当前位置: 仪器信息网 > 行业主题 > >

高温光纤

仪器信息网高温光纤专题为您提供2024年最新高温光纤价格报价、厂家品牌的相关信息, 包括高温光纤参数、型号等,不管是国产,还是进口品牌的高温光纤您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高温光纤相关的耗材配件、试剂标物,还有高温光纤相关的最新资讯、资料,以及高温光纤相关的解决方案。

高温光纤相关的资讯

  • 国内首台油井光纤高温高压传感器研制成功
    日前,山东省科学院激光研究所在国内首次自主研发的固定式高精度光纤压力传感器获得成功。这台光纤高温高压传感器可在油井下温度220℃和压力100MPa下长期作业,解决了常规电子传感器和光纤压力传感器受油井下高温高压干扰而无法正常工作的难题。光纤高温高压传感器的研发成功,不仅打破了国外对此技术的长期垄断,更将对我国油气井的科学开采发挥出重要作用。   据山东省科学院激光研究所副所长王昌博士介绍,这台光纤高温高压传感器通过对油井状态在线实时监测,可以及时探测到井内诸如漏水等状态变化的详细信息。根据这些信息,对油井采油工艺进行优化和调整,可提高油气采收率5%—10%。   山东省科学院激光研究所从2005年开始从事光纤油气井温度压力在线监测的研究。2006年,该所研究的《光纤高温高压井筒测试技术》被列为国家863项目和山东省技术攻关项目。通过对胜利油田、中海油、辽河油田的示范应用表明,光纤高温高压传感器不仅探测准确,其敏感元件的耐高温高压和耐腐蚀的保护技术等均优于国外技术,价格仅是国外进口设备的1/3。油田专家认为,这项新技术的推广应用,将为我国油井实现智能化监控打下良好基础。   王昌介绍说,据不完全统计,全国现有生产油井约15万口,按照每口井提高采油率5%,推广普及1%计算,年可提高油气产量超过9万吨。这项先进技术除高温高压油井监测应用外,在电力、化工、矿山等许多领域都有着非常广阔的应用前景,可产生巨大的经济效益和社会效益。
  • 科技引领!植入光纤传感器为电池做“体检”
    手机爆炸、电动汽车行驶或充电过程中的火灾事故在生活中经常可见,让人们在享受锂电池带来的便利的同时,也担心其在安全方面的重大问题。如何降低这一风险?近日,中国科学技术大学教授孙金华、研究员王青松团队与暨南大学教授郭团团队研制出一款可植入电池内部的高精度光纤传感器。相关研究成果日前在线发表于《自然-通讯》。“这款高精度光纤传感器可以在1000摄氏度的高温、高压环境下正常工作,同步测量出电池热失控全过程内部温度和压力,为快速切断电池热失控链式反应提供预警手段。”王青松向《中国科学报》介绍。破解国际性科学难题手机、笔记本电脑、电动自行车、电动汽车中都有一个关键部件——锂离子电池。随着全球范围内能源危机的出现、“双碳”目标的驱动,锂离子电池产业迅速发展。然而,锂离子电池常常会发生爆炸,也就是热失控,这是威胁电池安全的“癌症”,是制约电动汽车与新型储能规模化发展的瓶颈。研究表明,电池热失控源于电池内部一系列复杂且相互关联的“链式反应”。“这可以从电池内部和外部两方面讨论。从内部来看,电池由正负极、电解液、隔膜等组成,其中电解液和隔膜都是易燃物,正负极和电解液在一定温度下又会产生化学反应,进而产生热量和可燃气体。也就是说,电池内部本身就是一个热不稳定的体系。”王青松说。从外部来看,电池在使用过程中容易出现各种外部滥用:电滥用,如过充、过放等;热滥用,如高温、局部发热等;机械滥用,如撞击、挤压等。这些外部滥用会造成电池内部材料发生一系列连锁化学反应,电池内部温度快速提升,最高可达800摄氏度,导致电池起火或爆炸。如何科学、及时、准确地预判电池安全隐患,是当前电池安全领域的国际性科学难题。为攻克这一难题,研究团队提出一种可植入电池内部的高精度光纤传感器,在国际上率先实现对商业化锂电池热失控全过程的精准分析与提早预警。《自然-通讯》的一位审稿专家评价道,“该研究有助于电池健康状态监测,并在不可逆损害前发出预警信号。”小巧光纤实时监测电池健康状态将光纤植入电池,并非王青松等人首创。因光纤传感器具备体积小、重量轻、耐受高温高压、耐受电解液腐蚀等优势,前人将其植入电池。但他们主要测量的是电池循环过程中的内部参数,从未涉足电池热失控监测领域。于是,王青松等人想将光纤植入电池内部,以监测电池热失控过程,并探索电池内部参数能否为电池热失控预警提供新思路。研究思路有了,做起来却非常难,因为现有的大多数光纤传感器无法在热失控过程中“幸存”。王青松解释说,电池热失控过程中,内部压力高达2MPa、温度高达500至800摄氏度,在这种高温高压的冲击下,光纤信号会中断,无法测得电池内部温度和压力数据。研究的关键是开发一款“健壮”的光纤传感器。他们与郭团团队联合攻关,多次改进光纤结构,开展热失控实验,反复修改和验证,最终通过对光纤进行套管保护,在保证内部信号传输的同时解决了光纤容易断的难题。“这款高精度光纤传感器总长度12毫米、直径125毫米,能够植入商业18650电池,实时监测电池热失控期间的内部温度和压力影响。”王青松向《中国科学报》介绍了光纤传感器的结构。相比现有的外部监测技术,内部光纤传感技术更具有及时性、灵活性。“就好比人们患病,当感知到疼痛时,往往为时已晚。这就像电池外部特征的变化一般都是滞后的。”王青松解释道,“而去医院体检,可以通过CT等看到内部器官变化,从而预知疾病的发生,并通过治疗手段阻止疾病进一步发展。但这种大型设备体积庞大,无法随时随地监测内部状态变化。如果在人体内植入芯片,就可以做到实时跟踪预警。就像在电池内部植入光纤传感器,可以做到实时监测预警。”值得一提的是,该研究通过解析压力和温度变化速率,首次发现温度和压力变化速率的转变点可作为电池热失控早期预警区间。该发现适用于不同电量的电池,能够在电池内部发生“不可逆反应”之前发出预警信号,保证了电池后续的安全使用。用于同时监测电池内温度和压力的FBG/FPI传感器工作原理适合大规模推行量产在王青松看来,光纤传感器尺寸小、形状灵活,具有抗电干扰性和远程操作的能力和适合大规模生产的标准制造技术,并且可以实现一根光纤在电池的多个位置同时监测温度、压力、气体组分、离子浓度等多种关键参数。光纤传感技术与电池的结合将在新能源汽车、储能电站安全监测等领域发挥重要作用。为此,研究团队将探索光纤传感器在大容量储能电池中的应用。“大容量储能电池热失控相比此次研究中的18650电池更加剧烈,并且其热失控特性和机理与小电池有所差异,这将是对我们研究的进一步考验。”王青松说。另一方面,团队将与电池制造商合作,希望在电池制作过程中植入光纤传感器,避免对电池二次破坏,加快光纤传感在储能和新能源汽车电池管理系统中的应用进程。相关论文信息:https://www.nature.com/articles/s41467-023-40995-3
  • 光纤传感器助力物联网发展市场容量将近万亿
    近年来,传感器朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能 尽缘、无感应的电气性能 耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区或者对人有害的地区,如核辐射区),起到人的线人作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。   基本工作原理及应用领域   光纤传感器的基本工作原理是将来自光源的光经过光纤送进调制器,使待测参数与进进调制区的光相互作用后,导致光的光学性质(如光的强度、波长、频率、相位、偏正态等)发生变化,称为被调制的信号光,在经过光纤送进光探测器,经解调后,获得被测参数。   光纤传感器的应用于对磁、声、压力、温度、加速度、陀螺、位移、液面、转矩、光声、电流和应变等物理量的丈量。光纤传感器的应用范围很广,几乎涉及国民经济和国防上所有重要领域和人们的日常生活,尤其可以安全有效地在恶劣环境中使用,解决了很多行业多年来一直存在的技术困难,具有很大的市场需求。主要表现在以下几个方面的应用:   1、市建设中桥梁、大坝、油田等的干涉陀螺仪和光栅压力传感器的应用。光纤传感器可预埋在混凝土、碳纤维增强塑料及各种复合材料中,用于测试应力松驰、施工应力和动荷载应力,从而评估桥梁短期施工阶段和长期营运状态的结构性能。   2、电力系统,需要测定温度、电流等参数,如对高压变压器和大型电机的定子、转子内的温度检测等,由于电类传感器易受电磁场的干扰,无法在这类场合中使用,只能用光纤传感器。分布式光纤温度传感器是近几年发展起来的一种用于实时丈量空间温度场分布的高新技术,分布式光纤温度传感系统不仅具有普遍光纤传感器的优点,还具有对光纤沿线各点的温度的分布传感能力,利用这种特点我们可以连续实时丈量光纤沿线几公里内各点温度,定位精度可达米的量级,丈量精度可达1度的水平,非常适用大范围交点测温的应用场合。   在实际生活中,光纤传感器种类是非常多的,但是,我们将这些传感器类型归结为两大类型,即传感型与传光型。和传统电传感器进行比较,光纤传感器具有很多的优点,例如抗干扰能力较强、绝缘性好、灵敏度偏高,所以,当前在各个领域都有光纤传感器的身影。   光纤传感器助力物联网发展市场容量将近万亿   自出现光纤传感器后,它的优势与应用引起了各个国家人们的高度关注。并且对光纤传感技术进行了深入的研究。现如今,通过光纤传感器可以对位移、温度、速度、角度等物理量进行测量。现如今,很多西方发达国家将对光纤传感器研究的重点放在光纤控制系统、核辐射监控、民用计划等多个方面,同时已经取得了可喜的成绩。   我国对光纤传感器的研究起步较晚,有很多研究所、企业等对光纤传感器的深入研究促进了光纤传感技术的发展。在2010年,张旭平的关于&ldquo 布里渊效应连续分布式光纤传感技术&rdquo 通过了专家的鉴定。专家组都认为此技术有很强的创新性,技术已达到世界先进水平,因此,有广阔的发展前景。此技术的发展主要是应用了物联网技术,从而加速了我国物联网的发展。   传感器成为物联网极其重要的一组成部分。因此,传感器性能好坏决定了物联网的性能好坏。可以说,物联网获得信息的主要手段为传感器。这样一来,传感器所采集信息的可靠性与准确性都会对控制节点处理和传输信息产生一定影响。由此看来,传感器的可靠性、抗干扰性等都会对物联网应用性能发挥举足轻重的作用。   光纤传感技术在物联网中的应用   通过上述分析得知,物联网的发展必须要借助大量传感器获得各种环境参数,从而为物联网更可靠的数据信息,再经过系统的处理,得到人们需要的结果。以下是对光纤传感技术在物联网中的应用进行详细的探讨。   目前应用最广的光纤传感器有四种,分别是光纤陀螺、光纤水听器、光纤光栅传感器和光纤电流传感器。其中,光纤陀螺有干涉型、谐振型和布里渊型三种类型,干涉型光纤陀螺是技术上很成熟的第一代商品化阶段,谐振光纤陀螺是处于实验室研究阶段的第二代,布里渊型光纤陀螺是在理论研究阶段的第三代光纤陀螺传感器 光纤水听器是在光纤、光电子技术基础上的一种水下声音信号传感器,这种传感器通过高度灵敏的光纤相干检测,把水中的声音信号转换成光信号,再通过光纤传到信号处理系统转换为声音信号,这种传感器按原理可以分为干涉型、强度型、光栅型等类型 在光纤光栅传感器的产品中包括应变传感器、温度传感器和压力传感器,其中光纤bragg光栅传感器是这几年的研究热点,它们大部分属于光强型和干涉型,并且各有利弊。自今年来电力的发展是突飞猛进的,这种情况下,面对着强大电流的测量问题,光纤电流传感器可以很好的避免一些由于电力过强而引发的事故。
  • 打破垄断!国内首创光纤微地震监测技术试验成功
    p   8月23日,新疆油田工程技术研究院研制的井下光纤压裂裂缝监测技术,在克拉玛依红山嘴油田红29井区hD0562监测井对h0558压裂井进行压裂裂缝监测,井距269.43米,首次现场试验获得成功。这标志着新疆油田拥有了完全自主知识产权的井下光纤微地震监测工艺、仪器、工具和软件技术。 /p p   随着致密储层体积压裂的规模应用,井下微地震压裂裂缝监测技术对改进压裂设计、提高压裂效果起到了重要作用。目前,传统的井下微地震监测技术主要依赖进口的电子式监测仪器,存在价格昂贵、产品垄断、不耐高温等局限。据悉,威德福、哈里伯顿等油服公司已开展井下光纤微地震监测技术的研究和试验。与传统技术相比,光纤监测技术具有灵敏度高、动态范围宽、耐高温等优点,是技术未来发展趋势。 /p p   为打破技术垄断、掌握核心技术、降低监测成本,新疆油田工程技术研究院依托股份公司重大专项课题“昌吉油田致密油储层改造关键技术研究与现场试验”,从2014年3月开始与清华大学合作开展井下光纤压裂裂缝监测技术攻关研究,首创多芯纤高温光电复合缆,成功研制出光纤三分量检波器、推靠装置等关键仪器和装置,具备现场试验条件。 /p p   8月22日,新疆油田开发公司与各单位密切合作,在hD0562井先后完成仪器的地面检测、四级检波器入井(1770米至1830米)、中途测试、仪器推靠和h0558压裂井的震源定位等试验,具备压裂监测条件。8月23日,对h0558井的1783.5米至1837米井段采取投球暂堵工艺分压四层。压裂过程监测信号清晰明显、数据丰富,与压裂过程吻合良好,完整记录了微地震事件,现场监测获得成功。 /p
  • 发扬奋斗精神,建造光纤激光器最强“心脏”
    光纤激光器被称为第三代激光器,其中“高性能稀土掺杂石英光纤”作为光纤激光器的“心脏”被列入国家战略性先进电子材料。其制备技术和产品长期被国外垄断,成为制约中国高功率光纤激光器发展的“卡脖子”元件。   从本世纪初,为解决我国高功率光纤激光器的稀土掺杂激光光纤“卡脖子”难题,为追赶我国在稀土掺杂激光光纤方面与国际先进水平差距,单元技术实验室胡丽丽研究员组织研究团队开展光纤研制工作和平台建设,创建了溶胶凝胶结合高温烧结制备稀土掺杂石英玻璃的新方法,阐明了稀土离子掺杂石英玻璃的发光、光学性能与局域结构的关联,并建立了相互作用的结构模型。提出了MCVD结合纳米溶胶液浸泡制备高掺杂离子分散性光纤预制棒的新思路,全面攻克了万瓦级光纤高效、高稳定性及高可靠性的技术难题,批量研制的光纤在GF和工业领域实现近万台套的规模应用。2011年以来胡丽丽研究员带领激光光纤研究团队持续开展稀土掺杂石英玻璃结构与性能的基础研究、大模场掺镱光子晶体光纤、大模场高功率包层结构稀土掺杂石英光纤、耐辐照稀土掺杂石英光纤等的研制,打破了国外对我国高功率激光光纤的垄断,解决了我国高功率光纤激光器关键元件国产化“卡脖子”问题。满足了高功率光纤激光器对核心元件的重大需求,为我国实现高功率光纤激光器最强“心脏”自主可控做出了重要贡献。   近十年来,胡丽丽研究员带领团队不断探索和总结,撰写了《稀土掺杂石英光纤及应用》著作,由上海科学技术出版社出版,并面向国内外发行。该著作获2022年度国家科学技术学术著作出版基金资助出版,获评2023年2月榜“世纪好书”。   作为第一完成人和突出贡献者,胡丽丽研究员获2016年上海市技术发明奖特等奖一项、2017年国家技术发明奖二等奖一项、2022年中国科学院杰出科技成就奖一项,获“全国三八红旗手”“上海市第十六届十大科技精英”等荣誉称号。
  • 海底滑坡光纤监测系统港池试验成功
    记者从南方海洋科学与工程广东省实验室(广州)获悉,近日,该实验室徐景平教授团队自主研制的海底滑坡光纤监测系统在广州南沙海洋地质码头圆满完成港池试验工作,为下一步开展海上试验奠定了坚实的基础。  该海底滑坡光纤监测系统包括柔性光纤形变传感器和配套的座底式海床液压贯入装置。本次港池试验成功完成了海底滑坡光纤监测系统的拆卸、组装、布放、监测、回收和数据处理与解释等工作,验证了该监测系统的总体工作性能和各项技术指标,检验了监测系统在港池条件下的可靠性、稳定性和环境适应性。  海底滑坡是海洋地质灾害研究中最具挑战性的研究主题之一,能够对海洋工程设施与装备和沿海地区人民生命财产安全造成重大损失。我国南海地区海洋油气产区多与海底滑坡区重合,因而海底滑坡的研究关系着南海能源资源的可持续开发利用。目前国内外海底滑坡研究仍多限于对其最终沉积产物的地质地球物理特征认知,而对于海底滑坡预警的最关键环节——海底失稳破坏形变过程,这一滑坡初始状态的研究非常薄弱。  徐景平教授团队研制的基于光纤形变传感技术的海底滑坡监测系统,具有结构简单、灵敏度高和环境适应性好的优势,可用于对海底数米厚沉积物的形变失稳过程进行高精度的观测,获取长期、连续、有效的原位观测数据,进而为海洋工程安全保障及防灾减灾提供强有力的科技支撑。  据了解,参与此次港池试验的人员包括南方海洋科学与工程广东省实验室(广州)首批人才团队引进重大专项“南海海底灾害过程与机理研究”项目的徐景平教授、宋章启研究员、陈宇中、钱学生等人。在项目负责人徐景平的领导下,全体工作人员齐心协力,克服高温酷暑,顺利完成了本次港池试验任务。
  • IXblue-新型“全玻璃”有源光纤! ---适用于智能驾驶应用
    ‍IXblue-新型“全玻璃”有源光纤!---适用于智能驾驶应用 如今,有一个新兴市场:需求量非常大的紧凑型市场所需激光雷达的激光器,其要求具备高功率输出(脉冲功率高达几瓦)。它们被用于自动驾驶车辆,以绘制环境地图。这种高功率激光器的泵浦信号在光纤中通过纯二氧化硅的多模波导进行传输。在高功率下,泵浦激光最终将与光纤的丙烯酸酯涂覆层相互作用,泵浦激光的能量会分布到该涂覆层所存在的细小缺陷上,产生过高的热量,该缺陷最终会被破坏并将其烧毁(造成光纤涂覆层的损伤)。解决该问题的一个常规方案,是生产一种具有耐热特性的丙烯酸酯涂层的光纤(最高125°C;85°C会发生)。但今天,iXblue提供了一个最终的解决方案--IXblue全玻璃有源光纤:在光纤中,泵浦激光将不再与光纤涂覆层相互作用,无论温度如何、激光传输特性都将保持不变。基于iXblue在Er/Yb光纤方面的长期技术和一些获得专利的新工艺技术,成就了这一新产品——“IXF-2CF-AGEY”(双包层全玻璃铒镱光纤):一种在其纤芯中Er-Yb共掺的光纤,纤芯被双包层(甚至三包层*)包裹。在外包层是一种折射率较低的掺氟二氧化硅(SiF)材料,这意味着激光仅与光纤内的玻璃材料相互作用,使其非常可靠且对温度不敏感(高达200°C)我们仔细甄选了纤芯成分,从而获得了高效率(每根新光纤上测试的功率转换效率都高于40%)和低的1μm放大自发辐射,这也是10年来开发的iXblue铒镱共掺光纤一直被认可的标记。 “使用高温双层丙烯酸酯涂层(HTC)可将长期工作温度范围提高至125°C,使IXblue全玻璃有源光纤成 为恶劣环境下1.5μm激光雷达的理想解决方案。”iXblue产品线经理Arnaud Laurent 解释道。 全玻璃设计保证泵浦激光仅仅与光纤中玻璃材质接触,确保在苛刻使用环境中长期运行。增强的长期可靠性、更高的工作温度是应对恶劣环境的关键优势,同时降低了系统对冷却条件的要求。 iXblue全玻璃光纤非常适合大批量需求的光纤激光器制造商,基于自由空间或混合(光纤/自由空间)架构中使用。光纤直径为125μm,纤芯为5或9μm。Si内包层的八角形结构是一种良好的几何结构,可实现有源光纤纤芯的最佳的泵浦信号吸收。上海昊量光电作为IXblue在中国的授权代理商,负责IXblue电光调制器、IXblue光纤及其他新型激光器等光电仪器在中国市场的销售、技术服务、市场推广服务。对于IXblue全玻璃有源光纤有兴趣或者任何问题,都欢迎通过电话、电子邮件或者微信与我们联系。 更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。‍‍
  • 光纤照明系统应用于空间站舱内的分析探讨
    光纤照明系统应用于空间站舱内的分析探讨引言:照明系统是空间站内一个重要的子系统,配套舒适的照明能为航天员的舱内生活、作业提供良好的照明环境,保障航天员的人身安全。同时,照明的功耗控制也对整个航天任务的顺利实施起到重要作用。目前绝大多数空间照明系统的供电来源于太阳能电池阵/蓄电池供电系统。在航天器光照区,通过太阳能电池的光伏效应把太阳能转换为直流电能供给负载,并将部分电能转化为化学能储存于蓄电池组中。当航天器进入地球阴影区时,则由蓄电池通过控制单元中的调节装置向负载供电。太阳能电池主要时基于光电转换实现的,其基本原理是利用电池将收集到的光能根据一定的原理转化成为可以直接使用或者可以储存的电能,目前太阳能电池的转换效率一般在10%-20%之间。当前这种技术的应用范围很广阔,但其局限性是如何提高这种光能向电能转换的效率。近年来,虽然越来越多的飞行器开始采用功率较低、性能更优的LED光源代替传统的荧光灯,但是长时间不间断的照明仍会产生较大的功耗。为了充分利用太阳光以达到节约资源的目的,基于地面上应用的光纤照明系统,提出了一种应用于空间照明的太阳能光纤照明方案,直接利用太阳光进行舱内照明。图1.空间站内的照明系统一、光纤照明可行性分析以位于赤道上空35860 Km的同步轨道为例,卫星绕地球一周的时间为23 h 56 min 4 s,与地球自转周期相同,卫星相对地球来说是静止的,一年中仅在春分和秋分前后45天,而且每天最多只有72 min被地球遮挡,其余时间内,卫星可受到太阳光的连续照射。和地面相比,用同样的面积的太阳能电池板,在同步轨道可获得6-11倍的太阳能。如果卫星处于圆形日心轨道,则不存在地球遮挡时间。如果我们能充分利用这段时间的太阳光直接进行照明,将大大节省飞船的照明用电,因此分析和探讨光纤照明系统在飞船和空间站内的应用是非常有意义的。事实上,早在1995年,美国物理科学公司和道格拉斯宇航公司在NASA的资助下,就曾对太阳光照明系统进行过相关的研究。当时这个系统是作为空间材料处理实验的热源为另一个项目研制的,将其中一部分用于空间植物照明实验。这一系统主要包括了可自主聚光镜、次级聚光镜、光纤、植物照明器和检测仪器,效率约为32%,通过采用高效率部件,系统效率可达到65%,其聚光比为1000-75000。由此可见,太阳光光纤照明系统有望于应用于未来的空间站照明。图2.空间站内的收光系统二、空间光纤照明系统关键技术典型的光纤照明系统主要由聚光装置、光纤束、末端发光装置以及辅助装置等部分组成。其中光纤束及光线跳线作为重要的组成部分,起到了光线传输何承载的重要作用。我们提供各种光纤束,并根据要求为客户定制各种光纤束。可选的标准接口及护套铠甲。40,000小时不间断测试实验表明我们光纤束可以长期保持透过率稳定。 此外,传统的光纤束均采用环氧胶来交合光纤,这一方式使光纤束的传输效率变低,我们PowerLightGuide FUSED-END BUNDLES 抗紫外光纤束(Optran UVNS光纤)则采用输入端熔融工艺从而减小光纤间的空隙,极大的提供光纤束的透过效率。在保持光纤的NA不变的情况下,PowerLightGuide FUSED-END BUNDLES传输效率提高50%。因为不含任何环氧胶,PowerLightGuide FUSED-END BUNDLES在摄氏1500度的情况下依然可以正常工作。PowerLightGuide FUSED-END BUNDLES(光纤束,光纤光导管)相对于传统的液芯光导管(Liquid Light Guide,液芯光纤)有着极大的优势,主要包括以下几点: 1.PowerLightGuide FUSED-END BUNDLES在160~1200nm范围内提供极高的透过率, 2. PowerLightGuide FUSED-END BUNDLES长度不想液芯光纤一样受限制, 3. PowerLightGuide FUSED-END BUNDLES的传导性能不会随时间而退化。 主要应用:工业及科学方面: 替换 UV液芯光纤光谱学 传感器 紫外光刻 激光焊接/锡焊/打标 激光能量传送 核等离子体诊断 分析仪器 激光二极管尾纤 Thomson散射 紫外照明及监测 紫外拉曼光谱 紫外固化 超高温应用医疗方面: 医疗诊断 激光传输 光动力疗法 医学治疗高精度定制型光纤束-昊量光电 (auniontech.com)系统的工作原理:聚光装置将入射的太阳光进行会聚,会聚后的太阳光通过光纤束传输到任何需要照明的场所,再通过合理的配光设计使传输过来的太阳光均匀地散射出去。当无太阳光照射或太阳光不足时,利用辅助照明装置进行补充照明,以保证高质量的照明环境。太阳光光纤照明系统应用于空间照明的关键技术为:聚光装置的设计;聚光装置与光纤的耦合;末端发光装置的设计;辅助照明装置的设计。研究上述应用的技术难点,将对光纤照明系统应用于空间照明并节约照明功耗具有很大作用。同时,对空间站照明的研究,也可以将其技术应用在空间植物的培养方面,未来随着人们对宇宙空间的不停探索,光纤照明将不仅仅 限于空间站的生活照明,同样可以应用在空间站内植物培养照明,为人类能够探索更遥远的宇宙提供可能性。结语:目前,地面上的太阳光光纤照明系统与传统照明技术的有机结合使得太阳能被广泛的应用,大大的节约了照明供电系统的资源和成本,具有较高的学术价值和重要的应用价值。而且,国内外关于太阳光照明与传统照明结合的性能更优的系统和新装置不断被研制出来,各国科研人员对太阳光光纤照明实用系统的开发研究正在进一步深入,各种新方案、新器件不断被运用到系统的设计和制作当中,太阳光光纤照明系统将是未来照明的一个大趋势。关于昊量光电昊量光电 您的光电超市!上海昊量光电设备有限公司致力于引进国外先进性与创新性的光电技术与可靠产品!与来自美国、欧洲、日本等众多知名光电产品制造商建立了紧密的合作关系。代理品牌均处于相关领域的发展前沿,产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,所涉足的领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及前沿的细分市场比如为量子光学、生物显微、物联传感、精密加工、先进激光制造等。我们的技术支持团队可以为国内前沿科研与工业领域提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务,助力中国智造与中国创造! 为客户提供适合的产品和提供完善的服务是我们始终秉承的理念!
  • 中国计量大学:基于太赫兹波段的负曲率轨道角动量光纤
    随着通信技术的快速发展,近些年的通信容量实现了快速增长,传统的光纤通信网络已经难以满足当前高速通信的需求。增大通信网络的容量和提高通信速度的一种方法是开发太赫兹(Terahertz, THz)波段的光纤通信空间维度。太赫兹波是介于微波和红外光之间的一种电磁波,频率介于0.1THz到10THz之间,由于它带宽大和传输速度快以及可以提供点对点的网络拓扑结构而备受关注。而在空间维度资源中,基于轨道角动量(Orbital Angular Momentum,OAM)的模分复用技术由于携带不同拓朴荷数的相互正交的轨道角动量模式成为扩大通信容量的一种非常有潜力的方案。轨道角动量具有全新的电磁波自由度特性,具有轨道角动量特性的电磁波可以在常用的信息传输方式,如波分复用(Wave Division Multiplexing,WDM)、偏振复用(Polarization Multiplexin,PM)、时分复用(Time Division Multiplexing,TDM)等信息传输方式上成倍的提高信息传输容量。近日,中国计量大学严德贤课题组提出了基于太赫兹波段的负曲率轨道角动量光纤。该光纤以重庆摩方精密科技有限公司提供的HTL聚合物材料(耐高温树脂)为基底,采用两层倾斜椭圆管的结构设计,通过引入环芯区域在0.4-0.8THz波段成功产生50-52个OAM模式,且在所研究的波段内获得了高模式纯度、低限制损耗和低波导色散等传输特性,相关研究成果以“Design of negative curvature fiber carrying multiorbital angularmomentum modes forterahertz wave transmission”为题发表在《Results in Physics》。图1.3D打印负曲率轨道角动量光纤结构图图1展示了基于摩方精密nanoArch S140打印技术的3D打印光纤样品图。光纤整体尺寸为6.57mm,靠近纤芯区域的第二层倾斜椭圆管结构最小尺寸为0.051mm。光纤结构设计完成后,在Comsol Multiphysics有限元仿真软件中选取光纤结构的任一截面进行仿真研究。在研究频段内给定相应的太赫兹频率后,可以获得相应的模场分布,针对相应的模式进行数据收集和处理可以得出所需传输特性。在光纤中产生OAM模式的前提条件是有效生成HE和EH模式,且HEl+1,1与EHl-1,1有效模式折射率差异高于10-4。光纤中的OAM模式合成规则可由公式1表述:图3是OAM光纤各种传输特性随频率的变化趋势。由图3(a)和(b)可知,光纤产生的所有HEl+1,1与EHl-1,1之间的折射率差异均高于10-4,表明HE和EH模式均可以有效合成OAM模式。图3(c)是光纤的限制损耗特性,限制损耗与光纤的有效传输距离密切相关,由图可知光纤的限制损耗在0.55-0.8THz区间最低可以达到10-15(dB/cm)量级。图3(d)表示了OAM光纤的低平坦色散趋势,在0.4-0.8THz区间有近零的波导色散参数,有利于太赫兹波在光纤内部的快速传输。OAM模式的高模式纯度特性表明了光纤可以有效携带信息进行传输,由图3(e)所示结果,在0.55-0.8THz区间光纤的OAM模式纯度均高于80%。图3(f)是OAM光纤的有效模场面积特性,一般来说具有较高的有效模场面积可以产生较小的非线性特性,可以进一步提高信息的传输质量。图3.(a)有效模式折射率,(b)有效模式折射率差异,(c)限制损耗,(d)波导色散,(e)OAM模式纯度,(f)有效模场面积随频率的变化趋势官网:https://www.bmftec.cn/links/10
  • 全自动高温乌氏粘度计在聚乙烯PE、聚丙烯PP行业的应用
    聚乙烯(polyethylene ,简称PE)是乙烯经聚合制得的一种热塑性树脂。化学式为:(C2H4)n,在工业上,也包括乙烯与少量α-烯烃的共聚物。在工业上,也包括乙烯与少量α-烯烃的共聚物。聚乙烯无臭,无毒,手感似蜡,具有优良的耐低温性能(最低使用温度可达-100~-70°C),化学稳定性好,能耐大多数酸碱的侵蚀(不耐具有氧化性质的酸)。常温下不溶于一般溶剂,吸水性小,电绝缘性优良。聚丙烯,(简称PP)是丙烯通过加聚反应而成的聚合物。化学式为(C3H6)n,密度为0.89~0.91g/cm3, 易燃,熔点189℃,在155℃左右软化,使用温度范围为-30~140℃ 。聚丙烯是一种性能优良的热塑性合成树脂,为无色半透明的热塑性轻质通用塑料。在80℃以下能耐酸、碱、盐液及多种有机溶剂的腐蚀,能在高温和氧化作用下分解。聚丙烯具有耐化学性、耐热性、电绝缘性、高强度机械性能和良好的高耐磨加工性能等。主要应用于应用在食品包装、家用物品、汽车、光纤等领域。聚乙烯和聚丙烯的应用面非常广泛,近年来发展也很迅速,许多企业也在不断增加对新技术研发的投入,其中粘度测试是一项非常重要的检测项目。国标GB/T 1632.3-2010规定聚乙烯和聚丙烯使用毛细管黏度计测定聚合物稀溶液黏度。关于PP/PP粘度标准的解读:使用毛细管乌氏粘度计,在135℃下测定溶剂以及规定浓度的聚合物溶液的流出时间,根据这些测定的流出时间和聚合物溶液的已知浓度计算比浓黏度和特性黏度。在室温下,聚乙烯和等规聚丙烯不溶于任何目前所知的溶剂。因此在试验中必须采取措施以防止因聚合物析出而导致溶液浓度发生改变。中旺全自动高温乌氏粘度计IVS800H在PP/PE中的解决方案许多企业一般使用半自动或手动的粘度仪,在135℃的油槽上进行粘度的测试,对人员以及环境都存在着安全隐患。IVS800H它是一款全自动的高温乌氏粘度计,实现自动恒温、自动进样、自动测试、自动清洗、自动干燥的操作流程,有效地避免了高温操作下引起的意外。另外它还能规避样品的析出,确保了数据的准确性。那么我们来详细的介绍下一个完整的PP/PE的粘度流程:仪器的配置:中旺DP25自动配液器、中旺聚合物溶样器、中旺全自动高温乌氏粘度计IVS800H。测试流程:配液:用万分之一天平称取聚丙烯PP样品,放入到溶样瓶中,用DP25自动配液器(移液精度≤0.1%)移取定量剂到溶样瓶中;溶样:中旺聚合物溶样器溶解PP/PE样品,采用金属浴,多孔位,转速、溶样时间、溶样温度可按要求设定。温度最高可达185℃。黏度测试:将彻底溶解好的PP/PE样品置入全自动高温乌氏粘度计IVS800H样品仓中,启动仪器,实现自动进样,采用进口不锈钢光纤可自动测试,计时精度可达0.001S,确保了数据的准确性,全程无需人员值守,并且系统自带软件,自动得出测试结果;测试结果IVS800H全自动高温乌氏粘度计连接电脑端,可自动得出测试结果并进行数据储存,便于多样化粘度数据分析;并且出分析报告。清洗黏度管乌氏粘度管固定在IVS800H高温乌氏粘度仪中,客户无需拆装取出,可自动清洗、自动排废、自动干燥。告别了乌氏粘度管耗材的时代。
  • 某单位120.00万元采购光纤光谱仪
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 双光学频率梳激光器及配件采购招标公告 四川省-绵阳市-涪城区 状态:公告 更新时间: 2023-06-28 双光学频率梳激光器及配件采购招标公告 统一信息编码:HLJDGG20230628045 项目编号: CLF23MY00JG25 专业领域:制导与控制技术,电子元器件,探测与识别,计算机与软件,体系建模仿真与评估,电子信息,网络通信,动力与传动,先进材料与制造,可靠性/测试性/维修性,其他 主要内容 双光学频率梳激光器及配件采购招标公告 采联国际招标采购集团有限公司受某单位委托,对以下项目进行公开招标。现将有关事项通知如下: 一、项目名称:双光学频率梳激光器及配件采购 二、项目编号:CLF23MY00JG25 三、项目概况: (一) 招标内容: 为满足高温气体多组分、多谱线同时测量需求,采购1套可用于工业现场使用的光学频率梳激光器做为宽波段吸收光谱测量激光源,并配备1套紫外-近红外高信噪比的光纤光谱仪以及高速光电探测器等组件。 系统使用现场环境:年最高温度约42℃,年最低温度约-5℃,年相对湿度约80%RH,有较强振动和灰尘污染。 具体内容详见招标文件第四部分《双光学频率梳激光器及配件采购技术任务书》。 (二) 最高投标限价:人民币1,200,000.00元。 (三) 项目周期:项目周期为8个月,自合同签订日期起算。 (四) 质保期: 产品交付验收合格后2年。 (五) 投标保证金:人民币20,000.00元。 四、投标人资格条件 (一)基本资格要求: 1. 在中华人民共和国境内注册,具有独立承担民事责任的能力; 2. 具有良好的商业信誉和健全的财务会计制度; 3. 具有依法缴纳税收和社会保障资金的良好记录; 4. 参加本次招标活动前三年内,在经营活动中没有重大违法记录(投标人未被列入:“信用中国”的“失信被执行人”“重大税收违法失信主体”名单、“中国政府采购网”的“政府采购严重违法失信行为记录名单”、军队采购网的“军队采购失信名单”“供应商暂停资格名单”、招标人上级单位禁止参加采购活动黑名单),未发生产品质量导致的重大安全事故。 5. 本项目不接受联合体投标。 五、招标文件发售 (一)招标文件售价:人民币500元,售后不退。报名供应商必须于本采购项目第一部分“招标公告”规定的发售时间内向我司缴纳标书款,否则视为未完成报名。 (二)发售时间:2023年6月28日起至2023年7月7日止,每日上午09时00分至12时30分,下午14时00分至17时00分(北京时间,公休日及节假日除外)。 (三)发售方式:供应商可采用线上提交报名资料方式报名。 1. 采取网上发售方式:供应商可通过链接 https://qy.choicelink.cn:8301/clLogin,进行线上报名,上传报名资料并按招标文件规定的汇款账号信息缴纳标书款后,由我司工作人员审核后予以通过, 即为报名成功。 (四)购买招标文件应提供以下资料:投标单位应将以下材料按照序号顺序扫描为1个PDF文档作为附件上传:(均需加盖公章) 1. 提供《招标文件领购登记表》:可登录链接https://qy.choicelink.cn:8301/clLogin搜索本项目,点击“公告详细”进入公告页面后再点击右上角的“获取文件”,进行信息填写后打印; 2. 营业执照副本或事业单位法人证书(复印件加盖单位公章); 3. 法定代表人授权书(含授权代表身份证复印件,加盖公章)(法定代表人办理报名事宜的无需提供);法定代表人证明书(含法定代表人身份证复印件,加盖公章) 4. 提供《保密承诺书》:可在招标代理机构网站(www.chinapsp.cn)中“下载中心”下载。 以上材料仅作为招标文件购买环节审核使用,不作为投标单位资格性审查依据,投标单位的资格性符合情况以评标委员会判定为准。 (五)标书款具体汇款账号如下: 1.收款单位名称:采联国际招标采购集团有限公司绵阳分公司 2.银行:广发银行股份有限公司广州白云机场支行 3.账户:9550880240123500193 六、投标文件时间、投标截止时间及开标时间 (一)接受投标文件时间:2023年7月20日08时00分起至2023年7月20日08时30分止(北京时间)。如有变更,另行通知。 (二)投标截止时间:2023年7月20日08时30分(北京时间)。如有变更,另行通知。 (三)开标时间:2023年7月20日08时30分(北京时间)。如有变更,另行通知。 七、投标文件递交地点及开标地点 (一)投标文件递交及开标地点:四川省绵阳市涪城区一环路南段227号(城厢派出所对面)采联国际招标采购集团有限公司会议室。 (二)注意事项:文件递交应安排专人送达现场,未按时抵达导致的一切后果由投标单位自行承担。★逾期或未按招标文件规定进行封装的投标文件将不予接收。届时请投标单位授权代表携带法定代表人身份证明书和法定代表人授权委托书参加项目开标会议。 八、注意事项 (一) 本次招标不接受备选方案(按招标文件要求提交备选方案的除外)及选择性投标。 (二) 凡对本次招标提出询问,请与采联国际招标采购集团有限公司联系,技术方面的询问请按照招标文件中招标询问书的格式书面递交采联国际招标采购集团有限公司。 (三) 投标人购买招标文件后不参加投标的,应早于开标前以书面形式通知招标代理机构。 (四) 未按照要求进行标书款及投标保证金缴纳导致的一切后果由投标单位自行负责。 九、本项目相关信息在全军武器装备采购信息网(www.weain.mil.cn)、中国政府采购网(www.ccgp.gov.cn)。 十、招标人联系方式 招 标 人:某单位 联 系 人:王老师 联系电话:15884661883 纪检监督:裴工 联系方式:15228755321 若无法成功报名,或招标代理机构明示或暗示带有倾向性表述的,可向监督人反映情况。 十一、招标代理机构联系方式 招标代理机构:采联国际招标采购集团有限公司 地址:四川省绵阳市涪城区一环路南段227号(城厢派出所对面) 联 系 人:任先生 电 话:0816-2198191 手 机:13125912163 电子信箱:mianyang@chinapsp.cn 招标人:某单位 招标代理机构:采联国际招标采购集团有限公司 对不起,您不是网站企事业单位认证用户,不具备浏览相关信息的权限! 请使用证书登录进行对接! × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:光纤光谱仪 开标时间:2023-07-20 08:00 预算金额:120.00万元 采购单位:某单位 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:采联国际招标采购集团有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 双光学频率梳激光器及配件采购招标公告 四川省-绵阳市-涪城区 状态:公告 更新时间: 2023-06-28 双光学频率梳激光器及配件采购招标公告 统一信息编码:HLJDGG20230628045 项目编号: CLF23MY00JG25 专业领域:制导与控制技术,电子元器件,探测与识别,计算机与软件,体系建模仿真与评估,电子信息,网络通信,动力与传动,先进材料与制造,可靠性/测试性/维修性,其他 主要内容 双光学频率梳激光器及配件采购招标公告 采联国际招标采购集团有限公司受某单位委托,对以下项目进行公开招标。现将有关事项通知如下: 一、项目名称:双光学频率梳激光器及配件采购 二、项目编号:CLF23MY00JG25 三、项目概况: (一) 招标内容: 为满足高温气体多组分、多谱线同时测量需求,采购1套可用于工业现场使用的光学频率梳激光器做为宽波段吸收光谱测量激光源,并配备1套紫外-近红外高信噪比的光纤光谱仪以及高速光电探测器等组件。 系统使用现场环境:年最高温度约42℃,年最低温度约-5℃,年相对湿度约80%RH,有较强振动和灰尘污染。 具体内容详见招标文件第四部分《双光学频率梳激光器及配件采购技术任务书》。 (二) 最高投标限价:人民币1,200,000.00元。 (三) 项目周期:项目周期为8个月,自合同签订日期起算。 (四) 质保期: 产品交付验收合格后2年。 (五) 投标保证金:人民币20,000.00元。 四、投标人资格条件 (一)基本资格要求: 1. 在中华人民共和国境内注册,具有独立承担民事责任的能力; 2. 具有良好的商业信誉和健全的财务会计制度; 3. 具有依法缴纳税收和社会保障资金的良好记录; 4. 参加本次招标活动前三年内,在经营活动中没有重大违法记录(投标人未被列入:“信用中国”的“失信被执行人”“重大税收违法失信主体”名单、“中国政府采购网”的“政府采购严重违法失信行为记录名单”、军队采购网的“军队采购失信名单”“供应商暂停资格名单”、招标人上级单位禁止参加采购活动黑名单),未发生产品质量导致的重大安全事故。 5. 本项目不接受联合体投标。 五、招标文件发售 (一)招标文件售价:人民币500元,售后不退。报名供应商必须于本采购项目第一部分“招标公告”规定的发售时间内向我司缴纳标书款,否则视为未完成报名。 (二)发售时间:2023年6月28日起至2023年7月7日止,每日上午09时00分至12时30分,下午14时00分至17时00分(北京时间,公休日及节假日除外)。 (三)发售方式:供应商可采用线上提交报名资料方式报名。 1. 采取网上发售方式:供应商可通过链接 https://qy.choicelink.cn:8301/clLogin,进行线上报名,上传报名资料并按招标文件规定的汇款账号信息缴纳标书款后,由我司工作人员审核后予以通过, 即为报名成功。 (四)购买招标文件应提供以下资料:投标单位应将以下材料按照序号顺序扫描为1个PDF文档作为附件上传:(均需加盖公章) 1. 提供《招标文件领购登记表》:可登录链接https://qy.choicelink.cn:8301/clLogin搜索本项目,点击“公告详细”进入公告页面后再点击右上角的“获取文件”,进行信息填写后打印; 2. 营业执照副本或事业单位法人证书(复印件加盖单位公章); 3. 法定代表人授权书(含授权代表身份证复印件,加盖公章)(法定代表人办理报名事宜的无需提供);法定代表人证明书(含法定代表人身份证复印件,加盖公章) 4. 提供《保密承诺书》:可在招标代理机构网站(www.chinapsp.cn)中“下载中心”下载。 以上材料仅作为招标文件购买环节审核使用,不作为投标单位资格性审查依据,投标单位的资格性符合情况以评标委员会判定为准。 (五)标书款具体汇款账号如下: 1.收款单位名称:采联国际招标采购集团有限公司绵阳分公司 2.银行:广发银行股份有限公司广州白云机场支行 3.账户:9550880240123500193 六、投标文件时间、投标截止时间及开标时间 (一)接受投标文件时间:2023年7月20日08时00分起至2023年7月20日08时30分止(北京时间)。如有变更,另行通知。 (二)投标截止时间:2023年7月20日08时30分(北京时间)。如有变更,另行通知。 (三)开标时间:2023年7月20日08时30分(北京时间)。如有变更,另行通知。 七、投标文件递交地点及开标地点 (一)投标文件递交及开标地点:四川省绵阳市涪城区一环路南段227号(城厢派出所对面)采联国际招标采购集团有限公司会议室。 (二)注意事项:文件递交应安排专人送达现场,未按时抵达导致的一切后果由投标单位自行承担。★逾期或未按招标文件规定进行封装的投标文件将不予接收。届时请投标单位授权代表携带法定代表人身份证明书和法定代表人授权委托书参加项目开标会议。 八、注意事项 (一) 本次招标不接受备选方案(按招标文件要求提交备选方案的除外)及选择性投标。 (二) 凡对本次招标提出询问,请与采联国际招标采购集团有限公司联系,技术方面的询问请按照招标文件中招标询问书的格式书面递交采联国际招标采购集团有限公司。 (三) 投标人购买招标文件后不参加投标的,应早于开标前以书面形式通知招标代理机构。 (四) 未按照要求进行标书款及投标保证金缴纳导致的一切后果由投标单位自行负责。 九、本项目相关信息在全军武器装备采购信息网(www.weain.mil.cn)、中国政府采购网(www.ccgp.gov.cn)。 十、招标人联系方式 招 标 人:某单位 联 系 人:王老师 联系电话:15884661883 纪检监督:裴工 联系方式:15228755321 若无法成功报名,或招标代理机构明示或暗示带有倾向性表述的,可向监督人反映情况。 十一、招标代理机构联系方式 招标代理机构:采联国际招标采购集团有限公司 地 址:四川省绵阳市涪城区一环路南段227号(城厢派出所对面) 联 系 人:任先生 电 话:0816-2198191 手 机:13125912163 电子信箱:mianyang@chinapsp.cn 招标人:某单位 招标代理机构:采联国际招标采购集团有限公司 对不起,您不是网站企事业单位认证用户,不具备浏览相关信息的权限! 请使用证书登录进行对接!
  • 中国计量大学严德贤课题组《Results in Physics》:基于太赫兹波段的负曲率轨道角动量光纤
    随着通信技术的快速发展,近些年的通信容量实现了快速增长,传统的光纤通信网络已经难以满足当前高速通信的需求。增大通信网络的容量和提高通信速度的一种方法是开发太赫兹(Terahertz, THz)波段的光纤通信空间维度。太赫兹波是介于微波和红外光之间的一种电磁波,频率介于0.1THz到10THz之间,由于它带宽大和传输速度快以及可以提供点对点的网络拓扑结构而备受关注。而在空间维度资源中,基于轨道角动量(Orbital Angular Momentum,OAM)的模分复用技术由于携带不同拓朴荷数的相互正交的轨道角动量模式成为扩大通信容量的一种非常有潜力的方案。轨道角动量具有全新的电磁波自由度特性,具有轨道角动量特性的电磁波可以在常用的信息传输方式,如波分复用(Wave Division Multiplexing,WDM)、偏振复用(Polarization Multiplexin,PM)、时分复用(Time Division Multiplexing,TDM)等信息传输方式上成倍的提高信息传输容量。近日,中国计量大学严德贤课题组提出了基于太赫兹波段的负曲率轨道角动量光纤。该光纤以重庆摩方精密科技有限公司提供的HTL聚合物材料(耐高温树脂)为基底,采用两层倾斜椭圆管的结构设计,通过引入环芯区域在0.4-0.8THz波段成功产生50-52个OAM模式,且在所研究的波段内获得了高模式纯度、低限制损耗和低波导色散等传输特性,相关研究成果以“Design of negative curvature fiber carrying multiorbital angular momentum modes for terahertz wave transmission”为题发表在《Results in Physics》。图1.3D打印负曲率轨道角动量光纤结构图图1展示了基于摩方精密nanoArch S140打印技术的3D打印光纤样品图。光纤整体尺寸为6.57mm,靠近纤芯区域的第二层倾斜椭圆管结构最小尺寸为0.051mm。光纤结构设计完成后,在Comsol Multiphysics有限元仿真软件中选取光纤结构的任一截面进行仿真研究。在研究频段内给定相应的太赫兹频率后,可以获得相应的模场分布,针对相应的模式进行数据收集和处理可以得出所需传输特性。在光纤中产生OAM模式的前提条件是有效生成HE和EH模式,且HEl+1,1与EHl-1,1有效模式折射率差异高于10-4。光纤中的OAM模式合成规则可由公式1表述: (1)根据公式1,在图2中给出了和在0.5THz的线性叠加过程以及相位分布图。图2.和在0.5THz的线性叠加过程以及相位分布如图2所示,和在模式合成后环芯区域有效产生OAM模式的模场分布,并获得[-ℼ-ℼ]的相位分布效果,满足在光纤中产生OAM模式的合成规则。图3是OAM光纤各种传输特性随频率的变化趋势。由图3(a)和(b)可知,光纤产生的所有HEl+1,1与EHl-1,1之间的折射率差异均高于10-4,表明HE和EH模式均可以有效合成OAM模式。图3(c)是光纤的限制损耗特性,限制损耗与光纤的有效传输距离密切相关,由图可知光纤的限制损耗在0.55-0.8THz区间可以达到10-15(dB/cm)量级。图3(d)表示了OAM光纤的低平坦色散趋势,在0.4-0.8THz区间有近零的波导色散参数,有利于太赫兹波在光纤内部的快速传输。OAM模式的高模式纯度特性表明了光纤可以有效携带信息进行传输,由图3(e)所示结果,在0.55-0.8THz区间光纤的OAM模式纯度均高于80%。图3(f)是OAM光纤的有效模场面积特性,一般来说具有较高的有效模场面积可以产生较小的非线性特性,可以进一步提高信息的传输质量。图3.(a)有效模式折射率,(b)有效模式折射率差异,(c)限制损耗,(d)波导色散,(e)OAM模式纯度,(f)有效模场面积随频率的变化趋势 文章链接:https://doi.org/10.1016/j.rinp.2021.104766
  • 全自动超高温乌式粘度计在聚丙烯(PP)材料中的应用
    聚丙烯简称PP,是指由丙烯通过加聚反应而成的聚合物,呈白色蜡状,外观透明而轻,具有无毒、比重低、易加工、耐化学腐蚀、电绝缘性好等诸多优良性能。被广泛应用于服装、毛毯等纤维制品、医疗器械、汽车、自行车等的机械部件,也可用于食品、药品等的包装,是今年来发展迅速的高分子材料之一。聚丙烯(PP)材料在过去更多用于编织袋、包装袋、捆扎绳等产品,约占总消费的30%。随着材料科学的发展,聚丙烯(PP)材料开始更多的应用于新能源部件,医用器材,光纤等高精尖领域,这也对聚丙烯(PP)材料的质量控制提出了更高的要求。GB/T 1632.3-2010中规定了使用毛细管粘度计测试聚丙烯稀溶液粘度的方法,借助相关辅助设备,在135℃下测定溶剂以及规定浓度的聚丙烯(PP)聚合物溶液的流出时间,根据这些测定的流出时间和聚丙烯(PP)聚合物的已知浓度计算比浓黏度和特性黏度。由于聚丙烯(PP)材料的粘度测定条件处于135℃的高温条件,操作危险性较大,对人员的素质要求较高,目前研究机构和聚丙烯材料生产厂家更多采用全自动超高温乌式粘度计来进行辅助测试,全自动超高温乌式粘度计具有操作方便,分子量适用范围广泛,数据重复性良好等优点,所以成为聚丙烯(PP)材料等高分子材料化验分析中的常用实验仪器。以杭州卓祥科技有限公司的IV6000H系列全自动超高温乌式粘度计,MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时最多可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度最高可达180℃。3. 测试过程IV6000H系列超高温全自动乌氏粘度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可精确到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV6000H系列全自动超高温乌式粘度计连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。5. 粘度管清洗干燥过程:仪器可自动排废液、自动加清洗液和干燥液,自动清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。清洗模式可多种选择,同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。IV6000H系列全自动超高温乌式粘度计可实现自动测试、自动排废液、自动加清洗液和干燥液,自动清洗,自动干燥,告别了粘度管是耗材的时代。
  • 微型光纤光谱仪可以应用于哪些领域?
    从1992年Mike Morris发明世界上第一个微型光纤光谱仪至今已经24年了,各个行业已经开发了数以千计的应用。广阔的市场前景吸引了越来越多的公司,包括仪器仪表行业的大公司都开始参与到这个领域的竞争。  微型光纤光谱仪可以应用于哪些领域?  第一, 光谱仪可以分析各种光源发出的光,这些光源包括太阳,LED, 激光,平板显示器件,等离子体,气体放电,火焰燃烧,受激发光,化学发光等等基于各种原理的发光体。  第二, 光谱仪可以分析光与各种物质相互作用后的光,相互作用后的光一般都含有与物质微观结构有关的丰富信息。在这里光可以看成是探索物质微观结构的“探针”,因此,微型光谱仪通常被列为光学传感类(optical sensing)。  第三, 由于微型光谱仪的体积小,所以适合于便携,手持,现场,在线,原位,活体,非破坏性应用场合。由于光纤的使用,所以适合在有害环境下(包括化学,生物,放射性)进行远程测量。由于微型光谱仪内无移动部件,可靠性高,因此,适合于工作在环境恶劣的工业现场。由于采用探测器陈列,可一次获得全光谱,测试速度快,因此适合需要高速测量的应用,例如工业在线检测,化学反应动力学监测。  由于微型光谱仪应用领域非常广,在如此短的篇幅内无法详细列举所有的应用。以下,我们就当今社会最关注的领域中比较成功的应用案列进行分析:  环保行业:  -燃煤电厂烟气排放监测系统用于监测电厂在脱硫和脱硝之后对于大气的排放废气中SO2,NOx的含量。  这基于气体紫外吸光度测量的原理,看似简单,但是在解决实际问题时,必须要克服一些具体困难。由于实际应用中的待测气体样品中有颗粒物存在,如何将颗粒物对光的散射引起光的能量损耗扣除掉,以获得准确的浓度值?1970年代德国科学家Ulrich Platt在研究大气紫外吸收时,发现颗粒物散射谱随波长变化慢,气体分子紫外吸收谱随波长变化陡峭,因此对光谱进行微分,再进行数字滤波,将低频分量滤去,就可以将散射的影响扣除,这就是著名的DOAS技术(Differential Optical Absorption Spectroscopy)。由此可见,应用研究的重要性。  -对于地表水的有机物综合指标的监测  有机物综合指标是指化学需氧量(COD),生化需氧量(BOD),总有机碳(TOC),高锰酸盐指数(CODMn),总磷(TP),总氮(TN),多环芳烃(PAHs)。分析地表水的有机物综合指标的困难在于,第一,这不是由单一化学组分决定的,而是由水中大量化学组分的综合效果 第二,水体中除了有机物之外,还有许多其它的干扰因素,譬如泥沙,会影响测量结果的准确度。  不少地方仍然采用化学滴定方法检测,这种方法虽然准确度高,由于需要采用化学试剂会对水体造成二次污染,而且设备复杂,测试所需时间长,运行费用高。  采用紫外吸收光谱技术,通过对大量水样建模和多变量化学计量学分析,可以获得有机物综合指标。但是实际的水样中总会含有泥沙,泥沙含量较高时,这些无机物也会使透光量减少,探测器无法区分透射光强度减少,究竟是被有机物吸收了,还是泥沙的散射引起透光量的减少,从而带来误差。而且,在有机物含量较少时,测量误差较大。浙江大学的吴铁军教授发现如果加用荧光光谱测试,由于无机物是不会产生荧光的,因此,融合荧光光谱和紫外吸收光谱的数据,就可以扣除无机物的影响。这种创新的方法可以用一台仪器同时测量出上述七个水的有机物污染的综合指标。  这个案例告诉我们,在分析复杂体系时,基于多变量化学计量学的算法和建模是极端重要的。  食品安全  -水,土壤和鱼的汞超标  由于环境污染体现在地表水和土壤的汞超标,汞又特别容易在生物组织中积累,譬如鱼类。摄入过量的汞会影响人的神经系统,儿童的发育生长。全球140个国家都对食品中汞的含量有规定。现有的分析方法非常耗时并只能在实验室使用。  美国Jackson州立大学发明了一种基于纳米材料表面能量转移技术NSET(Nanomaterial Surface Energy Transfer)的检测微量汞的便携式仪器。NSET技术原理如下,当罗丹明B(RhB)分子吸附在胶体金纳米颗粒时,胶体金纳米颗粒会使RhB荧光焠灭,当有Hg2+离子存在时,RhB会从纳米金颗粒表面释放,与汞离子结合,并在532nm激光激发下开始发荧光,荧光的强度与Hg2+离子浓度成正比。(见图2)这种方法检测灵敏度很高,汞的检测线0.8ppb,美国环境署水中汞含量的标准为2ppb.并能检测鱼组织中的汞,达到美国环保署0.55ppm的要求。图1 吸附在纳米金颗粒表面的罗丹明RhB,它的荧光强度与待测样品中汞的浓度成正比  这个案例中检测汞的原理就不那么直截了当,待测物汞本身并不能受激发荧光,而当汞离子与罗丹明RhB结合时,RhB充当标记物(marker)的角色,另一方面,利用了纳米金颗粒能使RhB荧光焠灭的特性。  -检测奶粉中的微量三聚氰胺  采用表面增强拉曼光谱技术SERS(Surface Enhanced Raman Spectroscopy),在785nm激光的激发下,待测的三聚氰胺的分子在基于纳米金颗粒的SERS芯片上,在激光强电磁场的作用下,与纳米颗粒表面的等离子激元发生谐振,拉曼光谱的强度被大大增强。(见图2)采用便携式拉曼光谱仪和SERS芯片三聚氰胺的检测限可达到12ppm。图2在打印的SERS芯片表面增强拉曼光谱与三聚氰胺浓度的线性关系  拉曼光谱技术,由于拉曼信号特别微弱,所以只适合应用于分析浓度较高的物质主成分。由于纳米材料科学,表面物理科学,激光技术的发展,才使SERS技术逐步进入应用阶段,用于分析痕量物质。不断提高测量的重复性,稳定性,降低SERS芯片的价格,使更多的应用领域用得起SERS技术。  -鉴别假冒的初榨橄榄油  常用的方法是观察油的颜色,但是在不同光线下显示的颜色是不同的,而且造假者会用叶绿素或b胡萝卜素去调节油的颜色去靠近真品的颜色。用低档橄榄油或者葵瓜子油,菜油稀释初榨橄榄油都可以用便携仪器进行吸光度测量方法鉴别。  正是由于光纤光谱仪的便携性和快速,使其得以应用在仓库,海关现场快速验货。图3 不同比例的低档橄榄油稀释初榨橄榄油对于吸光度的影响  -对食品内黄曲霉素的快速检测  发霉和变质的粮食,花生,坚果含有致癌的黄曲霉素。现用的主流技术有液相色谱仪HPLC,  液相-质谱联用仪LC-MS。这些技术只能在实验室用,并且设备昂贵,分析时间长,还要用大量化学溶剂,污染环境,操作和维护保养麻烦,需专业人员操作。也有用酶联免疫分析技术(ELISA),这种方法测量精度不如HPLC,并经常会报告假阳性。  因此,急需一种可以在现场快速筛检的设备。英国的Ray Coker博士发明了一种基于紫外荧光光谱的技术,先将样品进行预处理,使待测毒素分离,富集,然后用紫外荧光光谱分析,在365nm LED光源激发下,测量其荧光,并采用专利的算法,一次同时测得4种黄曲霉素(B1,B2,G1,G2,M1)和赭曲霉素A,其检测限1ppb,即零点几ppb,满足最严格的欧盟标准,可与HPLC比拟。这种方法其实还可以成为快速检测的平台,包括病原体检测,贝类毒素检测,兽药残留检测,动物饲料中真菌毒素检测,假药甄别检测,农药残留检测,MRSA(Methicillin-resistant Staphylococcus aureus)耐甲氧西林金黄色葡萄球菌检测。  该案例的技术难点在于样品预处理,如何从成分复杂的待测食品样品中将微量待测物萃取,分离,富集,第二,如何挑选出具有高度特异性的抗体,使自身不会发荧光的毒素与标记物(marker)可以用荧光技术来检测 第三,如何从光谱数据提取出有用信息的算法。  -食源性致病菌的快速检测  检测食品中的致病微生物,现行的方法,譬如检测细菌的金标准方法“平板计数法”(Culture Plating),虽然准确,但是分析所需时间太长,需要2-3天。其它的方法,例如酶联免疫吸附测定法ELISA,虽然速度快了,但是灵敏度不高。聚合酶链式反应法PCR方法,虽然速度快了,灵敏度也高一些,但需要复杂的核酸提取过程。总之,需要一种快速,灵敏,准确,特异性强的检测方法。  食品是一个成分复杂的物质,我们需要分析其中微量的细菌,首先要解决的问题是如何从复杂的背景中提取并富集这些待测的细菌 第二,按照国家标准,允许存在的细菌浓度必须很低,因此要求检测方法的灵敏度很高 第三,实际上,食物中很可能同时存在多种细菌,因此检测方法一定能够同时,分别检测出多种目标物。  美国阿肯色大学生物与农业工程系Yanbin Li教授团队近年来利用免疫纳米磁珠与免疫量子点对食源性致病菌进行快速检测。同时检测李斯特菌,沙门氏菌,大肠杆菌,检测下限可达到101 CFU/ml。(见图4) 图4(a)纯细菌样本的荧光光谱 (b)含致病菌的牛肉样本的荧光光谱  其基本原理是利用免疫检测方法,即先用第一抗体去修饰纳米磁珠,形成细菌-免疫磁珠复合体,在与样品均匀混合时,抗体就会与样品中的目标细菌进行免疫反应,在强磁场作用下,这些被免疫磁珠抓住的细菌就会被吸附到磁极,从而实现了细菌从复杂的背景物中分离。但是抓住细菌的磁珠不会受激发射荧光。我们知道量子点是可以受激发光的,如果用被第二抗体修饰的量子点作细菌的标记物,就可以通过测量量子点发出的荧光强度来间接测量细菌的浓度。利用抗体的特异性,即不同的抗体专门去抓不同的细菌。再利用量子点发光的波长取决于量子点的大小的特点。就可以通过对于荧光光谱相应的波峰强度测量,同时测量不同细菌的浓度。  生命科学和医疗诊断  -核酸,蛋白质分析  对核酸和蛋白质进行定量分析是现代生命科学实验中最基本的工具。  紫外吸光度方法是测量核酸浓度最常用的方法之一。核酸包括:DNA(脱氧核糖核酸)和RNA(核糖核酸)。它的基本组成是核苷酸。核苷酸又是以含氮的碱基,戊糖和磷酸组成。五种碱基包括嘌呤和嘧啶。碱基上苯环的共轭双键在紫外波段有强吸收,最强的吸收峰在260nm。核酸浓度与波长260nm的吸光度成线性关系,这就是用紫外吸光度方法测量核酸浓度的基本原理。核酸样品中如果含有蛋白质,蛋白质的紫外吸收峰在波长280nm,但是蛋白质在280nm的吸光度只有核酸在260nm的吸光度的1/10,利用样品在这两个波长的吸光度比值,可以得到核酸的纯度。  核酸,蛋白质这类生物样品的量常常很小,甚至在mL量级,微量样品的采样在技术上是一个难点。美国热电公司的NanoDrop2000型紫外/可见分光光度计巧妙地利用表面张力的原理,将待测样品液滴置于连接光源的光纤端头和连接微型光谱仪的光纤端头之间,形成待测样品液柱。利用这种采样技术,可以不用稀释样品就可以测量高浓度的DNA样品,对于双链DNA样品,可测的浓度可高达15000ng/ml。  该仪器还可以利用蛋白质在280nm的吸收来测量蛋白质的浓度。这是由于蛋白质分子结构中含有芳香族氨基酸,而芳香族氨基酸(主要是酪氨酸和色氨酸)的紫外吸收的峰值位于280nm。  蛋白质实际测量中遇到的问题是待测样品中常常含有其它化学试剂的残余,而这些杂质对紫外吸光度测量有干扰,影响测量的准确性。因此就在对蛋白质的各种性质研究的基础上,发展了各种其它的测量方法,以摆脱杂质对测量的干扰。例如蛋白质和染料的结合,蛋白质和铜离子的络合反应?  同样这一台工作在紫外/可见波段的分光光度计NanoDrop,基于不同的原理,还可以在不同的波长用于蛋白质定量分析。譬如,Bradford法测蛋白质,这是基于让染料分子(考马斯亮蓝G250)与蛋白质结合成复合体,该复合体在595nm有最大吸收峰,这种方法的好处是待测蛋白质样品中可能含有的K+,Na+,Mg2+,(NH4)2SO4,乙醇等杂质不会干扰蛋白质测定。BCA法则是利用蛋白质的化学性质,即在碱性条件下蛋白质可以与Cu2+发生络合反应,并将Cu2+还原为Cu+,而BCA (bicinchoninic acid)则会与Cu+反应形成稳定的复合物,它的吸收峰在562nm。这就是BCA法测量蛋白质的原理。  -紫外荧光光谱是研究蛋白质组分,构象的强大工具。  实验发现大部分蛋白质中有三种氨基酸残基具有内源性荧光的特性,它们分别是:色氨酸tryptophan (Trp), 酪氨酸tyrosine (Tyr) and 苯丙氨酸phenylalanine (Phe)。但是,实验中常用的是Trp和Tyr的内源性荧光,主要是因为这两种氨基酸的残基的荧光的量子效率比较高,所发出的荧光信号较强。Phe受激荧光的量子效率较低,激发波长在257nm。如果采用波长为280nm的激发光,由于Trp和Tyr的激发波长比较接近(分别为280nm,274nm),因此Trp和Tyr会同时有荧光信号。如果想选择性地只激发Trp,则可以采用295nm激发光源。  实验进一步发现,氨基酸残基的內源荧光的强度,峰位对于氨基酸的组分和构象状态十分敏感。这是因为在蛋白质分子处于自然折叠状态时,Trp和Tyr被包裹在蛋白质的中心位置。而当采用升高温度,采用尿素,盐酸胍,或者调解pH值等方法,使得蛋白质展开(图6A)。原先在折叠状态下埋在里面的疏水核心就暴露在溶剂中。Trp和Tyr就暴露在周围的环境中,它的荧光发光特性发生变化(图5B)  图5 用Trp的荧光来监测蛋白质的构象状态。图6A中Trp是用红点和红色字母w表示,在蛋白质处于自然折叠的状态下Trp被埋藏在疏水的环境中,展开后则暴露在溶剂的环境中。图5B,在自然折叠状态下Trp处于疏水状态下,荧光强 反之,在展开状态下,Trp暴露在溶剂中,荧光强度下降。  实验还发现Trp残基的荧光峰值的波长与周围的溶剂有关,发生Stoke位移。  研究蛋白质的分子折叠和展开有什么应用价值?有些疾病与人体内蛋白质分子的构象状态有关. 譬如, 有些退行性神经病变,就与蛋白质分子的展开有关,因此蛋白质的荧光光谱有时可用于退行性神经病变的诊断。  -医学诊断  一般而论, 采用光纤光谱仪作为医学诊断的手段有两个优点. 一个优点是非侵入性, 第二个优点是体积小, 仪器方便携带, 因此, 可以部署在病床边上, 县以下的基层诊所, 战地,出诊.  以下举一些例子.  基于吸光度和荧光技术的血样,尿样在生化分析仪器在医院的分析实验室几乎处处可见,现在可以做得更小,更便宜.  对于皮肤癌,乳腺癌可以对人体组织活体(in vivo)用拉曼光谱或反射光谱技术进行诊断.  黄疸病对于新生儿是常见的,而且无害,但是,对于早产婴儿则有造成大脑损伤的危险。因此,需要密切监测血液中胆红素的浓度。现行的方法是针刺婴儿的脚跟取血样,然后送实验室进行生化分析,大约需要一个小时,每日三次。如果对新生儿脚底皮肤用光学方法,通过反射谱测量,立即可以分析得到血液中胆红素的浓度,可以比现行的方法更快地诊断黄疸病,并使婴儿免受脚跟针刺之苦,这就是非侵入性带来的好处。  脉搏血氧仪是用红光和近红外透射测量技术连续监测血氧饱和度。慢性阻塞性肺病,哮喘等呼吸性疾病,病人的血氧饱和度是表征病的严重程度的非常重要的指标。  在线检测:  -为了得到辛烷值(RON)合乎标准的92号,95号汽油,石油炼化厂需要将重整催化工艺所得到的高辛烷值油与低辛烷值的催化裂化汽油按适当比例进行调和,以最终获得辛烷值符合国家标准,而且产率足够高的汽油。生产工艺需要在线测量汽油的辛烷值,并根据测量值去控制重整反应器的温度。  浙江大学戴连奎教授采用在线拉曼光谱系统测量重整汽油的辛烷值。其辛烷值主要取决于待测油品中直链烷烃、侧链烷烃、环烷烃与芳烃含量。拉曼光谱可以很好地显示直链烷烃、侧链烷烃、环烷烃与芳烃等物质的特征峰,因此可以很好的计算各种芳烃和其它烷烃等物质的含量。由于不同的烃类物质对辛烷值的影响不同,需要综合考虑每类物质对辛烷值的影响。通过含量高低建立相应的预测模型可以很好地测量汽油样品的辛烷值。相比于红外光谱,拉曼光谱特征峰明显,建立模型所需的样品数量也大为减少。相比色谱,拉曼光谱测量速度较快,使用和维护成本较低。图6 重整汽油的拉曼光谱(经过数据的预处理)  在此应用案例中,待测的汽油辛烷值并不是由单一物质的分子的光谱所决定的,而是由多种烃类的分子的综合作用所决定。因此,有了光谱之后,如何得到辛烷值,建模就是关键。
  • 国际首台材料超高温力学性能测试系统在中国问世
    &ldquo 把脉&rdquo 极端环境下的材料性能 &mdash &mdash 中国建材检验认证集团首席科学家包亦望教授专访   2000℃的环境下,铁已熔成液体,有人想到变通办法,在铁表面镀一层&ldquo 膜&rdquo &mdash &mdash 可以胜任高达2000℃以上超高温氧化环境的陶瓷材料。但问题接踵而至,现有试验机的夹具和压头材料本身难以承受1500℃以上的超高温氧化极端环境,如何评价材料的可靠性?这个问题曾经难倒了我国科研人员,也包括国际同行。   如今,问号已经拉直。   1月9日,在2014年度国家科技奖励大会上,中国建筑材料科学研究总院博导、中国建材检验认证集团(CTC)首席科学家包亦望教授和他的团队凭借&ldquo 结构陶瓷典型应用条件下力学性能测试与评价关键技术及应用&rdquo 捧得国家科技进步二等奖。 包亦望在操作超高温极端环境力学测试系统   缺失的极端环境下材料评价方法   2003年,包亦望还在中科院金属所做&ldquo 百人计划&rdquo 研究,所里一位研究人员找到他,寻问有没有陶瓷复合构件界面强度的评价方法。这个问题来源于工程实践。   之所以找到包亦望,不仅因为他是有名的&ldquo 点子王&rdquo ,更重要的是,解决这个世界性难题已经越来越迫切。   结构陶瓷具有高强耐磨、抗腐蚀、耐高温等许多优异性能,因此被广泛应用于航空航天、机械、石油化工和建筑等高技术领域。   但陶瓷本身是脆性的,具有&ldquo 宁碎不屈&rdquo 的特点,服役中的陶瓷及构件容易发生突发性灾难事故,故又成为最不安全的材料。   时隔近30年,1986年的&ldquo 挑战者&rdquo 号航天飞机灾难仍被多次提及,刚起飞73秒,航天飞机发生解体,机上7名机组人员丧命。这次灾难性事故导致美国航天飞机飞行计划被冻结了长达32个月之久。最终调查发现,原因之一是陶瓷隔热瓦与母体界面脱粘后失去隔热能力,导致价值12亿美元的航天飞机被炸成碎片。   如果能对结构陶瓷力学性能做出准确评价,不仅可以保证构件安全可靠,还能对其失效时间做出预测。   但由于涂层与基体间难以剥离作为单质材料进行测试,如何评价材料的可靠性是一项国际难题。   包亦望告诉记者,具体来说,难题体现在四个方面:界面问题:陶瓷复合构件界面强度和不同环境下的服役安全评价;异型件:管状或环形陶瓷构件的力学性能无法参照现有标准和检测技术;陶瓷涂层:热障涂层、耐磨涂层的模量或强度无法直接测试 极端环境:超高温氧化环境下陶瓷性能评价无技术,无标准,无测试设备 构件性能预测:通过表面痕迹和接触响应非破坏性的监测和预测构件可靠性。   &ldquo 因为评价标准缺失,目前大多采用&lsquo 牺牲层&rsquo 的办法。&rdquo CTC研究中心副主任万德田解释,所谓&ldquo 牺牲层&rdquo ,是指本来只要10毫米的涂层,被加厚到了15&mdash 20毫米,这样虽然安全系数提高了,代价是飞行器重量也提高了,成本随之增加。   随着航天、航空、航海、化工、冶金等工业的快速发展,准确评价涂层材料力学性能显得越来越紧迫和重要。   中国工程院院士杜善义曾经说过,超高温试验是一个很复杂的技术问题,每一系统的建立难度都很大,但我国航空航天工业的发展需要建立超高温测试技术。   &ldquo 雕虫小技&rdquo 解决大难题  &ldquo 方法非常简单,在外行看来可能就是雕虫小技。&rdquo 但包亦望说,这其中最难的是首先要想到捅破那一层窗户纸的方法,而这得建立在大量分析计算基础上。   随手翻开一本笔记本,除了看似简单的图示,就是密密麻麻的计算式。   &ldquo 有时候为了一个小公式,花几个月推导都是正常的。&rdquo 经过长达十多年的研究,包亦望和团队不断试验,反复采集整理数据,发明了一系列评价新技术。   陶瓷材料难以直接进行拉伸载荷试验,如何测得界面拉伸强度和界面剪切强度?传统的测试方法将试验样品叠加或者拼接,然后在叠加处或拼接处施力,但都无法获得界面拉伸强度。   &ldquo 十字交叉法&rdquo 提出,将两根矩形截面短棒以十字交叉方式粘接成测试样品,设计专用带槽夹具和圆弧形压头,分别测得界面拉伸强度和界面剪切强度。   这项技术适用任何固相材料之间的界面强度和疲劳性能评价,并可推广到各种高强粘接剂的强度和耐久性评价,此方法一经推广,受到国内外无机材料检测领域专家的赞赏。   但新课题又来了。   不是所有产品的样品都能加工成常规的矩形截面,而这类产品的应用范围又很广,如模拟核爆用石英玻璃管,光纤套管,火箭或导弹的尾喷管,石油化工用防腐内壁管等。   &ldquo 缺口环法&rdquo 能简单、方便、快捷的评价管状和环状脆性材料的基础力学性能。   &ldquo 无需特殊的夹具,节省了大量的试验经费和时间。&rdquo 包亦望说。   &ldquo 相对法&rdquo 则是通过已知或容易测量的材料参数去计算出无法直接测量的未知参数。   &ldquo 这就好比即使没有秤砣,只要知道一公斤白糖在杆秤的什么位置,就能称出同样质量的其他物质。&rdquo 包亦望说,这解决了陶瓷涂层的基础力学评价问题。此前涂层材料力学性能测试基本上空白,世界各国都在寻求测试技术。   试验证明该方法简单、准确、可靠达到事半功倍的效果,解决了热障涂层、防腐涂层和耐磨涂层等力学性能测试的空白。   &ldquo 局部受热同步加载法&rdquo 解决了超高温氧化环境下测试的国际难题。   &ldquo 痕迹法&rdquo 则有点类似于&ldquo 中医号脉&rdquo ,通过分析试验后样品残余压痕痕迹的形貌和尺寸,推测出几乎全部的材料力学性能。该方法受到国内外专家的高度赞赏,国际评审专家认为&ldquo 这项工作确实是对纳米压痕技术的一个新贡献&rdquo ,并在国际综述文献里被称为&ldquo BWZ method&rdquo (其中B指包亦望)。   主导制定国际标准提高话语权   建立方法、发明技术,包亦望和团队不满足于此,近年来一直致力于将技术转化为国家标准和国际标准。   &ldquo 国际标准的形成过程是一个博弈过程,体现了技术、产业乃至国家的综合影响力和话语权,是市场的竞争源头,为此国际上对标准的竞争极为激烈。&rdquo 包亦望印象深刻的是将&ldquo 相对法&rdquo 形成国际标准中的波折。   2007年,包亦望将发明的&ldquo 相对法&rdquo 在国际刊物发表,受到国际同行的高度认可,实验证明该方法简单、准确、可靠。此前虽然国内外有用纳米压痕技术来评价陶瓷涂层的弹性模量,但反映的仅仅是局部甚至某晶粒的性能,只对理想均匀致密材料有效,而且设备昂贵,尚不能测量涂层的强度。   2013年,ISO组织向全世界征求陶瓷涂层测试技术时, &ldquo 相对法&rdquo 评价技术与日本提出的类似国际标准草案形成竞争,最后交由ISO顾问Peter(皮特)先生仲裁,由于相对法具有原创性,适用范围更广泛,最后被成功立项。   利用自主知识产权转化成的国际、国内及行业标准,已被用于1000多家陶瓷企业和军工企业的相关产品各项力学性能检测与分析,经济效益数亿元。   包亦望认为,标准的社会效益意义更重大。大量性能检测方面的标准技术的制定,对于促进工程陶瓷和玻璃行业健康发展、无机非金属材料力学性能的学科发展、切实保障老百姓生命财产安全方面具有重要意义。   2007年,包亦望向ISO组织提交的以&ldquo 十字交叉法&rdquo 技术为基础的国际标准获得一致通过,在此前的陈述环节中,他提出的创新性、实用性受到高度关注,与会的六七个国家代表找到包亦望,反映该标准简洁明了,并找他要PPT,提出在自己的国家先用。   不将技术装在口袋里   让科技成果落地开花,而不是将技术装在口袋里。   有别于大多数科研工作者,包亦望不仅建立了很多创新的理论,还能将抽象的理论转化为可操作的方法与技术,并通过仪器设备这种载体来实现,反过来,自主研发的科学仪器设备又成为产生新观点的重要工具。   在中国建筑材料科学研究总院的实验室里,庞大的超高温极端环境力学测试系统塞满了约40平米的屋子。   &ldquo 该系统是国际上唯一针对陶瓷、复合材料的超高温力学性能测试仪器,温度最高可达2200℃,已经为多家合作单位进行了材料的超高温测试试验,解决了材料的超高温力学性能评价技术难题。&rdquo 万德田言语间透出自豪,他告诉记者,以近地空间用超高声速飞行器为例,该系统可为飞行器所用特种材料的服役安全和结构设计提供重要技术支撑,此外还有助于低成本选材。   超高温氧化耦合极端环境下,航天、航空飞行器的外围材料,如发动机和喷火管等处材料的安全性性能评价和设计至关重要。现有试验机的夹具和压头材料本身难以承受1500℃以上的超高温极端环境,这样使得材料的力学性能试验样品无法测试。该系统就是包亦望和团队运用&ldquo 局部受热同步加载法&rdquo 生产出来的。   包亦望教授率领他的团队不断攻克难题,从理论到技术、从实验到装置,发明了一套评价材料在极端超高温氧化环境下的力学性能测试方法与评价技术,开发了国际上首台&ldquo 材料超高温力学性能测试系统&rdquo ,并获得863计划和首批国家重大科学仪器设备开发专项的支持。   这些年,包亦望和团队将取得的理论成果和新方法、新技术转化为一系列有特色的仪器设备,包括常温和高温固体材料弹性模量测试仪、安全玻璃冲击失效检测仪、多功能零能耗钢化玻璃检测器、钢化玻璃表面平整度测试仪、钢化玻璃缺陷和自爆风险检测仪、硬脆材料性能检测仪、幕墙松动脱落风险测试仪等,这些仪器设备有的已经进入国内多所高校和科研机构的实验室,成为科研工作者探索科学的有力工具。
  • 聚光紫外/可见光纤光谱产业化项目获支持
    2012年5月16日,工信部公布2012年科技成果转化项目拟支持单位名单,共计有301个科技成果转化项目入围,其中,聚光科技(杭州)股份有限公司的紫外/可见光纤光谱气体分析系统产业化项目榜上有名。 2012年科技成果转化项目拟支持单位名单公示   现将2012年科技成果转化项目拟支持单位名单予以公示,公示期为2012年5月16日—5月25日。如有意见,请将意见以书面(实名)形式,反馈财政部经济建设司经贸处。   联系电话:010—68552518   传  真:010—68552879 2012年科技成果转化项目拟支持单位名单 序号 项目承担单位 项目名称 1 三一电气有限责任公司 高效节能一体化变频永磁同步电动机产业化建设项目 2 北京辰安伟业科技有限公司 基于物联网技术的公共安全综合应急平台及装备重大科技成果转化 3 北京伟嘉人生物技术有限公司 嗜热真菌耐热木聚糖酶技术成果产业化 4 北京神雾环境能源科技集团股份有限公司 蓄热式转底炉处理冶金粉尘回收铁、锌成套工艺及装备的产业化 5 北京中科辅龙计算机技术股份有限公司 数字化三维工厂设计和管理系统研发及产业化—特征敏感的三维模型几何处理技术及应用 6 北京大北农科技集团股份有限公司 饲用益生菌重大成果转化及产业化推广 7 北京明新高科技发展有限公司 科研用抗体试剂科技成果转化工程 8 北京永新视博数字电视技术有限公司 监控录制内容的安全保护系统 9 永港伟方(北京)科技股份有限公司 绿色人造板胶粘剂制造及应用关键技术产业化 10 神州数码信息系统有限公司 构件化应用服务器技术在市民卡运营平台中应用实践和产业化推广 11 北京派得伟业科技发展有限公司 数字农业测控关键技术系统 12 富思特制漆(北京)有限公司 低碳环保清水混凝土保护剂(低碳环保文物保护剂)关键技术成果转化项目 13 方正国际软件有限公司 环保型套筒式大幅面柔印CTP系统研制 14 北京北印东源新材料科技有限公司 高阻隔封装薄膜新材料及设备产业化 15 北京仁峰科技有限公司 生物制造羧肽酶B产业技术成果转化 16 天津经纬电材股份有限公司 特高压输变电设备用换位铝导线产业化 17 天津市天发重型水电设备制造有限公司 贯流式水轮发电机组高效电机技术成果转化 18 天津津伯仪表技术有限公司 SV系列智能变频电动执行机构产业化 19 天津蓝天太阳科技有限公司 新型太阳电池及组件产业化 20 中环天仪股份有限公司 高精度挖泥船大口径电磁流量计及大流量标定装置 21 天津市英贝特航天科技有限公司 高性能数据安全服务器成套装备产业化 22 天津光电通信技术有限公司 保密移动存储介质安全管理设备产业化项目 23 衡水中铁建工程橡胶有限公司 ZTQZ曲面转动支座 24 石家庄强大泵业集团有限责任公司 疏浚用系列挖泥泵产业化 25 河北华冲电器有限责任公司 高效直线电机应用绿色设计技术科技成果转化项目 26 石家庄以岭药业股份有限公司 年产10亿粒莲花清瘟胶囊产业化项目 27 河北南昊信息产业有限公司 南昊智能扫描输入系统产业化 28 河北三环太阳能有限公司 挠曲柱面太阳能聚光系统的产业化 29 邢台平安糖业有限公司 生物质热解气新能源工业化应用示范项目 30 保定市科绿丰生化科技有限公司 生物杀菌剂芽孢杆菌产业化 31 饶阳鸿源机械有限公司 干粉灭火器自动灌装生产线 32 河北医科大学第三医院 胫腓骨骨折的系列研究及创伤骨科科技成果转化 33 榆次液压集团有限公司 工程机械用高压柱塞泵 34 太原重工股份有限公司 快速精密双柱式锻造液压机与操作机系列成套技术装备成果转化 35 山西银光华盛镁业股份有限公司 高速列车用镁合金挤压型材国家重大科技成果转化项目 36 山西华顿实业有限公司 高清洁甲醇燃料系列产品机器产业化系统集成工艺技术成果转让 37 山西迈迪制药有限公司 专利新药克栓胶囊的科技成果转化项目 38 山西青山化工有限公司 年产10000吨新型高效液体荧光增白剂KSB-L项目 39 山西华元医药集团有限公司 一种治疗骨折及软组织损伤专利药物的科技成果转化项目 40 内蒙古金地生物质有限公司 高端装备低摩擦耐腐蚀抗老化关键零部件技术 41 包头市稀宝博为医疗系统有限公司 年产300台稀土永磁磁共振影像系统产业化项目 42 赤峰天奇制药有限责任公司 中药质量控制综合评价技术创新体系在丸剂生产中的应用 43 兴和县木子炭素有限责任公司 模压细结构石墨阳极产业化项目 44 丹东克隆集团有限责任公司 双端面耐高温机械密封装置 45 辽阳市富祥曲轴有限公司 球墨铸铁曲轴等温淬火技术产业化项目 46 沈阳鼓风机集团股份有限公司 大型合成氨关键设备—离心压缩机研制成果转化和产业化 47 中信锦州金属股份有限公司 氧化锆沸腾氯化气固分离装置应用 48 三一重型装备有限公司 智能型综采成套装备成果转化 49 沈阳风电设备发展有限公司 海岛高可靠独立风能供电系统产业化 50 大连理工计算机控制工程有限公司 高性能现场总线及其在电机系统综合节能控制的关键技术产业化应用 51 大连保税区科利德化工科技开发有限公司 高纯电子气体产业化 52 大连大高阀门股份有限公司 不锈钢抗高温冲蚀表面工程 53 大连环宇移动科技有限公司 势能导向路由器研发与产业化 54 吉林华邦新材料科技有限公司 高强度木塑复合材料挤出技术产业化项目 55 启明信息技术股份有限公司 基于车身总线的汽车智能遥控钥匙进入系统研发及产业化 56 长春超维科技产业有限责任公司 嵌入式虹膜身份认证系列产品研发与产业化 57 哈尔滨林顿电气有限公司 SKGHX-800数控(棱)管纵环缝焊接生产线 58 哈尔滨亿阳集团股份有限公司 低碳环保筑路新材料(上质周化剂) 59 哈尔滨新禾科技有限公司 分布式光纤监测系统60 哈尔滨威帝电子股份有限公司 汽车CAN总线控制系统 61 上海派芬自动控制技术有限公司 工程机械用智能液压电子控制器及系统成果产业化 62 上海立新液压有限公司 工程机械用高性能液压阀产业化 63 上海三一科技有限公司 大吨位系列履带式起重机科技成果推广及应用 64 上海联合滚动轴承有限公司 100T重载铁路货车轴承产业化项目 65 联创汽车电子有限公司 符合欧五排放法规的高压共轨柴油机电控系统研发及产业化 66 上海申能能源科技有限公司 百万千瓦超超临界机组系统优化与节能减排关键技术(一期) 67 上海电科电机科技有限公司 高效电机机组绿色设计技术成果产业化 68 上海化工研究院 700吨/年新型聚乙烯催化剂关键技术开发及产业化示范 69 上海迪赛诺化学制药有限公司 泰诺福韦的研发与产业化 70 思源电气股份有限公司 低压有源滤波设备 71 镇江大力液压马达有限责任公司 数字配流智能调速型摆线液压马达的开发与产业化 72 南通华东油压科技有限公司 高档液压元器件铸件铸造工艺技术及产业化 73 苏州宝骅机械技术有限公司 百万千瓦级压水堆核电站用核级石墨密封垫片研制及产业化 74 苏州巨峰电气绝缘系统股份有限公司 百万千瓦高效发电机组绝缘系统技术成果转化 75 苏州船用动力系统股份有限公司 船舶用可调螺距型全回转舵桨装置技术及制造 76 江苏爱吉斯海珠机械有限公司 远洋船舶发动机气缸套研究开发与产业化 77 扬州华铁铁路配件有限公司 内燃机低摩擦高耐磨节能型ADI气缸套研发及产业化 78 江苏红光仪表厂有限公司 电机安全节能无线监控系统装置的研发及产业化 79 江苏方程电力科技有限公司 基于并联斩波和双重逆变技术的电机调节节能装置的产业化 80 江苏康缘药业股份有限公司 缺血性中风治疗药物银杏二萜内酯葡胺注射液的研制开发及产业化 81 南京微创医学科技有限公司,东南大学 微创介入非血管腔道功能性支架产业化开发 82 浙江五洲新春集团有限公司 p4、p2级高速精密数控机床轴承关键技术与产业化 83 横店集团英洛华电气有限公司 超超临界大型阀门铸件的产品研发及其产业化 84 浙江天马轴承股份有限公司 高速、精密数控机床轴承技术产业化 85 浙江中达轴承有限公司 高性能多孔隙度含油滑动轴承的研究与产业化 86 浙江兆丰机电股份有限公司 使用寿命25公里以上轿车第三代轮毂轴承单元产业化项目 87 浙江金盾风机股份有限公司 地铁、隧道智能通风系统产业化项目 88 聚光科技(杭州)股份有限公司 紫外/可见光纤光谱气体分析系统产业化项目 89 温州宏丰电工合金股份有限公司 微观结构化环保高性能电接触功能复合材料产业化 90 浙江省广电科技股份有限公司 下一代互联网光子集成网络终端产业化 91 浙江九洲药业股份有限公司 固定床催化脱氢制亚氨基芪关键技术产业化应用 92 浙江明泉工业涂装有限公司 EMOS自动化技术工业涂装生产线 93 宁波广天赛克思液压有限公司 面向挖机带负荷传感成套高压液压元件关键技术研究与产业化 94 宁波华液机器制造有限公司 新型电液比例阀技术研究 95 宁波中策动力机电集团有限公司 柴油机用电控高压燃油喷射装置产业化 96 安徽中鼎密封件股份有限公司 汽车发动机冷却系统散热器板式橡胶密封条产业化项目 97 安徽省屯溪高压阀门有限公司 油气长输管线全焊接球阀产业化 98 安徽格瑞德机械制造有限公司 工程机械扭矩均衡液压电子控制节能装置 99 铜陵中发三佳科技股份有限公司 100-170T集成电路自动封装装备 100 合肥工大高科信息科技股份有限公司 矿井车辆人员智能调度与跟踪关键技术及其产业化 101 蚌埠玻璃工业设计研究院 太阳能微铁高透过率玻璃成套技术及产业化开发项目 102 安徽华星智能停车设备有限公司 基于CAN总线技术的升降横移式立体停车产业化 103 合肥安达数控技术有限责任公司 汽车点火锁开挂自动装备系统产业化 104 安徽盛运机械股份有限公司 发明专利《摇动式顺推机机械炉排》产业化 105 福建龙溪轴承(集团)股份有限公司 重型卡车推力杆用关节轴承 106 华闽南配集团股份有限公司 高效率、低摩擦车用发动机活塞环技术 107 宁德新能源科技有限公司 高能量密度、高安全性锂离子电池及其关键材料制造技术成果转化 108 福建天盛恒达声学材料科技有限公司 高分子基金属粉末阻燃隔声毡产业化 109 福建省佳美集团公司 中温窑变釉陶瓷研发及产业化 110 福建新大陆科技集团有限公司 100公斤/小时以上高性能大型臭氧发生器研制及产业化 111 福建省三明机床有限责任公司 大尺寸矩形平面光学零件高精度磨床产业化 112 厦门科华恒盛股份有限公司 高频环节逆变技术在节能降耗与新能源变换装置中的应用 113 厦门雅迅股份有限公司 汽车前装车联网终端及服务平台产业化 114 萍乡市德博科技发展有限公司 涡轮增压器喷嘴环组件产业化 115 江西悦安超细金属有限公司 高压循环制备羰基铁粉高技术产业化项目 116 江西清华泰豪三波电机有限公司 永磁逆变电源静音液冷成套技术成果转化 117 江西拓扑工程有限公司 高性能低膨胀陶瓷材料及蓄热式催化燃烧设备 118 晶能光电(江西)有限公司 硅衬底LED外延材料及芯片产业化 119 赣州金信诺电缆技术有限公司 半柔射频同轴电缆铁氟龙绝缘层科技成果转化项目 120 江西西林科股份有限公司 年产100吨高性能汽油抗爆剂 121 江西天人生态股份有限公司 年产3000万条无纺布菌剂产业化 122 江西华太药业有限公司 金丹妇康颗粒产业化 123 景德镇和川粉体技术有限公司光通信氧化锆陶瓷插芯精密注射成型专用颗粒产业化 124 山东常林机械集团股份有限公司 高压柱塞泵/马达和液压阀用铸铁铸造技术产业化 125 山东泰丰液压股份有限公司 高压大流量电液比例阀生产技术产业化 126 山推工程机械股份有限公司 工程机械用液力变速器及其关键零部件技术产业化 127 盛瑞传动股份有限公司 可动力换挡多档变速器产业化 128 力博重工科技股份有限公司 煤矿井下运输系统安全保障关键技术与装备关键技术之—液体粘性调速装置及其组件的产业化 129 烟台龙源电力技术股份有限公司 无燃油燃煤电厂成套技术的产业化应用 130 山东旭锐新材有限公司 聚烯烃材料无卤阻燃化关键技术转化项目 131 山东天岳先进材料科技有限公司 大尺寸SiC单晶衬底产业化 132 山东新时代药业有限公司 新型高效抗菌药物法罗培南钠原料与制剂的研究开发成果转化项目 133 山东金城医药化工股份有限公司 头孢抗菌素中间体活性脂关键技术研究及产业化 134 齐鲁制药有限公司 重组人白介素-11(rhIL-11)1000L生产线建设 135 山东明仁福瑞达制药有限公司 感冒咳嗽系列产品的产业化 136 山东鲁北药业有限公司 药用溶菌酶清洁工程技术转化 137 青岛电站阀门有限公司 超超临界火电机组阀门用耐热钢产业化项目 138 青岛新材料科技工业园发展有限公司 工程机械液力变速器用高性能聚四氟乙烯油封 139 青岛海力威新材料科技股份有限公司 高速铁路专用SCM材料桥梁伸缩缝 140 青岛汉缆股份有限公司 高压超高压电缆绝缘材料及电缆系统 141 青岛科创新能源科技有限公司 污水及地表水源热泵关键取热设备与规模化应用 142 海尔集团公司 节能技术在大容量冰箱上的应用 143 新乡日升数控轴承装备股分有限公司 数控精密双端面研磨机床 144 河南太行振动机械股份有限公司 年产60台TLZS80-93特大型振动输送机 145 河南省中原内配股分有限公司 低摩擦节能环保内燃机气缸套 146 濮阳贝英数控机械设备有限公司 汽车三代轮毂轴承单元装备制造技术科技成果转化项目 147 濮阳市信宇石油机械化工有限公司 天然气长输管线配套防盗阀门技术 148 河南远东生物工程有限公司 除草剂药害和残留防治剂奈安1号 149 郑州宇通客车股分有限公司 深度混合动力客车研发及产业化 150 河南辅仁怀庆堂制药有限公司 年产10亿支盐酸川芎嗪注射液科技成果转化项目 151 三门峡恒生科技研发有限公司 年产100吨清洁镀金新材料丙尔金研发与产业化项目 152 信阳天意节能技术有限公司 年产250万㎡保饰贴无机外墙保温饰面板 153 湖北平安电工材料有限公司 超、特高电压交直流输变电设备用特种绝缘材料506-D云母纸技术产业化 154 襄阳航宇机电液压应用技术有限公司 年产10000台电液伺服阀生产线扩建 155 武汉唯特特种电机有限公司 低噪音水冷电机,盾构机、电动汽车及超高速激光涡轮机等典型负载电机产业化 156 荆州恒隆汽车零部件制造有限公司 汽车电动转向系统电机匹配技术产业化 157 湖北华博三六电机有限公司 无刷双馈变频调速电机产业化 158 宜昌东阳光药业股份有限公司 红霉素发酵新技术产业化项目 159 湖北龙翔药业有限公司 二类新兽药盐酸沃尼妙林预混剂的产业化 160 湖北兴发化工集团股份有限公司 高纯黄磷生产技术产业化项目 161 湖北神雾热能技术有限公司 连续回转蓄热式空气预热器技术开发与转化 162 湖北永祥粮食机械股份有限公司 稻谷减损增效智能加工生产线的产业化 163 湖北中农种业有限责任公司 油菜优异基因发掘与“三高”杂交种产业化开发 164 特变电工衡阳变压器有限公司 超高压大容量现场组装式变压器产业化 165 三一重工股份有限公司 工程机械高性能液压电子控制器关键技术研发及产业化 166 湘电重型装备股份有限公司 220t电动轮自卸车产业化 167 湘潭市恒欣实业有限公司 智能型煤矿架空乘人装置液压驱动系统产业化 168 湖南金联星特种材料股份有限公司 10000吨/年铝钛中间合金产业化 169 湖南熙可食品有限公司 8万吨/年柑桔酶法深加工产业化项目 170 万福生科(湖南)农业开发股份有限公司 节碎米生物工程技术制取高纯度淀粉糖与副产物综合利用 171 长沙龙智飞信息科技有限公司 新一代网络安全智能监控平台 172 湖南正阳精密陶瓷有限公司 注射成型氧化钴陶瓷光纤套管产业化 173 湖南纽曼数码科技有限公司 增强行车安全的车载信息系统产业化 174 湖南省有线电视网络(集团)股份有限公司 云电视终端产业化项目 175 珠海格力电器股份有限公司 “变频空调关键技术的研究及应用”科技成果转化 176 广州广电运通金融电子股份有限公司 多模态钞票识别系统研发及产业化 177 TCL集团股份有限公司 移动网络实时传输存储系统技术应用 178 珠海健帆生物科技股份有限公司 血液净化医用吸附材料产业化项目 179 领亚电子科技股份有限公司 新一代高传输高保真大容量长距离精密数据线产业化项目 180 新太科技股份有限公司 面向城市级大型视频监控网络的智能故障监测系统研发及产业化 181 广东顺祥陶瓷有限公司 窑炉节能技术及高档日用瓷研制 182 深圳市凯中精密技术股份有限公司 内燃机环保燃油泵石墨整流子的研发与产业化 183 深圳市汇川技术股份有限公司 塑料挤出专用高效永磁直驱电机系统的研制与专业化 184 深圳市创益科技发展有限公司 太阳能光伏建筑材料PV玻璃的产业化及应用 185 深圳市远望谷信息技术股份有限公司 基于物联网应用的芯片设计及产业化项目 186 深圳市德方纳米科技有限公司 动力和储能电池用关键正极材料纳米磷酸铁锂万吨规模批量制备技术 187 桂林电力电容器有限责任公司 超、特高压交直流输电重大成套技术装备开发及产业化 188 桂林星辰科技有限公司 直接驱动式螺杆泵抽油机伺服控制系统产业化 189 上汽通用五菱汽车股份有限公司 复杂薄板产品装配的数字化工艺设计与装配技术 190 柳州欧维姆机械股份有限公司 OVMZM自锚式悬索桥悬索体系产业化 191 海口齐力制药股份有限公司 三类新药奇立西与普捷施产业化 192 成都天马铁路轴承有限公司 轴重大于30吨重载铁路货车轴承关键技术与产业化 193 四川柯世达汽车制动系统集团有限公司 自卸汽车货箱专用升降阀产业化 194 四川省宜宾普什驱动有限责任有限公司 数控轨道板磨床(高速高压闭式系统) 195 四川中自尾气净化有限公司 柴油车尾气后处理催化器技术产业化 196 成都理想信息产业有限责任公司 动态馈电POE系统 197 四川华铁钒钛科技股份有限公司 2万吨/年烟气治理SCR脱硝催化剂载体材料制备技术成果转化项目 198 泸州老窖股份有限公司 功能微生物强化浓香型大曲生产技术研究及产业化应用 199 四川东方水利水电工程有限公司 浮筒式拦污导漂装置产业化 200 四川日机密封件股份有限公司 核电站重要泵用机械密封成果转化 201 重庆钢铁研究所有限公司 高性能航空航天用小口径薄壁管材系列化开发 202 重庆广仁铁塔制造有限公司 ±20万伏直流(33万伏交流)输电工程用有机绝缘材料杆塔技术 203 重庆长江轴承股份有限公司 三代轿车轮毂轴承单元技术成果转化项目 204 重庆海扶(HIFU)技术有限公司 妇科良性肿瘤超声治疗设备产业化 205 重庆山外山科技有限公司血液净化监测与控制系列关键技术转化及产业化 206 重庆国虹科技发展有限公司 TD-SCDMA多模终端产业化 207 重庆华邦制药股份有限公司 特色原料药阿维A国际化项目 208 贵州航天新力铸锻有限责任公司 核反应堆压力容器(RPV)主螺栓产业化 209 中航力源液压股份有限公司 履带式起重机用液压泵/马达科技成果转化 210 贵州红林机械有限公司 高压大流量数字开关阀技术成果转化 211 贵州黄帝车辆净化器有限公司 年产60万升碳化硅壁流式蜂窝陶瓷柴油机微粒过滤器产业化 212 贵州黎阳航空动力有限公司 高效高压比长寿命增压装置产业化 213 贵州航天凯山石油仪器有限公司 抽油电机远程节能控制系统产业化 214 贵州汇通华城股份有限公司 轨道交通环控系统电机节能控制装置产业化 215 贵州铝城铝业原材料研究发展有限公司 电解铝废渣资源化回收利用技术成果转化项目 216 贵州钢绳股份有限公司 不锈钢丝绳产业化 217 贵州航天乌江机电设备有限责任公司 超临界流体技术制备气凝胶纳米多孔材料的大型成套装备 218 蒙自矿冶有限责任公司 铅锌冶炼含氯废渣综合利用新技术产业化示范项目 219 云南瑞升烟草技术(集团)有限公司 烟草废弃物资源综合利用产业化项目 220 昆明贵研催化剂有限责任公司 国Ⅳ、国Ⅴ机动车催化剂产业升级建设项目 221 西藏金稞集团有限责任公司 生物制造活性小肽科技成果转化 222 西藏俪阳科技有限公司 生物法多元醇技术成果转化 223 宝鸡石油机械有限责任公司 特深井石油钻机产业化建设 224 西安华欧精密机械有限责任公司 高速度、长寿命滚珠丝杠副的研发产业化 225 西安西电高压开关操动机构有限责任公司 高压断路器用液压操动机构研究与产业化 226 西安优势铁路新技术有限责任公司 无级调速车辆减速器电液控制系统 227 宝鸡市博磊化工机械有限公司 八列对称平衡式大型往复压缩机 228 陕西异度新干线科技发展有限公司 分布式联动入侵检测系统产业化 229 陕西东泰能源科技有限公司 太阳能制冷及热泵技术产业化开发 230 白银有色集团股份有限公司 闪速炉短流程—步炼铜工艺技术 231 天华化工机械及自动化研究设计院国家干燥技术及装备工程技术研究中心 利用焦炉尾气分级的新型蒸汽管回转圆筒干燥法煤调湿技术 232 金昌市万隆实业有限责任公司 直接利用冶炼热熔废渣生产新型无机纤维成果转化 233 敦煌西域特种新材股份有限公司 高分子新材料聚苯硫醚科技成果转化项目 234 青海泰丰先行锂能科技有限公司 高性能磷酸铁锂正极材料规模化生产 235 宁夏共享装备有限公司 燃气内燃机铸件产业化 236 卧龙电气银川变压器有限公司 高速铁路用220KV V/x接线牵引变压器成果转化 237 开泰镁业有限公司 节能型连续炼镁还原炉新技术的成果转化 238 宁夏东方钽业股份有限公司 射频超导腔的成果转化 239 宁夏银利电器制造有限公司 年产9000台轨道交通系列磁性元件成果转化项目 240 宁夏泰瑞制药股份有限公司 微生物降解菌渣中残留泰乐菌素、生产高蛋白饲料添加剂技术成果转化项目 241 新疆绿色使者空气环境技术有限公司 适用于西部地区的间接蒸发冷水机规模化推广应用 242 特变电工新疆硅业有限公司 太阳能级多晶硅生产尾气回收工艺产业化关键技术 243 克拉玛依市圣牛飞管业有限公司 "衬里管线的环空密封连接方法" 专利技术成果转化 244 新疆西尔丹食品有限公司 低温炒制辣椒酱加工技术成果转化项目 245 新疆阿布丹食品开发有限公司 高效核桃破壳及核桃玛仁研制成果产业化示范项目 246 新疆宜化化工有限公司 利用高温缩合和串级重结晶分离制备单/双季戊四醇 247 中国电力技术装备有限公司许继集团有限公司 特高压直流输电控制保护装置产业化 248 中电普瑞工程电力有限公司 柔性直流输电关键技术产业化及工程应用 249 鞍钢股份有限公司 冷轧板形控制核心技术的工业应用推广 250 株洲火炬工业炉有限责任公司 单系列100kt/a电解锌节能电积熔铸技术 251
  • 电子探针丨带您走进光纤的微观世界-低损耗光纤
    导语信息关乎一切,为满足信息化数字化支撑新质生产力的创新发展目标和要求,国家层面在算力枢纽、大数据和云计算集群、“东数西算”等工程作了资源调配和长远的规划。用户层面对高质量视频和数据传输需求、对低时延的更苛刻要求、5G技术使用的接入,以及千兆光纤入户规划,对超高速互联网接入的追求似乎永无止境。低损耗光纤的研究正是为了满足高质量的数据接入需求。岛津电子探针通过搭配52.5°高取出角和全聚焦晶体波谱仪,具有高分辨率和高灵敏度的特征,可以为光通信企业及研究院的产品生产、研发、技术突破等方面,如未来的多芯或空芯的研究提供坚实的数据支持。光纤损耗小科普光纤损耗是指每单位长度上的信号衰减,单位为dB/km。光纤损耗的高低直接影响了传输距离或中继站间隔距离的远近,对光纤通信有着重要的现实意义。光纤之父高锟博士提出:光纤的高损耗并不是其本身固有的,而是由材料中所含的杂质引起的。之后,科研人员和光通信企业开始致力于光纤损耗降低的课题研究。根据光纤损耗,把光纤大致分为普通光纤、低损耗光纤、超低损耗光纤三类,其中,&bull 普通光纤衰减为0.20dB/km左右,&bull 低损耗光纤衰减小于0.185dB/km、&bull 超低损耗光纤的衰减小于0.170dB/km。长久以来,国外厂商在低损耗和超低损耗光纤的研究中保持领先地位。现在国内新建主干网络以及骨干网的升级改造中已有大规模低损耗光纤的部署。岛津电子探针的特点岛津电子探针EPMA通过配置统一四英寸罗兰圆半径的、兼具灵敏度和分辨率的全聚焦分光晶体,以及52.5°的特征X射线高取出角,使之对于微量元素的测试更具优势,不会错过微量元素的轻微变化。【注:从微米级别空间尺度产生的元素特征X射线经过全聚焦晶体衍射后还会汇聚到微米级别范围,不会有检测信号的损失,也无需在检测器前开更大尺寸的狭缝,从而具有更高的特征X射线检测灵敏度和分辨率。】【注:高取出角可获得特征X射线试样在基体内部更短的穿梭路径,减少基体效应的影响,即更少的基体吸收更少的二次荧光等,从而具有更高的特征X射线检测灵敏度。】在远距离传输中,由于光纤材料的吸收(材料本征的紫外和红外吸收以及金属阳离子和OH-等杂质离子吸收)和散射、光纤连接以及耦合等方面造成的衰减问题难以避免,低损耗光纤的推出则为解决这一难题提供了新的思路。在骨干网改造、超高速宽带网络的建设过程中,低损耗(Low-loss optical fiber, LL)、超低损耗(Ultra-low-loss optical fiber, ULL)光纤已有大规模部署。我们使用岛津电子探针EPMA-1720测试了两种低损耗光纤。&bull 第一种光纤为单模光纤,纤芯直径10μm,掺杂Ge+F。低损耗光纤元素分布情况测试结果如下:&bull 第二种光纤纤芯为比较高纯度的SiO2,在包层区掺氟降低折射率,未掺杂常规元素Ge。定量元素线、面分布特征分析见以下系列图。超低损耗光纤元素分布情况测试结果如下:结语信息通信是重要的国家级基础设施,通信光纤建设也是重要的民生工程,对高质量数据通信要求都在不断提高。目前骨干超高速400G、800G乃至1T的工程规划都给光通信企业带来机遇和挑战,研发和生产亦是永无止境。岛津电子探针有着高灵敏度和高元素特征X射线分辨率的特性,能够为光通信企业及研究院的产品开发、技术突破等方面提供可靠的检测和分析手段。本文内容非商业广告,仅供专业人士参考。
  • 清华团队:基于多模光纤模式色散和深度学习的高速全光纤化成像技术
    多模光纤成像技术因其超细微型探头和柔性结构带来的灵活性优势,在生物体内成像、工业检测等领域具有广阔的应用前景,获得了业界广泛的关注。目前,多模光纤成像技术主要分为两类,一类通过在光纤远端产生聚焦点进行扫描成像,另一类通过探测光纤近端的散斑场来恢复光纤远端被探测的全场图像。这两种技术途径已有较完善的理论支撑,能得到较清晰的探测图像,但同时也具有一些难以弥补的劣势。例如:受限于空间光调制器、CCD或CMOS器件的刷新速度,成像帧率较低,难以对高速的事件进行成像;结构中包含自由空间光学元件,因此需要精密的光学对准,无法与传像主体集成实现全光纤化,限制了其应用范围;成像波长受限于CCD或CMOS器件的感光光谱范围,限制了其在红外波段的成像能力。上图 高速多模光纤成像系统示意图。a:实验原理图;b:以神经网络进行图像恢复的流程图;c:光纤探头示意图;d:照明光(黄色箭头)侧面注入探测光纤的示意图,信号光(红色箭头)在纤芯中传播;e:探测光纤远端照片,端面通过烧球来更好地聚焦照明光,比例尺500微米。为此,清华大学精密仪器系先进激光技术研究团队基于十多年来在光纤激光器、光纤器件和光纤传感的技术积累,提出了基于多模光纤模式色散和深度学习的高速全光纤化成像技术。该技术采用皮秒脉冲光纤激光照明被测物,利用多模光纤的模间色散特性将被探测图像的空间信息在时域上展开,时域信息通过单像素探测器进行探测,并借助神经网络训练的方法,由一维时域信息恢复出二维图像信息,整体结构和原理如图1所示。图2 被探测图像与其对应的波形和恢复结果该技术通过一个光纤侧面耦合器将皮秒脉冲光纤激光耦合到探测光纤中,然后从光纤的远端出射照到物体上,反射光进入探测光纤后紧接着进入与之连接的一公里长的50/125微米直径多模阶跃光纤中传播。由于模间色散的存在,进入多模光纤的脉冲光会产生分裂形成脉冲串。如图2所示,不同的光纤横模具有不同的群速度,因此在时域上会彼此分离,而这些横模包含了被探测图像的空间信息,通过模式色散便可将被探测物体的空域信息在时域上展开。图3 不同类型图案的成像效果通过超快光电探测器可以获得脉冲串波形,经神经网络模型进行训练后,可以直接从不同的脉冲波形中恢复出被探测图像。图3展示了来自不同数据库中图案的成像效果。该系统的成像帧率主要取决于脉冲光的重频,目前实验中已实现高达15.4Mfps帧率的成像,并实验验证了达到53.5Mfps帧率的可行性。系统在高帧率成像的同时具备连续采集一万帧图像(大帧深)的能力。如果采用重复频率更高的激光照明源,并搭配更快的光电探测器和时域波形采集设备,其帧率可以持续提升。团队所提出的新技术的突出优点是:帧率主要由脉冲光源的重频决定,成像帧率高;全光纤化的系统结构紧凑,细如发丝的探头大大增加了灵活性;单像素成像,探测波段不再受限于可见光,可扩展到近红外、甚至中波红外等其他波段;采集时域信号而非空间分布,抗干扰能力强。该系统在某些高速成像场景中比如体内高速细胞成像,或工业场景下对难以开放系统的内部高速成像检测等领域具有巨大应用潜力。该研究成果近日以“深度学习赋能全光纤高速图像探测”(All-fiber high-speed image detection enabled by deep learning)为题,发表在《自然通讯》(Nature Communications)上。该论文通讯作者为清华大学精密仪器系副教授肖起榕,第一作者为精密仪器系2018级博士生刘洲天。该研究得到了国家自然科学基金资助。 清华大学精密仪器系先进激光技术研究团队学术带头人为系主任、教授柳强,团队以现代化强国建设与国家重大需求为导向,着眼于光电子技术领域的科学与技术发展前沿,围绕固体激光、光纤光学、自适应光学、激光探测等方向,开展基础科学探索、应用基础研究和系统技术研发,全面覆盖高功率激光光源、光束控制、光电探测等技术领域。团队承担国家科技重大专项、国家重点研发计划、“973”计划、“863”计划、重点验证、专项配套型号研究等一系列重大项目,形成了从高功率激光光源到微弱光电信号测控的整套技术链条,具备完整的激光光电和测控技术能力,在相应研究方面取得了重要进展。2018年获批建设光子测控技术教育部重点实验室,2019年入选重点领域科技创新团队。
  • 定制光纤品牌“飞博盖德”为双子南座望远镜设计顶级光纤阵列
    飞博盖德为双子南座天文望远镜制造光纤阵列。2016年2月18日,美国新泽西州的斯特灵市传来消息,英国豪迈的定制光纤品牌“飞博盖德”(www.fiberguide.com.cn)已经在新双子南座天文望远镜(GHOST)中制造光纤阵列。澳洲天文台(AAO)是该项目的建造商和领导机构。飞博盖德的光纤阵列采用了最先进的制造技术,此次项目中的光纤阵列采用的就是这项技术。由飞博盖德生产的高质量、高性能的光纤阵列成为该项目成功的关键。届时,双子南座天文望远镜将配备双目标大面积全波长光谱望远镜,其覆盖范围介于363~950 nm,分辨率介于50000~75000。新的双子南座天文望远镜由澳洲天文台建造。每根飞博盖德的光纤均携带一部分来自星体的光束,从而尽量减少了因大气模糊造成的损失。通过采用飞博盖德专有的制造技术,以及其在天文学、安全和数据通信类型光纤阵列的丰富经验,可以减少传统光纤的指向误差和插入损耗等问题。新的天文观测仪器可使观察者更高效地观测夜空。双子南座天文望远镜的项目负责人安德鲁?舍伊尼斯说:“双子南座望远镜是世界上最大也是最成功的世界级双子望远镜仪器,而飞博盖德的光纤一直是澳洲天文台在望远镜科技发展中不可或缺的组成部分。一旦该项目交付,双子南座望远镜将为我们提供更多了解宇宙的机会,例如发现与研究太阳系外行星”。双子南座天文望远镜能够为了解双子南座天空提供无与伦比的便利,并进一步加强认识宇宙的机会。欲详细了解飞博盖德的应用于天文的产品,或光纤阵列和光纤束建设的专门知识,请访问飞博盖德的中文官方网站。关于飞博盖德和英国豪迈:美国飞博盖德工业有限公司(Fiberguide)生产多种工业标准的和按需定制的高传输光纤和超精密光阵列。公司经过美国食品和药品管理局登记注册,被确定为合同制造商和定制设备制造商。飞博盖德的光纤工厂位于美国新泽西州的斯特林(Stirling),同时在爱达荷州的卡德维尔(Caldwell)也有制造/装配厂。飞博盖德是英国豪迈(Halma)的子公司,隶属于豪迈的环境与分析事业部。1894年创立的英国豪迈如今是全球安全、医疗、环保产业的投资集团,伦敦证券交易所的上市公司,富时指数的成分股。集团在全球有5000多名员工,近50家子公司,在中国的上海、北京、广州、成都和沈阳设有代表处,并在多地建立了工厂。欲了解更多公司信息,请关注英国豪迈官方微博(www.weibo.com/halma)和官方微信(HALMACHINA)。业务合作联系人:谈理(Teddy Tan)飞博盖德大中华区销售经理电话:021 - 60167698邮箱:ttan@fiberguide.com媒体联络联系人:陆瑶 (Lucas Lu)英国豪迈中国区公关经理电话:021 - 60167667电邮:lucas.lu@halma.cn
  • 美国研发出新型光纤 光纤技术将突破玻璃限制发展
    北京时间2月28日上午消息 由美国宾夕法尼亚州立大学的化学家John Badding带领的一组科学家,研发出了一种由硒化锌为核心材质的光纤,可用于半导体的淡黄化合物。   这种新型光纤,可对光进行更高效更自由的操作,将为激光雷达技术开拓更多应用打下基础。这种技术可进一步改进医疗激光手术,为军队提供更先进的激光器,用于测量检测污染物,探测恐怖主义的化学药物传播,科学家们的这项研究成果已经登载在材料科学顶级期刊Advanced Materials。   Badding说:“我们都知道光纤是现代信息时代的发展基石,新研制出的这种长而细的光纤,只有三根人类头发那么细,却可以每秒传输太字节的数据,相当于250个DVD里刻录的信息。而且,仍然有各种方法可以改善这个技术。”   Badding解释说,现有的光纤技术总是受限于玻璃材质,他说:“玻璃的原子排列是偶然性的,而新材质与之相反,硒化锌晶体物质是高度有序的,这种有序性非常有利于光在长波中的传输,特别是在中红外中的传输。”   Badding说:“和石英玻璃传统上用于光纤不同,硒化锌是一种化合物半导体,我们一直都知道,硒化锌是一种有用的化合物,可以对光进行多种操作,这是石英玻璃无法做到的。特殊之处是让硒化锌变成纤维结构,这是以前从未做到的。”   科学家们发现,由硒化锌合成的光纤有两大用途,首先他们发现新的光纤在颜色转换时更有效率,Badding解释说:“传统的光纤用于信号、显示以及艺术上,但并不能保证时刻都能得到想要的颜色,硒化锌利用非线性频率转换,在颜色变化上能力非常好。”   其次,科学家们发现,新光纤不仅在可见光谱中提供更多功能的应用,在红外线中也可以,波长的电磁辐射比可见光更长。
  • 基于光纤传感的尿比重仪
    仪器名称 基于光纤传感的尿比重仪 单位名称 深圳大学 联系人 李学金 联系邮箱 lixuejin@szu.edu.cn 成果成熟度 □正在研发 &radic 已有样机 □通过小试 □通过中试 □可以量产 合作方式 □技术转让 &radic 技术入股 □合作开发 □其他 成果简介: 基于光纤传感的尿比重仪是一种新型肾功能及人体体液溶质含量的监控仪器。采用先进的光纤传感技术,可实现高灵敏的实时在线检测(现有比重仪做不到),并能大大缩小仪器的体积。 本仪器的灵敏度比市场上现有尿比重仪高10倍以上,并能实现检测即时数显和实时记录等功能。还可以通过转换标定体系,转换成液体浓度、折射率等量的检测。 应用前景: 基于光纤传感的尿比重仪主要用于检测人体尿液的比重值,用于临床医学上诊断肾脏的浓缩功能,并可用于初步诊断糖尿病、蛋白尿、急性肾炎、高热、脱水、尿崩症、尿毒症、慢性肾小球肾炎、急性肾炎多尿期等;也可以反映一些疾病的程度,如糖尿病患者,如果血糖升高,尿比重值也会相应升高。 另外,本仪器还可广泛用于各种液体的浓度、折射率的检测或监控,如酿酒过程中,酒精浓度的监控;各种化学药剂生产过程中的浓度监控(相比电学的方法,采用光学的检测方法,不但灵敏度高,而且在易燃易爆环境中使用安全可靠);环境水体污染程度检测等。 本仪器可应用于人体健康指标智能监测,安装于小便池中,人们可以通过每次小便及时得知自己的健康情况,是一种新型的智能家居。随着&ldquo 智慧城市&rdquo 列入十二五规划的一项重要内容,物联网应用技术将得到一个新的发展和完善。智能家居做为物联网最广泛的应用,不管是在物联网的大浪潮下、还是在智慧城市建设中都有着广泛的前景,蕴含着巨大的市场潜力。 知识产权及项目获奖情况: 已获得专利,专利名称:一种液体比重仪,专利号:201520045154.2
  • 全球光纤市场 中国市场占据49%份额
    光纤权威研究机构CRU表示,今年以来西欧、美国、巴西和俄罗斯等主要光纤市场增长疲软,而中国市场继续强劲增长,从2011年占全球份额的46%增长到2012年前三季度的49%,而且预计2012年第四季度仍将保持这个态势。   换言之,中国光纤市场份额2012年预计将占全球市场的49%。   2012年前三季度全球光缆销量1.77亿芯公里,相比去年同期的1.59亿芯公里,增长了11%。裸光纤的产量是1.92亿芯公里,这意味着,今年全球光纤总产量将超过2.5亿芯公里。   今年美国在“刺激法案”的带动下,电信开支增长有令人鼓舞的迹象。美国AT&T、中国三大运营商和欧盟运营商将在11月下旬批准90亿欧元(115亿美元)的电信开支。   从中国光纤厂商今年上半年的财报来看,上半年中国光纤一直处于供应紧张的状态,这种状态将一直延续到下半年。同时,自2010年中国光纤厂商掀起扩产风潮以来,光纤产能已经逐步释放。
  • 光纤光谱仪中标信息
    一、采购项目名称 : 光纤光谱仪( 070323w0801 ) 二、采购代理机构 :浙江大学后勤集团技术物资服务中心 三、确定成交日期 : 2007 年 4 月 9 日 四、本项目公告日期 : 2007 年 4 月 9 日 五、项目成交单位 :   标项一(光纤光谱仪):必达泰克光电科技有限公司 相关链接: http://www.zupc.zju.edu.cn/wwwroot/Notice/noticeJ0135.htm
  • 光子晶体光纤与传统光纤差异较大,市场前景具有不确定性——访锐光信通副总经理张涛
    仪器信息网讯 7月26-28日,2023世界光子大会暨第十四届光电子产业博览会在北京国际会议中心顺利召开!本届大会由中国光学工程学会(CSOE)、国际光学工程学会(SPIE)、俄罗斯工程院、德国工程院、美国工程院等各国学会机构主办。大会以“光领制造,智创未来”为主题,聚焦光电子行业新市场、新产品、新技术,近20余场学术会议,八大主题展览,以及第12届国际应用光学与光子学技术交流大会(AOPC2023)同期举办,近百位大咖专家聚焦光电子领域的学术与技术的创新碰撞。大会期间,仪器信息网特别采访了锐光信通科技有限公司副总经理张涛。据了解,锐光信通主要面向特种光纤领域,属于光纤行业的细分领域。本次展会,锐光信通主要带来了三大解决方案,面向陀螺仪用户的传感光纤、光子晶体光纤以及面向激光制造的的激光光纤。以下为现场采访视频:
  • 全球光纤传感器市场规模年均新增18%
    作为物联网极其重要的组成部分之一,光纤传感器因其优势与应用一直备受瞩目。从全球市场来看,2013年全球光纤传感器市场规模为18.9亿美元。预计2014至2018年,全球光纤传感器市场将以年均18%的增长幅度增长,至2018年市场规模达到43.3亿美元。   从光纤传感技术研究上看,美国对该技术的研究起步最早,且在世界上最为先进。数据显示,2007年,美国光纤传感器市场规模为2.35亿美元,此后以30%的年复合增长速度增长,2014年有望达到16亿美元。   相较于美国,中国的光纤传感行业处于起步阶段。据统计,截至2013年底,中国2000万元规模以上的传感器制造企业有260多家。但行业整体素质参差不齐,小型企业占比近七成,以生产低端产品为主 少部分龙头企业和外资企业占据高端产品市场。   虽然起步晚,中国光纤传感市场需求却呈现出爆发式增长,仅电力领域相关产品的招标就比以往多了近百倍以上。业界人士评估,2013年,光纤传感器在中国市场的规模约有10亿元,且呈逐渐增长的态势。   目前,市场上应用最广的光纤传感器有4种,分别是光纤陀螺、光纤水听器、光纤光栅传感器和光纤电流传感器。   光纤陀螺有干涉型、谐振型和布里渊型三种类型,干涉型光纤陀螺是技术上很成熟的第一代商品化阶段,谐振光纤陀螺是处于实验室研究阶段的第二代,布里渊型光纤陀螺是在理论研究阶段的第三代光纤陀螺传感器。   光纤水听器是在光纤、光电子技术基础上的一种水下声音信号传感器,这种传感器通过高度灵敏的光纤相干检测,把水中的声音信号转换成光信号,再通过光纤传到信号处理系统转换为声音信号,这种传感器按原理可以分为干涉型、强度型、光栅型等类型。   光纤光栅传感器产品包括应变传感器、温度传感器和压力传感器,其中光纤bragg光栅传感器是这几年的研究热点,它们大部分属于光强型和干涉型,并且各有利弊。   光纤电流传感器主要应用于电力领域,它能很好地避免一些由于电力过强而引发的事故。   光纤传感器目前可以直接或间接测量近百种物理量以及化学和生物量,被广泛应用于国防、电力、石油、建筑、医学等各个领域。   在国防上,光纤传感器可用于水声探潜(光纤水听器)、光纤制导、姿态控制、航天航空器的结构损伤探测(智能蒙皮)以及战场环境(电磁环境、生化环境等)的探测等。   在电力系统中,高电压、大电流的恶劣电磁环境使得电子类传感器的应用受到限制,而光纤传感器以其特有的抗电磁干扰能力,在电力系统中可用于测量大型电机的转子、定子和高压变压器内部的电流、电压、温利于提高特种微型光缆外护层的固化度,但超过一定范围对提高固化度作用不大。   近年来,这种采用UV涂层作为外护层的特种微型光缆在有线制导武器和水下工程中的应用发展非常迅速,不久的将来可广泛地应用于导弹、重型鱼雷、大潜深潜水器、海底监测网络等领域。
  • 中科院在SERS光纤探针研究方面取得进展
    近期,中国科学院合肥物质科学研究院固体物理研究所四室研究员孟国文课题组与安徽光学精密机械研究所研究员毛庆和课题组合作,在具有表面增强拉曼散射(SERS)活性的光纤探针研究方面取得新进展。基于静电吸附原理,研究团队发展了一种普适的组装方法,将多种具有等离激元特性的带电金属纳米结构组装到锥形光纤探针表面。该结构可用作SERS光纤探针,对污染物的远程、便携式在线检测具有重要意义。相关结果发表在ACS Appl. Mater. Interfaces 2015, 7, 17247?17254上。  光纤通信技术的发展,为污染物的高通量、远程实时SERS检测开辟了新途径,其核心思想是将高SERS活性纳米结构耦合到光纤探针表面,并集成到便携式光纤拉曼光谱仪上,通过采集并检测污染物的SERS信号,实现污染物便携快速检测。为了实现此目的,研究人员发展了涂拉法、光化学沉积或物理气相沉积等方法,将贵金属纳米结构沉积到光纤探针上。然而,这些研究方法制备的SERS光纤探针在功能上具有一定的局限性。例如,对于涂拉法,SERS活性纳米结构在光纤表面的附着力较弱,在液体样品中容易扩散,进而影响到检测信号的稳定性 对于物理气相沉积和激光诱导的光化学沉积法,由于受限于制备过程,难以精确调控纳米结构的形貌和尺寸,无法优化其局域电磁场增强及表面等离子体共振特性,不能保证SERS检测污染物的灵敏度。  针对上述问题,孟国文课题组和毛庆和课题组合作,采用静电组装法(如下图),将带有正/负电性的贵金属纳米结构组装到硅烷偶联剂修饰的锥形光纤表面,构筑了一种高效的SERS光纤探针。首先,在基于液相法构筑形貌可控的纳米结构的过程中,使用的表面活性剂可以使纳米结构呈现出可控的表面物理化学特性,如带有正/负电、亲/疏水性等。其次,光纤主要成分是氧化硅、表面有大量羟基,易于与硅烷偶联剂通过形成Si-O-Si键耦合 同时硅烷偶联剂末端具有一个官能团,使光纤整体富有特定的功能性。因此,对于带负电的纳米结构(如柠檬酸根保护的金纳米球),选取带氨基的硅烷偶联剂修饰光纤 反之,对于带正电的纳米结构(如CTAB保护的金纳米棒),采用带羧基的硅烷偶联剂修饰光纤,可实现贵金属纳米结构在光纤表面的有效组装。比如,可将多种不同形貌及光学特性的SERS活性纳米结构(金纳米球、金纳米棒、金@银核壳纳米棒和立方银)可控组装到光纤表面。这种SERS光纤探针具有稳定性高(相对信号偏差低于3%)、面向光纤种类多(适用于单模、多模、D型和微纳光纤等)及灵敏度高等优势,对农残甲基对硫磷的敏感度达到10纳摩尔。相关成果已申请国家发明专利并发表在ACS Appl. Mater. Interfaces杂志上。  上述研究得到国家科技部“973”计划和国家自然科学基金等项目的资助。  左:带电纳米结构组装到锥形光纤探针上的示意图。中:纳米立方银组装到光纤前后的光学照片及扫描电镜照片。右:SERS光纤探针在分析物溶液中及空气中的SERS信号。
  • 我国高功率拉曼光纤激光器研究取得进展
    近期,中国科学院上海光学精密机械研究所空间激光信息技术研究中心冯衍研究员领衔的课题组,在高功率拉曼光纤激光器研究中取得新进展。提出了一种镱-拉曼集成的光纤放大器结构,有效地解决了拉曼光纤激光器功率提升的主要技术瓶颈问题,在1120nm波长,首次获得580W的单横模线偏振拉曼光纤激光和1.3kW的近单模拉曼光纤激光输出。   近年来,高功率光纤激光器发展迅速。1&mu m波段的掺镱光纤激光器,近衍射极限输出功率可达20kW,多横模输出功率可达100kW。尽管如此,稀土掺杂光纤激光器的输出波长,因稀土离子能级跃迁的限制,仅能覆盖有限的光谱范围,限制了其应用领域。基于光纤中受激拉曼散射效应的拉曼光纤激光器是拓展光纤激光器波长范围的有效手段。   该项研究中,在一般的高功率掺镱光纤放大器中注入两个或多个波长的种子激光,波长间隔对应光纤的拉曼频移量。处于镱离子增益带宽中心的种子激光率先获得放大后,在后续光纤中作为泵浦激光对拉曼斯托克斯激光进行逐级放大。初步的演示实验获得了300 W的1120nm拉曼光纤激光输出 接着采用较大包层(400&mu m)的光纤,获得了580W的单横模线偏振拉曼光纤激光和1.3kW的近单模拉曼光纤激光输出。结果发表于《光学快报》(Optics Letters)和《光学快讯》(Optics Express) [Opt. Lett. 39, 1933-1936 (2014) Opt. Express 22, 18483 (2014)]。鉴于目前高功率掺镱光纤激光器均采用主振放大结构,新提出的光纤放大器结构可用于进一步提升拉曼光纤激光的输出功率。初步的数值计算也表明,该技术方法有望在1~2&mu m范围内任意波长获得千瓦级激光输出。   该项研究得到了中国科学院百人计划、国家&ldquo 863&rdquo 计划、国家自然科学基金等项目的支持。    千瓦级掺镱-拉曼集成的光纤放大器结构示意图    输出功率随976 nm二极管泵浦功率的变化曲线,其中的插图为最高输出时的光谱。
  • 我国首家光纤光缆国家重点实验室通过验收
    以质量和创新领跑全球光纤光缆行业的长飞公司,其兴建的光纤光缆制备技术国家重点实验室,近日通过国家科技部验收。   位于湖北武汉· 光谷的长飞公司,是目前我国产品最齐备、技术最先进、规模最大的光纤光缆专业制造和研究基地。2010年12月,该公司获批筹建的&ldquo 光纤光缆制备技术国家重点实验室&rdquo ,是我国光纤光缆制造行业唯一的国家重点实验室。   据了解,光纤是现代通信领域最主要的传输介质,全球80%以上的信息都由光纤传输。这家光纤光缆制备技术国家重点实验室,将有助于宽带传输网、光纤到户、三网融合,以及云计算数据传输所需的大容量高速率光纤制备技术的研发。
  • 小身材大作为:光纤传感器应用前景及场景剖析
    p   光纤传感器是近年来势头正猛的“科技新贵”,因为它有极高的灵敏度和精度、抗电磁干扰、高绝缘强度、耐腐蚀、能与数字通信系统兼容等优点,已被广泛应用于电网系统、道路监控、轨道交通、食品安全等领域。 /p p   紧贴时代发展趋势,由中国光学工程学会光纤传感技术专家工作委员会、中国光纤传感技术及产业创新联盟组织的2019第八届中国(北京)国际光纤传感技术及应用大会暨展洽会将于2019年8月5日-7日在北京国家会议中心组织召开。 /p p strong   科技新贵之光纤传感器 /strong /p p   光纤传感技术是一种新型传感技术。通过光的反射、折射和吸收效应,光学多普勒效应、声光、电光、磁光和弹光效应等,可使光波的振幅、相位、偏振态和波长等参量直接或间接地发生变化,因而可将光纤作为敏感元件来探测各种物理量。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 404px height: 263px " src=" https://img1.17img.cn/17img/images/201907/uepic/b0818f87-2205-4c37-9840-bd1f8c595af5.jpg" title=" 113.jpg" alt=" 113.jpg" width=" 404" height=" 263" / /p p   中国已成为全球光纤传感器消费最大国,在国产化进程有一定的突破。据了解,以南京大学、深圳中科传感为代表的大学及研究院等机构,基本掌握了全套的光纤传感器方案。而在光纤传感系统的核心部件上,厦门彼格的窄带光源、世维通的铌酸锂波导等为代表相关的器件,都不甘落后争相实现自主研发。 /p p   纵观整个行业市场,目前中国光纤传感器的自主研发仍是“短板”,总体市场化水平仍落后外国。据统计,中国传感器新品研制率落后美日等国近10年,产业化水平落后10-15年。未来,中国光纤传感市场产业化格局有待提升,物联网技术的加持,将推动中国光纤传感市场走向新一轮发展高峰。 /p p    strong 光纤传感器应用场景分析 /strong /p p   物联网俨然已经成为光纤传感器国产化的重要推手。物联网的发展必须要借助大量传感器获得各种环境参数,从而为物联网提供更可靠的数据信息,再经过系统的处理,得到人们需要的结果。可见,光纤技术在物联网中有很广阔的应用前景。 /p p   正是敏锐捕捉到光纤传感器技术在上述领域日益紧密的行业风向,第八届中国(北京)国际光纤传感技术及应用大会暨展洽会致力于全面拓展光纤传感器科技应用领域终端,聚焦智能电网、矿山安全、轨道交通、海洋与环境、地质与水利等各个应用行业,展现国内巨头企业相应的创新综合解决方案。 /p p   光纤传感器在智能电网领域起到重大作用。利用光纤传感技术对输电线路进行安全监控,通过对输电线路上发生的触碰光缆、接头盒、光芯等扰动的实时监测,采集和分析信息,判定扰动发生的位置、类型、强度,以帮助线路维护人员及时发现输电线路的破坏行为,有效解决对线路损毁的预警监测,为电力系统提供告警、智能分析和辅助决策支持。 /p p   光纤传感器也同样发力道路安全领域。伴随着工业与交通运输的发展,桥梁的跨度增加以及结构的复杂趋势,使得其安全隐患受到更多的关注。把光纤传感系统埋入水泥结构形成能够感知应力和断裂损伤的能力。同时,利用张力传感器感受隧道容易发生塌方的局部的变形情况,这些信息可以与互联网相结合,实现对这些基础设施的长期稳定的实时监测,减少事故的发生。 /p p   光纤传感器在轨道交通领域的作用也不容小觑。以中国自主研发的高铁列车代表作——和谐号380AL为例,一辆列车里的传感器数量多达1000多个,平均每40个零部件里就有一个是传感器。它们承担着状态监视、故障报警、车载设备控制等功能。中国工程院院士、中车株洲所总经理丁荣军曾一语道破光纤传感器的重大作用,它对于收集列车的运行状态信息、高速综合检测列车、钢轨探伤、轨道状态远程监测、室内外环境综合传感等方面都起到了不可或缺的作用。 /p p   strong  行业翘楚荟萃 看点十足 /strong /p p   第八届中国(北京)国际光纤传感技术及应用大会暨展洽会目前已进入倒计时,诚邀您八月相聚北京国家会议中心,感受这个绽放出耀眼科技光芒的盛会! /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 514px height: 295px " src=" https://img1.17img.cn/17img/images/201907/uepic/f9808917-ffd1-4382-89fa-a8893f2e65a4.jpg" title=" 115.png" alt=" 115.png" width=" 514" height=" 295" / /p p   strong  看点一:大咖领衔名企云集 定义光智造未来 /strong /p p   会议将邀请清华大学教授廖延彪、北京航空航天大学张惟叙教授、加拿大皇家科学院院士鲍晓毅及国内光纤传感领域的优秀研究团队等亲临现场助阵。会议内容涉及光纤传感系统在轨道交通、海洋与环境领域应用、矿山安全、智能电网、地质与水利工程中的应用等。 /p p   strong  看点二:匠心巨制 同期展会争奇斗艳 /strong /p p   会议现场将同期举办第十一届光电子· 中国博览会,会议还将呈现激光智能制造、全球高校· 研究所· 重点实验室创新技术、红外微光技术及应用、智能信息、光学制造、精密光学与光电检测六大主题展,吸引了从光学元器件到终端用户应用的众多行业龙头企业及科研机构参展。 /p p    strong 看点三:精准孵化采购新商机尊享高端定制贵宾服务 /strong /p p   第十一届光电子· 中国博览会将为光电行业的高管及专业买家提供新产品、新资讯、新方向、新商机贵宾导向服务,提升买家参观体验感,使买家豪享高端定制上中下游产品的一站式采购服务。 /p p   本届光博会展商参展/参观登记/参会注册均已全面上线,欢迎登陆展会官网或官方微信预约登记。 /p p   展会报名地址:http://www.cipeasia.com/ /p p br/ /p
  • 全国首个光纤激光协同创新中心成立
    大功率光纤激光协同创新中心日前在长沙成立。国防科技大学、清华大学、中科院上海光机所等3家光纤激光领域的优势单位,将通过建立技术联盟、共享仪器设备、联合培养人才、互聘研究骨干等形式,围绕突破光纤激光核心关键技术开展军民融合协同创新。   光纤激光是激光技术研究的前沿。光纤激光器具有体积小、效率高、光束质量好、节能环保等优势,在光通讯、激光加工、激光医学、生物技术等领域具有广阔的应用前景。近年来,我国光纤激光技术有了长足发展,但整体水平和可持续发展能力与世界先进水平仍有明显差距。为此,全国首个光纤激光协同创新研究中心应运而生。   据了解,共建各方将以协同创新中心为载体,共同研制开发具有世界先进水平的光纤激光器,改变我国高功率光纤激光器依赖进口、核心技术和知识产权受制于国外的状况,促进我国光纤激光技术水平的整体提升和可持续发展。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制