当前位置: 仪器信息网 > 行业主题 > >

神视光纤

仪器信息网神视光纤专题为您提供2024年最新神视光纤价格报价、厂家品牌的相关信息, 包括神视光纤参数、型号等,不管是国产,还是进口品牌的神视光纤您都可以在这里找到。 除此之外,仪器信息网还免费为您整合神视光纤相关的耗材配件、试剂标物,还有神视光纤相关的最新资讯、资料,以及神视光纤相关的解决方案。

神视光纤相关的资讯

  • 清华团队:基于多模光纤模式色散和深度学习的高速全光纤化成像技术
    多模光纤成像技术因其超细微型探头和柔性结构带来的灵活性优势,在生物体内成像、工业检测等领域具有广阔的应用前景,获得了业界广泛的关注。目前,多模光纤成像技术主要分为两类,一类通过在光纤远端产生聚焦点进行扫描成像,另一类通过探测光纤近端的散斑场来恢复光纤远端被探测的全场图像。这两种技术途径已有较完善的理论支撑,能得到较清晰的探测图像,但同时也具有一些难以弥补的劣势。例如:受限于空间光调制器、CCD或CMOS器件的刷新速度,成像帧率较低,难以对高速的事件进行成像;结构中包含自由空间光学元件,因此需要精密的光学对准,无法与传像主体集成实现全光纤化,限制了其应用范围;成像波长受限于CCD或CMOS器件的感光光谱范围,限制了其在红外波段的成像能力。上图 高速多模光纤成像系统示意图。a:实验原理图;b:以神经网络进行图像恢复的流程图;c:光纤探头示意图;d:照明光(黄色箭头)侧面注入探测光纤的示意图,信号光(红色箭头)在纤芯中传播;e:探测光纤远端照片,端面通过烧球来更好地聚焦照明光,比例尺500微米。为此,清华大学精密仪器系先进激光技术研究团队基于十多年来在光纤激光器、光纤器件和光纤传感的技术积累,提出了基于多模光纤模式色散和深度学习的高速全光纤化成像技术。该技术采用皮秒脉冲光纤激光照明被测物,利用多模光纤的模间色散特性将被探测图像的空间信息在时域上展开,时域信息通过单像素探测器进行探测,并借助神经网络训练的方法,由一维时域信息恢复出二维图像信息,整体结构和原理如图1所示。图2 被探测图像与其对应的波形和恢复结果该技术通过一个光纤侧面耦合器将皮秒脉冲光纤激光耦合到探测光纤中,然后从光纤的远端出射照到物体上,反射光进入探测光纤后紧接着进入与之连接的一公里长的50/125微米直径多模阶跃光纤中传播。由于模间色散的存在,进入多模光纤的脉冲光会产生分裂形成脉冲串。如图2所示,不同的光纤横模具有不同的群速度,因此在时域上会彼此分离,而这些横模包含了被探测图像的空间信息,通过模式色散便可将被探测物体的空域信息在时域上展开。图3 不同类型图案的成像效果通过超快光电探测器可以获得脉冲串波形,经神经网络模型进行训练后,可以直接从不同的脉冲波形中恢复出被探测图像。图3展示了来自不同数据库中图案的成像效果。该系统的成像帧率主要取决于脉冲光的重频,目前实验中已实现高达15.4Mfps帧率的成像,并实验验证了达到53.5Mfps帧率的可行性。系统在高帧率成像的同时具备连续采集一万帧图像(大帧深)的能力。如果采用重复频率更高的激光照明源,并搭配更快的光电探测器和时域波形采集设备,其帧率可以持续提升。团队所提出的新技术的突出优点是:帧率主要由脉冲光源的重频决定,成像帧率高;全光纤化的系统结构紧凑,细如发丝的探头大大增加了灵活性;单像素成像,探测波段不再受限于可见光,可扩展到近红外、甚至中波红外等其他波段;采集时域信号而非空间分布,抗干扰能力强。该系统在某些高速成像场景中比如体内高速细胞成像,或工业场景下对难以开放系统的内部高速成像检测等领域具有巨大应用潜力。该研究成果近日以“深度学习赋能全光纤高速图像探测”(All-fiber high-speed image detection enabled by deep learning)为题,发表在《自然通讯》(Nature Communications)上。该论文通讯作者为清华大学精密仪器系副教授肖起榕,第一作者为精密仪器系2018级博士生刘洲天。该研究得到了国家自然科学基金资助。 清华大学精密仪器系先进激光技术研究团队学术带头人为系主任、教授柳强,团队以现代化强国建设与国家重大需求为导向,着眼于光电子技术领域的科学与技术发展前沿,围绕固体激光、光纤光学、自适应光学、激光探测等方向,开展基础科学探索、应用基础研究和系统技术研发,全面覆盖高功率激光光源、光束控制、光电探测等技术领域。团队承担国家科技重大专项、国家重点研发计划、“973”计划、“863”计划、重点验证、专项配套型号研究等一系列重大项目,形成了从高功率激光光源到微弱光电信号测控的整套技术链条,具备完整的激光光电和测控技术能力,在相应研究方面取得了重要进展。2018年获批建设光子测控技术教育部重点实验室,2019年入选重点领域科技创新团队。
  • 台湾交大开发3D打印双光纤微反应槽,全球独创猫砂检测肾病技术
    p style=" text-align: justify text-indent: 2em " 现代社会,宠物猫是许多人家中的一分子,关怀猫咪的健康也是饲养者的责任。可是猫不会说话,饲养者工作忙碌时,难免忽略了猫咪在行为中展现的疾病征兆,尤其是猫咪健康的头号杀手-肾病,最需要被早发现,早治疗。 /p p style=" text-align: justify text-indent: 2em " 在科技部专题计划的支持下,台湾交通大学光电系冉晓雯教授,交通大学物理所孟心飞教授与高雄中兴动物医院黄明如副院长合作,针对猫肾病的体外检测技术进行开发,只要使用一般市售猫砂,就可以成功分析出猫尿尿素的浓度,从而获取猫的肾病状况,检测系统为团队过去多年建立的双光纤微反应槽技术,由两根光纤搭配3D打印的检测槽,以低成本的电子元件组装,即可进行即时检测,这是首次从一般猫砂中可以检测猫肾病的独创技术。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 514px height: 366px " src=" https://img1.17img.cn/17img/images/202001/uepic/093067e8-ad58-4293-91e7-18d49e569580.jpg" title=" most.jpg" alt=" most.jpg" width=" 514" height=" 366" / /p p style=" text-align: justify text-indent: 2em " 近几年来,许多研究团队开发出各种人体疾病的体外检测技术,然而相较之下,动物疾病的体外检测技术仍相对缺乏。动物的病征常常不够明显,等到主人发现动物出现明显的行为变化时,病况通常已经相当严重。因此,若能开发动物可以使用的疾病检测工具,有助于早发现早治疗。然而,体外检测通常依赖尿液、唾液或呼气,在动物身上,要取得这些检体并不容易,因此,开发出可以有效搜集检体进行检测的方法是此类技术发展的关键。 /p p style=" text-align: justify text-indent: 2em " 在家猫当中,肾病是最普遍的疾病,根据推测,超过一半的10岁以上宠物猫患有慢性肾脏病。倘若能有居家监测工具,宠物猫的健康也会更有保障,猫的呼气、唾液、尿液均不易取得,因此团队使用过去多年开发的双光纤微反应槽做为尿素检测工具,使用一般市面上常用的猫砂,待吸收猫尿后经过加水稀释过滤,分析其尿液尿素,经过半年的研究,发现此猫砂分析方法确实能反应猫的肾病状况,可以提供动物诊所或居家使用。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 514px height: 269px " src=" https://img1.17img.cn/17img/images/202001/uepic/e2deb459-b1c8-4067-8c24-f2ac8021bda9.jpg" title=" 台湾交大.jpg" alt=" 台湾交大.jpg" width=" 514" height=" 269" / /p p style=" text-align: justify text-indent: 2em " 这款便携式可即时反应的双光纤微反应槽尿素检测工具过去已成功应用于慢性肾脏病患者人体临床实验中的唾液尿素检测,并于2019年在《生物传感器与生物电子学》(Biosensors and Bioelectronics)上发表,该工具仅需使用半颗米粒大小的唾液就可进行即时检测,且克服了传统光纤生化传感器会因为光纤对位不准所造成的信号偏移问题,研究团队的双光纤微检测槽只需靠着3D打印槽上的刻痕粗略对位,就能确保系统传感特性的稳定性。 /p p style=" text-align: justify text-indent: 2em " 目前,适合居家简易操作的尿素检测棒也正在发展中,将引入冉晓雯团队与法国国家科研中心(CNRS)米卢斯材料科学研究所Olivier Soppera共同指导的光直写半导体制程技术,此技术可以很容易地在塑胶棒上面制作出半导体元件,已发表的系列工作包含使用深紫外激光制备铟镓锌氧化物晶体管,使用双光子近红外激光使二氧化钛溶液产生具有导电性能的石墨烯碳颗粒,结合这些光直写技术,研究团队预计2020年内可完成尿素检测棒,提供居家易操作的猫砂检测。 /p p style=" text-align: justify text-indent: 2em " 上述跨领域甚至跨国的研究成果,部分已发表于《生物传感器与生物电子学》(Biosensors and Bioelectronics)以及《先进材料》(Advanced Materials)期刊,这些成果对于未来拓展动物体外检测以及人体唾液/尿液中各类分子的检测有很大的帮助。 /p p style=" text-align: justify text-indent: 2em " 参考资料: /p p style=" text-align: justify text-indent: 2em " a href=" https://doi.org/10.1016/j.bios.2019.03.007" target=" _blank" https://doi.org/10.1016/j.bios.2019.03.007 /a /p p style=" text-align: justify text-indent: 2em " a href=" https://doi.org/10.1002/adma.201805093" target=" _blank" https://doi.org/10.1002/adma.201805093 /a /p
  • 新一代微型光纤光谱仪强势来袭 | 海洋光学SR2即将上线
    源起当下全球制造业开启“工业4.0”进程,我国亦提出了“工业2025”计划,工业自动化行业将在中国制造业的未来发展中占有举足轻重的地位,未来仍将保持较快的发展速度。随之而来的是制造业对仪器和设备的要求也越来越高,如:半导体、生物制药等行业一直在寻求更高性能的小型光谱仪。自海洋光学推出光纤光谱仪的概念后,传统小型光纤光谱仪发展迅速,但近年来小型光纤光谱仪进入了瓶颈期,由于核心器件性能的影响,光谱仪在信噪比、采集速度、分辨率等方面未有较大进步。“灯塔”引路作为小型光纤光谱仪的发明者,海洋光学推出的USB2000+和Flame系列光谱仪,应用广泛且颇受好评,一直是学术界和制造业的宠儿。探索不止于此海洋光学深知市场动态和需求,为此开启了“灯塔”项目,致力于新一代光纤光谱仪的研发,旨在从根本上提升小型光纤光谱仪的性能。终传捷报,“灯塔”点亮海洋光学全新一代小型光纤光谱仪SR系列荣耀登场继承了上一代光谱仪集成便捷、应用广泛、性能稳定的优势,同时取得了多项突破性进展。系列首 款SR2更高、更快、更强全“芯”设计——从光路设计,电路设计到核心探测器,都是全新的独立设计与选择。“步步高升”——提供了远超上一代光谱仪的信噪比(380:1)与动态范围(3400:1)并提高了分辨率水平。“唯快不破”——积分时间有了重大突破,由毫秒级到现在的10微秒积分时间。“自强不息”——特别添加板载平均的功能,可在光谱仪内部直接计算出多次采集的平均值,再输出结果。在峰形对称性上表现更好,同时提升了在紫外段的杂散光抑制水平,可获取更精确的数据。此外,SR2的光谱平均性、热稳定性等也得到进一步优化,在激光表征、等离子体检测、 DNA、蛋白质等生物分子的吸光度测量等应用表现出色。为更多用户和新兴领域,如半导体,智能制造,生物制药等解决更多科研与生产的问题。更多精彩等你发现!免费试用 先到先得想要先一睹SR2的风采吗?想要体验新一代光谱仪的优 秀吗?快来申请抢先免费体验啦!!!关注“蔚海光学”微信公众号或官网获取申请入口,审核通过后即可获得第 一批免费试用资格,同时附赠使用期间原厂应用专家服务和技术支持。申请时间:2022.5.6—2022.6.5试用期限:10天,自样机签收之日起试用后提供优质试用报告反馈者,可以8折优惠价购买一台SR2。活动说明1.活动期间,您只需提交试用申请,即有机会获得SR2光谱仪10天免费试用体验。2.申请活动结束后会按申请顺序与您联系,评估完成后即可预约具体的试用日期。3.试用前,需签署《样机借用协议》。4.本活动限与海洋光学工业和科研业务相关的终端客户参与。* 本活动最终解释权归海洋光学所有
  • 光纤通信技术和网络国家重点实验室建设在汉通过验收
    2010年7月6日,国家科技部在武汉组织召开光纤通信技术和网络国家重点实验室建设验收会。实验室验收专家组由10位国内知名专家组成,组长为中国工程院原副院长朱高峰院士。      专家组听取了实验室主任余少华工作报告,并通过现场考察、与实验室固定人员座谈等方式考察实验室的建设情况。一致认为,实验室在建设期内,围绕光通信系统、光纤光缆、光电器件三个主要研究方向,开展了光网络、光接入、光纤光缆、光通信集成电路、光有源和无源器件、光电子集成、光以太网和网络优化等应用基础研究,实验室定位准确,目标集中,重点突出。   实验室在两年建设期,主持和承担了包括973、863项目在内的国家重大科研项目6项 共获得包括国家技术发明奖二等奖和国家科技进步奖二等奖在内的省部级以上科技奖励7项 在光纤线路自动切换保护系统等7个技术专项的研究上获得了突破 绝大多数科技成果实现了转化 建设期内获得国内授权专利31项、国际授权发明专利4项,申请国内专利47项、国际专利7项 牵头和参与制定的国际、国家、行业、企业标准29项 发表论文专著88篇(本)。   实验室采取切实可行的措施,实施择优竞聘、开放流动和优势整合的用人机制,队伍建设和人才培养取得了成效。1人获光华工程科技奖,1人入选国家级百千万人才工程、1个团队获全国杰出专业技术人才团队,从国外引进了三名高水平科研人才,形成了一支结构更加合理、充满活力、团结协作、具有可持续创新能力的学术团队。   重点实验室还设立了学术委员会和管理委员会,重视发挥骨干科技人员的作用,重视团队建设和国内外学术交流与合作,制定了包括科研、成果、激励、开放基金等14项相关管理制度 主办或参与了40多次国内外学术交流活动,与国内外多所高校、相关科研单位和企业建立了产学研的合作研究关系 发起并组建了光纤接入(FTTx)产业技术创新战略联盟 主办了核心期刊《光通信研究》(双月刊),为行业发展提供了交流与合作平台。   依托单位武汉邮电科学研究院高度重视实验室建设,安排了2400平方米的固定研究场所,两年经费总投入3442万元,用于实验室的基础设施建设、研究平台和配套国家项目经费,并在人员编制、管理权限、科研用房以及运行费用等方面给予了大力支持,保证了实验室的高效运行。   通过两年的建设,实验室圆满完成了建设任务,实现了预期建设目标。专家组一致同意通过验收。
  • 基于光纤传感的尿比重仪
    仪器名称 基于光纤传感的尿比重仪 单位名称 深圳大学 联系人 李学金 联系邮箱 lixuejin@szu.edu.cn 成果成熟度 □正在研发 &radic 已有样机 □通过小试 □通过中试 □可以量产 合作方式 □技术转让 &radic 技术入股 □合作开发 □其他 成果简介: 基于光纤传感的尿比重仪是一种新型肾功能及人体体液溶质含量的监控仪器。采用先进的光纤传感技术,可实现高灵敏的实时在线检测(现有比重仪做不到),并能大大缩小仪器的体积。 本仪器的灵敏度比市场上现有尿比重仪高10倍以上,并能实现检测即时数显和实时记录等功能。还可以通过转换标定体系,转换成液体浓度、折射率等量的检测。 应用前景: 基于光纤传感的尿比重仪主要用于检测人体尿液的比重值,用于临床医学上诊断肾脏的浓缩功能,并可用于初步诊断糖尿病、蛋白尿、急性肾炎、高热、脱水、尿崩症、尿毒症、慢性肾小球肾炎、急性肾炎多尿期等;也可以反映一些疾病的程度,如糖尿病患者,如果血糖升高,尿比重值也会相应升高。 另外,本仪器还可广泛用于各种液体的浓度、折射率的检测或监控,如酿酒过程中,酒精浓度的监控;各种化学药剂生产过程中的浓度监控(相比电学的方法,采用光学的检测方法,不但灵敏度高,而且在易燃易爆环境中使用安全可靠);环境水体污染程度检测等。 本仪器可应用于人体健康指标智能监测,安装于小便池中,人们可以通过每次小便及时得知自己的健康情况,是一种新型的智能家居。随着&ldquo 智慧城市&rdquo 列入十二五规划的一项重要内容,物联网应用技术将得到一个新的发展和完善。智能家居做为物联网最广泛的应用,不管是在物联网的大浪潮下、还是在智慧城市建设中都有着广泛的前景,蕴含着巨大的市场潜力。 知识产权及项目获奖情况: 已获得专利,专利名称:一种液体比重仪,专利号:201520045154.2
  • 基于损失模式共振光纤传感器的增强型光谱电化学装置
    光谱电化学(SEC)测量在分析化学中起着至关重要的作用,利用透明或半透明电极对电化学过程进行光学分析。电化学读数提供了有关电极状态的信息,而透射光谱的变化有助于识别电化学反应的产物。 据麦姆斯咨询报道,近日,波兰华沙理工大学(Warsaw University of Technology)的研究人员开发了一种增强型光谱电化学装置,其中,基于双域(光学和电化学)光纤的传感器直接用作工作电极,同时像光谱电化学一样单独测量分析物的光学特性。该传感器采用反射(探针状)配置,其中只有短纤芯部分涂有氧化铟锡(ITO)并浸入分析物中。对ITO纳米涂层的性能进行了优化,以满足在期望的反射光谱范围内获得损失模式共振(LMR)的条件。基于LMR和分光光度计的测量在单独的光路中进行。这产生了一种具有电化学激活的两个垂直定向光谱通道的新形式。相关研究成果以“Enhanced spectroelectrochemistry with lossy-mode resonance optical fiber sensor”为题发表在Scientific Reports期刊上。 在这项工作中,ITO-LMR传感器是基于聚合物包层的石英(PCS,芯径 = 380 μm)多模光纤。由于传感器设计为反射(探针状)配置以有效地引导在光纤端面之一处反射的光,因此使用直流磁控溅射技术在其中一个光纤端面上沉积一层铝膜。必须注意的是,只有当LMR传感器用作工作电极时,传感器/电极的光学询问(通道2中的光学测量)才是可能的,而当使用铂网或ITO涂覆的载玻片时则不可能。增强型SEC装置(LMR传感器作为工作电极)的示意图 增强型SEC装置提供了三种类型的询问读数:电化学测量、与分析物体积相对应的光谱分析(类似于标准SEC)、反映传感器/电极表面状态的LMR光谱分析。在每个询问路径中,分别用铁氰化钾和亚甲基蓝两种氧化还原反应探针进行循环伏安法(CV)实验。随后,在传感器的计时电流(CA)测量期间进行同步测量,并检查读数之间的相互关系。(A)铁氰化钾和亚甲基蓝溶液中LMR传感器的CV扫描;(B)LMR光谱的演变,其中施加电压以诱导氧化还原探针的氧化和还原;(C)计时电流响应,显示LMR传感器在亚甲基蓝溶液中的可重复响应。LMR传感器支持的增强型SEC配置中的多步电流法测量结果(铁氰化钾作为氧化还原探针)LMR传感器支持的增强型SEC配置中的多步电流法测量结果(亚甲基蓝作为氧化还原探针) 总而言之,研究人员开发了一种基于ITO的损失模式共振光纤传感器的增强型光谱电化学测量系统。由于ITO膜的优化厚度和光学性质,在光学域中观察到了LMR,而ITO的电学性质允许将传感器也用作电化学装置中的工作电极。通过检测两种氧化还原探针,即铁氰化钾和亚甲基蓝,证明了该方法。由于LMR强烈地依赖于外部介质的属性和传感器表面发生的变化,因此外加电压的变化会引起共振波长的移动以及特定波长的透射。此外,外加电压引起的变化具有高度可逆性。与标准工作电极相比,“针状”形式的传感器结构紧凑,因此在测量系统内传感器的放置方面提供了很大的灵活性,并能够减小分析样品的体积。此外,这种传感器的制造具有可扩展性,高度可重复性和低成本。利用ITO-LMR增强型光谱电化学装置,增加了关于工作电极表面状态、氧化还原反应本身的信息,并交叉验证了获得的结果,从而提高了分析的灵敏度。这种三通道系统将来可以应用于其他分析,也可以应用于需要使用便携式系统的传感应用。论文信息:https://www.nature.com/articles/s41598-023-42853-0延伸阅读:
  • 定制光纤品牌“飞博盖德”为双子南座望远镜设计顶级光纤阵列
    飞博盖德为双子南座天文望远镜制造光纤阵列。2016年2月18日,美国新泽西州的斯特灵市传来消息,英国豪迈的定制光纤品牌“飞博盖德”(www.fiberguide.com.cn)已经在新双子南座天文望远镜(GHOST)中制造光纤阵列。澳洲天文台(AAO)是该项目的建造商和领导机构。飞博盖德的光纤阵列采用了最先进的制造技术,此次项目中的光纤阵列采用的就是这项技术。由飞博盖德生产的高质量、高性能的光纤阵列成为该项目成功的关键。届时,双子南座天文望远镜将配备双目标大面积全波长光谱望远镜,其覆盖范围介于363~950 nm,分辨率介于50000~75000。新的双子南座天文望远镜由澳洲天文台建造。每根飞博盖德的光纤均携带一部分来自星体的光束,从而尽量减少了因大气模糊造成的损失。通过采用飞博盖德专有的制造技术,以及其在天文学、安全和数据通信类型光纤阵列的丰富经验,可以减少传统光纤的指向误差和插入损耗等问题。新的天文观测仪器可使观察者更高效地观测夜空。双子南座天文望远镜的项目负责人安德鲁?舍伊尼斯说:“双子南座望远镜是世界上最大也是最成功的世界级双子望远镜仪器,而飞博盖德的光纤一直是澳洲天文台在望远镜科技发展中不可或缺的组成部分。一旦该项目交付,双子南座望远镜将为我们提供更多了解宇宙的机会,例如发现与研究太阳系外行星”。双子南座天文望远镜能够为了解双子南座天空提供无与伦比的便利,并进一步加强认识宇宙的机会。欲详细了解飞博盖德的应用于天文的产品,或光纤阵列和光纤束建设的专门知识,请访问飞博盖德的中文官方网站。关于飞博盖德和英国豪迈:美国飞博盖德工业有限公司(Fiberguide)生产多种工业标准的和按需定制的高传输光纤和超精密光阵列。公司经过美国食品和药品管理局登记注册,被确定为合同制造商和定制设备制造商。飞博盖德的光纤工厂位于美国新泽西州的斯特林(Stirling),同时在爱达荷州的卡德维尔(Caldwell)也有制造/装配厂。飞博盖德是英国豪迈(Halma)的子公司,隶属于豪迈的环境与分析事业部。1894年创立的英国豪迈如今是全球安全、医疗、环保产业的投资集团,伦敦证券交易所的上市公司,富时指数的成分股。集团在全球有5000多名员工,近50家子公司,在中国的上海、北京、广州、成都和沈阳设有代表处,并在多地建立了工厂。欲了解更多公司信息,请关注英国豪迈官方微博(www.weibo.com/halma)和官方微信(HALMACHINA)。业务合作联系人:谈理(Teddy Tan)飞博盖德大中华区销售经理电话:021 - 60167698邮箱:ttan@fiberguide.com媒体联络联系人:陆瑶 (Lucas Lu)英国豪迈中国区公关经理电话:021 - 60167667电邮:lucas.lu@halma.cn
  • 我国首家光纤光缆国家重点实验室通过验收
    以质量和创新领跑全球光纤光缆行业的长飞公司,其兴建的光纤光缆制备技术国家重点实验室,近日通过国家科技部验收。   位于湖北武汉· 光谷的长飞公司,是目前我国产品最齐备、技术最先进、规模最大的光纤光缆专业制造和研究基地。2010年12月,该公司获批筹建的&ldquo 光纤光缆制备技术国家重点实验室&rdquo ,是我国光纤光缆制造行业唯一的国家重点实验室。   据了解,光纤是现代通信领域最主要的传输介质,全球80%以上的信息都由光纤传输。这家光纤光缆制备技术国家重点实验室,将有助于宽带传输网、光纤到户、三网融合,以及云计算数据传输所需的大容量高速率光纤制备技术的研发。
  • 黄正宇:用“实业报国”的心领跑全球光纤传感技术
    有一段时间,缺钱购买黑体设备,黄正宇和他的伙伴们用太阳作为黑体源,每天坐等阳光,下午3点到5点,阳光斜射办公室,一帮人抄起工具抓紧做实验。   黄正宇本可以不用如此“窘迫”。如果4年前他不选择回国创业,而是留在美国,他所需的设备只需打个报告,就能随时送到。   但是,黄正宇放弃了在美国的优厚生活,归国创业。那年,他31岁。   在清华科技园的一个小办公室,他和文进创立北京蔚蓝仕科技有限公司,从事光纤传感器及光纤传感系统的研发、生产和销售。4年的时间,公司业务蓬勃发展,注册资本从50万元发展到1710万元,当初的6人团队也发展成现在的73人。公司已拥有多项光纤传感的自主核心技术,其中4项具有世界领先性。   回首4年的创业史,黄正宇丝毫没感到艰辛,支撑他一路走来的,是一颗家族传承的“实业报国”心。   想好的事情,就不给自己留后路   1999年,黄正宇毕业于清华大学精密仪器系,2000年8月,赴美国弗吉尼亚理工大学留学,2005年12月,获得电子工程系光博士学位。   毕业后,他进入美国某知名光学公司,成为首席光学专家。一上任,他就有惊人之举:在4个月的时间里,帮助公司完成了花5年时间、耗费4000万美元没有解决的难题。   谈及此事,黄正宇轻描淡写。他说,“我发现公司的基础技术方案出了问题,我到了公司之后,在技术方案上进行了一些调整,帮公司攻克了一些封装、材料、工艺、算法层面的问题。节省了大笔费用。”   在美国的生活无忧无虑,他完全可以拿着高薪,舒舒服服地过一生,但是创业的愿望始终在心中涌动。“如果我想留在美国,或者给自己留后路,我会申请绿卡,但是我一直没那么做。”黄正宇说。   谈到创业,黄正宇提到一个重要的缘由:家族的传承。   黄正宇出生在上海。从他记事起,姥爷就是自己的偶像。他听姥爷讲过很多故事,印象最深的就是实业报国。   家人常说,在抗战时期,姥爷在上海经营一家很大的棉纺厂,家境殷实,曾有人提出让姥爷为日军做军服,老人家断然拒绝,因此还吃了不少苦头。建国前,老人曾有机会携全家去台湾,但是为了工厂和员工,他选择留在上海。   老人家重视教育,四个孩子,两个上了清华,两个上了北大。临终前,老人家对子女说了两个遗愿,一是希望未来子孙能继续办实业,二是希望后代能出钱办教育。   黄正宇铭记在心:“他老人家一辈子都在实业报国,这也在我心中种下了一颗创业的种子。”   在美工作一年后,黄正宇找到了必须马上归国的理由。   “美国的光纤传感技术,在世界上是最先进的。我慢慢地发现,公司研发的一半产品,是以军事用途为直接目标的,而其产品的目标可能就有中国。”黄正宇说,“作为一个中国人,我怎么能帮他们做这样的研究呢?”   2007年8月,他果断放弃高薪,回到了北京,没有丝毫的犹豫,“我做事情的风格就是果断,想好的事情,从不给自己留后路。”黄正宇说。   艰苦的环境一样能搞研发   在清华东门的一个小办公室,黄正宇和文进拿出了全部积蓄50万元,开创了北京蔚蓝仕公司,第一批员工只有6人,公司的目标是光纤传感器及光纤传感系统的研发、生产和销售。当时,国内也有开展相同业务的公司,但是在技术上与美国和欧洲的公司相差10年以上。   缺少研发资金是黄正宇当时面临的最大问题。   弗吉尼亚理工大学拥有世界上最大的光纤传感实验中心。黄正宇介绍,从1997年到2010年,该中心的实验经费就高达3000万美金。在读博士的时候,如果黄正宇想买一台实验仪器,只需打个报告,就能很快批复下来。可是回到北京之后,这样的条件就完全不存在了。   讲创业的艰难故事,黄正宇面带微笑,没有丝毫的抱怨。他说,艰苦的环境一样能搞研发。   黄正宇张开两只手,并在一起,上下搓动,“当初,我们没有钱,为了做一些光学实验,连手都用上了。这样搓动,为的是用指缝的交错对光源进行斩波调制。我们甚至还用电风扇的叶片旋转来做光学斩波器,来做光学实验”。   就是在如此艰难的环境下,黄正宇带领团队,完成了一些看似不可能完成的任务。2008年,黄正宇获得国家级留学人员择优资助;2008年公司承担国家十一五科技重大科技专项子课题“智能完井关键技术研究”;2009年,黄正宇入选“千人计划”,并当选中关村高端领军科技创新创业人才和北京“海聚工程”首批海外高层次人才。   蔚蓝仕公司已拥有多项光纤传感的自主核心技术,其中4项具有世界领先性,在国内光纤传感器领域具有巨大的技术优势。公司已申请专利11项,其中发明专利7项、实用新型两项、外观设计两项,软件著作权登记6项,另有60多项国内外专利正在申请中。   “如果我的教授知道我在这样的条件下,取得现在的成绩,他会感到非常惊讶的。”黄正宇说。   展望未来,黄正宇充满希望,公司目前已经研发出六条产品线,第七、八条产品线预计在明年下半年完成。黄正宇说,“我们基本上已经把光纤传感过去40年内验证过的有市场潜力的东西都做出来了”。   蔚蓝仕的目标是什么?   黄正宇说,“要成为全球光纤传感技术的领先者”。
  • 高速氟素塑料光纤技术联合实验室成立
    4月15日讯 AGC(旭硝子株式会社)日前在北京举办了世界上最快的塑料光纤“FONTEX”的技术论坛。AGC宣布,将从今年7月起,开始在中国地区销售“FONTEX”。“FONTEX”是世界首创的可以进行10千兆比特每秒(Gbps)大容量数据通信的塑料光纤,与现有的石英光纤相比,具有能在弯折、卷曲状态下保持通信的特点。未来有望在“全高清电视”、“3D电视”等民用信息家电布线等领域得到进一步的推广和应用。   AGC与北京邮电大学还宣布,成立旨在进行“FONTEX”应用研究的“BUPT-AGC超高速氟素塑料光纤技术联合实验室”。该实验室将在“FONTEX”涉及中国市场的电视线路、电视机内布线、室内网络线路、通信线路、电力行业等领域,从事标准规格的应用开发和调查研究等工作。   此外,日本庆应大学小池康博教授的“世界上最快的塑料光纤”研究课题,在今年3月被日本政府最尖端研究开发援助项目列为扶持对象。作为这项研究课题的核心企业,AGC公司为了实现“以来自日本的光纤技术开创新市场”的目标,正在积极进行着40Gbps以上超高速产品以及缆线、接头等各类应用产品批量生产的技术开发工作。   “全高清电视”、“3D电视”最近受到了社会的广泛关注,预计不久的将来,这些产品的新一代显示屏布线、个人电脑周边机器的接续等都将促使大容量数据的高速传输成为市场需求的热点。另外,数据中心和医疗领域为了实现高速度、低耗电的数据通信,也已经开始在服务器、存储器等机器间使用光纤布线。今后,民用光纤布线市场也将迅速扩大,预计2015年,将在全球范围内开创超过1500亿日元(约合人民币115亿元)的新市场。
  • 分布式光纤应变监测仪取得重要进展
    p style=" text-align: justify text-indent: 2em " & nbsp 由中兴通讯股份有限公司牵头的国家重点研发计划“重大科学仪器设备开发”重点专项“分布式光纤应变监测仪”项目经过近两年的努力,突破了高空间分辨率技术、超长距离测量技术和高精度布里渊信号处理等关键技术,开发出分布式光纤应变监测仪样机。近日,项目顺利通过了科技部高技术中心组织的中期检查。 /p p style=" text-align: justify text-indent: 2em " 分布式光纤传感以光纤作为传感器,其测量参数包括应变和温度等,可以实现空间上的连续测量,监测点位可达百万个,测量距离可达百公里,具有传统点式传感器不可比拟的优势,是大尺度基础设施结构健康监测和大范围地质灾害监测最有效的技术手段。目前国内高性能分布式光纤传感监测仪主要依赖国外进口,国内还不能实现厘米级超高空间分辨率和百公里超长距离产品供货。该项目通过采用差分脉冲对技术和双频激光扫描技术,所开发的可工程化应用的分布式光纤应变监测仪,具有厘米级空间分辨率和百公里测量距离,已成功应用于油气管道、高速铁路、高压输电线、大型桥梁和山体滑坡监测等领域,中国公路学会组织的科技成果鉴定认为该项目整体技术达到了国际领先水平。开展分布式光纤应变监测仪的自主化研究,对于提高我国大型基础设施、大型结构装备和地质灾害的安全监测能力,提升公共安全水平,以及减小经济损失和社会影响具有重要意义。 /p p style=" text-align: justify text-indent: 2em " 该项目下一步将加强仪器小型化设计,提高产品的工程使用灵活性;进一步加快工程应用示范及产业化推广等工作。& nbsp /p
  • 全球光纤传感器市场规模年均新增18%
    作为物联网极其重要的组成部分之一,光纤传感器因其优势与应用一直备受瞩目。从全球市场来看,2013年全球光纤传感器市场规模为18.9亿美元。预计2014至2018年,全球光纤传感器市场将以年均18%的增长幅度增长,至2018年市场规模达到43.3亿美元。   从光纤传感技术研究上看,美国对该技术的研究起步最早,且在世界上最为先进。数据显示,2007年,美国光纤传感器市场规模为2.35亿美元,此后以30%的年复合增长速度增长,2014年有望达到16亿美元。   相较于美国,中国的光纤传感行业处于起步阶段。据统计,截至2013年底,中国2000万元规模以上的传感器制造企业有260多家。但行业整体素质参差不齐,小型企业占比近七成,以生产低端产品为主 少部分龙头企业和外资企业占据高端产品市场。   虽然起步晚,中国光纤传感市场需求却呈现出爆发式增长,仅电力领域相关产品的招标就比以往多了近百倍以上。业界人士评估,2013年,光纤传感器在中国市场的规模约有10亿元,且呈逐渐增长的态势。   目前,市场上应用最广的光纤传感器有4种,分别是光纤陀螺、光纤水听器、光纤光栅传感器和光纤电流传感器。   光纤陀螺有干涉型、谐振型和布里渊型三种类型,干涉型光纤陀螺是技术上很成熟的第一代商品化阶段,谐振光纤陀螺是处于实验室研究阶段的第二代,布里渊型光纤陀螺是在理论研究阶段的第三代光纤陀螺传感器。   光纤水听器是在光纤、光电子技术基础上的一种水下声音信号传感器,这种传感器通过高度灵敏的光纤相干检测,把水中的声音信号转换成光信号,再通过光纤传到信号处理系统转换为声音信号,这种传感器按原理可以分为干涉型、强度型、光栅型等类型。   光纤光栅传感器产品包括应变传感器、温度传感器和压力传感器,其中光纤bragg光栅传感器是这几年的研究热点,它们大部分属于光强型和干涉型,并且各有利弊。   光纤电流传感器主要应用于电力领域,它能很好地避免一些由于电力过强而引发的事故。   光纤传感器目前可以直接或间接测量近百种物理量以及化学和生物量,被广泛应用于国防、电力、石油、建筑、医学等各个领域。   在国防上,光纤传感器可用于水声探潜(光纤水听器)、光纤制导、姿态控制、航天航空器的结构损伤探测(智能蒙皮)以及战场环境(电磁环境、生化环境等)的探测等。   在电力系统中,高电压、大电流的恶劣电磁环境使得电子类传感器的应用受到限制,而光纤传感器以其特有的抗电磁干扰能力,在电力系统中可用于测量大型电机的转子、定子和高压变压器内部的电流、电压、温利于提高特种微型光缆外护层的固化度,但超过一定范围对提高固化度作用不大。   近年来,这种采用UV涂层作为外护层的特种微型光缆在有线制导武器和水下工程中的应用发展非常迅速,不久的将来可广泛地应用于导弹、重型鱼雷、大潜深潜水器、海底监测网络等领域。
  • 岛津应用:应用电子探针测试通信光纤
    光纤及光导纤维(Optical Fiber)。光纤通信是现代信息传输的重要方式之一。它具有重量轻、通信容量大、信号损耗小、传输距离长、保密性能好、不受电磁干扰及原材料丰富等优点,发展势头强劲。我国已成为全球最主要的光纤光缆市场、全球最大的管线光缆制造国和全球第二大光纤净出口国。 使用岛津电子探针EPMA可对不同类型的光纤进行线、面分析测试。从单根光纤试样的横截面的元素线分布和面分布的测试结果可以观察掺杂元素的含量及扩散分布情况。岛津公司在电子探针领域拥有50多年研发和制造经验,EPMA搭配52.5°高取出角和全聚焦晶体的波普仪WDS系统兼具高分辨率和高灵敏度特性,凭借其在微区分析的强大能力,可以在光纤预制棒、烧缩工艺后质量控制和最终成品光纤复核检验的整个开发及生产流程、残次品的失效分析中发挥重要作用。 了解详情,敬请点击《岛津电子探针测试通信光纤》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 中科院在SERS光纤探针研究方面取得进展
    近期,中国科学院合肥物质科学研究院固体物理研究所四室研究员孟国文课题组与安徽光学精密机械研究所研究员毛庆和课题组合作,在具有表面增强拉曼散射(SERS)活性的光纤探针研究方面取得新进展。基于静电吸附原理,研究团队发展了一种普适的组装方法,将多种具有等离激元特性的带电金属纳米结构组装到锥形光纤探针表面。该结构可用作SERS光纤探针,对污染物的远程、便携式在线检测具有重要意义。相关结果发表在ACS Appl. Mater. Interfaces 2015, 7, 17247?17254上。  光纤通信技术的发展,为污染物的高通量、远程实时SERS检测开辟了新途径,其核心思想是将高SERS活性纳米结构耦合到光纤探针表面,并集成到便携式光纤拉曼光谱仪上,通过采集并检测污染物的SERS信号,实现污染物便携快速检测。为了实现此目的,研究人员发展了涂拉法、光化学沉积或物理气相沉积等方法,将贵金属纳米结构沉积到光纤探针上。然而,这些研究方法制备的SERS光纤探针在功能上具有一定的局限性。例如,对于涂拉法,SERS活性纳米结构在光纤表面的附着力较弱,在液体样品中容易扩散,进而影响到检测信号的稳定性 对于物理气相沉积和激光诱导的光化学沉积法,由于受限于制备过程,难以精确调控纳米结构的形貌和尺寸,无法优化其局域电磁场增强及表面等离子体共振特性,不能保证SERS检测污染物的灵敏度。  针对上述问题,孟国文课题组和毛庆和课题组合作,采用静电组装法(如下图),将带有正/负电性的贵金属纳米结构组装到硅烷偶联剂修饰的锥形光纤表面,构筑了一种高效的SERS光纤探针。首先,在基于液相法构筑形貌可控的纳米结构的过程中,使用的表面活性剂可以使纳米结构呈现出可控的表面物理化学特性,如带有正/负电、亲/疏水性等。其次,光纤主要成分是氧化硅、表面有大量羟基,易于与硅烷偶联剂通过形成Si-O-Si键耦合 同时硅烷偶联剂末端具有一个官能团,使光纤整体富有特定的功能性。因此,对于带负电的纳米结构(如柠檬酸根保护的金纳米球),选取带氨基的硅烷偶联剂修饰光纤 反之,对于带正电的纳米结构(如CTAB保护的金纳米棒),采用带羧基的硅烷偶联剂修饰光纤,可实现贵金属纳米结构在光纤表面的有效组装。比如,可将多种不同形貌及光学特性的SERS活性纳米结构(金纳米球、金纳米棒、金@银核壳纳米棒和立方银)可控组装到光纤表面。这种SERS光纤探针具有稳定性高(相对信号偏差低于3%)、面向光纤种类多(适用于单模、多模、D型和微纳光纤等)及灵敏度高等优势,对农残甲基对硫磷的敏感度达到10纳摩尔。相关成果已申请国家发明专利并发表在ACS Appl. Mater. Interfaces杂志上。  上述研究得到国家科技部“973”计划和国家自然科学基金等项目的资助。  左:带电纳米结构组装到锥形光纤探针上的示意图。中:纳米立方银组装到光纤前后的光学照片及扫描电镜照片。右:SERS光纤探针在分析物溶液中及空气中的SERS信号。
  • 定制附件|紫外分光光度计的光纤附件
    在光电或建筑领域中,会有一些尺寸较大、形状不规则的样品,如滤光片、钢化玻璃等,以及一些需要在样品仓外部进行反应的液体样品,由于样品仓体积或样品支架不合适,测试它们的反射率和透过率给用户带来困难。建筑玻璃日立基于这类样品的测试,凭借专业的知识,开发了用于日立紫外可见近红外分光光度计UH4150直射光检测系统的光纤附件,可以将光引出样品仓,到达样品,通过光纤收集样品反馈的信号,利用检测器获得样品的反射率或透过率。具体如何利用从样品仓导出来的光,取决于客户自身的需求。光纤附件介绍这是用来连接光纤和UH4150直射光检测系统的附件,用于大尺寸样品的反射率和透过率测定。其主要部件是将光纤与UH4150主机连接的附件和光学系统,但不包括光纤和样品室部分。光纤附件** U-3900/U-3900H也可配置光纤附件 日立紫外分光光度计凭借优异的光栅技术,为客户带来更精准的解决方案,同时搭配多样化的定制附件,满足客户的特定需求。关于光纤附件的更多信息,请直接与我们联系。定制附件公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 长春光机所吴一辉团队在光纤生物传感方面取得重要研究进展
    生物传感器由于其快速、准确、简便的特点,并且借助于目前微流控分析技术可实现高通量分析,在生命科学研究、疾病诊断和预后监控、环境质量监控、生物安全等领域具有广阔的应用前景。目前的研究主要集中在即时检测(POCT)、无创分析、在线检测、现场监测、细胞生物学应用等方面。光纤生物传感器由于其独特的高灵敏度、集成度高、抗电磁干扰、远程传输等特点受到了广泛关注。 长春光机所吴一辉研究团队致力于这一研究领域近10年,目标是为了实现癌症标志物的超低浓度检测,以期待对癌症的早期筛查和预后监测提供技术支撑降低癌症的发病率及死亡率。针对这一目标,该研究团队近期在光纤传感器的高灵敏度、高重复性、高特异性等方面取得重要研究进展,实现了从“能测”到“能用”的跨越。 针对微纳光纤耦合器的重复性差问题,提出结合熔融拉伸法和湿法腐蚀法的复合制备方法。在折射率为1.333的水和折射率为1.365的氯化钠液体介质中,通过该复合制备方法均可实现微纳光纤耦合器的色散转折点位置从1600nm至900nm的精确调控,精度优于1nm。并且通过制备色散转折点位置一致的光纤耦合器解决其重复性问题。该研究工作发表在国际期刊Journal of Lightwave Technology (JCR 1区,DOI:10.1109/JLT.2020.3033660,2021)上。 900-1600nm宽谱范围色散转折点精确可控调节 在高灵敏度色散转折点检测原理方面,提出一种全新的Z形锥形微纳光纤结构,,通过优化两种该结构微纳光纤的尺寸参数可以实现折射率的超高灵敏度检测,目前实现的灵敏度与微纳光纤耦合器灵敏度相当。相关的研究工作发表在国际光学期刊Optics Express(JCR 1区,https://doi.org/10.1364/OE.441874,2021)上。 Z型微纳光纤结构示意图 临床应用过程中,面对血清等复杂样本最大的挑战是血清中干扰蛋白产生的非特异性吸附,为了解决这一问题,该团队提出血清预吸附的方法,并在空白血清重合的前提下,实现了微纳光纤耦合器免疫传感器在宽动态范围的稀释血清中进行肿瘤标志物的无标检测。并且为了实现临床样本的无标定量检测,提出了一种基于标准血清波长偏移的方法来减少个体差异的影响。与吉大二院合作,首次展示了基于微纳光纤耦合器免疫传感器的人血清中CEA的无标记定量检测,检测结果与临床检查非常吻合。相关研究工作发表在国际传感领域权威期刊ACS Sensors(JCR 1区,https://doi.org/10.1021/acssensors.1c01031,2021)上。 无标定量检测方法 微纳光纤生物传感与临床化学发光法对临床癌症病人检测结果对比 针对微纳光纤传感器中获得高重复性、高灵敏度、高特异性的研究方法或结构目前已经申请国家发明专利,上述三篇论文的共通讯作者为长春光机所周文超副研究员和吴一辉研究员,该部分研究工作得到国家基金委重大科研仪器研制项目、国家自然科学面上项目、中科院青促会等项目的支持。
  • 国家重大科学仪器设备开发专项“分布式光纤应变监测仪”项目启动
    p   近日,由哈尔滨工业大学董永康教授牵头作为项目负责人的国家重大科学仪器设备开发专项“分布式光纤应变监测仪”项目启动暨实施方案论证会顺利召开。 /p p   作为国家重大科学仪器设备开发专项之一,该项目旨在开发具有自主知识产权、高精度、高可靠性与环境适应度、核心部件国产化的分布式光纤应变监测仪,充分利用云计算与大数据系统架构与技术,实现大型基础设施、地质灾害等远程实时安全监测,实现工程化开发、应用示范并进行产业化推广。项目由我校董永康教授牵头作为项目负责人,中兴通讯股份有限公司作为产业化牵头单位,联合中铁大桥科学研究院有限公司、中交公路规划设计院有限公司、中交第一公路勘察设计研究院有限公司和中国科学院武汉岩土力学研究所共同申报。该项目对于改善我国在大型基础设施、大型结构装备、地质灾害等安全监测水平,提升公共安全水平,减小经济损失和社会影响具有重要意义。 /p p   在启动会上,项目负责人董永康教授作了项目总体情况汇报,6个项目课题负责人分别进行了课题实施方案汇报。项目专家组对项目的研究目标、研究内容及研究方案的可行性给予充分的肯定,并针对项目和各课题后续工作的具体实施、拟解决的关键科学和技术问题等提出了建设性的意见和建议。 /p p   中国工程院院士杜彦良教授主持启动会,项目组专家及委员共30余位参加本次了会议。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201801/insimg/c8ed9c9b-8ffd-4d71-983f-a71c9483e324.jpg" title=" LKsd-fyqtwzv2273554.jpg" style=" width: 500px height: 333px " width=" 500" vspace=" 0" hspace=" 0" height=" 333" border=" 0" / /p p style=" text-align: center " 与会专家合影 /p
  • 国家级塑料光纤工程实验室在四川崇州建成
    崇州市工业集中开发区内,国内唯一一家国家级塑料光纤工程实验室正式挂牌。据悉,这是由四川汇源塑料光纤有限公司创立的“塑料光纤制备与应用技术”国家地方联合工程实验室。该实验室的创立,标志着中国塑料光纤科研力量正式迈进国际最高端的塑料光纤应用领域,为中国塑料光纤产业技术升级,广泛应用于汽车、飞机、工业设备、传感器、消费电子设备与国防等高端应用领域打下了坚实的研究与产业化基础。   打破高端应用领域技术空白   随着近几年中国通信事业的飞速发展,塑料光纤在装饰照明、消费电子产品、交通工具、工业设备以及国防建设中得到大量应用,并推动着塑料光纤通信系统逐渐成为短距离通信的主流技术。宝马公司已在其最新产品中使用塑料光纤作为车载多媒体通信网络和控制系统的通信媒介。   在国外,塑料光纤的应用开发已取得了重大的成果,且不断在加大新的应用研究投入,但是目前在国内的发展还存在着诸多的技术瓶颈。据中国工程院院士、教授李乐民分析,“经过近10年的努力,国内塑料光纤研发生产单位,特别是四川汇源塑料光纤公司,在低损耗塑料光纤产品的产业化方面,已经取得技术突破,并且赶上了国际先进水平。但是技术研究与国际相比,差距非常巨大。国际上在汽车、飞机、工业设备上应用已经非常广泛,而中国在高端应用领域的产品技术基本为零。研究应用于各种专业领域的塑料光纤通信系统及其配套器件产品,对中国整个科研界与工业界来说,具有非常重要的意义与紧迫性。”   两三年追赶世界先进水平   此次国家级塑料光纤工程实验室的创立,正是为了解决这些具体的应用技术问题。据汇源塑料光纤公司技术总监储九荣介绍,依托四川汇源塑料光纤有限公司自身的塑料光纤产业优势,结合工程实验室数十位权威专家学者的知识力量,我国的塑料光纤产业就像插上了一双隐形的翅膀,在2-3年内就会取得新的技术突破,很快就可以追赶上世界先进水平。   据透露,为下一步的发展,汇源塑料光纤公司将投资3000万元兴建国家工程实验室研发大楼、建设产业化基地。在完成制订通信用塑料光纤和塑料光缆两项国家通信行业标准的基础上,工程实验室正在规划制订应用于汽车、飞机、火车、工业设备、消费电子等各个领域的塑料光纤通信系统相关的国家标准,打造、规范中国塑料光纤短距离通信产业。   同时,四川汇源计划在2013年投资基于塑料光纤的汽车多媒体系统技术与产品,初期目标产能10万套,年销售额可达5亿元。中远期目标实现销售50亿元。
  • 光纤激光器技术市场份额2013有望增长到30%。
    过去的10年,大功率光纤激光器技术快速从实验室向商业化转移。同传统的二氧化碳激光器技术相比较,光纤激光器技术可以提供高质量、更完美和远距离的激光束,额外的优势还包括高效低能耗、低运营成本、工业化维修和便于生产工艺的自动化。在快速增长的世界激光技术应用市场中,光纤激光技术的市场份额已从2006年的占8%增长到2008年的占10%,2013年有望增长到中30%。   先进的光纤激光器技术,以毫微微秒(Fentosecond,10-15秒)量级产生激光脉冲,自诞生之日起就以复杂、昂贵和不稳定的特点而闻名。欧盟第七研发柜架计划(FP7)资助1000万欧元,总研发投入1600万欧元,由德国科技人员进行总协调,欧盟7个成员国及联系国德国、瑞士、英国、法国、芬兰、丹麦和瑞典21家机构科技人员参与的欧洲LIFT研发团队,成功地研制出新型的、稳定的和价格合理的大功率毫微微秒光纤激光源,为光纤激光技术的推广应用奠定了基础。研发团队能在相对较短的时间内开发出基于光纤的短脉冲激光发生器和被称作“冷处理”的超短脉冲激光发生器,完全得益于研发团队科技人员的构成及相互协调配合。研发团队的科技人员来自广泛的学科领域,覆盖激光技术科研机构、激光源供应商和光学仪器组件生产企业的科研、实验和工程研究人员及工程师。   研发团队在开发光纤激光器技术上的成功,将继续保证欧盟在激光技术及激光制造业的世界领先水平和竞争力。目前,研发团队的主要目标已转向光纤激光技术的商业化应用,包括:利用新一代光纤激光技术的运程切割与焊接工艺的开发 应用于医学的痤疮及粉刺技术已申请发明专利 应用于部分癌症治疗技术的开发 应用于太阳能电池组件制造技术的开发等。
  • 电子探针丨带您走进光纤的微观世界-低损耗光纤
    导语信息关乎一切,为满足信息化数字化支撑新质生产力的创新发展目标和要求,国家层面在算力枢纽、大数据和云计算集群、“东数西算”等工程作了资源调配和长远的规划。用户层面对高质量视频和数据传输需求、对低时延的更苛刻要求、5G技术使用的接入,以及千兆光纤入户规划,对超高速互联网接入的追求似乎永无止境。低损耗光纤的研究正是为了满足高质量的数据接入需求。岛津电子探针通过搭配52.5°高取出角和全聚焦晶体波谱仪,具有高分辨率和高灵敏度的特征,可以为光通信企业及研究院的产品生产、研发、技术突破等方面,如未来的多芯或空芯的研究提供坚实的数据支持。光纤损耗小科普光纤损耗是指每单位长度上的信号衰减,单位为dB/km。光纤损耗的高低直接影响了传输距离或中继站间隔距离的远近,对光纤通信有着重要的现实意义。光纤之父高锟博士提出:光纤的高损耗并不是其本身固有的,而是由材料中所含的杂质引起的。之后,科研人员和光通信企业开始致力于光纤损耗降低的课题研究。根据光纤损耗,把光纤大致分为普通光纤、低损耗光纤、超低损耗光纤三类,其中,&bull 普通光纤衰减为0.20dB/km左右,&bull 低损耗光纤衰减小于0.185dB/km、&bull 超低损耗光纤的衰减小于0.170dB/km。长久以来,国外厂商在低损耗和超低损耗光纤的研究中保持领先地位。现在国内新建主干网络以及骨干网的升级改造中已有大规模低损耗光纤的部署。岛津电子探针的特点岛津电子探针EPMA通过配置统一四英寸罗兰圆半径的、兼具灵敏度和分辨率的全聚焦分光晶体,以及52.5°的特征X射线高取出角,使之对于微量元素的测试更具优势,不会错过微量元素的轻微变化。【注:从微米级别空间尺度产生的元素特征X射线经过全聚焦晶体衍射后还会汇聚到微米级别范围,不会有检测信号的损失,也无需在检测器前开更大尺寸的狭缝,从而具有更高的特征X射线检测灵敏度和分辨率。】【注:高取出角可获得特征X射线试样在基体内部更短的穿梭路径,减少基体效应的影响,即更少的基体吸收更少的二次荧光等,从而具有更高的特征X射线检测灵敏度。】在远距离传输中,由于光纤材料的吸收(材料本征的紫外和红外吸收以及金属阳离子和OH-等杂质离子吸收)和散射、光纤连接以及耦合等方面造成的衰减问题难以避免,低损耗光纤的推出则为解决这一难题提供了新的思路。在骨干网改造、超高速宽带网络的建设过程中,低损耗(Low-loss optical fiber, LL)、超低损耗(Ultra-low-loss optical fiber, ULL)光纤已有大规模部署。我们使用岛津电子探针EPMA-1720测试了两种低损耗光纤。&bull 第一种光纤为单模光纤,纤芯直径10μm,掺杂Ge+F。低损耗光纤元素分布情况测试结果如下:&bull 第二种光纤纤芯为比较高纯度的SiO2,在包层区掺氟降低折射率,未掺杂常规元素Ge。定量元素线、面分布特征分析见以下系列图。超低损耗光纤元素分布情况测试结果如下:结语信息通信是重要的国家级基础设施,通信光纤建设也是重要的民生工程,对高质量数据通信要求都在不断提高。目前骨干超高速400G、800G乃至1T的工程规划都给光通信企业带来机遇和挑战,研发和生产亦是永无止境。岛津电子探针有着高灵敏度和高元素特征X射线分辨率的特性,能够为光通信企业及研究院的产品开发、技术突破等方面提供可靠的检测和分析手段。本文内容非商业广告,仅供专业人士参考。
  • 国内光纤光缆行业首家第一方检测实验室花落烽火通信
    国内光纤光缆行业首家第一方检测实验室,花落光谷企业烽火通信。   近日,中国合格评定国家认可委员会(CNAS)发布公告,烽火通信科技股份有限公司光纤光缆检测实验室通过了中国实验室国家认可,获得中国实验室国家认可证书。   这是国内光纤光缆行业首家第一方检测实验室国家认可证书。据介绍,通过CNAS认可的实验室出具的检测报告,可以加盖中国合格评定国家认可委员会(CNAS)和国际实验室认可组织(ILAC)的标识,所出具的数据在国际上互认。例如,烽火通信出具的检测报告就可获得进出口国的认可,不用再重复检测,在提高效率的同时,也降低了成本,相当于企业获发了一张“国际通行证”。
  • 1.0026亿元 天大光纤力热复合测试仪器专项获批
    10月31日,国家科技部正式下发文件(国科发财[2013]636号),支持66个国家重大科学仪器设备开发专项项目立项。由天津大学作为项目牵头单位,精密仪器与光电子工程学院刘铁根教授作为项目负责人的&ldquo 光纤力热复合测试仪开发和应用&rdquo 获得正式立项批复。该项目开发周期为4年,项目总经费预算为1.0026亿元,其中国家科学仪器设备开发专项经费资助5288万元。   2011年7月,国家科技部会同国家财政部正式启动并组织实施《国家重大科学仪器设备开发专项》,旨在贯彻落实《国家中长期科学和技术发展规划纲要(2006-2020年)》,支持重大科学仪器设备开发,提高我国科学仪器设备的自主创新能力和自我装备水平,支撑科技创新,服务经济建设和社会发展。   本项目在以刘铁根教授为首席科学家的国家973计划项目&ldquo 新一代光纤智能传感网与关键器件基础研究&rdquo 成果基础上,将着力开展光纤力热复合测试仪的工程化开发和产业化推广。通过系统集成、软件开发和应用开发,丰富仪器功能,优化技术方案,形成具有自主知识产权、功能健全、质量稳定可靠的光纤力热复合测试仪产品,为我国航空航天等工程提供测试技术支撑。项目共有23家参研单位,除天津大学一家高校外,其余均为企业、科研院所,为仪器的工程化和产业化奠定了良好基础。该项目的立项,标志着天津大学光纤传感领域研究水平再攀新高,显示天津大学在仪器仪表领域内的雄厚实力,同时也将为天津大学产学研合作探索出一条新路。   项目负责人刘铁根教授,是天津大学光学工程国家重点学科学术带头人,国家973 计划项目首席科学家,2012 年度全国优秀科技工作者,2010年度天津市劳动模范,享受国务院政府特殊津贴。长期从事光纤技术和光电检测等领域的研究和教学工作,以第一完成人获得天津市技术发明一等奖、中国仪器仪表学会科学技术奖一等奖和教育部科学技术进步奖一等奖。发表论文210 余篇,其中SCI、EI 检索近115 篇。申请国家发明专利40 余项,其中授权15 项。以起草组组长身份主持制定国家军用标准《光纤气体传感器测试方法》。此外,刘铁根教授还是光电信息技术教育部重点实验室(天津大学)主任,全国仪器仪表学会光机电集成分会理事长和中国光学学会光电技术专业委员会副主任。
  • 诺贝尔物理学奖得主、“光纤之父”高锟逝世,享年84岁
    p /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/42b3634f-405d-4cc6-a01c-d9e771210ebe.jpg" title=" 753.jpg" alt=" 753.jpg" / /p p style=" text-align: justify text-indent: 2em " 诺贝尔物理学奖得主、香港中文大学前校长高锟逝世,享年84岁。高锟一生最大成就,莫过于发明光纤通讯,亦因如此,他有“光纤之父”之称,享誉全球。高锟一生都离不开科学,曾为入读心仪的电机工程系,刻意到英国留学。 br/ /p p style=" text-indent: 2em text-align: justify " 高锟在六十年代已提出光纤理论,但初时不获认同,更被批评“痴人说梦”。然而,他并没有放弃,更持续不懈研究,终获得世人拜服的成就。 /p p style=" text-indent: 2em text-align: justify " 高锟于2003年确诊脑退化症后,行动和认知能力受到很大影响。2009年获得的诺贝尔物理学奖,对他来说,可算是“迟来的奖项”。 /p p style=" text-indent: 2em text-align: justify " 高锟于1948年移居香港;1954年赴英国攻读电机工程,并于1957年及1965年获伦敦大学学士和哲学博士学位;1970年加入香港中文大学,筹办电子学系,并担任系主任;1987-1996年任香港中文大学第三任校长;1996年当选为中国科学院外籍院士;2000年被《亚洲新闻周刊》选为“二十世纪亚洲风云人物”;2009年获得诺贝尔物理学奖;2010年获颁香港特别行政区大紫荆勋章。 /p p style=" text-indent: 2em text-align: justify " 60年代提光纤理论 起初不获认同 /p p style=" text-indent: 2em text-align: justify " 高锟1933年出生于江苏省金山县(今上海市金山区),祖父高吹万是晚清诗人和革命家,父亲高君湘是律师,另有一名弟弟高鋙。高锟于1948年举家移居台湾,至1949年迁往香港。 /p p style=" text-indent: 2em text-align: justify " 在香港,高锟就读圣若瑟书院,中学毕业后考入香港大学,但由于他想读电机工程系,港大当时未开设此科,于是远赴英国,进入英国伦敦的伍利奇理工学院(现格林威治大学)。在英国留学时,高锟于舞会中认识后来的妻子黄美芸,两人于1959年结婚,婚后有一子一女。 /p p style=" text-indent: 2em text-align: justify " 1966年,高锟在国际电话电报公司(ITT)任职期间,开始研究利用玻璃纤维传送讯号,发表过一篇题为《光频率介质纤维表面波导》的论文,提出利用石英基玻璃纤维,可进行长距离及高讯息量的讯息传送。 /p p style=" text-indent: 2em text-align: justify " 高锟的理论初时未获认同,更有媒体嘲笑他“痴人说梦”。但他未有放弃,继续研究及改良技术,至1981年第一代光纤系统面世,他亦因此获得“光纤之父”美誉。在1987年,高锟回港出任中文大学第三任校长,期间创立讯息工程学系,直至1996年退休。 /p p style=" text-indent: 2em text-align: justify " 2009年成就终获确认 获诺贝尔物理学奖 /p p style=" text-indent: 2em text-align: justify " 退休后,高锟生活较为低调。2003年,高锟由于打麻将时反应迟缓,在朋友建议之下到医院检查,确诊为老年痴呆(脑退化症),其后生活都大受影响,表达能力亦下降,需要妻子在旁照顾。 /p p style=" text-indent: 2em text-align: justify " 由于科学领域的诺贝尔奖,理论获确认需要较长时间,即使有杰出成就,往往也要在数十年后才能得奖,高锟也不例外。2009年,高锟首次提出光纤通讯后四十多年,终获得迟来的诺贝尔物理学奖,诺贝尔委员会赞扬他“在纤维中传送光以达成光学通讯的开拓成就(for groundbreaking achievements concerning the transmission of light in fibers for optical communication)” /p p style=" text-indent: 2em text-align: justify " 2010年,高锟先后获得“影响世界华人大奖”,以及英女王寿辰“爵士勋衔”及香港“大紫荆勋章”。他和妻子亦在2010年9月成立高锟慈善基金,晚年主要于香港和美国加州山景城两地居住。 /p p br style=" text-indent: 2em text-align: left " / /p
  • 马耀光研究员团队提出一种具有皮米量级分辨率的微纳光纤锥光谱仪
    近日,浙江大学光电学院的马耀光研究员在微型高性能光谱仪研究中取得了新进展。研究团队提出了一种具有皮米量级分辨率的微纳光纤锥光谱仪。在这种光纤锥光谱仪中,精心设计的光纤锥几何参数使得输入光激发的少数传播模,可以随着光纤锥的非绝热形变发生耦合、演化过程,进而快速形成大量的高阶模式。这些新形成的高阶模式同时也会随着光纤锥的渐变直径被截止而转化为泄漏模,从而在探测面形成复杂的光学散斑。光谱信息也在这个过程里被编码进散斑图案之中。可以利用基于Transformer的MobileViT模型,快速、高效、准确的对输入光谱进行还原。经测试,光谱仪可以工作在450-1100nm的波段范围内,对输入光的分辨率可达1 pm 数量级。该光谱仪以相对较低的制造难度与成本,在毫米级的空间尺度下实现了皮米级的波长分辨能力。自牛顿利用棱镜观察到色散现象以来,针对光谱技术的研究就在人类发展历程中占据了重要地位。随着光谱分辨率的提高与光谱理论的完善,光谱技术逐步从科学实验领域扩展到了分析应用上,在生物传感、环境监测、天文、医疗等领域都发挥着重要的作用。但是传统光谱仪体积庞大、价格昂贵,因而在实际应用中较难推广。对光谱的测量往往需要使用非常专业的设备或者在专业的检测机构才能进行。近年来,随着微纳技术的发展,微型光谱仪凭借其体积小、重量轻、操作便捷、结构简单、价格低廉等特点,逐渐被人们所重视。但是,针对光谱仪的低成本、小体积、高性能等要求存在内在的制约关系:减小分光和探测元器件的尺寸将导致光谱仪的分辨率、灵敏度及动态检测范围显著下降,同时有可能增加器件的制造难度与成本。如何利用计算光谱技术进行光谱编码与解码是打破这一内在限制的重要前提。微纳光纤(MNFs)是研究纳米尺度光与物质相互作用的优秀平台之一。利用其简洁的几何形貌、强光场约束等优点,研究人员利用自制的光纤拉锥机精确控制光纤锥尺寸,对其内部的传导模式产生有效调控,如图1a所示。a) 基于微光纤锥的光谱编码结构利用非绝热近似下的陡变光纤锥,将输入的少量低阶模式快速转变为大量高阶模式。产生的高阶模式的数量和权重均为输入光场频率的函数。因而,随着高阶模式被光纤锥的渐变直径逐步截止,光谱信息就会随着泄漏的光场被编码进探测到的复杂散斑图案之中。多模光纤拉制的光纤锥内支持的传导模式众多,再加上锥区模式耦合带来的自由度,散斑结构非常复杂,波长的微小改变也会使得散斑有非常明显的变化,从而可以在较小的尺寸内实现高分辨的光谱识别如图1b、c所示。图1光谱仪结构。(a)微型光谱仪图片(b,c)微纳光纤锥区泄漏模图案映射在衬底上的侧视图和俯视图1. 光纤纤芯直径、光纤锥度、锥区长度、拉伸长度等结构参数对光线锥泄漏散斑具有重要的影响。输入光在芯径更大的光纤中,可以激发更多的模式,因此在后续的模式演化过程中可以产生更复杂的散斑,包含更多的光谱特征。图2的仿真结果也验证了这一点。图2 不同纤芯直径拉制得到的光纤锥的散斑仿真。纤芯直径分别为(a)8.2 μm(b)62.5μm(c)105μm2. 在微纳光纤束腰直径一致的情形下,锥区长度越短,锥区角度越大。如图3所示。随着锥区变短,散斑尺寸缩小,由Nyquist采样定理可知,对于一定大小的探测器单元尺寸,系统可以采集的散斑精细结构的质量会随之变低。例如当锥长为750 μm时,散斑尺寸仅为~2 μm。图3 不同锥区长度的光纤锥散斑仿真。锥区长度分别为(a)6000 μm(b)3000μm(c)1500μm(d)750μm3. 通过优化拉制光纤的纤芯直径,拉制过程中的拉伸长度与锥区长度等参数,研究人员在300*600 μm的小尺寸内,得到信息足够丰富的散斑。散斑图样由互补金属氧化物半导体(CMOS)传感器(CIS)直接获取,如图2a所示。利用自制的微纳光纤拉锥平台和转移平台,研究团队可以高效率、高精度地制备所需要的微纳光纤,并且将其与CIS探测器进行一体化集成。使得最终的样品在保证高集成度的同时,具有良好的稳定性与重复性。并且,制备的光谱仪核心元件的成本不到15美元。b) 基于深度学习的高精确度光谱复原研究人员发现重构型光谱仪的算法选择对重构结果也有较大影响,为了可以实现快速、低功耗的光谱重构,我们采用基于Transformer架构的MobileViT模型进行了训练,用于最终的图像分类与光谱重构。最终,光谱仪准确地恢复了450-1100 nm光谱范围内(受限于实验中采用的CMOS的工作带宽300-1100 nm 与神经网络训练过程中可用的输入光谱范围450-1200nm的交集)被测光谱信息,平均峰值信噪比(PSNR)为46.7 dB。重建的窄带光(彩色实线)和商用光栅光谱仪的地真光谱(图4(a)黑色虚线,Ocean Optics, LEDPRO-50)显示出很高的一致性。单色光的中心波长误差约为0.0223%。线宽误差约为7.37%。并且,光谱仪在图4b、c所示的性能极限测试中也展示出很好的表现:在工作带宽的测试中,可以准确恢复半高全宽为90 nm的光谱。在对于分辨极限的测试中,可以准确还原间隔1.53 pm的双峰信号。图4 光谱仪性能表征。(a)450-1100 nm波长范围内光谱恢复(b)连续光谱的恢复(c)窄双峰的恢复c) 高精度的高光谱探测能力因为微纳光纤尺寸小、光束缚能力强的特点,可以在一个传感器上集成多个微纳光纤锥,实现高光谱成像功能。图5a展示了在CIS上集成20个光纤锥的样品。结合机械扫描的采样方式,可以对例如图5b中的图像,进行高光谱采集。如图5c、d所示,采得的光谱信息具有很好的准确度和色彩还原度。图5 光谱仪高光谱表征。(a)20通道高光谱成像仪(b)彩色贴片图及高光谱复原结果(c)b中各个色块的光谱还原图(d)b中不同色块的CIE 1931色彩空间坐标研究团队利用轻量级Transformer架构的神经网络模型,对微纳光纤锥区泄漏模的干涉散斑进行优化与采集,简洁地实现了基于微纳光纤锥的光谱信息编解码架构,进而构建出一种尺寸在亚毫米量级,分辨率在皮米量级的低成本、高性能微型光纤锥光谱仪。此外通过在CIS上集成多个微纳光纤锥,可以实现高光谱成像的功能。未来,如果在标定过程中进一步考虑偏振态的影响,我们可以同时获得未知光的光谱和偏振态。论文所提出的光谱仪可应用于食品检验、药物鉴定、个性化健康诊断等领域,成本低廉。 本研究得到了国家自然科学基金和浙江省自然科学基金的资助。论文通讯作者为马耀光研究员,共同第一作者为硕士生岑青青和博士生片思杰。硕士生刘鑫航、唐雨薇、何欣莹也为论文工作做出了重要贡献。本论文的完成单位为浙江大学光电科学与工程学院、极端光学技术与仪器全国重点实验室、杭州国际科创中心、浙江大学嘉兴研究院智能光电创新中心。
  • IXblue-新型“全玻璃”有源光纤! ---适用于智能驾驶应用
    ‍IXblue-新型“全玻璃”有源光纤!---适用于智能驾驶应用 如今,有一个新兴市场:需求量非常大的紧凑型市场所需激光雷达的激光器,其要求具备高功率输出(脉冲功率高达几瓦)。它们被用于自动驾驶车辆,以绘制环境地图。这种高功率激光器的泵浦信号在光纤中通过纯二氧化硅的多模波导进行传输。在高功率下,泵浦激光最终将与光纤的丙烯酸酯涂覆层相互作用,泵浦激光的能量会分布到该涂覆层所存在的细小缺陷上,产生过高的热量,该缺陷最终会被破坏并将其烧毁(造成光纤涂覆层的损伤)。解决该问题的一个常规方案,是生产一种具有耐热特性的丙烯酸酯涂层的光纤(最高125°C;85°C会发生)。但今天,iXblue提供了一个最终的解决方案--IXblue全玻璃有源光纤:在光纤中,泵浦激光将不再与光纤涂覆层相互作用,无论温度如何、激光传输特性都将保持不变。基于iXblue在Er/Yb光纤方面的长期技术和一些获得专利的新工艺技术,成就了这一新产品——“IXF-2CF-AGEY”(双包层全玻璃铒镱光纤):一种在其纤芯中Er-Yb共掺的光纤,纤芯被双包层(甚至三包层*)包裹。在外包层是一种折射率较低的掺氟二氧化硅(SiF)材料,这意味着激光仅与光纤内的玻璃材料相互作用,使其非常可靠且对温度不敏感(高达200°C)我们仔细甄选了纤芯成分,从而获得了高效率(每根新光纤上测试的功率转换效率都高于40%)和低的1μm放大自发辐射,这也是10年来开发的iXblue铒镱共掺光纤一直被认可的标记。 “使用高温双层丙烯酸酯涂层(HTC)可将长期工作温度范围提高至125°C,使IXblue全玻璃有源光纤成 为恶劣环境下1.5μm激光雷达的理想解决方案。”iXblue产品线经理Arnaud Laurent 解释道。 全玻璃设计保证泵浦激光仅仅与光纤中玻璃材质接触,确保在苛刻使用环境中长期运行。增强的长期可靠性、更高的工作温度是应对恶劣环境的关键优势,同时降低了系统对冷却条件的要求。 iXblue全玻璃光纤非常适合大批量需求的光纤激光器制造商,基于自由空间或混合(光纤/自由空间)架构中使用。光纤直径为125μm,纤芯为5或9μm。Si内包层的八角形结构是一种良好的几何结构,可实现有源光纤纤芯的最佳的泵浦信号吸收。上海昊量光电作为IXblue在中国的授权代理商,负责IXblue电光调制器、IXblue光纤及其他新型激光器等光电仪器在中国市场的销售、技术服务、市场推广服务。对于IXblue全玻璃有源光纤有兴趣或者任何问题,都欢迎通过电话、电子邮件或者微信与我们联系。 更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。‍‍
  • 国内首创4kW全光纤激光器通过成果鉴定
    2012年11月15日,受国家数控机床专项办委托,湖北省科技厅组织专家在武汉召开了由华工激光工程有限责任公司、武汉锐科光纤激光器技术有限责任公司和华中科技大学完成的“4kW全光纤激光器”科技成果鉴定会。   “4kW全光纤激光器”是国家重大专项“高档数控机床与基础制造设备”的子课题,项目成果主要运用于飞机、船舶、汽车制造及军工领域。   项目鉴定专家委员会主任委员、中国光学学会理事长周炳琨院士指出,项目项目承担单位用不到2年的时间,在国内率先研发出拥有完整自主知识产权的4kW全光纤激光器,填补了我国在此方面的空白,达到国际先进水平,并获得或申请国家发明专利5项,实属不易。   光纤激光器因体积小、节能环保、光束质量好等多方面的优势,被誉为第三代最先进的工业加工激光器,该项目的成功研发及产业化将彻底改变我国高功率光纤激光器依赖进口,核心技术和知识产权受制于国外的状况,为我国高功率数控激光加工系统嵌入“中国心”。达产后将形成年产200台套的生产能力,销售收入逾2亿元。   鉴定专家组还莅临锐科光纤激光公司进行现场考察,对锐科公司的研发和产业化能力给予高度评价。   湖北省科技厅郑春白副厅长、科技厅成果处黎苑楚处长出席了鉴定会。
  • 美国研发出新型光纤 光纤技术将突破玻璃限制发展
    北京时间2月28日上午消息 由美国宾夕法尼亚州立大学的化学家John Badding带领的一组科学家,研发出了一种由硒化锌为核心材质的光纤,可用于半导体的淡黄化合物。   这种新型光纤,可对光进行更高效更自由的操作,将为激光雷达技术开拓更多应用打下基础。这种技术可进一步改进医疗激光手术,为军队提供更先进的激光器,用于测量检测污染物,探测恐怖主义的化学药物传播,科学家们的这项研究成果已经登载在材料科学顶级期刊Advanced Materials。   Badding说:“我们都知道光纤是现代信息时代的发展基石,新研制出的这种长而细的光纤,只有三根人类头发那么细,却可以每秒传输太字节的数据,相当于250个DVD里刻录的信息。而且,仍然有各种方法可以改善这个技术。”   Badding解释说,现有的光纤技术总是受限于玻璃材质,他说:“玻璃的原子排列是偶然性的,而新材质与之相反,硒化锌晶体物质是高度有序的,这种有序性非常有利于光在长波中的传输,特别是在中红外中的传输。”   Badding说:“和石英玻璃传统上用于光纤不同,硒化锌是一种化合物半导体,我们一直都知道,硒化锌是一种有用的化合物,可以对光进行多种操作,这是石英玻璃无法做到的。特殊之处是让硒化锌变成纤维结构,这是以前从未做到的。”   科学家们发现,由硒化锌合成的光纤有两大用途,首先他们发现新的光纤在颜色转换时更有效率,Badding解释说:“传统的光纤用于信号、显示以及艺术上,但并不能保证时刻都能得到想要的颜色,硒化锌利用非线性频率转换,在颜色变化上能力非常好。”   其次,科学家们发现,新光纤不仅在可见光谱中提供更多功能的应用,在红外线中也可以,波长的电磁辐射比可见光更长。
  • 光纤制备技术国家重点实验室通过建设计划可行性论证
    2010年5月30日,受科技部基础研究司委托,湖北省科技厅组织专家在武汉对依托长飞光纤光缆有限公司建设的光纤制备技术国家重点实验室的建设计划进行了可行性论证。科技部基础研究司、湖北省科技厅有关同志以及依托单位的领导和实验室工作人员参加了会议。   专家组听取了实验室建设计划汇报,进行了实地考察。专家组认为,该实验室围绕光纤制备技术的前沿和关键问题,确定了光纤、光缆新产品和新工艺,光纤、光缆设备制造与集成,光纤、光缆检测技术等研究方向,目标定位准确。实验室建设计划合理可行,专家组一致同意通过该实验室的建设计划。并建议实验室围绕国家光纤光缆产业链的关键技术,加强实验室中长期规划,制定光纤预制棒外套管等核心关键技术研究的规划。   依托企业和转制院所建设国家重点实验室工作是科技部落实《国家中长期科技发展规划纲要》的重要举措,也是完善科技创新体系的必然选择。目前科技部基础研究司正在加紧推进第二批企业国家重点实验室的建设计划可行性论证工作,预计近期完成第二批56个企业国家重点实验室的建设计划可行性论证。
  • 美国光纤厂商飞博盖德擢升Devinder Saini博士为技术副总裁
    2016年1月12日,英国豪迈旗下的光纤制造专家飞博盖德(fiberguide.cn)在美国新泽西州的斯特灵市的总部宣布已擢升Devinder Saini博士为公司的技术副总裁,负责开发新产品和新技术,扩大飞博盖德的定制化光纤产品及组件的市场供应,以及飞博盖德的研发、应用工程和专业光纤研发小组的监督检查工作。光纤品牌飞博盖德的新晋技术副总裁Devinder Saini博士。飞博盖德的总裁Patricia Seniw说:“Devinder的加入使团队如虎添翼,他所研发的开创性成果使我们有幸能够在今年2月份举行的美国西部光电展中展示公司新技术。”Saini博士在科研产品研发领域拥有超过30年的丰富经验。在加入飞博盖德并担任技术总监之前,Saini博士曾在OxySense有限责任公司和FCI Environmental有限责任公司(位于内华达州拉斯维加斯市)就职,在那里担任过副总裁和首席科学家。Saini博士在英国伦敦的城市大学获得物理学博士学位,之前则在英国伦敦获得了泰晤士理工大学(今更名为格林威治大学)的材料分子学硕士学位,以及伦敦大学的物理学和天体物理学学士学位。关于飞博盖德和英国豪迈:美国飞博盖德工业有限公司(Fiberguide)生产多种工业标准的和按需定制的高传输光纤和超精密光阵列。公司经过美国食品和药品管理局登记注册,被确定为合同制造商和定制设备制造商。飞博盖德的光纤工厂位于美国新泽西州的斯特林(Stirling),同时在爱达荷州的卡德维尔(Caldwell)也有制造/装配厂。飞博盖德是英国豪迈(Halma)的子公司,隶属于豪迈的环境与分析事业部。1894年创立的英国豪迈如今是全球安全、医疗、环保产业的投资集团,伦敦证券交易所的上市公司,富时指数的成分股。集团在全球有5000多名员工,近50家子公司,在中国的上海、北京、广州、成都和沈阳设有代表处,并在多地建立了工厂和生产基地。
  • 海洋光学推出高分辨率微型光纤光谱仪
    海洋光学(Ocean Optics)于近期推出高性能,900-2200nm 光谱响应的近红外光谱仪:NIRQuest 512-2.2。该产品是用于水分检测、化学分析、高分辨率激光检测和光纤特征研究等的理想设备。 海洋光学NIRQuest 512-2.2 近红外光纤光谱仪尺寸小,且测量范围可达900-2200nm   NIRQuest 512-2.2采用高稳定性、512像元的滨松 (Hamamatsu) 铟镓化砷 (InGaAs) 阵列探测器,集成二阶热电制冷和低电子噪声的小型光学平台。根据配置 -- 有六种光栅选项和五种尺寸入射狭缝可供选择--光学分辨率可达~0.5 nm-5.0 nm ( FWHM 全宽半高值),高的分辨率要求对激光特征分析是相当有用。   独特的外部硬件触发功能允许用户通过外部触发来捕捉光谱,或者在数据获得之后来控制触发其它器件。该功能有利于自动过程控制的集成开发或从同步闪光的太阳能模拟器中捕捉光谱。   光谱仪采用的SpectraSuite操作软件是一个模块化、以 Java 开发的操作平台,可在Windows,Mac OS 和Linux 操作系统下运行工作。 此外,NIRQuest 512-2.2能与海洋光学的Remora网络适配器一起使用,可将系统变为通过以太网或已有无线连接控制使用的多用户光谱数据服务器。   推出NIRQuest 512-2.2之后,海洋光学现提供的NIRQuest近红外光谱仪光谱测量范围选项如下:900-1700 nm、900-2050 nm、900-2200nm 和900-2500nm 。多种光栅、光学平台和光学附件使得 NIRQuest 系列能适应各种各样的应用,如医学诊断、食物饮料监测、药物分析、环境监控和过程控制等等。   关于海洋光学 (Ocean Optics) 和豪迈 (HALMA) :   总部位于达尼丁,佛罗里达的海洋光学是世界领先的光传感和光谱技术解决方案提供商,为您提供测量和研究光与物质相互作用的先进技术。海洋光学在亚洲与欧洲设有分部,自1992年以来,在全球范围内共售出了超过120,000套光谱仪。海洋光学拥有庞大的产品线,包括光谱仪、化学传感器、计量仪器、光纤、薄膜和光学元件等等。海洋光学是致力于安全检测领域的英国豪迈集团的子公司。海洋光学的产品在医学和生物研究、环境监测、科学教育、娱乐照明及显示等领域应用广泛,公司隶属英国豪迈集团。创立于1894年的豪迈是国际安全、健康及传感器技术方面的领军企业,伦敦证券交易所的上市公司,在全球拥有 4000 多名员工,近40 家子公司。豪迈目前在上海、北京、广州和成都设有代表处,并且已在中国开设多个工厂和生产基地。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制