+、NH4+、K+、Mg2+、Ca2+)连续自动监测工作,制定本标准。本标准规定了环境空气颗粒物(PM2.5)中水溶性离子连续自动监测系统的方法原理与系统组成、技术性能、安装、调试、试运行与验收、系统日常运行维护、质量保证和质量控制、数据有效性判断、废物处置等技术要求。本标准适用于采用离子色谱法的环境空气颗粒物(PM2.5)中水溶性离子(Cl-、NO3-、SO42-、Na+、NH4+、K+、Mg2+、Ca2+)连续自动监测系统。《环境空气颗粒物(PM2.5)中无机元素连续自动监测技术规范》(HJ 1329-2023)为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治生态环境污染,改善生态环境质量,规范环境空气颗粒物(PM2.5)中无机元素连续自动监测工作,制定本标准。本标准规定了环境空气颗粒物(PM2.5)中无机元素连续自动监测系统的方法原理与系统组成、技术性能、安装、调试、试运行与验收、系统日常运行维护、质量保证和质量控制、数据有效性判断等技术要求。《固定污染源废气 氨和氯化氢的测定 便携式傅立叶变换红外光谱法》(HJ 1330-2023)为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治生态环境污染,改善生态环境质量,规范固定污染源废气中氨(NH3)和氯化氢(HCl)的便携式测定方法,制定本标准。本标准规定了测定固定污染源废气中 NH3和 HCl的便携式傅立叶变换红外光谱法。本标准适用于固定污染源有组织排放废气中 NH3和 HCl 的测定。《固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式催化氧化-氢火焰离子化检测器法》(HJ 1331-2023)为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治生态环境污染,改善生态环境质量,规范固定污染源废气中总烃、甲烷和非甲烷总烃的测定方法,制定本标准。本标准规定了测定固定污染源有组织排放废气中总烃、甲烷和非甲烷总烃的便携式催化氧化-氢火焰离子化检测器法。本标准适用于固定污染源有组织排放废气中总烃、甲烷和非甲烷总烃的测定。《固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式气相色谱-氢火焰离子化检测器法》(HJ 1332-2023)为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治生态环境污染,改善生态环境质量,规范固定污染源废气中总烃、甲烷和非甲烷总烃的便携式测定方法,制定本标准。本标准规定了测定固定污染源有组织排放废气中总烃、甲烷和非甲烷总烃的便携式气相色谱-氢火焰离子化检测器法。本标准适用于固定污染源有组织排放废气中总烃、甲烷和非甲烷总烃的测定。《水质 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释/液相色谱-三重四极杆质谱法》(HJ 1333-2023)为贯彻《中华人民共和国环境保护法》《中华人民共和国水污染防治法》和《中华人民共和国海洋环境保护法》,防治生态环境污染,改善生态环境质量,规范水中全氟辛基磺酸及其盐类、全氟辛酸及其盐类的测定方法,制定本标准。本标准规定了测定水中全氟辛基磺酸及其盐类、全氟辛酸及其盐类的同位素稀释/液相色谱-三重四极杆质谱法。本标准适用于地表水、地下水、生活污水、工业废水和海水中直链全氟辛基磺酸及其盐类(perfluorooctanesulfonic acid and perfluorooctanesulfonate, PFOS)、直链全氟辛酸及其盐类(perfluorooctanoic acid and perfluorooctanoate, PFOA)的测定。《土壤和沉积物 全氟辛基磺酸和全氟辛酸及其盐类的 测定 同位素稀释/液相色谱-三重四极杆质谱法》(HJ 1334-2023)为贯彻《中华人民共和国环境保护法》《中华人民共和国土壤污染防治法》,防治生态环境污染,改善生态环境质量,规范土壤和沉积物中全氟辛基磺酸及其盐类、全氟辛酸及其盐类的测定方法,制定本标准。本标准规定了测定土壤和沉积物中全氟辛基磺酸及其盐类、全氟辛酸及其盐类的同位素稀释/液相色谱-三重四极杆质谱法。本标准适用于土壤和沉积物中直链全氟辛基磺酸及其盐类(perfluorooctanesulfonic acid and perfluorooctanesulfonate,PFOS)、直链全氟辛酸及其盐类(perfluorooctanoic acid and perfluorooctanoate,PFOA)的测定。附件:环境空气颗粒物(PM2.5)中有机碳和元素碳连续自动监测技术规范 (HJ 1327—2023).pdf《环境空气颗粒物(PM2.5)中水溶性离子连续自动监测技术规范》(HJ 1328-2023).pdf《环境空气颗粒物(PM2.5)中无机元素连续自动监测技术规范》(HJ 1329-2023).pdf《固定污染源废气 氨和氯化氢的测定 便携式傅立叶变换红外光谱法》(HJ 1330-2023).pdf《固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式催化氧化-氢火焰离子化检测器法》(HJ 1331-2023).pdf《固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式气相色谱-氢火焰离子化检测器法》(HJ 1332-2023).pdf《水质 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释液相色谱-三重四极杆质谱法》(HJ 1333-2023).pdf《土壤和沉积物 全氟辛基磺酸和全氟辛酸及其盐类的 测定 同位素稀释液相色谱-三重四极杆质谱法》(HJ 1334-2023).pdf
  • 2020版《中国药典》│遗传毒性杂质检测,您准备好了吗?
    ? 导 读2020版《中国药典》已于今年6月正式发布,并将于12月30日起开始实施。2020版与此前版本的药典相比,有多处重要的增删与修改,四部新增《9306 遗传毒性杂质控制指导原则》为其中之一。该指导原则的出现,为遗传毒性杂质的控制提供了理论依据。据此,药典二部又在十种药物项下规定了对磺酸烷基酯类和N-亚硝胺类遗传毒性杂质的监控要求。如何建立遗传毒性杂质的监控能力成为一些制药企业与检测机构必须完成的挑战,需尽早做好相应准备。 什么是遗传毒性杂质,新版药典为什么要加入这些内容,具体都有哪些规定呢?让小编为你一一解读。 新版药典遗传毒性杂质内容的解读 根据新版药典的定义,遗传毒性杂质(genotoxic impurities)是指能引起遗传毒性的杂质,包括致突变性杂质和其他类型的无致突变性杂质。其主要来源于原料药或制剂的生产过程,如起始原料、反应物、催化剂、试剂、溶剂、中间体、副产物、降解产物等。 新版药典之所以要增加遗传毒性杂质的内容是为了加强国际标准协调,参考了人用药品注册技术要求国际协调会(ICH)相关指导原则。 药典四部新增《9306 遗传毒性杂质控制指导原则》,用于指导药物遗传毒性杂质的危害评估、分类和限制规定,以控制药物中遗传毒性杂质潜在的致癌风险,为药品标准制修订,上市药品安全性再评估提供参考。 药典二部有10种药物明确指出在必要时,应采用适宜的分析方法对产品进行分析,以确认相关遗传毒性杂质的含量符合我国药品监管部门相关指导原则或ICH M7指导原则的要求。这10种药物关于遗传毒性杂质的规定列表如下: 为了更好的推进磺酸烷基酯及N-亚硝胺的检测方法,岛津根据相关标准开发了多种检测方案。 岛津解决方案之磺酸烷基酯篇 磺酸烷基酯磺酸烷基酯一般是在磺酸盐类药物生产过程中产生的,2007年6月国际制药巨头罗氏制药公司在欧盟国家销售的一种抗HIV药物甲磺酸奈非那韦某些批次检出了甲磺酸乙酯,该事件导致此种药物在欧盟市场一度停售,直到罗氏修正了工艺并增加对甲磺酸乙酯的控制,此后多个国家及国际组织均加强了对磺酸烷基酯的监控。 磺酸烷基酯结构,R1为甲基、苯基或甲苯基,R2为烷基 磺酸烷基酯的分类不同的磺酸盐药物中需要检测的磺酸烷基酯的种类是不同的,下表罗列了各种磺酸盐原料药需要检测的磺酸烷基酯的种类。方案1 顶空+色相色谱质谱岛津HS-20+ GC-MS分析系统 岛津顶空自动进样器特点主要有:• 均一稳定的恒温控制技术,卓越的重现性• 加热炉可以位重叠加热,提高分析效率• 混合振荡功能,可使样品快速达到平衡,缩短分析时间 各磺酸烷基酯衍生物SIM色谱图 方法原理:在顶空条件下使用碘化钠将磺酸烷基酯衍生为的碘代烷烃,然后使用气质检测。方法特点:前处理简单,对仪器污染小,但不能同时检测不同类的磺酸烷基酯。 方案2 气相色谱质谱岛津GC-MS分析系统 岛津气质特点主要有:• 高灵敏度抗污染型离子源,良好的稳定性• 强劲大容量真空系统,大幅度缩短质谱开机后的稳定(抽真空)时间• OD Lens双偏转透镜,聚焦目标离子,减低噪音 八种磺酸酯标准品TIC色谱图 方法原理:药品溶于乙酸乙酯后有机滤膜过滤,直接采用气质检测。方法特点:可以同时检测不同类的磺酸烷基酯,基质复杂样品检测效果可能欠佳。 方案3 三重四极杆气相色谱质谱岛津GCMSMS分析系统 GCMSMS NX系列气质还具有以下特点:• ClickTek技术仪器维护更方便• 新一代AFC全惰性流路,提供更高的检测精度• 智能钟、Smart EI/CI 复合源提高实验效率 八种磺酸酯标准品MRM色谱图 方法原理:药品溶于乙酸乙酯,,有机滤膜过滤后使用三重四极杆气质检测。方法特点:可以同时检测不同类的磺酸烷基酯,三重四极杆气相色谱质谱抗干扰能力强可用于复杂基质样品的检测 岛津解决方案之N-亚硝胺篇 N-亚硝胺N-亚硝胺类化合物是一类强致癌有机化合物,它由前体物质硝酸盐、亚硝酸盐和胺类通过化学或生物学途径合成。典型代表化合物有N,N-二甲基亚硝胺(NDMA)、N,N-二乙基亚硝胺(NDEA)。2018年被爆出沙坦类药物中含有遗传毒性杂质NDMA,尤其是缬沙坦和氯沙坦尤为严重。 N-亚硝胺化合物结构 方案1 液相色谱最高130Mpa的高耐压,完美应对各种分析• 高通量自动进样器,实现样品的连续分析• 可配备流动相精灵,诊断精灵以及修复精灵• 最新设计的三维中文色谱软件,符合GMP标准 NDMA和NDEA 均在10min以内出峰,分离度良好,5 ng/mL标准品溶液灵敏度轻松满足ANSM French OMSL法规要求。 方案2 三重四极杆气相色谱质谱下图为6种N-亚硝胺定量限MRM图,峰型完美。应对欧洲药典质量控制要求so easy。 方案3 液相色谱质谱 • UF-Swiching技术:真正意义上实现了正、负离子同时采集;• UF-Scaning技术:扫描速度可达30000u/sec;• UF- Sweeper Ⅲ技术:离子碰撞过程的超低串扰;• UF- Senstivity技术:三重脱溶剂系统,实现超高灵敏度 轻松再现FDA和EDQM法规中规定的NDMA和NDEA检测方法,并使用LabSolutions软件实现了内标法和外标法同时定量。 5.0 ng/mL标准样品MRM色谱图 岛津自1875年创业以来,始终秉承创始人岛津源藏的创业宗旨“以科学技术向社会做贡献”,不仅视自己为仪器供应商,而且努力向各个行业的用户分享岛津丰富的专业资源和强大的应用支持。为应对制药行业相关用户对遗传毒性杂质的检测需求,岛津公司开发了基于LC、GCMS、HS-GCMS、GC-MS/MS以及LC-MS/MS等平台的相关药物中遗传毒性杂质的检测方法。岛津分析中心也精心推出《沙坦类药物中遗传毒性杂质检测方案》和《药品中遗传毒性杂质检测整体解决方案》,希望我们的工作对您有所帮助。
  • 2023版食品安全监督抽检计划与2022版检测项目对比
    近日,网上流传一份《国家食品安全监督抽检实施细则(2023年版)》电子版,以下是该版资料与2022年版的检测项目的增减对比,大家可以参考一下有备无患。33大类名称与2022版基本相同,无变化。本文列举了前19大类检测项目增减情况。以下内容红色字体部分为2023版新增;蓝色字体部分为2022版原有,于2023版删除。1、粮食加工品类别检验项目通用小麦粉、专用小麦粉镉(以Cd计)、玉米赤霉烯酮、脱氧雪腐镰刀菌烯醇、赭曲霉毒素A、黄曲霉毒素B1、苯并[a]芘、过氧化苯甲酰、偶氮甲酰胺大米铅(以Pb计)、镉(以Cd计)、黄曲霉毒素B1、无机砷(以As计)、苯并[a]芘挂面铅(以Pb计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、黄曲霉毒素B1谷物加工品铅(以Pb计)、镉(以Cd计)、黄曲霉毒素B1玉米粉、玉米片、玉米渣黄曲霉毒素B1、赭曲霉毒素A、玉米赤霉烯酮、苯并[a]芘米粉铅(以Pb计)、镉(以Cd计)、总汞、无机砷(以As计)、苯并[a]芘其他谷物碾磨加工品铅(以Pb计)、赭曲霉毒素A、铬(以Cr计)生湿面制品铅(以Pb计)、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、二氧化硫残留量发酵面制品山梨酸及其钾盐(以山梨酸计)、苯甲酸及其钠盐(以苯甲酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、糖精钠(以糖精计)、大肠菌群、菌落总数、沙门氏菌、金黄色葡萄球菌米粉制品山梨酸及其钾盐(以山梨酸计)、苯甲酸及其钠盐(以苯甲酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、糖精钠(以糖精计)、大肠菌群、菌落总数、沙门氏菌、金黄色葡萄球菌、二氧化硫残留量其他谷物粉类制成品铅(以Pb计)、黄曲霉毒素B1、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、菌落总数、大肠菌群、沙门氏菌、金黄色葡萄球菌、脱氢乙酸及其钠盐(以脱氢乙酸计)2、食用油、油脂及其制品类别检验项目食用植物油酸值/酸价、过氧化值、铅(以Pb计)、黄曲霉毒素B1、苯并[a]芘、溶剂残留量、丁基麦芽酚、特丁基对苯二酚(TBHQ)食用植物油(煎炸过程用油)酸价、极性组分食用动物油脂酸价、过氧化值、丙二醛、总砷(以As计)、苯并[a]芘、铅(以Pb计)食用油脂制品酸价(以脂肪计)、过氧化值(以脂肪计)、大肠菌群、霉菌、铅(以Pb计)3、调味品类别检验项目酱油氨基酸态氮、全氮(以氮计)、铵盐(以占氨基酸态氮的百分比计)、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、菌落总数、大肠菌群、对羟基苯甲酸酯类及其钠盐 (以对羟基苯甲酸计)、三氯蔗糖食醋总酸(以乙酸计)、不挥发酸(以乳酸计)、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、菌落总数、对羟基苯甲酸酯类及其钠盐(以对羟基苯甲酸计)、三氯蔗糖酿造酱氨基酸态氮 、黄曲霉毒素B1、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、大肠菌群、三氯蔗糖调味料酒氨基酸态氮 、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、糖精钠(以糖精计)、甜蜜素(以环己基氨基磺酸计)、三氯蔗糖香辛料调味油铅(以Pb计)、酸价/酸值、过氧化值辣椒、花椒、辣椒粉、花椒粉铅(以Pb计)、罗丹明B、苏丹红I-IV、脱氢乙酸及其钠盐(以脱氢乙酸计)、沙门氏菌、二氧化硫残留量其他香辛料调味品铅(以Pb计)、丙溴磷、氯氰菊酯和高效氯氰菊酯、多菌灵、沙门氏菌、脱氢乙酸及其钠盐(以脱氢乙酸计)、二氧化硫残留量鸡粉、鸡精调味料谷氨酸钠、呈味核苷酸二钠、糖精钠(以糖精计)、甜蜜素(以环己基氨基磺酸计)、菌落总数、大肠菌群其他固体调味料铅(以Pb计)、总砷(以As计)、苏丹红I-IV、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、甜蜜素(以环己基氨基磺酸计)、罂粟碱、吗啡、可待因、那可丁、阿斯巴甜、二氧化硫残留量蛋黄酱、沙拉酱金黄色葡萄球菌、沙门氏菌、乙二胺四乙酸二钠、二氧化钛坚果与籽类的泥(酱)酸价/酸值、过氧化值、铅(以Pb计)、黄曲霉毒素B1、沙门氏菌辣椒酱苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、甜蜜素(以环己基氨基磺酸计)、二氧化硫残留量火锅底料、麻辣烫底料铅(以Pb计)、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、罂粟碱、吗啡、可待因、那可丁其他半固体调味料罗丹明B、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、甜蜜素(以环己基氨基磺酸计)、罂粟碱、吗啡、可待因、那可丁、铅(以Pb计)蚝油、虾油、鱼露氨基酸态氮、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、菌落总数、大肠菌群其他液体调味料苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、甜蜜素(以环己基氨基磺酸计)、菌落总数、大肠菌群味精谷氨酸钠、铅(以Pb计)普通食用盐氯化钠、碘(以I计)、钡(以Ba计)、铅(以Pb计)、总砷(以As计)、镉(以Cd计)、总汞(以Hg计)、亚铁氰化钾/亚铁氰化钠(以亚铁氰根计)低钠食用盐氯化钾、碘(以I计)、钡(以Ba计)、铅(以Pb计)、总砷(以As计)、镉(以Cd计)、总汞(以Hg计)、亚铁氰化钾/亚铁氰化钠(以亚铁氰根计)风味食用盐碘(以I计)、钡(以Ba计)、铅(以Pb计)、总砷(以As计)、镉(以Cd计)、总汞(以Hg计)、亚铁氰化钾/亚铁氰化钠(以亚铁氰根计)特殊工艺食用盐氯化钠、碘(以I计)、钡(以Ba计)、铅(以Pb计)、总砷(以As计)、镉(以Cd计)、总汞(以Hg计)、亚铁氰化钾/亚铁氰化钠(以亚铁氰根计)食品生产加工用盐铅(以Pb计)、总砷(以As计)、镉(以Cd计)、总汞(以Hg计)、亚铁氰化钾/亚铁氰化钠(以亚铁氰根计)、亚硝酸盐(以NaNO2计)4、肉制品类别检验项目调理肉制品(非速冻)铅(以Pb计)、氯霉素、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、铬(以Cr计)、脱氢乙酸及其钠盐(以脱氢乙酸计)腌腊肉制品过氧化值(以脂肪计)、总砷(以As计)、氯霉素、亚硝酸盐(以亚硝酸钠计)、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、胭脂红、铅(以Pb计)发酵肉制品氯霉素、亚硝酸盐(以亚硝酸钠计)、大肠菌群、单核细胞增生李斯特氏菌、沙门氏菌、金黄色葡萄球菌、致泻性大肠埃希氏菌酱卤肉制品铅(以Pb计)、镉(以Cd计)、铬(以Cr计)、总砷(以As计)、氯霉素、酸性橙Ⅱ、亚硝酸盐(以亚硝酸钠计)、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、胭脂红、糖精钠(以糖精计)、菌落总数、大肠菌群、沙门氏菌、金黄色葡萄球菌、单核细胞增生李斯特氏菌、致泻性大肠埃希氏菌、商业无菌熟肉干制品铅(以Pb计)、镉(以Cd计)、铬(以Cr计)、氯霉素、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、胭脂红、菌落总数、大肠菌群、沙门氏菌、金黄色葡萄球菌、单核细胞增生李斯特氏菌、致泻性大肠埃希氏菌熏烧烤肉制品铅(以Pb计)、苯并[a]芘、氯霉素、亚硝酸盐(以亚硝酸钠计)、菌落总数、大肠菌群、单核细胞增生李斯特氏菌、沙门氏菌、金黄色葡萄球菌、致泻性大肠埃希氏菌、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、纳他霉素、胭脂红熏煮香肠火腿制品亚硝酸盐(以亚硝酸钠计)、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、胭脂红、菌落总数、大肠菌群、氯霉素、沙门氏菌、金黄色葡萄球菌、单核增生李斯特菌、致泻性大肠埃希氏菌、铅(以Pb计)、纳他霉素5、乳制品类别检验项目液体乳(巴氏杀菌乳)蛋白质、酸度、三聚氰胺、菌落总数、大肠菌群、金黄色葡萄球菌、沙门氏菌、丙二醇液体乳(灭菌乳)脂肪、非脂乳固体、蛋白质、酸度、三聚氰胺、商业无菌、丙二醇液体乳(发酵乳)脂肪、蛋白质、酸度、乳酸菌数、三聚氰胺、大肠菌群、金黄色葡萄球菌、沙门氏菌、酵母、霉菌、山梨酸及其钾盐液体乳(调制乳)脂肪、蛋白质、铅(以Pb计)、铬(以Cr计)、黄曲霉毒素M1、三聚氰胺、菌落总数、大肠菌群、金黄色葡萄球菌、沙门氏菌、商业无菌脱盐乳清粉、非脱盐乳清粉、浓缩乳清蛋白粉、分离乳清蛋白粉蛋白质、三聚氰胺乳粉(全脂乳粉、脱脂乳粉、部分脱脂乳粉、调制乳粉)蛋白质、三聚氰胺、菌落总数、大肠菌群其他乳制品(炼乳)蛋白质、三聚氰胺、菌落总数、大肠菌群、商业无菌其他乳制品(干酪、再制干酪、干酪制品)干酪:铅(以Pb计)、黄曲霉毒素M1、三聚氰胺、大肠菌群、金黄色葡萄球菌、沙门氏菌、单核细胞增生李斯特氏菌、酵母、霉菌;再制干酪:脂肪(干物中)、干物质含量、铅(以Pb计)、黄曲霉毒素M1、三聚氰胺、菌落总数、大肠菌群、金黄色葡萄球菌、沙门氏菌、单核细胞增生李斯特氏菌、酵母、霉菌其他乳制品(奶片、奶条等)三聚氰胺、脱氢乙酸及其钠盐(以脱氢乙酸计)、沙门氏菌其他乳制品(奶油)脂肪、酸度、三聚氰胺、菌落总数、大肠菌群、沙门氏菌、霉菌、商业无菌6、饮料类别检验项目饮用天然矿泉水界限指标、镍、锑、溴酸盐、硝酸盐(以NO3-计)、亚硝酸盐(以NO2-计)、大肠菌群、铜绿假单胞菌、总汞(以 Hg 计)、铅(以Pb计)、镉(以Cd计)、总砷(以 As 计)饮用纯净水电导率、耗氧量(以O2计)、亚硝酸盐(以NO2-计)、余氯(游离氯)、三氯甲烷、溴酸盐、大肠菌群、铜绿假单胞菌、阴离子合成洗涤剂、铅(以Pb计)、镉(以Cd计)、总砷(以 As 计)其他饮用水耗氧量(以O2计)、亚硝酸盐(以NO2-计)、余氯(游离氯)、溴酸盐、大肠菌群、铜绿假单胞菌、三氯甲烷、阴离子合成洗涤剂、铅(以Pb计)、镉(以Cd计)、总砷(以 As 计)果、蔬汁饮料铅(以Pb计)、展青霉素、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、纳他霉素、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、安赛蜜、甜蜜素(以环己基氨基磺酸计)、合成着色剂(苋菜红、胭脂红、柠檬黄、日落黄、亮蓝)、菌落总数、大肠菌群、霉菌、酵母蛋白饮料蛋白质、三聚氰胺、脱氢乙酸及其钠盐(以脱氢乙酸计)、菌落总数、大肠菌群、沙门氏菌碳酸饮料(汽水)二氧化碳气容量、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、甜蜜素(以环己基氨基磺酸计)、菌落总数、霉菌、酵母茶饮料茶多酚、咖啡因、甜蜜素(以环己基氨基磺酸计)、菌落总数、脱氢乙酸及其钠盐(以脱氢乙酸计)固体饮料蛋白质、铅(以Pb计)、赭曲霉毒素A、苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、合成着色剂(苋菜红、胭脂红、柠檬黄、日落黄、亮蓝)、菌落总数、大肠菌群、霉菌、相同色泽着色剂混合使用时各自用量占其最大使用量的比例之和其他饮料苯甲酸及其钠盐(以苯甲酸计)、山梨酸及其钾盐(以山梨酸计)、脱氢乙酸及其钠盐(以脱氢乙酸计)、防腐剂混合使用时各自用量占其最大使用量的比例之和、糖精钠(以糖精计)、甜蜜素(以环己基氨基磺酸计)、合成着色剂(苋菜红、胭脂红、柠檬黄、日落黄、亮蓝)、菌落总数、大肠菌群、霉菌、酵母、沙门氏菌16、蔬菜制品类别检验项目酱腌菜
  • 室内空气测量新标准12月1日出台
    室内空气测量新标准出台 车内臭氧测量标准也将公布   对于室内、车内等相对封闭环境的臭氧测量,国家12月1日起实施新标准。   1日上午,环保部公布了1日起施行的国家环境保护标准,其中对于环境空气臭氧的测定,标准规定了测定环境空气中臭氧的靛蓝二磺酸钠分光光度法。   环境保护部表示,此标准适用于环境空气中臭氧的测定,相对封闭环境(例如室内、车内等),空气中臭氧的测定也可参照本标准。   据悉,本标准是对原国家环境保护局1995年3月25日批准、发布的《环境空气臭氧的测定靛蓝二磺酸钠分光光度法》的修订。   背景链接 环境空气 臭氧的测定 靛蓝二磺酸钠分光光度法 http://kjs.mep.gov.cn/hjbhbz/bzwb/dqhjbh/jcgfffbz/200911/t20091106_181276.htm   我国室内空气质量标准规定,空气中的臭氧浓度不应大于0.16毫克/立方米,如果人所处环境高于这个标准,时间长了,就会产生不良反应。   新修订的该测量标准,修改了标准和适用范围,增加了测定上限和测定下限。   具体的方法原理是空气中的臭氧在磷酸盐缓冲剂存在下,与吸收液中的蓝色靛蓝二磺酸钠等摩尔反应,褪色生成靛红二磺酸钠,在610nm处测量吸光度。
  • 【繁星伴月 阖家同福】福立仪器为中秋佳节送祝福守安全
    中秋佳节渐至,各种口味和样式的月饼层出不穷。月饼作为重要的节令食品,在中秋佳节期间,被大批量制作,一些不良商家为了追求利润,可能会使用劣质原料,或添加超量的食品添加剂。因此加强检测、控制月饼质量安全,显得尤为重要。根据相关标准要求对食品进行严格监管,是每一位检测人需要重视的责任。福立仪器不仅送祝福,也为您守护月饼安全!月饼检测指标项目月饼检测分析仪器月饼食品安全检测方案食品中苯甲酸、山梨酸和糖精钠的测定苯甲酸、山梨酸和糖精钠标准溶液谱图1、苯甲酸 2、山梨酸 3、糖精钠山梨酸、苯甲酸、糖精钠是常见的食品添加剂,山梨酸、苯甲酸是食品加工工艺中最常用的防腐剂。糖精钠——人们熟知的糖精,甜度是蔗糖的300-500倍,短时间内大量摄入会影响人体肠胃、肝脏、肾脏功能。参考GB 5009.28-2016《食品安全国家标准 食品中苯甲酸、山梨酸和糖精钠的测定》,福立LC5090Plus高效液相色谱仪,凭借稳定的检测性能以及高灵敏度、低检出限能够准确测定食品中食品添加剂含量。杜绝食品添加剂使用超标,福立守卫食品安全!食品中脱氢乙酸的测定 脱氢乙酸标准溶液谱图第一法 气相色谱法第二法 高效液相色谱法脱氢乙酸及其钠盐是一种广普低毒的防腐剂,作为食品添加剂,其使用量需符合GB 2760-2014《食品安全国家标准 食品添加剂使用标准》要求:月饼中,脱氢乙酸及其钠盐(以脱氢乙酸计)最大使用量为0.5g/kg。使用福立F80气相色谱仪和LC5190低压超高效液相色谱仪,可以完全满足《GB 5009.121-2016 食品中脱氢乙酸的测定》气相色谱法和高效液相色谱法的检测需求,同时能够多方法快速、高效、经济地检测食品中的脱氢乙酸的含量。食品中环己基氨基磺酸钠(甜蜜素)的测定环己基氨基磺酸钠标准溶液谱图环己基氨基磺酸钠(甜蜜素)是一种十分常见的食品添加剂,福立LC5090Plus高效液相色谱仪测定食品中环己基氨基磺酸钠(甜蜜素),方法稳定可靠,其结果满足《食品安全国家标准 食品中环己基氨基磺酸钠的测定》(GB 5009.97-2016)第二法 高效液相色谱法要求。食品中合成着色剂的测定合成着色剂标准溶液谱图1.柠檬黄 2.新红 3.苋菜红 4.胭脂红 5.日落黄 6.诱惑红 7.亮蓝 8.赤藓红合成着色剂是用人工合成方法所制得的有机着色剂,常用于食品行业的着色、润色等方面,但其所添加到食品中的量则需经过严格的限定和控制。福立LC5190低压超高效液相色谱仪,能够以高分离、高灵敏度对其的复杂组分进行有效分析和检测,为食品快速检测提供了强有力的支撑,同时仪器智能高效,具有精准的控制系统,给用户带来极佳的使用体验。食品中黄曲霉毒素B族和G族的测定黄曲霉毒素B族和G族标准溶液谱图1.AFT G2 2.AFT G13.AFT B2 4.AFT B1黄曲霉毒素来自于黄曲霉和寄生曲霉所产生的一种次生代谢物,具有急慢性毒性、致突变性、致癌性和致畸性,其中黄曲霉毒素 B1 毒性是氰化钾的10倍,砒霜的68倍,被世界卫生组织( WHO) 列为一级致癌物。福立仪器参考国家标准:食品中黄曲霉毒素B族和G族的测定(GB5009.22-2016),使用LC5090Plus高效液相色谱仪建立了食品中黄曲霉毒素B族和G族的测定方法,该方法采用光化学衍生,无需衍生试剂,无腐蚀性液体流经检测器,方案操作简单,成本低,设备通用性佳。食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定糖混合标准溶液典型谱图1.果糖 2.葡萄糖3.蔗糖4.乳糖 5.麦芽糖采用福立 LC5190低压超高效液相色谱仪测定食品中果糖、葡萄糖、蔗糖、麦芽糖和乳糖, 方法稳定可靠,具有很好的准确度、精密度和检出限,仪器配置也具有优异的检测性能,可以完全满足标准方法要求。福立仪器将一直践行着“用科技创新,实现人类美好生活”的企业使命,致力于为客户提供高品质、高性能的仪器产品和整体应用解决方案,为消费者筑起坚实的健康防线,守护他们的食品安全!福立祝您中秋佳节,月圆人圆事事圆!
  • GB 5749-2022 生活饮用水卫生标准解读
    GB 5749-2022 生活饮用水卫生标准将于2023年4月1日正式实行,代替GB 5749-2006生活饮用水卫生标准。标准规定了生活饮用水水质要求、生活饮用水水源水质要求、集中式供水单位卫生要求、二次供水卫生要求、涉及饮用水卫生安全的产品卫生要求、水质检验方法。本标准适用于各类生活饮用水。GB5749-2022版相比2006版的变化新标准的水质指标由原来的106项调整为97项,包括常规指标43项和扩展指标54项,将高氯酸盐、乙草胺、2-二甲基异茨醇、土臭素正式作为扩展指标加入到新标准中。另外参考指标由之前的28项调整为55项,其中主要增加项目为有机磷农药及全氟化合物(全氟辛酸、全氟辛烷磺酸)、臭味化合物如二甲基二硫醚、二甲基三硫醚、硫化物等。相应的2022版《生活饮用水标准检验方法》GB/T 5750意见稿变动很大,其中有机污染物的部分尤为明显。其中的第八部分主要规定了饮用水中常见的有机污染物,如微囊藻毒素,烷基酚,环烷酸,PPCPs等的检测方法,第九部分则明确了饮用水中痕量农残的检测项目,方法及指标,此外意见稿的第十及第五部分则为主要针对饮用水中消毒副产物残留,如氯酸盐,高氯酸盐等的检测方法。 GERSTEL饮用水检测解决方案GERSTEL饮用水检测解决方案可实现的方法和技术包括:在线SPE-LC/MS/MS直接液体进样搅拌棒吸附萃取SBSE-GC/MS(/MS)在线固相微萃取SPME-GC/MS(/MS)气相色谱-嗅闻技术 GC-O-MS可以实现对以下污染物和臭味物质超痕量的监测,一网打尽GB5749-2022标准中的目标分析物:臭味化合物:2-二甲基异茨醇、土臭素、二甲基二硫醚、二甲基三硫醚、硫化物全氟化合物:如全氟辛酸、全氟辛烷磺酸消毒副产物残留:氯酸盐、高氯酸盐邻苯二甲酸盐农药残留激素、药物残留有机污染物:如微囊藻毒素、烷基酚、丙烯酰胺等应用案列01水中痕量土臭素和2-甲基异崁醇的测定GB 5749《生活饮用水卫生标准》征求意见稿和GB/T 5750《生活饮用水标准检验方法》征求意见稿均规定采用固相微萃取技术(SPME)对水体中痕量土臭素和2-甲基异崁醇进行测定,该方法具有无需有机溶剂、灵敏度高等特点,集采样、萃取、浓缩、进样于一体,能直接应用于气相色谱、气质联用、液相色谱等仪器。能够分析40mL/60mL的水质样品,标配24位样品盘,无需减少取样量,符合GB/T 5750《生活饮用水标准检验方法》标准要求(40mL水样),检出限更低、灵敏度更高。对2种目标物5ng/L,10ng/L,20ng/L,50ng/L,100ng/L进行线性研究,2-甲基异莰醇R2为0.998,土臭素R2为0.997,线性良好。2-甲基异莰醇、土臭素两种目标物具有更低的方法检出限,分别达到2.7ng/L、0.47ng/L,符合标准要求,并且结果稳定RSD 4% (n=6)。 02水中全氟化合物,草甘膦的检测GB5750.8 有机物指标增加检测项目:全氟辛酸&全氟辛烷磺酸原理:水样经混合型弱阴离子交换反相吸附剂(WAX)固相萃取小柱富集浓缩后氮吹至近干,复溶后上机测定;以超高效液相色谱串联质谱的多反应监测(MRM)模式检测,根据保留时间以及特征峰离子定性,采用同位素内标法定量分析。GERSTEL推出在线SPE-LC-MS/MS的自动化方法测定全氟碳酸和全氟磺酸。此方法在0.2– 2.0 ng/L的线性范围内最低检测质量浓度LOD远低于1 ng/L,完全符合标准中3 ng/L 和 5ng/L的要求 。通过对不同来源的加标水样进行分析,证明了该方法的准确性。相对标准偏差RSD10%,正确度在80% -110% 之间。 分析前无需过滤水样或用甲醇稀释。对不同来源的水样验证了方法的加标回收率和精密度。目标待测物英文缩写LOD (ng/L)全氟丁酸PFBA0.14全氟戊酸PFPA0.27全氟己酸PFHxA0.13全氟庚酸PFHpA0.19全氟辛酸PFOA0.22全氟壬酸PFNA0.13全氟癸酸PFDA0.20全氟丁烷磺酸PFBS0.20全氟己烷磺酸PFHxS0.18全氟庚烷磺酸PFHpS0.24全氟辛烷磺酸PFOS0.23对不同来源的水样饮用水,河水,山泉水,矿泉水验证了方法的加标回收率和精密度,以下是生活饮用水进行加标回收率测定举例,分别添加低(5 ng/L)、高(50 ng/L)2个浓度水平,按照所建立的方法进行样品处理及测定,每个浓度重复5份平行样品,计算平均加标回收率和精密度。 组分低浓度高浓度回收率%RSD%回收率%RSD%PFBA1137952PFPA748767PFHxA941923PFHpA953921PFOA1173972PFNA954932PFDA921923PFBS925814PFHxS919922PFHpS799913PFOS886973标准溶液 (50 ng/L) 水溶液的示例色谱图在线SPE-GC-MS/MS应用详情请见:根据欧盟饮用水指令和DIN38407标准使用在线SPE-LC-MS/MS测定饮用水中的PFAS同样的配置被成功应用于草甘膦及其主要代谢物氨基甲基膦酸(AMPA)的检测,对于水中草甘膦和AMPA的测定,结果达到了10 ng/L的最佳定量限(LOQ)并达到0.999的显著线性系数。使用FMOC-Cl衍生化,随后进行自动固相萃取SPE步骤。自动样品制备过程在25分钟内完成。LC-MS/MS循环时间小于20分钟。使用GERSTEL的重叠样品制备功能PrepAhead,使样品制备和分析完全同步,以最大限度地提高生产率和通量。0.1、0.5、1.0 和5.0 ng/ml草甘膦标准品色谱图031水中消毒副产物检测GB5750征求意见稿第10部分消毒副产物指标中,要求适用液液萃取衍生气相色谱法, 要求使用MTBE进行液-液萃取,然后衍生化(甲基化),然后带有电子捕获检测器的气相色谱分析测定水中的一氯乙酸 MCAA,二氯乙酸DCAA,三氯乙酸TCAA。若取水样25 mL水样测定,本方法最低检测质量浓度分别为:5.0 μg/L、2.0 μg/L、1.0 μg/L。使用离子色谱-电导检测法最低检测质量浓度分别为:一氯乙酸(MCAA)1.9 μg/L、二氯乙酸(DCAA)3.7 μg/L、三氯乙酸(TCAA)4.4 μg/L、一溴乙酸(MBAA)3.0 μg/L、二溴乙酸(DBAA)8.3 μg/L。GERSTEL解决方案自动化液液萃取和在线衍生,完全自动化标准中的手动制样过程:如调整PH值至5,使用甲基叔丁醚萃取,加入硫酸甲溶液在50 ℃加热块上衍生2小时,加入碳酸氢钠溶液中和,取上清液注入GC。使复杂繁琐的液液萃取和衍生步骤变得简单。节省人力和物力。 该系统每天可以分析32个样品,技术人员仅需1小时的时间来进行样品加载、制备和进一步处理。小型化的方案需要消耗的溶剂少得多,从而节省了成本并改善了实验室的整体工作环境。方法的测定限为1 ppb;对所有测定的卤代酸进行了验证,在0.5 -50 μg/L的线性很好R² 0.999。1μg/L 和 40 μg/L的重复性高 (RSD 4.8%)(n=3)卤代酸HAAsR² (0.5 - 50 ppb)LODμg/LRSD % (n=3)1 μg/L40 μg/L一氯乙酸0.9990.14.10.8二氯乙酸1.0000.11.51.8三氯乙酸1.0000.23.70.8一溴乙酸1.0000.14.81.4二溴乙酸0.9990.051.40.6法国威立雅环境在巴黎用于自动测定水中卤代酸(HAAs)的系统同时这套解决方案还可以实现对三氯甲烷,三溴甲烷、二氯一溴甲烷、一氯二溴甲烷、二氯甲烷、二溴甲烷、氯溴甲烷的检测,使用顶空气相色谱法。对2,4,6-三氯酚(TCP)的检测可以使用自动化顶空固相微萃取HS-SPME标准方法来实现,或者对更低浓度的痕量化合物,使用搅拌棒吸附萃取SBSE来实现。04感官气相色谱对臭味物质的测定通过化学分析与感官评价方法结合,可对水中未知嗅味物质进行鉴定。主要采用气相色谱-嗅闻技术(gas chromatography-olfactometry,GC-O) 的方法,通过GC分离混合物中的组分,部分样品分流至闻测杯后,测试人员对不同时间流出的气体样品进行嗅闻,协助从大量色谱峰中寻找相应物质。此技术也可以帮助改善饮用水处理工艺。成功案例:中国科学院生态环境研究中心:感官气相色谱对水中不同化合物嗅味特征的同步测定感官闻测耦合仪器分析: 水务部门给臭气”定罪”的黑科技去除土臭素和 2-MIB的整体饮用水处理工艺研究05水中多环芳烃和多氯联苯的检测GB5750 检测多环芳烃使用固相萃取SPE-高效液相色谱HPLC:水中多环芳烃经苯乙烯二苯乙烯聚合物柱富集后,甲醇水溶液淋洗杂质,二氯甲烷洗脱,浓缩后用乙腈水溶液复溶,经高效液相色谱分离,紫外串联荧光检测器检测,保留时间定性,峰面积外标法定量。GERSTEL提供绿色高效的检测方法,使用搅拌棒吸附萃取SBSE-气相色谱串联质谱GC-MS/MS,样品无需复杂的前处理,直接通过搅拌棒萃取,大大节省了溶剂的使用量,并且提高了检测的灵敏度。下表是标准中的16种多环芳烃化合物使用两种方法可以达到的最低检测质量浓度LOD, 只需100ml的水样,SBSE的检测下限提高了数十倍。 对加标浓度接近各自LOQ的水样品进行重复分析 (n=6),显示所有化合物的相对标准偏差RSD在1%到15%之间,平均RSD为6.9%。大多数分析物的加标回收率在90到110%之间。16种多环芳烃化合物组分GERSTELSBSE-GC-MS/MS LOD(ng/L)GB5750SPE-HPLCLOD (ng/L)SBSE加标回收率 %SBSE精密度 %100 mL水样500 mL水样 n=6萘5.020.01022.5苊烯0.108.01134.5苊1.08.09615芴0.4516.0926.5菲2.520.0935.2蒽0.06112.0816.2荧蒽0.4516.0 9211芘0.4512.0855.8苯并(a)蒽0.0764.61055.2䓛 0.0278.01163.6苯并(b)荧蒽 0.0788.0873.8苯并(k)荧蒽0.0818.0922.3 苯并(a)芘0.0334.610212二苯并(a,h)蒽0.0738.01163.6苯并(g,h,i)苝0.0497.71067.3茚并(1,2,3-cd)芘0.0445.81044.6GB5750 检测多氯联苯使用固相萃取SPE-气相色谱质谱法GC-MS:水样中多氯联苯被C18固相萃取柱吸附,用二氯甲烷和乙酸乙酯洗脱,洗脱液经浓缩,用气相色谱毛细管柱分离各组分后,以质谱作为检测器,进行测定。GERSTEL的搅拌棒吸附萃取SBSE-气相色谱串联质谱GC-MS/MS,使用共一个方法检测多氯联苯化合物。样品无需复杂的前处理,直接通过搅拌棒萃取,大大节省了溶剂的使用量,并且提高了检测的灵敏度。下表是标准中的12种多氯联苯化合物使用两种方法可以达到的最低检测质量浓度LOD, 只需100ml的水样而非1L,SBSE的检测下限提高了数十倍。 对加标浓度接近各自LOQ的水样品进行重复分析 (n=6),显示所有化合物的相对标准偏差RSD 5 %。分析物的加标回收率在96到109%之间。12种多氯联苯化合物组分GERSTELSBSE-GC-MS/MSLOD (ng/L)GB5750SPE-GC-MSLOD (ng/L)SBSE加标回收率 %SBSE精密度 %100 mL水样1000 mL水样n=6PCB810.0397 983.2PCB770.0416 994.2PCB1230.03710 983.6PCB1180.012101014.3PCB1140.03612 1084.7PCB1050.043111094.1PCB1260.05014982.8PCB1670.04412 1002.5PCB1560.04691021.6PCB1570.04712 1032.7PCB1690.05481021.2PCB1890.05417 961.5GERSTEL的搅拌棒吸附萃取SBSE-气相色谱串联质谱GC-MS/MS被成功应用于欧盟水框架指令,能够在一次分析运行中从仅仅100mL的地表水样品中测定约100种相关污染物,如塑化剂(DEHP),各种农残,包括颗粒吸附化合物,绝大多数分析物的检测限在ng/L甚至到pg/L范围内。详情请见:欧盟水框架指令使用SBSE技术轻松搞定食品中400多种农残分析
  • 联合国环境规划署:再禁9种有毒化学物质
    新华网日内瓦5月9日电 联合国环境规划署9日发表声明说,来自全球160多个国家和地区的代表当天在日内瓦达成共识,同意减少并最终禁止使用9种严重危害人类健康与自然环境的有毒化学物质。   声明说,十氯酮等9种持久性有机污染物在杀虫剂和阻燃剂等物品中广泛使用,与会代表因此决定,将它们列入《关于持久性有机污染物的斯德哥尔摩公约》,这也使该公约所禁止生产和使用的化学物质增至21种。   联合国环境规划署执行主任施泰纳说,修改公约的禁用名单表明了国际社会已认识到这9种持久性有机污染物的危害性,各国政府应该高度重视,减少并最终禁止使用这些有毒化学物质。   这9种有机污染物分别是:α-六氯环己烷 β-六氯环己烷 六溴联苯醚和七溴联苯醚 四溴联苯醚和五溴联苯醚 十氯酮 六溴联苯 林丹 五氯苯 全氟辛烷磺酸、全氟辛烷磺酸盐和全氟辛基磺酰氟。
  • 2009年12月1日起施行的国家环境保护标准
    国家环境保护标准 环境工程技术分类与命名(HJ 496-2009)   为贯彻《中华人民共和国环境保护法》,规范环境工程技术分类与命名,制定本标准。   本标准规定了环境工程技术(不含核环境工程技术)的分类与命名方法。   本标准适用于对环境工程技术及工艺单元的分类与命名。   本标准为首次发布。 畜禽养殖业污染治理工程技术规范(HJ 497-2009)   为贯彻《中华人民共和国环境保护法》、《中华人民共和国水污染防治法》和《中华人民共和国大气污染防治法》,规范畜禽养殖业污染治理工程建设与运行,治理畜禽养殖业废弃物及恶臭污染,改善环境质量,制定本标准。   本标准以我国当前的污染物排放标准和污染控制技术为基础,规定了畜禽养殖业污染治理工程设计、施工、验收和运行维护的技术要求。   本标准适用于集约化畜禽养殖场(区)的新建、改建和扩建污染治理工程从设计、施工到验收、运行的全过程管理和已建污染治理工程的运行管理,可作为环境影响评价、设计、施工、环境保护验收及建成后运行与管理的技术依据。   本标准为首次发布。 水质 总有机碳的测定 燃烧氧化—非分散红外吸收法(HJ 501-2009)   为贯彻《中华人民共和国环境保护法》和《中华人民共和国水污染防治法》,保护环境,保障人体健康,规范国家环境污染物监测方法,制定本标准。   本标准规定了测定地表水、地下水、生活污水和工业废水中总有机碳(TOC)的燃烧氧化—非分散红外吸收方法。   本标准适用于地表水、地下水、生活污水和工业废水中总有机碳(TOC)的测定,检出限为0.1 mg/L,测定下限为0.5 mg/L。   本标准是对《水质 总有机碳(TOC)的测定 非色散红外线吸收法》(GB 13193-91)和《水质 总有机碳的测定 燃烧氧化-非分散红外吸收法》(HJ/T 71-2001)的整合修订。   自本标准实施之日起,原国家环境保护局1991年8月31日批准、发布的国家环境保护标准《水质 总有机碳(TOC)的测定 非色散红外线吸收法》(GB 13193-91)和原国家环境保护总局2001年9月29日批准、发布的国家环境保护标准《水质 总有机碳的测定 燃烧氧化-非分散红外吸收法》(HJ/T 71-2001)废止。 水质 挥发酚的测定 溴化容量法(HJ 502-2009)   为贯彻《中华人民共和国环境保护法》和《中华人民共和国水污染防治法》,保护环境,保障人体健康,规范国家环境污染物监测方法,制定本标准。   本标准规定了测定工业废水中挥发酚的溴化容量法。   本标准适用于含高浓度挥发酚工业废水中挥发酚的测定。   本标准是对《水质 挥发酚的测定 蒸馏后溴化容量法》(GB 7491-87)的修订。   自本标准实施之日起,原国家环境保护局1987年3月14日批准、发布的国家环境保护标准《水质 挥发酚的测定 蒸馏后溴化容量法》(GB 7491-87)废止。 水质 挥发酚的测定 4-氨基安替比林分光光度法(HJ 503-2009)   为贯彻《中华人民共和国环境保护法》和《中华人民共和国水污染防治法》,保护环境,保障人体健康,规范国家环境污染物监测方法,制定本标准。   本标准规定了测定地表水、地下水、饮用水、工业废水和生活污水中挥发酚的分光光度法。   本标准是对《水质 挥发酚的测定 蒸馏后4-氨基安替比林分光光度法》(GB 7490-87)的修订。   自本标准实施之日起,原国家环境保护局1987年3月14日批准、发布的国家环境保护标准《水质 挥发酚的测定 蒸馏后4-氨基安替比林分光光度法》(GB 7490-87)废止。 环境空气 臭氧的测定 靛蓝二磺酸钠分光光度法(HJ 504-2009)   为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,保护环境,保障人体健康,规范环境空气中臭氧的监测方法,制定本标准。   本标准规定了测定环境空气中臭氧的靛蓝二磺酸钠分光光度法。   本标准适用于环境空气中臭氧的测定。相对封闭环境(例如:室内、车内等)空气中臭氧的测定也可参照本标准。   本标准是对《环境空气 臭氧的测定 靛蓝二磺酸钠分光光度法》(GB/T 15437-1995)的修订。   自标准实施之日起,原国家环境保护局1995年3月25日批准、发布的国家环境保护标准《环境空气 臭氧的测定 靛蓝二磺酸钠分光光度法》(GB/T 15437-1995)废止。 水质 五日生化需氧量(BOD5)的测定 稀释与接种法(HJ 505-2009)   为贯彻《中华人民共和国环境保护法》和《中华人民共和国水污染防治法》,保护环境,保障人体健康,规范水中五日生化需氧量(BOD5)的测定方法,制定本标准。   本标准规定了测定水中五日生化需氧量(BOD5)的稀释与接种的方法。   本标准适用于地表水、工业废水和生活污水中五日生化需氧量(BOD5)的测定。   本标准是对《水质 五日生化需氧量(BOD5)的测定 稀释与接种法》(GB 7488-87)的修订。   自本标准实施之日起,原国家环境保护局1987年3月14日批准、发布的国家环境保护标准《水质 五日生化需氧量(BOD5)的测定 稀释与接种法》(GB 7488-87)废止。 水质 溶解氧的测定 电化学探头法(HJ 506-2009)   为贯彻《中华人民共和国环境保护法》和《中华人民共和国水污染防治法》,保护环境,保障人体健康,规范水中溶解氧的监测方法,制定本标准。   本标准规定了测定水中溶解氧的电化学探头法。   本标准适用于地表水、地下水、生活污水、工业废水和盐水中溶解氧的测定。   本标准是对《水质 溶解氧的测定 电化学探头法》(GB 11913-89)的修订。   自本标准实施之日起,原国家环境保护局1989年12月25日批准、发布的国家环境保护标准《水质 溶解氧的测定 电化学探头法》(GB 11913-89)废止。 自以上标准实施之日起,下列标准废止: 水质 五日生化需氧量(BOD5)的测定 稀释与接种法(GB 7488-87) 水质 挥发酚的测定 蒸馏后4-氨基安替比林分光光度法(GB 7490-87) 水质 挥发酚的测定 蒸馏后溴化容量法(GB 7491-87) 水质 溶解氧的测定 电化学探头法(GB 11913-89) 水质 总有机碳(TOC)的测定 非色散红外线吸收法(GB 13193-91) 环境空气 臭氧的测定 靛蓝二磺酸钠分光光度法(GB/T 15437-1995) 水质 总有机碳的测定 燃烧氧化-非分散红外吸收法(HJ/T 71-2001)
  • 百灵威权威提供“地沟油”检测标样
    &ldquo 地沟油&rdquo 是y个泛指概念,是对各类劣质油的统称,y般包括潲水油、煎炸废油、食品及相关企业产生的废弃油脂等。&ldquo 地沟油&rdquo 对人体的危害j大,长期食用可能会引发癌症。 虽然g家明令禁止将废弃油脂再加工进行使用或者销售,但出于利益驱使,个别不法企业或个人仍冒天下之大不韪,造成每年几百万吨的&ldquo 地沟油&rdquo 流向餐桌,给民众食品安全带来严重威胁。 目前,我g还没有专门针对&ldquo 地沟油&rdquo 的检测标准。据了解,北京市食品安全监控中心在筛查了&ldquo 地沟油&rdquo 可能涉及的80多个技术检验项目后,已经找到了包括多环芳烃(PAHs)、胆固醇、电导率和特定基因组成等4类能够排查&ldquo 地沟油&rdquo 的有效指标,初步建立了&ldquo 地沟油&rdquo 检测的指标体系。 百灵威作为分析化学l域的引l者,以维护民众的生命安全为己任,整合全球优秀产品资源,提供专业的、品种齐全的检测标样,为&ldquo 地沟油&rdquo 的检测保驾护航! 针对性强、价格低廉、具有溯源性 纯品、液标等多种规格 液标具有多种溶剂、多种浓度 产品经过ISO 9001:2000、ISO 17025:1999质量认证 产品经过了NIST、NVLAP和EPA认证 订购标样附带质检报告、材料安全数据卡 ■ 混标 产品名称:PAHs Solution Mix(多环芳烃混标) 产品编号:Z-013-17 溶剂:0.2 mg/mL in CH2Cl2 : MeOH(1:1) 包装:1 mL 组分数量:16种 编号 CAS 英文名称 中文名称 浓度(mg/mL) 1 56-55-3 1,2-Benzanthracene苯并(a)蒽 0.2 2 83-32-9 Acenaphthene 二氢苊 0.2 3 208-96-8 Acenaphthylene 苊 0.2 4 120-12-7 Anthracene 蒽 0.2 5 50-32-8 Benzo(a)pyrene 苯并(a)芘 0.2 6 205-99-2 Benzo(b)fluoranthene 苯并(b)荧蒽 0.2 7 191-24-2 Benzo(g,h,i)perylene 苯并(g,h,i)二萘嵌苯 0.2 8 207-08-9 Benzo(k)fluoranthene 苯并(k)荧蒽 0.2 9 218-01-9 Chrysene 屈 0.2 10 53-70-3 Dibenz(a,h)anthracene 二苯并(a,h)蒽 0.2 11 206-44-0 Fluoranthene 荧蒽 0.2 12 86-73-7 Fluorene 芴 0.2 13 193-39-5 Indeno(1,2,3-cd)pyrene 茚并(1,2,3-cd)芘 0.2 14 91-20-3 Naphthalene 萘 0.2 15 85-01-8 Phenanthrene 菲 0.2 16 129-00-0 Pyrene 芘 0.2 ※若需要混标中的具体单标请致电400-666-7788垂询! ■ 单标 ■ 氘代单标 CAS 英文名称 中文名称 浓度 包装 1718-53-2 1,2-Benz(a)anthracene D12 氘代苯并(a)蒽 2.0 mg/mL in CH2Cl2 1 mL 15067-26-2 Acenaphthene D10氘代苊 4.0 mg/mL in CH2Cl2 1 mL 93951-97-4 Acenaphthylene D8 氘代苊烯 10 ng/&mu L 10 mL 1719-06-8 Anthracene D10 氘代蒽 2.0 mg/mL in CH2Cl2 1 mL 93951-66-7 Benzo(g,h,i)perylene D12 氘代苯并(g,h,i)苝 10 ng/&mu L 1 mL 1719-03-5 Chrysene D12 氘代屈 4.0 mg/mL in CH2Cl2 1 mL 13250-98-1 Dibenzo(a,h)anthracene D14 氘代二苯并(a,h)蒽 10 ng/&mu L 10 mL 93951-69-0 Fluoranthene D10 氘代荧蒽 ampule of 50 mg 1 EA 81103-79-9 Fluorene D10 氘代芴 10 ng/&mu L 10 mL 1146-65-2 Naphthalene D8 氘代萘 4.0 mg/mL in CH2Cl2 1 mL 1517-22-2Phenanthrene D10 氘代菲 0.2 mg/mL in CH2Cl2 1 mL 4.0 mg/mL in CH2Cl2 1 mL1718-52-1 Pyrene D10 氘代芘 0.5 mg/mL in Acetone 1 mL ※更多氘代单标请致电400-666-7788垂询! ■ 氟代单标 CAS 英文名称 中文名称 浓度 包装 17521-01-6 5-Fluoroacenaphthylene 5-氟代苊烯 10 &mu g/mL in Toluene 1 mL 100 &mu g/mL in Toluene 1 mL 113600-15-0 9-Fluorobenzo[k]Fluoranthene 9-氟代苯并(k)荧蒽 10 &mu g/mL in Toluene 1 mL 100 &mu g/mL in Toluene 1 mL N/A 1-Fluorochrysene 1-氟代屈 10 &mu g/mL in Toluene 1 mL 100 &mu g/mL in Toluene 1 mL 36288-22-9 3-Fluorochrysene 3-氟代屈 10 &mu g/mL in Toluene 1 mL 100 &mu g/mL in Toluene 1 mL 1691-66-3 3-Fluorofluoranthene 3-氟代荧蒽 10 &mu g/mL in Toluene 1 mL 100 &mu g/mL in Toluene 1 mL 343-43-1 2-Fluorofluorene 2-氟代芴 10 &mu g/mL in Toluene 1 mL 100 &mu g/mL in Toluene 1 mL 321-38-0 1-Fluoronaphthalene 1-氟代萘 0.1 mg/mL in Acetone 1 mL 523-41-1 2-Fluorophenanthrene 2-氟代菲 10 &mu g/mL in Toluene 1 mL 100 &mu g/mL in Toluene 1 mL 440-40-4 3-Fluorophenanthrene 3-氟代菲 10 &mu g/mL in Toluene 1 mL 100 &mu g/mL in Toluene 1 mL 1691-65-2 1-Fluoropyrene 1-氟代芘 10 &mu g/mL in Toluene 1 mL 100 &mu g/mL in Toluene 1 mL ※更多氟代单标请致电400-666-7788垂询! ■ 黄曲霉毒素类、胆固醇 CAS 英文名称 中文名称 备注 包装 1162-65-8 Aflatoxin B1 黄曲霉毒素 B1 定性用对照品 5 mg Aflatoxin B1 solution 黄曲霉毒素 B1 (液标) 标样20 &mu g/mL in methanol 1 U 7220-81-7 Aflatoxin B2 黄曲霉毒素 B2 定性用对照品 2 mg Aflatoxin B2 solution 黄曲霉毒素 B2 (液标) 标样3 &mu g/mL in benzene:acetonitrile (98:2) 1 U 1165-39-5 Aflatoxin G1 黄曲霉毒素 G1 定性用对照品 2 mg Aflatoxin G1 solution 黄曲霉毒素 G1 (液标) 标样3 &mu g/mL in benzene:acetonitrile (98:2) 1 U 7241-98-7 Aflatoxin G2 黄曲霉毒素 G2 定性用对照品 1 mg Aflatoxin G2 solution 黄曲霉毒素 G2 (液标) 标样3 &mu g/mL in benzene:acetonitrile (98:2) 1 U 6795-23-9 Aflatoxin M1 黄曲霉毒素 M1 定性用对照品 0.25 mg Aflatoxin M1 solution 黄曲霉毒素 M1 (液标) 标样10 &mu g/mL in acetonitrile 1 U 6885-57-0 Aflatoxin M2 黄曲霉毒素 M2 定性用对照品 0.25 mg 57-88-5 Cholesterol 胆固醇 标样 0.25 g ※更多产品欢迎致电400-666-7788垂询! ■ 配套溶剂 ■ 色谱溶剂 高纯度:HPLC分析中无干扰峰 低含水量:避免了正相色谱柱的失活 低 UV 背景吸收:避免了鬼峰及得出错误的结论 优异的批次稳定性:更换批次时无需更改 HPLC 标准方法 低挥发、低残留:使用前无需过滤,减少了色谱柱的污染并防止了系统堵塞 ■ 产品列表(以下产品可提供20 L / 200 L包装) CAS 产品编号 英文名称 中文名称 包装67-56-1 116481 Methanol, 99.9% [HPLC/ACS] 甲醇 1 L / 4 L 982150 Methanol, 99.8% [HPLC/PREP] 甲醇(制备j) 4 L/20 L/200 L 75-05-8 134752 Acetonitrile, 99.9% [HPLC/ACS] 乙腈 1 L / 4 L 925301 Acetonitrile, 99.9% [HPLC/PREP] 乙腈(制备j) 4 L/20 L/200 L 110-54-3 133516 Hexane, 95% [HPLC/ACS] 正己烷 1 L / 4 L 141-78-6 300999 Ethyl acetate, 99.9% [HPLC/ACS] 乙酸乙酯 1 L / 4 L 67-66-3 508435 Chloroform, 99.9% [HPLC/ACS] 氯仿 1 L / 4 L 109-99-9 990407 Tetrahydrofuran, 99.8% [HPLC/ACS] 四氢呋喃 4 L ※更多色谱溶剂欢迎致电400-666-7788垂询! ■ 离子对试剂 离子对试剂是高效液相色谱专用试剂,y般是将离子性化合物添加到流动相中以促使离子与带电荷分析物形成配对离子,达到可靠的分析效果。百灵威不仅可提供系列化磺酸类(酸性)或铵盐类(碱性)离子对试剂,而且可以根据实验要求,定制从5 g 至1 kg多种包装。 CAS 产品编号 英文名称 产品名称 包装 207605-40-1 256882 1-Pentanesulfonic acid sodium salt monohydrate, 98% [HPLC grade] 戊烷磺酸钠y水合物 5 g/25 g/100 g/500 g 207300-91-2 238919 1-Hexanesulfonic acid sodium salt monohydrate, 98% [HPLC grade] 己烷磺酸钠y水合物 5 g/25 g/100 g/500 g 207300-90-1 235385 1-Heptanesulfonic acid sodium salt monohydrate, 98% [HPLC grade] 庚烷磺酸钠y水合物 5 g/25 g/100 g/500 g 207596-29-0 165302 1-Octanesulfonic acid sodium salt monohydrate, 98% [HPLC grade] 辛烷磺酸钠y水合物 5 g/25 g/100 g/500 g 22767-49-3 358789 1-Pentanesulfonic acid sodium salt, 99% [HPLC grade] 戊烷磺酸钠 5 g/25 g/100 g 2832-45-3 573832 1-Hexanesulfonic acid sodium salt monohydrate, 98% [HPLC grade] 己烷磺酸钠 5 g/25 g/100 g 22767-50-6 149116 1-Heptanesulfonic acid sodium salt monohydrate, 98% [HPLC grade] 庚烷磺酸钠 25 g/100 g 5324-84-5 194500 1-Octanesulfonic acid sodium salt, 99.5% [HPLC grade] 辛烷磺酸钠 5 g/25 g/100 g ※更多离子对试剂欢迎致电400-666-7788垂询! ■ 配套仪器耗材 ■ 液相色谱柱 高度的柱间重现性 高度可控的单分子层形成和封尾技术 高选择性,提高了分离效率 适合分离酸性、中性和碱性化合物,以及多肽和蛋白等 产品编号 产品名称 适用pH范围 特征 包装 S02001 C18液相色谱柱 柱长:150× 外径4.6 mm 填料直径:5µ m pH 2-7 ★ 母体为高纯度(99.999%)硅胶; ★ 均y且完全呈球状的硅胶粒径,可以在低压力下使用; ★有理想的端基封尾处理,既不会有碱性化合物吸附问题,也不会有酸性化合物吸附问题; ★ 即使是在酸性条件下,也有着较高的耐受性。 1 Pak S02302 C18液相色谱柱 柱长:250× 外径4.6 mm 填料直径:5 µ m pH 2-7 1 Pak S02303 C18 WpH液相色谱柱 柱长:150× 外径4.6 mm 填料直径:5 µ m pH 1-10 ★ 保留能力强,与母体成分的分离更容易; ★ 均y且完全呈球状的硅胶粒径,使用压力小,给泵带来的负担更小; ★ 高惰性,不论酸性化合物还是碱性化合物,都能得到尖锐的峰型; ★ 硅胶纯度高,可用于分析金属配合物; ★ pH1-10,即使使用强碱性溶离液也能维持高性能。 1 Pak S02304 C18 WpH液相色谱柱 柱长:250× 外径4.6 mm 填料直径:5 µ m pH 1-10 1 Pak ※更多液相色谱柱欢迎致电400-666-7788垂询! ■ J&K-Abel气相色谱柱 高性能:低流失、独特的去活技术 高惰性:能得到更尖锐的锋形 高选择性:更高的信噪比 高的柱间稳定性:提高了分离效率,保证了结果的重现性 创新型设计:保证更长的色谱柱使用寿命 产品类型: 聚硅氧烷色谱柱 聚合乙二醇(PEG)色谱柱 PLOT色谱柱 熔融石英管 产品编号 型号规格 耐受温度 S010125-3002 AB-1, 30 m × 0.25 mm × 0.25 &mu m -60 to 325/350 19091Z-433 S011125-3002 AB-1MS, 30 m × 0.25 mm × 0.25 &mu m -60 to 325/350 19091S-933 S010525-3002 AB-5, 30 m × 0.25 mm × 0.25 &mu m -60 to 325/350 19091J-433 S011525-3002 AB-5MS, 30 m × 0.25 mm × 0.25 &mu m -60 to 325/350 19091S-433 S016125-3002 AB-1701, 30 m × 0.25 mm × 0.25 &mu m -20 to 280/300 122-0732 S016132-3002 AB-1701, 30 m × 0.32 mm × 0.25 &mu m -20 to 280/300 123-0732 S016225-3014 AB-624, 30 m × 0.25 mm × 1.40 &mu m -20 to 260 122-1334 S016253-3030 AB-624, 30 m × 0.53 mm × 3.00 &mu m -20 to 260 125-1334S012025-3002 AB-INOWAX, 30 m × 0.25 mm × 0.25 &mu m 40 to 260/280 19091N-133 S018653-3030 AB-PLOT Q, 30 m × 0.53 mm × 30.0 &mu m -80 to 280/290 19095P-QO4 S011125-3002-G5 AB-1MS Builtin-Guard 30 m,0.25 mm,0.25 &mu m with 5 m Guard Column -60 to 325/350 ※更多气相色谱柱欢迎致电400-666-7788垂询! ■ 其它配套仪器耗材 产品编号 产品名称 包装 3581025 加热磁力搅拌器 1台 3810025 RCT 基本型磁力搅拌器 1台 1572500 磁力搅拌子 1PK E03935569 手动单道可调式移液枪,1000-5000 µ L 1支 E02901275 瓶口分液器,5-50 mL 1个 WX-7009-0020-1 8247 R95 有机蒸气异味防护口罩,120个/箱 1箱 5982-3236 SCX Polymer - Box, 50 x 3 mL tubes, 60 mg 50支/盒 959741-902 Eclipse Plus C18, 2.1 x 50 mm,1.8 µ m, 600 bar 1支 BR36849 100 mL, DURAN, NS 14/23, -stoer 1套 5182-0714 Screw cap vials, clear 100/PK 透明螺口2 mL样品瓶 1盒 WKLM-2.1 微孔滤膜Ф50 0.2 &mu (水)混合纤维素 100片/包 WKLM-4.1 微孔滤膜Ф50 0.2 &mu (有机)尼龙6 100片/包 RJGL1L-C 溶剂过滤器(1 L) 杯300 mL 瓶1000 mL,PTFE滤板 1套 5982-9110 12 Port Vacuum Extraction Manifold Assy 1套 ※更多产品欢迎致电400-666-7788垂询!
  • 康宁案例 | MBDA连续高效合成工艺研究!
    双-(4-N,N-二甲基氨基苯基)甲烷(bis-(4-N,N-dimethylaminophenyl) methane,简称MBDA),是合成重要精细化工产品米氏酮的前体化合物,也是合成碱性荧光黄GR与热敏、压敏染料结晶紫内酯(crystal violet lactone,简称CVL)的重要中间体。近年来,双-( 4-N,N-二甲基氨基苯基) 甲烷在制备高纯金属有机化合物和 N-异硫氰酸酯的催化合成中也有广泛应用[2-4]。本文将介绍江西师范大学国家单糖化学合成工程技术研究中心廖维林教授团队的连续流技术研究成果:以 N,N-二甲基苯胺和甲醛为原料,对氨基苯磺酸为催化剂在康宁微反应器中连续合成MBDA[1]。研究结果表明与传统间歇釜式合成工艺相比,连续流工艺实现了该合成反应的连续稳定进行,大大缩短了反应时间,适合工业化生产。MBDA的合成方法主要有二苯甲烷二胺甲基化法[5]和N,N-二甲基苯胺与甲醛缩合法[6]。迄今为止,后者是工业生产双-( 4-N,N-二甲基氨基苯基) 甲烷的常用路线。该路线是在酸性催化剂的催化下完成的,主要的酸性催化剂有硫酸、盐酸、对氨基苯磺酸、酸性树脂、甲酸等。但是N,N-二甲基苯胺与甲醛缩合法传统釜式工艺需要较长的反应时间,且工业生产目前还是批次操作,产品质量和收率稳定性受到影响。而康宁微通道反应器高效传质和传热且无放大效应可以直接将实验室工艺放大到和工业化生产。所以该研究尝试将釜式工艺转为连续流工艺! MBDA的合成研究过程一、传统的间歇釜式合成实验为了对连续流反应工艺的反应条件和产物进行对比,研究者首先在实验室条件下参照文献[2]最佳反应条件(反应温度75℃,反应时间6h,N,N-二甲基苯胺、甲醛和对氨基苯磺酸的摩尔比为2:1.5:0.1) 进行了釜式反应实验。结果反应产物收率为 95.13% ,HPLC 纯度为 97.4% 。二、连续合成实验研究研究者选用康宁G1玻璃微通道反应器进行连续合成,经过G1反应后出来的物料直接流入冰水经过静置、过滤、醇重结晶,真空干燥后得到白色片状晶体,计算收率,测定其HPLC 纯度。研究者分别对停留时间、反应温度、物料比和催化剂用量进行了反应条件的优化:根据优化实验得到的最佳工艺参数:反应温度为120 ℃ ,N,N-二甲基苯胺进料速度为 30.67 mLmin-1 ,37% 甲醛进料速度为 10.9 mLmin-1,保持停留时间为 90 s,n( 甲醛) : n( N,N-二甲基苯胺) =0.6: 1.0,催化剂的用量 3%(相对于甲醛的摩尔比例) 。反应器连续运行 30 min,后处理,得到 877.8g 白色片状双-( 4- N,N-二甲基氨基苯基) 甲烷晶体,反应收率为95.2% ,产物 HPLC纯度为 98.2% 。三、结果讨论 MBDA的合成反应从间歇式转化为更高效、安全的连续过程是可行的; 康宁反应器高效传质、传热特性有助于部分慢反应提高反应速度实现快速合成,应用到工业化生产可以提高生产效率和效益; 康宁反应器无缝放大技术优势使该反应工艺可以快速放大到工业化生产。 参考文献[1]芮培欣,廖维林,郭晓红等.一种微通道反应器中连续制备双-(4-N,N-二甲基氨基苯基)甲烷的方法 [J]. 江西师范大学学报(自然科学版),2020,44 ( 2) : 175- 177.[2]王帅,钟宏,唐联兴等.双-( 4-N,N-二甲基氨基苯基)甲烷的合成[J]tt精细化工中间体,2004,34 ( 4 ) : 26- 27.[3]Sharmistha Dutta Choudhury, Samita Basu. Caging of phenazine by 4, 4' -bis(dimethylamino) diphenylmethane: a comparative study with phenazine-N, N-dimethylaniline Chemical PhysicsLetters, 2004, 383(5/6):33- 536.[4]安华. 我国MO源发展状况 [J]. 低温与特气,1999(4):1-6.[5]邱泽刚,王军威,亢茂青等. 4,4' -二苯甲烷二胺与碳酸二甲酯甲基化反应合成4,4' -双( 二甲氨基) 二苯甲烷 [J]. 精细化工,2008,25( 8) : 821-824.[6]苏广武,李梅香,罗先金. 高纯度 4,4' -N,N' -二甲氨基二苯甲烷的合成 [J]. 染料工业,2000,37( 5) : 19-20.
  • 东方德菲--旋转滴方法研究界面扩张流变性质
    北京东方德菲仪器有限公司SVT20N视频旋转滴张力仪使用 &ldquo 旋转滴方法研究界面扩张流变性质&rdquo 的文章 在物理化学学报上发表 我公司代理的德国Dataphysics公司生产的SVT20N视频旋转滴张力仪是使用旋转滴方法研究界面扩张流变性质的仪器,相对于普遍应用的Langmuir槽法和悬挂滴方法,它增加了转速振荡的功能,可以更精确地测量超低界面张力体系的扩张流变性质。 中国科学院理化技术研究所利用我公司SVT20N视频旋转滴张力仪,采用旋转滴方法,研究2-丙基-4,5-二庚烷基苯磺酸钠(DHPBS)在癸烷-水界面上的扩张流变性质的文章在物理化学学报上发表。有关文章的信息如下: 旋转滴方法研究界面扩张流变性质 张磊1 宫清涛1 周朝辉1 王武宁2 张路1 赵濉1 余稼镛1 (1中国科学院理化技术研究所,北京 100080;2 北京东方德菲仪器有限公司,北京 100089) 摘要:采用旋转滴方法,对2-丙基-4,5-二庚烷基苯磺酸钠(DHPBS)在癸烷-水界面上的扩张流变性质进行了研究,较为详细地介绍了SVT20N视频旋转滴张力仪的装置和实验方法,考察了油滴注入体积、基础转速及振荡振幅等试验条件对扩张模量的影响。研究结果表明,旋转滴方法是一种研究扩张流变性质的新型手段,在涉及低界面张力现象的领域具有良好的应用前景. 关键词:旋转滴方法; 烷基苯磺酸盐; 界面扩张性质; 扩张模量 Study of Interfacial Dilational Properties by the Spinning Drop Technique ZHANG Lei1 GONG Qing-Tao1 ZHOU Zhao-Hui1 WANG Wu-Ning2 ZHANG Lu1 ZHAO Sui1 YU Jia-Yong1 (1 Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing 100080, p.R.China 2 Beijing Eastern-Dataphy Instruments Co.,Ltd.,Beijing 100089, p.R.China) Abstract: The dilational viscoelastic properties of 4,5-dihepty-2-propylbenzene sulfonate (DHPBS) at the decane/water interface were investigated with a spinning drop tensiometer. The instrument of the spinning drop tensiometer SVT20N and the corrrlative experimental method were discussed in detail. The influence of oil drop volume, rotational speed, and oscillating amplitude on the interfacial dilational modulus were expounded. Experimental results show that spinning drop analysis is a novel method for probing interfacial dilational properties and has good prospects for application in the measurement of low interfacial tension phenomena. Key word: Spinning drop analysis Sodium alkyl benzene sulfonate Interfacial dilational property Dilational modilus
  • 用户之声|和黄白猫洗洁精的表面活性剂分析神器—CAD检测器
    今天赛默飞就带大家跟随“和黄白猫”,探寻下最常用的日用品之一——洗洁精。洗洁精由多种表面活性剂及助剂复配而成。可能的成分有:“烷基苯磺酸钠(LAS),脂肪醇聚氧乙烯醚硫酸钠(AES)和烯基/羟基磺酸钠(AOS)̷̷”,这些阴离子表面活性剂去油污能力强,在皮肤上残留会有干燥紧绷的感觉;因此,很多厂家会添加比较温和的两性离子表面活性剂进行复配,如椰油酰胺丙基甜菜碱,椰油酰胺丙基氧化胺,非离子表面活性剂脂肪醇聚氧乙烯醚等,以取得更好的清洁效果并降低对人体皮肤的刺激。椰油酰胺丙基甜菜碱结构式 由于成分复杂,开发合适的检测方法对这类产品进行质控分析,是一项高难度挑战。1两性表面活性剂在酸性条件下以阳离子形式存在,会影响其他阴离子表面活性剂的定量,无法用化学滴定法定量;2大部分表面活性剂无紫外吸收,缺乏标准物质,紫外检测器很难检测所有组分;3示差折光检测器重复性差、只能等度洗脱无法完全分离;4质谱检测器只能检测可以离子化的化合物,而且长时间使用离子源和四极杆会难以清洗造成交叉污染;自从接触了赛默飞的电雾式检测器CAD,以上这些难题都迎刃而解。“通过调研我们发现:CAD的重现性和灵敏度远高于示差折光检测器,与ELSD相比也具有较明显优势。2016年我们研发部门配置了CAD和紫外双检测器的Ultimate 3000双三元液相色谱,通过一个二位六通阀连接,实现了一台仪器当两台液相使用的强大功能,方便了我们的工作,降低了购买成本。”——和黄白猫公司上海和黄白猫有限公司是洗涤清洁用品行业的知名企业,在国内同行业中技术领xian、设备先进、质量过硬,享有相当高的市场信誉度;“白猫”品牌,几乎成为国内洗涤清洁用品的代名词。 电雾式检测器(CAD)电雾式检测器(CAD),是一种新型通用型检测器,重现性好,能检测大部分非挥发性和半挥发性的有机物,并提供几乎一致的响应,且不受化合物紫外吸收基团的影响,在定量分析中具有明显的优势。 赛默飞带您来看和黄白猫公司使用CAD检测器对洗洁精中表面活性剂的日常分析色谱条件数据结果分析由于表面活性剂中包含不同碳链的非极性基团,检测中会出现多个连续峰,如AES和LAS的CAD图谱无法完全分离,但由于LAS有紫外吸收,可使用紫外检测器定量;AES无紫外吸收,使用CAD检测器定量。椰油酰胺丙基氧化胺(上)和月桂酰胺丙基甜菜碱(下)标准品CAD图谱脂肪醇聚氧乙烯醚硫酸钠(AES)和烷基苯磺酸钠(LAS)标准品CAD图谱烷基苯磺酸钠(LAS)的CAD图谱和UV(254nm)图谱 对于二者同时存在的情况,可以依据CAD响应一致性的特性,使用CAD检测器以AES为标品,计算二者的总量,再减去用紫外检测器得到LAS含量,即为AES的含量,对比使用其他方法的检测结果,无显著性差异。洗洁精实际样品的CAD和UV图 以上可知,赛默飞表面活性剂专用色谱柱Acclaim Surfactant Plus(可同时提供反相机制和阴、阳离子交换保留机制),配合DAD和CAD检测器串联使用,可以有效、准确的检测各表面活性剂成分的含量。 在对某些进口品牌的洗涤剂配方研究中我们发现,大部分产品都不同程度添加了相应的两性离子表面活性剂,使同时具有良好的乳化性和分散性,其对织物有优异的柔软平滑性和抗静电性。CAD检测器为洗涤剂类产品的配方优化和产品质量控制提供了良好的检测手段。 鸣谢:感谢和黄白猫公司的徐艳丽工程师提供的实验数据!色谱质谱明星产品前处理气相色谱离子色谱液相色谱气质联用液质联用AA/ICP/ICPMS软件 更多仪器配置和方案推荐色谱质谱全流程食品安全固废专项临床检测RoHS检测中药分析化药分析代谢组学
  • 卫生部扩大部分食品中添加剂使用量
    2012年 第1号   根据《中华人民共和国食品安全法》和《食品添加剂新品种管理办法》的规定,经审核,现批准苯甲酸及其钠盐等17种食品添加剂和酪蛋白磷酸肽等4种营养强化剂扩大使用范围及用量,批准食品工业用加工助剂珍珠岩可作为助滤剂用于淀粉糖工艺。   特此公告。   二○一二年一月十日   附件1:苯甲酸及其钠盐等17种扩大使用范围及用量的食品添加剂 名称 类别 食品分类号 食品名称/分类 最大使用量(g/kg) 备注 1. 苯甲酸及其钠盐 防腐剂 14.04.02.01 特殊用途饮料(包括运动饮料、营养素饮料等) 0.2 以苯甲酸计 2. 番茄红素(合成) 着色剂 01.01.03 调制乳 0.015 以纯番茄红素计。 01.02.01 发酵乳 0.01506.06 即食谷物 ,包括碾轧燕麦(片) 0.05 07.0 焙烤食品 0.05 16.01 果冻 0.05 以纯番茄红素计。 如用于果冻粉,按冲调倍数增加使用量。 3. 环己基氨基磺酸钠(又名甜蜜素),环己基氨基磺酸钙 甜味剂 07.01 面包 1.6 以环己基氨基磺酸计 07.02 糕点 1.6 4. 焦磷酸钠 水份保持剂 01.06.04 再制干酪 14 可单独或与其他磷酸盐混合使用,最大使用量以磷酸根(PO43-)计 5. 焦糖色(苛性硫酸盐法) 着色剂 15.01.04 威士忌 按生产需要适量使用 6. 焦糖色(亚硫酸铵法) 着色剂 14.05.03 植物饮料类(包括可可饮料、谷物饮料等) 0.1 7. 可可壳色 着色剂 07.01 面包 0.5 8. 磷酸三钠 水份保持剂 01.06.04 再制干酪 14 可单独或与其他磷酸盐混合使用,最大使用量以磷酸根(PO43-)计 9. 六偏磷酸钠 水份保持剂 01.06.04 再制干酪 14 可单独或与其他磷酸盐混合使用,最大使用量以磷酸根(PO43-)计 10. 麦芽糖醇和麦芽糖醇液 甜味剂 04.01.02 加工水果 按生产需要适量使用 06.10 粮食制品馅料 12.10.02 半固体复合调味料 11. 日落黄及其铝色淀 着色剂 14.04 水基调味饮料类 0.1 以日落黄计 12. 氢氧化钙 酸度调节剂 01.01.03 调制乳 按生产需要适量使用 13. 三氯蔗糖 甜味剂 04.05.02 加工坚果与籽类 1.0 14. 山梨酸及其钾盐 防腐剂 09.04 熟制水产品(可直接食用) 1.0 以山梨酸计 09.06 其他水产品及其制品 15. 山梨糖醇和山梨糖醇液 甜味剂 04.01.02.05 果酱 按生产需要适量使用 07.04 焙烤食品馅料及表面用挂浆(仅限焙烤食品馅料) 按生产需要适量使用 16. 甜菊糖苷 甜味剂 03.0 冷冻饮品 0.5 16.01 果冻 17. 辛烯基琥珀酸淀粉钠 其他 13.01.01 婴儿配方食品 1 作为DHA/ARA 载体,以即食食品计。 13.01.02 较大婴儿和幼儿配方食品 50   附件2:酪蛋白磷酸肽等4种扩大使用范围及用量的营养强化剂 名 称 类别 食品分类号 食品名称/分类 使用量 备注 1. 酪蛋白磷酸肽 营养强化剂 01.01.03 调制乳 ≤1.6 g/kg 01.02.02 风味发酵乳 2. 聚葡萄糖 营养强化剂 13.01 婴幼儿配方食品 15.6-31.25 g/kg 3. 维生素D 营养强化剂 14.02.03 果蔬汁(肉)饮料(包括发酵型产品) 2-10 μg/kg 4. 左旋肉碱(L-肉碱) 营养强化剂 14.06 固体饮料类 6-30 g/kg
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制