当前位置: 仪器信息网 > 行业主题 > >

定量控制仪

仪器信息网定量控制仪专题为您提供2024年最新定量控制仪价格报价、厂家品牌的相关信息, 包括定量控制仪参数、型号等,不管是国产,还是进口品牌的定量控制仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合定量控制仪相关的耗材配件、试剂标物,还有定量控制仪相关的最新资讯、资料,以及定量控制仪相关的解决方案。

定量控制仪相关的资讯

  • 本草奇遇记——快速质量控制之旅
    5本草奇遇记快速质量控制之旅”在上一期的本草奇遇记中,我们简单地展示了步琦针对中药干燥与制剂环节的解决方案,希望通过丰富的产品线和经验主力“十四五”中医药的发展。这次我们将带大家详细了解奇遇记中出现的检测判别,领略步琦在旁线与在线近红外这两个产品线对中药质量控制环节快速分析的解决方案。实验室近红外近红外光谱分析技术是分析领域中最具发展潜力的分析方法,具有快速无损、实时分析与过程控制等特点,步琦的近红外能够快速测定天然产物,实现对全流程各个关键节点产品指标的分析监控,兼具成本的节约与生产效率的高效。模块化全能型近红外光谱仪近红外 NIRFlex N-500 是模块化傅立叶变换近红外光谱仪,为应用科学和各个行业的质量控制、研发部门提供可靠的结果。近红外 NIRFlex N-500 提供丰富的测量单元和附件,实现灵活的性能傅立叶偏振干涉,提高优秀的抗干扰能力激光校准光路,双灯设计增强使用效率全波段扫描,模块化测量池与测量附件审计追踪及用户管理,满足 GMP 规范适合应用:原料定性鉴别、成分产品定量分析推荐配件:适合不同样品形态的测量附件固体粉末、袋装、片剂、胶囊、液体、光纤探头等多种测量附件,满足不同工艺环节质量控制需求模块化设计,与光谱仪相独立,仅需更换测量装置即可实现应用实例陈皮中橙皮苷、川陈皮素、橘皮素成分的测定,模型验证回收率分别达到 101.08%、103.46% 和 100.02%,与传统分析方法相比具备快速无损经济等优势丹参提取物中丹酚酸 B 含量的快速测定,模型验证相对误差为 2.67%,满足质控要求,能够实现对提取物的质量控制,从而优化生产,节约检测成本。旁线近红外旁线近红外的意义在于节省送样分析所花费的时间,更加方便快速地测量生产线上的样品,对工艺状态有更加清晰、准确的认识,从而优化生产提升效率。此外联网功能也使得质量管理部门异地实时了解产品指标状况,满足对关键参数的质量控制。ProxiMate™ 现场快速检测的得力帮手ProxiMate™ 是专为生产线旁快速检测设计的近红外光谱仪,触控式的交互界面方便用户操作,紧凑的机型适合各种现场环境,确保检测结果,提升生产效率。IP69 防护等级双角度照射方式可见光与近红外光相结合,满足颜色分析需求支持多设备云端管理适合应用:产线关键数据定量快检在线近红外过程分析技术在药物生产环节中,能够帮助生产人员实时监控生产流程,在减少过度消耗与增强生产连贯性的基础上,更为高效地完成质量控制工作,节约成本。步琦的在线近红外恰好能够帮助用户实现对生产过程的监管与控制。NIR-Online过程控制的监控利器在生产过程中,密切监控基本参数对纠正生产偏差至关重要。NIR-Online X-One 作为一款多功能在线近红外,满足固体,液体等多种产品实时监控,分析仪能够持续提供准确的分析,每次测量仅需数秒,确保最高的生产效率。简单易用,几乎无需操作员干预高投资回报比,平均投资回收期不到一年专业的过程控制技术适用于粉尘,防爆,高温等恶劣环境适用于固体,液体等多种状态样品的实时监控本草奇遇记通过固液萃取,蒸发浓缩,纯化分离,干燥制剂和检测判别五期内容,就到此结束了,然而我们的中药的发展还有很长的路要走。瑞士步琦愿意用我们在天然产物领域积累的数十年的技术和经验,和大家一起助力中药发展,加强技术集成和创新,提升中药生产制造水平,加速中药生产工艺、流程的标准化和现代化,推动中药产业高质量发展。
  • 全国感官分析标准化技术委员会关于公开征集《感官分析方法 定量描述感官评价小组表现评估导则》《感官分析实验室 质量控制指南》国家标准起草单位和起草专家的通知
    各有关单位:根据国家标准化管理委员会立项计划,由全国感官分析标准化技术委员会(以下简称“SAC/TC 566”)提出并归口的《感官分析方法 定量描述感官评价小组表现评估导则》《感官分析实验室 质量控制指南》国家标准项目批准立项。为广泛吸收感官分析领域各利益相关方参与,充分依托各方资源开展感官分析标准化工作,SAC/TC 566秘书处决定面向社会公开征集该两项国家标准项目的起草单位和起草专家,现将有关事项通知如下:一、项目介绍国家标准项目《感官分析方法 定量描述感官评价小组表现评估导则》计划号为20230268-T-469、《感官分析实验室 质量控制指南》计划号为20230267-T-469。二、报名要求同一单位报名起草参编人数不得超过两人。报名参加国家标准起草的单位应能为相应国家标准的起草提供以下资源支持:(一)技术专家支持:参与单位应能为标准研制提供专家支持,所推荐专家应具备较强的专业能力和文字水平,保障其充分参与国家标准制定过程并完成分担的技术任务;(二)经费支持:参与单位应能根据国家标准项目研制过程中调研、起草、研讨、审定、宣贯等阶段工作需要,通过承办会议、邀请专家等方式分担标准制修订的费用。三、起草组组建SAC/TC 566秘书处将根据标准前期参与情况和报名情况择优组建起草组。四、材料报送要求请有意向报名参加上述国家标准起草的单位填写《国家标准起草单位和起草专家报名表》(见附件2),并于2023年6月30日之前将报名表电子版(WORD)和盖章扫描件(PDF)通过电子邮件反馈至SAC/TC 566秘书处联系人邮箱,无需报送纸质材料。五、联系方式联系人:钟葵联系电话:010-57825133邮箱:zhongkui@cnis.ac.cn地址:北京市昌平区永安路36号中国标准化研究院实验基地全国感官分析标准化技术委员会(SAC/TC 566)2023年5月19日附件:附件1 关于公开征集《感官分析方法 定量描述感官评价小组表现评估导则》、《感官分析实验室 质量控制指南》国家标准起草单位和起草专家的通知.pdf附件2 2023年8号文-关于公开征集国家标准单位和专家的通知.docx
  • 岛津应用:新一代测序仪(NGS)在文库质量控制(QC)中的应用
    随着新一代测序仪(NGS)的技术发展,其使用范围已扩展到de novo测序、变异、外显子组和基因表达分析等领域。因为可以对应高要求的分析处理能力,所以得以迅速普及。为了得到良好的测序结果,需要掌握NGS文库的大小分布和浓度,因此,在使用NGS 系统时质控文库的以上信息非常重要。 到目前为止,为了确认NGS文库的大小分布,使用琼脂糖凝胶电泳作为主要手段。为了确认浓度,还需要配备实时荧光定量PCR仪和荧光分光光度计。从文库制备到质量控制的操作是一系列复杂的手工作业,需要使用快速、简便且价格低廉的控制方法。而且,随着使用Index标签序列可同时对多个样品进行测序技术的成熟,进行质量控制的文库数量有所增加,需求会变得更多。 为解决上述需求,本文将向您介绍使用岛津全自动电泳仪MCE-202 MultiNA 在NGS文库的质量控制应用中,对小鼠的RNA序列进行分析的示例。 NGS流程和MultiNA文库质量控制的应用范围 了解详情,敬请点击《新一代测序仪(NGS)在文库质量控制(QC)中的应用》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。 岛津微信平台
  • 微生物检测培养基质量控制问答
    微生物检测培养基质量控制问答1、培养基灭菌后成份会有所蒸发减少,如何处理这个问题?答:正常情况下蒸发量较少,可忽略不计。2、培养基融化后出现浑浊是有哪些方面的原因引起的?应如何避免?答:可能的情况有:1. 培养基配置用水不符合规定;2. 灭菌过程温度升温慢或降温慢;3. 培养基储存不当;4. 融化时沸腾时间较长等。3、准备好的培养基有效期如何验证?答:定期取出培养基验证其无菌性,促生长能力等方面。4、培养基配制好灭菌后,在高压容器中保温降至50℃左右,可不可行?答:建议最-好不要,避免过度受热。5、脱水培养基对湿度是否有要求?多少适宜?答:按要求室温干燥环境储存即可。6、培养基pH值测定温度在25℃,这个温度应怎么控制?答:可水浴控制培养基温度。7、配制培养基过程中,按说明书称定量,加规定的纯化水,煮沸溶解,为了避免煮沸过程总减少水分,是否要在配制过程适当增加水?答:可适量增加,自己掌握。8、商品培养基一定要当天配当天用吗?可否在一周内用完?答:不是即配即用的培养基的话,储存的当,可以使用。9、称量培养基时,注意不要吸入粉末,这粉末是指何物?答:就是你所称量的干粉培养基 ,因为培养基的粉末对呼吸道有刺激作用,而且培养基中的某些成分,如亚硒-酸盐、叠氮-化钠、乙酰胺等,长期吸入并在体内累积到一定量会对人体健康有危害。所以培养基配制称量需做好个人防护,且最-好选择少粉尘环保型颗粒培养基。10、煮培养基,用不锈钢锅在电磁炉上煮可行?硫乙醇培养基是否要煮沸?如何煮沸?用不锈钢锅在电磁炉上煮沸可行吗?可不可以水浴煮沸呢?答:硫乙醇应煮沸,量大时,我实验室用不锈钢锅在电磁炉上煮沸。不建议水浴煮沸,因为水浴煮沸琼脂粉很难溶,导致琼脂分装不均匀,前段分装的琼脂含量少,后段分装的琼脂含量高,导致有的管或瓶中的FT凝固。11、如培养基在高压灭菌器中温度需自然下降20度才开盖吗?答:高温灭菌器有安全阀,温度下降到安全阀可打开时将培养基取出室温冷却,各型号灭菌器安全开盖温度不尽相同。12、平板涂布和平板划线培养基表面水分过多,菌落蔓延如何解决?答:对于采用表面接种形式培养的固体培养基,应先对琼脂表面进行干燥:揭开平皿盖,将平板倒扣于烘箱或培养箱中(温度设为25℃~50℃);或放在有对流的无菌净化台中,直到培养基表面的水滴消失为止。注意不要过度干燥。商品化的平板琼脂培养基应按照厂商提供的说明使用。
  • 实验室质量控制中的关键环节
    科研生产项目室内实验质量的好坏直接关系到现场施工质量和有效成功率,实验室的首要任务就是把好进入现场材料的质量关,因此,实验室质量控制工作的重要性是不言而喻的。根据目前我县区实验室管理现状,笔者就如何抓好实验室质量控制中的关键环节,确保实验质量,提出以下观点和看法。   实验标准规程的控制   标准规程是检测、判定的依据,要采取多种渠道,及时收集新标准,确保检测工作所依据的标准版本现行有效,同时对新、旧标准应加以分析比较,并按标准规程的新要求,做好仪器设备改造、配置以及新标准的贯标等基础工作。   为此有必要对所管辖区的实验室制定出基础的技术标准配备规范,明确所辖业务的各类试验应该配备的基本技术标准,确保主要业务标准配备覆盖面达到100%,实现以标科研、以标实验,最大限度地避免因实验设计缺陷而造成的质量事故。   在实验室标准宣贯方面要做好落实工作,一是抓标准配备、宣贯,二是抓标准的检查、更新,确保试验工作有标可依,规范有序。   样品的控制   试验用样品的状态应符合标准要求。   1.样品要有代表性,抽样采取随机抽取的方法进行。比如:钻井泥浆、水泥类试验检测规定,袋装水泥要从该批不少于20袋水泥中任取等量样品,总量至少12kg,那种一次性提取半袋或整袋水泥作为试验样品,不符合标准要求,也是不可取的。   2.试样的数量关系到试验结果的准确性,数量过少,试验带来误差增大,故标准对材料试样的数量都有要求。在实际试验工作中,要加强试验数量的控制。标准要求做平行试验的,应等分样品分别试验,如只做一次试验,就拼凑数据出报告,是应严格禁止的。   3.试样的尺寸关系到试验结果的准确性,试样的尺寸要满足标准要求。在井下工具拉压扭试验采用的《金属材料室温拉伸试验方法》(GB/T228-2002)中明确了金属材料样品的尺寸(长度),如果样品的长度不符合标准要求,仅仅靠调节万能材料试验机上下钳口位置来完成试验,显然是不符合规范要求的。   仪器设备与计量器具的控制   仪器设备及各种计量器具是检测工作中最基本的工具,它的完好程度和准确度将直接影响检测数据的准确性,同样影响到对工程质量的评判。   1.对计量标准器具的控制,实验室计量标准器具或校准装置的建立、更换、封存与撤销,应建立内容完整的技术档案,并符合JJF1033《计量标准考核规范》的有关程序规定。计量标准器具周检率为100%,符合JJF1033的要求。   2.对国家明确规定的强制性计量检定的试验仪器设备,必须全部送检并及时送检,检完后对校准的器具进行复核,检查校准数据是否符合使用要求。   3.对部分不属强检范围,国家又尚未制定校准规范的试验仪器设备,应依据仪器说明书、相关技术规范、相关计量检定规程等自行制定校准规范,作为定期自行校准的依据,控制好计量数据的精度。如:水泥抗压夹具、水泥试验筛通常也必须自行进行校验,否则对检测结果同样有着很大的影响。   4.除了检定(校准)之外,还应注意仪器设备及各种计量器具平时的定期保养与检查,如每月检查水泥搅拌机叶片与锅之间的间隙,发现问题,立即停用,经计量部门重新检定(校准)并符合要求后才能使用。   标准物质与标准材料的控制   实验室应建立相关制度,从标准物质与标准材料的选购、验收、存放、发放、使用以及废弃标准物质处理等全过程进行有效控制,保证标准物质在有效期内使用,确保其定值准确度、均匀性、稳定性等计量性能满足检测要求。目前假冒伪劣产品较多,为了购买到优质的标准物质和标准材料,应选择有资质和能力的服务方,并获得相应的资质和能力的证明性文件。对一些长期、重要供应商建立合格供方名录,以这些供应商作为固定用户,从而保证试验用材料的相对稳定性。如建筑试验用的标准砂,一般一个地区只有一家是指定销售商,在购买标准砂时,一定要向销售商索取销售授权书和合格证书,不要为便宜去买一些假的标准砂,进而影响试验的工作质量。   试验室的温、湿度控制   温度和湿度对一些材料的性能有一定的影响,故在标准中对材料测试时的环境条件有明确规定,必须遵守。如热采水泥堵窜室内试验《水泥胶砂强度检验方法(ISO)法》(GB/T17671-1999)规定,试体成型时试验室温度应稳定保持在20℃±2℃,相对湿度不低于50% 试体带模养护箱温度保持在20℃±1℃,相对湿度不低于90% 试体养护池水温度应在20℃±1℃范围内。为加强试验室的温、湿度控制,试验室可根据自身条件建立一套温湿度控制系统和控制措施,有条件的单位尽可能采用自动温、湿度控制系统。   试验速度的控制   在材料力学性能检测试验中,加荷速度的快慢对检测结果有一定的影响。一般加荷速度较快,试件的变形滞后于加在其上的荷载,测出的强度值高于材料固有的强度。如井下工具缸体检测中加荷速度较快,屈服强度和极限强度会有所提高。但在实际试验工作中,有的检测人员忽视了加荷速度,在不了解加荷速度大小时随意加荷检测,或者不严格按照标准规定的加荷速度进行检测,致使检测结果失去可比性、真实性。   检测工作中,检测人员掌握加荷速度是通过每秒荷载增加多少牛顿(N/S)来控制的,而有的标准给出的是每秒应力的增加(MPa/S),这就需要根据试件的实际尺寸加以换算,以便控制试验加荷速度。在实际工作中,检测人员应熟练操作万能试验机,确保试验的速度符合标准的要求,同时加荷应保持连续均匀,直至测出所需荷载值。   实验室试验误差的控制   试验工作中应通过重复试验、比对试验、能力验证等方法来抵消试验误差对试验结果的影响,提高试验室工作质量。   1.重复性是由同一个试验室在基本相同的情况下,用同一样品试验所得试验结果的误差。如水泥抗压强度试验方法的重复性是由同一个试验室,在相同的操作人员,相同的标准砂,较短时间间隔内,用同一样品所得试验结果的误差来定量表达。对于28天抗压强度的测定,一个合格的试验室在上述条件下的重复性以变异系数表示,要求在1%~3%之间。   2.试验室内的比对试验是试验室的不同人员,使用相同的仪器设备,用同一样品试验所得试验结果的比较。试验室内的比对试验具有易操作,且利于提高试验人员的检测能力。   3.通过试验室间的比对试验可以消除试验室的系统误差,这一误差是重复试验、同一试验室由不同人员操作的比对无法消除的。通过此比对,找出发生偏差的原因,及时纠正与改进因操作、温湿度环境条件及设备因素等引起的各种偏差。   4.要真正使试验室内部质量得到有效控制,检测能力上一个台阶,在通过比对改进之后,最好参加国家实验室认证认可机构的能力验证试验,只有通过能力验证,才能了解自己在该检测项目中的真实水平,发现问题,采取措施,及早纠正和整改。
  • 还在为元素杂质担心吗?微波消解系统助力药品质量控制
    微波消解系统助力药品质量控制由于药品中的元素杂质不仅构成患者的毒理学风险,而且可能影响药物产品的质量和功效。因此,元素杂质分析在药物开发和质量控制中起着重要作用。与药品质量控制相关的法规有哪些? 国际人用药品注册技术协调会(ICH) 在ICH 指导手册中 Q3D生效以前,重金属分析采用的是硫化物沉淀法,是根据 USP, Ph.Eur.2.4.8 规定中的限制测试。这项超过100 年的旧版操作规程是不明确的,而且不能确定具体的量化结果。终于经过这么久的发展后,在相关的法律法规中,过时的湿法化学分析已逐步被现代仪器分析取代。由于 ICP-OES 和 ICP-MS 的使用,随之相关的样品前处理技术,例如微波辅助消解,目前已成为定量元素分析的主流前处理方式。自 2014 年 12 月起,ICH 指导手册中 Q3D 步骤 4 生效,并且市场中的所有产品都必须遵循遵循该步骤(从 2018 年 1 月开始,新的提案已提交并且已获批准)。指导手册中根据元素杂质的毒性和它们在药物中产生毒性的可能性,将其分为四类 – 1, 2A, 2B 和 3,并且详细说明了元素的种类,剂型(口服,注射以及吸入)以及允许日常接触量(PDE)。值得注意的是,等级1中的Cd、Pb、As、Hg 和等级2中的Co、V、Ni 是人体致毒物,所含 PDE 较低。对于这些元素,即使这些金属没有人为添加,也必须进行风险分析,以防超过其 PDE。根据评估结果,定义一个合理的控制策略,从没有任何分析到定期研究,再到最终成品的理性测试。 美国药典-USP2015年12月,USP 232章节中元素杂质—限制和233章节元素杂质—规程正式生效,并在 2018年1月,取代了所有对旧版USP的引用。232章节中所规定的限制完全符合ICH Q3D的要求。对于膳食补充剂而言,USP章节从2013年8月开始正式生效,它参考了 USP关于全元素污染物的分析规程,自 2018 年1月起开始执行。欧洲药典-Ph.Eur.欧洲药典委员会决定重新逐字修订Ph. Eur. chapter5.20中的ICH Q3D指导方针,自 2018年1月开始,欧盟市场上的所有现有产品都需考虑此问题。2020版中国药典2020版中国药典,9102药品杂质分析指导原则,无机杂质参照ICH Q3D进行研究,并确定检查项目。为什么以上法规都对元素杂质含量进行了限定?元素杂质可能会存在于原料药、辅料、制剂中的催化剂或环境污染物中。这些杂质可能是自然生成的,也可能是人为加入或不可逆引入的(例如与生产设备的相互反应)。当我们知道元素杂质有产生的可能性时,就必须保证杂质符合指定的限度。要注意的是,砷、镉、铅和汞在自然中普遍存在,所以我们在采用基于风险的控制策略时必须包括对这四种元素的考虑。不论采用何种方式,由于元素杂质并不给患者提供任何治疗益处,在药品中的水平应被控制在可接受限度以内。 微波消解技术成为元素杂质定量的技术 由于2020版中国药典、美国药典(USP 和),欧洲药典(Ph。Eur。5.20)和国际协调会议(ICH Q3D)的新规定,使用ICP—OES或ICP—MS与可靠的样品制备技术(例如基于加压消解腔(PDC)的超级微波消解仪)已成为元素杂质定量的技术。例如易挥发元素铂元素Os,已知Os在某些活性药物成分(API)的生产链中被用作催化剂。样品基质的消化主要是通过氧化无机酸(例如HNO3)来完成的,这将在确定Os痕迹时引起问题。原因是在这种条件下,Os元素形成了不同种类的挥发性氧化物,导致了Os的失控。四氧化锇不仅具有高度挥发性,还可通过吸入、食入和皮肤接触从而产生剧毒。 安东帕Multiwave 7000可一次性消解所有类型的样品。针对不同元素的特性,您可以根据待测的元素选择压力密封样品管或密闭石英管,同时也可以根据所需样品的处理量、样品量、样品体积和反应混合物等进行支架选择。如上图所示,不仅可选择石英管用来应对Os元素易挥发的状况,同时使用压力样品密封管对其他样品进行消解。满足所有药典,完美助力药品质量控制!
  • 台式电镜技术发展助力食品质量控制
    台式电镜正在食品质量控制和食品安全当中发挥着越来越重要的作用。   扫描电镜能够揭示显微性质和颗粒的变化信息,这些变化对于食品的结构性质会产生影响。扫描电镜所能获取的信息包括化学成分、形态及污染物鉴定。扫描电镜常常和X射线能谱仪(EDS)联用来进行Mapping及污染分析。SEM产生的信号信息包括二次电子和背散射电子,二次电子成像能够获取样品表面的高分辨率图像,分辨率一般小于1nm。背散射电子成像对于提供样品中不同元素的分布信息是特别有用的,因为背散射电子信号的强度与样品的原子数密切相关。   先前,大多数台式电镜都是低真空仪器,因为许多材料都是非导电、真空敏感和电子束敏感的。此外,早期的台式电镜只有一种加速电压,因此限制了分辨能力。目前,随着技术的进步,台式电镜可以提供3种不同的加速电压,具备低真空和高真空模式,可以检测二次电子和背散射电子。这些特征使得用户可以使用台式电镜分析范围更广的样品,并获取高分辨率的图像,技术的进步对于食品分析也带来了特别的优势。例如,利用新型台式电镜分析花生酱可以揭示样品的形态特征,如花生大小的一致性,或罐装产品中的气孔。   试样的最大尺寸和可移动范围是同等重要的因素。普通的扫描电镜可以用来分析和鞋子一样大的样品。早期的台式电镜仅仅可以分析直径不超过25mm的样品,但是新型台式电镜能够容纳直径达70mm、厚度达50mm的样品。随着对样品尺寸限制的减小,台式电镜可分析的样品种类也有很多了,并减少了样品制备的时间。仪器制造商也提供了更大的样品移动范围,允许仪器操作人员控制样品台在X/Y轴方向的移动,以便能够观察到更大的样品区域。   在食品分析领域,食品包装分析依然是一个十分重要的组成部分,并且显微镜是分析食品包装材料的常用工具,并经常结合其他技术来检测缺陷,包括分析包装罐的腐蚀、泄露,或分析多层膜材料。由多层膜材料组成的塑料包装经常依靠热封技术来封装产品。科学家能够利用偏光显微镜和傅里叶变换红外光谱及热台技术来分析不同的膜层。利用扫描电镜分析包装材料,能够放大观察其微观性质的变化,以及对包装性质产生影响的颗粒。目前台式电镜能够提供从10倍到6万倍的放大倍数,分辨率在30nm。   对样品本身所含的元素进行鉴定及污染物质的鉴定同样重要。X射线能谱仪(EDS)到目前还只能在普通电镜上使用,当前台式电镜完全整合了硅漂移探测器(SDD),能够进行元素分析。用户只要按一个按钮,就能获得元素定量分布图,生成光谱数据和检测相对浓度变化。这些功能使科学家能够充分分析他们的样品并立即获取结果。在食品分析领域,EDS是鉴定产品当中无机元素的有力工具,并在检测物理污染物方面颇具优势。   质量控制实验室进行快速、定性观察的能力对于提高效率至关重要。对于所有的材料和食品,任何在形态上的微小变化,都会影响产品的流变性和效用。目前台式电镜性能的提升使质量控制实验室能够快速准确的在各种环境条件下进行样品成像,使得科学家能够立即进行质量评估,节省时间和成本。在分析监测中收集的数据可以马上用来改进制造工艺,防止今后发生类似的问题。(编译:秦丽娟)
  • TOC-3000型TOC分析仪在色谱样品瓶质量控制中的应用
    气相色谱、液相色谱和气相色谱-质谱联用一般用于样品中有机物的定性或定量测试,进行此类测试时为了避免储样容器内残留的有机物影响测试结果,需对取样瓶内有机碳含量进行严格控制。现取5组不同材质、不同规格的样品瓶及配套瓶盖,按照标准对样品进行前处理,将所得溶液进行有机碳含量的分析检测。根据测试要求,我们选用检测灵敏度高、检出限低的TOC-3000型总有机碳分析仪进行测试,以观察这5种不同规格、型号的样品瓶是否能符合《中华人民共和国药典》2020年版 第四部中9622“药用玻璃材料和容器指导原则”中对储样容器的要求。 一、仪器与试剂仪器:TOC-3000型总有机碳分析仪(上海元析仪器有限公司)试剂:邻苯二甲酸氢钾 (基准试剂)、过硫酸钠(优级纯)、磷酸 (优级纯)、去二氧化碳蒸馏水。 二、溶液配制1、标准溶液的配制 [ρ(有机碳,C)=1000 mg/L ] : 称取2.1254g邻苯二甲酸氢钾(先在115℃下干燥2h),定容至1000mL,混匀,配制成TOC值为 1000mg/L的标准溶液。 2、过硫酸钠溶液(体积分数为8%)称取40g过硫酸钠,加入50mL98%的磷酸,用纯水定容至500 mL,混匀。 三、实验方法及实验数据1、标准曲线的绘制将标准溶液配制成有机碳浓度分别为0.0、0.5、1.0、2.0、5.0mg/L的标准使用液,选用直接法(NPOC)模式,采用同体积不同浓度进样,以碳的质量为横坐标,以积分面积信号为纵坐标,绘制校准曲线;NPOC曲线方程:Y=-1737955.6X2+266286.9X+18.3,相关系数R= 0.9999 图1 NPOC标准曲线 2、样品介绍“样品1”、“样品2”、“样品3”均为2mL进样瓶,瓶身为硼硅酸玻璃材质,瓶盖为聚丙烯材质,内附红色硅胶隔垫(见图2);“样品4”为20mL顶空螺口进样瓶,瓶身为硼硅酸玻璃材质,瓶盖为铝塑组合盖,内附白色PTFE(聚四氟乙烯)硅胶复合垫片(见图3);“样品5”为30 mL进样瓶,瓶身为硼硅酸玻璃材质,瓶盖为PP(聚丙烯)塑料盖,内附透明PE(聚乙烯)硅胶垫(见图4)。因五种样品的瓶盖及垫片均为高分子材料,碳元素的存在易对气相色谱、液相色谱等有机物的定性、定量测试产生影响,故需对整套样品瓶以2020年版第四部《中华人民共和国药典》0682章节中“制药用水中总有机碳测定法”为指导原则进行前处理,收集样品瓶中溶液,进行有机碳含量的测试,检测产品是否能符合相关标准及要求。 图2 图3 图4 3、样品前处理3.1供试溶液配制取适量现制现用的超纯水,使用98%的磷酸将其pH调至3-4,作为供试溶液,待用。 3.2样品制备用超纯水清洗干净的滴管将供试溶液倒满20瓶2mL的“样品1”,拧紧瓶盖,在实验室环境下倒置存放48h;用超纯水清洗干净的滴管将供试溶液倒满20瓶2mL的“样品2”,拧紧瓶盖,在实验室环境下倒置存放48h;用超纯水清洗干净的滴管将供试溶液倒满20瓶2mL的“样品3”,拧紧瓶盖,在实验室环境下倒置存放48h;将供试溶液直接倒满5瓶20mL的“样品4”,拧紧瓶盖,在实验室环境下倒置存放48h;将供试溶液直接倒满3瓶30mL的“样品5”,拧紧瓶盖,在实验室环境下倒置存放48h。 3.3储样容器准备准备6个100mL容量瓶,制取超纯水后将准备好的容量瓶清洗三遍,放入烘箱烘干,使储样容器条件一致且不会对测试结果产生影响。 3.4样品收集将制备好的20瓶“样品1”、20瓶“样品2”、20瓶“样品3”、5瓶“样品4”、3瓶“样品5”中溶液分别收集于5个处理干净的100mL容量瓶中,作为样品溶液待测,另取一洁净的容量瓶倒入供试溶液作为空白样,待测。 3.5测试结果将收集的5个容量瓶中的5个样品溶液及1个空白溶液,使用TOC-3000型总有机碳分析仪,选用NPOC模式进行有机碳含量测试,测试结果如下表所示:表2 测试结果样品名称序号NPOC(mg/L)均值(mg/L)RSD(%)空白10.220.222.4120.2330.22样品110.450.432.5420.4330.42样品210.310.302.0420.2930.31样品310.310.301.7920.2930.30样品410.200.212.2120.2230.20样品510.340.342.9120.3230.35 注:上表中样品溶液测试数据均为扣除空白后溶液中总有机碳测试结果。四、总结TOC-3000型总有机碳分析仪采用高强紫外射线和强氧化剂配合的紫外消解方式来消解样品,进样量高达20mL,可满足超纯水级别样品的应用需求;采用先进的精密气体流量控制技术,屏蔽流速波动带来的影响,保证实验数据的稳定性;自主研发的高性能非色散型红外检测器(NDIR),采用进口光源和探测器,检测灵敏度高、稳定性好,符合2020版第四部《中华人民共和国药典》 的相关测试要求,在制药用水、注射用水、纯化水等质量控制方面有着十分重要的作用。
  • 干货分享丨mRNA疫苗关键质量控制解决方案
    导读近期,美国食品药品监督管理局(FDA)授予黑色素瘤mRNA疫苗“突破性疗法”的认定,这是全球首个获此认证的mRNA肿瘤疫苗。国内首款新型冠状病毒mRNA疫苗也于近期纳入紧急使用。mRNA疫苗是目前最炙手可热的医药领域之一,被誉为“全能钥匙”的mRNA疫苗,理论上能够表达任何蛋白,在疫苗、肿瘤治疗、先天性代谢疾病等领域都有着极为广阔的前景。但作为一类全新的疫苗,其质量控制仍处于探索阶段,一起来看看岛津最新的应用研究成果!mRNA疫苗作用原理与生产流程mRNA疫苗是通过将编码抗原蛋白的mRNA接种至人体,mRNA作为模板合成抗原蛋白,诱导或激活机体免疫系统产生免疫反应,从而预防和治疗疾病。mRNA的生产工艺流程主要包括以下五步:质粒制备,体外转录,体外修饰,纯化,载体递送。mRNA疫苗质量控制根据mRNA疫苗制备流程,岛津结合自身仪器建立了mRNA疫苗质量控制解决方案。方案优势:&bull 此方案涵盖了mRNA生产工艺流程中关键质量控制,且同一个分析项目提供多种仪器的解决方案,内容丰富。&bull 方案中涉及的岛津新款仪器在mRNA质量控制中表现出优异性能,如蒸发光散射检测器ELSD-LT III、生物惰性液相色谱仪Nexera XS inert、基质辅助激光解吸电离-飞行时间质谱仪MALDI-8030等仪器。质粒构型分析质粒具有3种基本构型:超螺旋(Supercoiled,简称SC)、线性(Linear)和开环(Opencircular,简称OC)。岛津采用生物惰性液相分析3种构型质粒,实现基线分离,可用于超螺旋质粒纯度的测定。图片生物惰性液相色谱仪实物图(左)和3种状态质粒色谱图(右)mRNA原料定性分析mRNA制备过程中非常重要的一步是将DNA转录为RNA,其中需要用到的原料有三磷酸核苷(NTPs)。岛津通过单四极杆质谱(LCMS-2050)确定不同NTPs分子量,从而对原料进行定性分析。LCMS-2050标配DUIS(ESI+APCI)离子源,质量范围广,兼顾了小型化及高性能。LCMS-2050实物图(左)和mRNA合成原料ATP质谱图(右)mRNA疫苗加帽率分析帽子结构是mRNA翻译起始的必要结构,为核糖体识别mRNA提供了信号,协助核糖体与mRNA结合,使翻译从AUG开始。同时帽子结构可增加mRNA的稳定性,保护mRNA免遭核酸外切酶的攻击。所以,加帽率的高低直接影响着mRNA疫苗的药效及稳定性。岛津推荐通过MALDI-TOF(MALDI-8030)或QTOF(LCMS-9030 /9050)对加帽率进行检测,其中MALDI-TOF测定加帽率操作简便快速,无需优化流动相、色谱柱等繁琐操作。MALDI-8030实物图(左)和mRNA样品加帽后质谱图(右)mRNA疫苗纯度分析mRNA 纯度对于保障 mRNA 疫苗的有效性和安全性至关重要。由于mRNA中含磷酸基团,在常规液相系统中容易产生金属吸附,从而影响分析的灵敏度、精密度等性能。岛津生物惰性液相系统中管路经peek内衬,整个流路无不锈钢金属材料,从而抑制金属吸附,完美实现mRNA纯度分析。生物惰性液相色谱仪实物图(左)和mRNA纯度分析结果(右)递送介质分析为了mRNA免受核酸酶的攻击,并允许传递进入细胞,需要使用递送系统。目前mRNA疫苗递送介质主要为脂质纳米粒(LNP),其由四种成分组成,分别是胆固醇,修饰化PEG,可离子化脂质和辅助脂质。因LNP组分无紫外和荧光信号,因此推荐使用液相色谱联合蒸发光散射检测器(ELSD)定量分析LNP四种成分。ELSD-LT III是岛津最新一代蒸发光散射检测器,具有灵敏度高、线性范围广等优异特性,在样品分析时采用wide模式,无需优化增益值,可同时快速分析四种不同含量的LNP成分。ELSD-LT III检测器实物图(左)和LNP色谱图(右)根据中国药典,可采用基质辅助激光解吸附飞行时间质谱(MALDI-TOF)等方法测定LNP成分之一聚乙二醇的重均/数均分子量及多分散性。利用岛津MALDI-8030即可分析PEG分子量。MALDI-8030实物图(左)和PEG质谱图(右)使用岛津扫描探针显微镜(SPM-9700HT),测定了mRNA疫苗样品的表面形貌,并使用仪器自带的软件一键将其转换成了更加清晰、直观的三维形貌图。扫描探针显微镜SPM-9700HT实物图(上)和mRNA表面形貌图(下)结语mRNA技术应用前景非常广阔,除了能够用于预防传染性疾病,也为治疗肿瘤、免疫疾病带来了新的星火。但mRNA在序列设计和递送系统等环节还存在一定的技术壁垒,众多mRNA疫苗仍处于研发和临床阶段,希望岛津mRNA质量控制解决方案为mRNA疫苗的发展添砖加瓦。本文内容非商业广告,仅供专业人士参考。
  • 如何做好中药质量控制?
    从播种到炮制成药,一株中草药历经种植、采收、饮片粗加工、炮制、仓储、物流,最后经销售终端落入消费者手中。全过程严格把控质量,才能确保中药的安全性和有效性达到最优。目前中药行业的质量标准以《中国药典》为核心,结合各部(局)颁标准、以及各省地方标准等,对中药质量进行控制和监管。但标准、规范更注重对于某一环节的控制,缺乏全产业链流程的系统指导。中药全程质量控制就是把中药的质量控制贯穿于中药的全生命周期,以中药质量可传递为核心理念,构建与质量相衔接的标准规范体系和质量控制管理体系。科学、客观地实现中药产品生产全过程质量控制是目前中药产品质量提升的瓶颈,也是推动中药产业高质量可持续发展的基础。6月7日-9日,中国生物医药技术协会药物分析技术分会与仪器信息网将联手举办“第三届中药分析与质控控制网络会议”,多位业内知名专家,将详解中药质量控制的最新理论及成果。只需要30分钟,听众便可无限接近一位行业内的大咖,获得权威问答的机会。点击上方图片 免费报名参会大咖专家,权威解读大会由清华大学罗国安教授担任会议主席,多位来自清华大学、北京大学、上海中医药大学、天津中医药大学等中药相关顶尖学府,科研机构专的药典委委员、学科带头人等业内顶尖专家齐聚一堂,献上精彩学术饕餮盛宴。高度聚焦,紧追热点内容设置上,基于领域最新前沿热点,三天会议,分设中药分析新技术、新方法;中药药效物质基础及其作用机理研究、中药质量标准研究、中药创新药物、中药风险物质分析及控制以及青年论坛6大专场,既有领域最新科研成果分享,也有行业最新国家战略重点解读。更多详细会议日程,点击下方会议官网查看:https://www.instrument.com.cn/webinar/meetings/tcm2022/
  • 炉前铁水碳硅仪解决了炉前铁水质量控制的难题
    炉前铁水碳硅仪解决了炉前铁水质量控制的难题 2018年12月份,南京麒麟分析仪器为答谢全国各地区老客户多年来对公司的支持及信任,继续回访VIP客户进行升级、技术交流等活动。河北区域经理回访中国恒通阀门有限责任公司,该公司主要生产各种阀门铸件,在2017年12月从南京麒麟科学仪器集团有限公司引进一套QL-TS-6型炉前铁水碳硅仪针对炉前检测,一年来炉前铁水碳硅仪有效的控制了生产过程中原材料的浪费,节约了成本,更提高了产品的合格率,回访得到了客户的认可。南京麒麟在客户检测中心现场 中国恒通阀门有限责任公司是一家集冶炼、铸造和加工、组装喷漆于一体的大型民营企业。主要生产各种阀门铸件,对质量要求高,炉前碳硅仪能够在炉前快速准确地测出铁水的化学成分,是控制决定铸件质量的关键。TS-6型炉前铁水碳硅仪充分表现了其性能的稳定性及数值的准确性,且在恶劣环境下,数据准确性不受到任何影响。为广大铸造企业解决了炉前铁水质量控制的难题,真正成为铸造企业的炉前好帮手! 铸造炉前碳硅仪又称炉前快速铁水分析仪,从熔炉中舀出铁水,估计铁水的温度大约在1350-1250℃时倒入测量样杯中,倒入铁水时样杯的熔液量不要太满,防止铁水溅出损坏碳硅分析仪测量接插件及补偿导线;此时千万别动铁水碳硅仪和样杯,否则会导致测量失败;几分钟碳硅分析仪测量自动完成,测量完待数据显示完成,立即取下样杯,保护测量接插件,防止接插件过度受热降低寿命。 南京麒麟科学仪器集团有限公司检测中心2018年12月14日
  • 视频回放|“生物药研发及质量控制”会议精彩集锦
    p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 2020年6月11日,仪器信息网召开了“生物药研发及质量控制”网络研讨会,会议为期一天,受到了广大医药行业从业人员的欢迎和认可。为方便更多生物制药领域的用户学习了解相关技术内容,现特将会议内容剪辑整理,点击 strong 报告主题 /strong 或 strong 报告图片 /strong 即可进入视频页面。 /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " a href=" https://www.instrument.com.cn/webinar/video_112814.html" target=" _blank" img style=" width: 550px height: 413px " src=" https://img1.17img.cn/17img/images/202006/uepic/5a6f11de-30a4-43db-b41b-086cdf6a0482.jpg" title=" 1梁远军.jpg" width=" 550" height=" 413" border=" 0" vspace=" 0" alt=" 1梁远军.jpg" / /a /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " 报告嘉宾:梁远军(北京普诺旺康医药科技有限公司)& nbsp & nbsp & nbsp /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " & nbsp 报告主题: a href=" https://www.instrument.com.cn/webinar/video_112814.html" target=" _blank" 《多肽注射剂一致性评价质控研究》 /a /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 多肽注射剂一般包括注射液和冻干制剂,由于多肽结构相对复杂,其工艺过程以及终产品的质量控制的特殊性尤为突出。本报告结合多肽原料内控、工艺过程等环节,探讨相应的质控技术。 /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " a href=" https://www.instrument.com.cn/webinar/video_112810.html" target=" _blank" img style=" width: 550px height: 413px " src=" https://img1.17img.cn/17img/images/202006/uepic/ba5c1c71-e381-401e-8f24-adfc02f0b64d.jpg" title=" 2黄文林.jpg" width=" 550" height=" 413" border=" 0" vspace=" 0" alt=" 2黄文林.jpg" / /a /p p style=" text-align: center " 报告嘉宾:黄文林(广州达博生物制品有限公司)& nbsp & nbsp & nbsp /p p style=" text-align: center " & nbsp 报告主题: a href=" https://www.instrument.com.cn/webinar/video_112810.html" target=" _blank" 《生物大分子药物及质量控制》 /a /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 真核细胞载体(腺病毒)研发,致力于为肿瘤病人提供高效、低毒的创新药物,在生物创新药物方面已形成了完善的药物创新开发支撑体系。 /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " a href=" https://www.instrument.com.cn/webinar/video_112803.html" target=" _blank" img style=" width: 550px height: 413px " src=" https://img1.17img.cn/17img/images/202006/uepic/4855ceaf-548a-4250-9577-dcf49f83c083.jpg" title=" 4史晋海.jpg" width=" 550" height=" 413" border=" 0" vspace=" 0" alt=" 4史晋海.jpg" / /a /p p style=" text-indent: 0em text-align: center " 报告嘉宾:史晋海(中国蛋白药物质量联盟)& nbsp /p p style=" text-indent: 0em text-align: center " & nbsp 报告主题: a href=" https://www.instrument.com.cn/webinar/video_112803.html" target=" _blank" 《生物药质量风险管理: 关键质量属性(CQA)究》 /a /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 关键质量属性(CQA)的评估确立是质量风险管理关键步骤。CQA评估的目的是鉴定出哪些质量属性在生产工艺设计中需要进行控制。系统性和科学性的进行CQA评估可以指导下一步生产工艺参数和原材料选择的进行,从而更好的制定生产工艺控制策略。CQA评估也是后续的生物药质量风险管理的基础。本文将从生物药产品的安全和有效性梳理质量风险管理和关键质量属性及其评估。 /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " a href=" https://www.instrument.com.cn/webinar/video_112808.html" target=" _blank" img style=" width: 550px height: 413px " src=" https://img1.17img.cn/17img/images/202006/uepic/f8997e0f-3d9a-4e84-b25f-63061a900f63.jpg" title=" 5乔怀耀.jpg" width=" 550" height=" 413" border=" 0" vspace=" 0" alt=" 5乔怀耀.jpg" / /a /p p style=" text-indent: 0em text-align: center " 报告嘉宾:乔怀耀(荃信生物医药 ) /p p style=" text-indent: 0em text-align: center " & nbsp 报告主题: a href=" https://www.instrument.com.cn/webinar/video_112808.html" target=" _blank" 《创新型抗体研发过程中的质量控制》 /a /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 使用本公司实例剖析在创新型抗体研发过程的质量控制侧重点,探讨QbD理念在药物研发过程中的应用。 /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " a href=" https://www.instrument.com.cn/webinar/video_112809.html" target=" _blank" img style=" width: 550px height: 413px " src=" https://img1.17img.cn/17img/images/202006/uepic/a3705898-37a8-4b98-9328-1df750f11427.jpg" title=" 6TSK.jpg" width=" 550" height=" 413" border=" 0" vspace=" 0" alt=" 6TSK.jpg" / /a /p p style=" text-align: center " 报告嘉宾:张琳(东曹生物)& nbsp /p p style=" text-align: center " & nbsp 报告主题: a href=" https://www.instrument.com.cn/webinar/video_112809.html" target=" _blank" 《TSKgel 色谱柱在生物药研发与质控分析中的应用 》 /a /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 随着以治疗性蛋白、多肽、核酸及疫苗等生物药的广泛应用,对此类药物的研发与品质管理工作的不断提出新的、更高的要求。近年来,东曹公司聚焦生物药分析需求,不断创新,推出系列TSKgel 色谱柱产品,这里通过一些具体实例数据,介绍这些色谱柱产品性能评价及在生物药研发与质控分析中一些突破性应用。 /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " a href=" https://www.instrument.com.cn/webinar/video_112807.html" target=" _blank" img style=" width: 550px height: 413px " src=" https://img1.17img.cn/17img/images/202006/uepic/2a8ec505-5a58-4fcc-a9bd-c650be4ed562.jpg" title=" 7安捷伦.jpg" width=" 550" height=" 413" border=" 0" vspace=" 0" alt=" 7安捷伦.jpg" / /a /p p style=" text-align: center " 报告嘉宾:张曼玉(安捷伦 )& nbsp & nbsp & nbsp & nbsp /p p style=" text-align: center " & nbsp 报告主题: a href=" https://www.instrument.com.cn/webinar/video_112807.html" target=" _blank" 《质谱技术应用于生物药物的生物分析》 /a /p p style=" text-indent: 2em " span style=" text-indent: 2em " 质谱技术的发展使得完整抗体的生物分析成为可能,科学家们无需为配体结合分析设计抗体,在完整蛋白的层次即可实现快速的生物分析,并同时监控抗体片段等降解产物,本次讲座将会介绍生物基质中高灵敏高通量的完整抗体定量分析。从AssayMAP Bravo自动化移液工作站提供的高度重现的样品前处理,液相方法的优化实现更好的重现性和质谱响应,到质谱灵敏度的提升和完整蛋白定量数据处理方法,一体化的解决方案实现了低至皮克级的灵敏度和超过3个数量级的动态范围。 /span /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " a href=" https://www.instrument.com.cn/webinar/video_112806.html" target=" _blank" img style=" width: 550px height: 413px " src=" https://img1.17img.cn/17img/images/202006/uepic/ae2d3fa7-0741-4610-9921-09a033573791.jpg" title=" 8cytiva.jpg" width=" 550" height=" 413" border=" 0" vspace=" 0" alt=" 8cytiva.jpg" / /a /p p style=" text-indent: 0em text-align: center " 报告嘉宾:张睿(Cytiva(原GE医疗生命科学事业部)) /p p style=" text-align: center text-indent: 0em " & nbsp 报告主题: a href=" https://www.instrument.com.cn/webinar/video_112806.html" target=" _blank" 《Biacore分子互作技术在生物药研发与质控中的应用》 /a /p p style=" text-align: left text-indent: 2em " span style=" text-indent: 2em " Biacore分子互作技术可以实时、无标记、定量地表征分子间相互作用,已经为超过4万篇文献发表和上百种大小分子药物上市提供了可靠的数据支持,并被中美日三国药典收录。Biacore在药物筛选、活性检测、浓度定量、质量控制等多个环节得到了广泛应用。本次讲座将为大家分享药典要求下Biacore技术在生物药研发与质量控制中的应用。 /span /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " a href=" https://www.instrument.com.cn/webinar/video_112804.html" target=" _blank" img style=" width: 550px height: 413px " src=" https://img1.17img.cn/17img/images/202006/uepic/a3bce5f7-0272-4ef3-8402-22d42e1fd1fd.jpg" title=" 9移液误差.jpg" width=" 550" height=" 413" border=" 0" vspace=" 0" alt=" 9移液误差.jpg" / /a /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " 报告嘉宾:周姝斐(普兰德 )& nbsp & nbsp & nbsp /p p br/ /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " & nbsp 报告主题: a href=" https://www.instrument.com.cn/webinar/video_112804.html" target=" _blank" 《移液过程中的误差控制》 /a /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 选择正确的移液产品对研发过程中移液误差的控制至关重要,本次在线讲座将针对研发过程中不同的移液需求介绍相应的移液产品使用注意事项及相关产品的校准方法。 /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em " a href=" https://www.instrument.com.cn/webinar/video_112812.html" target=" _blank" img style=" width: 550px height: 413px " src=" https://img1.17img.cn/17img/images/202006/uepic/64e95385-970e-49d3-ba94-4e2b96a6c398.jpg" title=" 11岛津.jpg" width=" 550" height=" 413" border=" 0" vspace=" 0" alt=" 11岛津.jpg" / /a /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center " 报告嘉宾:邵锴(岛津)& nbsp & nbsp & nbsp /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center " & nbsp 报告主题: a href=" https://www.instrument.com.cn/webinar/video_112812.html" target=" _blank" 《岛津色谱、质谱在生物药研发及质量控制中的应用》 /a /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " 良好的质量控制是生物药研发、生产的重要环节。生物药关键质量因素包括多个方面,有大小异质体分析、电荷异质性分析、糖型分析、一级结构和高级结构等,岛津的色谱、质谱、光谱等系列产品可以全方位助力生物药的研发及质量控制。 /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " a href=" https://www.instrument.com.cn/webinar/video_112813.html" target=" _blank" img style=" width: 550px height: 413px " src=" https://img1.17img.cn/17img/images/202006/uepic/c768715f-041c-49c6-8a00-366239067f4d.jpg" title=" 10点睛数据.jpg" width=" 550" height=" 413" border=" 0" vspace=" 0" alt=" 10点睛数据.jpg" / /a /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " 报告嘉宾:吴斌(点睛数据科技CTO/挪威Camo公司) /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " & nbsp 报告主题: a href=" https://www.instrument.com.cn/webinar/video_112813.html" target=" _blank" 《多变量工艺分析在生物制药中的应用》 /a /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " span style=" text-indent: 2em " 生物制药上游-生物发酵过程中,对于工艺质量控制影响着生物药品的质量和药效。发酵过程中,罐体内成份非常复杂,有多达上百种物质混合其中,需要对其中影响药品关键质量属性的生物化学成份和物理化学参数等进行监测和分析,才能控制好生物生长和代谢过程。而传统的监测方式需要开罐、消毒、取样、分离测试等操作,才能完成样品的检测。这不仅影响生物体生长、也有污染发酵罐的风险。而在光谱设备、传感器等在线监测方式则能无损且频率更高获取更充分的罐内相关数据,让我们更了解发酵过程,优化工艺控制策略。传统控制策略多数是基于单变量分析结果而制定的,但单个变量合格并不能保证生产出更优质的药品,需要采用多变量分析算法来保证最终产品符合优质产品的标准。因此我们研究的将温度、压力、粘度、电导率、pH,DO、O2、CO2、OUR、CER等理化参数和VCC、Glucose、Lactate、Glutamate、Glutamine、Ammonium等生化参数建立统计学模型,用于在线工艺偏差监测,既能及时找出原材料、生产工艺控制等问题,也能提升工艺质量,同时也能逐步建立起企业的核心竞争力。 /span /p p style=" text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " a href=" https://www.instrument.com.cn/webinar/video_112811.html" target=" _blank" img style=" width: 550px height: 413px " src=" https://img1.17img.cn/17img/images/202006/uepic/d7038d24-92b6-4f7e-bb1a-45a358669ba7.jpg" title=" 12厚泽.jpg" width=" 550" height=" 413" border=" 0" vspace=" 0" alt=" 12厚泽.jpg" / /a /p p style=" text-align: center " 报告嘉宾:吴姗(杭州厚泽生物) & nbsp & nbsp /p p style=" text-align: center " & nbsp 报告主题: a href=" https://www.instrument.com.cn/webinar/video_112811.html" target=" _blank" 《多Qsep毛细管电泳仪和INB-D200生物标志物分析仪在抗体药物研发质控中的应用》 /a /p p style=" text-indent: 2em " span style=" text-align: left text-indent: 2em " 抗体药物是抗体物质组成一种生物药,因其抗体特性,与靶抗原的结合具有非常高的特异性、有效性和安全性,被广泛用于肿瘤治疗、自身免疫疾病等重大疾病的治疗当中。在抗体药研发过程中,抗体的制备纯度、抗体的筛选以及与靶抗原结合效率等均是决定抗体药功效的相关因素,因此在研发过程中,质控是必不可少的。杭州厚泽生物科技有限公司代理的Qsep毛细管电泳仪和INB-D200生物标志物分析仪能够在检测抗体纯度和抗体筛选等过程中进行质控,辅助抗体药的研发。 /span /p p style=" text-indent: 0em text-align: center " br/ /p p style=" text-align: center" a href=" https://www.instrument.com.cn/webinar/video_112815.html" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/5aca9967-f090-4a96-af7a-08533f58a44c.jpg" title=" 13.jpg" alt=" 13.jpg" / /a /p p style=" text-align: center " 报告嘉宾:张彦华(霍尼韦尔)& nbsp & nbsp & nbsp /p p style=" text-align: center " & nbsp 报告主题: a href=" https://www.instrument.com.cn/webinar/video_112815.html" target=" _blank" 《霍尼韦尔研究性化学品- 制药和生物制药工作流程解决方案》 /a /p p style=" text-indent: 0em text-align: center " span style=" text-align: left text-indent: 2em " /span br/ /p p style=" text-indent: 2em " span style=" text-align: left text-indent: 2em " 点击链接观看全部“生物药研发及质量控制”网络会议视频: br/ a href=" https://www.instrument.com.cn/webinar/Video/Video/Collection/10566" target=" _blank" https://www.instrument.com.cn/webinar/Video/Video/Collection/10566 /a /span /p
  • 核磁、质谱等多种分析技术在中药质量控制中的应用
    p style=" margin-top: 10px line-height: 1.5em text-indent: 2em " 中药发展几千年,如今已在世界各地广泛使用。近年来,随着人们用药安全意识的普遍提升,中药质量标准不一致、临床安全性及有效性的不稳定性和不确定性越来越受到被行业内外诟病。而各种分析技术的快速发展,极大的推动了中药质量控制的进步。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 479px height: 319px " src=" https://img1.17img.cn/17img/images/201906/uepic/4911cd41-6d52-40c3-9a89-e2bfe9cd7bdd.jpg" title=" 微信截图_20190604225110.png" alt=" 微信截图_20190604225110.png" width=" 479" height=" 319" border=" 0" vspace=" 0" / /p p style=" margin-top: 10px line-height: 1.5em text-indent: 2em " 在上一篇文章 a href=" https://www.instrument.com.cn/news/20190531/486312.shtml" target=" _self" 《中药质量控制中的科学仪器——色谱、光谱篇》 /a 中,小编对中药质量控制中应用到的色谱和光谱技术及相关仪器进行了梳理盘点,本文中,将从核磁共振波谱技术、质谱及其联用技术和DNA分子标记技术等几种重要分析技术进行梳理。 /p p style=" margin-top: 10px line-height: 1.5em text-indent: 2em " strong span style=" color: rgb(255, 0, 0) " 中药质量控制之核磁共振波谱 /span /strong /p p style=" margin-top: 10px line-height: 1.5em text-indent: 2em " 核磁共振最主要的应用是通过物理方法测定化合物的分子结构,而中药有效性的物质基础研究是中药质量控制中的重要环节。利用核磁共振技术能够获得中药中有效成分的化学结构。 /p p style=" margin-top: 10px line-height: 1.5em text-indent: 2em " 除单独利用核磁共振技术,HPLC-NMR联用技术也被应用到中药质量控制中。通过该联用技术,能够实现色谱分离和波谱结构鉴定连续进行,避免了传统分析方法中,先分离纯化再进行鉴定从而浪费时间及人力物力的问题。 /p table border=" 0" cellspacing=" 0" cellpadding=" 0" width=" 556" style=" border-collapse:collapse" tbody tr style=" height:35px" class=" firstRow" td width=" 100" nowrap=" " style=" background: rgb(220, 230, 241) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 35" p style=" text-align:center vertical-align:middle" strong span style=" font-size:15px font-family:宋体 color:black" 技术类型 /span /strong strong /strong /p /td td width=" 140" nowrap=" " style=" background: rgb(220, 230, 241) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 35" p style=" text-align:center vertical-align:middle" strong span style=" font-size:15px font-family:宋体 color:black" 技术原理 /span /strong strong /strong /p /td td width=" 100" nowrap=" " style=" background: rgb(220, 230, 241) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 35" p style=" text-align:center vertical-align:middle" strong span style=" font-size:15px font-family:宋体 color:black" 应用方向 /span /strong strong /strong /p /td td width=" 215" nowrap=" " style=" background: rgb(220, 230, 241) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 35" p style=" text-align:center vertical-align:middle" strong span style=" font-size:15px font-family:宋体 color:black" 应用举例 /span /strong strong /strong /p /td /tr tr style=" height:144px" td width=" 100" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 144" p style=" text-align:center vertical-align:middle" a href=" https://www.instrument.com.cn/zc/43.html" target=" _self" span style=" font-size: 15px font-family: 宋体, SimSun " NMR技术 /span /a /p /td td width=" 140" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 144" p style=" text-align:left vertical-align:middle" span style=" font-family: 宋体, SimSun " span style=" font-size: 15px font-family: 宋体 " 通过化学位移值、谱峰多重性 /span span style=" font-family: 宋体, SimSun font-size: 15px " 、偶合常数值、谱峰相对强度和在各种二维谱及多维谱中呈现的相关峰,提供分子中原子的连接方式 & nbsp 、空间的相对取向等定性的结构信息。 /span /span /p /td td width=" 100" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 144" p style=" text-align:left vertical-align:middle" span style=" font-size:15px font-family:宋体" ( span 1 /span )结合其他分析手段如质谱对化合物进行定性分析 span br/ & nbsp /span ( span 2 /span ) span 1H /span 核磁共振波谱适用于定量分析 /span /p /td td width=" 215" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 144" p style=" text-align:left vertical-align:middle" span style=" font-size:15px font-family:宋体" ( span 1 /span )崖藤生物碱的碳谱和氢谱全归属 span br/ & nbsp /span ( span 2 /span )预测青蒿素分子的核磁共振碳谱和氢谱 span br/ & nbsp /span ( span 3 /span )根据有无原小檗碱型生物碱的特征峰,鉴别黄连与黄连伪品 /span /p /td /tr /tbody /table p style=" margin-top: 10px line-height: 1.5em text-indent: 2em " span style=" color: rgb(255, 0, 0) " strong 中药质量控制之质谱及其联用技术 /strong /span /p p style=" margin-top: 10px line-height: 1.5em text-indent: 2em " 质谱主要用于分析鉴定天然产物中提取的化合物,有机质谱能够给出有机化合物的分子量、分子式及碎片离子裂解方式和有机分子结构类型规律等信息。因质谱及其联用技术在物质化学结构鉴方面功能强大,被广泛应用于多种中药材的质量控制中。 /p table border=" 0" cellspacing=" 0" cellpadding=" 0" width=" 556" style=" border-collapse:collapse" tbody tr style=" height:36px" class=" firstRow" td width=" 96" nowrap=" " style=" background: rgb(220, 230, 241) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 36" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:宋体 color:black" 联用技术类型 /span /strong strong /strong /p /td td width=" 236" nowrap=" " style=" background: rgb(220, 230, 241) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 36" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:宋体 color:black" 技术简介 /span /strong strong /strong /p /td td width=" 224" nowrap=" " style=" background: rgb(220, 230, 241) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 36" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:宋体 color:black" 应用举例 /span /strong strong /strong /p /td /tr tr style=" height:124px" td width=" 96" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 124" p style=" text-align:center vertical-align:middle" span style=" font-size: 13px font-family: 宋体, SimSun " 质谱 /span /p /td td width=" 236" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 124" p style=" text-align:center vertical-align:middle" span style=" font-family: 宋体, SimSun " span style=" font-size: 13px font-family: 宋体 " 质谱法可提供分子质量和结构的信息 /span span style=" font-family: 宋体, SimSun font-size: 13px " ,定量测定可采用内标法或外标法 /span /span /p /td td width=" 224" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 124" p style=" text-align:center vertical-align:middle" span style=" font-size:13px font-family:宋体" ( span 1 /span )确定朝鲜淫羊藿分离组分的化学成分 span br/ & nbsp /span ( span 2 /span )通过比较炮制乌头与乌头质谱智文峰的差异,作为乌头类中药是否经炮制的判断 /span /p /td /tr tr style=" height:95px" td width=" 96" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 95" p style=" text-align:center vertical-align:middle" a href=" https://www.instrument.com.cn/zc/290.html" target=" _self" span style=" font-size:13px font-family:宋体" 气质联用 /span /a /p /td td width=" 236" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 95" p style=" text-align:center vertical-align:middle" span style=" font-size:13px font-family:宋体" 具有高灵敏度和强抗干扰能力,是分析鉴定具有挥发性成分的首选 /span /p /td td width=" 224" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 95" p style=" text-align:center vertical-align:middle" span style=" font-size:13px font-family:宋体" ( span 1 /span )冬虫夏草中挥发性成分鉴定 span br/ & nbsp /span ( span 2 /span )比较不同来源莪术中莪术醇等物质的含量 /span /p /td /tr tr style=" height:92px" td width=" 96" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 92" p style=" text-align:center vertical-align:middle" a href=" https://www.instrument.com.cn/zc/51.html" target=" _self" span style=" font-size:13px font-family:宋体" 液质联用 /span /a /p /td td width=" 236" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 92" p style=" text-align:center vertical-align:middle" span style=" font-size:13px font-family:宋体" 同事进行多成分检测,可通过保留时间、分子量和碎片等信息用于目标化合物鉴别 /span /p /td td width=" 224" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 92" p style=" text-align:center vertical-align:middle" span style=" font-size:13px font-family:宋体" ( span 1) /span 判断东北红豆杉及其伤愈组织粗提物中紫杉醇色谱峰归属 span br/ & nbsp /span ( span 2 /span )鉴定八味地黄方与人参汤共煎时产生的毒性物质 /span /p /td /tr tr style=" height:56px" td width=" 96" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 56" p style=" text-align:center vertical-align:middle" span style=" font-size:13px font-family:宋体" 毛细管电泳 span - /span 质朴联用 /span /p /td td width=" 236" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 56" p style=" text-align:center vertical-align:middle" span style=" font-size:13px font-family:宋体" 多数毛细管电泳操作模式可与质谱联用。选择接口时 /span span style=" font-size: 13px " , span style=" font-size: 13px font-family: 宋体, SimSun " 应注意毛细管电泳的低流速特点并使用挥发性缓冲液 /span /span /p /td td width=" 224" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 56" p style=" text-align:center vertical-align:middle" span style=" font-size:13px font-family:宋体" 粉防己甲醇提取物中的生物碱分离鉴定 /span /p /td /tr tr style=" height:81px" td width=" 96" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 81" p style=" text-align:center vertical-align:middle" span style=" font-size:13px font-family:宋体" 超临界流体色谱 /span span style=" font-size:13px font-family:& #39 Times New Roman& #39 ,serif" - /span span style=" font-size: 13px font-family: 宋体, SimSun " 质谱联用 /span /p /td td width=" 236" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 81" p style=" vertical-align:middle" span style=" font-size:13px font-family:宋体" 主要采用大气压化学离子化或电喷雾离子化接口。色谱流出物通过一个位于柱子和离子源之间的加热限 /span span style=" font-size: 13px font-family: 宋体, SimSun " 流器转变为气态,进入质谱仪分析 /span /p /td td width=" 224" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 81" p style=" text-align:center vertical-align:middle" span style=" font-size:13px font-family: 宋体" / /span /p /td /tr /tbody /table p style=" margin-top: 10px line-height: 1.5em text-indent: 2em " span style=" color: rgb(255, 0, 0) " strong 中药质量控制之DNA分子标记技术 /strong /span /p p style=" margin-top: 10px line-height: 1.5em text-indent: 2em " DNA分子标记技术可用来比较药材间DNA分子遗传多样性差异,从而鉴别药材基源、确定学明的方法。DNA指纹图谱技术在药材鉴别、GAP实施、道地药材研究、遗传育种和种植资源研究以及中成药质量控制等领域有重要价值和广阔的应用前景。 /p p style=" margin-top: 10px line-height: 1.5em text-indent: 2em " 目前已有研究人员利用DNA分子标记技术对不同地区的三七进行DNA指纹图谱的鉴别研究,根据其遗传特征的不同,鉴别不同地域的三七药材。此外,有研究人员利用此技术建立起了中药材鹿鞭的分子分类学鉴定试剂盒。 /p p style=" margin-top: 10px line-height: 1.5em text-indent: 2em " 除上述技术方法外,近年来有更多先进的分析方法也在被不断被发展应用,如超高效液相色谱、二维液相色谱、联合在线鉴定技术等等,在中药材真伪鉴别、成分分离鉴定、毒性物质检出等等方面,发挥重大作用。 /p p style=" margin-top: 10px line-height: 1.5em text-indent: 2em " 随着科学技术不断提升,相应的仪器设备更加精密、高效,色谱、质谱、光谱、核磁共振波谱及DNA分子标记等多种分离、分析、检测技术共同推动中药质量控制的发展,确保中药更好的履行维护人类健康的使命。 /p p style=" margin-top: 10px text-indent: 2em line-height: normal " span style=" font-size: 14px " 注:本文部分内容引自 /span /p p style=" margin-top: 10px text-indent: 2em line-height: normal " span style=" font-size: 14px " 1.& nbsp & nbsp 蒋庆峰, 金松子, 蔡振华,等. 现代分析技术在中药质量控制中的应用[J]. 现代仪器与医疗, 2007, 13(3):1-8. /span /p p style=" margin-top: 10px text-indent: 2em line-height: normal " span style=" font-size: 14px " 2.& nbsp & nbsp 马艳芹, 张蓉蓉, 房吉祥, et al. 现代分析技术在中药质量控制中的应用进展[J]. 首都医药, 2013(16):14-15. /span /p
  • 人用重组DNA制品质量控制技术指导原则
    p   一、引言 br/ /p p   由于分子遗传学、核酸化学及重组DNA(rDNA)技术的迅速发展,现已能够确定和获得许多天然活性蛋白的编码基因,将其插入表达载体或引入某种宿主细胞后,能有效地表达该基因产物,再经分离、纯化和检定,可得到用于预防和治疗某些人类疾病的制品,诸如现有的乙型肝炎疫苗、胰岛素、生长激素、干扰素等。 /p p   用不同于常规方法的rDNA技术生产的制品,是近年来出现的新产品,评价其安全性和有效性亦不同于常规方法。这一领域中的知识和技术还在不断发展,为了有利于这类制品在我国的研究和发展,并为这类制品的审评提供依据,有必要制定一个原则性指导文件,以保证在人群中试验或应用时安全有效。 /p p   本“人用重组DNA制品质量控制技术指导原则”(以下简称《指导原则》)不可能面面俱到,可能有许多专门技术问题会出现,对于这类问题或某一特定制品,则应视具体问题具体研究决定。本《指导原则》亦将随科学技术发展和经验积累而逐步完善。 /p p   二、总则 /p p   (一)本《指导原则》适用于rDNA技术生产并在人体内应用的蛋白质、肽类制品。 /p p   (二)凡属与一般生物制品有关的质量控制,均按现行版《中国药典》有关规定执行。有关生产设施的要求应参照国家药品监督管理局《药品生产质量管理规范》执行。 /p p   三、质量控制要求 /p p   (一)原材料的控制 /p p   1.表达载体和宿主细胞 /p p   应提供有关表达载体详细资料,包括基因的来源、克隆和鉴定,表达载体的构建、结构和遗传特性。应说明载体组成各部分的来源和功能,如复制子和启动子来源,或抗生素抗性标志物。提供至少包括构建中所用位点的酶切图谱。应提供宿主细胞的资料,包括细胞株(系)名称、来源、传代历史、检定结果及基本生物学特性等。 /p p   应详细说明载体引入宿主细胞的方法及载体在宿主细胞内的状态(是否整合到染色体内)及拷贝数。应提供宿主和载体结合后的遗传稳定性资料。 /p p   2.克隆基因的序列 /p p   应提供插入基因和表达载体两侧端控制区的核苷酸序列。所有与表达有关的序列均应详细叙述。 /p p   3.表达 /p p   应详细叙述在生产过程中,启动和控制克隆基因在宿主细胞中的表达所采用的方法及表达水平。 /p p   4.原辅料 /p p   原辅料应按照国家药品监督管理局有关规定执行。动物源性原料的使用应提供来源及质控检测资料 发酵用培养基不能添加β内酰胺类抗生素。 /p p   (二)生产的控制 /p p   1.主细胞库(MASTERCELLBANK) /p p   rDNA制品的生产应采用种子批(SEEDLOT)系统。从已建立的主细胞库中,再进一步建立生产细胞库(WCB)。 /p p   含表达载体的宿主细胞应经过克隆而建立主细胞库。在此过程中,在同一实验室工作区内,不得同时操作两种不同细胞(菌种) 一个工作人员亦不得同时操作两种不同细胞或菌种。 /p p   应详细记述种子材料的来源、方式、保存及预计使用寿命。应提供在保存和复苏条件下宿主载体表达系统的稳定性证据。采用新的种子批时,应重新作全面检定。 /p p   真核细胞用于生产时,细胞的鉴别标志,如特异性同功酶或免疫学或遗传学特征,对鉴别所建立的种子是有用的。有关所用传代细胞的致癌性应有详细报告。如采用微生物培养物为种子,则应叙述其特异表型特征。 /p p   一般情况下,在原始种子阶段应确证克隆基因的DNA序列。但在某些情况下,例如传代细胞基因组中插入多拷贝基因。在此阶段不适合对克隆基因作DNA序列分析。在此情况下,可采用总细胞DNA的杂交印染分析,或作mRNA的序列分析。对最终产品的特征鉴定应特别注意。 /p p   种子批不应含有外源致癌因子,不应含有感染性外源因子,如细菌、支原体、真菌及病毒。 /p p   有些细胞株含有某些内源病毒,例如逆转录病毒,且不易除去。但当已确知在原始细胞库或载体部分中污染此类特定内源因子时,则应能证明在生产纯化过程可使之灭活或清除。 /p p   2.有限代次生产 /p p   用于培养和诱导基因产物的材料和方法应有详细资料。对培养过程及收获时,应有敏感的检测措施控制微生物污染。 /p p   应提供培养生长浓度和产量恒定性方面的数据,并应确立废弃一批培养物的指标。根据宿主细胞/载体系统的稳定性资料,确定在生产过程中允许的最高细胞倍增数或传代代次,并应提供最适培养条件的详细资料。 /p p   在生产周期结束时,应监测宿主细胞/载体系统的特性,例如质粒拷贝数、宿主细胞中表达载体存留程度、含插入基因的载体的酶切图谱。一般情况下,用来自一个原始细胞库的全量培养物进行监测,必要时应做一次目的基因的核苷酸序列分析。 /p p   3.连续培养生产 /p p   基本要求同2项。 /p p   应提供经长期培养后所表达基因的分子完整性资料,以及宿主细胞的表型和基因型特征。每批培养的产量变化应在规定范围内。对可以进行后处理及应废弃的培养物,应确定指标。从培养开始至收获,应有敏感的检查微生物污染的措施。 /p p   根据宿主/载体稳定性及表达产物的恒定性资料,应规定连续培养的时间。如属长时间连续培养,应根据宿主/载体稳定性及产物特性的资料,在不同间隔时间作全面检定。 /p p   4.纯化 /p p   对于收获、分离和纯化的方法应详细记述,应特别注意污染病毒、核酸以及有害抗原性物质的去除。 /p p   如采用亲和层析技术,例如用单克隆抗体,应有检测可能污染此类外源性物质的方法,不应含有可测出的异种免疫球蛋白。 /p p   对整个纯化工艺应进行全面研究,包括能够去除宿主细胞蛋白、核酸、糖、病毒或其它杂质以及在纯化过程中加入的有害的化学物质等。 /p p   关于纯度的要求可视制品的用途和用法而确定,例如,仅使用一次或需反复多次使用 用于健康人群或用于重症患者 对纯度可有不同程度要求。 /p p   (三)最终产品的控制 /p p   应建立有关产品的鉴别、纯度、稳定性和活性等方面的试验方法。检测的必要性和纯度要求取决于多种因素:产品性质和用途、生产和纯化工艺及生产工艺的经验。一般说来下列试验对控制产品质量是可以采用的。新的分析技术及对现有技术的改进正在不断进行,适当时应使用这些新的技术。 /p p   1.物理化学鉴定 /p p   (1)氨基酸组成 /p p   使用各种水解法和分析手段测定氨基酸的组成,并与目的蛋白基因序列推导的氨基酸组成或天然异构体比较。如需要时应考虑分子量的大小。多数情况下,氨基酸组成分析对肽段和小蛋白可提供有价值的结构资料,但对大蛋白一般意义较小。在多数情况下,氨基酸定量分析数据可用于确定蛋白含量。 /p p   (2)氨基酸末端序列 /p p   氨基酸末端分析用于鉴别N-端和C-端氨基酸的性质和同质性。若发现目的产品的末端氨基酸发生改变时,应使用适当的分析手段判定变异体的相应变异数量。应将这些氨基酸末端序列与来自目的产品基因序列推导的氨基酸末端序列进行比较。 /p p   (3)肽谱 /p p   应用合适的酶或化学试剂使所选的产品片段产生不连续多肽,应用HPLC或其他适当的方法分析该多肽片段。应尽量应用氨基酸组成分析技术,N-末端测序或质谱法鉴别多肽片段。对批签发来说,经验证的肽谱分析经常是确证目的产品结构/鉴别的适当方法。 /p p   (4)巯基和二硫键 /p p   如果依据目的产品基因序列存在半胱氨酸残基时,应尽可能确定巯基和/或二硫键的数量和位置。使用方法包括肽谱分析(还原和非还原条件下)、质谱测定法或其他适当的方法。 /p p   (5)碳水化合物结构 /p p   应测定糖蛋白中碳水化合物含量(中性糖、氨基糖、唾液酸)。此外尽可能分析碳水化合物的结构、寡糖形态(长链状)和多肽的糖基化位点。 /p p   (6)分子量 /p p   应用分子筛层析法、SDS-PAGE(还原和/或非还原条件下)、质谱测定法、和/或其他适当技术测定分子量。 /p p   (7)等电点 /p p   通过等电聚焦电泳或其他适当的方法测定。 /p p   (8)消光系数(或克分子吸光度) /p p   多数情况下,可取目的产品于UV/可见光波长处测定消光系数(或克分子吸光度)。消光系数的测定为使用UV/可见光或分光光度计检测已知蛋白含量的溶液,蛋白含量应用氨基酸组成分析技术或定氮法等方法测定。 /p p   (9)电泳图型 /p p   应用PAGE电泳、等电聚焦、SDS-PAGE电泳、免疫印迹、毛细管电泳法或其他适当的方法,获得目的产品/药物的一致性,同一性和纯度的电泳图谱和数据。 /p p   (10)液相层析图谱 /p p   应用分子筛层析、反相液相层析、离子交换液相层析、亲和层析或其他适当方法,获得目的产品/药物的一致性、同一性和纯度的层析图谱和数据。 /p p   (11)光谱分析 /p p   适当时,应用紫外或可见光吸收光谱法测定,使用圆二色谱、核磁共振(NMR)、或其他适当的方法检测制品的高级结构。 /p p   2.杂质检测 /p p   (1)工艺相关杂质 /p p   工艺相关杂质来源于生产工艺,可分三大类:来源于细胞基质、培养基和下游工艺。 /p p   ①来源于细胞基质的杂质包括源于宿主生物体的蛋白/多肽 核酸(宿主细胞/载体/总DNA) 多糖及病毒。对于宿主细胞蛋白,一般应用能检测出较宽范围蛋白杂质的灵敏的免疫检测方法。应用不含目的基因的生物体粗提物,即不含产品编码基因的生产用细胞,制备上述试验使用的多克隆抗体。可通过对产品的直接分析方法(如杂交技术法)检测宿主细胞的DNA水平,和/或通过标记实验(实验室规模)检测证实通过纯化工艺能去除核酸。对于有意导入的病毒,应验证生产工艺中去除/灭活病毒的能力。 /p p   ②来源于培养基的杂质包括诱导剂(多核苷酸,病毒)、抗生素、血清及其他培养基组分。 /p p   ③来源于下游工艺产生的杂质包括酶、化学/生化处理试剂(如溴化氰、胍、氧化剂和还原剂)、无机盐(如重金属、砷、非有色金属离子)、溶剂、载体/配体(如单克隆抗体),及其他可滤过的物质。 /p p   (2)产品相关杂质 /p p   以下为最常见的目的产品的分子变异体,并列出了相应的检测方法: /p p   ①化学修饰类型:应考虑脱酰胺、异构化、错配S-S连接和氧化形式的分离和鉴别。对这些变异体的分离和鉴别,可应用层析法和/或电泳法(如HPLC、毛细管电泳、质谱法、圆二色谱)。 /p p   ②降解物和聚合体:聚合体包括二聚体和多聚体:可用分子筛层析法(如SE-HPLC)进行定量 降解物:应建立降解物的判定标准,并对稳定性试验产生的降解产物进行监测。 /p p   3.生物学测定 /p p   (1)鉴别试验 /p p   应用免疫印迹法,或者在可能情况下,应用参考品将rDNA制品与天然产品通过生物学比较试验,确定其与天然产品是一致的。 /p p   (2)效价测定 /p p   采用国际或国家参考品,或经过国家检定机构认可的参考品,以体内或体外法测定制品的生物学活性,并标明其活性单位。 /p p   (3)特异比活性测定 /p p   在测定生物学活性的基础上,对有些制品还应用适当方法测定主药蛋白含量,测定其特异比活性,以活性单位/重量表示。 /p p   (4)热原质试验 /p p   应采用家兔法或鲎试验法(LAL)作热原质检测,控制标准可参照天然制品的要求。 /p p   (5)无菌试验 /p p   参照现行版《中国药典》有关规定进行,应证实最终制品无细菌污染。 /p p   (6)抗原性物质检查 /p p   必要时,如制品属大剂量反复使用者,应测定最终制品中可能存在的抗原性物质,如宿主细胞、亚细胞组分及培养基成份等。患者反复接受大剂量的这类制品时,应密切监测由这些抗原可能产生的抗体或变态反应。 /p p   (7)异常毒性试验 /p p   可参照现行版《中国药典》有关规定进行。 /p p   4.其他 /p p   根据产品剂型,应有外观(如固体、液体、色泽、澄明度等方面的描述)、水分、PH值、装量等方面的规定,可参照现行版《中国药典》相关规定执行。 /p p   四、临床前安全性评价 /p p   临床前安全性试验的目的主要是确定新制品是否会在人体引起未能预料的不良反应。但是,用于一般化学药物的传统安全性或毒性试验对rDNA产品不一定适用,用传统毒性试验来评价rDNA产品往往有困难,并受多种因素的影响。例如,某些蛋白质,如干扰素,具有高度种属特异性,这种人的蛋白质对人的药理学活性远高于对动物的活性,而且人的蛋白质氨基酸序列,常常与来自其它种系的蛋白质不同,例如糖基就不一样。因而由基因工程技术所制备的蛋白质或肽类往往会在人体以外的其它宿主中产生免疫应答,其生物学效应有所改变,并可能因形成免疫复合物而导致有毒性反应,而这样产生的毒性反应与人体安全性显然无关。 /p p   另外,由于产品效价、生产工艺或者产品稳定性等要求,对产品进行修饰或者改构,应提供与未修饰或者改构产品比较的研究资料。以简化生产工艺为目的在产品中引入的额外多肽片段如His-tag,在最终产品中应尽可能去除。 /p p   综上所述,对rDNA产品的临床前安全性试验要求,难以一概而论,应采取较为灵活的处置方法。除了一般生物制品的毒性试验要求之外,其它如长期毒性试验、药代动力学试验、药理学试验、毒理学试验,以及致畸和致突变等试验,应根据制品性质,与国家检定机构及药品审评中心商定所需进行的试验项目和方法,以及判定标准。 /p
  • 中国食品检验检测与质量控制高峰论坛日程安排
    中国食品检验检测与质量控制高峰论坛日程安排主办单位河南省科学技术协会联合承办河南省食品科学技术学会河南省食品检验研究院食品生产与安全河南省协同创新中心河南省冷链食品质量安全控制重点实验室河南省食品安全检测产业技术创新战略联盟世宏伟业(厦门)展览有限公司协办单位中国食品药品企业质量安全促进会区块链专业委员会国家市场监管重点实验室(食品安全快速检测与智慧监管技术)国家轻工业食品质量监督检测郑州站河南省食品工业科学研究所有限公司河南省中食产业研究咨询有限公司化工仪器网CFIQC2022 中国食品检验检测与质量控制高峰论坛时间:2022年3月19日-20日(18日报到) 地点:郑州光华大酒店 初步日程安排表大会开幕式---主论坛(全天)2022年3月19日上午 地点:光华大酒店3楼 宇宙厅主持人:待定09:00-09:20开幕式:1、主持人介绍出席论坛的院士和领导 2、 国家、省、市市场局相关领导讲话(待定) 3、主办单位领导致辞09:20-09:45报告题目:报告嘉宾:河南省市场监督管理局食品生产安全监管处 吴祖兴处长09:45-10:10报告题目:食品安全病原菌基因组溯源报告嘉宾:军事医学科学院微生物流行病研究所 杨瑞馥研究员10:10-10:35报告题目:待定报告嘉宾:安捷伦科技(中国)有限公司技术专家10:35-11:00报告题目:待定报告嘉宾:河南省食品检验研究院 秦廷瑞院长11:00-11:25报告题目:报告嘉宾:知名仪器厂商技术专家11:25-11:50报告题目:食品过敏原免疫学检测的风险与挑战报告嘉宾:中国海洋大学食品科学与工程学院 李振兴教授12:00-13:30 午餐及参观展览2022年3月19日下午 地点:光华大酒店3楼 宇宙厅主持人:待定13:30-13:55报告题目:数学分离与食品体系多组分快速精准定量报告嘉宾:湖南大学化学化工学院 吴海龙教授13:55-14:20报告题目:新时代食品类专业实验与实践“产学合作,协同育人”的探索 报告嘉宾:莱帕克(北京)科技有限公司 刘静阳市场执行总经理14:20-14:45报告题目:《食品安全国家标准 采样和检样处理规程》修订进展报告嘉宾:福建省疾病预防控制中心 马群飞主任技师14:45-15:10报告题目:待定报告嘉宾:澳优乳业(中国)有限公司 储晓刚研究员15:10-15:40茶歇及参观展览15:40-16:05报告题目:我国食品安全抽检检测的质量控制报告嘉宾:中国计量科学研究院 张庆合研究员16:05-16:30报告题目:待定报告嘉宾:河南想念食品股份有限公司 孙君庚董事长16:30-16:55报告题目:食品危害物检测与控制新方法研究报告嘉宾:江南大学食品学院副院长 王周平教授16:55-17:20报告题目:高质量发展与检验检测报告嘉宾:漯河市市场监督管理局四级高级主办、食品安全生产监管科科长 王文甫科长专题一:拉曼光谱技术在食品检测的应用2022年3月20日上午 地点:光华大酒店3楼 主持人:待定09:00-09:25报告题目:待定报告嘉宾:苏州大学材料与化学化工学部 邓安平教授09:25-09:50报告题目:等离激元拉曼光谱技术在食品安全快检领域的应用与发展报告嘉宾:嘉庚创新实验室/厦门市普识纳米科技有限公司董事长 田景华研究员09:50-10:15报告题目:表面增强拉曼光谱技术在食品领域应用展望报告嘉宾:上海师范大学化学与材料科学学院 杨海峰教授10:15-10:45茶歇及参观展览10:45-11:10报告题目:表面增强拉曼技术在食品安全中的应用报告嘉宾:上海海洋大学 赖克强教授11:10-11:35报告题目:待定报告嘉宾:仪器厂商报告邀约中11:35-12:00报告题目:待定报告嘉宾:知名专家报告邀约中专题二:食品微生物检验与控制技术2022年3月20日上午 地点:光华大酒店3楼 主持人:待定09:00-09:25报告题目:食品微生物风险数据分析与建模平台研发报告嘉宾:上海理工大学 董庆利教授09:25-09:50报告题目:报告嘉宾:仪器厂商报告邀约中09:50-10:15报告题目:MALDI-TOF-MS原理及在微生物检验中的应用报告嘉宾:河南省疾病预防控制中心 廖兴广主任技师10:15-10:45茶歇及参观展览10:45-11:10报告题目:报告嘉宾:食品生产与安全河南省协同创新中心办公室主任 孙新城副教授11:10-11:35报告题目:动物食品中产气荚膜梭菌的威胁与控制策略报告嘉宾:江苏省农业科学院农产品质量安全与营养研究所 张辉研究员11:35-12:00报告题目:食源性微生物活但不可培养(VBNC)状态的快速检测与安全控制报告嘉宾:华南理工大学 徐振波副教授专题三:食品及农产品快速检测技术进展2022年3月20日上午 地点:光华大酒店3楼 主持人:待定09:00-09:25报告题目:微流控技术在肉源真伪鉴定中的应用报告嘉宾:暨南大学食品安全与营养研究院 石磊教授09:25-09:50报告题目:报告嘉宾:仪器厂商报告邀约中09:50-10:15报告题目:金刚烷胺的快速检测及应用报告嘉宾:南昌大学食品科学与技术国家重点实验室 赖卫华教授10:15-10:45茶歇及参观展览10:45-11:10报告题目:功能核酸食品安全生物检测新技术报告嘉宾:中国农业大学 许文涛教授11:10-11:35报告题目:报告嘉宾:仪器厂商报告邀约中11:35-12:00报告题目:农产/食品中有毒有害物光/电化学检测新技术新方法研究进展报告嘉宾:江苏大学 王坤教授专题四:农兽药残留检测技术2022年3月20日上午 地点:光华大酒店3楼 主持人:待定09:00-09:25报告题目:国内外农药残留风险评估与控制技术报告嘉宾:中国农业大学 潘灿平教授09:25-09:50报告题目:报告嘉宾:安捷伦科技(中国)有限公司技术专家09:50-10:15报告题目:我国动物性食品中兽药残留标准现状与发展趋势报告嘉宾:中国兽医药品监察所 孙雷研究员10:15-10:45报告题目:串联质谱技术在农产品农药残留检测中的应用与质量控制关键点报告嘉宾:农业农村部环境保护科研监测所 王璐副研究员10:45-11:10报告题目:基于改良QuEChERS方法的茶叶中农残检测方法标准研究与验证报告嘉宾:中国标准化研究院 兰韬副研究员11:10-11:35报告题目:弹性多孔基质净化材料用于液质联用检测农兽药多残留研究报告嘉宾:郑州轻工业大学 季宝成讲师11:35-12:00报告题目:水产食品药物残留色谱质谱检测中基质效应的来源及消除途径研究报告嘉宾:中国水产科学研究院 李晋成副研究员专题五:生物毒素检测与防控技术2022年3月20日上午 地点:光华大酒店3楼 主持人:待定09:00-09:25报告题目:食品和饲料真菌毒素生物脱毒报告嘉宾:佛山市科学技术学院 刘阳教授09:25-09:50报告题目:报告嘉宾:仪器厂商报告邀约中09:50-10:15报告题目:代谢组学技术在粮油产品风险评估中的应用报告嘉宾:河南省农业科学院农业质量标准与检测技术研究所 刘继红研究员10:15-10:45茶歇及参观展览10:45-11:10报告题目:食品中生物毒素及其检测技术报告嘉宾:国家粮食和物资储备局科学研究院 谢刚研究员11:10-11:35报告题目:报告嘉宾:仪器厂商报告邀约中11:35-12:00报告题目:真菌毒素检测质量控制与标准物质报告嘉宾:中国计量科学研究院 李秀琴研究员专题六:食品真实性与溯源技术2022年3月20日下午 地点:光华大酒店3楼 主持人:待定13:30-13:55报告题目:基于DNA的食品掺假定量分析技术与应用报告嘉宾:中国农业科学院农业质量标准与检测技术研究所 陈爱亮研究员13:55-14:20报告题目:报告嘉宾:仪器厂商报告邀约中14:20-14:45报告题目:梯型熔解温度等温扩增技术在食品检测中的应用报告嘉宾:许昌学院食品与药学院 王德国教授14:45-15:15茶歇及参观展览15:15-15:40报告题目:基于组学的食品真实性鉴伪研究进展报告嘉宾:中国检验检疫科学研究院 张九凯副研究员15:40-16:05报告题目:报告嘉宾:仪器厂商报告邀约中16:05-16:30报告题目:六种家畜乳氨基酸指纹聚类分析报告嘉宾:内蒙古农业大学食品科学与工程学院食品质量与安全系 郭军教授专题七:食品实验室质量控制与管理2022年3月20日下午 地点:光华大酒店3楼 主持人:待定13:30-13:55报告题目:食品实验室检测质量风险分析与管理报告嘉宾:郑州海关技术中心 刘亚风主任13:55-14:20报告题目:报告嘉宾:北京诺码标准技术有限公司14:20-14:45报告题目:速冻食品安全控制报告嘉宾:三全食品股份有限公司技术中心资深经理 朱香杰高级工程师14:45-15:15茶歇及参观展览15:15-15:40报告题目:待定报告嘉宾:知名仪器厂商技术专家15:40-16:05报告题目:冷链食品安全管控报告嘉宾:思念食品有限公司 宋会玲生产质量副总16:05-16:30报告题目:报告嘉宾:江南大学食品学院 钱和教授专题八:样品前处理技术2022年3月20日下午 地点:光华大酒店3楼 主持人:待定13:30-13:55报告题目:基于纳米材料的固相萃取技术在食品样品前处理中的应用报告嘉宾:河南大学 卢明华教授13:55-14:20报告题目:报告嘉宾:仪器厂商报告拟邀中14:20-14:45报告题目:基于花粉固相萃取的食品分析研究报告嘉宾:武汉大学化学与分子科学学院 余琼卫副教授14:45-15:15茶歇及参观展览15:15-15:40报告题目:报告嘉宾:南京海关动植物与食品检测中心 沈伟健高级工程师15:40-16:05报告题目:基于多功能净化柱的牛奶中多种农药的快速前处理技术研究报告嘉宾:中国农业大学 马永强教授16:05-16:30报告题目:基于放生抗体技术的食品中污染物残留样品前处理方法的建立与应用报告嘉宾:齐鲁工业大学食品科学与工程学院 何金兴副教授专题九:第三方检测经验介绍2022年3月20日下午 地点:光华大酒店3楼 主持人:待定13:30-13:55报告题目:河南省第三方食品检测市场发展状况报告嘉宾:河南省产品质量监督检验院 魏法山高级工程师13:55-14:20报告题目:第三方检测技术服务助力食品安全风险防范报告嘉宾:华测检测认证集团股份有限公司 李俊超高级工程师/高级经济师14:20-14:45报告题目:报告嘉宾:河南国康检测技术有限公司 李洪政总经理注:详细日程以现场公布为准展位安排、参会报名:联系人:王 海 15359318944(微信同号) 联系人:钟老师 13123396203(微信同号) 邮箱:1565336495@qq.com 网址:www.cfiqc.cn
  • “第二届中药分析与质量控制”网络会议全日程!
    中药是中华民族的文化瑰宝,凝聚了中国人民几千年的博大智慧。在我国加快推进中医药现代化、产业化过程中,进一步强化质量监管、完善标准体系、借助现代科技的手段激活中医药的特色和优势均显得格外重要。 为了分享中药分析与质量控制领域的最新进展,探讨分析技术在中药领域的应用现状及趋势,满足广大相关从业人员对知识分享学习的需求,自2020年起,仪器信息网联合中国医药生物技术协会药物分析技术分会开始举办“中药分析与质量控制网络会议”,旨在为中药分析及质量控制专家和厂商提供更优质、有效的交流平台,为促进我国中药分析及质量控制相关领域的发展贡献一份力量。点击图片报名2021年,第二届中药分析与质量控制网络会议将于8月18-20日召开。本次会议由中国医药生物技术协会药物分析技术分会、仪器信息网联合主办,将围绕当下中药分析与质量控制领域的最新的成果,邀请业内知名专家学者做精彩报告,会议将在线上进行,免费向听众开放报名。主办单位 中国医药生物技术协会药物分析技术分会 仪器信息网会议主席 罗国安分会场主席 梁琼麟 季申 白钢 孟宪生 谢媛媛会议报告方式 网络在线报告会议时间 2021年8月18-20日参会报名: 免费报名参会会议网址 :https://www.instrument.com.cn/webinar/meetings/tcm2021/报告日程(暂定 以官网日程为准)8月18日 “中药分析新技术、新方法”分会场时间报告专家单位报告题目8:30-9:00 李景虹 院士 清华大学 单细胞分析化学9:00-9:30 罗国安 教授 清华大学 医药研究新模型——类器官和肿瘤类器官9:30-10:00 张艳海 安捷伦 “提质增效”—安捷伦液相色谱技术在中药质量评价中的最新应用10:00-10:30 贺浪冲 教授 西安交通大学 抗过敏性疾病候选药物筛选发现10:30-11:00 郝海平 教授 中国药科大学Metabolic and chemoproteomic insights into target identification11:00-11:30 王伽伯 教授 首都医科大学 基于代谢组学的药物性肝损伤的生物标志物研究11:30-12:00 曾苏 教授 浙江大学 中药代谢和转运分析8月18日 青年论坛14:00-14:20 葛广波 研究员 上海中医药大学 源于中药的丝氨酸水解酶抑制剂的高效发现14:20-14:40 陈啸飞 副教授 海军军医大学 新型生物色谱固定相制备及应用研究14:40-15:00 待更新 科哲 待更新15:00-15:20 解笑瑜 副教授 西安交通大学 基于共价固定化的中药活性成分细胞膜仿生亲和识别研究15:20-15:40 宋月林 研究员 北京中医药大学 不依赖于对照品的中药化学成分定量分析15:40-16:00 艾晓妮 博士 北京大学 基于类器官芯片的中药分析新方法16:00-16:20 吴彩胜 副教授 厦门大学 基于体内视角高效筛选中药活性成分的难点及其分析策略研发16:20-16:40 黄鸣清 教授 福建中医药大学 畲药红豆树药效物质与质量评价研究16:40-17:00 黄寅 副教授 中国药科大学 黄芪等级标志物及减轻阿霉素心脏毒性的作用机制研究17:00-17:20 罗奇 副教授 南方医科大学 灵芝杂萜的定向挖掘及其生物活性评价8月19日 “中药药效物质基础及其作用机理研究”分会场9:00-9:30 朱晓新 研究员 中国中医研究院中药研究所 基于炎性反应的参莲方抗AS研究9:30-10:00 程永现 教授 深圳大学 “臆想”主旋律与中药成分的生物学意义挖掘10:00-10:30 张艳军 教授 天津中医药大学 杜仲方防治PD药效物质及作用机制研究10:30-11:00 张铁军 研究员 天津药物研究院 中药大品种药效物质基础及作用机理研究技术路径11:00-11:30 侯小涛 教授 广西中医药大学 特色瑶药药效物质基础研究及产品开发11:30-12:00 白钢 教授 南开大学 速效救心丸改善动脉粥样硬化的药效物质基础和作用机制研究8月19日 “中药质量标准体系研究”分会场14:00-14:30 肖小河 研究员 解放军总医院肝病医学部/全军中医药研究所 研究员 中药质量精准评控策略和方法14:30-15:00 杨洪军 研究员 中国中医科学院医学实验中心 基于整合策略的中药复杂作用解析15:00-15:30 刘兴国 赛默飞 赛默飞vanquish液相在中药质量控制中的应用15:30-16:00 路金才 教授 沈阳药科大学 林下山参药效物质基础及质量评价研究16:00-16:30 姜啸龙 岛津GC-MS/MS在中药材农药残留检测中的应用16:30-17:00 谭睿 教授 西南交通大学 基于干细胞的中药微量活性成分筛选方法和协调治疗体系的建立17:00-17:30 孟宪生 教授 辽宁中医药大学 基于“谱-效”色卡可视化技术的中药复方质量控制方法研究8月20日 “中药创新药物”分会场8:30-9:00 唐健元 教授 成都中医药大学附属医院 监管争议与药物创新9:00-9:30 代云桃 研究员 中国中医科学院中药研究所 经典名方开发案例解析9:30-10:00 待更新 岛津 待定10:00-10:30 王淑美 教授 广东药科大学 中西医结合背景下1.1类中药新药脑脉通颗粒的研究与开发10:30-11:00 彭端 沃特世 沃特世消耗品技术助力中药质量与安全11:00-11:30 刘舒 副研究员 中国科学院长春应用化学研究所 经典名方“厚朴温中汤”组方确定、化学成分分析及质量标准研究11:30-12:00 陈钟 执行总裁 神威药业集团有限公司 中药配方颗粒质量控制与标准研究和产业化8月20日 “中药风险物质分析及控制”分会场13:30-14:00 季申 主任药师 上海市食品药品检验研究院 实现中药全产业链安全性控制的体系构建14:00-14:30 胡青 主任药师 上海市食品药品检验研究院 中药和食品中非法添加化学药品的发现和对策14:30-15:00 郑悦 曼哈格检测技术股份有限公司 中药农残、重金属等有害物质残留分析标准物质的研制与使用注意事项15:00-15:30 苗水 副主任药师 上海市食品药品检验研究院 中药中农药残留综合防控技术平台的建立及应用15:30-16:00 王少敏 副主任药师 上海市食品药品检验研究院 中药全产业链中真菌毒素防控体系的研究及解决思路16:00-16:30 待更新 睿科 待更新16:30-17:00 李丽敏 主任药师 上海市食品药品检验研究院 中药中重金属及有害元素控制关键技术的建立及展望17:00-17:30 诸寅副研究员 浙江清华长三角研究院 中药材中典型污染物的风险评估及限量制订方法
  • PerkinElmer中药分析与质量控制应用报告会邀请函
    由于中药的种类繁多、所涉及的检测项目和检测手段也很广,使用有效、科学的方法实现中药、中成药、中药材的质量控制和原料产地的鉴别是药品生产企业非常关心的课题。美国PerkinElmer公司作为一家全球领先的科学仪器制造公司可以提供从原子光谱、分子光谱、色谱等多种仪器与检测手段,帮助中药生产企业实现中药中重金属有害元素、营养元素、中药指纹谱图、制剂产品的溶剂残留、中药关键组分的定量分析等。 7月9日PerkinElmer已在吉林通化成功举办了一届中药分析仪的技术研讨会,接下来还将分别在哈尔滨、广州和成都进行巡回研讨会。 为保证会务工作的顺利进行,请务必点击报名及填写并提交“报名回执”。凡报名8月3日哈尔滨的报告会,请在7月30日中午前提交,以便我们为您保留位置并安排会议相关事宜。谢谢! 本次应用报告会,美国PerkinElmer公司特邀在中药分析领域潜心研究近十年的红外光谱专家 — 清华大学分析测试中心的孙素琴教授一同为我们介绍红外指纹图谱技术在中药生药材、饮片、配方颗粒及中药炮制过程控制检测等方面的最新应用。 具体日程安排如下: 日期 城市 地点 8月3日 哈尔滨 哈尔滨市南岗区赣水路68号万达索菲特大酒店1层卢浮宫 8月10日 广州 广州远洋宾馆四楼莱茵河会议厅 8月12日 成都 成都总府路2号时代广场B座25楼1号会议厅 09:00-09:10 领导致词 09:10-09:30 中药分析的现状与对策 09:30-10:00 PerkinElmer公司在中药质控分析方面的解决方案 10:00-10:15 茶歇 10:15-12:00 红外宏观指纹图谱三级鉴别法在中药、保健品及食品分析中的最新应用与进展 12:00-13:30 午餐 13:30-14:30 中药中金属元素的分析 14:30-15:30 药品中溶剂残留分析技术 15:30-16:00 答疑 16:00 结束 主要讲演者简介: 孙素琴教授:清华大学分析测试中心教授,主要研究领域为红外光谱学及其在食品、药品、化妆品检测方面的应用。针对传统中药——这一天然复杂混合体系,孙教授将红外二维光谱技术运用于中药和食品(保健品)的宏观质量控制检测,发明了红外光谱宏观指纹三级鉴定法,该成果曾在CCTV的“新闻联播”及“新闻早八点”进行过报道。孙素琴教授在国内外权威刊物上发表了上百篇的论文,出版了多本中药分析的专著,并应邀在国内外学术会议上介绍该项检测技术。目前该技术在国内外已有几十家中药及保健品企业及研发机构使用。
  • 质量控制与制药4.0
    介绍对于药品质量控制(QC)检测,过渡到制药4.0代表着对传统方法的颠覆,以及向自动化、实时检测(RTT)/实时放行检测(RTRT)和过程分析技术(PAT)转变。这种转变适用于产品和工艺参数的分析,包括常规产品检测、制药用水监测、原材料和活性药物成分检测,及持续的过程验证和控制,例如清洁验证。除了自动化之外,这一演变的一个关键组成部分是数字化。数字化和自动化不仅有可能彻底改变QC效率,而且还可以通过减少人为错误和可变性来提高质量和合规性。质量控制转型的三个关键因素是:自动化检测在线监测数字化重点领域原材料、活性药物成分和最终产品的检测公用工程监测(如制药用水监测)清洁验证软件随着制药公司从数字化的角度向制药4.0迈进,他们专注于数据可靠性、数据的自动转录以及使用先进的数据分析进行持续的过程控制。除了数字化转型之外,他们的目标是将大量常规检测转移到线上,并寻找可以提高生产力和/或提供先进过程控制的平台。此外,从日常运营角度看,QC实验室正在寻求实用的方法来精简过程,在实验室中用更少的分析师来管理检测(在新冠疫情期间,伴随社交距离的要求,这一方面尤为重要),并完成更多远程工作和数据审查。因此,“精益实验室”计划对于帮助自动化任务、提高效率并为制药4.0运营模式做出贡献是必不可少的。自动化检测在当今的QC实验室中,提高效率以安全、快速地放行产品,同时保持合规性至关重要。实验室越来越依赖设备和技术来减轻工作、提高生产力并更快地监测趋势。通过采用技术来最大限度地减少可重复的任务,例如样品制备,或切换到高通量在线检测,实验室可以节省时间和资源,同时最大限度地提高产量。自动化还减少了与各种过程相关的人工误差数量和可变性,从而尽可能减少重新检测,确保更好的质量。同时提供了一种基于风险的方法来优化检测并减轻分析师重复的手动任务,因此他们可以专注于更具战略性的活动。示例细菌内毒素检测的微流体自动化使用向心微流体平台的自动化是当今市场上最简单的内毒素检测自动化形式,它大大减少了内毒素检测实验的手动设置步骤。微流体自动化利用微通道网来引导和混合流体以进行自动化内毒素测定,从而显著减少手动操作时间。通过最大限度地减少移液步骤,向心微流体自动化降低了分析设置的复杂性,并降低了导致代价高昂的重新检测的风险和出错机率。预嵌入的标准品和阳性产品对照(PPC)用于自动化标准曲线和PPC峰值,从而为实验室节省大量时间并减少移液步骤和出错机会。此外,微流控液体处理为最终用户精确称量所有液体,这意味着在移液实际操作过程中通常需要的精度会降低。总体而言,通过微流体自动化,药典内毒素检测可以轻松、快速地进行,且出错的机率更小。手动操作步骤仅用于为内毒素检测、样品和1mL鲎试剂进行移液——完全合规的内毒素检测可在9分钟内完成设置,仅需27个移液步骤,可以检测最多21个样品和最多5点标准曲线。微流体自动化使实验室能实现他们想要的高通量检测和简单的分析设置,而不必担心占用空间、复杂的验证或合规性。当运行检测时,数据每五秒传输一次到软件,使分析人员可以在整个检测过程中频繁检查进度并实时查看数据。此自动化检测与符合21 CFR Part 11的软件相结合,展示了实验室使用简单且可定制的平台实现效率和数据可靠性的动力。在线监测通过转向在线QC检测和持续监测质量参数,可以获得重要价值。在线水监测就是一个很好的例子。随着2004年PAT指导文件的发布,企业开始考虑在全自动/在线状态下的水检测会是什么样子。直到最近,这些技术才得以更大规模地实施。制药行业现在正在向PAT工具和应用过渡,如对总有机碳(TOC)和电导率的实时检测,并且,药典规定的四种制药用水属性(TOC、电导率、内毒素和微生物)的自动化检测技术的发布只是时间问题。这些来自PAT的实时数据确保过程得到控制和充分理解,同时节省采样和分析时间,并做到根据信息快速做出决策。示例1
  • SCIEX:生物制药质量控制体系中的毛细管电泳技术
    p style=" text-align: justify " strong ——生物制药质量控制体系中的毛细管电泳技术 /strong /p p style=" text-align: justify "    span style=" font-size: 14px font-family: 楷体, 楷体_GB2312, SimKai color: rgb(0, 112, 192) " 近年来,我国生物制药行业发展正如火如荼,研发投入、生产能力、产业集中度均进一步提升。同时,国家政策积极,出台了一系列优惠政策,为我国生物制药产业发展提供了良好的大环境。为了帮助来自生物制药领域的用户学习、了解生物制药分析表征、质量控制工作流程相关内容,仪器信息网特别策划了 /span a href=" https://www.instrument.com.cn/zt/swzybz" target=" _blank" span style=" font-size: 14px font-family: 楷体, 楷体_GB2312, SimKai text-decoration: underline color: rgb(192, 0, 0) " i strong “生物制药分析、表征与质量控制”专题(点击查看) /strong /i /span /a span style=" font-size: 14px font-family: 楷体, 楷体_GB2312, SimKai color: rgb(0, 112, 192) " 并邀请 strong SCIEX CE& amp Biopharma市场开发经理赵鹏 /strong 谈谈对生物制药分析、表征与质量控制的看法。 /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201904/uepic/5c472894-74c3-419c-8122-b8b64f4c9dd6.jpg" title=" 赵鹏.jpg" alt=" 赵鹏.jpg" width=" 222" height=" 306" style=" width: 222px height: 306px " / /p p style=" text-align: center " strong SCIEX CE& amp Biopharma市场开发经理 赵鹏 /strong /p p style=" text-align: justify "    span style=" color: rgb(0, 112, 192) " strong 仪器信息网:请介绍贵公司在生物制药分析、表征和质量控制方面仪器产品或产品组合?相比于同类产品,在技术上有哪些优势? /strong /span /p p style=" text-align: justify "    strong 赵鹏: /strong 生物制药市场,作为公司最重要的一个发展行业,SCIEX在此领域内已经耕耘多年。作为最早开发毛细管电泳技术的企业,SCIEX针对毛细管电泳技术也做了很多的开发。最为广大生物制药用户熟知的是我们的拳头产品——PA800 Plus制药分析系统。该系统基于毛细管电泳的技术,具有强大的分析功能及易于使用的特性,可对蛋白纯度、电荷异构体和糖类进行自动化定量及定性分析。目前,已有上百家全球领先生物制药企业使用PA800 Plus,该系统为他们提供了对蛋白特性分析的自动化定量综合解决方案。而且PA800 Plus创新型的设计体系确保其操作的可靠性和持久性,是用户值得信赖的产品。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201904/uepic/0a2ef248-ac20-4fa0-b599-4f3c322ba57a.jpg" title=" 02.png" alt=" 02.png" width=" 375" height=" 250" style=" width: 375px height: 250px " / /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C317284.htm" target=" _blank" style=" font-size: 14px text-decoration: underline " span style=" font-size: 14px " strong SCIEX PA800 PLUS 生物制药分析系统(点击查看仪器信息) /strong /span /a /p p style=" text-align: justify "   糖谱分析是生物制药中非常重要的环节,其能够预测药物的有效性及帮助优化细胞培养条件,但是在生物制药分析和表征中的大规模克隆筛选和细胞培养中存在一些挑战,比如实验流程太复杂,数据分析太复杂且耗费时间等。为了帮助客户解决此问题,SCIEX在2018年推出了C100HT 生物制品分析系统,其具有12通道分离模块, 96孔样品板上样装置,每天最多可运行5块96孔板。软件中具有快速分析的可视化图谱,可以通过颜色编码来判断通过/失败追踪。C100HT 生物制品分析系统可以帮助用户进行高通量的糖基筛选和分析。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201904/uepic/a2d172fe-b075-4b01-84be-851fc5f1f560.jpg" title=" SCIEX C100 HT生物制品分析仪.jpg" alt=" SCIEX C100 HT生物制品分析仪.jpg" width=" 370" height=" 370" style=" width: 370px height: 370px " / /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C317286.htm" target=" _blank" style=" font-size: 14px text-decoration: underline " span style=" font-size: 14px " strong SCIEX C100HT 生物制品分析仪(点击查看仪器信息) /strong /span /a /p p style=" text-align: justify "   在生物样品表征中质谱已成为不可或缺的手段。如何提升质谱的灵敏度,降低离子抑制效应一直是人们关注的重点。SCIEX的CESI 8000 Plus 高效毛细管电泳分离和电喷雾离子化系统,将毛细管电泳(CE)的高效分离和超低速流的特性与电喷雾离子源(ESI)完美结合,从而显著提升灵敏度,降低离子抑制效应,为蛋白药物表征,蛋白组学鉴定,蛋白翻译后修饰分析和代谢组学指纹图谱表征等领域带来了全新的分析方法。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201904/uepic/947b1f7e-1741-4b17-92df-49482c10efd7.jpg" title=" Sciex CESI 8000 高性能电喷雾离子化系统.jpg" alt=" Sciex CESI 8000 高性能电喷雾离子化系统.jpg" / /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C208633.htm" target=" _blank" textvalue=" SCIEX CESI 8000 Plus 高效毛细管电泳分离和电喷雾离子化系统(点击查看仪器信息)" span style=" font-size: 14px " strong SCIEX CESI 8000 Plus 高效毛细管电泳分离和电喷雾离子化系统(点击查看仪器信息) /strong /span /a /p p style=" text-align: justify "   相对于同类型的产品,SCIEX不仅在产品上具有很强的技术领先型,并有广大的用户基础,而且拥有一支单独的团队针对毛细管电泳技术进行技术应用的开发,新方法的研究,以及市场开发和售后保障等,能够快速响应客户的需求。 /p p style=" text-align: justify "    span style=" color: rgb(0, 112, 192) " strong 仪器信息网:您觉得国内企业在生物制药分析表征和质量控制方面存在哪些不足? /strong /span /p p style=" text-align: justify "    strong 赵鹏: /strong 国内企业在生物制药分析表征和质量控制方面的不足主要有两点。 /p p style=" text-align: justify "    strong 1、表征方法建立及数据解读能力较弱。 /strong 国内生物药企对于生物制药表征分析方法一般都是照搬国外方法,自己缺乏能力去进行新方法建立。特别是对于创新药的新特征,如何找到一种合适的表征方法,常常依赖于仪器制造公司。数据解读能力也比较薄弱,由于生物药的复杂性,常常会出现与预期不符的情况,如何从数据中找出样品相关信息,如何进行下一步的表征,也是国内生物药企需要提高的地方。 /p p style=" text-align: justify "    strong 2、质量控制体系中细节的把控。 /strong 质量控制不仅包括常规的实验检测,规范性文件体系的建立,也包括细节上的把控。如有时候实验结果会受到环境、人员及检测平台的影响,前期制定的质量标准随着实验条件的改变有可能后期无法达到,所以在标准建立时就需要多环境,多人员,多方位的去测试。 /p p style=" text-align: justify "    span style=" color: rgb(0, 112, 192) " strong 仪器信息网:贵公司在生物制药分析、表征和质量控制方面可以提供哪些解决方案? /strong /span /p p style=" text-align: justify "    strong 赵鹏: /strong SCIEX研发生产的 PA800 Plus生物制药分析系统,为生物制药企业提供在一个平台上实现多重表征与应用的解决方案,该系统全面支持监管合规,可为用户从研发到质控的成功保驾护航。 /p p style=" text-align: justify "   SCIEX的分析结果值得信赖,用户可以借助SCIEX使用经行业和监管部门认可的 CE 技术对任意分子进行表征。这正是几乎所有商用治疗性单克隆抗体制造商都使用SCIEX CE 的众多原因之一。 /p p style=" text-align: justify "   另外,用户借助SCIEX可以全面实现对单克隆抗体的分析:如通过金标准 CE-SDS 方法在数分钟内完成纯度/ 异质性分析 通过屡获殊荣的快速糖基化分析技术进行糖基化分析 通过简单快速的 CZE 或高分辨率毛细管等电聚焦 (cIEF) 分析电荷异质性。与此同时,SCIEX可为用户提供单克隆抗体以外的多肽和蛋白质、质粒和核酸治疗性药物的表征方案。 /p p style=" text-align: justify "   SCIEX依托遍布全球的专家支持网络,在所有地区可持续提供世界一流的全球性支持,有效助力制药用户开发相应的治疗药物。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/zt/swzybz" target=" _blank" span style=" color: rgb(192, 0, 0) " i span style=" text-decoration: underline " strong 点击图片进入专题,给你“好看” /strong /span /i /span /a /p p style=" text-align: center" a href=" https://www.instrument.com.cn/zt/swzybz" target=" _blank" img src=" https://img1.17img.cn/17img/images/201904/uepic/c1a19013-a9fc-4e5d-9fea-ed1433e82a86.jpg" title=" 企业微信截图_20190426142814.png" alt=" 企业微信截图_20190426142814.png" width=" 551" height=" 228" style=" width: 551px height: 228px " / /a /p p style=" text-align: center " span style=" text-decoration: underline " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /span br/ /p p style=" text-align: center " strong span style=" text-decoration: none " 关注 span style=" text-decoration: none color: rgb(0, 112, 192) " 3i生仪社 /span ,找到更多生命科学干货 /span /strong /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/68e891ee-311c-4b84-bb77-984298436020.jpg" title=" 小icon.jpg" alt=" 小icon.jpg" / /p
  • SFDA进一步规范生物制品质量控制要求
    为切实保障生物制品质量安全,根据2005版《中华人民共和国药典》三部的要求,日前,国家食品药品监督管理局就进一步规范生物制品生产、检验过程中的相关质量控制要求发布通告,对有机溶剂、抗生素、防腐剂的使用,批、亚批及批号确定的原则作出明确规定。   通告指出,凡在生物制品生产、检验过程中涉及添加有机溶剂、抗生素、防腐剂及产品分批的质量控制要求,按通告要求执行。 附:  国家食品药品监督管理局公  告2009年 第6号 关于进一步规范生物制品质量控制要求的通  告   为切实保障生物制品质量安全,根据2005版《中华人民共和国药典》三部的要求,现就进一步规范生物制品生产、检验过程中的相关质量控制要求通告如下:   一、关于有机溶剂的使用  生产过程中如采用有机溶剂或其他物质进行提取、纯化或灭活处理等,产品的后续纯化工艺应保证可有效去除制品中的有机溶剂或其他物质,去除工艺应经验证。生产过程中有机溶剂的使用及残留限值的规定应严格按照现行版《中国药典》二部“残留溶剂测定法”(附录Ⅷ P)的相关要求执行。   二、关于抗生素的使用  生产过程中抗生素的使用应符合以下原则和要求:  1.应尽可能避免使用抗生素,必须使用时,应选择安全性风险相对较低的抗生素品种,且产品的后续纯化工艺应保证可有效去除制品中的抗生素;如后续工艺不能有效去除,则不得添加。病毒性疫苗生产中仅允许在细胞制备、细胞增殖过程中使用抗生素。  2.严禁使用青霉素或其他β-内酰胺类抗生素。  3.不得使用抗生素作为防腐剂。  4.使用抗生素时,成品检定中应检测抗生素残留量,并规定残留量限值。  5.使用抗生素的品种,必须在药品说明书中增订相关内容,并注明对该抗生素有过敏史者不得使用。增订内容的说明书应向省级食品药品监管部门备案,并在本通告施行之日起一个月内完成产品说明书的更新工作。   三、关于防腐剂的使用  1.应尽可能避免在中间品和成品中添加防腐剂,尤其是含汞类的防腐剂。   2.注射用冻干制剂中不得添加任何防腐剂;单剂量注射液应尽可能避免添加防腐剂;静脉注射液不得添加任何防腐剂。  3.对于多人份制剂,根据使用时可能发生的污染与开盖后推荐的最长使用时间来判断是否使用防腐剂;如需使用,应证明防腐剂不会影响疫苗的安全性与效力。  4.成品中含防腐剂的制品,其防腐剂应在有效抑菌范围内采用最小加量,且应设定限量控制。   四、关于批、亚批及批号确定的原则  1.成品批号应在半成品配制后确定,配制日期即为生产日期。非同日或同次配制、混合、稀释、过滤的半成品不得作为一批。  2.亚批的分批应严格按照《中国药典》三部中“生物制品分批规程”进行界定。  3.制品的批及亚批编制应能清晰地反映整个工艺过程并易于追溯,以最大限度保证每批制品的加工处理过程是均一的。  4.申请批签发的产品,应在批记录摘要中描述亚批形成条件,并设立亚批检验项目,根据要求进行抽检,检验工作由原承担批签发工作的药检所进行。本通告自发布之日起施行。凡在生物制品生产、检验过程中涉及添加有机溶剂、抗生素、防腐剂及产品分批的质量控制要求,按通告要求执行。                             国家食品药品监督管理局                             二○○九年四月三日
  • TOC检测的质量控制
    作为分析仪器制造商,客户往往希望我们针对其TOC分析仪的质量控制和验证问题予以指导。本文提供与校准、确效、系统适用性以及实验室对照样品相关的多个兴趣领域的知识。内容源自我们低含量的TOC检测经验,以及诸如Greenberg等人的《水和废水检验的标准方法》,第18版(美国公共卫生协会,Washington D.C,1992)和Taylor编著的《化学测量质量保证》(Lewis Publishers,Chelsea,MI,1987)等行业标准参考资料。校准基础Sievers M9/900系列TOC分析仪提供众多的校准和确效选项,因此对某些客户来说,可能难于选择适合应用的正确方式。以下是一些简单的提示:01单点校准时,务必选择高于水样TOC范围的校准标准。务必确保您的最高校准标准大于您水样中的TOC含量。这样您可确保您的样品处于该仪器所示的线性范围内。对于未知样品范围宽的用户,Sievers M9/900还可使用1 mg C/L和50 mg C/L之间设置的五点校准组合进行校准。02定期使用线性范围内的一个或多个标准样确效校准。优良实验室规范(GLP)建议在感兴趣的范围内确效。此篇应用文献中将会有更多这方面的详细信息。03不要使用实验室对照标准样,使用单独配制的校准标准样。此独立确效概念是用于显示您的仪器中任何重大偏差的重要相互校验。例如,许多客户使用KHP标样进行校准,而使用单独的蔗糖标准确效性能。Sievers分析仪提供多种用于校准、确效和实验室控制的标准溶液,以满足此需求。校准准确度与校准偏差校准是所有仪器系统的基础步骤。其目的是使测量过程中的偏差最小化。优良实验室规范(GLP)要求确效步骤以确认在校准过程中没有引入偏差。校准确效具有两个明显的功能:1)测量校准步骤的准确度;或2)指示校准偏差。在有效校准之后即刻进行准确度确效,以提供校准曲线准确度的简单度量。用于确效准确度的标样,不应使用校准用标样,应单独配制,或使用不同的化合物。这种情况下,确效标样起到完全独立的校准对照标样的作用。与之不同,如果在迟些时候(例如校准后六个月)进行确效,其主要目的是提供校准偏差的指示。用于确效校准偏差的标样应该与校准时使用的标样浓度相同。使用Sievers M9/900系列的客户具有实行确效方案的选项,以匹配上述任意一种或两种情况。Sievers M9/900系列TOC校准标样使用范围从1至50 mg C/L的NIST可追踪KHP进行制备。对应的确效标样使用范围从0.5 mg C/L至50 mg C/L的NIST蔗糖进行制备。我们的许多分析纯化水(PW)或注射用水(WFI)的客户选择以1 mg C/L进行校准,而以0.5 mg C/L确效准确度。这种方案使得客户在感兴趣的范围以上进行校准,并在兴趣点确效准确度。如果校准偏差的指示超出容许差,这种情况我们建议在1 mg C/L进行确效。测试系统适用性的周期是多久?要生成有效的分析数据,所要求的不仅仅是一台高质量仪器。实际上,它需要一个控制良好的测量系统,其包括以下所有四个因素:称职并受过很好培训的人员遵循标准操作步骤(SOP)有效并维护良好的仪器可追踪的参考材料最新的USP 章和EP 方法中的TOC法规要求各TOC分析仪按照制造厂商的建议校准,并且定期证明各分析仪的适用性。但USP和EP法规没有解释系统适用性测试(SST)的进行周期。答案涉及两个基本又对立的考虑:系统超出容许差的相关风险证明系统在容许差之内的成本应该对这两方面考虑的多个构成因素进行评估,因为它们适用于您自己的设备。1SST不合格相关的风险是什么?不合格对设备有什么影响?2进行测量人员的经验水平如何?操作人员是否有足够的技术并受过充分的培训,以延长SST之间的周期?3测量系统是否始终如一地通过测试?测量系统在延长的时间周期内是否稳定可靠?4是否有可遵循的行业趋势或公司指南?审计员是否接受与规范不同的计划?5进行SST的成本是多少?如何测试系统适用性?通过测试三种溶液确定TOC分析仪的适用性:空白溶液(Rw)、0.5 mg C/L蔗糖(Rs)以及0.5 mg C/L的1,4-苯醌。响应效率(RE)按以下计算:RE = 100[(Rss-Rw)/(Rs-Rw)]如果85%115% ,则确定该分析仪适用。当TOC分析仪第一次安装时,我们建议经常进行SST,以记录整个测量系统的性能(即人员、工艺、仪器和标样)。许多客户选择在半年或更长的时间内每日或每周进行SST。经常根据实际数据,使用控制图表,以确立平均性能、警告限值和控制限值。在初始评估期之后的某些时候,管理人员可对采集的数据进行评测,然后对以后的SST选择适当的频度。这种方法可以有信心,即所做出的决定,在进行周期性SST的成本和出现容许差之外的风险之间保持良好的平衡。实验室对照标样的重要性实验室对照标样(LCS)是显示测量系统处于控制的常用方法,对于诸如医药和民用饮用水等高度控制的行业尤其如此。LCS通常使用每批样品进行分析。对照标样的浓度范围应与实际样品一致或位于感兴趣的特定范围内(如WFI测试为0.5 mg C/L)。最好使用外部供应商提供的经认证的NIST可追溯标样,因为他们会提供最严格的手段来评测测量系统。如果内部制备的标样用于日常的质量控制,我们建议周期性使用外供的经认证的参考材料用于确效。例如,某些客户选择制备自己的溶液作为日常检查标样,但依靠Sievers提供认证的参考材料进行每周的系统适用性测试。当预算有限时,类似这种双级方法是很好的平衡。◆ ◆ ◆联系我们,了解更多!
  • 瑞士帝肯(Tecan)参加首届中国国际药品安全与质量控制大会
    首届中国国际药品安全与质量控制大会于2011年5月25日-26日在北京新世纪日航饭店召开。本次大会的重点围绕我国药品产业质量安全的解决方案,旨在搭建一个药品产业技术与方案相互交流的公共平台。大会目的是加强技术领域合作,保障民众用药安全,以药品安全良性发展为立足点,探讨并把握当前最新解决方案与先进技术。大会主题:技术与创新同步 法律与责任同行。参会代表主要是国内制药企业,政府官员、各地方药检机构代表和仪器设备及试剂厂商。 大会现场 药品质量安全是全球药品行业面临的最大挑战之一,这些需要政府、企业单位及相关机构多方共同努力,协助解决药品安全面临的各种问题。此外,确保药品质量安全还需要更高的透明度、更好的信息共享、以及政府、业界和学术界之间更好的协作和对话。 为对药品安全控制尽一份社会责任,帝肯(上海)贸易有限公司作为瑞士帝肯(Tecan)亚太区总部积极参入此次活动,并希望提供可靠的自动化液体处理和检测技术产品, 对药品安全控制尽一份力量。帝肯上海市场总监吴应光博士在&ldquo 药品安全分析与检测技术&rdquo 分会场给大家介绍了Tecan 自动化技术如何支持&ldquo Quality by design &rdquo 体系,让与会听众对Tecan自动化技术有了较好的了解。 吴应光博士在介绍Tecan 自动化技术如何支持&ldquo Quality by design&rdquo 体系 此外,帝肯(上海)贸易有限公司还在大会上设有展台,展示了瑞士帝肯Infinite® 200 Pro多功能酶标仪,SunriseTM和infinite® F50光吸收酶标仪及HydroFlexTM洗板机。 这些自动化的产品,极大程度地减少人工干预,加强药物检测的准确性,已在很多药物筛选,细胞清洗等过程中发挥着人工无法替代的作用。   客户在展台上与吴应光博士交流 附:Infinite® 200 Pro简介: Tecan全新开发的Infinite® 200 Pro系列进一步提升了光栅或滤光片系统的强大性能以满足科学研究领域用户的需求。Infinite® 200 Pro采用先进的模块化设计,功能涵盖光吸收、化学发光、荧光强度、荧光偏振、时间分辨荧光、荧光能量共振转移、均相时间分辨荧光等多种检测,可自由选择功能模块,并且可以在未来根据需要进行升级,创造出真正适合自己的完美检测仪器。其模块化设计,功能强大,全面支持各种领先检测方法,为您提供更宽广的应用领域、更为灵活、可扩展的检测解决方案。 Infinite® 200 Pro可广泛应用于众多生物学研究领域: &bull DNA/RNA定量检测 &bull 蛋白定量检测 &bull 离子通道研究 &bull 离子流研究 &bull 钙离子检测 &bull 报告基因和基因表达分析 &bull 细胞活力和细胞毒理研究 &bull 细胞学检测 &bull 分子间相互作用/结合研究 &bull 酶学研究 &bull ELISA &bull 免疫学分析 &bull 荧光和化学发光应用 &bull TR-FRET/HTRF 应用 欲知更多信息,请联系: 帝肯(上海)贸易有限公司 上海浦东新区张江高科技园区科苑路88号德国中心1号楼621-622室201203 电话:021-28986333 /010-85117823 www.tecan.com www.instrument.com.cn/netshow/SH100992/
  • 一本书让你了解中药质量控制及分析
    p style=" text-align: justify line-height: 1.5em "   随着中医中药在本次新冠疫情防治中大放异彩,中药成为社会的热点话题。中药是中华民族的文化瑰宝,凝聚了中国人民几千年的博大智慧。让服务中国人数千年的中药在现代社会再度焕发光彩,全面推进中药现代化、产业化,需要进一步强化质量监管、完善标准体系,同时借助现代科技手段来激活中医药的特色和优势。故而,中药质量控制和分析一直是中医药领域研究的关键和热点。 /p p style=" text-align: justify line-height: 1.5em "   随着科学技术的发展,现代分析技术和分析方法在不断进步的同时得到了越来越广泛的应用,也使得中药质量安全性、有效性和可控的技术保障得到了进一步的提升。 /p p style=" text-align: justify line-height: 1.5em "   为了让广大从事中药质量控制与分析相关的师生和技术人员能够及时了解到中药质量分析技术的新方法、新特点,解决大家在学习实践过程中遇到的种种问题,由中国医学科学院药用植物研究所杨美华研究员主编的《中药质量控制与分析》教材,已于2020年5月在中国协和医科大学出版社出版发行。 /p p style=" text-align: center line-height: 1.5em " img style=" max-width: 100% max-height: 100% width: 304px height: 400px " src=" https://img1.17img.cn/17img/images/202007/uepic/5c89c342-4365-4c28-aef0-f8b32d7e48dc.jpg" title=" 中药质量控制与分析.png" alt=" 中药质量控制与分析.png" width=" 304" height=" 400" border=" 0" vspace=" 0" / /p p style=" line-height: 1.5em " span style=" text-align: justify "    span style=" text-align: justify color: rgb(128, 100, 162) font-size: 18px " strong 荣获国家、业内广泛认可 /strong /span /span /p p style=" text-align: justify line-height: 1.5em "   该书出版得到了行业内的广泛认可,并获得了国家出版基金项目和北京协和医学院研究生教育教学改革项目的资助。中国工程学院院士、中国中医科学院院长黄璐琦及中国科学院院士、中科院大连物化所研究员张玉奎均为本书题序,对本书的学术性、知识性、实用性和指导性表示认可。本书不仅适用于中药质量控制与分析专业的本科生、研究生作为教材,而且适合从事相关工作的技术人员和研究人员。 /p p style=" text-indent: 2em " span style=" color: rgb(128, 100, 162) font-size: 18px " strong 行业专家精心编撰 /strong /span /p p style=" text-indent: 2em " span style=" color: rgb(128, 100, 162) font-size: 18px " strong /strong /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 200px height: 207px " src=" https://img1.17img.cn/17img/images/202007/uepic/381424a0-3ce3-4108-a5af-be6f77b9e466.jpg" title=" 杨美华.png" alt=" 杨美华.png" width=" 200" height=" 207" border=" 0" vspace=" 0" / /p p style=" line-height: 1.5em text-indent: 2em " 《中药质量控制与分析》由中国医学科学院药用植物研究所、国务院政府特殊津贴获得者杨美华研究员主编。其主持或参与国家科技部重大新药创制专项、中医药行业科研专项、国家科技支撑计划、国家自然科学基金、北京市自然科学基金等课题20多项。杨美华及其所领导团队长期从事中药质量控制与分析领域的研究和教学工作,尤其在中药真菌毒素、农药残留及重金属残留等研究方面有着很高造诣。该书在编写过程中,重点针对学生在学习实验中遇到的问题及自身教学科研实践过程中的经验总结,在结合当下中药质量控制与分析发展趋势的同时,也强化了一些日益突出的质量控制问题。 /p p style=" line-height: 1.5em text-indent: 2em " span style=" color: rgb(128, 100, 162) font-size: 18px " strong 特色突出方法新颖 实用价值和学术价值并举 /strong /span br/ /p p style=" text-align: justify line-height: 1.5em "   《中药质量控制与分析》最大亮点就是首次将真菌毒素、农药和重金属的分析和控制及转移与脱除引入,国内在此领域中尚无专著有相关内容,具有非常大的实用价值和学术价值。书中首先概述中药质量控制与分析的重要性、发展历程、特点、研究对象及中药分析的依据和基本程序及质量保障体系 然后通过实例参考,介绍植物药材中所含的各类成分类型及分析特点,矿物药中重金属与有害元素形态分析,并将化学计量学技术在中药质量控制与分析中的应用进行举例说明 随后重点介绍中药中典型外源性污染物的分析与控制,包括产毒真菌与真菌毒素、农药残留、植物生长调节剂、重金属与有害元素、二氧化硫的残留 接着对中药材及饮片质量变异的防控等内容进行介绍 最后详细归纳总结国内外中药质量控制与分析的相关数据库,并对其相关论文的撰写与发表以及常规实验、分析仪器的使用与操作进行介绍。 /p p style=" text-align: justify line-height: 1.5em text-indent: 2em " 书籍现已出版,在京东、天猫、当当均已发售。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 200px height: 200px " src=" https://img1.17img.cn/17img/images/202007/uepic/3cba48ed-4b61-4c14-8c68-2877cdaba27f.jpg" title=" 中药二维码.jpg" alt=" 中药二维码.jpg" width=" 200" height=" 200" border=" 0" vspace=" 0" / /p p style=" text-align: center line-height: 1.5em text-indent: 0em " strong span style=" color: rgb(128, 100, 162) " 扫描二维码 即刻获取知识 /span /strong /p p style=" line-height: 1.5em " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a style=" color: rgb(0, 102, 204) font-size: 16px text-decoration: underline " href=" https://img1.17img.cn/17img/files/202007/attachment/2ea38d4c-4059-4dde-b97e-fd0fec5d6c03.pdf" title=" 中药质量控制与分析-封面等.pdf" span style=" font-size: 16px " 中药质量控制与分析-封面等.pdf /span /a /p p style=" line-height: 1.5em " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a style=" color: rgb(0, 102, 204) font-size: 16px text-decoration: underline " href=" https://img1.17img.cn/17img/files/202007/attachment/a7ba9a03-6d2d-415c-8a66-fc2f261e1ac4.pdf" title=" 中药质量控制与分析-目录.pdf" span style=" font-size: 16px " 中药质量控制与分析-目录.pdf /span /a /p
  • 先进的分析检测手段,助力锂离子电池等新能源行业中NMP的质量控制
    目前新能源汽车发展大势不变,锂电池产业投资热度不减,N-甲基吡咯烷酮(NMP)产品,目前主要生产市场集中于制造锂离子电池、电动汽车动力电池及对位芳纶等领域,是锂电生产过程中不可或缺的有机溶剂其充足稳定的供应保障是中国锂电行业能够得以持续快速发展的重要条件之一。 NMP,属于氮杂环化合物,中文名称N-甲基吡咯烷酮,英文名称为N-methyl-2-pyrrolidone,化学式为C5H9NO,为稍有氨味的无色透明油状液体,与水以任何比例互溶,是一种性能优良的高沸点溶剂,几乎与所有溶剂(乙醇、乙醛、酮、芳香烃等)完全混合。NMP是锂电生产过程中不可或缺的有机溶剂,其质量直接影响锂离子电池拉浆涂布质量和对环境保护的要求。目前锂电池对有机溶剂的纯度,特别是水的含量要求非常高,其水的含量需要小于0.02%,甚至更低。目前国产NMP中水的含量普遍大于300ppm。而进口的NMP提纯后,其指标要求:色度要求小于10,纯度要求大于99.8%,水分含量要求不超过200ppm。对于NMP来料检验,NMP的质量控制就成为了锂电池产业的一项重要指标,先进的分析检测手段将助力NMP的质量控制。 一:化验室检验内容参考如下:(本标准适用于γ-丁内酯(以下简称GBL)和甲胺化合而制备的NMP的检验。)序号检验项目检 验 标 准检 验 方 法检测设备1包装a. 标识清楚,内容正确可识别;b. 外包装无破损、受潮、未有严重撞击痕迹;c. 外包装上需有环境有害物质方面的标识。目检/2外观溶剂无色透明、无杂质、沉淀。取适量实验室样品于比色管中,在自然光下目视观察比色管3溶解性粘结剂与溶剂混合搅拌后能完全溶解,无杂质、不溶物出现,颜色为无色或微黄透明。根据抽样水平每批随机抽取100g溶剂分别与10g PVDF粉末混合,于洁净、干燥的烧杯中搅拌,做溶解性实验 100-1500rpm磁力搅拌器EYELARCH-1000 4水分▲优等品≤200ppm合格品≤300ppmGB/T6283 (醛酮试剂)METTLERC30S/C10S/C20S库伦卡尔菲休水分仪5纯度▲优等品≥99.90% 合格品≥99.50%随机取样10ml溶剂用气质联用仪检测 GB/T 9722  化学试剂 气相色谱法通则 GC-MS7890B-5977B (7820A-5977B)DB-1701色谱柱HP-5MS 色谱柱或者GC7820A DB-225色谱柱6丁内酯≤0.03%7甲基NMPC-Me.NMP(wt%)≤0.058色度合格品≤20Hazen优等品≤10APHA随机取样10gNMP溶剂用色度仪检测(GB/T3143)LOVIBOND Pt-Co色度仪AF-327 目视EC-2000 pt-Co电子式9密度1.029-1.033g/mLGB/T 4472METTLER DA-100M/30PX台式/便携式密度计10折光率(N020)1.4680-1.4700GB/T6488 ATAGO DR-1T 阿贝折射计(20度)配外循环恒温水浴11PH值7.0-9.0使用纯水作为溶剂将NMP配成10%的溶液,测试溶液的PHMETTLER FE28/S210PH计12游离胺▲(wt%)优等品≤20ppm合格品≤30ppm使用微量滴定管,用HCl进行滴定(参考附件氨含量测试方法)GB/T9725MEYYLER G10S/ET18滴定仪10ml 滴定管 (备注:打▲的为重要指标。) 测量说明:A.对于水分测定,锂电池生产中涉及到的水份检测可以分为 2 类:1.) 正极材料,负极材料等固体样品的水分检测2.) 电解液、NMP溶剂等液体样品水份检测 第一类样品一般是固体样品,需要通过加热的方式将样品中的水份蒸发出来,通过载气(高纯氮气或干燥空气)将蒸发出的水份带至滴定杯内滴定 第二类样品一般是液体样品,比如电解液、NMP等可以直接将样品添加至KF 滴定杯内进行测定.C10S/C20S 对于NMP含量的测定,方法1: GB/T9722,可以采用GC方法进行测量;预算充足,定性定量分析方便,精度要求更高,采用GC-MS 进行分析测量。GC方法提要仪器AGILENT 7820A,整机灵敏度和稳定性优于GB/T9722中有关规定。在选定的色谱操作条件下,使样品气化后经色谱柱分离,用氢火焰离子化检测器(FID)检测,校正面积归一化法定量。 Agilent 7820A 推荐的色谱柱和色谱操作条件 毛细管色谱柱30m×0.32mm×0.5μm,(柱长×柱内径×液膜厚度)固定相25%氰乙基-25%苯基-50%甲基硅氧烷(DB-225)柱温初始100oC,保持1min;升温速度10oC/min,升温到160oC,保持10min气化室温度/ oC250检测器温度/ oC300载气(N2或He)流量/(mL/min)1.0 mL/min(N2)氢气流量/(mL/min)30空气流量/(mL/min)300尾吹气(N2)流量/(mL/min)35进样量/μL0.2分流比25:1 分析步骤 1.1校正因子的测定1.1.1标准溶液的配制 用称量法配制NMP加欲测杂质的标准溶液,各组分的称量精确至0.0001g,组分含量的质量分数计算精确至0.001%。所配制的标准溶液中杂质含量应与待测试样相近。1.1。.2 相对校正因子的测定根据仪器说明书,调节仪器至表2所示的操作条件,将未加欲测杂质的NMP和配制的标准溶液依次注入气相色谱仪,各平行测定4次,取4次测定的峰面积的算术平均值为测定结果。依据所得的峰面积及杂质组分含量,计算各组分的相对校正因子fi。试样中未知组分或得不到标准物质的组分的相对校正因子取值为1。1.1.3 相对校正因子的计算组分i相对N-甲基-2-吡咯烷酮的相对校正因子fi ,按公式(1)计算: ̷̷̷̷̷̷̷̷̷̷̷̷̷̷(1)式中:AB ——标准溶液中NMP的峰面积;Ai ——NMP未加入欲测杂质时组分i的峰面积;A‘i——标准溶液中组分i的峰面积;cB ——标准溶液中NMP的质量分数的数值;ci ——标准溶液中组分i的质量分数的数值。1.2 试样的测定 根据表2所示的仪器操作条件测定样品,采用校正面积归一化法定量。1.3 结果计算NMP的质量分数X1,数值以%表示,按公式(2)计算: X1 =(100 — X水) ̷̷̷̷̷̷̷̷̷(2)式中: X水——4.5测得NMP中水的质量分数的数值;——试样中NMP的色谱峰面积;fi ——组分i的相对校正因子;——组分i的色谱峰面积。 取两次平行测定结果的算术平均值为报告结果。两次平行测定结果的绝对差值不大于0.03%。 方法2:NMP 含量的测定,由于GC中FID 检测器的定性能力低于GC-MS, 为了定性定量分析方便,精度要求更高,采用GC-MS 进行分析测量。 锂电池行业业内的主流配置为目前最新的配置Agilent 7890B-5977B,配7693A 自动进样器(或者其同系列的型号),当然也可以选择中端的型号7820A-5977B. 仪器条件参考如下:色谱柱:HP-5MS(30m×0.32mm×0.25mm,Agilent);升温程序为:在60℃温度下保持5min,再以6℃/min的速率升至230℃,保持10min;进样口温度为210℃;流速为1mL/min;进样量为1μL;载气为氦气,纯度≥99.999%;质量扫描范围为35~350amu;离化方式为EI;离化电压为70eV。(备注: NMP 在12.135min 左右就出峰,为了保证较好的响应时间,面积及好的峰型,升温速率降低,同时缩短停留时间)。游离胺的测定1.1试剂异丙醇:分析纯。盐酸标准滴定溶液C(HCl)=0.02moL/L:应于临用前将[C(HCl)=0.1moL/L]的标准滴定溶液用煮沸并冷却的蒸馏水稀释,必要时应重新标定。 1.2 仪器METTLER G10S 电位滴定仪,DG-113 非水PH电极 1.3 测定方法称量NMP样品65g(精确至0.0001g)到250ml烧杯中。加入100ml异丙醇且混合均匀后,按照GB/T 9725《化学试剂 电位滴定法通则》中6 测定进行样品的测试。 1.4 结果计算:在电位滴定仪G10S上输入公式,一键滴定得到游离胺的含量。 样品中游离胺的质量分数X2,数值以%表示,按公式(3)计算: ×100̷̷̷̷̷̷̷̷̷̷̷(3)式中:V —— 滴定终点时,消耗盐酸(HCl)标准溶液体积,ml;C —— 盐酸(HCl)标准溶液的浓度,单位为升每摩尔(mol/l);0.0311—— 与1.00mL盐酸标准溶液[c(HCL)=1.000moL/L]相当的以克表示一甲胺的质量的数值,单位为克(g);m —— 称量试样的质量数,g。 METTLER G10S 其他的折光率,密度计,比色计,PH的测量相对比较简单,仪器附表上有推荐仪器的型号,相信广大用户及技术人员都不陌生。对于NMP的质量控制,目前有相关的标准及先进的检测手段,助力于锂电池行业的蓬勃发展。
  • 专家漫谈|热分析技术在药物质量控制以及药物研究中的一些应用
    p style=" text-align: left "    strong 本文 /strong strong 作者:江苏省食品药品监督检验研究院 李忠红 /strong /p p style=" text-align: left "   热分析法,顾名思义,是围绕物体热量发生了变化来进行的一系列分析测试的技术的总称,包括记录给予被测物热量后物质发生变化的过程以及物体发生变化过程中吸收或放出热量的测定。药典中收录的热分析法,广义的有转化点/熔点测定法、热重分析法、差热/差示扫描量热分析法、热载台显微镜分析法、微量热法(欧洲/英国药典)、溶液量热法(欧洲/英国药典)。中国药典2020年版四部通则0661热分析法中只收录了其中的三种。 /p p style=" text-align: left "   目前来说,在我们药品检验工作中采用热分析法对药物进行质量控制的应用主要有:原料药熔点的测定、化学对照品的纯度测定、药物水分的测定等,应用的项目与品种并不多。中国药典2015年版并未收录具体的需要用热分析仪来做质量控制的品种,2020年版是否有品种收录目前还未知晓。在国家药品监督管理局批准的各企业注册标准中,采用差示扫描量热分析法(DSC)测定熔点的品种有替格瑞洛、利培酮等,下图1是一张不同企业替格瑞洛原料药的热分析图,从图中可以看出不同企业产品的熔点存在着一定的差异,其中微小的差异可能来自于不同的纯度,而较大的差异应该是来自于不同的晶型。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 522px " src=" https://img1.17img.cn/17img/images/202006/uepic/c71b7d9d-0621-4e0b-b52c-b8be3c48db91.jpg" title=" 图1 替格瑞洛DSC分析图.jpg" alt=" 图1 替格瑞洛DSC分析图.jpg" width=" 500" height=" 522" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图1 替格瑞洛DSC分析图 /strong /p p   热分析法在药品质量控制中应用面较窄的这种情况的主要原因是因为热分析仪相对于一些传统的药品检验用仪器(例如熔点仪、烘箱、减压干燥箱等)价格要贵得多,客观上限制了在熔点测定与水分测定中的应用。而对于化学对照品的纯度测定,热分析法只是一个辅助测定的方法,或者说是一个验证用其他方法测定出的纯度值是否准确的方法,并不能用热分析法得到的纯度值去给对照品赋值。所以,热分析法对于化学对照品纯度的测定这一应用,只有在化学对照品发行单位得到较多的应用[1,2]。 /p p   当然,在药物的制造过程中,有不少企业已经采用快速水分测定仪(水分天平)来做中间体物料的水分监测。快速水分测定仪是利用热失重法测定样品的水分含量,由称量与加热装置(红外)组成。其原理与热重分析仪一样,也应该算是一种热分析的仪器。 /p p   尽管在药品终产品质量控制中的应用目前还不广泛,热分析技术作为一门成熟的分析技术,在药物研究过程中角色一直是不可或缺的。近5年来在药物研究过程中的应用主要有:药物多晶型的研究[3-6],药物共晶的研究[7],药物新剂型研究[8-18],生物相容性材料[19,20]的表征,药品包装材料(聚乙烯、聚丙烯等材质)与液体药物的相容性研究等。下面简要介绍一下其中的几个应用。 /p p    strong 一、药物多晶型的研究 /strong /p p   各国药典收载的多晶型药物有188种,水合物有307种,无定形(型)物有113种[21],这些药物的研究过程都或多或少地用到过热分析技术。 /p p   2015年研究者Akhtar Siddiqui等[3]发表的研究文章中用DSC结合化学计量学方法对尼莫地平两种晶型的定量测定进行了很好的研究,为质量控制提供了可能。 /p p   2016年研究者Yusuke Hattori等[4]发表的研究文章中用DSC研究了采用熔融-骤冷和研磨法获取加替沙星的无定形物。这两种方法制备的无定形物的X-射线粉末衍射图谱是无差别的,但是它们的DSC图谱存在着一定的差异。下图2就是两种无定形物的DSC图谱。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/e018c82b-c99f-4dff-ae98-4fa8d738bd6f.jpg" title=" 图2 加替沙星两种无定形物在不同升温速率下的DSC图谱.jpg" alt=" 图2 加替沙星两种无定形物在不同升温速率下的DSC图谱.jpg" / /p p style=" text-align: center " strong 图2 加替沙星两种无定形物在不同升温速率下的DSC图谱 /strong /p p style=" text-align: center " (A)研磨法制备 (B)熔融-骤冷法制备 /p p   对于低温下药物的结晶过程、低温下药物晶核形成的机理研究,是近年来另一个研究的热点。2017年研究者Ioannis Nikolakakis等[5]发表的研究文章中采用熔融-骤冷法对扑热息痛(对乙酰氨基酚)的结晶动力学进行了研究,熔融的过程以及对骤冷后得到的玻璃体进行表征均使用了DSC仪。2018年研究者Yuan Su等[6]发表的研究文章中用类似的方法对灰黄霉素进行了研究,提出在超低温状态下(低于玻璃化转变温度),玻璃体发生断裂,在断裂面形成了晶核,因此不仅熔融-骤冷法不一定能得到无定形药物,而且对于无定形药物的保存也要注意贮藏条件可能产生的影响。 /p p    strong 二、药物共晶的研究 /strong /p p   共晶是提高药物溶解度的一个有效手段,而DSC是表征共晶形成成功与否的强有力技术。2018年研究者Patrycja Garbacz等[7]发表的研究文章中对吲哚美辛与糖精共晶、呋塞米与对氨基苯甲酸共晶进行了研究,典型的DSC图谱见图3。由图中可见,原料比例为1:2时吲哚美辛与糖精形成了共晶,即熔点只有一个。其他检测方法,例如红外光谱法、拉曼光谱法,都无法区分物理混合物与共晶。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 251px " src=" https://img1.17img.cn/17img/images/202006/uepic/bfbfeed1-7583-4e9d-bab7-1ff5558465af.jpg" title=" 图3 吲哚美辛与糖精共晶研究的DSC图谱.jpg" alt=" 图3 吲哚美辛与糖精共晶研究的DSC图谱.jpg" width=" 500" height=" 251" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图3 吲哚美辛与糖精共晶研究的DSC图谱 /strong /p p style=" text-align: center "   (a)吲哚美辛与糖精物理混合物(1:1) /p p style=" text-align: center "   (b)吲哚美辛与糖精物理混合物(2:1) /p p style=" text-align: center "   (c)吲哚美辛与糖精物理混合物(1:2) /p p style=" text-align: center "   (d)吲哚美辛与糖精共晶(原料比例1:1) /p p style=" text-align: center "   (e)吲哚美辛与糖精共晶(原料比例2:1) /p p style=" text-align: center "   (f)吲哚美辛与糖精共晶(原料比例1:2) /p p style=" text-align: center "   (g)吲哚美辛 /p p style=" text-align: center "   (h)糖精 /p p    strong 三、药物新剂型的研究 /strong /p p   纳米脂质体、介孔二氧化硅纳米粒、聚L-乳酸电纺纤维、温敏性水凝胶都是近年来发展起来的一些药物载体,也是药物新剂型。对于药物载体是否成功载药的研究,DSC是一个有效的表征手段,以2018年Li Pan等[18]对载虾青素的纳米脂质体研究为例,图4为采用DSC对原料药、辅料、原料药与辅料的物理混合物、载药纳米脂质体进行研究的图。载虾青素的纳米脂质体显示了与辅料大豆磷脂酰胆碱以及二者的物理混合物不同的DSC曲线。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 390px " src=" https://img1.17img.cn/17img/images/202006/uepic/fc4b38c6-cf08-49f0-b45d-11e2bd953a3e.jpg" title=" 图4 载虾青素的纳米脂质体研究的DSC图谱.jpg" alt=" 图4 载虾青素的纳米脂质体研究的DSC图谱.jpg" width=" 500" height=" 390" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图4 载虾青素的纳米脂质体研究的DSC图谱 /strong /p p style=" text-align: center " (a)虾青素 /p p style=" text-align: center " (b)载虾青素的纳米脂质体 /p p style=" text-align: center " (c)大豆磷脂酰胆碱 /p p style=" text-align: center " (d)虾青素与大豆磷脂酰胆碱的物理混合物 /p p   对于载虾青素的纳米脂质体研究,研究者不仅使用了DSC,还使用了TG,图谱见图5。TG曲线可被分为三段,分别代表了三步分解过程:失水(138℃之前)、大豆磷脂酰胆碱分解(138~315℃)、虾青素分解(315~500℃)。TG曲线可以从一个侧面反映药物的组成。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 350px " src=" https://img1.17img.cn/17img/images/202006/uepic/cd90f3d6-0c0d-47b8-94ec-55fbf677c8b9.jpg" title=" 图5 载虾青素纳米脂质体的TG图谱.jpg" alt=" 图5 载虾青素纳米脂质体的TG图谱.jpg" width=" 500" height=" 350" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图5 载虾青素纳米脂质体的TG图谱 /strong /p p   由以上这些应用来看,随着采用热分析法对于药物多晶型的研究工作日益的广泛,以及仿制药与原研药一致性评价工作的需求,采用热分析技术作为成品的质量控制手段的可能性也会大幅提升。因此,可以预见,热分析技术在药物质量控制领域会发挥越来越大的作用。 /p p br/ /p p    a href=" https://www.instrument.com.cn/zt/rfxjszywzlkzzdyy" target=" _self" strong 热分析技术在药物质量控制中的应用专题 /strong : /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/zt/rfxjszywzlkzzdyy" target=" _self" img style=" max-width: 100% max-height: 100% width: 600px height: 131px " src=" https://img1.17img.cn/17img/images/202006/uepic/275383cf-9219-4e35-ace8-f04a0943596e.jpg" title=" 192042020200616.jpg" alt=" 192042020200616.jpg" width=" 600" height=" 131" border=" 0" vspace=" 0" / /a /p p br/ /p p    strong 参考文献: /strong /p p   [1] 刘毅,吴建敏,严菁,等. 熔点对照品标化研究,中国新药杂志,2015,24(3):264-270 /p p   [2] 刘毅,吴建敏,吴涓,等. 差示扫描量热法在化学药品对照品纯度分析中的应用,中国新药杂志,2017,26(10):1115-1118 /p p   [3] Akhtar Siddiqui, Ziyaur Rahman, Mansoor A. Khan. Application of chemometric methods to differential scanning calorimeter (DSC) to estimate nimodipine polymorphs from cosolvent system. Drug Development and Industrial Pharmacy, 2015, 41(6):995-999 /p p   [4] Yusuke Hattori, Ayumi Suzuki, Makoto Otsuka. Characterization of melt-quenched and milled amorphous solids of gatifloxacin. Drug Development and Industrial Pharmacy, 2016, 42(11): 1851-1856 /p p   [5] Ioannis Nikolakakis, Kyriakos Kachrimanis. Crystallization kinetics of orthorhombic paracetamol from supercooled melts studied by non-isothermal DSC. Drug Development and Industrial Pharmacy, 2017, 42(2): 257-263 /p p   [6] Yuan Su, Lian Yu, Ting Cai. Enhanced crystal nucleation in glass-forming liquids by tensile fracture in the glassy state. Crystal growth & amp design, 2018, DOI: 10.1021/acs.cgd.8b01427 /p p   [7] Patrycja Garbacz, MarekWesolowski. DSC, FTIR and Raman Spectroscopy Coupled withMultivariate Analysis in a Study of Co-Crystals of Pharmaceutical Interest. Molecules, 2018, 23, 2136 doi:10.3390/molecules23092136 www.mdpi.com/journal/molecules /p p   [8] 冯巧,张亚轩,夏志伟,等. 温敏型水凝胶聚(N-异丙基丙烯酰-乙烯基吡咯烷酮)的前端聚合法制备及性能. 高分子材料科学与工程,2015,31(4):37-46 /p p   [9] 王浩,康卫民,张亚秋,等. 壬苯醇醚聚ε-己内酯电纺纤维膜的表征及释放. 沈阳药科大学学报,2015,32(4):249-255,270 /p p   [10] 王浩,郭衎,刘影,等. 十六烷基磷脂酰胆碱复合聚ε-己内酯电纺微球的制备及表征. 辽宁医学院学报,2015,36(2):1-5,附页1-2 /p p   [11] 吕洁琼,林君红,崔升淼. 介孔二氧化硅纳米粒对穿心莲内酯载药性能及药物释放的影响. 广东药学院学报,2016,32(5):555-558 /p p   [12] 吕志阳,杨雨微,陈璟,等. 热熔挤出技术制备银杏总内酯固体分散体的研究. 中药材,2016,39(7):1610-1613 /p p   [13] Li Pan, Hongyan Wang, Keren Gu. Nanoliposomes as Vehicles for Astaxanthin Characterization In Vitro Release Evaluation and Structure-PXRD DSC. Molecules, 2018, 23:2822 doi:10.3390/molecules23112822 www.mdpi.com/journal/molecules /p p   [14] 赵娜,史雨,王中彦. 和厚朴酚固体分散体的制备及表征. 沈阳药科大学学报,2019,36(6):469-473 /p p   [15] 管庆霞,张悦,邹淑君,等. 马钱子碱纳米结构脂质载体的表征及体外释放行为分析. 中国中医药信息杂志,2019,26(8):66-70 /p p   [16] 郭爱灵,姚涛,潘斯庆,等. 复方葛根素水飞蓟宾固体分散体的制备及表征. 中国中医药信息杂志,2020,27(2):59-63 /p p   [17] 黄佳娜,崔银,张天,等. 载塞克硝唑泊洛沙姆复合聚L-乳酸电纺纤维的表征和释放行为考察. 中国医药工业杂志,2020,51(5):605-612 /p p   [18] 盛晓丹,刘臻,罗砚曦,等. 聚多巴胺修饰的载榄香烯介孔二氧化硅纳米粒的制备及其靶向抗肿瘤活性研究. 中草药,2020,51(10):2745-2754 /p p   [19] 王秦峰. 聚乳酸的热性能研究. 上海化工,2019,44(2):14-16 /p p   [20] Carlos David Grande Tovar, Jorge Ivá n Castro, Carlos Humberto Valencia, et al. Nanocomposite Films of Chitosan-Grafted Carbon Nano-Onions for Biomedical Applications. Molecules, 2020, 25:1203 doi:10.3390/molecules25051203 www.mdpi.com/journal/molecules /p p   [21] 张建军,钱帅,高缘主编. 晶型药物研发理论与应用,化学工业出版社,2019.1 /p p br/ /p
  • 我国首家“中药质量控制技术重点实验室”成立
    近日,我国首家“中药质量控制技术重点实验室”在宏济堂制药集团正式成立,它的成立将填补我国无中药质量控制技术重点实验室的重大空白。  据了解,中药质量控制技术重点实验室依托山东宏济堂制药集团股份有限公司和山东省科学院分析测试中心组建和运行。重点实验室具有三个显著特点:一是这是全国首家围绕中药质量控制领域成立的省级重点实验室,填补了国家空白。二是专家大多来自全国知名科研机构及重点高校,具有强大的专业技术力量。三是转型试点。山东省科技厅等将此实验室作为专业科研机构转向经营实体的重点试点项目,为科研机构转向市场探索新的路径。据了解,重点实验将聚集国内外中药质量控制技术相关专业研究者、管理者和决策者,借助科研与产业资源相结合打造国家创新平台的优势。重点针对目前中药产业中存在的质量标准体系不完善、标准品缺乏、分析质量控制方法落后、农残重金属超标、传统中药二次开发水平不高等问题,开展中药质量控制技术创新及产品二次开发研究。通过新型的科研实体模式,将成果、技术在重点实验室内实现产业转化,解决行业内技术成果向产业化转化的瓶颈问题。
  • 优化合成皮革的颜色质量控制—色彩色差仪
    在各种行业中,皮革产品一直占据着重要的位置。它们以其独特的美观、耐久性和舒适性深受人们喜爱。然而,由于自然皮革的生产需要消耗大量资源,并对环境产生影响,合成皮革因其可持续性和经济性而受到越来越多的关注。合成皮革,也被称为人造皮革或仿皮革,是一种人造材料,其外观和感觉类似于自然皮革,但生产过程更加环保,成本更低。然而,尽管合成皮革的生产过程更具可持续性,但其质量、质感和颜色的一致性却面临着严峻挑战。特别是在色彩控制方面,合成皮革的生产过程必须经过严格的颜色质量控制,以确保产品在视觉上的一致性和吸引力。而这就是Ci7x00系列和Ci6x系列的色彩检测仪发挥其独特优势的地方。理论上,色彩检测仪通过测量物体反射或透射的光的颜色,然后通过专门的算法计算出色差——即目标颜色和标准颜色之间的差异。这一测量结果为生产过程提供了实时、准确的反馈,有助于提高产品质量和减少废品。Ci7x00系列和Ci6x系列的色差仪是专门用于精确测量和控制颜色的高性能设备,它们能够在生产过程中进行精确、快速和可重复的颜色测量。这些设备使用先进的色彩科学和光谱技术,能够提供高精度和重复性的测量结果,以确保合成皮革的颜色在各个生产批次中的一致性。Ci7x00系列色差仪包括Ci7860精密色差仪,Ci7800台式色差仪和Ci7830反射率测定仪。Ci7860精密色差仪为最高端的模型,为全球颜色控制提供最准确的数据,帮助合成皮革制造商获得最佳颜色质量和一致性。Ci7800台式色差仪具备卓越的测量精度和短期重复性,为颜色质量控制提供可靠的基础。Ci7830反射率测定仪能够快速准确地测量材料的总反射率,提供重要的颜色数据。Ci6x系列色差仪,包括Ci64手持式色差仪、Ci60便携式分光色差仪和Ci62分光色差仪,是一系列用于测量和分析颜色的设备。这些设备兼具易用性和强大的性能,可以提供精准的测量结果,并能有效地进行颜色管理和控制,确保合成皮革的颜色质量和一致性。合成皮革的生产,既需要考虑经济效益和环保需求,也需要确保产品质量和视觉吸引力。Ci7x00系列和Ci6x系列色彩检测仪是实现这一目标的理想工具,能够满足生产过程中对颜色控制的严格要求。“爱色丽彩通”是丹纳赫公司旗下的品牌,总部位于美国密歇根州,成立于1958年。作为全球领先的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。
  • 手持式拉曼光谱仪:原料药质量控制的有力工具
    便宜、快速的手持式拉曼光谱仪正在迅速成为原料药采购质量控制的有力工具。   拉曼光谱仪是快速鉴定未知化合物的有力工具,例如检测高纯度化学品、药物成分验证和高分子材料的表征。拉曼光谱仪器大受欢迎主要是由于现代仪器所配备的智能决策软件和谱图库,使得它成为理想的分子指纹图谱分析技术。不同于传统的分子光谱技术,拉曼光谱仪可用于生产环境或现场应用,因为它能产生尖锐、特异的谱峰,几乎不需要样品前处理或直接与样品接触。此外,它还具有独特的能力,可以通过透明的包装材料,如玻璃或塑料,直接测试样品,并对光谱信息没有任何干扰。 手持式拉曼光谱仪   如今的拉曼光谱仪在朝着更快、更坚固耐用、更便宜、元器件小型化的方向发展,促使了高性能,便携式、手持式拉曼光谱仪的出现。这些手持设备特别适合于医药领域的应用,如原料药的测试,最终产品验证、假药的识别,因为拉曼光谱技术具有非常高的分子选择性。 图1:5个相似的有机分子的拉曼光谱(从上到下)分别为:丙酮,乙醇,二甲亚砜,乙酸乙酯和甲苯。   传统的医用原料药质量控制,一般需要取样到实验室检测或使用便携式红外设备测试选定批次的样品化学成分。此外,药物的最终产品验证需要更为严格的方法,而且需要技术熟练的化学分析操作人员,能够进行提取操作,并使用复杂的和耗时的分析技术,如湿法化学分析,液相色谱或质谱等。   虽然已有的分析方法已经取得了令人满意的结果,但是其分析速度极其缓慢,而且不符合成本效益,并有着巨大的采样瓶颈,尤其是随着FDA鼓励所有的制药公司检测进厂的每一箱原料药。出于这个原因,多年来分析仪器公司一直致力于同医药行业一起开发创新的解决方案,以取代目前的检测方法,提高分析目标,同时降低整体成本。   毫无疑问,拉曼光谱是最适合于这种类型工作的技术,它能够迅速通过仪器内置的谱图库或用户生成的谱图库,确定原料药或最终药品的成分是否真实。随着小型手持设备的发展,该技术可以在制造工厂的任何地点使用,为操作者快速提供材料的化学特性。   多种技术的发展促进了便携拉曼光谱仪器技术的进步,使得该仪器非常适合于原料药的表征。这些技术包括:先进的制造程序、创新的光学设计、紧凑和高稳定性的探测器、更小的电子元件、触摸屏的发展、计算能力的进步,以及使用时间更长、性能更好的电池。   拉曼光谱仪正在成为原料药采购中质量控制的有力分析工具。其被广泛接受的原因是,它用于仓库化学品的快速识别,比传统的实验室分析技术更具成本效益。许多制造企业都发现,该仪器的初始投资成本回收期只需6至12个月。 编译:秦丽娟
  • 用现代化技术焕发传统中药活力 中药分析及质量控制创新发展论坛成功召开
    中药是中华民族的文化瑰宝,凝聚了中国人民几千年的博大智慧。在我国加快推进中医药现代化、产业化过程中,进一步强化质量监管、完善标准体系、借助现代科技的手段激活中医药的特色和优势均显得格外重要。党的十八大以来,党中央把中医药工作摆在突出位置,中医药改革发展取得显著成绩。新冠肺炎疫情发生后,中医药全面参与疫情防控救治,作出了重要贡献。国家也出台了一系列相关政策,全面加大了对中医药的支持和投入力度,中药迎来了发展新机遇。为分享中药分析与质量控制领域的最新进展,探讨分析技术在中药领域的应用现状及趋势,4月23日,2021第十五届中国科学仪器发展年会(ACCSI2021)召开期间,主办方携手中国医药生物技术协会药物分析技术分会,共同举办“中药分析及质量控制创新发展论坛”,论坛吸引了超百位代表出席。会议现场清华大学 罗国安教授主持会议本次论坛,由清华大学罗国安教授担任会议主席,邀请到中国科学院上海药物研究所果德安研究员、北京大学医学部屠鹏飞教授、上海市食品药品检验院季申主任、辽宁中医药大学药学院副院长孟宪生教授、南开大学药学院白钢教授、神威药业集团执行总裁陈钟先生等业内知名专家分享报告。针对当下中药分析与质量控制热点进行探讨,旨在为中药分析及质量控制专家和厂商提供更优质、有效的交流平台,为促进我国中药分析及质量控制相关领域的发展贡献一份力量。报告人:清华大学教授 罗国安报告题目《微流控药物分析“芯”方法及其应用》微流控芯片技术巳成为本世纪最为热门的前沿技术之一,並成为向传统新药研发体系引入新概念,发展能更真实反映人体病理生理过程,进行体外高通量筛选的新技术,有助于解决新药研发体系技术瓶颈,降低新药研发周期和成本。报告中介绍了微流控芯片药物筛选研究总体途径,包括药物活性筛选、临床前模式生物、毒理测试和药物临床测试等。着重介绍分子水平、细胞水平、模式生物水平和高度模拟人体微环境的组织水平(器官芯片)的微流控芯片药物研发研究平台的相关工作。报告人:中国科学院上海药物研究所研究员 果德安报告题目《中药质量的基础和应用研究》针对中药多成分复杂体系特点,发展了“化学分析-代谢分析-生物分析”三位一体的系统分析方法,解决了制约中药质量标准制定的基础科学问题,以丹参、人参、钩藤等单味药材和复方丹参片、牛黄上清丸等复方制剂为研究对象,开展了系统研究,发展了方法,基本阐明了其化成组成。在此基础上,构建了符合中药特点的整体质量标准体系,创新了质量检测方法,搭建了相关平台和数据库等支撑体系。建立的标准被美国药典和欧洲药典采纳。报告人:北京大学药学院教授 屠鹏飞报告题目《LC-MS技术创新及在中药复杂体系分析中的应用》  针对中药化学成分的复杂性和微量性,从样品制备、色谱分离、质谱检测和结构鉴定全过程,开发了在线加压溶剂提取、双柱在线耦联、在线能量分辨质谱(online ER-MS)和中药二进制码等多项先进技术,建立了国际领先的复杂样品高效分析与精准鉴定技术体系及平台,实现了微量提取、在线分析、全面保留、全成分定性和定量分析、快速检索与准确鉴定,为中药药效物质与质量分析提供了全面的技术支撑。本报告主要内容为:在线加压溶剂提取模块实现中药直接分析;RPLC-HILIC实现大、中、小极性化学成分的全面定量分析;online ER-MS的原理及应用;中药二进制码的建立及其应用于中药基原快速鉴定;中药质量标准发展思路。报告人:神威药业集团执行总裁 陈钟报告题目《中药配方颗粒质量控制与标准研究及产业化》报告主要介绍了选取道地产区的药材,以标准汤剂为基准,研究揭示“药材--标准汤剂--配方颗粒”量值传递规律,建立中药配方颗粒多指标、多成分、多方法相结合的整体质量控制标准。开展药材—水煎液—配方颗粒化学成分的对比研究,从物质基础的角度开展配方颗粒与传统汤剂的对比性研究。利用高内涵分析技术,应用细胞药效学,开展配方颗粒作用机理和安全性评价。报告人:上海市食品药品检验研究院中药室主任 季申报告题目《高分辨质谱快速筛查技术实现对中药复杂基质中农残等痕量分析的研究》随着质谱技术的不断发展和完善,高分辨质谱在农残等外源性有害残留物检测中发挥着越来越重要的作用。高分辨质谱具有较高的分辨率和质量精度,可获取完整的质谱信息,能够实现高选择性、高通量的靶向和非靶向分析,降低检测成本,提高分析效率。然而目前高分辨质谱在实际应用中仍存在着许多研究难点,包括数据扫描模式的选择和优化、结果的判定方式以及相关前处理方法的开发等。本报告将重点介绍高分辨质谱快速筛查技术对中药复杂基质中农残等痕量分析的研究,建立高分辨质谱定性筛查、三重四极杆质谱定量检测的互补应用模式,为中药安全性相关检测方法发展提供新的思路。  报告人:辽宁中医药大学教授 孟宪生  报告题目《中药经典名方古方比较学研究与实践》针对目前中药经典名方开发与研究中处方、药材、物质基准、工艺、质量方面存在的热点、难点问题,结合笔者多年研究经验探索解决方法,基于古方比较学,提出经典名方研究开发策略。整合人工智能等现代科技手段,通过中医与中药研究结合、理论与实践结合、传承与创新结合、物质基础与药效研究结合比较古方及其组成药材历史沿革、衍变规律,寻找不同时代异同,共识标准,确证古方本原,明确“物质基准”,以期为传统经典名方的中药复方制剂开发提供借鉴。报告人:南开大学教授 白钢报告题目《基于中药质量标志物的中药质量控制研究》由于中药自身科学内涵的复杂性、化学成分的多样性、制备过程的特殊性,其质量控制远比化药和生物药更困难。目前中药的质量评价主要沿用以药效成分或指标性成分的定性或定量分析为基础的检测模式,而以药理活性为基础的生物效价或生物标志物的评价体系似乎更符合临床的需求。本研究提出建立以中药质量标志物为核心的中药质量属性监管体系,通过质量标志物与关键的生物效价的多元量效转换表征药材的特定药理活性;通过生物效价离散度分析展示不同药材功效之间的差异;通过质量综合评价指数的整合来反映药材的整体质量属性;通过基于近红外的大样本分析实现快速检测与智能评价。报告人:岛津企业管理(中国)有限公司医药行业专员 丰伟刚  报告题目《中药安全性控制标准解读与岛津分析解决方案》报告人:赛默飞色谱和质谱事业部应用支持总监 薄涛  报告题目《分析技术的新平台和新流程:提升中药工业的水平 & 突破中药研究的瓶颈》报告人:上海科哲生化科技有限公司总工程师 张建明  报告题目《中药样品前处理技术》
  • “干细胞外泌体质量控制标准”又一团标上线
    干细胞衍生的细胞外囊泡(stem cell-derived extracellular vesicles, SC-EVs)作为一种“无细胞的干细胞疗法新秀”,已在多种疾病中表现出显著的治疗效果。与传统干细胞移植相比,SC-EVs结构组成简单,不存在免疫排斥、成瘤等干细胞移植风险,表现出更高的治疗安全性。根据全球市场报告,到2030年全球外泌体市场预计将达到10.3亿美元,其中干细胞外泌体相关的研究和产业化稳坐C位。Clinical Trials搜索结果显示,目前全球已有167项注册在案的外泌体相关疗法的研究,其中31项围绕干细胞来源的外泌体所开展,覆盖呼吸道疾病、传染病及肿瘤等多个方面。EVs的高度复杂性和异质性,导致其临床转化和工业生产仍存在着诸多亟待突破的瓶颈。国际细胞外囊泡协会联合领域内300多位专家发布研究指导——Minimal information for studies of extracellular vesicles 2018(MISEV2018),以规范化该领域内相关研究并给予研究者们相关实验指导;此外,FDA也发布了关于干细胞和外泌体产品的公共安全公告,强调了基于SC-EVs治疗的标准化及其法规建立。对于SC-EVs研究来说,分离与鉴定、质量控制等环节仍存在不同程度的分歧和争议,尚缺乏统一标准。为了推进SC-EVs在疾病治疗领域的研究与应用,2022年1月1日,中国研究型医院学会细胞外囊泡研究与应用分会围绕SC-EVs制定了两项全国团体标准——《人多能干细胞来源的小细胞外囊泡》(T/CRHA 002-2021)和《人间充质干细胞来源的小细胞外囊泡》(T/CRHA 001-2021)正式发布启用。其中,厦门福流生物(NanoFCM Inc.)自主研发的纳米流式检测技术被正式纳入其中,作为SC-EVs的重要表征标准。 上海市生物医药行业协会依据协会团体标准管理办法规定,结合国内外研究进展和参编单位的实践经验,制定了《间充质干细胞外泌体质量控制标准》(T/SBIAORG 001-2023),并于2023年3月27日起正式实施,以进一步推动SC-EVs相关技术的落地、建立行业标准、规范行业发展并为研究人员提供指导!该团体标准规定了间充质干细胞外泌体的质量控制方法,适用于间充质干细胞外泌体的制备、储存、运输和应用等多个环节的质量控制。 在该标准中,纳米流式检测技术承担了外泌体粒径、浓度和表面标志蛋白表征的重要角色,具体操作方法详见标准(标准文件点击链接下载):https://pan.baidu.com/s/12qLuckmS-zi2Ft1w9iDPQw?pwd=w9zg (提取码:w9zg)扫描二维码获取厦门福流生物科技有限公司自主研发的纳米流式检测仪覆盖了传统流式200 nm以下的检测盲区,除了外泌体,在核酸药物、病毒、细菌等天然及合成纳米粒子多维表征均有应用,具有快速、高通量、多参数等优势。目前客户遍布全球顶级研究机构和制药企业。为了更好的服务外泌体领域客户,2022年Q2我们全新发布了外泌体解决方案,涉及外泌体粒径分布、颗粒浓度,生化性质等多参数表征,可在纯化方法评估、质量控制、载药策略选择及疾病诊断等场景下应用。EVers福利为了庆祝NanoFCM进入新的干细胞外泌体团体标准,打通了流式进入干细胞外泌体临床和产业化质控之路,我们计划为20个干细胞外泌体临床研究和产业化的客户提供限时限量的免费检测,活动时间:即日起——5月31日,可扫码添加下方微信号,向NanoFCM客服获取测样申请表。(注:活动解释权归厦门福流生物有限公司所有)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制