当前位置: 仪器信息网 > 行业主题 > >

精密圆度仪

仪器信息网精密圆度仪专题为您提供2024年最新精密圆度仪价格报价、厂家品牌的相关信息, 包括精密圆度仪参数、型号等,不管是国产,还是进口品牌的精密圆度仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合精密圆度仪相关的耗材配件、试剂标物,还有精密圆度仪相关的最新资讯、资料,以及精密圆度仪相关的解决方案。

精密圆度仪相关的资讯

  • 小满喜气满满---澳信喜获奖杯 ACCRECETH东精精密特约代理商成长奖银奖
    2020年05月20日庚子年农历四月二十八迎来二十四节气中的第八个节气——小满。 小满喜气满满---澳信喜获奖杯 ACCRECETH东精精密特约代理商成长奖银奖,感谢新老客户的支持与厚爱!愿你心满意得,赢得美好三平两满!小满不满,麦粒渐满;小满不满,干断田坎;小满小满,生活美满。《月令七十二候集解》有载:“四月中,小满者,物致于此小得盈满。”不满,则空留遗憾;过满,则招致损失。花未全开月未圆,人生最好是小满。澳信喜获奖杯 ACCRECETH东精精密特约代理商成长奖银奖今天让我们一起走入ACCRECETH东精精密圆度仪 科普小常识关于圆度仪的简单介绍  圆度仪是一种运用回转轴法测量工件圆度的工具。圆度仪分为传感器回转式和工作台回转式两种型式。测量时,被测件与精密轴系同心装置,精密轴系带着电感式长度传感器或工作台作精确的圆周运动。今天圆度仪生产厂家给大家说一说圆度仪的知识与原理。  圆度仪是一种测量零件回转表面(轴、孔或球面)不圆度的精密仪器。一般有两种类型:小型台式,把工件装在回转的作业台上,测量头装在固定的立柱上;大型落地式,把工件装在固定的作业台上,测量头安装在回转的主轴上。测量时,测量头与工件表面接触,仪器的回转部分(作业台或主轴)旋转一周。因回转部分的支承轴承精度极高,故回转时测量头对被测表面将发生一高精度的圆轨迹。被测表面的不圆度使测量头发生偏移,转变为电(或气)信号,再经扩大,可主动记载在圆形记载纸上,直接读出各部分的不圆度,供鉴定精度与工艺分析之用。广泛用于精密轴承、机床及仪器制造工业中。圆度仪由仪器的传感器、放大器、滤波器、输出设备组成。若仪器配有计算机,则计算机也包括在此系统内。  圆度仪选用半径测量法,作业旋转式。该圆度仪旋转轴系选用高精度气浮主轴作为测量基准;该圆度仪电器部分由高级计算机及精密圆光栅传感器、精密电感位移传感器组成,圆光栅传感器、精密电感位移传感器计量视点、径向位移量,保证测量工件的角位移、径向值的精确度;圆度仪测量软件选用依据中文版WinXP操作系统渠道的圆度测量软件,完成数据收集、处理及测量数据管理等作业。圆度仪的正确操作规程,你都用对了吗?  圆度仪的操作使用,该工具的作用相信大家都知道,正确的使用工具很重要,我们现在遇到许多仪器出现故障,主要的原因还是因为操作不当造成的,所以正确使用也是保障仪器性能的重要做法,我们常说到要保养某某机器,但其实只要正确使用,就不用过多的去保养。其他的产品也一样的道理,对于圆度仪来说,你知道如何正确使用吗?  (1)圆度仪采用AC220V 50HZ电源,检查电源正确,并保持主机良好接地;  (2)打开电源,启动计算机进入操作系统;打开圆度仪主机电源开关,启动工作台旋转,并预热15分钟;  (3)将被测件安放在工作台中心,调整立柱及横臂手轮,使传感器的测针接触工件;  (4)用手拨动工作台逆时针旋转,首先选择±100um档,用敲拨棒调整工件,使计算机上显示的模拟表头的指针摆幅最小;然后逐步提高放大倍率,反复此调整过程,提高对心精度。直到在±25um档时,表头的指针摆幅最小即可;  (5)打开主轴电机开关,主轴旋转,当主轴旋转3周后,单击[开始测量]按钮开始测量;测量完成后,计算机将自动对测量结果进行分析并显示测量结果;这时,即可以对测量结果进行存储及打印输出;  (6)仪器停止工作不用后,应关闭计算机及主机电源;取下工作台上的卡盘和被测件,同时,使传感器处于自由状态,不可使其承受外部力量;  (7)使用本仪器前请首先了解使用说明书;被测件应认真清洁和等温;主轴严禁顺时针旋转;禁止冲击传感器。  (8)定期给主轴加油,并保持仪器立柱、横臂、工作台等裸露部分清洁,并涂少许机油以防氧化生锈。
  • ​国产三坐标测量机产业走访第2站派姆特:自主创新精密测量技术,构建一体化三维测量平台
    近年来,我国高端制造业蓬勃发展,对高精度测量设备的需求持续攀升,极大地推动了以三坐标测量机为代表的精密测量仪器市场的迅猛增长。众多国内外知名品牌竞相涌入这一赛道,同时,也催生了一批崭露头角的国产新兴力量。在国产替代需求日益增长的趋势下,中国三坐标测量机企业迎来了前所未有的发展机遇。为深入了解中国三坐标测量机产业的发展态势,仪器信息网成立25周年之际,特别策划了“万里行”系列走访活动。该活动深入中国三坐标测量机代表性企业,与行业专家共同开展实地走访,探寻产业发展的最新进展和亮点,为发展新阶段赋能。走访第2站,由上海大学李明教授,仪器信息网产业研究部主任武自伟、营销服务中心经理韩永风、测量仪器编辑牛亚伟等组成的走访项目组走进派姆特科技(苏州)有限公司 (以下简称“派姆特”),派姆特华东区区域经理胡书飞、总裁助理Susan接待了走访一行人员。——企业发展进展派姆特成立于2019年,在中国、德国、日本均设有研发中心,并在苏州、西安建立了制造基地。得益于公司成立前的技术积累,派姆特在成立第一年即实现了盈利,且此后每年的收入都实现了翻倍增长。短短五年间,派姆特的团队规模已从最初的约30人发展壮大至现在的150余人。派姆特办公楼派姆特的创始人邰大勇,曾在德国马尔精密量仪和美国法如科技公司任职。他亲眼目睹了我国尺寸精密测量仪器市场几乎一度被国外品牌垄断的状况,这促使他萌生了创立一个拥有自主知识产权、受人尊重的国产高端品牌的念头。随着当前国内对供应链安全要求的日益提升,国产化替代需求旺盛,派姆特迎来了快速发展并受到了资本的青睐。2023年6月,公司获得了由中科创星独家投资的千万元级天使轮融资;同年11月,又获得了深圳高新投的第二轮融资;时隔不到一年,2024年5月,派姆特再次获得了卓远资本的第三轮融资。——产品技术与布局派姆特深耕便携式关节臂,拥有多项专利技术。其关节臂测量机涵盖6轴测量臂、7轴测量臂以及激光扫描臂,完美适应接触式与非接触式测量的多样化需求。设备内置平衡机构,采用等臂长设计,操作灵活自如,测量无死角。测量范围覆盖1.5-4.5米,可在5-45℃的全温度范围之内进行测量,内置温度传感器有效补偿温度变化带来的误差,确保测量精度位居国内顶尖水平,广泛应用于汽车、航空航天、国防军工、轨道交通、工程机械、教育等行业。胡书飞介绍道,为了向客户提供更多的测量方案,派姆特不断拓宽测量技术边界,致力于三坐标测量机的核心系统研发,包括测头、控制器和软件。去年,公司推出了FUTURE系列和PRIME系列桥式机型,以及SPACE车间型三坐标测量机。FUTURE系列采用矩形梁结构、气路分离独立控制等目前三坐标测量机的高端技术,可与进口品牌中高端计量设备相媲美。SPACE系列则专为加工现场设计,能够与机器人、自动上下料系统、机床系统等实现联机,为工业客户带来效率与质量的提升。CAM3软件作为派姆特产品矩阵的核心,是公司战略布局的重要一环。大部分三维测量硬件均需与CAM3软件配合使用,以发挥最大效能。胡书飞呼吁政府加大对软件国产化的支持力度,以便派姆特能够借此东风,打造出更加综合性的CAM3软件,以此为核心和平台,推动公司向更广阔的市场进军。目前,派姆特软件团队已超过20人,CAM3软件在上汽集团等企业中得到成功应用。派姆特的便携式测量臂由两个碳素纤维钢固定臂长和六到七个角度编码器组成。该编码器由派姆特自主研发和生产,可作为独立产品供应市场。派姆特产品矩阵市场调研数据显示,2022年全球三维尺寸测量仪器市场规模已突破100亿美元大关,预计未来将持续保持直线上升的增长态势。为了把握这一市场机遇,派姆特致力于打造一个集多场景应用、多测量精度需求的一体化三维测量平台。公司新推出的圆度仪、圆柱圆度仪和轮廓仪产品刚刚亮相市场,未来还将进一步拓展产品线,布局光笔测量仪和激光跟踪仪产品,以满足更广泛的市场需求。合影留念
  • 进步零点几微米!他们研制出超精密加工全新利器
    超精密机床基础部件与应用技术的突破,能为制造业的生存和发展提供强大技术支撑。然而此前我国的超精密机床及关键基础部件主要依赖进口。轴类零件外圆圆度加工方面,国内外基本是靠超精密的外圆磨床实现。以磨削直径100毫米、长300毫米的轴芯为例,我国的外圆磨床大概能够磨到1至2微米的水平,而国外可达到0.3至0.5微米的水平。为破解机床和关键部件“卡脖子”技术难题,国防科技大学教授戴一帆科研团队历时5年,提出轴类零件外圆圆度确定性修形加工工艺技术,使轴芯加工圆度精度提升到0.1微米,并成功研制出超精密空气静压主轴,近日经中国计量科学研究院测试,该静压主轴相关参数达到国际先进水平,这将使我国超精密加工精度有效提升。像铁锹整地那样研磨超精密零件我国超精密机床及关键基础部件此前主要依赖进口,最大的技术难题在于缺少加工核心零件的“工作母机”。所谓“工作母机”,就是制造机器和机械的机器,又称工具机,包括车床、磨床、刨床、钻床等,是制器之器、工业自强之基。一般的机械加工是将机床精度“复印”到零件的过程,也就是说,没有精度高的机床就加工不出精度高的零件。没有精度高的零件,也就组装不出精度高的部件和机床。没有制造高精度零件的工作母机,就限制了整个超精密机床行业的发展。戴一帆科研团队长期从事现代光学制造技术研发,他们发现光学零件的最终制造精度远超出所使用的加工设备精度,而光学制造的基本原理是逐步将误差高点去除的一种精度进化加工原理,团队尝试将这种“精度进化”原理的加工方法用于机械零件高精度加工,最终通过加工原理的创新提出轴类零件外圆圆度确定性修形工艺技术,突破高精度“工作母机”的限制。芯轴多传感器在位测量。国防科技大学 供图确定性修形工艺是如何工作的?“好比使用铁锹平整一块地,就是将看上去凹凸不平的地方铲去适量的土,如此反复直到获得非常平整的地。”戴一帆说,这个过程依靠的是成套数字化设备,比如采用了高精度圆度仪获取圆柱形貌;发明了专用的控时磨削机床实现材料去除量的数字化精确可控;采用专用计算机程序计算获得磨削工具需要在特定空间位置停留的精确时间。机械取代有经验的工人师傅借助新工艺,戴一帆科研团队突破了基于精度进化原理的控时磨削加工技术,形成了圆柱类零件在位加工检测一体工艺方法,成功研制出超精密空气静压主轴。中国计量科学研究院测试结果显示,该空气静压主轴径向跳动小于15纳米、端面跳动小于15纳米。这个跳幅相当于头发丝直径的六千分之一。如果是地球这么大一根主轴的话,回转运动造成的振幅不会超过1米。测试结果还显示,空气静压主轴径向静刚度大于200N/μm、轴向静刚度大于200N/μm。通俗地说,就是主轴可以在20公斤的重力载荷下纹丝不动,变形量不会超过1微米,即头发丝直径的百分之一。对比代表美国超精密领域最高水平Precitech公司的产品手册,上述技术指标与其相当甚至更高。当前,国内外可将轴类零件外圆圆度加工研磨到零点几微米的水平,如果再要提升只能靠手工研磨修整。“我们的新技术可以摆脱对极其有经验人工师傅的依赖,能很容易地按照现代工业化的模式组织生产,促进超精密基础部件的大批量、高效率生产和应用。”戴一帆表示,超精密机床基础部件与应用技术的突破,将为制造业的生存和发展提供强大技术支撑,完善高端机床产业链配套,大幅增强高性能功能部件竞争力,促进高端精密与超精密机床方面实现国产化。他补充说,这些突破还将有效解决探测制导关键零部件超精密加工面临的超精密装备和核心工艺难题,进一步助力国防领域高端核心零件超精密加工批量化生产,实现科研成果向生产力和战斗力的快速转化。系列成果获得了湖南省十大技术攻关等项目的支持。相关成果先后发表于Materials、Micromachines等期刊上,戴一帆为通讯作者。为支撑超精密加工,促进精密测量技术发展和应用,助力制造业高质量发展,仪器信息网联合哈尔滨工业大学精密仪器工程研究院,将于2023年12月14-15日举办第二届精密测量技术与先进制造网络会议,邀请业内资深专家及仪器企业技术专家分享主题报告,就制造中的精密测量技术等进行深入的交流探讨。点击图片直达会议页面
  • 新品│马尔新一代圆柱度仪MarForm MMQ 500
    三本是一家综合性的测量仪器公司,提供一站式测量解决方案,是德国蔡司和德国马尔公司官方授权代理商,帮助客户高效测量解决方案,马尔公司推出新的产品来满足客户多样化的测量需求。针对客户对测量速度和重型工件测量的需求,推出了新一代的MarForm MMQ 500圆度仪。本期内容,我们将给大家解读这一款全新的测量利器。MarForm MMQ 500MarForm MMQ系列历代成员们马尔的圆柱度仪系列,从入门级的圆度仪 MMQ 100到高精密的圆度测量仪 MFU 100,几乎可以涵盖客户所有的测量需求。马尔圆度仪 MMQ 100 到 MMQ 400系列如今,新款的MMQ 500 在此基础上,又增加了一些新的特点。MMQ 500圆柱度仪的优点• 直径300 毫米的工作转台;• 工作转台可承重 80 公斤;• 更大的调心调平范围;• X轴和Z轴更高的直线度;• 更快的调心调平时间;正是由于以上这些优点,马尔新一代 MMQ 500 圆柱度仪可以测量更重、更大的零件,而且测量的结果更加精确。同时,MMQ 500 快速的调心调平和定位时间有效的缩短测量时间,提高了测量效率,对于如今不断增加的人力成本而言,无疑是增效降本的一个重大利好。 快速调整和定位,可以缩短30%的测量时间此外,MMQ 500 的评价软件依然是基于 MarWin 这个卓越的软件平台,可以沿用MarForm所有的评价设置和软件选项,如活塞测量、扭纹测量、速率分析、快速傅立叶分析这些工业测量中常用的测量选项。
  • 三英精密2023年度实现营收1.80亿元,净利润增长381.75%
    近日,天津三英精密仪器股份有限公司(简称:三英精密)发布2023年度报告。报告显示,三英精密2023年度实现营业收入1.80亿元,较去年同期增长41.21%;归属于挂牌公司股东的净利润0.14亿元,较去年同期增长381.75%;毛利率为43.64%。2023年末,三英精密总资产4.46亿元,同比增长69.41%;归属于挂牌公司股东的净资产为3.02亿元,同比增长126.56%。2023年度,三英精密通过国家级专精特新“小巨人”企业认定,获批筹建天津市重点实验室,并募集资金1.35亿元,以加快主营业务发展。三英精密在报告中提到未来五年的经营计划:1、持续开发电子领域及动力电池等在线无损检测设备随着电子产品的集成度及安全性能要求越来越高,电子器件之间的连接也越来越密集,非破坏性的3D工业CT在线检测或测量在生产过程质量监测中必不可少,近年来X射线3D工业CT在高端制造 领域的应用成为新的增长点。而使用自动化检测设备代替人工检测是工业无损检测行业的重要发展方向。2、开发新材料检测的广泛应用新材料是未来发展的重大趋势,将广泛运用于汽车、航天等领域,而X射线三维显微镜和工业CT等专业检测设备在新材料检测领域应用广泛,公司将会在新材料领域不断开发新的应用。3、加快国产替代进程由于以美国为首及其盟友的发达国家对中国大陆高端制造业的打压和制裁为三英精密的国产替代进程提供了良好的发展机遇。公司自主研发的X射线三维显微镜和工业CT设备,最高图像分辨率可达到0.5微米,目前全球范围内仅德国蔡司可以达到同等水平。这类设备可广泛用于汽车电子、新能源电池、石油地质、航空航天、船舶、兵器等诸多领域的无损检测,逐步实现国产替代。
  • 费业泰:用“微米”丈量人生的密度 留下精密仪器领域“费家军”
    2007年,费业泰被授予国际测量与仪器委员会“终身贡献奖” 神舟浴火腾飞升空,蛟龙耐寒深潜入海,高度精密的仪器在热胀冷缩时会产生什么变化?如何才能保证它们正常运转?我国高新技术领域的每一项重大突破,都离不开精密仪器学科的支撑。  在我国精密仪器领域,很多知名专家自称“费家军”,因为他们有着共同的导师——我国现代精度理论及工程应用的奠基人、合肥工业大学教授费业泰。在把60年人生奉献给精密仪器事业后,今年2月26日,费业泰教授在合肥逝世,享年82岁。  60年努力,奠基我国现代精度理论及工程应用  “精度”与“误差”这对反义词,是人类科学研究中不可回避的问题。而费业泰一辈子的工作,正是不断消除误差,追求越来越高的精度。  1955年,费业泰在合肥工业大学留校任教,同年6月加入中国共产党,1959年来到新开办的精密仪器专业。那时,新中国工业建设刚刚起步,我国对精度与误差的研究几近空白,机械工业总是难逃噪音大、震动大、能耗大的“傻大粗”模式。  现在精度测量以微米为标准,而当时的标准是毫米甚至厘米,相差千倍、万倍,为了改变这一切,费业泰养成了没日没夜工作的习惯。由于精密仪器特别敏感,为了确保实验质量,多年来,费业泰在忙碌一天后,晚上仍会趁夜深人静继续待在实验室。  经过长期的研究,费业泰提出了精度误差理论,半个多世纪来,这一理论在我国社会主义现代化建设的各个领域中得到了广泛应用,并成为我国精度评定的基本方法以及精密仪器学科的理论基础。  航天器在太空中飞行,向阳与背阳的两面温度相差数百摄氏度,由于膨胀系数标准有误,用什么材料才能确保卫星正常使用,一直长期困扰我国航空业的发展。九十年代末,时任我国某型卫星研制部门负责同志找到了费业泰。  在大量实验的基础上,费业泰发现原有的检测方法和计算标准存在较大误区,于是创新膨胀系数的检测和制定方法,不仅成功解决了精密仪器的稳定问题,还依此提出了全新的热误差理论体系。  在我国精密机械领域,曾一度陷入加工设备每个部件都要高精度的误区。这不仅大大提高了成本,而效果也并不稳定。针对这一情况,费业泰在我国率先提出“最好的部件在一起不一定能有最好的性能”这一理念,找到了误差传递的规律,并利用这一规律提出了新的方法,不再要求每个部件均为高精度,而是通过不同部件之间的最优组合,保证机械设备的高精度。这一方法成为我国最新精度理论的重要内容。  60年来,费业泰承担并完成了40余项高水平科研项目,发表过320余篇论文,获得9项省部级奖励,是安徽省五一劳动奖章获得者,为我国重点科研项目解决了大量实践难题,被称为我国精度理论的开拓者。2007年,费业泰被国际测量与仪器委员会(ICMI)授予终身贡献奖。  2010年,费业泰入选“感动工大十大人物”  潜心钻研,淡泊名利拒绝美国抛出的“橄榄枝”  《误差理论与数据处理》是费业泰的9本专著之一,他的学生、合肥工业大学仪器科学与光电工程学院院长于连栋教授介绍,该书1981年被列为国家重点教材,成为我国精密仪器学科理论的开拓之作。30多年来,该书再版7次,被全国200余所高校采用,很多年轻一代的杰出青年、长江学者,都是读着它迈进了精密仪器科学的殿堂。  “做科研不能带有一点功利心。”合肥工业大学仪器科学与光电工程学院苗恩铭教授至今牢记着费业泰的教导。  其实热误差理论,费业泰早在1980年代就已经发现并进行总结,但很长一段时间内,热误差的研究一直是领域内的“冷门”,甚至其理论的科学性也受到质疑。  如今苗恩铭率领的热误差研究团队,在全国已处于领头羊的位置,但最初这个研究之“冷”,曾让他想到放弃。  “科研不能追名逐利,什么方向热门做什么,你在科学的路上走不远。”费业泰的一再告诫,让苗恩铭坚持了下来。如今,热误差理论,已经成为精密仪器学科典型的三个学科方向之一。而热误差理论研究团队,也不断在我国重大项目中建功立业。  费业泰的老伴郭子顺还记得,1989年费业泰在美国西雅图华盛顿大学做客座教授时,他所负责的波音公司一项科研项目原计划要做9个月,但在他的努力下仅用时6个月。费业泰的出色表现引起了美国方面的兴趣,向他抛出橄榄枝,表示如果他愿意留下,就可以拿到绿卡。但费业泰毫不犹豫地拒绝了,甚至放弃了应得的3个月优厚报酬,毅然提前回国。  虽然淡薄名利,但费业泰对国内相关产业的发展一直十分关注。  “中国数控机床的落后,让老先生一直耿耿于怀。”苗恩铭说,费业泰在1980年代发现热误差后,研究了国际上近30年来数控机床精度的发展,预测未来机床如果要提高精度,必须利用其材料结构的热特性来设计。  当时费业泰找了很多国内大型企业,建议企业进行相关研发提高产品精度,但当时普通数控机床很好卖,他的建议被一一拒绝。1990年代中期,费业泰受邀到日本作学术报告,他的理论引起现场日本、德国专家的注意,并特意向他请教。2005年,日本企业生产了第一台热亲和数控机床,现在这种机床已经成为全世界最著名的数控机床之一。  “现在很多国内企业产品卖不出去,又去模仿,但只能模仿个外形,其实它的核心思想是我们这边出来的,但是当年国内却没有人相信。”苗恩铭说。  2013年,80岁的费业泰仍坚持工作  教书育人,言传身教关注每个学生前行  为了保证人才培养质量,费业泰不但对学生因材施教,还始终坚持在科研一线,用自己的言行给学生们做好榜样。  “费老师知道每个学生的特点,哪怕我们毕业了,他还会一直关注着。” 于连栋说,费老师去世后,有同学在微信群里晒出老师以前寄来的信,老人家对这位学生从专业方向到人生道路,都给出了言辞真切的建议,让人十分感动。  费业泰一生严谨,今年48岁、早已是博士生导师的胡鹏浩教授回忆起恩师的严谨时说:“怕挨训、被训怕了,但总是被训得心服口服。”  2003年的暑假期间,时任学院副院长的胡鹏浩去找费业泰汇报工作,因穿着随意让老师很不高兴。  最初胡鹏浩不以为然,他觉得不是工作日,也不在正式场合,穿着随便一些无所谓,但老师的反问让他意识到自己的不足:“老师说,如果现在学院有急事,需要你立即送一份材料到教育主管部门,你觉得你现在的穿着合适吗?这就是费老师的做事风格。”  “我参加工作后,学校安排我授课,但费老师坚持让我再等一年,用一年的时间备课。” 费业泰的学生、合肥工业大学仪器科学与光电工程学院副院长夏豪杰副教授说,费老师认为“照本宣科是没有质量的授课”,只有精心准备,才能真正传授给学生知识。  除了专业知识和严谨的科研态度,费业泰带给学生的,还有做人的道理。  2004年,胡鹏浩评上了教授,但费业泰却说其实不希望他这么早获评,随后老先生的一席话让胡鹏浩非常感动。  “他说虽然我评上教授,但知识的宽度和广度沉淀不够,可能会碍于面子,到哪都端着架子,不懂的也不好意思问,时间一长,就会越来越空。”胡鹏浩说,从那时起,他不管到哪,遇到不懂的就会直接问,  2011年夏天,77岁高龄的费业泰在北京进行完一项国家专项答辩后,急着赶回合肥,由于北京暴雨,等到23点仍然不能起飞,临时也买不到火车票。  “下着大雨,他跑到火车站,没有票又回到机场,这么大年纪,我看着很心疼,就劝他住一晚明天再走,他却坚持要当天回去。”当时随行的夏豪杰说,当天老人家等到凌晨4点,才得到登机的通知。  早上7点,费业泰带着一身疲惫抵达合肥,随后立即赶到办公室时,这时夏豪杰才发现,费业泰坚持赶回来的原因,只是答应给一位研究生修改论文。  “费教授辛勤工作60年,精于专业,一心教书育人,忠诚于人民的教育事业,是一位有理想信念、有道德情操、有扎实知识、有仁爱之心的好老师。”合肥工业大学党委副书记周军说。  2013年,80岁的费业泰仍坚持工作  2013年,费业泰与学生们在桃李园合影
  • 精密测量院等在锂离子精密光谱研究中获进展
    近日,中国科学院精密测量科学与技术创新研究院研究员高克林、管桦实验团队与研究员史庭云理论团队,联合加拿大新不伦瑞克大学教授严宗朝、加拿大温莎大学教授G. W. F. Drake、海南大学教授钟振祥、浙江理工大学讲师戚晓秋等实验团队,在少电子原子体系——锂离子精密谱研究中取得重要进展。该研究将6Li+离子23S和23P态超精细结构劈裂的测量精度提高至10kHz水平,并精确确定了6Li原子核的电磁分布半径(Zemach半径)。这一基于原子精密光谱的工作独立于原子核模型,为揭示锂原子核结构、特别是6Li核的奇特性质以及检验相关的核结构模型提供了重要依据。该工作将进一步促进Li+离子精密光谱的实验和理论研究,推动少核子体系核结构理论与实验的开展。   少电子原子体系(如氢、氦原子以及类氢、类氦离子等)精密谱的实验与理论研究在检验束缚态QED理论、确定精细结构常数、获取原子核结构信息以及探索超越标准模型的新物理中颇具应用价值,是当前精密测量物理的重点方向。   高克林、管桦实验团队与史庭云理论团队等合作,开展类氦锂离子精密谱研究已逾十年。该团队基于电子碰撞电离方案研制了一台亚稳态Li+离子束源装置,各项性能指标(束流强度、发散角、稳定度等)均达到同类装置较高水平。该研究利用该装置产生的离子束,采用饱和荧光光谱测量方法精确确定了7Li+离子23S1和23PJ能级的精细结构和超精细结构劈裂,不确定度小于100kHz。该团队将实验与理论相结合,精确确定了7Li原子核的Zemach半径。   在饱和荧光光谱方法中,该研究受制于谱线的渡越时间展宽,得到的兰姆凹陷线宽达50MHz,大于谱线的自然线宽(3.7MHz),由此得到的测量结果具有较大的统计不确定度。为了进一步提高测量精度,该工作利用三驻波场光学Ramsey技术消除谱线的渡越时间展宽,获得线宽约5MHz的Ramsey干涉条纹,统计不确定度减小至kHz量级;通过抑制量子干涉效应、一阶多普勒效应、二阶多普勒效应、Zeeman效应以及激光功率等各项系统误差,实现了10kHz精度的6Li+离子23S1和23PJ能级的超精细结构劈裂。该超精细结构劈裂的测量精度较先前结果提高5~50倍。在理论方面,该团队计算了包括高阶量子电动力学(QED)效应在内的6,7Li+离子23S和23P态超精细劈裂。该研究包含完整的mα6阶相对论和辐射修正,理论精度较先前结果有所提升,且理论与实验符合程度较好。科研人员通过比较6,7Li+离子的理论计算和实验测量值,得到6Li和7Li原子核的Zemach半径分别为2.44(2)fm和3.38(3)fm,确认了7Li的核Zemach半径比6Li的大40%这一反常现象,并发现了由6Li+的23S态超精细劈裂确定的Zemach半径与核物理方法得到的值3.71(16)fm存在显著差异,表明6Li核可能具有反常的核结构。该成果将进一步推动更多相关理论和实验的发展。   相关研究成果发表在《物理评论快报》(Physical Review Letters)上。研究工作得到国家自然科学基金、中国科学院战略性先导科技专项、中国科学院青年创新促进会和中国科学院稳定支持基础研究领域青年团队计划等的支持。锂离子Ramsey光谱测量
  • 精密测量院参与完成《全球生态环境遥感监测2022年度报告》
    1月17日,科技部在北京正式发布《全球生态环境遥感监测2022年度报告》,报告包含“北极地区冰雪与植被变化”和“全球大宗粮油作物生产形势及复种与灌溉的贡献”两个专题。其中,“北极地区冰雪与植被变化”专题报告(以下简称“北极专题报告”),由中山大学牵头,联合精密测量院、武汉大学、国家卫星气象中心、南京大学等国内极地研究领域优势科技力量共同编制完成。精密测量院研究员江利明领衔的影像大地测量学团队,负责“北极专题报告”中的格陵兰冰川边缘线数据分析及相关中英文内容编写。利用多源卫星遥感数据,首次研制了2002-2021年整个格陵兰298条冰川边缘线逐季(典型冰流系统为逐月)数据产品,揭示了格陵兰冰川边缘线呈整体退缩趋势的时空变化特征及其大气、海洋驱动机制。自2018年以来,该研究团队在国家重点研发计划课题“格陵兰“冰盖-溢出冰川-海冰”系统关键过程遥感强化观测研究”等多个国家级项目资助下,围绕南北极冰盖关键要素多尺度变化特征及其驱动机制开展持续、深入研究,相关研究成果发表在《地球物理研究通讯》(《Geophysical Research Letters》)、《地球与行星科学通讯》(《Earth and Planetary Science Letters》)、《遥感》(《Remote Sensing》)、《国际数字地球学报》(《International Journal of Digital Earth》)等地学领域权威期刊上。2002—2021年格陵兰各流域平均边缘线的时空变化特征及其气候驱动机制2002—2021年格陵兰Zachariae Isstrom冰川边缘线变化(图片来源: CCTV-13新闻频道报道截图)近20年来,由于全球增温及北极“放大效应”的影响,北极冰雪与植被正在发生快速变化,是全球气候变化的风向标。“北极专题报告”显示,2002—2021年间,北极海冰覆盖范围缩减范围超过200万平方公里,占2002年最小海冰范围的近40%;格陵兰冰盖所有区域都发生过表面融化,主要集中在冰盖边缘地区,84%的格陵兰冰川出现退缩,平均退缩1.37公里;77.4%的北极陆表区域绿度增加,面积约550万平方公里,相当于整个亚马逊雨林的面积。该专题报告为开展北极环境变化对全球气候变化的响应研究和应对全球气候变化提供科学依据。报告全文和相关数据集产品均面向社会公开发布,可通过国家遥感中心网站(http://www.nrscc.most.cn/)和国家综合地球观测数据共享平台(http://www.chinageoss.cn/geoarc)下载。报告成果得到了人民日报、新华社、中央广播电视总台、科技日报等多家新闻媒体的宣传报道。17日发布会由科技部新闻发言人、办公厅吕静副主任主持,国家遥感中心赵静主任、刘志春副主任和中国科学院周成虎院士等领导和专家出席。据科技部国家遥感中心主任赵静介绍,科技部自2012年起持续组织开展《全球生态环境遥感监测年度报告》编制工作,面向国家重大战略需求和国际社会共同关切的议题,开展全球及洲际尺度的生态环境遥感监测、分析和评估,是我国深入实施创新驱动发展战略和联合国2030年可持续发展目标、推动全球生态环境保护和绿色低碳发展的一项重要举措。
  • 精密测量院研制出不确定度达E-18量级的室温钙离子光钟
    近日,精密测量院高克林、管桦研究团队成功研制出不确定度达4.8×10-18的室温钙离子光钟,为下一步实现10-18量级的可搬运钙离子光钟打下了坚实基础。相关研究成果近期发表在国际学术期刊《物理评论应用》(Physical Review Applied)上。  实现高精度的可搬运光钟是实现光钟应用的关键和必要条件。国际计量局于2017年提出了参考光钟重新定义秒的路线图,其中一项条件是不同光钟间的频率比值的吻合度优于5×10-18,将高精度光钟搬运到各个实验室进行频率比对是重要的方法之一。在相对论大地测量学应用方面,1×10-18的光钟不确定度对应于约1厘米的高程差,利用不确定度达到或优于10-18量级的光钟进行比对有望实现厘米级或亚厘米级的高程差测量,为高程测量提供新的方案。同时,可搬运光钟应用于新一代综合PNT体系建设中,可显著提高体系的综合性能指标。  研究团队此前研制出一台不确定度1.3×10-17的可搬运钙离子光钟,并搬运到中国计量科学研究院的北京昌平院区,实现了10-16量级的钙离子光钟绝对频率测量。在2021年3月19日召开的第22届CCTF会议上,该团队测量的钙离子光钟绝对频率值第四次被采纳,2022年4月13日,国际计量局正式采纳钙离子光频跃迁为新增的次级秒定义参考。  限制钙离子光钟不确定度进入10-18的主要因素为黑体辐射频移不确定度(BBR shift uncertainty)。黑体辐射频移与选择的光钟体系(原子频率跃迁的极化率差)相关,同时与环境温度的4次方成正比,对温度非常敏感——离子所处的环境温度以及温度的涨落相关。由此对温度效应的抑制,实验上可以采用的方法有两种,一是直接降低离子所处环境温度;二是减小离子所处环境的温度变化。这两种方案分别适用于实验室型光钟和对鲁棒性要求更高的可搬运光钟。团队此前通过采用液氮低温系统将离子所处的环境温度从室温(约300 K)降至液氮温度(约80 K),极大地降低了钙离子光钟的黑体辐射频移及不确定度。经过近四年努力,最终将液氮低温钙离子光钟的黑体辐射频移不确定度降低至2.7×10-18(Phys. Rev. Applied 17, 034041 (2022))。主动温度控制的室温钙离子光钟  左:室温钙离子光钟;右:基于水冷系统的主动温度控制 此次,为实现可搬运,团队从减小离子所处环境的温度变化出发,搭建了一台全新的室温钙离子光钟,通过水冷系统对该光钟的物理系统进行主动控温,将光钟运行过程中的环境温度不确定度减小至±0.3 oC。同时采用有限元分析计算了离子阱各组件对钙离子的有效立体角,并结合真空内的测温探头和红外相机监测和评估了离子阱各组件的平均温度,最终将该室温钙离子光钟的黑体辐射频移不确定度减小至4.6×10-18。同时,通过对钙离子光钟的其余系统误差项进行细致评估,该钙离子光钟的总系统不确定度为4.8×10-18。在此基础上,团队通过进行新搭建的室温钙离子光钟和实验室已有的低温钙离子光钟的频率比对,获得的总的不确定度为7.5×10-18(统计不确定度为4.9×10-18,系统不确定度为5.7×10-18)。该结果验证了黑体辐射频移评估的可靠性。  随着钙离子光钟不确定度指标的不断提高,同时结合钙离子光钟相对简单的特点,可研制成小型化、准连续和高可靠性的高精度可搬运光钟,并将在精密测量物理、时间基准、相对论大地测量、导航定位等方面获得广泛的应用。  本研究得到了科技部、国家自然科学基金委和中科院长期以来的大力支持。
  • 天开高教科创园 天津高端精密仪器产业园项目一期交付 为精密仪器成果转化落地搭台
    作为天开高教科创园津南园的承接载体之一,日前,天津高端精密仪器产业园项目一期交付,今后将为天津大学精密仪器的成果转化落地提供平台。作为全市首家以精密仪器、传感器以及工业过程控制为主导产业的专业化主题园区,天津高端精密仪器产业园一期占地52亩,能为企业提供建筑面积约500至5000平方米的三至五层双拼、独栋、多层厂房,可用于科技研发、小试中试研发组装、集合性办公等。随着众多企业入驻,园区将形成产业聚集效应,并在校企对接、研产科技转化、解决企业用工需求、市场对接撮合、股权融资、银行机构融资方面发力,为入园企业发展赋能。天津高端精密仪器产业园相关负责人介绍说:“截至目前,园区一期招商引资工作已经全部完成,累计引进企业26家,其中,国家高新技术企业10家、专精特新企业3家、雏鹰企业4家。”
  • 东莞精密仪器设备产业总产值超50亿元
    中国计量协会电子测量仪器工作委员会揭牌成立。通讯员供图 由中国计量协会主办,东莞市市场监督管理局等协办的中国计量协会电子测量仪器工作委员会(以下简称委员会)成立大会19日至20日在东莞市举行。据大会介绍,东莞市精密仪器设备产业总产值超50亿元。  据介绍,该委员会是中国计量协会的分支机构之一,由东莞市电子测量仪器龙头企业优利德科技(中国)股份有限公司作为秘书处单位,联合国内电子测量仪器相关企业、科研院校及计量技术机构等32家单位共同发起成立。  该委员会旨在凝聚相关专家学者、技术机构和行业企业等各方力量,打造一个全国电子测量仪器学术与科研交流的资源平台,优化我国电子测量仪器行业产业集群公共服务体系,规范行业秩序,推动完善精密仪器仪表产业相关技术和标准,加快形成产业集聚优势,助力精密仪器仪表产业创新发展。  据东莞市市场监督管理局介绍,2024年东莞市将建设精密仪器仪表产业基地纳入今年的市政府一号文,持续完善精密仪器仪表制造企业的政策激励机制,全市精密仪器设备产业总产值超50亿元。  同时大力开展计量服务中小企业行活动,引导企业提升计量管理能力,培育了优利德、维峰电子、高端精密等一批在行业内领先的龙头企业。此外还建成社会公用计量标准427项,有效期内建立在部门、企事业单位的最高计量标准583项,主持起草国家计量技术规范5项,均位列广东省地级市第一位。
  • 天津高端精密仪器产业园启幕
    百舸争流千帆竞,乘风破浪正当时。7月18日上午天津高端精密仪器产业园启动仪式顺利举行,作为天津首家以精密仪器、传感器以及工业过程控制为主题的专业化园区正式启动。天津市津南区副区长胡永梅、天津大学校长助理刘宁、天津大学精密仪器与光电子工程学院院长曾周末、津南开发区管委会主任张国艳、区政府办、区科技局、区工信局、区人社局、区合作交流办及行业协会、学会、基金机构、银行机构以及企业家朋友近百人齐聚津南,共同见证项目启动。启动仪式现场首先天津高端精密仪器产业园总经理李明山介绍项目整体情况。李明山表示:天津高端精密仪器产业园历时两年的策划,先后经历行业研究,企业调研,走进天津大学拜师求艺,走进行业企业学习请教,于2021年4月份与天津大学精密仪器学院与光电子工程学院、津南区开发区管委会正式签署战略合作协议,确定在天津共同打造“精密仪器、传感器以及工业过程控制”产业聚集,促进相关科技成果转化落地,共同推进建设“天津高端精密仪器产业园”。园区已经于2022年6月26日正式开工建设,预计在2023年10月份交付投入使用。天津高端精密仪器产业园总经理李明山致辞其次,与天津市国防科技工业协会、天津市智能制造装备产业协会、天津市仪器仪表学会达成合作,分别确定产业主题和行业服务内容,并在启动仪式上现场进行了揭牌。天津市智能制造装备产业协会授牌:“高端精密仪器专业委员会”;天津国防科技工业协会授牌:“高端精密仪器制造基地”;天津市仪器仪表学会授牌:“工业过程控制装备专业委员会”。图为协会授牌仪式与多支基金探讨合作,首先与科创天使达成共识,未来共同推进“精密仪器、传感器”相关产业主题基金的成立。图为与科创天使签约与银行机构互动,分别与浙商银行、兴业银行、建设银行、农商银行达成园区服务合作,最终构建了较为完善的园区开发、招商、运营体系。图为与合作银行签约未来园区将串联全市和津南区“产、学、研、用、政、金、介”等优势,最终构建较为完善的园区开发、招商、运营体系,合力推进天津市高端精密仪器产业的发展,为天津制造业立市贡献园区力量!此外,启动仪式还进行了入园企业签约。企业的入驻,将为天津高端精密仪器产业园注入新的动力。图为企业代表致辞接下来,天津大学校长助理刘宁先生、津南区副区长胡永梅女士、天津大学精密仪器与光电子工程学院院长曾周末先生、津南开发区管委会主任张国艳女士、天津高端精密仪器产业园总经理李明山先生以及沽盛集团副总经理时寅宝先生共同上台为项目启动,见证美好时刻!随着园区的圆满启动,把启动仪式推向了高潮,现场欢声雷动。在大家热烈的掌声中,天津大学校长助理刘宁上台为园区的启动进行了致辞,刘校表示2021年4月,天津高端精密仪器产业园创立之初就与天津大学精密仪器与光电子工程学院达成合作共识,双方共同推动大学科技成果转化落地,并将进一步促进津南区仪器仪表相关产业聚集。恰逢其时,正值大学科技园三年行动计划出台,鼓励高校科研人员到科技园内企业开展科技创新,校企共建。后依托天津市津南开发区管委会,于2021年5月三方正式签署合作协议,合力共促天津大学科技园建设和园区高质量发展。未来天津高端精密仪器产业园将围绕高端精密仪器相关产业,紧密融合天津大学精仪学院资源,打造高端精密仪器与装备产业集群,设立1个成果转化基地,2个公共平台,1个展示中心。天津高端精密仪器产业园作为大学科技园承接载体,将有力推动天津大学科技成果转化工作见实效。图为天津大学校长助理刘宁致辞最后,津南区副区长胡永梅女士为本次启动仪式致辞,胡区长表示:在全市上下掀起学习天津市第十二次党代会的热潮中,我们迎来了天津高端精密仪器产业园的启动仪式。作为大学科技园重要的承接载体之一,天津高端精密仪器产业园是天津首家以精密仪器、传感器以及工业过程控制为主题的专业化园区。同时,依托天津大学精密仪器与光电子工程学院强大的学科资源优势,在精密仪器、智能装备制造、医疗器械、新能源、新材料等重点行业大力推动科技成果转化,加快引进与培育领军企业,努力打造“专、精、特、新”的主题园区。相信在学校和学院的共同支持下,产业园将为推动天津市制造业立市和津南区产业集聚做出巨大的贡献!图为津南区副区长胡永梅致辞我们将敞开心怀,真诚欢迎各界朋友到津南考察、投资、创业,在津南这片热土上收获财富、收获成功、收获友谊。希望天津高端精密仪器产业园为中国制造2025助力,勇担重任,以与时俱进的精神、革故鼎新的勇气、坚韧不拔的定力,为中国制造备好“尺子”,为科技强国建设贡献园区力量。有社会各界的支持和美好期许,天津高端精密仪器产业园必将不负众望,为天津津南产业升级注入新动能。
  • 高端装备精密仪器产业园落户张江
    近日,在上海市经信委、浦东新区科经委等相关部门支持下,由张江集团主导产业培育和运营管理的高端装备精密仪器产业园开园。  该产业园位于浦东南北科创走廊中段,张江科学城中部核心位置,一期现有空间总建筑面积约21.3万平方米,二期规划面积1平方公里,在产业发展上将强化产业链、供应链自主可控,促进高端装备精密仪器产业集群式发展,助力构建高质量、现代化产业链体系。  高端装备精密仪器产业以高新技术为引领,处于价值链高端和产业链核心环节,决定着全产业链的综合竞争力,是现代化产业体系的重要支撑。大力培育和发展高端装备精密仪器产业是提升产业核心竞争力,抢占未来经济和科技发展制高点的战略选择。《上海市高端装备产业发展“十四五”规划》明确提出,到2025年,上海将成为具有国际影响的高端设备研发和关键技术中心。为促进高端装备产业高质量发展,浦东新区出台专项操作细则。  落户张江的高端装备精密仪器产业园在发展上将致力于服务产业既有需求、拓展未来研发领域、构建供应链关键节点,以应用场景为主阵地,驱动产业集群发展。通过引进先进技术、促进产研融合、培育高新企业、推动成果转化,集聚核心零部件研创力量,打造高端制造创新引擎。  据悉,为满足高端装备精密仪器产业园的空间需求,产业园一期现有空间21.3万平方米,兼具研发、生产、办公、展示、生活五位一体的综合功能,已配套地铁站短驳班车、园区接待中心、食堂、便利店等设施及服务。在产业园一期基础上,在周边区域已规划布局1平方公里的产业园二期,将围绕产业发展需要供给工业研发用地及定制化高标准厂房等,并适当超前预留产业所需的电力、算力等公共基础设施。  高端装备精密仪器产业园落户张江源于其雄厚的产业基础。张江自1992年建园以来已经建成以集成电路、生物医药、人工智能为主导的三大具有世界竞争力的产业集群。其中,集成电路领域已成为国内产业链最完备、综合技术水平最先进、自主创新能力最强的产业基地之一;生物医药领域构筑起全球屈指可数的创新生态,全国五分之一新药在张江;人工智能领域已集聚600多家相关企业,产业规模占全市50%。  在三大主导产业蓬勃发展的同时,交叉创新、集成创新、融合创新的趋势也愈发明显,这就对高端装备精密仪器产业提出更高的创新需求。从过去通用设备、通用零部件的制造,到如今根据前沿需求进行个性化创新,大量的张江企业都迫切需要实现供应链从端到端的自主可控。布局营建高端装备精密仪器产业园恰逢其时。  基于张江科学城多年以来的智能制造产业积累,特别是在张江实验室、国家集成电路研发中心、国家智能传感器创新中心、ABB机器人赋能中心、上海机器人产业技术研究院创新中心等功能平台的引领赋能下,结合张江完备的科创生态和优越的综合配套服务能力,高端装备精密仪器产业园将瞄准产业层次高、创新能力强的发展目标,全力建设成为国内领先、国际一流的特色产业园区。
  • “纳米尺度多场测量调控”专项启动 剑指微纳精密仪器
    2016年12月11日,国家重点研发计划“纳米科技”重点专项项目“纳米尺度多场物性与输运性质测量及调控”启动实施工作会议在深圳召开。南京大学祝世宁院士、中国科学技术大学杜江峰院士、上海纳米技术及应用国家工程研究中心何丹农教授等10余位项目咨询专家、科技部高技术研究发展中心代表、以及项目和课题承担单位的负责人和研究骨干参加了会议。  该项目由中国科学院先进技术研究院联合华南师范大学、南京大学和清华大学共同承担。项目旨在揭示光电、热电、磁电材料和器件的微观结构、局域响应和宏观性能的关联,分析铁电极化对光电转换的调控作用,界面和缺陷对热电输运的影响,以及微纳结构和磁电耦合的相互作用,发展基于多功能扫描探针的纳米测量与调控技术,在纳米尺度综合定量测量调控材料电学、光学、磁学、力学和热学多场物理及输运性质,并以此解决先进功能材料与器件的一系列关键科学问题,进而形成一系列原创、具有自主知识产权的新思想(如宏观微观协同调控测试)、新技术(如多功能扫描探针激励和多场原子力显微样品加载)、新方法(如跨尺度实验测试、数据采集、和计算模拟)和新发现(如光电、热电、磁电多场物性和耦合新机制),推动纳米技术、高速低能耗信息处理与存储、微电子器件、高效清洁能源以及精密仪器等产业和领域的发展。  科技部高技术研究发展中心代表对项目的执行和管理提出要求,强调了纳米科技重点专项项目“重立项、重过程、重验收”的基本原则,要求项目承担单位和研究人员增强责任感和使命感,强化项目组织实施,加强课题间的交流,立足学科领域发展前沿,力争在重大科学问题与关键技术问题上取得原创性突破。  项目负责人李江宇教授介绍了项目的整体情况,各课题负责人就课题的具体研究目标、实施方案、研究难点以及如何突破、下一步工作计划等进行了详细介绍。项目咨询专家就项目的研究目标、研究内容和技术方案等给予指导,对项目的执行和管理提出了指导性意见和建议,希望通过研发具有自主知识产权的多功能扫描探针的纳米测量与调控技术,为先进功能材料与器件方面的研究提供强有力的工具。
  • 茂莱光学IPO获受理:募资4亿元投建高端精密光学产品等项目
    6月23日,上交所正式受理了南京茂莱光学科技股份有限公司(简称:茂莱光学)科创板上市申请。茂莱光学作为精密光学综合解决方案提供商,专注于精密光学器件、光学镜头和光学系统的研发、设计、制造及销售,服务于半导体(包括光刻机及半导体检测装备)、生命科学(包括基因测序及口腔扫描等)、航空航天、无人驾驶、生物识别、AR/VR 检测等应用领域。三大业务稳步增长目前,茂莱光学主要产品覆盖深紫外 DUV、可见光到远红外全谱段,主要包括精密光学器件、光学镜头和光学系统三大类。2019-2021年,茂莱光学实现主营业务分别实现收入 22,189.64 万元、24,616.72 万元和 33,141.07 万元,2020 年度和2021 年度同比分别增长 10.94%和 34.63%。分产品来看,报告期各期,光学器件是报告期内茂莱光学主要的收入来源,光学器件分别实现收入13,277.28 万元、13,567.68 万元和 18,878.17 万元,占营业收入的比例分别为 59.84%、55.10%和 56.95%。茂莱光学称,2021 年,公司光学器件收入较 2020 年增加 5,310.49 万元,同比增长 39.14%。主要系平片收入增加 3,721.09 万元,随着疫情逐步缓解,海外牙科市场被抑制的需求逐渐放量,客户 ALIGN 和 Meopta 对应用于 3D 牙科扫描系统的平片需求量大幅增加,公司对上述客户的平片收入分别同比增加 2,242.39 万元和 760.62 万元,较上年增长154.39%和 242.16%。此外,棱镜收入同比增长 38.31%,主要系客户 ALIGN 对光线折返异形棱镜的需求量增加,向该客户销售的棱镜金额同比增加 807.56 万元;透镜收入同比增长 12.35%,主要系 2021 年全球半导体行业景气度回升,应用于半导体检测领域的康宁集团对应用于半导体检测设备的透镜产品需求量大幅增加。报告期各期,光学镜头分别实现 5,523.54 万元、5,390.59 万元和 6,799.58 万元的收入,占营业收入的比例分别为 24.89%、21.89%和 20.51%。其称,2020 年度,公司光学镜头收入下滑主要原因为航天监测相机镜头及星敏相机镜头收入受客户需求影响大幅下降。而2021年营收增长主要系显微物镜系列收入大幅度提升,受近年来半导体行业呈快速增长趋势的影响,对半导体检测领域的客户 Camtek 收入较去年增加 1,317.71万元,对其销售的一款新品 10 倍显微物镜进入批量交付阶段,且该客户对 5 倍显微物镜等其他多款显微物镜的需求量亦增长较快。另外,报告期各期,其光学系统分别实现 3,102.93 万元、5,287.06 万元和 6,632.52 万元的收入,占营业收入的比例分别为 13.98%、21.47%和 20.01%。茂莱光学表示,2020 年度,公司光学系统业务收入增长主要原因系 AR/VR 检测等下游领域保持市场增长,客户 Facebook 和 Microsoft 积极布局,产品需求相应增加,该产品逐渐得到产业化应用;同时,生物识别光学模组收入增加 480.95 万元,主要系十指扫描仪模组、护照扫描仪模组等高单价的产品收入增加。而2021 年度该业务收入增长主要系随着半导体行业进入快速成长期,下游半导体检测设备需求放量,公司对 KLA 和 Camtek 的此类产品交付量随之增长较快。募资4亿元投建高端精密光学产品等项目招股书显示,茂莱光学此次IPO拟募资4亿元,投建于高端精密光学产品生产项目、高端精密光学产品研发项目以及补充流动资金。其中,高端精密光学产品生产项目计划在江苏省南京市江宁区汤佳路以北、金鑫东路以西地块实施,通过新建 1 栋厂房、1 栋综合楼以及其他附属配套设施,并引进一系列先进生产设备、检测设备及其他辅助设备,实现对光学器件、光学镜头及光学系统等一系列光学产品的产能扩充。而高端精密光学产品研发项目址位于江苏省南京市江宁开发区金鑫东路以西、汤佳路以北,公司计划利用新建的综合楼 B 部分面积,装修改造半导体光刻及半导体测量设备开发实验室、消费类电子商品量产线测量设备开发实验室、300mm 口径及以上大口径激光干涉仪开发实验室、基于新一代光学技术的医疗仪器开发实验室,并配备一系列先进研发和检测设备,同时引进一批高级技术人才,进一步完善和提升公司的技术研发实力。该项目完成后,将形成一系列高标准实验室,并在此基础上重点针对光学主动定心测量系统的原理及实现方式、大数值孔径物镜测量技术的原理及实现方式、200~300mm 大口径干涉仪、300mm 口径干涉仪球面标准镜、镜头像质检测的原理研究与自动化检测设备开发、双频激光测长原理研究与产品开发、点衍射干涉仪原理研究与产品开发、自动对焦的原理研究与设备开发等 30 项技术课题进行研发和改进。茂莱光学认为,公司本次募投项目“高端精密光学产品研发项目”,将建成达到行业先进水平和标准的实验室,进行高端精密光学产品和技术的研发,有助于公司打破国外技术垄断,进一步提高光学加工技术水平,以助力我国半导体(包括光刻机及半导体检测装备)、生命科学(包括基因测序及口腔扫描等)、航空航天等高科技应用领域国产化。对于公司发展战略,茂莱光学表示,公司将始终专注于精密光学器件、光学镜头和光学系统的设计、研发、制造及销售,通过持续不断的技术研发创新,本土及国际市场的开拓,精益运营管理创新和国际化人才团队建设,进一步提高光学器件、光学镜头及光学系统设计、研发、制造及服务水平,为科技应用领域客户提供高精度、高复杂度、高附加值的核心光学器件及解决方案,促进生命科学领域(如基因测序及口腔扫描等)的跨越发展,赋能光刻机及半导体装备升级换代,为航空航天、无人驾驶、生物识别及 AR/VR 检测等领域提供强有力的光学技术支撑。进一步打造公司核心竞争能力和竞争优势,提升公司品牌及国际化形象,保持精密光学行业地位和公司的可持续发展,实现客户价值、员工成长和科技进步的公司使命,实现成为高端光学科技创新应用企业的愿景。
  • 中教金源——山东中教金源精密仪器有限公司正式运营
    “山东中教金源精密仪器有限公司”于2022年10月16日隆重开业,正式投入运营!中教金源多方位的实现了品质和服务升级。1. 服务升级:山东公司位于鲁南滕州,可以实现华东、华中、华北地区的三小时快速上门服务圈。2. 效率升级:实现现有产品的全品类库存,实现下单即发货。3. 品质升级:产品实现规模化,流程化生产。4. 运营升级:北京为中心的研发销售团队和滕州为中心的生产售后团队,实现了中教金源双中心运营。5. 产业升级:实现了产品的研发、生产、配套、服务,全部在墨子科创园园区内完成,并享受当地政府的多项支持。金秋十月,满满的收获季节!北京中教金源科技有限公司迎来了企业高光时刻。位于山东滕州墨子科创园的北京中教金源科技有限公司的全资子公司“山东中教金源精密仪器有限公司”于2022年10月16日隆重开业!山东滕州作为孔孟之乡、“科圣”墨子、“工匠祖师”鲁班的故里,自古就为“三国五邑之地、文化昌明之邦”。山东中教金源精密仪器有限公司入驻墨子科创园也被看做是提升鲁南制造业整体高、精、尖产业形象的标志!山东中教金源精密仪器公司位于滕州市墨子科创园D3栋,拥有独栋5层楼5500余平米的生产、实验及办公面积。楼内设施齐全,设有数字化加工中心,生产车间,装配车间,客户实验测试中心,售后服务部,物资部等多个部门。山东中教金源投入了先进的数字化加工及生产设备,融合了“光源系统”、“光热/热催化系统”、“光解水系统”、“光电测试系统”、“色谱”、“光电化学”等多条生产线,在原来产能基础上实现了跨越式增长!高效的管理理念以及先进的生产设备将为新老用户提供更高品质的产品;同时“中教金源山东实验测试中心”也已建成并正式投入运营。中教金源正以山东滕州为基地集“生产制造、实验测试、安装调试、客户服务”等一系列覆盖全国的业务模式初步形成。中教金源一直秉承“催化中国科研教育,产品质量铸金、科技创新立源”、“点亮催化、技术改变科研生态”、“专注、成就、共享、品质铸就品牌”的企业价值理念,一丝不苟的用心为高校、科研院所提供极具性价比的国产实验仪器设备。中教金源愿与广大科研工作者携手同行,中教金源,您科研之路最优合作伙伴!
  • 量子精密测量技术显著提高微波测量精度和灵敏度
    发展现代化先进量子测量体系具有重要的研究意义,它符合时代发展需求和国际化发展潮流,同时面向国际前沿和国家重大需求。由于里德堡原子具有较大的电偶极矩,可以对微弱电场产生很强的响应,因此已经成为一个非常有前景的微波测量量子体系。此外,由于里德堡原子之间具有长程强相互作用,常被用于模拟研究强关联系统以及相变。强关联系统在临界点附近对外界扰动更加敏感,可以被应用于量子精密测量领域。虽然有大量理论报道利用强关联系统的临界状态去做量子传感,但在实验上一直未能成功实现。“主要原因是多体系统相变过程制备难、临界点的外场调控技术欠缺等。” 论文共同作者、中科院量子信息重点实验室丁冬生教授介绍。近年来,史保森、丁冬生科研团队利用里德堡原子体系,聚焦量子模拟和量子精密测量科学研究,已取得了重要进展。此次工作中,团队发展了里德堡原子临界点与微波电场的耦合技术。基于室温铷原子体系,利用多体系统相变点对于微波扰动更加敏感的特点,显著提高了测量微波的精度和灵敏度。丁冬生说,“实验发现,多体系统中的原子透射谱线在相变点附近变得更加陡峭,这相当于一把频域上刻度更细的尺子,因此对于微波测量具有更高的精度。”在评估传感器时,一个关键量是Fisher information,它表示一个测量量包含多少关于未知参数的信息。实验表明,相比于少体无相变的情况,多体系统在临界点的Fisher information具有显著提高,具体提高了三个数量级。对应于测量精度提升至少一个量级,并且随测量时间的增加而增加,呈现指数增长的趋势。该工作得到审稿人高度评价:“该实验真正具有开创性,具有重大的潜在影响,因为它为开发基于强相互作用多体系统的新一代量子传感器打开了大门。” “49纳伏每厘米每根号赫兹的灵敏度令人印象深刻,很好地表明了这种方法在计量方面的潜在应用。”中科院量子信息重点实验室丁冬生教授与博士研究生刘宗凯为本文共同第一作者,丁冬生教授、史保森教授、丹麦奥尔胡斯大学Klaus Molmer教授和英国杜伦大学Charles S. Adams教授为本文共同通讯作者。
  • 高精密度稻米重金属快速检测仪在长沙投用
    这台设备像给大米进行一次X射线的透视,3分钟之内就能查出被检大米是否重金属超标。   大米是生活必需品,其是否卫生、有没有被重金属污染,是消费者关心的问题。记者昨日在长沙市质量技术监督局了解到,高精密度稻米中重金属快速检测仪今年在长沙投用。这台设备像给大米进行一次X射线的透视,3分钟之内就能查出被&ldquo 体检&rdquo 大米是否重金属超标,相比传统的标准方法两天检测出结果提速了近千倍,极大地便利了粮食质量安全的监测。   更精确:打一&ldquo 枪&rdquo 测超标情况   这台检测仪器由湖南省食品安全生产工程技术研究中心主任彭新凯发明,并联合一家检测技术公司研发,据称是世界上首台能运用多晶X射线衍射技术开发的一款食品重金属快速检测仪,去年12月获国家专利。   记者昨日在实验室看到,这台白色检测仪外型像一台小型微波炉,只有55厘米长、33厘米宽和44厘米高。检测仪的正面是一个显示窗口,像电脑的显示屏。   对于这台检测仪的检测原理,彭新凯形象地解释为:用X射线给大米打了一&ldquo 枪&rdquo ,这一&ldquo 枪&rdquo 直接激发稻谷的重金属原子核,激发了M、K、L等壳层能量波的跃迁。仪器对跃迁产生的荧光光谱进行对应分析,从而判断被检大米含有何种重金属,&ldquo 就像美国登月车用X射线能量射手来检测月球含有哪种元素的原理一样,但仪器检出限由10-3mg/Kg提高到10-8mg/Kg,检测的精度提高了十数万倍,测试的结果符合GB/T5009.15-2003等标准和规定的要求。&rdquo   更便捷:检测步骤减少了,提速近千倍   &ldquo 这种检测仪还有更快速、无污染、零耗材的优点。&rdquo 彭新凯介绍说,根据通用的检测标准要求,农民种植的稻谷进行检测需要送样到市级及以上检测中心才能受检。接受样品之后,检测人员需要进行8个小时以上的浸泡处理,再进行相关的检测,&ldquo 整个流程做完有11个程序,需要两天的时间。而这种仪器是无损检测,操作简便,检测成本低,只要3分钟定性,12分钟定量。无需前处理,轻轻松松就完成。&rdquo   记者了解到,在今年的收粮工作中,望城区新康乡的万亩试验田基地和长株潭的试验田基地都已用上了这种检测仪。这种检测设备只有35公斤重,对于环境没有特殊要求,能在田间地头运用,适合收购现场和鉴定抽查使用,将来还可以用于环境检测、制药企业的产品检测、商超集市等食品检测机构进行运用,&ldquo 在全国的这些机构进行运用,实现产业化量产之后,未来将形成一个产值达十数亿元的检测装备市场。&rdquo 国家粮食局标准质量中心今年在多地进行了测试验证,并组织专家评审之后认为,这种方式可以满足稻米中镉含量快速检测的需要,建议推广使用。   操作简单   记者昨日在实验室采访时,工作人员现场演示了一次仪器的操作过程。   1 将一个5厘米直径的塑料容器里装满约10克稻谷,将容器放在检测仪上方一洞口里,旋紧、盖上。   2 在屏幕上设定测试时间200秒,启动扫描。约3分钟后,显示窗口出现波状图案。   3 完成检测后显示屏上显示检测报告为&ldquo 镉(Cd)的标准要求为:小于等于0.2mg/kg,测试值为0.023mg/kg,测试结果:passed&rdquo 。 注:以上稿件转载自新华社,文中观点不代表本网立场,仅供读者参考。
  • 中科院精密测量院研制出相位锁定的涡旋物质波干涉仪
    近日,精密测量院江开军研究团队研制出基于超冷原子气体的涡旋物质波干涉仪,并观察到两自旋分量上干涉条纹的相位锁定现象,相关研究成果 6月30日发表在学术期刊《npj Quantum Information》上。   干涉是经典波动力学和量子力学中的基本现象,以此为基础的干涉仪可以通过测量不同路径或通道间的相位移动对物理量进行精确测量。超冷原子气体具有组分纯净、相干性好且内外态精确可控的特点,基于该体系的物质波干涉仪近年来成为精密测量和基础物理研究的重要工具。目前在超冷原子气体中实现的物质波干涉主要是通过操控物质波的平动自由度实现分束,观测具有不同线动量的物质波干涉条纹进行相位测量。而另一方面,由角动量表征的转动是体系另一个重要自由度,并且超冷量子气体中的角动量与体系的涡旋、超流等量子现象具有密切的联系。在超冷原子气体中可以基于不同的角动量态实现一类新型的涡旋物质波干涉,有望用于测量体系的外部磁场、转动、粒子间相互作用和几何相位等物理量。实现涡旋物质波干涉的前提是在超冷原子气体中可控的制备和操控涡旋态。近年来携带角动量的拉盖尔-高斯光与冷原子相互作用研究的进展,为建立涡旋物质波干涉仪奠定了基础。   研究团队近年来对超冷原子气体的涡旋光场调控开展了研究,掌握了利用涡旋光场驱动双光子拉曼跃迁实现超冷原子涡旋态的制备、操控与测量方法,测量了自旋-角动量耦合超冷原子气体的量子相变[Physical Review Letters 122, 110402 (2019)]。 涡旋物质波干涉仪的实验构型   在前期工作的基础上,研究团队利用偏置磁场在铷87原子F=1超精细能级的三个磁子能级间产生较大的二阶塞曼频移。团队利用一对具有不同角动量的拉曼光束诱导双光子跃迁,获得干涉仪的第一个分束器,干涉仪的两臂具有不同的自旋和角动量(涡旋态);随后利用射频脉冲作为第二个分束器,在两个自旋态(对应分束器的两个输出端口)上都实现涡旋物质波的干涉。通过选择合适的拉曼光和射频脉冲的失谐量,确保原子只布居在两个磁子能级,产生无损耗的分束器。不同于线动量干涉产生的线向干涉条纹,实验上观察到角向干涉条纹。通过对干涉图样的分析,发现两自旋态上的干条纹具有反相位关系(π 相位差),该相位关系不受两涡旋态的角动量差、拉曼光的组成和超冷原子自由膨胀时间等实验参数的影响。提出了利用涡旋物质波干涉仪测量磁场的方案,并对磁场测量的灵敏度进行了评估,指出该方案可以测量有限大小的磁场,并且测量灵敏度不受原子数波动的影响。该工作为构建基于涡旋物质波干涉的新型量子传感器提供了实验基础。 两自旋态干涉条纹相位关系的实验测量   相关研究成果以“相位锁定的涡旋物质波干涉仪(Phase-locking matter-wave interferometer of vortex states)”为题,发表在学术期刊《npj Quantum Information》上。精密测量院博士生孔令冉为论文第一作者,特别研究助理高天佑和研究员江开军为通讯作者。   该工作获得科技部重点研发计划、国家自然科学基金、中科院国际团队以及湖北省创新群体项目等的资助。
  • 通知:第一届高精密微尺度增材制造峰会
    为了推动微尺度增材制造技术的发展和应用,第一届高精密微尺度增材制造峰会将于2021年8月18日在线上举办,本次峰会旨在搭建一个微尺度增材制造技术及其应用进展的高端交流与分享平台,探讨微尺度增材制造技术的研发进展、应用创新,并展望其未来发展方向。 一、会议名称:第一届高精密微尺度增材制造峰会二、会议时间:2021年8月18日下午1:30 – 5:30三、会议主题:高精密微尺度增材制造峰会四、会议主要方向:探讨微尺度增材制造技术的研发进展、应用创新,并展望其未来发展方向五、会议参与方式:线上直播微信扫码进入,设置“开播提醒”线上链接:https://appqd9qsvik6134.h5.xiaoeknow.com/v2/course/alive/l_61137097e4b054ed7c4ca3de?app_id=appqD9QSViK6134&alive_mode=0&pro_id=&type=2六、组织机构:主办单位:深圳摩方新材科技有限公司峰会主席:葛锜 副教授(南方科技大学) 陈小明 教授(西安交通大学) 七、峰会议程:详见附件一(如主题和时间有调整以最后通知为准)。八、联系我们:联系人:邢羽翔电话:0755-26600689邮箱:tommasxing@bmftec.cn 附件一:会议日程及报告安排峰会嘉宾介绍:主办单位介绍:
  • 齿轮行业测试仪器和设备亟需加强研发
    目前,国内缺少齿轮测试仪器和设备,由此造成全国年产2000多万台齿轮箱的质量缺乏可靠的测试数据。为彻底改变齿轮行业零部件内在质量的落后状况,专家指出,必须重视和加强测试仪器和设备的开发。 目前,全国齿轮行业中大约只有300家齿轮生产厂具有仪器基本配套的计量室,总计约有三坐标测量仪200多台,且大多从国外进口;各类(机械、光电、数控)齿轮测量仪器1000余台,其中齿轮测量中心30余台,总成测试仪器、蜗轮付检查仪约10余台,变速箱试验台和驱动桥试验台不超过50台;圆度仪、测长仪、光学分度头、粗糙度仪、投影仪、万工显等各类测量仪器500余台。其余约200家齿轮生产厂几乎没有精密测量仪器,部分企业除了万能量具外,没有一台测量仪器。 专家指出,为进一步提高齿轮行业产品质量和竞争力,应尽快配备相应的各类精密测试仪器。在今后几年中,大中型齿轮企业应配备三坐标测量机、齿轮测量中心和其它精密测量仪及配套完整的中心计量室,小型企业也要配备必要的精密测量仪器。
  • 科众精密-全自动晶圆接触角测量仪,测量等离子处理镀膜后的接触角
    半导体晶圆表面的接触角测试是半导体制造中常见的一项表面质量评估方法,其重要性在以下几个方面:1、粗糙度评估:半导体晶圆表面的粗糙度会对接触角产生影响,接触角测试可以用来评估晶圆表面的粗糙度,从而评估其表面质量。表面清洁评估:半导体晶圆表面的杂质和污染物会影响接触角的测量结果,接触角测试可以用来评估晶圆表面的清洁程度。2、表面处理评估:半导体晶圆表面的各种表面处理,如刻蚀、沉积、退火等会影响接触角的测量结果,接触角测试可以用来评估这些表面处理对晶圆表面性质的影响。3、界面张力评估:在半导体制造中,各种材料的粘附和分离过程都涉及到界面张力的变化,接触角测试可以用来评估晶圆表面和各种材料之间的界面张力。综上所述,半导体晶圆表面的接触角测试可以用来评估晶圆表面的粗糙度、清洁程度、表面处理效果和界面张力等方面的性质,对半导体制造过程中的表面质量控制具有重要的意义。晶圆全自动接触角测量仪详细参数:技术参数KZS-50图片硬件外观接触角平台长12寸圆平台(6寸、8寸、12寸(通用)扩展升级整体扩展升级接触角设备尺寸670x690x730mm(长*宽*高)重量35KG样品台样品平台放置方式水平放置 样品平台工作方式三维移动样品平台样品承重0.1-10公斤仪器平台扩展可添加手动,自动倾斜平台,全自动旋转平台,温控平台,旋转平台,真空吸附平台调节范围Y轴手动行程400mm,精度0.1mmX轴手动,360°自动旋转,精度0.1mm测试范围0-180°测量精度高达0.01°测量面水平放置样品平台旋转全自动旋转平台仪器水平控制角位台可调,镜头可调,样品平台可调滴液滴液系统软件控制自动滴液,精度0.1微升,自动接液测试注射器高精密石英注射器,容量500ul针头直径0.51mm,1.6mm表面张力测试滴液移动范围X轴手动调节80mm,精度0.01mmZ轴自动调节100mm,精度0.01mm滴液系统软件控制自动滴液泵滴液模组金属丝杆滑台模组镜头/光源光源系统单波冷光源带聚光环保护罩,寿命60000小时以上光源调节软硬共控镜头可移动范围滑台可调100mm镜头远心变倍变焦定制镜头镜头倾斜度±10°,精度0.5°相机帧率/像素300fps(可选配更高帧率)/300万像索电源电源电压220V,功率60W,频率60HZ漏电装置带漏电装置保护软件部分软件算法分辨率拟合法、弧面法、θ/2、切线法、量角法、宽高法、L-Y法、圆法、椭圆法、斜椭圆法测量方式全自动、半自动、手动拟合方式 分辨率点位拟合,根据实际成像像素点完全贴合图像拍摄支持多种拍摄方式,可单张、可连续拍摄,支持视频拍摄,并一键测量。左右接触角区分支持分析方法座滴法、纤维法、动态润湿法、悬滴法、倒置悬滴法、附着滴法、插针法、3D形貌法、气泡捕获法分析方式 润湿性分析、静态分析、实时动态分析、拍照分析、视频分析、前进后退角分析保存模式Word、EXCEL、谱图、照片、视频总结1、晶圆接触角测量可以订制,适用于各种半导体制造中常用的6英寸、8英寸、12英寸等尺寸的晶圆。2、高精度测量:可以在非常小的范围内准确测量晶圆表面的接触角,具有高度的重复性和准确性。3、多功能性:晶圆接触角测量仪通常具有多种测试模式,可以测量不同类型的表面处理,如刻蚀、沉积、清洗等过程对接触角的影响,可以提供全面的表面质量评估。4、高效性:晶圆接触角测量仪可以在非常短的时间内完成多个晶圆的测量,提高了实验的效率。5、自动化程度高:晶圆接触角测量仪通常具有自动化控制和数据处理系统,可以自动完成晶圆的定位、测量和数据处理,减少了实验人员的工作量和误差。晶圆接触角测量仪是一种专门用于测量半导体晶圆表面接触角的仪器。相比传统的接触角测量仪,它具有以下优势:1、适用于大尺寸晶圆:晶圆接触角测量仪通常具有较大的测试平台,能够容纳大尺寸的晶圆,适用于半导体制造中常用的6英寸、8英寸、12英寸等尺寸的晶圆。2、高精度测量:晶圆接触角测量仪使用高精度的光学传感器和计算算法,可以在非常小的范围内准确测量晶圆表面的接触角,具有高度的重复性和准确性。多功能性:晶圆接触角测量仪通常具有多种测试模式,可以测量不同类型的表面处理,如刻蚀、沉积、清洗等过程对接触角的影响,可以提供更全面的表面质量评估。3、高效性:晶圆接触角测量仪可以在非常短的时间内完成多个晶圆的测量,提高了实验的效率。4、自动化程度高:晶圆接触角测量仪通常具有自动化控制和数据处理系统,可以自动完成晶圆的定位、测量和数据处理,减少了实验人员的工作量和误差。综上所述,晶圆接触角测量仪具有高效、高精度、多功能等优点,在半导体晶圆表面处理和质量控制中具有广泛的应用前景。
  • 16万元精密仪器被2万元销赃
    近日,阜沙警方成功破获了一起特大盗窃案,抓获3名犯罪嫌疑人,缴获赃物“自动旋转测头机器”精密仪器1台(价值人民币16万多元),起得赃款人民币9000元。   9月26日9时42分,阜沙警方接到事主田女士报案称:位于阜沙镇上南工业区的某公司质检部被人盗走了1台自动旋转测头机器,属精密仪器,该机器长约30CM ,上部为方形,下部为圆形,于2011年2月18日在深圳市以164700元的价格全新购入。   民警通过回放公司监控录像、走访公司员工等掌握了大量可靠线索,最终将目光锁定了该公司员工何某、刘某、王某3人。10月26日,办案民警在该公司内将嫌疑人何某抓获。11月2日、4日,办案民警又在该公司将正在上班的嫌疑人王某抓获,并且远赴东莞市将另外一名嫌疑人刘某抓捕归案。   据悉,9月23日凌晨0时许,正值该公司下班时间,公司员工陆续离开,只剩下何某和刘某时,由何某把风,刘某则将一台自动旋转侧头机器拆卸,作案得手之后两人携带赃物迅速离开现场。随后,刘某将赃物交给王某。次日,王某带到东莞市将作案赃物以20000万元人民币的价格进行销赃,并把所得赃款中的7500元人民币分给了刘某。几天后,何某追问销赃分赃款的事情,王某却以“机器还没有出手”为由,未将赃款分给何某,而何某也并不知情。事后,王某约刘某、何某两人开始挥霍赃款,前后共花费约3500元,后王某将剩下的9000元人民币存入了自己的银行卡内。   经审,3名嫌疑人均对涉嫌盗窃自动旋转测头机器的违法犯罪事实供认不讳。
  • 天津高端精密仪器产业园一期主体建成
    12日,位于津南区的天津高端精密仪器产业园一期主体施工完成,主要为天津大学精密仪器的成果转化落地提供载体平台。  天津大学精密仪器与光电子工程学院,建有精密测试技术及仪器国家重点实验室,手握大量先进成果,亟待转化。去年6月,津南区引入专业运营公司,在开发区内,建设天津高端精密仪器产业园。既承接天大成果转化落地项目,也会引进电子元器件、工业自动化、精密加工、物联网传感器等六个相关领域的龙头企业,培育产业集群。目前,一期主体工程完工。计划8月竣工交付。目前已经引进行业企业21家,包括3家专精特新企业,6家国家级高新技术企业。
  • 深圳精密仪器设备产业增加值2025年将达到200亿元
    一块看似光洁的玻璃片在光学3D表面轮廓仪的镜头下,竟神似凹凸不平的丘陵。在白光干涉技术的扫描下,软件对玻璃表面3D图像进行数据处理与分析,显示从最凹处低点到最凸处高点的距离居然有60纳米。  “我们还测量过高低点仅相距0.1纳米的表面材料,不同光洁度的材料可以在一些特殊领域大展拳脚。”深圳市中图仪器股份有限公司副总经理张和君说。  纤毫之间见真功,作为深圳“20+8”产业集群中的一员,深圳市精密仪器设备产业已初具规模,一批代表企业成长为所在领域的佼佼者。伴随《深圳市培育发展精密仪器设备产业集群行动计划(2022—2025年)》(以下简称《行动计划》)的发布,补短板、强攻关、塑品牌、搭平台、活生态的脚步更趋稳健。  为高端仪器国产化贡献“深圳智慧”  无论是材料器件的外观标准测量、大型数控机床的校准,还是肉眼看不见的声音、气体、温度、压强,抑或细胞的细微变化、电流的强弱、电子信号的瞬息波动,都在各类精密仪器设备的“火眼金睛”下无所遁形。当前制造业转型升级也对设备和生产过程的高精尖程度提出了新要求,进一步刺激精密仪器设备产业链上下游快速成长。  据统计,2021年,深圳市精密仪器设备产业增加值达到128亿元,产品竞争力不断增强。其中,数字多用表、电子测量仪器、电能表等细分领域集聚了一批重点企业,高速高精点位操作技术、厘米级型谱化移动测量装备等关键技术研究成果获得国家科技奖,建成深圳市大型科学仪器共享平台等一批公共服务平台和创新载体,涌现出华盛昌、中图仪器、万测试验、浩宁达仪表、达实智能、科陆电子、拓邦股份、迈瑞、华大基因、鼎阳科技、中科飞测、宇星科技等一批代表性企业,为高端仪器国产化贡献了“深圳智慧”。  剖析精密仪器设备产业链,可以发现深圳企业在产业链中下游的表现尤为突出。  华盛昌所处的电子电力检测、红外检测、环境检测等智能检测技术是精密测量仪器领域的重要环节。在南山区西丽百旺信科技园内的华盛昌展厅陈列着各类与国际领先品牌站在同一起跑线的高精度测量仪器,包括专业电气安全检测仪表、可远程监控并进行智能物联网大数据分析的电能质量和能源管理仪器、专业红外热成像仪、检验空气质量的颗粒物计数仪等。当记者朝一块外观时尚的智能手表呵口气时,它甚至能准确测量出酒精含量是否超标。  在精密仪器设备的下游应用端,2003年成立的华测检测认证集团股份有限公司是中国第三方检测认证行业首家上市公司,已在全球90多座城市设立150多间实验室,其检测和认证服务覆盖衣食住行的供应链上下游。  标准的背后是惊心动魄的技术攻关  作为一个“标准”密集型产业,精密仪器设备比拼的是精益求精的劲头。在“失之毫厘谬以千里”的微观世界里,谁掌握标准的制定权,就拥有创新发展的主动权。  担任深圳市传感器与智能化仪器仪表行业协会会长单位的华盛昌是《穿戴式快速筛选酒精检测仪》《婴幼儿室内空气质量分级》和《过滤式空气净化器颗粒物净化性能分级》标准参编单位,也是《红外人体表面温度快速筛检仪》国标起草单位。  标准的背后是惊心动魄的技术攻关。  以迈瑞所在的医疗器械领域为例,这是各类精密仪器的兵家必争之地,其中对血液细胞的分析尤为激烈。  人体内分布着数十万亿个细胞,观测分析其变化规律,可作为许多疾病的诊断依据。1998年以前,中国血液细胞分析产品市场上是清一色的外国品牌。1998年,迈瑞推出了中国第一台准全自动三分群血液细胞分析仪,这一格局才被打破。如今,在高端血液细胞分析系统方面,迈瑞生产的五分类血液分析仪已占据重要位置。  工作人员解释,它采用半导体激光散射技术和细胞化学染色技术,当激光照射到细胞时,不同角度的散射光可反映细胞的体积大小、颗粒等不同信息,再结合其他特殊技术完成白细胞的五分类测定。研发团队在试剂、光学、算法、液路、系统设计、机械、软硬件、可靠性等方面攻克了多项技术难关,突破了多项国际技术封锁。  硬核科技凸显“专精特新”特质  “精”是精密仪器设备产业当之无愧的内核。无论是纳米级别的测量精度,还是长期专注于某一领域的企业发展战略,无不凸显“专精特新”特质。  去年12月1日登陆科创板的深圳市鼎阳科技股份有限公司是数字示波器、信号发生器、频谱分析仪和矢量网络分析仪四大通用电子测试测量仪器主力产品领域中的国家级专精特新“小巨人”企业。其开发的数字示波器产品被称作电子工程师的“眼睛”,能把肉眼看不见的电信号转化为波形图像,方便工程师研究各种电现象的变化过程,采集电路中的电信号并进行测量、分析和处理。  “专精特新”的灵魂是持续创新。目前鼎阳科技累计专利数量达233项,其中发明专利153项,多项核心技术在行业内处于领先地位。今年一季度,鼎阳科技境内外营业收入均保持增长,其中,中高端产品以及境内市场增长势头尤为明显。  专注精密测量领域的中图仪器是另一家跻身工信部第三批专精特新“小巨人”企业榜单的企业。2019年,该公司通过了广东省科学技术厅“广东省高精度3D测量工程技术研究中心”认定,次年又荣获中国机械工业联合会机械工业创新大赛银奖,获得中国仪器仪表学会科技进步二等奖。  公共平台既是黏合剂更是催化器  一个产业集群的做强,势必要求一个融合了科研机构、共性技术研发平台、中试验证平台、孵化平台在内的产业支撑。  光明区高科创新中心四楼是深圳中国计量科学研究院技术创新研究院的过渡院区所在地。在启动运营不足两年的时间里,已建成多间实验室。微纳仪器与精密测量实验室内,研究人员正在开展微纳尺度测量技术与仪器技术攻关。一台即将交付用户的衍射法栅格间距测量装置可以在狭小的内部空间内实现激光光束的层叠式传播,量值直接溯源至米定义波长基准,并有效缩短溯源链,实现扁平化量值传递。  按照规划,总建筑面积6.84万平方米的中国计量院深圳创新院永久院区将在不远处的光明科学城大科学装置集群区建设。  “研究院将边建设、边运行、边转化,未来将打造成为计量基础技术和共性技术扩散中心。”研究院副院长宋振飞说。  作为科技创新的公共服务平台代表,深圳市大型科学仪器共享平台已经运营近3年,在整合深圳高校、科研院所、企业等单位的科技资源方面开展了有效探索。2021年度,进入共享平台的单台原值超过50万元(含)且利用财政资金出资购置的科研仪器总数量为4434台套,涉及电子信息、海洋、化工、生物等行业的十多个仪器类别,平均开放率为86.3%,使用率为104.3%。缺少大型科研设备的中小企业可以在平台上便捷预约价值不菲的高端精密仪器,有效盘活了深圳精密仪器设备资源。  另一方面,行业协会也在推动产业集群做大做强方面,发挥了不可或缺的黏合剂作用。  成立于1989年的深圳市传感器与智能化仪器仪表行业协会是行业内的代表性协会,已聚集480多家企业、高校及科研机构,在服务精密仪器设备产业集群发展方面开展了大量工作。  如何建设高效能的公共服务平台?深圳市传感器与智能化仪器仪表行业协会执行会长钱宗春建议,首先要发挥协会在政府和企业之间的桥梁和纽带作用。其次要强化企业服务能力建设,引导中小企业注重开发新兴和细分市场,与企业联合制定高端精密仪器整机和核心零部件行业标准、地方标准和团体标准。  不止于黏合剂,更要做产业催化剂。钱宗春建议,要持续推动企业、高校、科研院所等创新主体联合开展高端仪器整机和核心零部件攻关。他透露,协会已启动国家重大科学仪器设备开发专项“工业物料成分实时在线检测仪器的开发和应用”产业化工作,推动科尔达电气设备总公司与南京航空航天大学等开展产学研用合作,目前正在进行用户工业性试验。  政策“活水”润泽实体经济  今年6月发布的《行动计划》中提出,到2025年,深圳市精密仪器设备产业增加值将达到200亿元,其中工业自动化测控仪器增加值达到百亿级规模,信息计测与电测仪器、科学测试分析仪器及各类专用检测与测量仪器实现快速增长。  为实现上述目标,深圳将实施核心关键环节创新突破工程、产业支撑服务能力强化工程、标准和知识产权体系建设工程、质量提升与品牌培育工程、自主产品规模化应用工程、企业竞争力成长工程。  从政策、资金到人才,深圳正在为推动精密仪器设备产业集群发展构筑坚实基础。
  • 青岛市精密仪器仪表产业园集聚重点企业26家
    精密仪器仪表产业是青岛面向未来重点布局发展的新兴产业之一。青岛市精密仪器仪表产业园自今年4月揭牌以来,目前已集聚海克斯康、鼎信通讯等上下游重点企业26家。位于青岛市精密仪器仪表产业园的海克斯康青岛双智赋能中心。产业园位于青岛高新区,总占地面积2903.5亩,聚焦工业测控系统与装置、实验分析仪器、传感器及核心元器件三大重点领域,努力建设成为“北方仪器仪表产业总部基地”和“全国仪器仪表创新示范窗口”。“我们聘请专业机构编制了高水平产业规划,出台了园区专项支持政策,组建了专业招商队伍,设立了总规模7亿元的产业基金,加快集聚产业资源,营造良好产业生态。”青岛高新区管委会经济发展部副部长康凤介绍。产业园揭牌当天,包括木牛毫米波雷达制造项目在内的6个精密仪器仪表产业项目签约。目前,木牛毫米波雷达制造项目已完成内部装修,预计年底前投用。毫米波雷达具有精准度高、探测距离广、抗干扰能力强等优势,可广泛应用于辅助驾驶、智能家居、健康监测等领域。该项目总投资1亿元,计划建设5条毫米波雷达生产线,达产后可实现年产设备500万台。在木牛毫米波雷达制造项目落地过程中,青岛高新区不仅为其减免了租金,还提供了市场对接等方面的服务,确保项目按计划推进。“青岛高新区帮我们与银行对接,做生产厂区的选择推荐,并减免了租金,同时支持企业引进人才,让我们对未来发展更有信心。”木牛(青岛)科技有限公司负责人林春鹏说。锚定精密仪器仪表赛道,青岛高新区不断加大龙头、领军企业的招引力度,并注重延链、补链、强链,产业规模约占青岛市三分之一,今年上半年仪器仪表产业产值增长22.1%。全球最大的三坐标测量仪器制造商海克斯康、国内单相电能表产量最高的生产企业鼎信通讯、微电机检测系统连续5年国内排名第一的艾普智能等集聚青岛高新区。机械臂翻转挥舞,扫描汽车车身,在电脑上实时生成虚拟车身的彩图……在海克斯康青岛双智赋能中心,可以看到覆盖重工能源、轨道交通、航空航天等领域,涉及设计研发、生产加工、生产运维等产品的全生命周期高精度质量验证。海克斯康不仅助力了C919国产大飞机的机身精密装配和“和谐号”动车组车厢的尺寸保障,还为一汽-大众、比亚迪新能源汽车的研发和量产,华为、小米等智能消费电子提供了“交钥匙方案”。“推动制造业高质量发展,那高质量产品如何完成?这需要对制造全过程进行严格精密测量,并依据测量数据不断改进和完善工艺,包括材料加工工艺、零件加工工艺和装配工艺。谁的测量数据更精准、更全面,谁的产品质量就更胜一筹。”海克斯康智能制造研究院执行院长隋占疆说。作为青岛市精密仪器仪表产业“链主”企业,海克斯康在精密计量领域拥有200多年的丰富经验,拥有全球测量精度最高、测量范围最大和产品线最广的计量产品和方案,在工业传感器领域和工业软件领域拥有14项全球首创产品、8项“世界之最”测量技术。除此之外,青岛汉泰智能科技有限公司专注于通用测试测量领域仪器的研发生产,先后推出了手持频谱分析仪、数字示波器、任意信号发生器、程控电源、汽车诊断仪等一批拥有自主知识产权的产品和设备,其生产的示波器突破壁垒,远销80多个国家和地区。青岛艾普智能仪器有限公司先后攻克线圈单点破损检测、线圈搭线/垂线检测等行业难题,采用全新的快速无损技术替代了传统的耗时有损质量控制方式,创新性地将原先只能在实验室才能开展的质量检测方式引入到生产线中,填补了国内行业空白。根据《青岛市精密仪器仪表产业园发展若干政策》,青岛将连续三年由市财政每年出资1亿元用于园区建设,同时从加速优质项目集聚、支持企业规模化发展、支持企业加强科技创新、鼓励产品推广应用等方面给予支持。其中对满足条件的企业和项目,竣工投产后按照设备投资的20%给予最高1000万元的一次性奖补。接下来,青岛高新区将以服务企业发展为抓手,推进产业集聚,实现精密仪器仪表产业高质量发展,力争到2028年,相关产业营收规模突破300亿元,“四上”及高新技术企业数量达到180家以上。
  • 中国计量院清华精密测量联合实验室交流研讨会
    雨后的中国计量院昌平实验基地,空气清新,百花争艳,满园飘香。中国计量院——清华大学精密测量联合实验室(以下简称联合实验室)交流研讨会在这里举行。联合实验室青年学子们的到来,让这座美丽的园子更富有朝气活力,变成了交流碰撞的大舞台。   参观摆放着铯钟和守时钟组的时间频率实验室、固体密度基准实验室、激光二坐标实验室、重力实验室……短短一个多小时的参观交流,让首次全体来访的联合实验室近40名师生赞叹不已。   面对大多数对计量知识还了解甚少的联合实验室的师生们,中国计量院副院长宋淑英全面系统介绍了该院概况和计量科技发展状况,以及随着测量能力的不断提升,计量科技如何在服务三峡工程、卫星导航等重大工程及应对“甲型H1N1”流感等重大突发事件中“大显身手”。   三聚氰胺快速检测方法的确定、毒品标准物质的制备、服务科技奥运、满足航天事业的计量需求……中国计量院副院长段宇宁通过一个个生动形象的应用事例,描述了计量院的三大任务及计量在服务国计民生、基础前沿研究和为经济社会可持续发展而做的支撑性工作。   “秦始皇时期统一度量衡和‘车同轨’,在今天来说,就是实现计量统一和修建高铁嘛!”联合实验室主任王力军教授幽默的开场白,赢得了参加研讨会的专家学者和学子们会心的微笑和热烈的掌声。从中国计量院的成立背景到授时历对郑和下西洋的重要技术支撑,王力军教授旁征博引,他说“关键技术的发展需要自主创新能力”,计量是硬科学,是实现自主创新的重要载体。联合实验室下一步将继续为国防和科技前沿做出更大贡献,而贡献的途径就是通过计量科学。   近年来,中国计量院科技成果不断涌现,国内外影响力明显提升,原因之一在于一直重视前瞻性的发展,坚持走在全球计量科技的前沿。作为国内首个计量前沿技术研究与高层次人才培养相结合的平台,联合实验室的建立,也是中国计量院实现与知名高校合作机制的创新和探索。   据联合实验室副主任、中国计量院首席研究员李天初院士介绍,联合实验室在实验室运行模式上,参照美国国家标准技术研究院(NIST)和科罗拉多大学(CU)联合实验室,实现了双方的共赢发展,同时“希望参与实验室工作的同学们能了解、热爱计量及其渊源,将计量事业作为其发展努力的方向。”   联合实验室的工作主要从事精密测量和计量前沿技术研究。从2009年初挂牌成立至今,联合实验室已开展包括绝对重力测量、光钟、原子钟、小型化离子钟、超高精度时间频率体系等方面的研究。其中在精密时间频率传输与同步方面,已在“计量院昌平基地-清华”之间建立往返88千米的光纤链路,并实现时间频率的自由空间精密传输与同步,为时间频率传输与同步奠定了技术基础。   “发挥大学氛围活跃、自由和研究所追求实用、作风严谨的优势特点,满足国家需求并结合个人兴趣,共同建成国内一流、国际有影响的一流前沿实验室。”李天初院士慎重的表达和殷切的期望,如涓涓细流般淌进了联合实验室每个成员的心中,大家再一次鼓起掌来。
  • 精密测量院等实现星形胶质细胞活体成像
    近日,中科院精密测量院/深圳先进院研究员徐富强研究团队基于新型基因编码生物磁共振成像技术,首次建立了一种在体无创全脑检测星形胶质细胞的新技术。相关研究进展在学术期刊Molecular Psychiatry上发表。星形胶质细胞是哺乳动物中枢神经系统(Central nervous system, CNS)中含量最丰富、分布最广、胞体最大的一种神经胶质细胞。星形胶质细胞具有多种至关重要的生物学功能,其功能异常参与多种疾病的致病过程。然而,星形胶质细胞形态不均且高度复杂,在同一脑区或不同脑区之间均有不同,且在生理和病理状态下也是动态变化的。因此,全脑维度无损检测并跟踪星形胶质细胞的动态变化相关技术的研发迫在眉睫。研究团队通过整合重组腺相关病毒载体(rAAV)和磁共振成像活体检测的优势,逐步在细胞水平,脑区水平及全脑水平实现星形胶质细胞的活体无损检测。自2016年起,研究团队在精密测量院研究员徐富强和王杰的带领下,联合磁共振成像与病毒基因改造技术率先提出一种新型基因编码生物磁共振成像技术,逐步实现神经元网络和星形胶质细胞在体水平的无创检测。其中,rAAV是近年来发展极为迅速的一类工具病毒,是研究神经科学相关问题和基因治疗的重要载体。团队首先对rAAV工具病毒的衣壳蛋白进行突变改造,并利用人类胶质纤维蛋白的启动子GFAP构建rAAV载体,提升了病毒工具在星形胶质细胞的转导效率。另外,水通道蛋白是一组高度保守的跨膜转运蛋白,对水具有高度选择通透性。过表达AQP1蛋白可产生弥散加权成像信号的改变,因而水通道蛋白基因可作为磁共振成像报告基因。团队继续对病毒载体rAAV2/5和rAAV2/PHP.eB进行优化改造,使其同时携带水通道蛋白报告基因和荧光元件,构建新型工具病毒,逐步实现脑区和全脑水平的星形胶质细胞的无创活体成像。在全脑成像研究中,团队构建可高效通过血脑屏障的新型rAAV2/PHP.eB-AQP1-EGFP工具病毒,利用尾静脉注射技术将该病毒注入小鼠体内,在病毒表达两周和三周后分别进行MRI活体成像,最终利用荧光成像对活体成像效果进行评估。结果显示,该新型基因编码生物磁共振成像技术不仅可实现星形胶质细胞的活体全脑成像,而且其成像时间适用于常用的光遗传学/药理遗传学相关研究。全脑维度星形胶质细胞的新型检测技术的开发将有助于加强对星形胶质细胞功能的理解,提升对其在调控整个中枢神经网络中的认识,为研究神经系统疾病的致病机制和治疗靶点提供了新思路。另外,该技术可应用到疾病模型小鼠相关的星形胶质细胞异常的相关机制研究,为此类疾病的早期预防起到了重要作用。中科院深圳先进技术研究院博士后李梅和精密测量院博士柳壮为该文章的共同第一作者,王杰和徐富强为通讯作者。该项目获得国家自然科学基金等项目的支持。该项目所涉及的病毒工具均可从布林凯斯(深圳)生物技术有限公司直接获得。
  • 地铁振动引发“蝴蝶效应” 影响北大4亿元精密仪器
    p   北京地铁4号线列车在13.5米深的地下呼啸而过,100米外北京大学信息科学技术学院大楼中,一台电子显微镜内“仿佛刮起了一阵飓风”。 /p p   用肉眼看,这台1米多高的白色金属镜筒安稳立在桌上。将它调至最高精度却会发现,显示屏上的黑白图像长了“毛刺”,原本纤毫毕现的原子图案因为振动变得模糊不清。 /p p   在北大校园内,因地铁运行受到影响的精密仪器,远不止这台价值数百万元的电镜。4号线开通时,北大有价值11亿元的精密仪器,其中4亿元的仪器受到影响。 /p p   为了减少地铁振动对这些仪器的干扰,北京市和北大都付出了巨大努力。在4号线北大东门段,地铁公司铺设了最先进的减振轨道。北大专门在较远处新修了综合科研楼,转移了部分精密仪器,但地铁振动的影响仍难以消除。一些学者只能在地铁停运后的半夜做实验。 /p p   2019年,离综合科研楼600米的地铁16号线二期全线将会开通,北大内精密仪器将面临两面夹击的窘境。北大实验室与设备管理部环境保护办公室主任张志强认为,如果不采取更多减振措施,形势不容乐观。 /p p   面临地铁振动干扰的科研单位不止北大。记者了解得知,清华大学、中国科学院、复旦大学、南京大学、首都医科大学、郑州大学医学院也曾遭遇相似困境。中国科学技术大学、浙江大学、南通大学周边即将修建地铁。 /p p   城市里越来越密集的地铁网络、科研机构中越来越灵敏的精密仪器,都是中国经济社会快速发展的标志。可当高精尖仪器遇上地铁线路,谁该避让,成了难以调和的矛盾。 /p p style=" text-align: center " img title=" 2018-04-28_131104.jpg" src=" http://img1.17img.cn/17img/images/201804/insimg/c8defcc7-172c-4a07-a8d5-c29e404fa5e1.jpg" / /p p style=" text-align: center " 规划后的2020年北京地铁线路网。 /p p    strong 地铁振动的蝴蝶效应 /strong /p p   一条条地铁轨道正在北京快速生长。到2020年,它们的总里程将有近千公里。高峰时期,近千辆列车将同时在轨道上飞驰。 /p p   在运载乘客的同时,这些重量超过100吨的列车,也成了一个个巨大的振动源。振动通过钢轮、钢轨、隧道和土壤,像波纹一样扩散到地表,进入建筑物内。 /p p   很少有人注意到这种振动给城市带来的影响。北京交通大学轨道减振与控制实验室是国内较早开展研究的团队。他们测试的数据显示,10多年间,北京市离地铁100米内的地层微振动提高了近10倍。 /p p   交通带来的微振动强度虽不算大,但持续时间长,影响隐蔽不易被发觉。它曾让捷克一座古教堂出现裂纹继而倒塌,曾长期影响巴士底歌剧院的演出效果,也曾干扰英特尔公司在集成板上雕刻纳米级电路。 /p p   在地铁激荡起的振动中,对精密仪器干扰最严重的是低频振动。这种振动波长很长,不易在土层中衰减。北大环境振动监测与评估实验室主任雷军,曾和学生拎着地震仪,测量过北京多条地铁线路,他们发现,在精密仪器更敏感的低频范围内,离地铁100米内地表振动强度比没有列车通过时高了30~100倍。 /p p   对北大和清华的精密仪器来说,地铁几乎意味着“灾难性打击”。 /p p   地铁开通之前,在这两所中国最著名的高校,因公交和铁路引起的环境振动,已逼近甚至超过某些仪器规定的安全值。不过,因为这些仪器在制订正常使用环境振动要求时留有富余量,绝大部分仍能正常工作。临近的地铁线一旦开通,两所大学中对振动敏感的精密仪器,很可能无法在最高精度下正常工作。 /p p   有学者认为,这造成巨大的浪费,“花100万美元买回来的仪器,只能当10万美元的用”。 /p p   许多仪器的使用者并不知晓,地铁振动会影响仪器。曾有同事找到雷军,抱怨实验室一台测量岩石年龄的精密仪器突然不正常了。这位老师叫来厂家,左调右调,愣是修不好,厂家也摸不着头脑。 /p p   雷军问:“什么时候开始不正常的?”对方说:“从2009年开始。”事实上,并非仪器坏了,而是地铁4号线开通后,振动干扰了仪器。 /p p   “国内研究地铁振动问题的专家,包括设备厂商,总共不到百来人。”北交大副教授马蒙感慨,这是一个非常小的学术圈子,其中大部分专家还在同一个微信群里。 /p p   10多年来,雷军一直在各种场合呼吁关注地铁振动问题。作为九三学社社员,他多次写建议书希望向全国人大反映这一问题。一有机会,他便向不了解的学者和学生科普地铁振动的影响。 /p p   在很长一段时间内,原本搞地震学的他,一门心思扑进这个冷门的学术领域。家人常劝他,别“不务正业”。 /p p   在雷军看来,这个领域相当重要。他敲着桌子问:“中国正经历工业化转型,可为什么这些年我们的科技成果都是大块头的?一些核心电子元件,包括芯片、光刻机、光栅薄材等许多领域零部件的加工,为什么即便我们买回了国外全套生产线,也造不出一样的东西?很大一个原因就是环境振动超标。今天我们已经能生产粗犷的工业品,我们的短板主要在精度上,一小一精就不行。” /p p   他曾为两个单位做过环境振动评估。一个是中国计量科学研究院,是国家最高计量科学研究中心,原址环境振动严重超标,后来搬迁到昌平,评估却发现新址仍有一些问题。另一个是某国防计量站,环境振动超标100多倍。 /p p   对专门研究环境振动的专家来说,地铁引起的微振动,看似蝴蝶扇动翅膀,但在对振动敏感的高精尖领域,足以酿成灾难性的风暴,从而制约一个国家的发展:光刻机需要在1毫米内画上千条线,需要外部环境保持极度稳定 导弹系统中高速旋转的陀螺仪,加工时必须保证质量中心和几何中心完全重合,否则就会指东打西。 /p p style=" text-align: center " img title=" 微信图片_20180428192304.jpg" src=" http://img1.17img.cn/17img/images/201804/insimg/dab9ff9c-1156-4ee7-a200-09189a4076b1.jpg" / /p p style=" text-align: center " 地图上与地铁线路相邻的北京大学校园。 /p p   strong  两败俱伤的妥协 /strong /p p   同许多外界学者一样,雷军原本也不知道地铁振动对精密仪器有影响。在中国,北大与地铁的激烈抗争,头一回让这一问题浮出水面。 /p p   2003年,北京市地铁4号线方案公布,将贴北大东门一路向北。地铁线两边紧密分布着北大几大理工科学院及众多重要实验室,北大相当一部分精密仪器集中在这些科研楼中。有学者提醒北大,得研究下地铁对精密仪器是否有影响。 /p p   雷军此前研究建筑物抗震,都是较大级别的振动,没怎么关注过微振动的影响。着手采集北京市其他地铁线的振动数据后,他才发现,“这个问题很复杂,比想象的要严峻得多”。 /p p   因为他和同事的报告,北大反对4号线经过。当时北大和地铁公司为两个方案反复争论:要么北大整个搬走,要么地铁4号线改线。 /p p   直至最后一次研讨会,双方仍僵持不下。那次会议由北京市一位副市长主持,邀请了一位院士和多位北大校外专家。 /p p   那位院士在会上表示,轨道隔振方案可行。他拿自己做过的一个方案打比方,“用手一摸,振动感觉不到了。” /p p   北大一位代表当场反问:“人的手这种传感器灵敏度有多高?”北大对振动最为敏感的那台电子显微镜,敏感度是人体的成百上千倍。 /p p   会上最终形成决议,采用一个折中的方案——4号线经过北大的789米轨道段,将采用世界上最先进的轨道减振技术,也就是在钢轨下铺设钢弹簧浮置板。这种浮置板由一家德国公司发明,上面是约50厘米厚的钢筋混凝土板,下面是支撑着的钢弹簧,能将列车的振动与道床隔离。 /p p   “对列车来说,这相当于垫了一个很软的垫子,同时弹簧将振动隔开了。”北京交通大学的马蒙副教授告诉中国青年报?中青在线记者,这种轨道减振技术目前在一定程度上已到极限,更软的话,列车运行安全性可能得不到保证。 /p p   这种浮置板在总体上能很好隔振,但它也有一个很大的缺点:由于隔振原理,它对低于自振频率的振动没什么用,甚至很可能会放大。 /p p   2009年,4号线北大东门段开通后,马蒙和同事又作了测试,验证了这一理论。在马蒙看来,这段轨道减振措施还是有用的,保证了很多要求没那么高的仪器能正常使用,但对于一些极度敏感的设备,它反而会加重干扰。 /p p   北大对这个结果并不满意。经观测发现,西南边的校医院旧址振动强度稍小。北大决定在该地盖综合科研楼,将部分受影响的仪器搬过来。但受限于场地和经费,只有约三分之一的设备能入驻。 /p p   2011年,大楼地基已经打好,低层正在施工之时,另一个消息传来:地铁16号线将绕经北大西门,离综合科研楼仅200米。 /p p   由于校内精密仪器已无处可挪,北大强烈抗议。雷军分析,之所以会出现这种尴尬局面,是因为地铁公司以为减振成功了,并不知道北大正打算搬仪器。同时,他们也没将规划方案提前告知北大。 /p p   北京市拨出上千万元专项资金,让市政总院、北交大、中国电子工程设计研究院、中国铁道科学研究院及北大联合组成攻关项目组,拿出一套综合的解决方案,除了地铁轨道减振外,还包括重新设计综合科研楼,考虑在低层装减振平台,用弹簧将上面的建筑整体悬浮起来。 /p p   雷军记得那几个月,每周有两三天要开会讨论,几方经常为具体方案争得脸红脖子粗。一位电子设计院专家告诉记者,北大的要求过于理想化,而且双方对数据的采集和分析方法不同,导致数倍的差异。 /p p   有专家听过一句玩笑话:如果这事处理得不好,会影响北大“冲击诺贝尔奖”。 /p p   正当各方吵得不可开交之时,项目戛然而止。据说北大领导和一位市领导在某个会议碰面,双方握手言好。地铁16号退后一步,往西绕开300多米,甩掉两座车站,北大也不再提要求。 /p p   中国铁道科学研究院研究员杨宜谦是项目组专家之一。在他看来,在这场博弈中,北大看似赢了,实则不然。这不是完美的解决方案,这恰恰是“两败俱伤的妥协”。 /p p    strong 缺失的环保标准 /strong /p p   杨宜谦认为,地铁退后一步,能减少对北大精密仪器的干扰,但这个距离往往不足以消除影响。另一方面,地铁改线后,失去了吸引客流的作用。 /p p   他当时建议,北大将精密仪器楼搬至郊区,从而完全排除干扰。但对许多北大教师来说,这样的建议难以接受。杨宜谦也能理解,毕竟北大建校在先,地铁在后,让谁搬谁都不乐意。 /p p   他和雷军都认同,避免这样的矛盾冲突,应当在规划时讲究先来后到。新规划的地铁线应尽可能避开对振动敏感的高新技术区域,新修建的高新区应尽可能选在没有地铁的郊区。 /p p   目前问题的症结在于,科研单位的精密仪器往往购置在先,地铁规划方案形成时却没有考虑相关影响。 /p p   杨宜谦对国外相关法律法规标准很熟悉。日本有专门的《振动法》。美国的轨道交通环境影响评价标准中涉及振动敏感设备。 /p p   这两个国家也曾有过教训。东京大学曾将一整栋楼用弹簧悬AX起,仍无法消除振动影响。美国华盛顿大学由于轻轨穿越校园,采用轨道减振措施,并降低车速,但15栋敏感建筑中仍有5栋振动超标。 /p p   “减振是世界难题,目前最好的办法就是避让。”雷军常举日本筑波科学城的例子。这个集聚了日本科研人才的城市始建于1963年,直到40多年后才通地铁,且同城区相隔2.5公里。 /p p   中国尚无环境振动污染防治法,虽然环境保护标准中有关于振动对居住建筑、办公建筑、医院、学校内的人影响的规定,却未涉及对精密仪器的干扰。这导致地铁规划方案进入环境影响评价阶段时,环保部门很少考虑这一层面。 /p p   最近,生态环境部发布了《环境影响评价技术导则 城市轨道交通(征求意见稿)》,但仍未提及振动对振动敏感仪器的影响。 /p p   杨宜谦还发现,连环保从业人员都对这一问题的态度存在分歧。有人认为,这一问题理所当然归环保部门管,也有人斩钉截铁地认为不归。 /p p   相关评价标准的缺位,导致很多途经科研机构及工业园区的地铁方案考虑欠周。有省会城市在规划地铁时,为了方便病人出行,特意在一家大学附属医院内设了地铁站,没想到让一些医疗检查设备没法正常使用。 /p p   发现潜在问题时,往往已经晚了。一旦某条具体地铁方案通过层层审批,“往外挪个100米都几乎不可能”。 /p p   这常造成高校与地铁的对抗。15号线原计划下穿清华大学,遭清华极力反对。最终,15号线只进入清华校内120米,没与4号线相连,形成换乘站。 /p p   早在1955年,清华大学就曾让铁路改过线。京张铁路位于清华校园同侧,振动曾严重干扰科研,在清华的争取下,铁路线向东迁了800米。 /p p   并非所有大学都拥有强大的谈判能力。有985高校没经太多考虑,直接在同意文件上盖了章。有的高校遭遇了损失,不愿意公开化。 /p p   等到地铁方案已成事实,只能采用其他减振措施。中国电子工程设计院有限公司曾给复旦大学、南京大学等多个受地铁影响的高校做过减振方案。 /p p   振动技术研究中心工程师左汉文告诉记者,目前效果最好的方案是综合减振,除了在轨道下铺设钢弹簧浮置板,同时在仪器楼修建之初装上靠弹簧撑起来的隔振支架。如果楼已竣工,只能在每一台仪器下加装减振台,成本将大大提升。 /p p   16号线开通后,北大只能采取第二种方案。北大实验室与设备管理部环境保护办公室主任张志强估计,一个最先进的空气弹簧减振台,大约要花费一两百万元,北大需要减振的仪器“在几十上百个这样的数量级”。 /p p   见证了高级的德国浮置板、繁琐的修楼搬迁和昂贵的地铁改线,北大最精密的电子显微镜未来身下还将装上复杂的减振台。但它能否逃脱地铁振动的干扰,谁也不敢保证。 /p p br/ /p
  • 两江新区企业摩方精密完成1.7亿元D轮融资
    7月30日,第一届精密制造产业发展学术研讨会在两江新区召开,重庆摩方精密科技股份有限公司(以下简称“摩方精密”)举行D轮融资签约仪式,宣布完成了1.7亿元D轮融资。这是继2022年摩方精密完成3亿元C轮融资后,在1年的时间里又完成的新一轮融资。两江新区党工委委员、管委会副主任李洁出席签约仪式。据介绍,摩方精密本轮融资由国家制造业转型升级基金股份有限公司、上海国泰君安创新股权投资母基金联合领投,上海张江科技创业投资有限公司、重庆健欣合盈私募股权投资基金合伙企业、广东泛湾盈康股权投资合伙企业(有限合伙)、广州云帆科技投资有限公司跟投。摩方精密成立于2016年,是目前全球唯一可以生产最高精度达到2μm,并实现工业化的3D打印系统提供商,提供了一种超高精密加工的颠覆性手段。截至2023年6月,全球35个国家,近2000家科研机构及工业企业与摩方精密建立了合作。目前,包括强生、GE医疗等在内的全球排名前10的医疗器械企业,全部与摩方精密合作;全球排名前10的精密连接器企业,有9家与摩方精密建立了合作。“近期以来,我们广泛与各个企业开展合作,提供了领先的解决方案和创新的生产工艺,为不同领域带来了持续创新和发展的动力。”摩方精密董事长兼总裁贺晓宁表示,企业拿到融资后,将持续深化终端应用的研究及拓展领导的产业化,从而进一步巩固摩方精密在全球超高精密3D打印领域占据的领先地位。以牙齿贴面领域为例,目前全球基于机加工的氧化锆牙齿贴面最低厚度在300μm以上。摩方精密与北大口腔医院的专家团队紧密合作,投资1200万元建立联合实验室,利用摩方超高精密3D打印技术,将氧化锆牙齿贴面厚度降至40μm左右。口腔生物材料和数字诊疗装备国家工程研究中心智能技术平台负责人、北京大学口腔医(学)院教授孙玉春表示:“极薄强韧3D打印氧化锆贴面技术可将陶瓷贴面的厚度从400微米降至最薄40微米,能快速、无痛地强化和保护牙齿表面,使其免受冷酸刺激和磨损,并且变得洁白而整齐,更为关键的是:与原有陶瓷贴面技术相比,整个过程的牙齿磨削量减少90%甚至无需磨牙。”此外,在生物反应器领域,摩方精密在美国圣地亚哥建立研发中心,设计研发了创新性的生物培养芯片,通过3D培养多能干细胞或特定组织的祖细胞形成,具有高生理相关性。摩方使用高精密3D打印技术生产的生物反应器具有管壁达到100μm、并带有5μm以下灌输孔的类毛细血管结构,能通过类毛细血管灌输实现内外营养供给,解决了氧气和营养不足的问题。此创新技术使类器官更接近真实人体器官,提高了体积、功能和区域异质性的还原程度。在国内,摩方精密联合伯桢生物及复旦大学科学团队,将共同研发由生物反应器与高人体器官相似性的类器官所组成的类器官芯片。该款芯片产品将为肿瘤建模提供更真实成熟的平台,为药物筛选提供更准确稳定的工具。复旦大学科学团队龚晓峰表示:“该项技术的产生推动了类器官技术在时间和空间维度上的巨大突破,打通了类器官技术革命的‘最后一公里’。”电感耦合等离子体质谱(ICP-MS)广泛应用于芯片、医学、环境监测,其关键耗材雾化器在国内尚无具备自主知识产权的生产商。该部件高度依赖进口、结构精密、清洗过程复杂,全球市场过亿美元。摩方精密与杭州睿思纳德精密科技公司共同研发,利用摩方超高精密3D打印技术,实现对内部构造的精准控制,使管径内壁间距离仅为60μm,该技术保障了产品批次间质量,避免进口产品旧工艺导致的高废品率问题;同时,增材制造大幅降低了原工艺的成本,市场终端售价仅为原产品的1/10,从而将普通耗材打造为一次性耗材,进一步避免了使用浓酸、超声反复疏通管路的流程及清洗血样、尿样等生物样本接触造成的安全隐患,受到科研及医学用户端的广泛欢迎。杭州睿思纳德精密科技有限公司创始人、中国科学院生态环境研究中心研究员胡立刚表示:“摩方精密高精度3D打印设备,解决了质谱检测仪关键零部件及高值耗材难题,实现了质谱高值耗材及核心部件‘国产化替代’解决方案。”国家制造业转型升级基金相关负责人表示,基础智能装备、新材料、核心基础零部件是制造业大基金的重点投资布局领域。增材制造(3D打印)作为新兴的制造技术,在核心基础零部件、新材料方面的应用不断扩展,成为基础及新型制造领域发展最快的技术方向之一。摩方精密作为全球微纳尺度非金属3D打印领军企业,具备较强的战略性、先导性,是我国在3D打印领域为数不多具备全球领先优势的企业之一。未来,大基金预计还将继续通过该笔投资和下游企业展开更有力的互动。国泰君安创新投资董事长江伟表示,高精密制造正成为全球制造业竞争的焦点,摩方精密研发的微纳3D打印技术能够解决传统制造工艺制造复杂、精细的器件时遇到的难题,具有明显的技术优势和重大的产业化应用前景。国泰君安创新投资将充分发挥自身综合金融服务和新兴科技产业生态优势,和摩方精密共同推动国内原创技术的发展,助力中国制造业的转型升级。贺晓宁表示,下一阶段,摩方将不断赋能、孵化相关应用领域产品,与各个企业广泛合作,依托于长期积累的核心技术,坚持自主创新,不断丰富产品矩阵,致力于为全球客户提供颠覆性精密加工能力解决方案。在本轮融资后,摩方精密将不断提升创新研发,进一步推进并延伸终端产品。未来,摩方精密将持续深耕精密医疗、高端制造等终端领域,加强与合作伙伴的合作,共同推动先进制造技术的发展。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制