磁性角度计

仪器信息网磁性角度计专题为您提供2024年最新磁性角度计价格报价、厂家品牌的相关信息, 包括磁性角度计参数、型号等,不管是国产,还是进口品牌的磁性角度计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合磁性角度计相关的耗材配件、试剂标物,还有磁性角度计相关的最新资讯、资料,以及磁性角度计相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

磁性角度计相关的厂商

  • 力田磁电科技有限公司(原力田磁电技术应用研究所)位于中国西部电子科技城—四川绵阳。绵阳为国家重要的国防科研基地和产业配套生产基地,拥有中国工程物理研究院、西南自动化研究所、西南科技大学等国防科研院所,以及长虹电子集团、九州电子集团等产业集团公司。公司拥有100%%的知识产权,独立经营核算、是集开发、生产、销售为一体的高科技型公司,拥有多种类型、实战十年以上工作经验的专业工程师。自2002年5月公司成立以来,公司团队认真务实,追求卓越,优质优价,先后开发出:PEM电磁铁、PTC退磁机/脱磁机/消磁器、PTM/PMC脉冲脱磁器、PFD恒压充磁机、PF/PEX数字特斯拉计(高斯计)、PF-900数字磁通计(磁通表)、PF-100B/200B/300B/400B智能振实密度仪、YCB标准磁体、CTB/N-XCRS磁选机、PXC-100H硬盘消磁器、MPS磁处理装置等系列产品。力田产品按ISO9001国际质量体系进行研发生产管理销售,力田产品性能稳定可靠,性价比高,品质高、式样美观,已得到磁性测式、磁性材料研究、电磁学研究、应用电磁产品等领域的使用认可,专为清华大学,香港理工大学,浙江大学等知名大学,中科院固体物理研究所,韩国国家材料研究所,上海硅酸盐研究所,中国工程物理研究院等研究单位设计开发了电磁应用设备。同时为威能科技(苏州)公司,铁母肯恩斯克(TIMKEN)轴承(苏州)有限公司,香港新科实业有限公司(SAE),香港兴利电脑制品有限公司,等国内外知名企业提供了力田公司产品。公司宗旨:以诚信为本;以品质求生存;制造出优质优价的产品公司坚持“管理以人为本”的工作理念,为客户提供具有专业技术水准、品质高的产品与服务。力田公司真诚地、谦虚地面对客户和广大同仁,愿与您进行多种形式的技术交流与合作,期待您的光临指导!
    留言咨询
  • 上海金昆磁电科技有限公司专业生产磁铁、钕铁硼、橡胶磁、冰箱贴、电机磁瓦、铁氧体等磁铁性产品。上海金昆磁电科技有限公司前道工厂设在稀土出产丰富的北方—山西;深圳、上海、江苏有后道加工。工厂拥有线切割机、切片机、磨床、全套电镀、电泳设备,可以根据用户要求设计、加工各种规格产品,表面可镀锌、镀镍及环氧电泳处理。生产装置中选用了高真空熔炼、烧结炉和先进的自动控制气流磨,保证了生产过程基本无氧运行,使产品的矫顽力和使用温度均有突破性提高。  公司专业生产的磁铁(高性能磁铁、方形磁体磁铁、圆柱形磁铁)、钕铁硼(粘结钕铁硼磁铁、烧结钕铁硼)、橡胶磁、冰箱贴(软胶磁冰箱贴、橡胶磁冰箱贴、磁性卡通冰箱贴)、电机磁瓦、铁氧体(永磁铁氧体磁铁、永磁铁氧体磁瓦)等磁性产品,可适用于贵公司的工艺礼品、彩盒包装、磁纽扣、磁开关、文具、箱包、电机、喇叭、电子、玩具等系列产品之所需。本工厂自主生产,自主销售,产品品质优良,价格优惠。  公司生产的钕铁硼强磁系列产品品种齐全,具有高磁能积,高矫顽力和高磁感应强度的特点,同时还有良好的稳定性,不易受温度、外界磁场振动和冲击的影响,表面处理可满足72小时以上盐雾试验要求。产品规格、性能可根据用户需求生产。  我们的产品符合欧盟的Rohs环保认证,有SGS、Rohs认证证书。本公司有进出口经营许可权,专为国外客户提供各种优质高端产品。
    留言咨询
  • 杭州磁聚力科技有限公司,是由中科院博士团队创立的磁性材料科技公司,致力于高端稀土永磁材料及器件的研发,生产和销售。 本着“以磁聚力”的人才理念,广纳贤才,公司目前技术团队拥有博士3名,硕士3名,成员多具有行业大中型企业中高层管理经验。凭借出众的技术能力,掌握了高性能钐钴、高性能钕铁硼、及磁器件产品生产技术。 公司产品主要应用于高性能电机,5G通讯,物联网,医疗等领域。
    留言咨询

磁性角度计相关的仪器

  • 国仪量子自旋磁力仪 SpinMag -Ⅰ量子自旋磁力仪利用碱金属原子外层电子自旋性质,以泵浦激光作为操控手段,使碱金属原子产生自旋极化。在外界弱磁场的作用下,碱金属原子发生拉莫尔进动,改变对检测激光的吸收,从而实现高灵敏度的磁场测量。量子自旋磁力仪具有灵敏度高、体积小、能耗低、易于携带的特点,未来将引领人类在科学研究、生物医学等磁传感领域进入量子时代。应用案列:1.生物医学领域量子自旋磁力仪主要应用于心磁和脑磁研究。量子自旋磁力仪通过采集人体心脏磁场信号,获得心磁分布图像,可对心肌缺血、冠脉微循环障碍心肌病等进行功能性诊断及预后研究。脑磁比心磁的磁信号更弱,量子自旋磁力仪能够测量神经电流产生的磁场,实现人脑的电生理直接成像,为临床提供宝贵的信息。2.地球物理领域量子自旋磁力仪通过精确捕捉地球磁场的变化,获得地磁异常信息,可用于石油工业的定向钻井、地质灾害监测、矿产资源勘探等方向。国仪量子自旋磁力仪 SpinMag -Ⅰ磁性测量
    留言咨询
  • BPMB磁性底座及BP垫板、固定板 BPMB-1/BPMB-2磁性底座 磁性底座因其灵活方便的安装固定方式而广泛应用于实验室。使用时只需将需要固定物件安装在磁性底座上,移动磁性底座调整好位置后转动开关即可。本公司提供的磁性底座,吸力大,十分稳定。并在传统底座的基础上发展创新,使您在稳固的同时,还可保留灵活与方便。适用于本公司多种调整架。 BPMB-3磁性底座 它除了具备前两款磁性底座的功能外,又能进行XY 两维平移微调,并可锁紧。微调螺杆采用M4x0.3 细牙螺杆,调整精度更高。若与升降杆座或旋转杆座配合使用,即可实现XYZ 或XY&theta z 三维调节。 BPMB-4超薄磁性底座 除了具有一般磁性底座的功能外,主体材料为钢,具有轻巧、超薄、磁力可调的特点。台面可固定多种类多规格的光学器件;永久磁性提供超强吸附力,磁力从&ldquo OFF&rdquo 状态到&ldquo ON&rdquo 连续可调;其表面配有标准孔距的螺纹孔,方便各种连接,可以更好的和其它产品配套使用。 BPKB-2可复位磁性底座 上下两块板分离,之间用磁性件连接,下板可用螺丝固定在光学平台或光学面包板上,通过定位机构保证上板的复位精度。 BP-AL10/20/50铝合金垫块 BP-S1/2/5不锈钢垫板 BP-DPSS半导体激光器通用安装板 说明:● 包含67× 95,59× 81,78× 150三种尺寸的4个M6安装孔,可安装卓立提供的DPSS激光器,见375页相关产品。● 中心为M6沉孔&phi 8的通用孔● 其它地方,分布M6和M4螺纹孔及沉头孔 BP-DC相机固定板 说明:数码相机(DC)的安装接口通常为1/4",部分云台式三脚架上也有3/8" 的螺纹。BP-DC 带有标准1/4" 的螺丝,可将数码相机固定在安装板上,然后将安装板通过接杆固定。
    留言咨询
  • 磁性器件需要在磁场扫描下测试,测试晶圆所花费的时间会增加芯片成本。在晶圆上方以高扫速改变磁场是工业化大批量市场面临的挑战。Hprobe产品的主要目的是通过实现每个器件的快速测试时间,以极高的通量对晶圆在磁场下进行电探测。Hprobe的专有磁场发生器技术使这一目标成为可能。 Hprobe的3D磁场发生器和Hcoil-2T磁场发生器是专利技术,与大规模生产中的晶圆级电子探测要求兼容。独特设计的磁场发生器通过电源供电和空气冷却,不需要复杂的液体冷却。 Hprobe测试设备使用100-300mm自动晶圆探针台。集成了磁场发生器的测试头被置于晶圆探针台上。测试设备与以下自动探针台兼容:TEL (Tokyo Electron Limited)、ACCRETECH、Electroglas。技术原理 Hprobe磁场发生器技术应对了磁性集成电路工业测试的挑战。这些技术的发展目标是产生对场强和角度具有极快扫描速率的高强度磁场。磁场发生器集成到测试设备产品中,专用于高通量运行的磁性器件晶圆级测试。 Hprobe公司的三维磁场发生器和Hcoil-2T磁场发生器均为专利技术,符合批量生产对晶圆级电子探测的要求。独特设计的磁场发生器通过电源供电和空气冷却,不需要复杂的液体冷却。快速:极高的磁扫率,每秒高达10000件样品,实现高通量 测试,并与批量生产的测试时间相匹配。灵活:具有独立可控空间轴的三维磁场,用于垂直和平面磁场的任意组合。强大:单一方向的超高强度磁场,结合极快的扫描速度,可在20微秒内达到2特斯拉。 1、三维磁场发生器:三维磁场发生器能够产生三维磁场,其中每个空间轴可被独立驱动。该发生器具有多种组态,可在特定的1D、2D或3D方向上最大化磁场强度或表面覆盖。磁场的扫描速率在场强和角度上上是可控的,扫描速率可达每秒10000件样品。 2、Hcoil-2T磁场发生器:Hcoil-2T磁场发生器是一种创新性的超紧凑型技术,能够以极快的扫描速度在单一方向产生超强磁场。利用这项技术,可以在不到20微秒的时间内达到±2特斯拉磁场。主要特点 平面内和垂直方向的高磁场强度磁场的三维控制场强和角度扫描(旋转场)嵌入式校准传感器自动化测试程序MRAM参数提取软件可用于100至300 mm晶圆与标准探针卡兼容完整并可用户定制的软件,可创建测试序列和自动探测空气冷却测试设备1、测试头:磁场发生器集成在测试头中,后者被安装在自动晶圆探针台上,与单个直流或射频探针和探针卡兼容。2、仪表架:测试设备使用高端控制和传感设备。测试设备的仪器组态可以按照用户需求而配置。3、磁场校准套件:磁场发生器配有磁场校准组件,由三维磁传感器和自动定位系统组成,用于在与被测设备完全相同的位置校准磁场。4、软件:带图形用户界面GUI(graphical user interface)的软件,用于磁场的生成、校准,以及MRAM和磁传感器的自动化电测量。软件还包括晶圆厂自动化和生产控制功能。IBEX平台(用于MRAM测试) IBEX平台与200毫米和300毫米自动晶圆探针台兼容,专用于测试MRAM磁性隧道结,以及基于自旋转移矩(STT-MRAM)、自旋轨道矩(SOT-MRAM)和电压控制(VC-MRAM)技术的位单元。该系统能够在快速可变磁场和超窄脉冲信号下进行高通量测试。1、IBEX-P MRAM参数测试 IBEX-P系统以单通道或多通道配置运行,测试结构中包含过程控制和监控(PCM),因而可用于晶圆验收测试(WAT)时生产产量的统计过程控制(SPC)。 IBEX使用Hprobe的带有图形用户界面的专用一站式软件,既可在研发环节中手动操作,又可在全自动晶圆厂中自动操作。该软件包括专用于MRAM器件的最优化生产测试程序。 该系统采用Hprobe的磁场发生器专利技术,将磁场发生器集成到测试头中,后者安装在晶圆探针台上。 该测试设备由精选高端仪器驱动, 从而以极快的测试时间来表征MRAM磁性隧道结或位单元。涉及的仪器包括Keysight、Tektronix和NI等品牌,并使用Hprobe的专有构架模块集成。2、IBEX-F功能测试 IBEX-F系统专用于测试位阵列和片上系统(SoC)嵌入式MRAM存储器。 测试系统以单点或多点配置运行,用于MRAM阵列的表征和测试。其目的是进行产品开发、验证和鉴定,并转入生产。它还可用于嵌入式MRAM器件的大规模生产环境、,在后端(BEOL)过程中进行芯片探测(CP)的筛选和分级。 该测试设备由精选高端仪器驱动,从而以极快的测试时间来表征MRAM磁隧道结或位单元。涉及的仪器包括Keysight、Tektronix和NI等品牌,并使用Hprobe的专有构架模块集成。关于MRAM 测试 与传统采用电荷存储数据的半导体存储器不同,MRAM(磁阻随机存取存储器)是一种非易失性存储器,使用磁化(例如电子自旋)方向来存储数据位。 与现有的半导体技术相比,MRAM具有许多优点,因为它本质上是非易失性的(例如,当电源切断时能够保存数据),同时还表现出非常好的耐久性(例如读/写周期数)和较低的运行功率。最新一代的MRAM为pSTT-MRAM(垂直自旋转移矩随机存取存储器),已被业界选择取代28/22nm以下技术节点的嵌入式闪存,目前各大半导体代工厂均可提供该产品。1)MRAM设备是如何发展的? 第一代MRAM基于所谓的嵌套型(toggle)技术,即通过内部磁场写入数据(例如磁化翻转)。Toggle-MRAM至今仍然非常成功,但是它耗电量大,且工艺尺寸很难 减小。之后几代MRAM器件开始使用另一种称为自旋转移矩(STT)MRAM的方法。STT-MRAM使用自旋极化电流写入数据。这种方法的优点是提供较低和可调节的翻转电流,从而开发出更高密度的存储器产品。2)MRAM的应用有哪些? 把pSTT-MRAM首选为先进技术节点的嵌入式非易失性存储器(eNVM),业界对此充满兴趣,并已被一级半导体代工厂的生产计划所证实。STT MRAM现在已可被批量生产,以满足多样化的应用领域,如工业、汽车、物联网、移动、人工智能以及计算和存储。3)MRAM的未来是什么? 虽然STT MRAM目前是NVM技术的主流,但全球的研究人员已经在研究下一代的产品即SOT-MRAM(自旋轨道矩MRAM)。通过同时实现STT无法做到的无限耐久性和高速性,SOT可以把MRAM的应用拓展到高速缓存中。SOT-MRAM有可能成为一种通用的嵌入式存储器,同时取代微控制器、微处理器和片上系统中的嵌入式NVM和/或嵌入式SRAM。4)MRAM市场预测前景如何? 根据Objective Analysis and Coughlin Associates于2020年5月发布的一份报告,到2030年,新兴存储市场将达到360亿美元。取代多种现有技术将在很大程度上推动这一惊人的增长,,如取代微控制器、处理器和ASIC中的嵌入式NOR闪存和SRAM模块,以及专业的独立DRAM内存芯片。此外,存储行业向新兴内存技术的转移将促使资本设备支出的稳步增长,相应的制造设备收入将达到6.96亿美元。 5)Hprobe对MRAM的成功有何贡献? 高通量、高可靠性的后端(BEOL)制造设备的可用性是新半导体技术出现的关键。作为一家在MRAM领域拥有独特专业知识的自动测试设备(ATE)供应商,Hprobe为IC制造商提供了一站式解决方案,将加速MRAM产品的开发,确保产品的成功升级。 测试时间是生产中的关键性能指标,也是缩短开发时间的重要附加值。 为STT-MRAM技术 构建最优化的晶圆测试设备,使其具有最大的灵活性和最短的测试时间,可在MRAM开发阶段带来巨大的价值,并可缩短向大批量制造(HVM)升级的时间。Hprobe的方案可解决 对灵活性和产品性能的需求冲突,进而在从技术发布到生产控制和监控的漫长道路上为工程师提供帮助。6)Hprobe产品如何运行? 本质上,MRAM要求在外加磁场的同时对晶圆进行电测试。此外,探测必须用高频硬件完成,该硬件提供MRAM器件工作时的超窄时域电压/电流脉冲。 因此,晶圆级参数测试通过以下方式完成:扫描器件上方的磁场(垂直和/或平面),同时通过直流电流测量器件电阻。这样可以得到磁滞回线,它反映了存储单元从一种状态切换到另一种状态并保留存储信息的能力。垂直磁场必须高达5000 奥斯特(5特斯拉),以切换器件中的两个不同磁性层。 向器件施加超窄(低至300ps, 强度高 至5V)脉冲信号,以复制芯片上的读写操作,并表征其可靠性(击穿电压)。 一旦晶圆制造结束并且芯片制造完成,器件测试就需要在外部磁场下进行,以表征MRAM模块在与环境相关的磁场干扰下工作的抗干扰性。这种测试可以在切割之前的晶圆级或封装芯片级完成。在这两种情况下,都需要在自动化测试设备上施加三维磁场。LINX 平台(用于传感器测试) LINX平台与200mm和300mm自动晶圆探针台兼容,用于测试基于xMR(磁阻)和霍尔效应技术的磁性传感器。该系统能够在静态和快速变化的磁场下进行测试,磁场在空间任何方向可控。LINX-1–磁性传感器测试仪 LINX-1测试仪专用于磁性传感器芯片的晶圆级分选。 该产品使用Hprobes的带有图形用户界面的专用一站式软件,以单通道或多通道配置来生成和校准磁场,包括静态或动态模式下优化的磁场生成模式。该系统具有可编程功能,可与用户的测试平台集成。 LINX-1采用Hprobe专有的磁场发生器技术,与3轴自动化测试头集成。它可以使用手动或自动加载的探针卡进行操作。 磁场的产生由高性能仪器驱动,以实现稳定的静态磁场或高扫描率的可变场。 仪器组包括Keysight、Tektronix和NI等品牌,并使用Hprobe的专有构架模块集成。关于传感器测试 磁性传感器检测由磁铁或电流产生的磁场和地磁场的强度。它们将磁场或磁编码信息转换成电信号,供电子电路处理。 磁性传感器正变得越来越流行,因为它们可以用于多种应用场合,如传感位置、速度或运动方向。磁性传感器有以下几种类型:霍尔效应传感器 霍尔效应传感器 由半导体衬底上的条形载流导体构成,当置于磁通量中时,通过霍尔效应产生垂直于电流方向的电压。霍尔效应传感器被广泛应用于汽车和工业领域。AMR传感器 各向异性磁阻(AMR)传感器由条形或带状磁性各向异性材料组成,其等效电阻与磁化方向和导电方向的夹角有关。与其他磁电阻传感器相比,AMR传感器具有相对较低的磁电阻(MR)率。它们被用于工业、商业和空间技术,作为位移或角度传感器以及地磁场传感器。GMR传感器 巨磁阻(GMR)传感器具有三明治结构,由被界面导电层隔开的磁性薄膜组成。该传感器有两种电阻状态:当两个磁性层磁化方向平行时,器件为低阻态;而当两个磁性层磁化方向相反 时,器件为高阻态。GMR传感器是一种温度稳定性好的精密磁场传感器。它们已被广泛应用于硬盘驱动器(HDD)行业以及工业应用中。TMR传感器 隧道磁阻(TMR)传感器由被隧穿势垒层分离的铁磁多层膜组成。TMR器件的电阻与两铁磁层磁化方向的夹角有关。与其 它种类 的磁场传感器相比,TMR传感器具有更好的信噪比、前所未有的精度、 以及极低的功耗。TMR传感器在温度和寿命方面具有可靠稳定的性能。因此,TMR传感器在要求苛刻的应用中是首选。1)磁性传感器市场和应用有哪些? 磁性传感器的应用范围很广泛,包括汽车、消费类电子产品、电子医疗系统、电信、工业过程控制等。以往它们被用作罗盘来探测地球磁场,现在被用于多种环境中,用来探测位移、旋转或测量角度。 2)磁性传感器的未来发展是什么? 磁性传感器在很多行业中有大量应用,包括 新型导航设备、 人员侦测(楼宇自动化相关应用)、医疗领域、汽车行业、机器人技术和工厂自动化,这些正引领全球磁性传感器市场的范式转变。全球对物联网、消费电子产品、电动汽车和混合动力汽车、以及高质量传感设备的需求日益增加,正在影响磁性传感器在几个终端用户行业的应用。由于工业0的影响,工厂自动化采用机器人技术的情况越来越多,推动了全球市场在各种安全应用领域对磁性传感器的需求。服务业的发展以及数据中心和云供应商的高速增长,进一步增加了对这些传感器的需求。汽车行业对磁性传感器的需求预计将会增加。传感装置越来越多地被运用于此行业,以提高车辆的便利性和燃油效率。此外,政府机构的强制性规定,如在汽车中安装安全设备和传感元件,预计也会为磁性传感器的发展创造重要机遇。3)磁性传感器市场预测如何? 根据市场预测,2019年全球磁传感器市场估价为22.83亿美元。预计2020年将达到32.58亿美元,2025年将达到120亿美元,2020-2025年复合年增长率为51%。4)Hprobe对磁性传感器的成功有何贡献? 作为一家拥有专利技术的自动测试设备(ATE)供应商,Hprobe为IC制造商提供了一站式解决方案,将加速磁性传感器产品的开发,确保成功升级。 测试时间是生产中的关键性能指标,也是缩短开发时间的重要附加值。打造专用于传感器技术和产品晶圆测试的最佳测试设备,使其具有最大的灵活性和最短的测试时间,将在开发阶段带来巨大的价值,并可大大缩短大批量制造(HVM)的上市时间(TTM)。Hprobe的解决方案满足了对灵活性和性能的需求,从而在从技术发布到生产控制和监控的漫长道路上为工程师提供支持。5)Hprobe产品如何运行? 传感器测量磁场以提取位置、角度、强度和磁场方向的信息。测量得到传感对象运动或电流方向的数据。为了验证芯片产品的最终应用,测试是在晶圆层面上进行的,在改变晶圆上方磁场的同时进行电探测。 晶圆级测试通过以下步骤完成:在空间1D、2D或3D的任何方向施加能够快速稳定的静态磁场,并测量传感器的输出电响应。施加快速扫描场强或角度的可变磁场,以高通量分拣产品,在限制测试成本的同时,实现晶圆上的完全测试覆盖。 关于Hprobe 法国Hprobe公司成立于2017年,总部位于具有“法国硅谷”的美誉格勒诺布尔,是SPINTEC(全球领先的自旋电子学研究实验室之一)的一家衍生公司。 法国Hprobe基于独有的三维磁场发生器等专利技术,致力于为磁性器件和传感器的晶圆级表征和测试提供系统解决方案。目前产品提供的服务内容涵盖磁技术开发所有阶段,能针对性的为MRAM(STT、SOT、VCMA)和磁性传感器(TMR、GMR等)进行表征和测试提供专用设备和服务。 依托投资方的自身优势,普瑞亿科半导体事业部聚焦国内半导体产业工艺发展,与Hprobe协力打造国内领先的晶圆级表征和测试系统解决方案,致力于为中国半导体行业客户提供研究级和生产级的MRAM和磁检测解决方案和服务支持。
    留言咨询

磁性角度计相关的资讯

  • 快速灵活强大丨HPROBE 磁性自动测试设备 开启晶圆测试新纪元
    在全球半导体产业高速发展的今天,中国正以其前瞻性的战略布局和政策支持,推动国内半导体行业的跨越式发展。随着物联网、大数据和人工智能驱动的新计算时代的发展,我国对半导体器件的需求日益增长,对器件可靠性与性能指标的要求也越发严格。晶圆测试:质量与效率的保障 晶圆测试是半导体制造过程中不可或缺的一步,它能够确保芯片在制造过程中的每一个阶段都能达到设计规格和性能要求。自动化和高精度的测试设备可以显著提高测试速度,缩短生产周期;通过精确检测,确保每一片晶圆的可靠性和一致性,降低不良品率;有效的测试可以减少返工和废品,从而降低生产成本。 在晶圆测试中,磁性器件需要在磁场扫描下测试,而传统的设备和方法较为耗时,会增加芯片的制造成本。在晶圆上方以高扫速改变磁场是工业化大批量生产正面临的挑战,今天要为大家介绍的Hprobe 磁性自动测试设备,其专利的磁场发生器技术,可以完美应对这项挑战。Hprobe 磁性自动测试设备 Hprobe 磁性自动测试设备是通过实现每个器件的快速测试时间,以更高的通量对晶圆在磁场下进行电探测。其专利技术3D磁场发生器和Hcoil-2T磁场发生器,能够满足大规模生产中对晶圆级电子探测的要求,独特设计的磁场发生器通过电源供电和空气冷却,不需要复杂的液体冷却。快速:更高的磁扫率,每秒高达10000件样品,实现高通量测试,并与批量生产的测试时间相匹配。灵活:具有独立可控空间轴的三维磁场,用于垂直和平面磁场的任意组合。强大:单一方向的超高强度磁场,结合更快的扫描速度,可在20微秒内达到2特斯拉。 Hprobe 磁性自动测试设备使用100-300mm自动晶圆探针台。集成了磁场发生器的测试头被置于晶圆探针台上。测试设备与以下自动探针台兼容:TEL (Tokyo Electron Limited)、ACCRETECH、Electroglas。技术原理 1、三维磁场发生器:三维磁场发生器能够产生三维磁场,其中每个空间轴可被独立驱动。该发生器具有多种组态,可在特定的1D、2D或3D方向上更大化磁场强度或表面覆盖。磁场的扫描速率在场强和角度上是可控的,扫描速率可达每秒10000件样品。 2、Hcoil-2T 磁场发生器:Hcoil-2T 磁场发生器是一种创新性的超紧凑型技术,能够以更快的扫描速度在单一方向产生超强磁场。利用这项技术,可以在不到20微秒的时间内达到±2特斯拉磁场。主要特点平面内和垂直方向的高磁场强度磁场的三维控制场强和角度扫描(旋转场)嵌入式校准传感器自动化测试程序MRAM参数提取软件可用于100至300 mm晶圆与标准探针卡兼容完整且可定制的软件,可创建测试序列和自动探测空气冷却测试设备1、测试头:磁场发生器集成在测试头中,后者被安装在自动晶圆探针台上,与单个直流或射频探针和探针卡兼容。 2、仪表架:测试设备使用高端控制和传感设备。测试设备的仪器组态可以按照用户需求而配置。3、磁场校准套件:磁场发生器配有磁场校准组件,由三维磁传感器和自动定位系统组成,用于在与被测设备完全相同的位置校准磁场。 4、软件:带图形用户界面GUI(graphical user interface)的软件,用于磁场的生成、校准,以及MRAM和磁传感器的自动化电测量。软件还包括晶圆厂自动化和生产控制功能。IBEX平台(用于MRAM测试) IBEX平台与200毫米和300毫米自动晶圆探针台兼容,专用于测试MRAM磁性隧道结,以及基于自旋转移矩(STT-MRAM)、自旋轨道矩(SOT-MRAM)和电压控制(VC-MRAM)技术的位单元。该系统能够在快速可变磁场和超窄脉冲信号下进行高通量测试。1、IBEX-P MRAM参数测试 IBEX-P系统以单通道或多通道配置运行,测试结构中包含过程控制和监控(PCM),因而可用于晶圆验收测试(WAT)时生产产量的统计过程控制(SPC)。 IBEX使用Hprobe的带有图形用户界面的专用一站式软件,既可在研发环节中手动操作,又可在全自动晶圆厂中自动操作。该软件包括专用于MRAM器件的更优化生产测试程序。 该系统采用Hprobe的磁场发生器专利技术,将磁场发生器集成到测试头中,后者安装在晶圆探针台上。 该测试设备由精选高端仪器驱动, 从而以更快的测试时间来表征MRAM磁性隧道结或位单元。涉及的仪器包括Keysight、Tektronix和NI等品牌,并使用Hprobe的专有构架模块集成。2、IBEX-F功能测试 IBEX-F系统专用于测试位阵列和片上系统(SoC)嵌入式MRAM存储器。 测试系统以单点或多点配置运行,用于MRAM阵列的表征和测试。其目的是进行产品开发、验证和鉴定,并转入生产。它还可用于嵌入式MRAM器件的大规模生产环境,在后端(BEOL)过程中进行芯片探测(CP)的筛选和分级。 该测试设备由精选高端仪器驱动,从而以更快的测试时间来表征MRAM磁隧道结或位单元。涉及的仪器包括Keysight、Tektronix和NI等品牌,并使用Hprobe的专有构架模块集成。关于MRAM 测试 与传统采用电荷存储数据的半导体存储器不同,MRAM(磁阻随机存取存储器)是一种非易失性存储器,使用磁化(例如电子自旋)方向来存储数据位。 与现有的半导体技术相比,MRAM具有许多优点,因为它本质上是非易失性的(例如,当电源切断时能够保存数据),同时还表现出非常好的耐久性(例如读/写周期数)和较低的运行功率。全新一代的MRAM为pSTT-MRAM(垂直自旋转移矩随机存取存储器),已被业界选择取代28/22nm以下技术节点的嵌入式闪存,目前各大半导体代工厂均可提供该产品。LINX 平台(用于传感器测试) LINX平台与200mm和300mm自动晶圆探针台兼容,用于测试基于xMR(磁阻)和霍尔效应技术的磁性传感器。该系统能够在静态和快速变化的磁场下进行测试,磁场在空间任何方向可控。LINX-1–磁性传感器测试仪 LINX-1测试仪专用于磁性传感器芯片的晶圆级分选。 该产品使用Hprobes的带有图形用户界面的专用一站式软件,以单通道或多通道配置来生成和校准磁场,包括静态或动态模式下优化的磁场生成模式。该系统具有可编程功能,可与用户的测试平台集成。 LINX-1采用Hprobe专有的磁场发生器技术,与3轴自动化测试头集成。它可以使用手动或自动加载的探针卡进行操作。 磁场的产生由高性能仪器驱动,以实现稳定的静态磁场或高扫描率的可变场。 仪器组包括Keysight、Tektronix和NI等品牌,并使用Hprobe的专有构架模块集成。关于传感器测试 磁性传感器检测由磁铁或电流产生的磁场和地磁场的强度。它们将磁场或磁编码信息转换成电信号,供电子电路处理。磁性传感器正变得越来越流行,因为它们可以用于多种应用场合,如传感位置、速度或运动方向。磁性传感器有以下几种类型: 霍尔效应传感器 霍尔效应传感器由半导体衬底上的条形载流导体构成,当置于磁通量中时,通过霍尔效应产生垂直于电流方向的电压。霍尔效应传感器被广泛应用于汽车和工业领域。AMR传感器 各向异性磁阻(AMR)传感器由条形或带状磁性各向异性材料组成,其等效电阻与磁化方向和导电方向的夹角有关。与其他磁电阻传感器相比,AMR传感器具有相对较低的磁电阻(MR)率。它们被用于工业、商业和空间技术,作为位移或角度传感器以及地磁场传感器。GMR传感器 巨磁阻(GMR)传感器具有三明治结构,由被界面导电层隔开的磁性薄膜组成。该传感器有两种电阻状态:当两个磁性层磁化方向平行时,器件为低阻态;而当两个磁性层磁化方向相反时,器件为高阻态。GMR传感器是一种温度稳定性好的精密磁场传感器。它们已被广泛应用于硬盘驱动器(HDD)行业以及工业应用中。TMR传感器 隧道磁阻(TMR)传感器由被隧穿势垒层分离的铁磁多层膜组成。TMR器件的电阻与两铁磁层磁化方向的夹角有关。与其它种类的磁场传感器相比,TMR传感器具有更好的信噪比、更高的精度、以及更低的功耗。TMR传感器在温度和寿命方面具有可靠稳定的性能。因此,TMR传感器在要求苛刻的应用中是首选。 关于Hprobe 法国Hprobe公司成立于2017年,总部位于具有“法国硅谷”的美誉格勒诺布尔,是SPINTEC(全球领先的自旋电子学研究实验室之一)的一家衍生公司。 法国Hprobe基于独有的三维磁场发生器等专利技术,致力于为磁性器件和传感器的晶圆级表征和测试提供系统解决方案。目前产品提供的服务内容涵盖磁技术开发所有阶段,能针对性的为MRAM(STT、SOT、VCMA)和磁性传感器(TMR、GMR等)进行表征和测试提供专用设备和服务。 依托投资方的自身优势,普瑞亿科半导体事业部聚焦国内半导体产业工艺发展,与Hprobe协力打造国内领先的晶圆级表征和测试系统解决方案,致力于为中国半导体行业客户提供研究级和生产级的MRAM和磁检测解决方案和服务支持。
  • Science: 扫描探针显微镜控制器在二维磁性材料研究中的突破性应用进展
    导读:自2017年来,二维磁性在单层材料中的实现使得二维磁性材料受到了大的关注。范德瓦尔斯磁体让我们对二维限下的磁性有了更进一步的了解,不同磁结构的范德瓦尔斯磁体使得实验上探究二维下的磁学模型成为可能。例如,在单层CrI3中发现Ising铁磁,而XY模型的NiPS3在单层限下的磁性会被抑制。除了这些,有着变磁行为的范德瓦尔斯磁体更为有趣,比如在少层CrCl3中由于奇数层存在着未补偿磁矩,使得奇数层存在着spin-flop转变,而偶数层则没有。目前,现存的二维磁性材料非常稀少,这意味着新范德瓦尔斯磁体的发现,不仅仅有助于二维磁性的研究,更是为二维自旋电子学器件的应用提供了材料基础[1]。相比于传统的三维空间结构,二维层状磁性材料因其原子层间较弱的范德华尔斯作用力,能够人为操控其层间堆叠方式,进而有可能影响其磁耦合特性,为新型二维自旋器件的研制提供新思路。然而,堆叠方式与磁耦合间的关联机制仍不甚明晰,需要借助先进的扫描探针技术才能实现在原子层面的直接实验观测。美国RHK公司所提供的先进R9plus扫描探针显微镜控制器可以有效结合课题组自主研发的扫描探针设备,同时给予高效率的扫描控制,从而可以针对二维磁性材料应用领域展开更为深入的研究。本文重点介绍国内课题组灵活运用RHK公司扫描探针控制器,配合自主研发设计的扫描探针设备所开展的一系列国际前沿性二维材料领域的研究工作,其中各研究工作当前已在国际SCI核心学术期刊发表。科学成果的突破,离不开实验技术的不断攻坚克难。复旦大学物理学系教授高春雷、吴施伟团队通过团队自主研发搭建的扫描探针设备创造性地将原位化合物分子束外延生长技术和自旋化扫描隧道显微镜相结合,在原子层面彻底厘清了双层二维磁性半导体溴化铬(CrBr3)的层间堆叠和磁耦合间的关联,为二维磁性的调控指出了新的维度。相关研究成果以 《范德华尔斯堆叠依赖的层间磁耦合的直接观测》(“Direct observation of van der Waals stacking dependent interlayer magnetism”)为题发表于《科学》(Science)主刊,其中复旦大学物理学系博士后陈维炯为作者[2]。图中所示为陈博士与RHK技术总监进行深入的技术探讨,现场摸索优化测试信号,并详细沟通具体的测量细节,为后续高效率提取高质量大数据做准备。 课题组运用自主研制的自旋化扫描隧道显微镜测量技术,结合RHK公司先进的扫描探针显微镜控制器对自主研发实验设备实现测量调控,团队进一步在原子分辨下获取了样品磁化方向的相对变化,从而实现了实验突破,揭秘材料堆叠方式与磁耦合之间的直接关联性。团队以CrBr3双层膜作为主要研究对象和潜在突破口。双层CrBr3间较弱的范德瓦尔斯力赋予层间发生相对转动和平移的“自由”,从而使堆叠方式多样化成为可能。确实,在实验中获得的CrBr3双层膜具有两种不同的转动堆叠结构(H型和R型),分别对应迥异的结构对称性。其中,R型堆叠结构中,双层膜上下两层间同向平行排列,且沿晶体镜面方向作一定平移;H型堆叠结构中,双层膜上下两层之间旋转了180度,反向平行交错排列。这两种结构均是在相应的体材料中从未发现过的全新堆叠结构。至此,团队率先在原子尺度阐明了CrBr3堆叠结构与层间铁磁、反铁磁耦合的直接关联,为理解三卤化铬家族CrX3中不同成员的迥异磁耦合提供了指导。H型和R型堆叠的CrBr3双层膜自旋化扫描隧道显微镜测量 更多精彩案例: 《Nature》子刊:中国科大扭转双层石墨烯重要进展! 范德瓦尔斯堆叠的双层石墨烯具有一系列新奇的电学性质(例如,电场可调控的能隙、随扭转转角变化的范霍夫奇点以及一维拓扑边界态等)。当双层石墨烯的扭转转角减小到一系列特定的值(魔角)时,体系的费米面附近出现平带,电子在能量空间高度局域,电子-电子相互作用显著增强,出现莫特缘体和反常超导量子物态。另一方面,这些新奇的性质与双层石墨烯体系的扭转角度有着严格的依赖关系,体系层间相互作用随着转角减小会逐渐增强,因此探寻和研究这种层间耦合对理解扭转双层石墨烯的电子结构和物理性质至关重要。中国科学技术大学合肥微尺度物质科学研究中心国际功能材料量子设计中心(ICQD)物理系秦胜勇教授与武汉大学袁声军教授及其他国内外同行合作,利用扫描隧道显微镜和扫描隧道谱,次在双层转角石墨烯体系中发现了本征赝磁场存在的重要证据,结合大尺度理论计算指出该赝磁场来源于层间相互作用导致的非均匀晶格重构。相关研究成果以“Large-area, periodic, and tunable intrinsic pseudo-magnetic fields in low-angle twisted bilayer graphene”为题,于2020年发表于《自然通讯》(Nature Communications 2020,11,371)上[3]。图:小角度双层石墨烯中本征赝磁场的发现。对于转角为0.48度的双层石墨烯,在不加外磁场情况下,实验发现了贋朗道能(图b),理论计算进一步验证了这种贋磁场行为(图c),并估算出贋磁场值大约为6特斯拉(图e)。 该团队系统研究了小角度下(RHK公司提供的R9plus扫描探针显微镜强有力的为国内自主研发技术提供有力保障,除了在科研领域内重点关注的二维材料发挥重要作用以外,也对国内其它相关扫描探针设备研发领域课题组提供技术支持。中国科学技术大学陆轻铀教授团队与中国科学院强磁场科学中心、新加坡国立大学等单位合作,利用扫描探针控制器实现了高精度的磁力显微镜观察表征,报告了在超薄BaTiO3/SrRuO3 (BTO/SRO)双层异质结构中发现铁电体(FE)驱动的、高度可调谐的磁性斯格明子。在BTO中,FE驱动的离子位移可以穿过异质界面,并继续为多个单元进入SRO。这种所谓的FE邻近效应已经在不同的FE/金属氧化物异质界面中得到了预测和证实。在BTO/SRO异质结构中,这种效应可以诱导相当大的DMI,从而稳定强大的磁性物质。此外,通过利用BTO覆盖层的FE化,可以实现对斯格明子性质的局部、可逆和非易失性控制。这种铁电可调的斯格明子系统为设计具有高集成性和可寻址性的基于斯格明子的功能设备提供了一个潜在的方向。相关成果以题为“Ferroelectrically tunable magnetic skyrmions in ultrathin oxide heterostructures”发表在了Nat. Mater.上[4]。B20S5样品中磁性斯格明子的磁力显微镜表征 除此之外该课题组也对二维过渡金属硫化物材料MoTe2温度依赖的表面STM图像、电子结构、晶格动力学和拓扑性质进行了研究。研究结果以Uniaxial negative thermal expansion and band renormalization in monolayer Td-MoTe2 at low temperature为题,发表在美国物理学会杂志《物理评论B》上。该工作为二维过渡金属硫化物材料MX2的低温研究、实验制备和器件开发提供了直接的理论支持,其揭示的MoTe2低温下反常物性的内在物理机制对其它具有内在MX2八面体结构畸变的二维材料同样具有参考价值[5]。学术工作之外,该课题组在仪器设备研发方面也取得了优异的成果,课题组在国际上次研制成功混合磁体端条件下原子分辨扫描隧道显微镜(STM),相关研究成果发表在显微镜领域著名期刊Ultramicroscopy和著名仪器刊物Review of Scientific Instruments上。此工作利用混合磁体搭配RHK公司扫描探针设备开展原子分辨成像研究,对于突破当前超强磁场下只能开展输运等宏观平均效果测量的瓶颈,进入到广阔的物性微观起源探索领域,具有标志性意义。同时,课题组又针对超强磁场下的生物分子高分辨成像,搭建了一套室温大气环境下的分体式STM。该系统将一段螺纹密封式胶囊腔体通过一根长弹簧悬吊于混合磁体中心,并将STM核心镜体悬吊于胶囊腔体内用以减弱声音振动干扰。经测试,该STM在27.5特斯拉超强磁场下依然保持原子分辨。由于没有真空、低温环境的保护,搭建混合磁体超强磁场、超强振动和声音环境下的室温大气STM难度更大。此前,国际上还未曾报道过水冷磁体或混合磁体中的室温大气STM[6]。混合磁体STM系统:(a)混合磁体照片;(b)混合磁体STM系统简图;(c)STM镜体;(i-iv)分别为0T、21.3T、28.3T、30.1T磁场强度下石墨的原子分辨STM图像。 参考文献:1. Peng, Y., et al., A Quaternary van der Waals Ferromagnetic Semiconductor AgVP2Se6. Advanced Functional Materials, 2020. 30(34): p. 1910036.2. Chen, W., et al., Direct observation of van der Waals stacking-dependent interlayer magnetism. Science, 2019. 366(6468): p. 983-987.3. Shi, H., et al., Large-area, periodic, and tunable intrinsic pseudo-magnetic fields in low-angle twisted bilayer graphene. Nat Commun, 2020. 11(1): p. 371.4. Wang, L., et al., Ferroelectrically tunable magnetic skyrmions in ultrathin oxide heterostructures. Nat Mater, 2018. 17(12): p. 1087-1094.5. Ge, Y., et al., Uniaxial negative thermal expansion and band renormalization in monolayer Td?MoTe2 at low temperature. Physical Review B, 2020. 101(10).6. Meng, W., et al., 30 T scanning tunnelling microscope in a hybrid magnet with essentially non-metallic design. Ultramicroscopy, 2020. 212: p. 112975.
  • 行业应用 | 国仪量子钻石原子力显微镜:打开二维磁性材料新天地
    几个世纪以来,人类探索磁性及其相关现象的脚步从未停歇。在电磁学和量子力学发展的早期,人类很难想象磁石对铁的吸引力,鸟、鱼或昆虫在相隔数千英里的目的地之间的导航能力,这些神奇又有趣的现象具有相同的磁性起源。这些磁性来源于基本粒子的运动电荷与自旋,它和电子一样普遍存在。近年来,二维磁性材料在国际上成为备受关注的研究热点,它们为自旋电子学器件的研发开辟了新的方向,在新型光电器件、自旋电子学器件等方面都有着重要的应用价值。近日,《物理学报》2021年第12期也推出了二维磁性材料专题,从不同的角度描述了二维磁性材料在理论与实验方面的进展。《物理学报》2021年第12期你能想象得到吗?只有几个原子厚度的二维磁性材料就可以为极小的硅电子器件提供基板。这种神奇的材料由成对的超薄层制成,超薄层通过范德瓦耳斯力,即分子间作用力堆叠在一起,同时层内原子以化学键进行连接。虽然只有原子级的厚度,但依然保持着磁学、电学、力学、光学等方面的物理和化学特性。二维磁性材料 图片引用自https://phys.org/news/2018-10-flexy-flat-functional-magnets.html打个有趣的比方,二维磁性材料中的每个电子都像一个微小的罗盘,拥有北极和南极,这些“罗盘针”的方向决定了磁化强度。当这些无穷小的“罗盘针”自发对齐时,磁序就构成物质的基本相位,因此可制备出很多功能性装置,例如发电机和电动机、磁阻存储器和光学阻隔器等。这种神奇的特性也让二维磁性材料变得炙手可热起来,虽然现在集成电路制造工艺在不断提高,但由于器件在不断缩小,已经受到量子效应的限制,微电子行业已经遇到了可靠性低、功耗大等瓶颈,延续了近50年的摩尔定律也不再“吃香”(摩尔定律:集成电路上可以容纳的晶体管数目在大约每经过18个月便会增加一倍)。如果未来二维磁性材料能够在磁传感器、随机存储器等新型自旋电子学器件领域得到应用,说不定有望突破集成电路性能瓶颈。我们已经知道,具有磁性的范德瓦耳斯晶体带有特殊的磁电效应,因此在二维磁性材料的研究过程中,定量的磁性研究是必不可少的步骤。然而,对此类磁体在纳米尺度上磁性响应的定量实验研究依然非常缺乏。现有的一些研究报道了在微米尺度上实现了对晶体磁性的检测,但这些技术不仅还无法提供关于磁化的定量信息,还极容易干扰阻碍超薄样品的磁信号。因此,检测技术的更新对于探测材料纳米尺度上的磁性质是非常紧迫的挑战。国仪量子QDAFM为了解决这一难题,国仪量子提供了一种新的测量途径——量子钻石原子力显微镜(QDAFM)。QDAFM是基于NV色心和AFM扫描成像技术的量子精密测量仪器。通过对钻石中氮—空位(NV)色心发光缺陷的自旋进行量子操控与读出,可实现磁学性质的定量无损成像,具有纳米级的高空间分辨率以及单个自旋的超高探测灵敏度,可用于定量检测范德瓦耳斯磁体的关键磁学性质,并对其磁化、局部缺陷和磁畴进行高空间分辨率的磁成像,具有非侵入性、可覆盖宽温区、大磁场测量范围等独到优势,在量子科学,化学与材料科学,以及生物和医疗等研究领域有着广泛的应用前景。二维碘化铬的磁化图引用自Probing magnetism in 2D materials at the nanoscale with single-spin microscopy(Science, 2019, DOI: 10.1126/science.aav6926)下面,为大家介绍QDAFM在微纳磁成像、超导磁成像、细胞原位成像、拓扑磁结构表征等方面的具体应用。01微纳磁成像对于磁性材料,确定其静态自旋分布是凝聚态物理中的重要问题,也是研究新型磁性器件的关键。QDAFM提供了一种新的测量途径,能够实现高空间分辨率的磁性成像,具有非侵入性、可覆盖宽温区、大磁场测量范围等独到优势。布洛赫型磁畴壁成像引用自Tetienne, J. P.et al. The nature of domain walls in ultrathin ferromagnets revealed by scanning nanomagnetometry.Nature Communications6, 6733(2015)02超导磁成像对超导体及其涡旋的微观尺度研究,能够为理解超导机理提供重要信息。利用工作在低温下的QDAFM,可以对超导体的磁涡旋进行定量的成像研究,并扩展到众多低温凝聚态体系的磁性测量。单个磁性涡旋的杂散场定量成像引用自Thiel, L.et al.Quantitativenanoscale vortex imaging using a cryogenic quantum magnetometer. Nature Nanotechnology 11,677- 681 (2016).03细胞原位成像在细胞原位实现纳米级分子成像是生物学研究的重要手段。在众多成像技术中,磁共振成像技术能够快速、无破坏地获取样品体内的自旋分布图像,已经广泛应用在多个科学领域中。特别是在临床医学中,因其对生物体几乎无损伤,对疾病的机理研究、诊断和治疗起着重要的作用。然而,传统的磁共振成像技术使用磁感应线圈作为传感器,空间分辨率极限在微米以上,无法进行细胞内分子尺度的成像。利用QDAFM的高空间分辨率特性,研究人员观测到了细胞内部存在于细胞器中的铁蛋白,分辨率达到了10纳米。细胞原位铁蛋白分子的纳米磁成像引用自Wang, P. et al. Nanoscale magnetic imaging of ferritins in a single cell. Science advances 5, 8038 (2019).04拓扑磁结构表征磁性斯格明子是具有拓扑保护性质的纳米尺度涡旋磁结构。磁性斯格明子展现出丰富新奇的物理学特性,为研究拓扑自旋电子学提供了新的平台,在未来高密度、低能耗、非易失性计算和存储器件中也具有潜在应用。但是室温下单个斯格明子的探测在实验上仍具有挑战性。QDAFM的高灵敏度和高分辨率特点,是解决这一难题的有力工具,通过杂散场测量可重构出斯格明子的磁结构。斯格明子磁场成像引用自Dovzhenko, Y. et al. Magnetostatic twists in room-temperature skyrmions explored by nitrogen-vacancy center spin texture reconstruction. Nature Communications 9, 2712 (2018).参考文献:1.《物理学报》2021年第12期,二维磁性材料专题2.Two-dimensional magnetic crystals and emergent heterostructure devices(Science, 2019, DOI: 10.1126/science.aav4450)3.https://phys.org/news/2018-10-flexy-flat-functional-magnets.html4.Probing magnetism in 2D materials at the nanoscale with single-spin microscopy(Science, 2019, DOI: 10.1126/science.aav6926)

磁性角度计相关的方案

磁性角度计相关的资料

磁性角度计相关的试剂

磁性角度计相关的论坛

  • 大家怎么对付磁性材料?

    保险起见,目前,我管的2100 HRTEM对外都是禁止磁性粉末材料的,但有的学生或老师总来找麻烦,说是顺磁或弱磁,没什么关系。我一般用吸铁石吸一下,能吸住我就拒了。大家一般怎么对付磁性材料,从一个管理员的角度

  • 谈谈关于磁性液位计的一些使用方法

    磁性液位计不需多组液位计组合,有着单体进行全量程测量,设备少开孔,显示清晰,标志醒目,读数直观等优点。磁性液位计的使用方法如下:  1、为防止磁性液位计的运输或搬远过程中浮子上下移动造成损坏,特用液位计出厂配套的校正磁钢在主导管外侧(贴有彩色标识)将磁性浮子吸住。所以在收到产品或安装后,请将校正磁钢取下,以便浮子能随液位上下移动,使用前若磁翻柱翻转颜色不一致,可用校正磁钢将其有吸顺,仪表即可正常工作。  2、磁性液位计投入运行时,应先打开上引液管阀门,然后,漫漫开启下引液管阀门,让液体介质平稳地进入主导管,避免液体介质带着浮子急速上升,造成磁翻柱翻转失灵或翻乱(若遇此现象,可用磁钢重新校正)。  3、磁性液位计安装完毕后,需用磁钢进行校正,对磁翻柱导引一次,使零位以下显示有红色,零位以上显示为白色。

  • 【原创】顺磁性物质与逆磁性物质

    我们使用的在线分析仪表中有顺磁式氧分仪,现在把顺磁性及逆磁性的概念澄清:任何物质,在外界磁场的作用下,都会被磁化,呈现出一定的磁特性。物质在外磁场中被磁化,其本身会产生一个附加磁场,附加磁场与外磁场方向相同时,该物质被外磁场吸引;方向相反时,则被外磁场排斥。为此,把被外磁场吸引的物质称为顺磁性物质,而把会被外磁场排斥的物质称为逆磁性物质。气体介质处于磁场中也会被磁化,而且根据气体的不同也分别表现出顺磁性或逆磁性。如氧气是顺磁性气体,氢气、氮气等式逆磁性气体。

磁性角度计相关的耗材

  • 磁性固相萃取剂及配套耗材
    磁性固相萃取剂有Bonnacats-MA(聚合物基质)和Bonnacats-MS(硅胶基质)两种系列。Bonnacats MA聚合物基质系列包括 HLB、 WCX、 WAX、 MCX、 MAX、 PS等键合相。? Bonnacats-MA HLB是亲水亲脂平衡的水可浸润性的反相磁性固相萃取剂,表面同时含有亲水性和憎水性基团,可广泛用于酸性、碱性和中性分析物。? Bonnacats-MA WCX(Plus)是混合型弱阳离子交换反相磁性固相萃取剂,对强碱性的化合物具有高选择性,可用于提取生物基质(如血浆,尿液、胆汁及组织匀浆)中的碱性化合物。? Bonnacats-MA WAX是混合型弱阴离子交换反相磁性固相萃取剂,对强酸性化合物具有高选择性,可用于提取生物基质的酸性化合物及其代谢产物。? Bonnacats-MA MCX是混合型强阳离子交换反相磁性固相萃取剂,对碱性化合物具有高选择性。? Bonnacats-MA MAX是混合型强阴离子交换反相磁性固相萃取剂,对酸性化合物具有高选择性。? Bonnacats-MA PS 是中性的苯乙烯/二乙烯苯的反相磁性固相萃取剂。适用于反相条件下保留含有亲水基团的疏水性化合物。可用于水溶液中提取芳香族化合物和苯酚等,也可以用于动植物油脂中苯并芘的测定。系列货号型号规格备注Bonnacats-MA(聚合物基质)BNMA13300001-0Bonnacats-MA MAX 磁性固相萃取剂30-50μm;55-90?;1g/pk可自行分装BNMA14300001-0Bonnacats-MA WAX 磁性固相萃取剂30-50μm;55-90?;1g/pkBNMA3300001-0Bonnacats-MA MCX 磁性固相萃取剂30-50μm;55-90?;1g/pkBNMA7300001-0Bonnacats-MA HLB 磁性固相萃取剂30-50μm;55-90?;1g/pkBNMA7300100-0Bonnacats-MA HLB磁性固相萃取剂30-50μm;55-90?;100g/pkBNMA8300001-0Bonnacats-MA WCX 磁性固相萃取剂30-50μm;55-90?;1g/pkBNMA8300001-0-PBonnacats-MA WCX Plus 磁性固相萃取剂30-50μm;55-90?;1g/pkBNMA12300001-0Bonnacats-MA PS磁性固相萃取剂30-50μm;55-90?;1g/pkBNMA1301-CBonnacats-MA MAX磁性固相萃取剂套装含96孔接收板2块,磁棒套4组MAX磁性固相萃取剂0.1gBNMA1401-CBonnacats-MA WAX磁性固相萃取剂套装含96孔接收板2块,磁棒套4组WAX磁性固相萃取剂0.1gBNMA3001-CBonnacats-MA MCX磁性固相萃取剂套装含96孔接收板2块,磁棒套4组MCX磁性固相萃取剂0.1gBNMA7001-CBonnacats-MA HLB磁性固相萃取剂套装含96孔接收板2块,磁棒套4组HLB磁性固相萃取剂0.1gBNMA8001-CBonnacats-MA WCX磁性固相萃取剂套装含96孔接收板2块,磁棒套4组WCX磁性固相萃取剂0.1gBNMA8001-C-PBonnacats-MA WCX Plus磁性固相萃取剂套装含96孔接收板2块,磁棒套4组WCX Plus磁性固相萃取剂0.1gBNMA1201-CBonnacats-MA PS磁性固相萃取剂套装含96孔接收板2块,磁棒套4组PS磁性固相萃取剂0.1gBonnacats MS硅胶基质系列包括 C18、Ram C18、 C8、 C4、 HILIC、 Silica等键合相。? Bonnacats-MS C18是具有较高碳含量和高疏水性的反相磁性固相萃取剂,可通过疏水性作用萃取非极性化合物,对非极性化合物有较高容量。主要用于非极性化合物萃取(如多环芳烃、抗菌素、脂溶性维生素和酯类化合物等)? Bonnacats-MS Ram C18除了具有C18官能团外,在外表面进行了亲水性修饰,具有阻挡干扰大分子的作用,主要用于生物样品的富集检测。当用于生物样品时,蛋白质等大分子干扰物既不能进入萃取剂的微孔内,又不与萃取剂表面的极性官能团作用,在磁性固相萃取剂上没有保留。 ? Bonnacats-MS C8具有中等疏水性,非常适用于C18上保留过强,较难洗脱的化合物。? Bonnacats-MS HILIC在硅胶表面键合中性的酰胺基团,利用亲水作用色谱原理,可富集强极性和水溶性的碱性化合物,可用于100%水相。? Bonnacats-MS Silica表面富含活性硅羟基,可从非极性溶剂中通过氢键相互作用提取极性化合物。主要用于极性化合物萃取(如醛、胺、有机酸、苯酚、药物、染料、除草剂和农药等)。系列货号型号规格备注Bonnacats-MS(硅胶基质)BNMS9300001-0Bonnacats-MS C18 磁性固相萃取剂30-50μm;100?;1g/pk可自行分装BNMS9300001-RBonnacats-MS Ram C18 磁性固相萃取剂30-50μm;100?;1g/pkBNMS6300001-0Bonnacats-MS C8磁性固相萃取剂30-50μm;100?;1g/pkBNMS4300001-0Bonnacats-MS C4磁性固相萃取剂30-50μm;100?;1g/pkBNMS5300001-0Bonnacats-MS HILIC磁性固相萃取剂30-50μm;100?;1g/pkBNMS2300001-0Bonnacats-MS Silica磁性固相萃取剂30-50μm;100?;1g/pkBNMS9001-CBonnacats-MS C18磁性固相萃取剂套装含96孔接收板2块,磁棒套4组C18磁性固相萃取剂0.1gBNMS9001-RCBonnacats-MS Ram C18磁性固相萃取剂套装含96孔接收板2块,磁棒套4组RAM C18磁性固相萃取剂0.1gBNMS6001-CBonnacats-MS C8磁性固相萃取剂套装含96孔接收板2块,磁棒套4组C8磁性固相萃取剂0.1gBNMS4001-CBonnacats-MS C4磁性固相萃取剂套装含96孔接收板2块,磁棒套4组C4磁性固相萃取剂0.1gBNMS5001-CBonnacats-MS HILIC磁性固相萃取剂套装含96孔接收板2块,磁棒套4组HILIC磁性固相萃取剂0.1gBNMS2001-CBonnacats-MS Silica磁性固相萃取剂套装含96孔接收板2块,磁棒套4组Silica磁性固相萃取剂0.1g配套耗材W-HC-018296孔工字板(空)方孔:20ea/pkW-HC-01828联磁棒套40ea/pk
  • VWR 磁性搅拌子,简单经济型 442-0482
    VWR 磁性搅拌子,简单经济型?PTFE涂层,结实的V型铝镍钴永磁合金磁芯。表面光滑,边缘为圆形,可加强搅拌效果(即使在低速时)。价格实惠,性能好。? 极好的耐化学性? 耐温,高温和低温(?200至+280 °C)都适用订货信息:VWR 磁性搅拌子,简单经济型长度 (mm)直径 (mm)包装数量货号12310442-048225810442-04834085442-04845085442-0485
  • 磁性样品架
    型号规格:通用型品牌:PIKE磁性样品架由钢制的样品底板和磁性样品盖板组成。样品底板上有定位销,方便使用。磁性样品架适用于13mmKBr片和薄膜样品的红外光谱透射测量使用。薄膜的厚度不宜超过0.5mm。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制