标准电池

仪器信息网标准电池专题为您提供2024年最新标准电池价格报价、厂家品牌的相关信息, 包括标准电池参数、型号等,不管是国产,还是进口品牌的标准电池您都可以在这里找到。 除此之外,仪器信息网还免费为您整合标准电池相关的耗材配件、试剂标物,还有标准电池相关的最新资讯、资料,以及标准电池相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

标准电池相关的厂商

  • 鑫贝迪机组电池是扬州爱力生蓄电池有限公司旗下机组电池品牌,拥有15年集生产、科研、设计、销售和系统集成为一体的机组高新企业,在扬州建立蓄电池生产基地公司拥有员工百余人,从事研究发电机组蓄电池、柴油机组蓄电池、汽油机组蓄电池、燃气机组蓄电池、柴油机组电瓶等配套服务产品,成功研发出来纳米起动强动力型电池,凭借着不断的研发成功,公司产品成功应用于百家企业。电子化的物流体系,产品及时到达客户手中。24小时的在线客服,售前售中售后的服务。“诚信为本”的宗旨是我们一贯坚持的原则,扬州爱力生蓄电池有限公司员工奉行“进取 求实 严谨 团结”的方针,不断开拓,视质量为生命,竭诚为您提供自控产品、工程设计改造配套服务、计改造配套服务。
    留言咨询
  • 深圳市新威尔电子有限公司成立于1989年,是一家专业的电池检测设备制造商,致力于提供全方位的电池检测系统的高新 技术企业。 公司自成立伊始,始终坚持“技术创新,真诚服务”的经营方针,不断开拓进取,推陈出新,研发出了应用于各类电池检 测领域的测试产品,包括高精度电池测试仪、电池化成分容柜、大功率动力电池化成分容检测设备及高精端内阻仪等。 深圳新威尔电池检测产品遍及全国各地以及出口到欧美等多个国家和地区,广泛的应用于国内外电池生产厂家、电池应用企业及各大专院校、研究所和质检部门。服务的大客户群:深圳比克、天津比克,比亚迪、珠海银通 洛阳中行锂电 国光、哈尔滨光宇、优科能源、GP、TCL、迈科、东莞新能源(ATL). 台湾必翔(BTS-5V1000A)、雷天动力电池(BTS-5V50A)、海霸集团 长城集团 奇瑞 江苏双登集团 中强集团 合肥国轩(BTS- 5V100A)、杭州万向 宁波维科(BTS-5V20A)、杭州万马(BTS-20V5)、德赛、富士康等等;清华大学、复旦大学、北京大学、武汉大学、武汉理工大学、哈尔滨工业大学、重庆大学、天津大学、郑州轻工业学院、昆明理 工大学、西安建筑科技大学、厦门大学、华南师范大学、湖南大学等。
    留言咨询
  • 上海甄准生物科技有限公司是一家专业经营标准物质、标准品、化学试剂及相关技术服务创新型高科技企业,坐落于人才荟萃的上海张江高科技园区。 “甄准 = 甄选标准” *服务理念:甄准,甄心倾听您每一个标准! *产品定位:甄准,甄选好标准品! *品牌形象:标准品,甄准大品牌! 自公司成立以来,一直以"客户满意"为公司核心价值观,产品主要应用于制药、生物、食品、环境、材料和农业等领域。凭借世界一流的产品和服务,甄准生物与广大客户建立了长期稳定的战略合作关系,被众多企业和科研机构认定为“指定供应商”,得到了政府部门的关怀和有力支持。本着始终拥有的创业激情和服务热忱,甄准生物已成长为我国重要的标准物质和标准品领域集成服务的领导者、中国最大的标准物质/标准品供应商之一。 甄准生物集后发优势与众多国际一流品牌合作,并陆续成为他们在中国区的总代理或者一级代理,现合作的优质供应商有:加拿大TRC、TLC,爱尔兰Reagecon、Megazyme,美国ChromaDex、Inorganic Ventures、Sigma-Aldrich、NIST、Sp2、Cayman,英国LGC、Ultra,日本和光WAKO、Shodex、JP、TCI,德国Witega、Dr.E、PSS 等。同时,还提供美国USP标准物质、欧洲药典标准物质EP等。 甄准生物将一如既往,关注您的研发生产项目,为您提供最高性价比产品和服务。------------------------------------------------------------------------------------------------------------------------------------------Striving for high quality products and immediate service, we, SHANGHAI ZZBIO CO., LTD, shall do our best to ensure that your experiments and projects will be successful.Our core business is to supply quality reference standard materials, high purity bio-chem reagents and technical consultancy to laboratories, universities, research institutions, hospitals, pharmaceutical companies, and drug manufacturers. These products can be supplied in quantities from a few milligrams to grams, and even to kilograms.If you have special requirements, please contact us freely. We have considerable experience in custom-made products and will be very glad to discuss your needs.
    留言咨询

标准电池相关的仪器

  • 单晶硅标准电池 400-860-5168转1988
    详细介绍标准太阳电池为2cm*2cm的单晶硅或多晶硅晶硅(可依据用户需要定制)光伏电池,经过老化、筛选,选择稳定性好、表面均匀的进行全密封式封装。太阳电池置于方形铝基座的中心,并配有一个抗辐照玻璃保护窗口,窗口的封装采用透明性好,折射系数相近的光敏胶。太阳电池的下面装有Pt100铂电阻温度传感器,在封装前已进行标定。太阳电池和测温传感器均采用四端输出的Kelvin连接接线方式。型号:1)CEL-RCCN单晶硅标准太阳能电池2)CEL-RCCO多晶硅标准太阳能电池标准太阳电池通常用于日常校准或测试光源(氙灯、太阳模拟器等)在被测太阳电池表面所建立的总辐照度(W/m2)。太阳模拟器的辐照度发生变化时,照射在太阳电池上产生的短路电流与太阳模拟器的辐照度之比接近常数,因此可以通过测量短路电流的大小来获得太阳的辐照度。太阳电池的标定值定义为:在标准测试条件下,标准太阳电池的短路输出电流与辐照度之比,单位A/(W/m2),称为CV值。当太阳电池的短路电流等于其标定值时,即可认为太阳模拟器的辐照度达到一个太阳常数,即1000W/m2。规格参数尺寸和外观测试条件光伏材料单晶硅/多晶硅光谱AM1.5光伏器件尺寸20mm x 20mm标定温度25oC窗口材料空间抗辐照盖片标定辐照度1000 W/m2外围材料空间抗辐照盖片波长范围400-1100nm外围材料70mm x 70mm x 20 mm测试参数温度传感器100 Ω Pt电阻标定值CV (A/W/m2 )电流电压连接器LEMO插头短路电流Isc ( mA)温度连接器LEMO插头开路电压Voc ( mV)电性能短路电流的温度系数α(mA• oC-1)标定辐照度1000 W/m2开路电压的温度系数β(mV• oC-1)操作电流不超过200 mA电流最大值Imax ( mA)操作温度10oC - 40oC电压最大值Vmax ( mV)转换效率大于16%功率最大值Pmax ( mW)填充因子大于0.7填充因子FF短路电流变化不超过±0.5% 测试证书每个电池会有一份测试证书和独立的数据记录。证书记录了测量值及其不确定度,标准电池溯源的基础及各种参数数据,可以作为与ISO相符合的质量证书。
    留言咨询
  • 标准电池 400-860-5168转3459
  • 详细介绍标准太阳电池为2cm*2cm的单晶硅或多晶硅晶硅(可依据用户需要定制)光伏电池,经过老化、筛选,选择稳定性好、表面均匀的进行全密封式封装。太阳电池置于方形铝基座的中心,并配有一个抗辐照玻璃保护窗口,窗口的封装采用透明性好,折射系数相近的光敏胶。太阳电池的下面装有Pt100铂电阻温度传感器,在封装前已进行标定。太阳电池和测温传感器均采用四端输出的Kelvin连接接线方式。型号:1)CEL-RCCN单晶硅标准太阳能电池2)CEL-RCCO多晶硅标准太阳能电池标准太阳电池通常用于日常校准或测试光源(氙灯、太阳模拟器等)在被测太阳电池表面所建立的总辐照度(W/m2)。太阳模拟器的辐照度发生变化时,照射在太阳电池上产生的短路电流与太阳模拟器的辐照度之比接近常数,因此可以通过测量短路电流的大小来获得太阳的辐照度。太阳电池的标定值定义为:在标准测试条件下,标准太阳电池的短路输出电流与辐照度之比,单位A/(W/m2),称为CV值。当太阳电池的短路电流等于其标定值时,即可认为太阳模拟器的辐照度达到一个太阳常数,即1000W/m2。 规格参数尺寸和外观测试条件光伏材料单晶硅/多晶硅光谱AM1.5光伏器件尺寸20mm x 20mm标定温度25oC窗口材料空间抗辐照盖片标定辐照度1000 W/m2外围材料空间抗辐照盖片波长范围400-1100nm外围材料70mm x 70mm x 20 mm测试参数温度传感器100 Ω Pt电阻标定值CV (A/W/m2 )电流电压连接器LEMO插头短路电流Isc ( mA)温度连接器LEMO插头开路电压Voc ( mV)电性能短路电流的温度系数α(mA• oC-1)标定辐照度1000 W/m2开路电压的温度系数β(mV• oC-1)操作电流不超过200 mA电流最大值Imax ( mA)操作温度10oC - 40oC电压最大值Vmax ( mV)转换效率大于16%功率最大值Pmax ( mW)填充因子大于0.7填充因子FF短路电流变化不超过±0.5% 测试证书每个电池会有一份测试证书和独立的数据记录。证书记录了测量值及其不确定度,标准电池溯源的基础及各种参数数据,可以作为与ISO相符合的质量证书。
    留言咨询

标准电池相关的资讯

  • 日本押宝全固态电池 几十家企业、大学等机构联手
    p   全固态锂电池作为可兼顾高能量密度和安全性的蓄电池备受关注,在世界各国正积极推进交通工具电动化的大环境下,日本新能源产业技术综合开发机构(NEDO)为了尽快实现全固态锂电池的实用化,启动了第二期研发项目。 /p p   在该项目中,汽车、蓄电池、材料领域的23家企业,15所大学及公立研究生所将展开合作,确立能解决全固态锂电池当前瓶颈的基础技术,同时将采用原型单元,开发对新材料特性、量产工艺以及是否适合配备于纯电动汽车(EV)等进行评估的技术。另外,还会以日本主导推进国际标准化为目标,开发关于安全性和耐久性的试验评估方法。此外,在推进研发的同时,还将讨论电动汽车大量普及的未来社会体系的方案设计。 /p   EV用バッテリーとして安全性耐久性を確保しつつ、高エネルギー密度化高出力化が実現可能。——确保作为EV用电池的安全性和耐久性,同时实现高能量密度和高输出功率。 p   1.概要 /p p   今后,预计很多国家都将强化汽车的二氧化碳排放规定和燃效规定,交通工具将朝着电动化的方向发展。因此,很多汽车厂商都宣布了到本世纪二十年代每年销售数百万辆纯电动汽车和插电式混合动力车(PHEV)的计划。在这种情况下,车载电池将成为决定EV和PHEV的便利性(续航距离、充电时间等)及价格的主要因素,因此,急需通过提高能量密度来提高电池的性能和降低成本。 /p p   目前的EV和PHEV使用的锂电池(LIB)采用有机电解液制造,其能量密度与安全性属于此消彼长的关系,只要一方面出问题,就可能冒烟甚至起火。对此,如图1所示,采用无机固体电解质的全固态锂电池充分发挥固体电解质的阻燃性及热稳定性和化学稳定性,即使提高能量密度也能确保安全性和耐久性。此外还能简化电池组的冷却系统和冒烟起火时的排气系统等,提高体积能量密度。而且,全固体电池有望使EV充电时间降至10分钟以内,实现超快速充电。不过,要想实现期待的这些性能,还存在很多瓶颈,而且单元的结构、材料构成和制造工艺等基本概念尚未确定,目前,面向实用化的研究开发的效率并不高。 /p p style=" text-align: center "    img src=" http://img1.17img.cn/17img/images/201806/insimg/71b893a4-64dc-4eee-9ecf-ead6726c6e50.jpg" title=" u=5987533,886558873& amp fm=173& amp app=25& amp f=JPEG.jpg" / /p p style=" text-align: center "   图1:EV电池的技术转移设想 /p p   因此,在NEDO的“先进创新蓄电池材料评估技术开发一期(2013~2017年度)”项目中,开发了全固态锂电池的标准电池模型(200mAh级单层层压单元)以及采用该模型的材料评估技术,并对企业和大学等面向全固态锂电池开发的固体电解质和电极活性物质等进行了评估,将评估结果反馈给样品提供者。 /p p   此次启动的二期项目将在一期项目取得的成果的基础上,开发实现大型化和高容量化的标准电池模型(Ah级层压单元)以及采用该模型的材料评估技术。一期项目的评估技术是为了掌握材料的基本特性,而二期项目的评估技术将进一步升级,将评估量产性以及是否适用于EV等。因此,此次有4家汽车及摩托车企业、5家蓄电池企业及2家材料企业新加盟了受理评估委托的“技术研究联盟锂电池材料评价研究中心”(LIBTEC)。另外,14所大学和研究所也作为新的委托对象加入二期项目,将与LIBTEC进行合作。 /p p   如图2所示,在EV电池市场上,预计目前研究开发比较领先、采用硫化物固体电解质的第一代全固态锂电池将在2025年左右成为主流,到2030年左右,采用具备高离子导电性的硫化物固体电解质或者化学稳定性较高的氧化物固体电解质的新一代全固态锂电池将成为主流。第一代全固态锂电池和新一代全固态锂电池都将是二期项目的研发对象。 /p p   2. 业务内容 /p p   【1】业务名称 /p p   先进创新蓄电池材料评估技术开发(二期) /p p   【2】业务总额(预定) /p p   100亿日元 /p p   【3】时间 /p p   2018~2022年度 /p p   【4】研发内容 /p p   (1)开发通用基础技术 /p p   将开发能解决全固态锂电池的大型化和量产化瓶颈的基础技术,包括固体电解质的量产与低成本合成、向电极活性物质涂敷电解质、电解质层与电极层的成膜等。 /p p   另外,通过组合全固态锂电池用新材料和元器件,评估单元的性能、耐久性和安全性,将制作用于掌握新材料与元器件的利弊、技术课题及是否适合单元量产工艺等的标准电池模型,并编订规格说明书及性能评估程序手册。 /p p   此外,还将开发通过计算机模拟,预测全固态锂电池的单元及电池组的不稳定性、劣化和发热情况的技术,以日本主导推进国际标准化为目标,开发关于耐久性和安全性的试验评估方法等。 /p p   (2)讨论社会体系设计 /p p   将调查并分析各国与全固态锂电池及电动汽车有关的政策、市场和研发动向,制定以EV普及为前提的整个未来社会体系的方案设计,同时与“(1)开发通用基础技术”联动,推进相关研究开发。制定方案时,还将考虑充电基础设施建设、资源限制、3R原则(Reduce、reuse、recycle,即减量化、再利用和再循环)等,讨论低碳化社会的方案设计。 /p p br/ /p
  • TOF-SIMS质谱仪帮助新电池开发 储能2倍于锂电池
    p   美国能源部可再生能源实验室(NREL)的科学家们开发了一种制造可充电无水镁电池的新方法。 br/ /p p   近期刊登在Nature Chemistry上的一篇论文引起了轰动,该篇论文详细阐述了科学家开发镁金属在无腐蚀性碳基电解质中发生可逆化学反应的过程,并且该过程通过了接下来的测试。比起锂离子电池,该技术具有更有潜力的优势——其中最大的优势是具有更高的能量密度、更强的稳定性和更低的成本。 /p p   Seoung-Bum Son, Steve Harvey, Andrew Norman 和 Chunmei Ban是NREL的研究人员,同时也是Nature Chemistry 白皮书《碳酸盐中人造可逆的镁化学反应》的合著者,他们利用飞行时间二次离子质谱仪来辅助自己的研究工作。该设备可以帮助他们在纳米尺度上研究材料退化和失效机制。 /p p   NREL材料科学部门的科学家、《碳酸盐中人造可逆的镁化学反应》的作者之一Chunmei Ban表示:“作为科学家,我们总是在想接下来会发生什么。”她认为在市场上占主导地位的锂离子电池技术已经触摸到了技术上的天花板,因此迫切需要探索新的化学电池技术,以更低的成本提供更多的能量。 /p p   NREL前博士后,现科学家科学家,该论文的第一作者Seoung-Bum表示:“这一发现将为镁电池的设计提供新的途径。”其他合著者则是Steve Harvey, Adam Stokes, 和 Andrew Norman。当离子从负极流向正极时,电化学反应就会使电池产生能量。对于锂电池来说,电解液是含有锂离子的盐溶液。而电池技术的关键在于化学反应必须是可逆的,只有这样电池才能实现充电过程。 /p p   理论上讲,同体积的镁(Mg)电池所能储存的能量几乎是锂离子电池的两倍。但是之前的研究遇到了一个难题:传统的碳酸盐电解质会因为化学反应在镁表面形成一道屏障,这会阻碍电池的充电过程。镁离子可以通过高腐蚀性的液体电解质流向相反的方向,但这也打消了高压镁电池的可能性。 /p p   而为了解决这个难题,研究人员开发了一种由聚丙烯腈和镁离子盐组成的人工固体电解质夹层,这可以保护镁阳极表面。而最终这种受保护阳极的性能也得到了改善。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201804/insimg/f5d8577d-dfe1-4599-8433-a5dce896b151.jpg" title=" 201804080849345113.jpg" / /p p style=" text-align: center " NREL科研人员攻克可充电镁电池难关示意图(图片来源:John Frenzl) /p p   上文中的插图显示了NREL的科学家是如何解决可充电镁电池问题的。 /p p   科学家们组装了标准电池,证明了人工中间相的有效性,而最终的结果也令人十分欣喜:Mg在具有保护阳极的电池的碳酸盐电解质中发生了可逆化学反应,这一现象是镁电池领域的首次发现。与没有保护阳极的原型电池相比,带有保护阳极的镁电池可以提供更多的能量,并且可以维持周期性的充放电过程。此外,该科研小组还充分展示了镁电池的充电能力,这也首次为解决阳极/电解质不相容问题以及离子离开阴极收到限制的问题提供了解决方法。 /p p   与锂相比,镁的获取范围更广,并且与锂电池这种更成熟的电池技术相比,镁电池还具有其他的潜在优势。首先,镁可以释放两个电子,这是锂的两倍,这使得它可以产生几乎两倍于锂的能量。其次,镁电池中没有枝晶的生长,这种枝晶很容易导致短路,从而导致过热甚至事故的发生,这种特质使得镁电池比锂离子电池更加安全。 /p
  • 3D打印电极为锂电池增添全新元素
    p   据外媒报道,锂电池圈的研究重点集中在电极上。作为导电介质中输入或导出电流的组件,科学家们不断调整其组成及其产生的化学反应,以追求更好的电池性能。这其中包括卡内基梅隆大学的研究人员,他们提出了一种3D打印格栅电极的新方法,他们认为这种方式带来了“前所未有的改进”。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/1a786cff-e56e-4905-9d3c-8f405d3a6fcd.jpg" title=" 1.jpg" / /p p   寻找新的和改进的锂电池电极已经出现了许多有希望的可能性。这些涉及将硅置于石墨烯“牢笼”内,开发微小的纳米线,并开发出SiliconX等新材料。3D打印也已成为可能的一种途径,因为它可用于生产具有多孔结构的电极,为电解质渗透提供额外的通道,从而产生更好的电池容量。目前,最佳结构被称为叉指几何,但正如卡内基梅隆大学机械工程副教授Rahul Panat所说的那样,它有一个上限。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/1a9fb86f-3409-4f0a-8b5e-f4c5c955fe2b.jpg" title=" 2.jpg" / /p p   “叉指几何形状确实是多孔的,确实允许电解质通过通道,”Panat告诉New Atlas。“然而,它是一种2D结构,只能通过挤压打印扩展到3D,并且它的制造方式有限。”Panat和一组机械工程师开发了一种新的3D打印方法,克服了这一限制,并允许任何尺寸的微晶格架构。它涉及使用正确的表面和惯性力将精确尺寸的微量液滴喷出,使液滴能够以允许形成复杂3D结构的方式粘附。 /p p img src=" http://img1.17img.cn/17img/images/201808/insimg/2a5804ac-d495-4cde-8fd5-0121eb9769e7.jpg" title=" 3.jpg" / /p p   “由于这种方式,印刷的液滴粘附在支柱上而不是从支柱上脱落,”Panat表示。“然后压板加热去除溶剂,使得柱子准备好接收下一个含有银纳米粒子的液滴。这是一个非常快速的过程,一直持续到形成完整的晶格。人们此前没有使用这种机制来制造电池。我们开发了这种机制,并且正在申请专利。“ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/d8adafaa-9284-4c0f-bd4b-d555d5038e28.jpg" title=" 4.jpg" / /p p   当用作锂离子电池中的电极时,所得的微晶格结构表现良好。该团队在实验室进行了一系列测试,发现与标准电池电极相比,格子电极的比容量增加了四倍(单位质量的mAh容量),面积容量增加了两倍。它们在40个电化学循环后保留其复杂的晶格结构。 /p p   “我们将寻求尝试不同的电极材料,并探索通过多喷嘴系统扩大生产规模,”Panat解释道。“此外,可以增加加热速率,以缩短微滴的蒸发时间,从而加快工艺流程。我们希望与行业合作伙伴和投资者合作,为未来的商业化提供资金。” /p p   该研究发表在《Additive Manufacturing》杂志上。 /p p br/ /p

标准电池相关的方案

标准电池相关的资料

标准电池相关的论坛

  • 高精度饱和标准电池的稳定性

    [font=&]【题名】:高精度饱和标准电池的稳定性[/font][font=&]【全文链接】: https://www.cnki.com.cn/Article/CJFDTOTAL-JLXB198103008.htm[/font]

标准电池相关的耗材

  • TUBALL® BATT锂电池改质剂
    TUBALL?BATT锂电池改质剂 TUBALL?BATT添加剂是在锂电池正极材料的不同化学反应制备过程中,使用作为添加剂于电极材料中。锂电池使用TUBALL?BATT后,可大幅提高锂电池的循环寿命,以及增加电池的放电及充电效能。TUBALL?BATT的主要成分是OCSiAl生产的独特材料TUBALL?-全球 在能够大规模生产的单/双壁碳纳米管(SWCNT/ DWCNT)的公司,并且其价格能够应用于客户的大量生产。在TUBALL?BATT的制备中使用高质量SWCNT,因此能够提高锂离子电池的循环寿命,即使添加量仅0.01%(以干残余物的百分比)于电极材料中。当适度分散在电极团中,TUBALL?可强化电极内部,并在充电/放电循环中,改善其机械稳定性,进而防止裂缝的出现和在长时间使用过程中产生的电极“无效区"(dead zone)。TUBALL?是优异的导电性添加剂,可确保整个活性正极材料中电极接触的质量。与多壁碳纳米管、碳纳米纤维及其他类似的材料相比,TUBALL?BATT材料的使用不会导致在电极浆料的粘度显著改变,也不需重大改变既有的电池标准制程。 TUBALL BATT VS CARBON BLACK 包装规格:1000ml
  • BTR-15藤仓光纤熔接机电池
    BTR-15电池容量:6380mAh,满电状态下可以熔接加热300次。BTR-15藤仓光纤熔接机电池适用机型:87S+, 87C+, FSM-87S, FSM-87C+, FSM-88S, 66S+.BTR-15藤仓光纤熔接机电池使用方法:电池充满电后直接插入光纤熔接机卡槽即可使用。电池使用前注意事项如果能注意几个要点,电池的使用寿命以及电池为客户持有的熔接机的服务时间都会变长。重要的一点是避免电池在阳光下暴晒,或者放在发热的机动车里(包括夏天把电池放在车的后备箱里)。 热源能使电池性能快速衰减。 电池使用寿命 (充电次数) “电池容量”指熔接机能够在一次充电后使用的次数。 “电池使用寿命”指电池可以使用的总充放电次数。总充放电次数的推算基准是满充电后,电池容量仍维持在原始容量的70%以上。 电池的使用寿命受使用方法、环境、设定和其他因素影响。 按照要求规定使用电池 为了延长电池的使用寿命并保持电池指示灯的准确性,应该至少每三个月满充电一次, 然后再放空电量。 如果长时间不使用熔接机,请把电池从熔接机中取出保管
  • TSS便携式浊度、悬浮物和污泥界面检测仪
    唐海红 13120400643 便携式浊度、悬浮物和污泥界面检测仪在市政和工业废水、 饮用水以及河流检测中是一种非常理想的远程监测工具。该仪器可以做监测过程中的一种优化工具,也可以作为校准或验证在线传感器的一种简便方法。 特点和优点: ● 一台仪器可以监测三个参数 ● 多条校准曲线,便于使用 ● 简便的污泥界面测量 ● 气泡补偿测量保证更高的精度 ● 测量材质,使用寿命长 ● 使用可充电电池供电 技术指标: 操作模式: 单点测量,间歇测量或连续测量 显示: 24mmLCD显示屏,防紫外处理,字母显示4行,每行16字节 操作温度: 0-60℃ 操作压力: 0-10bar 相对湿度: 0-95%相对湿度 电源要求: 测定仪:6节镍氢可充电电池或6节AA标准电池 一体化充电器: 115/230Vac,50/60Hz 传感器电缆线长度: 10米 便携仪防护等级: IP55 传感器防护等级: IP68 输入电流: 约60mA 液接材料: 传感器外壳:不锈钢;传感器视窗:蓝宝石 数据存储: 最多可以存储290个测量值 重量: 测定仪:0.6Kg;传感器:1.6Kg 尺寸: 便携仪:110× 230× 40mm;传感器:290× 40mm;便携箱:320× 450× 110mm
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制