当前位置: 仪器信息网 > 行业主题 > >

带表深度尺

仪器信息网带表深度尺专题为您提供2024年最新带表深度尺价格报价、厂家品牌的相关信息, 包括带表深度尺参数、型号等,不管是国产,还是进口品牌的带表深度尺您都可以在这里找到。 除此之外,仪器信息网还免费为您整合带表深度尺相关的耗材配件、试剂标物,还有带表深度尺相关的最新资讯、资料,以及带表深度尺相关的解决方案。

带表深度尺相关的资讯

  • 多家机构发布深度研报:普源精电用“芯”抢滩国产替代新风口
    近日来,普源精电科技股份有限公司(以下简称“普源精电”或“公司”)连获数家机构深度研报,其中中金公司首次覆盖给予公司“跑赢行业”的评级,国金证券、安信证券、申万宏源均首予公司“买入”评级,其中最高目标价达到89.06元。相关研报指出,示波器是电子测量仪器行业中规模最大的单品,全球市场规模将在2025年达到113.0亿元,而我国受益于工业制造行业的迅速发展,示波器市场规模也将在2025年增长至42.2亿元。普源精电领先行业坚持自研芯片战略,历经十多年的技术积累,不断突破技术壁垒,近年凭借自研的“凤凰座”芯片组实现了高端示波器量产,并依托性价比优势,借助国产化的窗口期,正在不断扩展市场空间。研报一致的优秀评级展现了资本市场对普源精电成长性与未来发展的信心。受益于全球经济增长和产业升级,电子测量仪器市场近年来持续稳定增长。弗若斯特沙利文报告数据显示,目前全球电子测量仪器的市场规模由2015年的658.69亿元增长至2019年的894.69亿元,CAGR为7.96%。随着5G的商用化、新能源汽车市场占有率的上升、信息通信和工业生产的发展,全球电子测量设备的需求将持续增长,2025年有望达到1,124.76亿元,电子测量仪器市场拥有非常广阔的市场空间。但是从全球竞争格局来看,区域市场发展却相对不平衡。放眼国内,我国的电子测量市场长期都以海外品牌销售为主,被国外巨头寡头垄断,国产厂商份额较低。相关研报表示,一方面,国产厂商因中国电子测量仪器行业起步较晚,企业发展时间短,技术积累相对薄弱,技术水平导致的供给能力不足,相较海外仍存在一定差距。另一方面,则是由于外资龙头长期建立起的品牌信任度形成的高壁垒。此外,近年来美国高性能通用电子测试测量仪器对我国进行出口管制,同时将我国诸多企业、科研院所列为实体清单企业,限制了国内厂商采购美国通用电子测试测量仪器。是挑战也是机遇,技术差距与贸易风险使得通用电子测量仪器国产替代的重要性日益凸显,技术突破与产业链完整可控俨已成为破局的关键筹码,国内通用电子测量仪器企业迎来新的发展风口。受半导体工艺、单功能模块技术、系统架构技术等限制,国内厂商目前产品仍以中端及经济型为主。而现代电子测量仪器均建立在芯片基础上,所采用的核心信号链芯片对产品的性能和档次起到决定性作用。然而,由于《瓦森纳协定》等国际贸易限制,国内厂商直接采购高端电子测量仪器所使用的核心芯片阻力日益增大,这种内外承压的大环境下,以自研芯片实现高端化破局迫在眉睫。普源精电以极具前瞻性的决策,先手行业十余年进行了自研芯片布局,近些年在技术上实现了“0到1”的战略性突破,打开了技术天花板,率先将数字示波器产品带入广阔蓝海市场,改变了过去国产中低端产品的红海竞争格局。自研“凤凰座”芯片组实现了高端数字示波器的产业化,并产生巨大商业价值和盈利回报。2020年底正式发布的DS70000系列产品是国产示波器的全新里程碑产品,达到5GHz带宽,20GSa/s实时采样率,使得中国数字示波器第一次迈入4GHz带宽的高端之门,是目前国产行业最高技术水平,成功突破行业高端壁垒并打开长期成长空间。中金公司在研报中表示,该系列产品的突破对于满足国产替代的市场需求有显著先发优势,对于增厚公司营收和净利至关重要。事实上,机构对公司自研芯片战略皆给予了充分肯定,认为普源精电正立足自研、进阶高端、向国际巨头看齐,增长驶入快车道。普源精电高端化步伐远不止于此。中金研报显示,公司计划2022年下半年推出搭载高分辨率“半人马座”第二代芯片组的示波器产品;2023年推出搭载“仙女座”第三代芯片组的13GHz宽带示波器产品。普源精电取得的杰出成绩离不开对研发的投入与决心。公司在长期正向设计研发过程中形成了人才培养与工程经验的双重优势,从电路设计、材料工艺、封装测试到整机开发环节积累了深厚的经验。公司表示未来将继续加大新品研发力度,加速产品迭代,优化产品进入高利润区间,拉动整体毛利率稳中求进,实现盈利能力有效提升,抢占国产替代先机。电子测量仪器作为基础性和战略性产业,对每个国家的科技发展和综合国力提升都具有至关重要的作用。《人民日报》在2022年5月30日发表署名文章《大力提升科研仪器自主创新能力(创新谈)》指出,科学仪器是科学研究不可或缺的工具和手段,是推动科技创新的重要支撑。在科技领域,如果想要研发高端和精密的设备,那测量仪器必须更高端、更精密。作为“卡脖子”技术之一,电子测量仪器有着十分广泛的科学应用领域。近年来,在政策加速、供给能力提升、资本市场赋能等多重因素影响下,电子测量仪器下游应用领域“百花齐放”,5G大规模商用、物联网技术迅猛发展、汽车智能化普及、新基建发展、消费电子持续迭代等等,正带动行业需求稳步提升,企业在实现技术突破后将激发巨大的国产替代潜能。普源精电深耕通用电子测量领域20余载,为加速渗透下游产业应用,抢占市场先机,公司建立起了多元化的电子测量仪器产品矩阵。除示波器外,公司还具备射频类仪器、波形发生器、电源及电子负载、万用表及数据采集器等多个产品类目。在高端战略指引下,公司在正致力于实现全品类产品技术突破,加速产品升级迭代,以提升国产替代硬实力。如公司6月发布的首款DSG5000系列多通道微波信号发生器,单台支持高达8路独立可控的相参信号输出,相噪指标达更是到国际一流的-133dBc/Hz@1GHz(偏移10kHz),是目前业界同类产品技术领先者。目前,公司产品已广泛应用于通信、教育科研、工业电子、汽车电子、消费电子等领域,为前沿科技和高新技术产业的升级突破提供多元化的测试测量综合解决方案。随着募投项目推进,公司高带宽的频谱分析仪和矢量网络分析仪有望进一步丰富射频产品矩阵。未来,普源精电凭借“技术+市场”双轮驱动战略,有望率先抢占市场红利,抢滩国产化替代的风口。以自研芯片技术破局、以高端抢滩国产替代,“中国是德科技”普源精电未来有望更好地释放公司“电子测量仪器龙头”的标杆优势,不断触探行业高端领域技术天花板,优化电子测量仪器产品结构,用自身过硬的发展实力提高市场占有率,推动盈利能力快速提升,持续保持业绩高增长态势。
  • 关注“新能源”锂电安全 | 深度分析锂电池鼓胀气体
    关注“新能源”锂电安全|深度分析锂电池鼓胀气体高丽LIBs锂离子电池(LIBs)因其重量轻、能量密度高以及比其他类型电池的使用寿命长等特性,被广泛应用于动力、储能以及3C等产业。锂离子电池在循环使用或储存中,可能因为电解液组分发生成膜及氧化反应、电池过充过放、内部微短路等原因导致SEI膜分解破坏从而产生气体,也可能因电解液中的高含量水分发生电解反应等原因导致电池产气鼓胀,出现具有一定安全风险的失效,主要有热失控、胀气、膨胀形变等。因此,了解电池鼓胀气体的组成对于优化电解液的组成是至关重要的。三类成分电池在老化、放电等过程中会产生各种气体成分非常复杂。其中主要有三类成分:1)永久气体如氢气、甲烷、一氧化碳、二氧化碳等;2)短链碳氢化合物(C2-C5);3)其他可挥发性化合物。赛默飞气相色谱锂电池鼓胀气体分析方案锂离子电池鼓胀气体的常见产气成分有H2,CO,CO2等永久性气体以及CH4,C2H4,C2H6等烷烃类气体。表1.校正气体组成方案一:气密针进样某些小型LIBs在使用过程中只会产生几毫升的膨胀气体。针对气体量极少的这一类样品,赛默飞推出气密针进样,配置一个TCD和一个FID检测器,一根分析柱和一根预柱,一次进样实现对电池鼓胀气体成分H2,O2,N2,CO,CO2,CH4,C2H4,C2H6,C3H6,C3H8的分析。图1.FID通道校正标样色谱图(方案一)(点击查看大图)图2.TCD通道校正标样色谱图(方案一)(点击查看大图)方案二:气密针/阀进样赛默飞推出气密针/阀进样,配置一个TCD和一个FID检测器。一根分析柱和一根预柱,一根毛细管分析柱,一次进样实现对电池鼓胀气体成分H2,O2,N2,CO,CO2,CH4,C2H4,C2H6,C3H6,C3H8,i-C4H10,n-C4H10,i-C5H12,n-C5H12的分析。图3.TCD通道校正标样色谱图(方案二)(点击查看大图)图4.FID通道校正标样色谱图(方案二)(点击查看大图)完善的解决方案在锂电池产业链中,除了电池鼓胀气体成分分析,还需要围绕产品质量、原材料质控、或锂电池各种性能指标的研发工作进行一系列的理化测试,包括:元素分析、电解液、添加剂成分分析、石墨类负极材料有机物含量测试、电解液未知成分分析、SO42-、Cl-等阴离子及Si等非金属元素分析、电解液等原材料鉴别等。赛默飞在锂电子电池材料检测领域积累了丰富的经验,为广大用户提供完善的解决方案。扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+
  • 中科院:“深度学习”赋能SEM\TEM表征纳米颗粒材料形貌
    获取纳米颗粒定量化形貌信息,是科学家研究纳米颗粒材料性能的重要科研途径,对于推动纳米颗粒材料创新十分重要。扫描电子显微镜(SEM)和透射电子显微镜(TEM)是表征纳米颗粒材料形貌的重要工具。   然而,扫描电子显微镜和透射电子显微镜产生的图像,会因为较大的背景干扰和庞大的纳米颗粒数量,使获取纳米颗粒材料形貌信息变得困难。如何在海量而复杂的图像中实时准确地自动获取纳米颗粒定量化形貌信息成为挑战。   针对这一问题,中国科学院沈阳自动化研究所数字工厂研究室王卓课题组提出了一种基于深度学习的通用框架,用于对前述两种电子显微镜所产生图像中的纳米颗粒形貌进行快速、准确地在线统计分析。 该项研究近期获国际学术期刊Nanoscale (影响因子8.307)封面(Outside Front Cover)刊载,文章题目是A deep learning-based framework for automatic analysis of nanoparticle morphology in SEM/TEM images。 纳米颗粒分割模块结构示意图   该通用框架主要包括纳米颗粒分割模块、纳米颗粒形状提取模块和纳米颗粒形貌统计分析模块三个重要组成部分。其中,在纳米颗粒分割模块的设计中,研究人员将轻量化空洞空间池化金字塔模块、双注意力机制和改进的多尺度渐进融合解码器相融合,能够对纳米颗粒形貌特征进行多尺度多维度的快速捕获和融合,提高该通用框架的实时性和准确性。   试验结果表明,研究人员提出的模型在数据集上测试达到86.2%的准确率,并且将模型部署在嵌入式处理器上处理速度可达11FPS,可以满足电镜端的实时处理需求。
  • 新品亮相,展位爆满!INCount发布第一天就获专家代表深度好评!
    2023年4月10日起,由中国细胞生物学学会主办的中国细胞生物学学会第十八次全国会员代表大会暨2023年全国学术大会,在江苏苏州盛大举行!宁波力显智能科技有限公司INVIEW作为专业从事超高分辨率显微成像产品生产研发的科技企业,受邀参会并作精彩亮相。值此盛会,力显智能发布了新品——细胞计数仪!正值春日好光景,展台前人才济济!嘉宾老师们都给了INCount极大的肯定,INCount也成为了本次会议吸睛的新起之秀!新品发布期间力显展位吸引了众多行业同仁的驻足参观和交流,吸引众多参展人员深入交流探讨,众多参展人员与代理商经过亲身试用体验和咨询信息后展现出浓厚的兴趣!INCount C全自动细胞计数仪是集高清成像、精准计数、智能分析为一体的细胞计数系统,搭载深度学习智能识别算法,准确分割细胞聚团,实现精准计数及数据可视化:一键开启、快捷方便、8s计数,让细胞计数快人1秒,胜人一筹!准(ACCURATE)1.高清成像600万彩色高帧率CMOS10倍标准物镜0.25 NA值2.智能识别算法确保计数结果准确稳定,准确分割细胞聚团,获得更准确的分析结果 识别重复精度CV3.大样本量细胞统计分析一次可支持6样本各3个视野的成像统计,符合统计学,保障数据准确性。快(EFFICIENT)1.指尖触控触屏操作,简单方便。2.预设多种实验类型实验流程采取一键“宏”模式,预设了台盼蓝、AO/Pl等实验类型,简化手动操作步骤,提高实验效率。3.实现8s样本台盼蓝计数,35s双荧光AOPI计数。智(SMART)1.智能识别结合先进软件和深度学习的智能识别算法,可自动对焦、自动曝光、告别复杂参教设置,最大程度减少用户间操作差异。2.数据可视化内置多种可视化数据分析图像模式3.高性能硬件和配置12核酷睿isCPU,运算快速,分析流畅,智能分析不卡顿。+(AND MORE)1.细胞转染效率分析、细胞周期分析在实现细胞计数的基础上,INcount还可以帮动用户进行组胞转染效率分析和细胞周期分析,精确定量、定性分析,无需第三方分析软件,大大提高实验者效率。2.支持定制支持用户定制,助力更多用户实验。力显的明星产品也是毫不逊色!力显也向业界同仁全面介绍了iSTORM超高分辨率显微成像系统及活细胞成像仪器赛乐微在生物医学领域的创新应用成果,收到了现场专家以及代表用户的一致好评。感谢客户们与专家们的认可客户都说好,才是真的好!在场的客户数就是对我们最好的肯定!关于我们About us 宁波力显智能科技有限公司(INVIEW)是专业从事超高分辨率显微技术和产品研发的科技企业,依托复旦大学的自动控制、新一代信息技术及香港科技大学的生物、光学、图像处理等的技术,拥有光学、生物、自控、机械、信息技术等多领域交叉学科技术团队,将2014年诺贝尔化学奖技术产业化,推出了超高分辨率显微成像系统iSTORM、细胞智能监控助手赛乐微等一系列产品,帮助人们以前所未有的视角观察微观世界,突破极限,见所未见。
  • HORIBA Scientific推出针对锂电池电极化学深度剖析的最新解决方案
    作为辉光放电光谱仪的全球者,HORIBA Scientific(Jobin Yvon光谱技术)于2012年举办了大型国际会议&ldquo GD Day&rdquo ,并在该会议上隆重推出针对锂电池电深度剖析的系列方法、附件及系统。 该技术在提高分析灵敏度和分析速度的同时,将样品侵蚀速度大幅提升到几微米/分钟。 这些技术包括: 1. 针对易碎样品的特别预处理方法,可在辉光放电分析前对电池类易碎电进行妥善处理,大幅提高样品处理效率。 2. &ldquo 锂钟&rdquo (附件):特别用于保护对空气敏感的样品,避免样品与空气接触导致的样品变性而影响测试结果的准确度。 锂钟示意图 锂钟实物图 3. 超快速溅射系统&ldquo UFS&rdquo 系统,将样品侵蚀速度提升到几微米/分钟,与常规表面分析技术相比,大地缩短了分析时间。 点击此处获取更多信息
  • ADC药物的深度表征
    抗体偶联药物(antibody-drug conjugate,ADC)是一类通过特定的连接子将靶向单克隆抗体与高杀伤性的细胞毒性小分子药物偶联起来的生物药,以单克隆抗体为载体将小分子细胞毒性药物高效地运输至目标肿瘤细胞中,起到治疗的目的。与传统抗体药相比,ADC药物的结构复杂度和异质性更高,因为添加了多变的有效载荷和连接子1。为确保药物安全性和有效性,ADC的深度表征在其开发过程中至关重要。这不仅包括对mAb的翻译后修饰(PTM)的鉴定和定位,还包括药物偶联的鉴定。由于质谱技术的飞速发展,质谱已经成为ADC药物表征中最广泛使用的方法。完整质量分析是用于确定小分子药物与抗体比率(DAR)的常规方法,而对结合位点的深入表征,通常依赖于bottom-up的方法。现在最广泛采用的碰撞诱导解离(CID)技术能够提供氨基酸序列确认,但是这种能量比较大的碎裂技术也将有效载荷碎裂为更小的片段,从这种方法获得的高度复杂的谱图可能很难解析。而能量更柔和的碎裂方法可以促进此类复杂样品的解析,一种基于电子活化裂解(EAD)2,3的创新、高度可重复的碎裂方法用于分析来自商业化ADC药物的偶联肽。使用10 Hz快速非靶向的数据依赖采集(DDA)方法采集数据,通过此工作流程,一次进样就可以应用基于EAD的碎片进行常规和高级表征。曲妥珠单抗美坦新偶联物(T-DM1)是最早的ADC治疗药物之一,于2013年获得FDA批准用于治疗人表皮生长因子受体2(HER2)阳性转移性乳腺癌。T-DM1是由单克隆抗体曲妥珠单抗和细胞毒素美坦新(DM1)通过不可裂解连接子共价偶联而成(图1)。将单克隆抗体(mAb)的靶标特异性与细胞毒性药物的高效率相结合,可充分利用两个方面的优势,最大限度地减少副作用3。T-DM1是与氨基连接,如连接在曲妥珠单抗的赖氨酸残基的侧链中。先前的完整质量研究表明,T-DM1的平均DAR约为3.5.1,4。但是曲妥珠单抗中有88个赖氨酸残基和4个N端基团,可能会出现450万个以上的不同分子形式1。有效载荷的位点和结构将直接影响药物的功效和安全性,因此将其归类为关键质量属性(CQA),并且需要在开发过程中进行全面表征和严格监控。图1. 细胞毒药物有效载荷和连接子与mAb偶联的示意图。T-DM1由DM1(黑色),靶向连接氨基残基的MCC连接子(linker,蓝色)和单克隆抗体组成。本研究选择了与Zeno&trade EAD相结合的DDA方法。采用这种方法,不仅可以执行常规的肽图分析,而且EAD可以在同一针分析中进行高级表征。此外,Zeno EAD增强了碎片离子的检测能力,从而正确鉴定了低丰度物质。图2展示了在偶联肽SCDK [DM1]THTCPPCPAPELLGGPSVFLFPPKPK上观察到的碎裂模式的例子。在分析中未观察到没有连接子和药物或其部分的肽,表明其完全偶联。获得了此肽段高质量的MS / MS谱图,从而使该特定肽段的MS / MS序列覆盖率达到96.6%。一个更占优势的碎片从 m/z大于500的有效载荷产生(请见图2中的标记)。观察到的有效载荷结构的主要裂解位点是DM1的COO-C键,这种碎裂模式与先前利用CID技术产生的一系列小碎片的数据不同1。较大分子量的药物碎片可以用作特征碎片,以更具体地确认有效载荷的存在,并可以用来确认有效载荷的结构。图2. 应用Zeno EAD得到的偶联肽SCDK [DM1] THTCPPCPAPELLGGPSVFLFPPKPK(z =+4)的碎片数据。来自肽段主链指定偶联肽段离子的全扫描MS / MS数据,以及有效载荷中的碎离子信息。此外,通过将Zeno EAD技术用于增强的碎片离子检测,还可以很好地检测到来自肽段主链的片段信息,从而提供有关肽段的分子完整性的信息。由于酶的空间位阻,抗体上偶联药物的存在会导致样品制备酶解过程中的更多漏切位点。另外,赖氨酸残基和有效载荷之间的结合过程是随机反应,偶联的比率并不总是100%,这导致了多样性和低丰度物质存在。当一个肽段中存在多个潜在连接形式时,鉴定正确的连接位点可能是一个挑战。肽段ASQDVNTAVAWYQQKPGKAPK是这种具有挑战性的另一个例子(图3)。它包含一个漏切位点和一个脯氨酸相邻的N端赖氨酸,导致偶联位点的多种选择。但是,有了从EAD技术碎裂得到丰富、高质量的MS / MS质谱图,就可以实现药物定位的自动匹配(图3A)。由于有效载荷靠近肽的C端,因此检测到的C离子比Z离子丰富(图3A),而未结合的肽显示出来自C端和N端的丰富片段(图3B)。众所周知因为电子活化解离技术不会解离脯氨酸的N端,我们还检测到了除了C15以外的从C3到C17的全系列C片段7。这提供了确凿的证据表明K15未与细胞毒药物偶联。此外,z4,z5和z7表明K18(而非K21)是药物偶联的正确位点。图3. 应用Zeno EAD得到的来自偶联/非偶联肽ASQDVNTAVAWYQQKPGK [DM1] APK(z =+3)的碎片的数据。A:来自肽段主链指定偶联肽段离子的全扫描MS / MS数据,以及有效载荷中的碎离子信息。B:来自肽段主链指定非偶联肽的全扫描MS / MS数据。 连接子显示为蓝色,DM1药物显示为黑色。结论:通过EAD的新型碎裂模式,实现了具有多个潜在位点的多肽中药物偶联的准确定位与传统的MS / MS分析相比,EAD技术获得更丰富的MS/MS碎片信息。应用Zeno EAD技术,即使对于中等强度或极低强度的母离子(例如低丰度的偶联肽),也能获得令人信服的二级碎片和出色的数据质量SCIEX ZenoTOF&trade 7600系统强大、高重现性且易于使用的多重碎裂技术,使用户能够以简单的方式解决具有挑战性的分析问题(CN)Characterization of an antibody-drug-conjugate (ADC) using electron activated dissociation (EAD).PDF点击下载声明:版权为 SCIEX 所有。欢迎个人转发分享。其他任何媒体、网站如需转载或引用本网版权所有内容须获得授权, 转载时须注明「来源:SCIEX」。申请授权转载请在该文章下“写留言”。
  • labtech China Congress 2021 圆满闭幕,深度探讨未来可持续实验室发展新时代!
    10月22日,由慕尼黑博览集团在华全资子公司慕尼黑展览(上海)有限公司主办,同济大学,国际实验室建设与测评、上海张江生物医药基地、上海市浦东新区生物产业行业协会、美国科学设备与家具协会(SEFA)协办,为期两天的2021上海实验室规划建设与管理大会暨智慧实验室大会(以下简称labtech China Congress 2021)在上海浦东嘉里大酒店圆满收官。labtech China Congress 2021由亚太实验室领域行业灯塔慕尼黑上海分析生化展(analytica China)倾力打造,致力于提高国内外实验室领域的规划、建设、管理与服务发展水平,关注人与实验室的和谐关系,推动大健康时代下可持续实验室的创新与变革。82名专家学者、建筑设计师及实验室行业专家围绕实验室时下8大热点话题展开了精彩演讲,国内外知名企业及品牌在现场实验室及展区内展示了众多创新技术及产品,总计吸引了1919名来自实验室领域的专业参会代表共襄盛会。慕尼黑展览(上海)有限公司首席运营官路王斌先生在谈及本届大会时提到:“今年是labtech China Congress第二次独立于analytica China之外举办,大会无论在规模还是规格上又提升了一个层次,并得到了业内同仁的广泛关注与一致好评。大会为实验室规划与建设领域提供了一个全方位的学习交流平台,让各行各业的实验室终端用户与规划建设者在这里进行多维度的沟通和交流。我希望labtech China Congress 2022能吸引更多实验室终端用户、管理层与决策者亲临现场对话规划设计与建设方,共同打造面向未来的一站式解决方案,为研发与实验室行业发展献计献策。同时,我们也将在明年秉持单双年的差异化定位,以终端用户为核心,将 labtech China Congress办好、办专、办强!"实验室高质量高峰论坛 共话未来可持续实验室发展新时代labtech China Congress 2021以科研建设及实验室设计与规划、世界/中国科技创新体系下实验室建设与运维、智慧实验室设计与规划、智慧实验室高效与管理为主题,来自中国疾病预防控制中心(CDC)、中国合格评定国家认可委员会(CNAS)、中科院、盘锦检验检测中心、HOK建筑事务所、华建集团上海建筑设计研究院、中元国际、中石化上海工程、申康医院、绿谷制药、上海科技大学、北京大学国际医院、上海纽约大学、UCI加州大学尔湾分校可持续发展学院、德国弗劳恩霍夫应用研究促进协会、瀚广、台雄、WALDNER、安捷伦、珀金埃尔默等行业专家,分析国内外实验室的建设要求及政策标准,启发实验室建设与管理的深度思考,分享智慧实验室规划建设与管理的创新趋势和项目实例,共探未来实验室可持续发展之路。除此以外,labtech China Congress今年圆桌论坛崭新模式,由设计与建设单位、工程与EPC总包单位、国际医院用户单位及制药用户单位从不同维度开启MIX TALK混合式圆桌讨论,话题定位于目前需求量大且实验室各方面要求特别高的“高级别生物实验室”,全场互动激烈探讨,收获颇丰。中国中元国际工程有限公司资深总工李著萱老师表示:“过去,生物安全的保障可能更多依赖于可视仪表。现在我们通过智慧系统可以远程监测并管理设备使用情况,数据系统、大数据能够对生物实验室这种高性能的实验室和高级别实验室的论在安全性、运行力到提高工作效率、科学管理等放面提供数据支持。我认为这是一个非常好的方向,这也是设计单位和建设单位非常关注的未来方向。我觉得labtech China Congress主办方安排的很好,从政策方面、实验室管理方面、设计方面、建筑师到机电甚至于可能到产品、厂家包括同济大学的产学研用,还有好多用户的经验分享,都非常优秀。为主办方点赞,希望未来越来办越好。”上海绿谷制药有限公司总经理特别助理/规划建设部总监林轶凡先生说:“本届labtech China Congress我看到了很多展商、嘉宾对大会的支持。演讲主题很有价值,从生物到化学、从用户角度到标准规范和国家规范,有很多深入探讨的部分。我相信这对听众来讲非常有意义。这是我第二次来参加labtech China Congress,感觉规模和内容上都有了很大提升。我觉得以后可以每年办一些小型论坛,小而精的集中主题,这可能是未来可以发展的方向。”同期四大平行论坛及多场活动 共推实验室安全、智慧、可持续发展可持续实验室(1)——碳中和碳达峰目标下实验室运维与评价平行论坛围绕LEED体系在可持续实验室设计与规划中的重要角色、新材料在实验室建设中的应用、可持续实验室安全教育与人才培养、实验室设计建设过程中如何实现“碳中和”为主题,邀请了上海太平洋能源中心、榕德、同济大学、法国德澔等行业专家,从实验室运维与评价角度出发,深入“碳索”可持续实验室发展,达到降本增效与环保共赢。实验室环境与安全平行论坛由国家卫健委、国家生态环境部、Schneider Elektronik GmbH、台雄、中元国际、中国科学院的行业及企业代表,展开实验室化学品污染与职业健康、实验室危险废物管理、实验室变风量控制系统的设计与应用、危化品全生命周期智能管控、护航高等生物实验室安全从设计开始、数据、设施与网络生物安全的话题演讲,传递守护科研人员健康,人与实验室和谐发展的理念。可持续实验室(2)——以国际角度洞察平行论坛,以可持续实验室设计与规划新趋势、面向未来的弹性实验室、科研设施与地产的前期规划、主动式热回收-实验室新风空调的未来、从国际可持续实验室建设谈双碳目标有效路线为议题,邀请来自戴纳、Perkins&Will建筑事务所、科颐得环境、斐崴节能、美国能源部国家可再生能源实验室(NREL)的全球实验室领域专家,交流国际先进的设计、建设和管理理念,提高中国实验室设计与建设水平,促进国内科研、教育、环境监测、检测、医疗等实验环境的持续改善。数字化与智能化,检验检测行业未来可期平行论坛,聚焦人工智能与检验大数据解读、国内外医疗器械检验检测领域的发展现状与挑战、数智化服务助力检验检测实验室新基建、远程评审在实验室认可中的应用、智慧实验室的建设与验收、第三方检验检测认证机构数字化转型及平台化建议,来自上海长海医院、上海健康医学院、释普科技、CNAS、CTI华测检测、中国检验认证集团的业内精英讲述了国家对检验检测机构的“放、管、服”政策下,检验检测机构将向有序、健康和可持续发展,检验检测机构未来可期。作为labtech China Congress 2021同期活动重要组成部分,Workshop通过实验室精讲和培训的形式,深化实验室可持续发展理念,侧重于实验室建设的空间与运维和可持续实验室的规划与设计,从设计者的角度出发看实验室建设。现场Workshop还讨论了实验室环境与安全、食品安全与自动化升级,着重强调如何通过高新科技的方法,提升实验室的安全系数和实验室人员的安全保障,探讨如何建设可持续发展实验室并为提高实验室环境与安全集思广益。实验室创新技术与产品演示,实景打造沉浸式未来实验室空间除了两大主论坛、四大平行论坛以外,大会现场还打造了800+平米现场模拟实验室(Live Lab)和创新展区(Inno Lab)。瀚广、台雄和WALDNER分别在Live Lab展区内带来智慧实验室、涉化实验室和绿色可持续创新实验室。通过现场演示与操作让与会者亲身感受实验室前沿产品、创新技术、现代化设计风格及智能化信息化的先进管理理念。榕德、美诺、旭德、斐崴节能、释普、马斯德克、安捷伦等知名企业在Inno Lab中一一呈现实验室设计、规划、建设、操作、管理等涵盖整个生态系统的行业创新解决方案。上海瀚广实业有限公司总裁侯海峰先生认为:“今年labtech China Congress邀请各行业的专家及老师为我们分享当前实验室建设和发展的方向,围绕大基建所需的研发中心和创新中心,以及这场疫情下国家对公卫中心的建造需求,对于数字化实验室的需求也上升到了另一个高度。我相信通过这次主办方举办的盛会,使我们国家乃至全球的实验室发展在这次交流下会有一个更高的上升平台。labtech China Congress是一个很好的平台,我们明年还会参加。”“今年是我们第二次参与labtech China Congress,大会主论坛、平行论坛、Workshop、现场实验室等多种形式的组合相比2019年更加聚焦在思想碰撞之上。其中不仅有理论,也有具体落地方案。”上海台雄科技发展集团有限公司总经理王冰女士说:“给我印象深刻的是大会通过实验室这么一个小型微观的空间拓展延伸到相对更广阔的建筑领域,虽然国外很早就有,但在今天我非常欣喜地看到国内实验室行业终于也开始涉及这个领域,能在现场共同探讨,这是一个非常好的实践开始。LiveLab现场模拟实验室对大会来说是一个很好的辅助,也让现场用户的感受和体验更好,选择性也更多,同时也能在现场积极回应和求证用户需求。希望labtech China Congress越来越好,我们彼此携手,创造更多的好想法并最终落地。”仕华那(上海)科技有限公司(WALDNER)副总裁廖荑女士说:”此次labtech China Congress延续了主题论坛、live lab以及Workshop相结合展示的形式,让参展企业能够更深入地与用户从宏观展望到细节需求深度对接。WALDNER期待继续与大会合作,在这个平台上共创更多灵活的合作方式,共同打造实验室与Workshop的开放区域概念。大会作为建设需求、设备仪器与实验室整体解决方案的桥梁,真正助力了实验室行业的快速发展,祝每一年的举办都能越来越好!”延续实验室行业技术展示模式,创新升级科研生态及全生命周期管理系统本届大会共计举办了85场精彩演讲、20+场现场演示及同期活动,探讨国内外实验室创新技术和发展趋势,共话未来可持续实验室发展新机遇与新挑战。大会打造前沿行业趋势与现场产品演示相结合的超800平米Live Lab和Inno Lab,构建现场多主题用户交流圈和组织实验室参观活动,为参会嘉宾、企业及用户提供了高效互通的机会,持续提升2019年大会倡议的实验室行业“展览+会议”模式,从实验室建设、家具、暖通、洁净、存储、仪器、安全、智能等多维度、全方位创新升级科研生态及全生命周期管理系统。2022年11月13-15日,labtech China Congress 2022与您相约上海,我们不见不散!如需了解“labtech China Congress”更多详情,请关注官方微信“labtechChina”。
  • 晶泰科技联手北大舒绍坤课题组,CRISPR+细胞表型+深度学习驱动肿瘤研究
    近日,晶泰创新中心与北京大学国际癌症研究院舒绍坤课题组宣布建立合作,双方将基于舒老师课题组的高通量 CRISPR 技术,整合晶泰科技的细胞高内涵 Cell Painting 成像技术与深度学习方法,通过多模态数据融合,共同开展疾病机理及药物作用机制研究。药物发现是理性设计与实验探索相结合的工作,其成功极大依赖于科学家对于疾病机理的深刻理解。随着人工智能和大数据技术的快速发展,已有多家研究机构和公司利用多种维度的生物大数据与机器学习结合,实现多模态数据融合(Multimodal data fusion),并取得长足的发展。该技术能从多个维度对疾病及药物在复杂生物体系内的作用机理进行深入的研究,特别是在靶点发现、苗头化合物发现、药物重定向、活性与毒性评估等领域,拥有巨大的应用前景。然而生物大数据维度与复杂度的提高,使得其对模型的数据处理能力要求也更高。数据采集和处理中的噪音问题,限制了数据利用效率和模型表现,为多模态数据融合的应用带来挑战。本次合作中,北大舒绍坤课题组与晶泰科技将利用各自的技术优势,将多模态数据融合与深度学习算法高效结合。舒绍坤老师及其带领的课题组在肿瘤药物机制研究领域有丰富的经验与独到的见解,可通过高通量的 CRISPR 技术对细胞形成大规模的基因编辑扰动;而晶泰科技自主建立的细胞研发平台 X-Map,能够大规模收集细胞扰动后的高内涵图像数据和转录组数据。两者结合,能基于真实世界的多维度数据获得细胞水平的精确观测,从而建立起不同生理学变化与基因、药物调控之间的对应相关性。这一研究方法相较于动物模型,通量更高、成本更低,可以针对特定的研究体系,快速获得包含更大信息量的高质量研究数据,进一步提高药物研发的效率和成功率。算法方面,晶泰科技在深度学习算法与流程开发、图像分析领域具备独到的优势。配合其全新建立的细胞表型平台,晶泰创新中心自主研发了一套基于 Transformer 架构的 X-Profiler 算法,能针对特定的下游任务进行有效信息的提取,良好应对例如高内涵成像中因为孔板边缘高度变化导致的失焦模糊等问题,剔除数据噪音对模型的影响,提高信噪比(signal-to-noise ratio, SNR),并根据任务自适应调节数据质量控制策略,从而显著提高模型性能。X-Profiler在药物机理研究、毒性评估等多项下游任务中取得突破性结果,相关研究成果的预印版已发表在 BioRxiv 上。双方合作的第一阶段将聚焦于肿瘤治疗新靶点及肿瘤耐药机制的研究,目前已经取得了初步的进展。下一步,相关成果将应用于抗肿瘤耐药性药物的研发,以期为癌症患者带来更加有效的治疗选择。晶泰创新中心聚焦前瞻性核心技术的开发与应用落地,目前已建立 X-Map 细胞研发平台,整合了包括 Cell Painting 在内的细胞影像、转录组建库、自主研发的 X-Profiler 深度学习建模算法等技术。晶泰创新中心将基于 X-Map 细胞研发平台,持续在机理研究、药物筛选、临床前药物评价等领域与药企、科研机构合作,共同开展课题研究与研发合作。晶泰科技联合创始人、首席创新官赖力鹏博士表示,“高质量数据与人工智能技术的结合将成为驱动药物创新的主要力量之一。舒绍坤老师课题组在基于 CRISPR 高通量基因编辑和多组学实验技术的肿瘤机理研究方面有丰富的经验。这些技术和经验将为合作提供宝贵的知识及数据。结合晶泰自身的 X-Map 细胞表型研发平台,我们期待基因编辑、细胞高内涵技术、深度学习方法能在本次合作中展现出突破性价值,带来更好的创新肿瘤治疗方案。”北京大学国际癌症研究院研究员、博士生导师舒绍坤博士表示,“通过高通量CRISPR技术、细胞表型 Cell Painting 平台技术、多组学技术和深度学习多模态融合技术相结合,解析药物靶点功能和机制,能够充分发挥生物大数据和深度学习大模型的优势,是我们课题组和晶泰创新中心十分看好的方向。晶泰创新中心具有开放的合作模式与明确的算法技术优势,深刻理解现有表型技术的优点和瓶颈,为项目提供了高质量的细胞 Cell Painting 图像数据与建模解决方案,为项目推进提供了重要保障。期待两支团队能够在肿瘤药物作用机理的研究合作中获得更多有价值的成果。”● 关于晶泰科技创新中心 ●晶泰创新中心(XtalPi Innovatioin Center) 依托晶泰科技在人工智能、科学计算、自动化方面的技术积累,致力于通过前沿计算与实验技术的融合,推动更多从0到1的行业革新,持续发展AI和自动化实验技术在生命科学、生物材料、农业、能源等相关领域的应用。同时,晶泰创新中心将坚持推动底层科学探索和应用技术突破,加速产学研联合下的商业转化,不断为行业与社会创造价值。
  • 依科视朗推出用于CT系统的自动分析软件Dragonfly,赋能电池产品深度检测
    近日,在2023德国斯图加特质量控制测试及仪器仪表展览会(Control Show)上,Comet Yxlon(依科视朗)发布了一款全新的自动分析软件,这款软件可用于改善电池产品的质量控制。随着新能源汽车市场的崛起,电池制造市场在近几年中被带动并获得了巨大的增长潜力。同样,为了确保电池产品的性能和安全,对检测技术的需求则处于不断增长中,提高生产良率和提升电池制造商的产能变得越来越重要。X射线技术则是这一问题的最佳解决方案,尤其是计算机断层扫描(CT)技术,这一技术特别适用于检测分析电芯,模组,甚至是整个电池包的内部细节及潜在缺陷。为了确保复杂并且作为主要蓄能作用的电池单元能够正常发挥效能,在生产过程中则不能出现任何差错。有诸多因素会导致产品失效,如:断裂、气泡夹杂、异物、变形褶皱、极耳焊接缺陷,以及正负极极片对齐不良等。当发生极片对齐度不良缺陷时,可使阴阳极相互接触从而导致短路,电池将会变得非常危险,甚至导致自燃起火。安全问题在电池检测中始终是最重要的环节。因此,检查并测量极片对齐度是最优先的首要任务。客观、可靠、且可重复的检测结果通常在CT检测过程中的只能通过软件分析并实现。同时,软件的另一个优势则是可以稳定且持续的工作。依科视朗3D可视化图像分析软件——Dragonfly,可建立深度学习模型,在发现潜在缺陷方面具有极高的灵敏度。此外,该自动分析功能够适应不同生产商的具体需求。电池深度检测能够实现全自动的极片对齐度检测,在合适夹具的辅助下甚至可以实现整个产品批次性检测。检测报告同样会以自动的方式生成,提供有关每个电信的状态信息,所获取的大数据则能够被用于生成趋势统计,帮助优化生产工艺,大幅提高生产良率。
  • 科迈恩科技与安捷伦科技在聚合型药用辅料精细表征领域继续开展深度合作
    一、合作新篇章 近日,科迈恩(北京)科技有限公司与安捷伦科技(中国)有限公司再度围绕基于高分辨质谱的聚合物精细表征技术应用签署深度战略合作。双方将共同致力于推广聚合型化合物智能分析系统Polymer Studio结合高分辨质谱对于药用辅料及其制剂中的复杂组分自动表征与鉴定技术,展示LC-HRMS在以吐温、司盘、脂质体等为代表的聚合型药用辅料的质量评价中的独特优势,为制药行业广大用户提供前沿技术手段及整体解决方案。该项产学研用一体化合作也得到了中国医学科学院/协和医学院药物研究所张金兰教授及其团队的大力支持和肯定。 全新的Polymer Studio药用辅料智能表征分析软件暨数据库的发布填补了现有各国药典关于聚合型药用辅料质量精细表征与一致性评价的空白;缓解了高级药用辅料长期依赖进口的卡脖子问题;提供了抗体药及mRNA疫苗制剂中广泛使用的吐温系列辅料潜在的因氧化等因素导致疫苗失效及细胞毒作用的杂质分析方法,将在聚合型组分复杂体系的高分辨质谱表征这一“聚合物组学”的全新应用领域发挥重要和积极的作用。二、产品亮点1. 可扩展的天然及合成高分子聚合物系列高分辨质谱(MSn)数据库2. 制药领域最全面的聚合型药用辅料及有关物质(杂质)数据库(收载多达2万个化合物单体)3. 专利的高分辨质谱复杂组分精细表征高性能识别算法4. 专业UI界面、丰富、直观的数据分析结果5. 辅料一致性评价报告智能生成三、行业新应用 下一阶段双方将围绕生物、制药、食品、材料等相关高分子聚合物精细表征领域开展深度合作,针对行业Q-TOF质谱重点客户提供差异化解决方案,满足辅料软件用户的品种定制化需求,充分挖掘该分析平台的技术潜力,共同致力解决行业辅料相关质量分析挑战,促进双方人员技术交流和能力提升。 同时,双方还将共同开展相关应用领域公开性质的市场活动,推动企业界领袖、中国科学家及药品监管部门之间的技术交流,引领药用辅料质量分析、评价与控制技术发展趋势,进一步扩大安捷伦科技和科迈恩科技在制药行业及药用辅料质量分析与评价领域的服务能力和影响力。 双方自2019年首次开展战略合作以来,在提升我国药用辅料质控水平方面取得一系列进展。未来,科迈恩科技也将进一步加深与安捷伦科技在制药行业及药用辅料质量分析与评价领域的合作,逐步优化服务水平,完善解决方案内容,持续为行业创新与高质量发展贡献力量。关于科迈恩科技科迈恩科技秉持“让AI为创新分析技术赋能”的愿景,致力于让广大用户受益于大数据和人工智能技术对于检测能力的创新和提高。目前科迈恩科技已在智能化仪器数据分析、快检技术、新药研发、精准医疗、感官评价等工业级AI建模等领域拥有系列化产品或解决方案,涵盖色谱、质谱、光谱、核磁共振等多维分析大数据的融合。所服务的客户覆盖制药、快消品、农产品、临床、石化、环保、交通、汽车制造等诸多领域。关注“科迈恩科技”公众号,了解更多分析检测行业的解决方案如您对科迈恩科技有更多想了解,可通过仪器信息网和我们取得联系!400-860-5168转3905
  • 微流控芯片——注定被深度产业化的革命性技术
    原标题:微流控芯片—注定被深度产业化的科学技术本文由霆科生物创始人、贝壳社BioShow嘉宾叶嘉明原创分享。微流控芯片已经发展成为一门涉及材料、化学、物理、微机电、生物、医学等领域的综合性交叉学科,我从2003年研究生阶段在导师田昭武院士的引领下有幸进入这个前沿领域,先后从事基础研究、应用研究、产品开发工作,到今天开始走上创业的道路,也仅仅只能说局部地领略到微流控芯片这个伟大“艺术平台”的魅力。因此,今天在有限的时间里,我主要结合个人体会谈谈微流控芯片技术的一些观点,希望能够起到“抛砖引玉”的作用。另外,本人在博士后阶段师从于微流控芯片领域著名专家——林炳承教授,此次分享的内容部分引用了中科院团队近二十年来在微流控芯片领域丰硕的科研成果,以及导师林炳承教授的观点。今天我和大家分享的主题是“微流控芯片——注定要被深度产业化的科学技术”。(一)微流控芯片简介1.1 微型化、集成化和智能化,是现代科技发展的一个重要趋势。伴随着微机电加工系统(MEMS)技术的发展,电子计算机已由当年的“庞然大物”演变成由一个个微小的电路集成芯片组成的便携系统,甚至是一部微型的智能手机。与之发展类似,今天我们介绍的微流控芯片,又称芯片实验室(Lab-on-a-Chip),是一种以在微纳米尺度空间中对流体进行操控为主要特征的科学技术,具有将生物、化学等实验室的基本功能诸如样品制备、反应、分离和检测等缩微到一个几平方厘米芯片上的能力,其基本特征和最大优势是多种单元技术在整体可控的微小平台上灵活组合、规模集成。1.2 各种材质和功能的微流控芯片及实验室相关配套仪器微流控芯片早期也是从MEMS技术发展而来,通过微加工工艺在硅、金属、高分子聚合物、玻璃、石英等材质的基片上,加工出微米至亚毫米级的流体通道、反应或检测腔室、过滤器或传感器等各种微结构单元,而后在微米尺度空间对流体进行操控,配合流体控制或分析仪器自动完成生物实验室中的提取、扩增、萃取、标记、分离、分析,或者细胞的培养、处理、分选、裂解、分离分析等过程。1.3 微流控芯片的发展及应用领域上世纪90年代初,A.Manz等人采用芯片实现了此前一直在毛细管内完成的电泳分离,显示了它作为一种分析化学工具的潜力;90年代中期,美国国防部提出对士兵个体生化自检装备的手提化需求催生了世界范围内微流控芯片的研究;在整个90年代,微流控芯片更多的被认为是一种分析化学平台,因此往往和“微全分析系统”(Micro Total Analysis System, u-TAS)概念混用。因此,原则上,微流控芯片作为一种“微全分析”技术平台可以应用于各个分析领域,如生化医疗诊断、食品和商品检验、环境监测、刑事科学、军事科学和航天科学等重要应用领域,其中生物医学分析是热点。2000年G. Whitesides等关于PDMS软刻蚀的方法在Electrophoresis上发表,2002年S. Quake等以微阀微泵控制为主要特征的“微流控芯片大规模集成”文章在Science上发表,这些里程碑式的工作使学术界和产业界看到了微流控芯片超越“微全分析系统”的概念而发展成为一种重大的科学技术的潜在能力。例如,利用微流控芯片作为一种微反应器,通过在微流控芯片上开展组合化学反应或结合液滴技术,有望用于药物合成与筛选,或纳米粒子、微球、晶体等的高通量、大规模制备,甚至形成一种“芯片上的化工厂或制药厂”。(二)微流控芯片的战略意义自微流控芯片诞生以来,一直受到学术界和产业界的极大关注。2001年,“Lab on a Chip”杂志创刊,它很快成为本领域的一种主流刊物,引领世界范围微流控芯片研究的深入开展。2004年美国Business 2.0杂志在一篇封面文章把芯片实验室列为“改变未来的七种技术之一”。2006年7月Nature杂志发表了一期题为“芯片实验室”专辑,从不同角度阐述了芯片实验室的研究历史、现状和应用前景,并在编辑部的社评中指出:芯片实验室可能成为“这一世纪的技术”。至此,芯片实验室所显示的战略性意义,已在更高层面和更大范围内被学术界和产业界所认同。2.1 作为一种战略性的科学技术,微流控芯片的发展有它的内在必然性首先,微型化是人类社会发展的一种趋势,面对我们所生存的已经消耗过度的地球,微型化反映了人类对资源枯竭的忧虑和对资源利用的优化。其次,世界上有太多的技术和流体操控有关,而当被操控的流体在一个微米尺度的空间里流动的时候,会出现很多新的现象,其中的一部分至今还没有被我们所充分认识。第三则是基于对系统研究的需求。系统学研究整体,更研究构成整体的各个局部之间的相互联系,自古以来,人类一直缺少微小但又能操控全局的工具,微流控芯片能承载多种单元技术并使之灵活组合和规模集成的特征使其可能成为系统研究的重要平台。2.2 微流控芯片的战略意义还根植于它和信息科学、信息技术的特殊关系一般认为,在二十世纪,人们借助于电子在半导体或金属中流动得到的“信息”,成就了具有战略意义的信息科学和信息技术;而在二十一世纪,通过带有可溶性生物分子或悬浮细胞的水溶液在微流控芯片通道或平面上流动以研究生命,理解生命,以至部分地改造生命,将有可能同样成就一种新的具有战略意义的科学技术:微流控学。因为,“生命”和“信息”构成了现代科学技术的核心。2.3 微流控芯片——当今国家产业转型的一种先导型科学技术微流控芯片是注定要被深度产业化的科学技术。这种判断首先当然是源于全球性产业转型需求的不可逆转,需求加剧,进程加快;另一方面,或许更为重要的,则是基于对这一科学技术在一些重大领域不可替代性的认识,而这种认识只是在最近的若干年内才被人们所逐步接受。它很可能发展成为当今产业转型的一种模式,对以生物经济为代表的新型经济产生重要影响。例如未来几年内,如果将微流控芯片与“生物手机”、“互联网+”进一步结合,这样一个由一种新兴技术引发的可能具有全局性影响的趋势,是否能够因此诞生一批“风口”行业值得大家期待。(三)基于微流控芯片的代表性关键技术3.1 新一代床边诊断(point of care test,POCT)技术——Microfluidics-based POCTPOCT可直接在被检者身边提供快捷有效的生化指标,现场指导用药,使检测、诊断、治疗成为一个连续过程,对于疾病的早期发现和治疗具有突破性的意义。POCT仪器发展趋势应是小型化、“傻瓜”式,操作简单,无需专业人员,直接输入体液样本,即可迅速得到诊断结果,并将信息上传至远程监控中心,由医生指导保健。目前,市场上有多种即时诊断方法,简单的流动测试工作没有流体管理技术,而当测试复杂性增加时,微流控技术是必要的。微流控芯片所具有的多种单元技术在微小可控平台上灵活组合和规模集成的特点已使其成为现代POCT技术的首选,经过近年的发展,已涌现了一批微流控芯片POCT分子诊断和免疫诊断的成功案例。(Cited from: Commercialization of microfluidic point-of-care diagnostic devices, Lab Chip, 2012,12, 2118-2134)3.2 超高通量筛选的主流平台——微流控液滴芯片在微流控芯片通道上加入两种互不相溶的液体,将其中的分散相以微小体积单元(10-15 L-10-9 L)的形式和极快的速度(100-10000个/秒)分散于连续相中,即可形成用作微反应器或微量生化样品载体的液滴。微流控芯片液滴已被认为是迄今为止最重要的微反应器,能提供一种在单分子和单细胞层面快速开展超大规模,超低含量反应的平台。液滴操控灵活,形状可变,大小均一,又有优良的传热传质性能,产生频率已达数十到数百KHz,在高通量药物筛选和材料筛选领域显示了巨大的潜力。(Cited from: Reactions in Droplets in Microfluidic Channels, Angew. Chem. Int. Ed. 2006, 45, 7336-7356)3.3 哺乳动物细胞及其微环境操控平台——微流控芯片仿生实验室由于微流控芯片的构件尺寸和细胞吻合,并可同时测定物理量、化学量和生物量,它已成为对哺乳动物细胞及其微环境进行操控的最具潜力的平台。目前已可以构建微米量级且相对封闭的三维细胞培养、分选、裂解等操作单元,并把这些单元成功延伸到组织和器官。器官芯片是一种更接近仿生体系的模式,可在一块几平方厘米的芯片中培养各种活体细胞,形成组织器官,乃至由不同器官芯片进一步组成活体芯片,从而模拟一个活体的行为并研究活体中整体和局部的种种关系。在药学领域,器官芯片将被部分替代小白鼠等模型动物,用于验证候选药物,开展毒理和药理作用研究。(四)微流控芯片的产业化现状和发展趋势4.1 微流控芯片的市场前景微流控芯片作为一种革命性的技术平台,其市场前景显然是极其巨大的。最近几年微流控芯片取得了突破性进展,引起产业界的极大关注。这些突破性进展主要表现在两个方面,一是已涌现出一批关健性技术,它们在很大程度上具有不可替代性,并因此形成以医学和药学为代表,覆盖面很宽的应用领域,例如最近发展起来的器官芯片、液滴微流控芯片。其中,器官芯片或人体芯片,有望部分代替药物研发过程中的临床前动物实验,最大限度地节约研发成本、缩短研发周期,并且解决动物权等伦理问题,具有极其巨大的潜在市场价值。二是其中的一些应用已经或正在形成规模产业,例如基于微流控技术的新一代床边诊断(Microflluidics-based POCT)系统,被产业界认为目前最有可能成为“Killer Appliction”(杀手级应用)的微流控芯片产品,其市场预计从2013年的16亿美元增长到2019年的56亿美元。(微流控即时诊断市场预测,法国市场研究机构Yole Development提供的数据,转载自互联网)4.2 目前市场上几种代表性微流控芯片产品4.3 微流控分析芯片产品现状及发展趋势总体而言,当前的微流控芯片产品及发展趋势总结如下(个人观点,供探讨):4.4 微流控芯片产业化关键问题(个人观点,供探讨):(1)技术:需要解决微流控芯片批量生产工艺(微加工、键合、表面修饰);重点是要解决芯片质控问题。(2)人才:急需多学科交叉人才、企业研发人员、专业化市场人员进行微流控芯片产品的开发及推广;国内芯片人才特别是在企业从事产品开发的芯片技术人员较为缺乏,专业的人做专业的事!这个很重要。(3)产品:急需具有“Killer Application”特征的微流控产品引领行业市场(产业界一致看好microfluidics-based POCT 系统);普遍认为poct最大市场是应用于医疗诊断行业,这个行业市场最为巨大毫无争议;或许在中国,食品安全、环境检测是否能够首先成为“中国特色”的killer application的一个案例,值得探讨?(4)资本:需要有长远目标的资本或金融机构的积极介入与扶持;个人认为,微流控芯片实验室已经到了产业化的前夕,希望有远见的企业家尽快介入到这一技术的发展过程中来,大家同舟共济,一起滚打几年,一起来改进技术,培育市场,共同发展。某种意义上说,这也是一种机会,等市场完全成熟了再介入进来可能就太晚了一些。(5)政策支持、强强合作:具有强大研发实力的企事业单位和丰富技术积累的科研院所鼎力合作)。(五)我们的工作和未来展望5.1 霆科生物介绍杭州霆科生物科技有限公司(TinkerBio)是一家专注于微流控芯片产业化的国家级高新技术企业,是国内知名的微流控芯片CDMO(合约研发与制造)服务商和先行者。公司依托浙江清华长三角研究院分析测试中心、浙江省应用酶学重点实验室等平台,以微流控芯片技术为核心,围绕食品安全、环境水质检测、医疗体外诊断等领域,坚持“让微流控变得更简单”发展使命和“微流控技术为用户赋能,实现合作共赢”的经营理念,致力于为用户提供最专业、最全面的微流控芯片产品设计开发与生产制造整体解决方案。5.2 微流控芯片产业化进展霆科生物从2014年成立至今,已投入研发经费数千万元,具备PMMA、PC、COC、PDMS、玻璃等材质的微流控芯片从研发到量产全流程转化能力。目前,公司已为国内外上百家食品安全、环境水质与IVD领域的龙头企业与上市公司提供产品(联合)开发与生产服务,已有多项微流控POCT产品实施转产。 霆科生物研发团队承担及参与国家、省市级重点研究课题10多项,已获得授权的专利、软著共50余项,公司已被认定为“杭州市青蓝企业”、“浙江省科技型中小企业”、“浙江省高成长科技型中小企业”、“浙江省最具成长性科技型百强企业”、“杭州市高新技术企业”、“国家高新技术企业”。5.3 未来展望未来十年、二十年内,微流控芯片注定成为一种被深度产业化的科学技术,世界范围内的微流控芯片的科学研究及产业竞争也将日趋激烈。中国被认为是在微流控芯片领域研究水平较高的国家之一,但国内的微流控芯片产业仍处于起步阶段,仅有为数不多的微流控产品面世,远落后于欧美等发达国家。尽管如此,我们欣喜地发现,近年来中国开始有越来越多的微流控技术专家、市场化专业人士,以及科研院校、企事业单位、投资机构,关注并投身于微流控芯片产业化。我们有理由相信,微流控芯片在中国的成功产业化值得期待。最后希望更多关注微流控芯片的人,更多地参与到这个领域来,共同努力!MicroChip,BigWorld!
  • 助力科研平台升级,复享光学深度光谱技术
    科技平台是支撑国家科技进步、凝聚高层次人才、保障现代科技发展的物质基础与条件,是国家科技创新体系的重要组成部分。加强平台的科技创新特别是原创性、颠覆性的科技创新,聚力攻关“卡脖子”技术,是实现国家高水平科技自立自强的基础保障。复享光学成立十余年来,深度参与科技平台及产业化建设,致力于与科学家共同解决科学研究、微电子、光电子、光子、能源等领域中遇到的关键光学计量检测问题,已成为中国先进光谱技术领导者。复享光学是第一家以光子技术为根基的光谱仪器企业,产品覆盖光谱仪/模组、光学量检测系统与各类光学计量子系统。我们致力于为市场提供更高效率、更低成本的光谱解决方案。集成光子芯片的相位表征应用领域:超表面、超透镜Metasurface/Metalens超透镜/超表面将会取代传统几何光学镜片成为下一代光学系统的关键器件,围绕其研发过程中的相位与光学性能表征需求,以及量产过程中的形貌、缺陷计量与检测需求,提供全面的光学量检测仪器与设备。推荐设备:超构透镜光学检测系统纳米激光器的性能表征应用领域:PCSEL/BIC 与纳米激光器PCSEL 以其高功率和高质量的光束而备受科研与产业的关注,围绕其研发阶段的光子能带与辐射模式的表征,以及量产阶段的激光特性表征,提供光学与光电量检测仪器。推荐设备:显微角分辨光谱仪集成光子器件的量检测平台应用领域:AR/VR 光学计量检测AR/VR 有望成为下一代人机交互平台,针对 AR眼镜中的关键光学器件——衍射光波导——研发过程中的绝对/相对衍射效率测量、高精度周期计量,以及量产过程中的表面形貌计量,提供桌面式与晶圆级的光学量检测设备。推荐设备:光栅衍射效率测量系统、晶圆级衍射光波导光学检测系统集成光子器件的表征平台应用领域:光子晶体、拓扑光子学与 BICBIC 是当前光子晶体研究的热点,通过动量空间的光子能带测量可以清晰地发现各个位置的 BIC,特别是通过表征本征态在动量空间的偏振态分布,可以发现 BIC 背后的拓扑机制——动量空间光谱测量对于 BIC 研究具有至关重要的作用。推荐设备:角分辨光谱仪、显微角分辨光谱仪有机半导体的光谱表征应用领域:有机光伏,有机晶体管,有机发光(OLED)面向有机光伏、有机晶体管和OLED等应用场景,提供分子取向测定、膜厚测量和原位共焦光谱表征等检测设备,推动材料优化、器件研发和量产。推荐设备:分子取向表征系统、膜厚检测仪、原位共焦光谱表征系统面向钙钛矿光伏电池从实验室到量产的全链条表征应用领域:钙钛矿光伏电池围绕钙钛矿光伏电池在实验室及中小试产线的制备、表征及计量需求,建立全链条的表征系统,可以全面了解钙钛矿光伏电池的制备过程和性能特征,为进一步提高钙钛矿光伏电池的性能、稳定性和可靠性提供科学依据。推荐设备:钙钛矿光伏电池组件整线解决方案及全链条表征平台面向大科学装置检测的高能光谱仪应用领域:半导体光刻机/厂设备客户Helios高能光谱仪服务于极紫外光源的质量检测:测量FEL的基频和谐波的EUV光谱,以诊断光束质量;测量高电荷态Sn离子的发射光谱,以诊断等离子体状态。
  • 电镜表征新成就颠覆认知 全固态电池量产不是梦
    导语2020开年新气象,电镜科研新成就。困扰业界许久的锂枝晶生长机理问题取得重大突破,全固态电池距离量产迈进一大步。近日,燕山大学亚稳材料制备技术与科学国家重点实验室黄建宇教授、沈同德教授和唐永福副教授等人联合美国佐治亚理工学院朱廷教授、宾夕法尼亚大学张宿林教授,通过巧妙地设计实验过程,实时直观地记录了锂枝晶生长的微观机制,精准测定了其力学性能和力-电耦合特性。更难能可贵的是,该研究团队还提出了一种固态电池中抑制锂枝晶生长的可行性方案。锂枝晶的生长机理难题困扰业界许久,至此终于有种“拨开云雾见天日,守得云开见月明”的感觉了。论文链接:www.nature.com/articles/s41565-019-0604-x据悉,该研究成果已在权威国际期刊《自然-纳米技术》(Nature Nanotechnology)刊登发布。《自然-纳米技术》是材料与纳米科技领域的国际顶级学术期刊,2019年的影响因子高达33.407,该研究成果的突破性和重要性由此可见一斑。为什么这项研究成果能够引发业界广泛关注呢?这就不得不提到目前在电动汽车上广泛使用的液态锂离子电池,其主要结构包括正负极材料、隔膜和电解液。因内部构造原因,液态锂离子电池容易受环境温度影响,而且很容易产生不可控的锂枝晶。锂枝晶非常“锋利”,可以刺破隔膜导致电解液泄漏,导致电池内部短路,从而造成电池起火甚至汽车自燃事故,近年来为提升电池的能量密度,企业把隔膜厚度从十几毫米降低到了五六毫米,2019年特斯拉、蔚来等大牌电动汽车相继“走火”,或许也间接反映了这个问题。概括言之,在材料体系没有创新的条件下,目前商品化的液态锂离子电池的能量密度已经逼近“极限”(300Wh/kg左右),“里程焦虑”、“可能自燃”等问题重创消费市场。既然液态电解液不行,那改用机械刚性的固态电解质不就完事了么?于是乎,全固态锂离子电池(简称:全固态电池)进入了公众视野。顾名思义,全固态锂离子电池采用的是固态电解质,不含任何液态组份,结构更加安全。与液态锂离子电池相比,全固态锂离子电池的能量密度最高潜力达900Wh/kg,因此,固态电池被视作为下一代锂电池技术革命,其量产与普及将会彻底解决电动汽车发展的最大瓶颈问题,国内外车企巨头已然纷纷布局涉足,“固态热潮”一时风头无两。然而,全固态电池的研发之路也并非一马平川。全固态电池以金属锂作为负极材料,仍然绕不开“不可控锂枝晶”的这个坎儿,实验结果表明,锂枝晶生长到一定程度时,也可以穿透固态电解质,造成电池短路失效。尽管诸多研究致力于探索如何抑制锂枝晶的产生,但是以往研究主要停留在宏观尺度,对于锂枝晶生长的微观机理、力学性能、刺穿固态电解质的机制及抑制其生长的科学依据缺乏足够了解。赘述至此,相信您应该充分了解黄建宇教授、沈同德教授等人的研究成果的重要性了吧?!___AFM-ETEM纳米电化学测试平台,可实现原位观测纳米固态电池中锂枝晶生长机制及其力学性能和力—电耦合精准定量测量。___据悉,该研究团队基于AFM-ETEM平台发现,在室温下,当对AFM针尖施加电压(过电位)时亚微米晶须开始生长,其生长应力高达130 MPa,远高于此前研究报道。此外,研究人员还发现锂晶须在纯机械载荷作用下的屈服强度可达244Mpa,远高于宏观金属锂的屈服强度(~1MPa)。可以说,该研究成果颠覆了研究者对锂枝晶力学性能的传统认知,为抑制全固态电池中锂枝晶生长提供了新的定量基准,为设计具有高容量长寿命的金属锂固态电池提供了科学依据,这项研究成果得到应用之后,全固态电池将有望加速实现商业化量产。很荣幸,赛默飞世尔科技旗下Thermo Scientific品牌的两大拳头电镜产品能够深度参与此项研究工作,并帮助研究团队发明了一种基于原子力显微镜—环境透射电镜(AFM-ETEM)原位电化学测试平台,建立起了一种有效的研究锂枝晶的动态原位实验表征新技术。它们是Themis™ ETEM环境气氛球差校正透射电子显微镜(左图)与Helios PFIB双束电镜(右图):Helios PFIB Themis™ ETEM Themis™ ETEM 300kV原子分辨扫描/ 透射电子显微镜可以一体化解决纳米材料在接触活性气体环境和升温的过程中的时间分辨动态特性原位研究,包括材料的结构性能关系、原子尺度的几何结构、电子结构以及化学组成。Helios PFIB系统结合了Elstar电子镜筒和Vion氙等离子体离子镜筒,既可以实现纳米分辨率和最高衬度成像,又能确保尺度样品加工的速度和精确度。基于此,赛默飞推出了一系列针对锂电池行业的多尺度二维及三维表征解决方案,主要包含多功能计算机断层扫描系统、扫描电镜、镓离子双束电镜、Xe等离子双束电镜、透射电镜等产品,涉及电芯表征、电极表征、隔膜表征等应用,希望从广度和深度两个方面,为客户在锂电池开发的各个阶段提供强力支持的产品组合,助力攻克电池研发技术难题,让全固态锂离子电池的量产与普及不再是梦,让电动汽车“充一次电跑1000公里”不再是梦!
  • 研究人员开发出合理化深度学习超分辨显微成像方法
    近年来,以深度学习为代表的计算超分辨方法可在不损失其他成像性能的前提下,提升显微图像分辨率或信噪比,表现出广阔的应用前景。然而,针对生物医学研究必需高保真度、可定量分析的图像要求,深度学习显微成像方法存在三大共性问题:受限于深度学习内秉的频谱频移(spectral-bias)问题,输出图像分辨率无法达到真值(ground truth)水平;受限于超分辨重建、去噪问题的病态性(ill-posed problem)和神经网络模型的不确定性(model-uncertainty),重建或预测结果的真实性无法得到保障;深度神经网络的训练需要大量数据,但高质量训练数据的采集在许多应用场景下极其困难、甚至无法实现。当前,深度学习显微成像方法的研究和发展如火如荼,并表现出超越传统成像性能极限的潜力,但上述问题阻碍了现有深度学习超分辨或去噪方法在生物显微成像实验中的使用。   10月6日,中国科学院生物物理研究所李栋课题组联合清华大学自动化系、清华大学脑与认知科学研究院、清华-IDG/麦戈文脑科学研究院戴琼海课题组,美国霍华德休斯医学研究所博士Jennifer Lippincott-Schwartz,在Nature Biotechnology上,以长文(Article)的形式,发表了题为Rationalized deep learning super-resolution microscopy for sustained live imaging of rapid subcellular processes的论文。该研究提出了一套合理化深度学习(rationalized deep learning,rDL)显微成像技术框架,将光学成像模型及物理先验与神经网络结构设计相融合,合理化网络训练、预测过程,从而实现了高性能、高保真的显微图像去噪与超分辨重建,并结合实验室自主研发、搭建的多模态结构光照明显微镜(Multi-SIM)与高速晶格光片显微镜(LLSM),将传统TIRF/GI-SIM、3D-SIM、LLS-SIM和LLSM的成像速度/时程提升30倍以上,实现了当前国际最快(684Hz)、成像时程最长(最长可达3小时、60,000时间点以上)的活体细胞成像性能,首次对高速摆动纤毛(30Hz)中转运蛋白(IFT)的多种运输行为以及完整细胞分裂过程中核仁液液相分离(liquid-liquid phase separation)过程进行快速、多色、长时程、超分辨观测。Nature Biotechnology针对这一工作同时发表了评述文章(Research Briefing)。   具体而言,李栋/戴琼海研究团队提出的合理化深度学习结构光超分辨重建架构(rDL SIM)不同于现有超分辨神经网络模型的端到端(end-to-end)训练模式,而是采用分步重建策略,首先利用所提出的融合成像物理模型和结构光照明先验的神经网络对原始SIM图像进行去噪和高频信息增强,然后通过经典解析算法进行SIM重建以获得最终的超分辨图像。相比于该团队去年在Nature Methods上提出的超分辨重建神经网络模型DFCAN/DFGAN,rDL SIM可将超分辨重建结果的不确定性降低3~5倍,并实现更高的保真度和重建质量;相比于其他去噪算法(如CARE),rDL SIM可恢复出调制在原始图像中的莫尔条纹,并将高频信息增强10倍以上。   此外,针对晶格光片显微镜、共聚焦显微镜等宽场照明或点扫描成像模态,该团队提出了一种可学习的傅立叶域噪声抑制模块(FNSM)。该模块可以利用OTF信息对显微图像中的噪声进行自适应滤除。科研团队以此构建了嵌入FNSM的通道注意力去噪神经网络架构,并基于显微成像数据本身的时空连续性,提出了时空交织采样自监督训练策略(TiS/SiS-rDL)。该策略无需额外采集训练数据、亦无需保证时序数据具有时间连续性,即可实现媲美监督学习效果的去噪神经网络的训练,解决了实际生物成像实验中高质量训练数据难以获取的难题。   合理化深度学习超分辨显微成像方法可适用于包括2D-SIM、3D-SIM、LLSM等在内的多种显微成像模态,提供高分辨率、高保真的显微图像重建性能,相较于传统方法最多可以提升30倍的成像时程和10倍的成像速度。借助rDL成像技术,研究团队开展了诸多过去的成像手段无法开展的超分辨活体成像实验,并与Lippincott-Schwartz、中科院分子细胞科学卓越创新中心研究员朱学良、中科院遗传与发育生物学研究所研究员何康敏探讨了其潜在的生物学意义,包括:对滴落在玻片上的U2OS细胞贴壁生长过程进行双色、长时程(1小时以上)、超分辨(97nm分辨率)观测,清晰、真实地记录了细胞粘附和迁移的动力学现象,且不干扰这一漫长、脆弱的生命过程;对高速摆动纤毛以当前最快的684Hz成像速率进行长达60,000个时间点的连续超分辨观测,且过程中无明显光漂白或细胞活性损伤,并对纤毛摆动模式和频率进行统计分析;对摆动纤毛及纤毛内转运蛋白(IFT)进行超快、超分辨双色成像,揭示了IFT在行进途中碰撞、重组、掉头等多种新行为;通过对cCAS-DNA与ER进行双色、长时程、超分辨成像,观测到cGAS-DNA在保持与ER持续接触过程中的定向运动、转向或扩散等行为,拓展了对膜性细胞器与无膜细胞器相互作用机制的认知;对HeLa细胞分裂过程中的核仁磷酸蛋白(NPM1)、RNA聚合酶I亚基RPA49及染色质(H2B)进行超长时程(12秒采集间隔,2.5小时以上)的三维超分辨活体成像,实现了对完整有丝分裂过程中NPM1与RPA49两种结构形态变化的三维超分辨活体连续观测,揭示了细胞有丝分裂过程中核仁形成以及NPM1、RPA49两种无膜亚细胞结构的相变、互作规律;以10Hz的全细胞体成像帧率对高尔基体进行长达10,000时间点的连续拍摄,并实现了对完整细胞分裂过程内质网、溶酶体、线粒体等亚细胞结构的三色、高速(秒量级)、超长时程(小时量级,1000个时间点)三维观测,探究了细胞有丝分裂过程中细胞器在子代细胞中的均匀分配机制。   李栋/戴琼海合作团队通过人工智能算法与光学显微成像技术的交叉创新,提出了合理化深度学习超分辨显微成像框架,解决了现有深度学习成像方法分辨率损失、预测不确定性、训练集不易采集等难题,可为多种活体显微成像模态提供30倍以上的成像速度与时程的提升,为细胞生物学、发育生物学、神经科学等领域的发展提供了重要的研究工具。同时,该研究团队所坚持和倡导的人工智能算法与光学成像原理交叉创新、软硬结合的研究思路,为现代光学显微成像的发展开辟了新的技术路径。   研究工作得到国家自然科学基金、科技部、中科院、中国博士后科学基金、腾讯“科学探索奖”、清华大学“水木学者”计划的支持。图1.合理化深度学习超分辨显微成像神经网络架构图2.合理化深度学习超分辨显微成像方法应用概览
  • 创建军民深度融合的西安模式 建设创新引领的现代产业体系
    center img alt=" " src=" http://epaper.xiancn.com/newxarb/res/2018-03/02/07/res03_attpic_brief.jpg" height=" 272" width=" 400" / /center p   西安军民融合产业创新发展的“西安模式”正在加速成型。 /p center p style=" text-align:center" img style=" width: 400px height: 565px " title=" " alt=" " src=" http://epaper.xiancn.com/newxarb/res/2018-03/02/07/res07_attpic_brief.jpg" height=" 565" hspace=" 0" border=" 0" vspace=" 0" width=" 400" / /p /center p style=" text-align: center " strong   漫画中国/东方IC /strong /p p   春节期间一部《红海行动》在全国燃爆,热爱军事的影迷们更是从影片中领略到了无人机在现代战场上的风采。我市的潘祈帆是一名90后小伙子,受到不少军迷们的询问,因为他的公司曾参与了我军几款无人机的研发工作。“不能泄密是前提,但无人机作战的基本原理还是能给朋友们分享的。” /p p   我市80后的女创业者刘晓雅则早在2015年的九三阅兵时便激动地拍下阅兵视频发了朋友圈:“我们做的,我骄傲。”她作为联合创始人的诺维北斗,早已成为我市“民参军”企业的代表之一。 /p p   西安,这座军工实力雄厚的城市,如今不仅拥有航空、航天、船舶、兵器、军工电子等优势军工主导产业,“军转民”、“民参军”也逐渐形成了全要素、多领域、高效益的发展格局,军民融合产业创新发展的“西安模式”正在加速成型。 /p p   随着西安获批建设国家中心城市,深化军民融合,辐射带动地方经济发展,打造以西安为中心、横贯关中平原的军民融合产业带,建设创新引领的现代产业体系,成为西安的新使命,也为军民融合深度发展指明了方向。 /p p    strong 勇担国家使命 军民融合的西安实践 /strong /p p   早在2015年,西安就成为全国8个全面创新改革试验区域之一,这为我市建设发展提供了新的契机与动力。根据国务院批复的《西安市系统推进全面创新改革试验方案》,相关重点任务就包括以特色产业基地(园区)为平台,建设国家军民深度融合创新示范区。 /p p   肩负着军民深度融合发展的国家使命,西安的确有着自身的先天优势。国家发改委新闻发言人孟玮就认为“建设军民融合创新高地”是关中平原城市群发展规划中的一大亮点。因为从发展基础看,关中平原城市群工业体系完整、产业聚集度高,科教资源、军工科技等位居全国前列,航空航天、新材料、新一代信息技术等战略性新兴产业发展迅猛,是全国重要的装备制造业基地、高新技术产业基地、国防科技工业基地。而西安更是其中的龙头。 /p p   综观西安发展的诸多重大机遇,军民融合是国家赋予西安最鲜明的改革试验任务。我市要在军民融合体制机制创新、军民资源开放共享、军工科技成果转化、军民融合服务体系、军民融合产业发展等方面形成“西安模式”,加快建设国家军民深度融合示范城市。为不辱使命,将先天优势转化为现实动力,市第十三次党代会报告提出,建设国家军民深度融合示范城市。 /p p   为统筹我市军民融合发展,加强顶层设计和战略规划,我市成立了军民融合领导机构、常设办事机构。并出台了《西安市军民融合产业标准化项目扶持管理办法》、《西安市军工资源共享管理暂行办法》等一系列政策措施。同时,开展与本地军工企业、科研院所的干部交流。事实证明,人才的互动促进了信息交流、资源融合和项目合作,为全市军民融合的深度发展营造了良好的氛围。 /p p   为鼓励军民融合创新发展,在空间承载上,我市构建以高新区军民融合产业园、经开区军民融合装备制造园、西安国家民用航天产业基地、西安兵器工业科技产业基地等为基础的“两园四基地”。在公共服务上,西安科技大市场搭建了军民融合信息服务平台,汇聚了各类军工和国防类科技资源,吸收“军转民”“民参军”等企业超过350家,吸纳数以百计的科研院所开放共享大型仪器设备,积极促进“产—学—研—用”合作和协同配套。在政府综合配套支持上,我市试行军品研制生产单位政策普惠,帮助“民参军”企业申请预研资金、科研经费,以及技术改造等优惠政策。 /p p   经过全市共同努力,西安军民融合在体制机制、承载空间、公共服务、政府配套和主体活力等方面得到了明显优化。在军民深度融合的多个领域寻求重点突破,培育了一批重大创新平台、龙头工程、创新示范企业和新兴产业。 /p p    strong 发挥三大基地优势 军民融合引领大西安现代产业体系构建 /strong /p p   “聚焦‘三六九’,振兴大西安”。盘点西安在军民融合行业中的产业亮点,西安依托西安装备制造业基地、高新技术产业基地、国防科技工业基地优势,不断深化军转民与民参军,军民融合产业园区功能日渐完善,带动作用愈发明显,基本形成了“以军带民、以民促军、军民融合”的多元化、集群化发展格局,创新引领着大西安现代产业体系的构建。据今年的市政府工作报告披露,我市民参军企业达到400家,军民融合产业营业收入突破2000亿元。 /p p   在以装备制造为代表的工业领域,我市六大千亿级产业集群加速壮大,汽车产业迈入千亿级。百亿级工业企业总数达到11家。规模以上先进制造业总产值3167.7亿元、增长20.6%。我市创建“中国制造2025”试点示范城市通过国家评估。国家通用航空产业综合示范区已经获批。特别是在航空制造业领域,我市重点发展大型运输机、新舟系列飞机、无人机等整机制造 在航天领域,将加紧实施新一代运载火箭、卫星测控等重大项目 在兵器领域,将重点发展装备制造、新材料、新能源等产业 在电子信息领域,将重点发展通信、集成电路等产业 在船舶领域,将重点发展水中兵器、舰船动力等产业 在核技术领域,将重点发展民用核技术、核燃料、核电设备等产业。以新能源汽车和航空制造等为主的万亿级先进制造业正在积极构建。 /p p   我市提出的重点打造“3+1”万亿级支柱性产业,除上述万亿级先进制造业,还包括“以电子信息为主的万亿级高新技术产业”。依托的也正是西安的科教资源优势和国防科技产业优势。 /p p   科教资源优势,历来是西安的重大优势,据统计陕西和西安各类科研机构达到1176家,各类高等院校116所,国家级重点实验室22个,国家级工程技术研究中心7个等。其中大量为国防科工院所。国防科技产业更是西安的传统优势产业。我市已经云集军工单位超过110家,从业人员超过20万人,行业门类齐全,基本涵盖了航空、航天、兵器、船舶、电子信息、核技术6大领域,国防科技工业研发和生产能力居全国前列。其中,航天科研生产力量占全国近1/3,航空产业资产规模、人才总量和科技成果占全国近1/4,被称为中国的“航天动力之乡”和“航空城”,拥有集科研、试验、生产于一体的完整军工产业链,具有发展军民融合产业的“先天优势”。“构建科技产业园区、创新基地、公共研发平台、加速器、孵化器、众创空间等多层次、全体系的创新创业载体”被写入了我市“十三五”规划纲要,大量科技创业者在西安的开放沃土上耕耘收获。在高新技术产业中,以人工智能、航空航天、光电芯片、新材料、新能源、智能制造、信息技术、生物医药等为代表的硬科技“八路军”在我市蓬勃兴起,这些既是优势产业关键领域的创新方向,也正是战略性新兴产业的发展方向,是军民融合的重点产业领域。 /p p   军民融合的深度发展正在推动传统优势产业转型升级,构建出富有竞争力的现代产业体系,为大西安乃至关中平原城市群追赶超越夯实产业基础。 /p p    strong 新使命新征程 军民融合发展的 西安模式正在推向深入 /strong /p p   雄关漫道真如铁,而今迈步从头越。《关中平原城市群发展规划》提出,以西安全面创新改革试验为牵引,统筹推进军工、科研创新机制改革,做大做强航空、航天、船舶、兵器、军工电子等五大优势主导产业,创新军民融合发展路径,打造军民深度融合发展示范区,努力在创新驱动发展方面走在全国前列。 /p p   要打造以西安为中心、横贯关中平原的军民融合产业带,先要做强自身。将建设国家中心城市的使命扛在肩上的西安,在军民深度融合发展的创新之路上加快了脚步。 /p p   前不久,《西安市军民融合补短板促发展实施方案》出台,从加大体制机制改革力度、加快推进“军转民”步伐、支持军民融合公共服务平台建设、引进培育军民融合人才等9个方面发力。 /p p   刚刚结束的两会上,市政府工作报告指出,要加快推进“两区”建设。聚焦统筹科技资源、深化军民融合两大改革任务,坚持复制推广改革经验与深化提升创新成果同步推进,体现西安特色,形成“西安模式”,2018年我市将积极拓展科技大市场功能,推广“一院一所一校”改革经验,实现全市技术合同交易额达到 850亿元,就地转化率超过30%,研发投入占生产总值比重保持在5%以上的目标。同时,扎实推进国家知识产权强市和运营试点城市建设,支持建好国家知识产权军民融合运营平台和中国(西安)高端装备制造产业保护中心。推动军工企业混合所有制改革和军工科研院所事转企改革,统筹抓好军民融合“两园三基地”建设,积极创建“国家军民融合标准化试点城市”。全年军民融合产业营业收入达到2500亿元以上,民参军企业数达到430家以上。支持高新区自创、自贸“双自联动”发展,打造引领创新发展、支撑开放合作的“双示范”样板区。 /p p   为实现这一系列目标,我市计划在金融服务领域,围绕打造丝路国际金融中心的目标,加快建设科技、文化、军民融合3个金融示范区的建设,鼓励发展创业投资、私募股权投资、产业投资等基金,吸引更多境内外金融机构和高层次金融人才向西安聚集。在空间聚集上,坚持产业“特而强”、功能“聚而合”、形态“小而美”、机制“新而活”,突出生产、生活、生态“三生融合”,重点围绕硬科技、文化旅游、军民融合等优势资源,重点加快建设50个左右特色小镇。在产业规划上,推动物联网、虚拟现实、增强现实等新技术与实体经济深度融合。积极发展众创、众包、众扶、众筹等新模式,支持人工智能、增材制造、大数据等新产业聚集发展。 /p p   深化军转民民参军,发展五大产业,搭建军民深度融合新平台,以西安全面创新改革试验为契机,建立多层次对接协调机制,创新军民融合发展路径…… /p p   面对国家赋予西安的新使命,如今的西安已经在新的征程上,奋力奔跑,勇敢前行! /p
  • 当AI遇上光学:深度学习如何大幅提升痕量气体分析灵敏度?
    今天七月,Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy (SAA)期刊上发表了一个来自安徽大学周胜副教授课题组的研究成果《Optimized adaptive Savitzky-Golay filtering algorithm based on deep learning network for absorption spectroscopy》。此项工作将深度学习应用在激光光谱气体分析技术上的Savitzky-Golay(简称S-G)滤波抗噪算法,并通过仿真和实验证实该方法能够提升痕量NO2气体分析中光谱信号的信噪比,有助于实现更高灵敏度的气体分析。激光光谱分析是一个很强大的气体分析技术,能够实现非接触式、高精度、高灵敏度、高选择性的痕量气体分析(ppm或ppb量级)。然而,实际操作中所测得的吸收光谱会受到噪声的干扰,导致不准确的测量结果。过去的研究工作中提出了一些抑制噪声的算法,其中S-G滤波算法由于速度快、无需提供过多的参数、且能较好的保留原始光谱的形状和高度,成为近年来较受关注的方法,并且已经在某些应用场景(例如连续血糖监测)证明其面对各类噪声的有效性。S-G滤波算法的性能决定于两个参数:多项式阶数(k)和平均计算的窗口大小(b)。但是,噪声源和吸收光谱在实际应用中是未知的,因此难以获得固定的参数值使得滤波效果达到优。为了解决这个问题,研究人员提出了一种优化的自适应S-G算法,将深度学习网络与传统的S-G 滤波相结合,以提高测量系统的性能。深度学习网路以其非线性映射和建模能力对数据的规律性进行研究,并实现出色的“自我调整”和“跟踪反馈”。相较于传统的S-G算法,经过优化的算法可以调整滤波参数以实现光谱的佳信噪比。图一展示了用于训练S-G滤波算法参数的深度学习网络。这个具有多层感知器的人工智能网络提供了设计上的弹性,可以通过调整层数、神经元数量、和一些优化指标以达到所需的性能。用庞大的数据集进行高效训练后,相应的网络模型将达到最状态。接着,经过训练的网络模型将使用变量数据输入找到好的 k 和 b。 与此同时,输入数据集也将按传统方式计算以获得佳参数k 和 b。通过比较模型预测和人机计算的结果,由人工决定出佳的网络参数。图一 用于计算S-G滤波算法参数的深度学习网络 研究组以NO2为目标气体,选取波数位于1630.1至1630.42 cm-1的吸收谱线,进行了软件仿真和实验测量作为新方法(adaptive S–G filtering, 以下称ASGF)的验证,同时与另一常用的multi-signal averaging filtering(MAF)方法作比较。MAF计算时间长且主要用于白噪声的抑制。仿真结果显示在白噪声干扰的条件下(图二),MAF将信噪比从原始的6.58 dB提升至12.62 dB,新的ASGF算法则能提升至15.51 dB。图三则显示了非白噪声的背景噪声干扰,MAF方法将信噪比从原始的7.14 dB提升至13.22 dB,新的ASGF算法则提升至了更高的17.37dB。 图二 仿真验证ASFG算法在白噪声干扰下的性能表现 图三 仿真验证ASFG算法在其他背景噪声干扰下的性能表现 图四展示了实际实验的设置,它由一个光源、一个带压强控制器的多通气体吸收池、一系列反射镜、一个碲镉汞光电探测器和一台计算机组成。昕虹光电为此项研究工作提供的激光源为Q-Qube型量子级联激光发射头,这是一款热电冷却,空气制冷型,内准直输出的连续波CW室温分布反馈型量子级联激光(DFB-QCL)源,最峰值输出功率为 30 mW,由QC750-Touch型一体化激光驱动器,集温度控制器和低噪声恒流电流控制器驱动于一身,使光源系统发出6.2 μm波长的激光。极低的光学噪声和驱动器稳定性为此实验奠定了高质量信号基础。激光通过多通池由热电致冷型的碲镉汞光电探测器接收,信号传输至电脑后进行数据处理与分析。 图四 用于验证ASGF算法用于痕量NO2气体分析的实验设置 实验设置在压力0.1 atm和温度296 K的氮气中对4 ppm NO2的测量。其测量和过滤后的吸收光谱如图五(a)所示,原始数据测吸收特性淹没在噪声中,而经ASGF算法过滤后的频谱已显着平滑,使识别更容易。研究组对吸收光谱数据与理论Voigt 函数拟合,图五(b)结果表明拟合的R平方值高达0.99934,表明滤波后的吸收光谱与理论形状吻合良好。 图五 实测NO2的吸收光谱和经ASFG算法后的吸收光谱,可以看到滤波后的吸收光谱与理论形状吻合良好 结合了深度学习的神经网络技术,研究组提出的自适应S-G滤波算法表现出显着的滤波效果,在激光光谱气体分析领域中能够大幅改善光谱信号的信噪比。面对大气环境中具有挑战性的痕量气体分子检测,将能提供更优异的灵敏度和可靠性。
  • 谱标科技将和天美深度合作,推动国产仪器发展的同时提升高端仪器的技术实力与创新能力
    2020年9月8日,天美集团领导们来我司参观和培训演讲,谱标科技总公司全体业务、客户都参加了此次培训,接下来谱标科技将和天美集团深度合作,为研发实验室分析新仪器作准备,为国产仪器的发展作进一步的努力和推动,为解决实验室建设及检测遇到的一切难题~ 天美集团从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销;为科研、教育、检测及生产提供完整可靠的解决方案。近年来天美集团积极拓展国际市场,先后在新加坡、印度、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线, 以及上海精科公司天平产品线, 三科等国内制造企业、加强了公司产品的多样化。 在这里我们可以更进一步了解SCION 456-GC产品的优势和进样口压力范围、分辨率情况: 实际样品定性定量分析白酒结果:436G有效解决了yi醛拖尾现象,436C-FID陶瓷喷嘴减少拖尾和溶解峰干扰。 - 独特的90°弯曲q0,保护四级杆不被污染- 独特的180°弯曲的碰撞池,提供更高的信噪比;大幅度消除中性噪音;减小交叉污染/串扰 创新是引领发展的第一动力,也是推进中间国制造迈向中间高端的重要手段。我们仪器企业通过科技创新提升资源、产品、服务的价值,减少无效供给,把科技创新真正落实到产业发展上,能真正实现国产仪器的产业化发展,同时也真正的满足市场的需求。 未来,国家将继续大力支持国产仪器企业发展,加大扶持力度,助力国产仪器企业成长壮大。所以国产仪器企业在扩大中、低端仪器领域优势的同时,还要积极提升高端仪器的技术实力与创新能力,不断调整新产品结构,全力推动中国仪器产业发展。
  • 清华大学黄翊东团队:基于深度学习的高空间分辨率片上快速光谱成像
    近日,清华大学电子系黄翊东、崔开宇团队以「Deep-learning-based on-chip rapid spectral imaging with high spatial resolution」¹为题在Chip上发表研究论文,提出将深度展开神经网络ADMM-net与基于自由形状的超表面光谱成像芯片相结合,实现了高空间分辨率的片上快速光谱成像,并消除了光谱图像的马赛克现象。光谱成像扩展了传统彩色相机的概念,可以在多个光谱通道捕获图像,在遥感、精准农业、生物医学、环境监测和天文学等领域得到了广泛应用。传统的基于扫描方式的光谱相机存在采集速度慢、体积大、成本高等问题。基于超表面宽带调制和计算光谱重建的片上光谱成像为实现消费级的便携式光谱相机提供了一种很有前景的方案。图1展示了超表面光谱成像芯片的基本结构,由硅基超表面层和带有微透镜的CMOS图像传感器组成,超表面层包含了360 × 440个超表面单元,每个超表面单元对应于成像空间中的一点,入射光经过每个超表面单元的频谱调制后被下方的传感器像素所探测。任一点处的光谱可以由该点附近的若干个光强探测值重建得到,重建过程对应于求解一个欠定线性方程组。现有的光谱图像重建算法需要通过逐点光谱重建来得到整个数据立方,存在计算耗时长和重建图像存在马赛克现象的问题。图1 | 超表面光谱成像芯片的结构示意图由于不同的超表面单元具有不同的光谱调制特性,整个超表面光谱成像芯片在不同波长下具有不同的空间调制特性,因此本文受启发于编码孔径快照式光谱成像算法,采用深度展开神经网络ADMM-net²进行光谱图像的快速重建,其基本架构如图2所示。网络包含K=12个阶段,每个阶段都包含线性变换W()和降噪卷积神经网络(通常采用U-net结构)两部分。网络的输入是包含所有超表面单元光谱调制特性的传感矩阵Φ和测量图像y,输出为重建的光谱图像数据立方。图2 | 深度展开神经网络ADMM-net的基本架构图3展示了利用超表面光谱成像芯片对标准色卡进行实际成像测量后,采用不同算法重建数据立方的结果。从RGB伪彩色图中可以看出,ADMM-net的图像细节重建效果显著优于采用传统的CVX算法进行逐点光谱重建的结果,有效消除了图像的马赛克现象。并且,相比于传统迭代算法GAP-TV³和端到端神经网络λ-net⁴的重建结果,ADMM-net的光谱重建准确性也更优。此外,采用ADMM-net进行单次重建仅需18毫秒,而逐点光谱重建则需要4854秒,本工作在重建速度上实现了约5个数量级的提升。图3 | 对标准色卡进行实际成像测量后,利用不同算法进行光谱图像重建的结果进一步,本工作利用ADMM-net实现了对户外驾驶场景的实时光谱成像,如图4所示,光谱成像速率达到约36帧/秒。从RGB伪彩色图中可见,车辆的色彩重建准确性较好;并且,从第20、100帧图像中的采样点A和B的重建光谱来看,天空和白色车辆的光谱具有明显的差异,有望解决自动驾驶场景中的同色异谱识别问题,避免相撞事故的发生。此外,具有视频帧率的高空间分辨快速光谱成像,也展示出实时光谱成像芯片在机器视觉领域的巨大应用潜力。图4 | 户外驾驶场景的实时光谱成像结果
  • 强强联合!上海昊扩与宁波艾纯生物达成深度战略合作
    近日,上海昊扩再传佳音:我们荣幸地宣布,与国内生物技术药物分离分析仪器的知名企业宁波艾纯生物科技有限公司 (以下简称“艾纯生物”) 达成深度战略合作,正式成为其上海代理商和全国工业总代。宁波艾纯生物科技有限公司坐落于宁波生物产业园区,由中科院博士团队创立,致力于生物技术药物分离、分析的新仪器设计、开发和应用推广,将积累了10余年的研发成果推向市场,推动国产分析分离仪器的自主创新和行业进步。主要产品“PPS-HD蛋白纯化系统”,是实现了国产化的生物技术药物分离仪器,具有自主知识产权,获得过多个行业大奖,并在多家上市公司、双一流大学、重点科研院所获得了应用,得到了用户的好评。PPS-HD 蛋白纯化系统是一个智能的、多选择的、模块化的纯化系统。除蛋白外,也可快速纯化多种生物分子,如多糖、肽类、寡核苷酸、核苷酸疫苗、病毒及天然小分子等。PPS-HD 系列可用于纯化从微克到百克级的蛋白质。PPS-HD 是一个稳定的系统,它与层析柱、层析填料配合使用,以应对不同应用的纯化挑战。PPS-HD 的版本 &bull PPS-10HD:专为用户的微量制备及研发&检测分析而设计。&bull PPS-100HD:非常适合在较大规模制备纯化中优化资源利用率和提高生产率。&bull PPS-PilotHD:系统工作流量及压力范围广泛,适用于不同规模的研发、放大研究以及小规模及中试规模生产。PPS-HD搭配审计追踪软件,并支持多种层析技术,能满足提供高纯度所需的自动化要求。该系统可以自由配置和升级,并根据您的纯化需求提供多种选项,以进一步提高其性能。PPS-HD 的优势 &bull 多选择的模块化设计,可灵活应用于蛋白、多肽、核酸等生物分子的纯化。&bull 使用 PPSN 软件可进行直观灵活的方法创建、系统控制和结果分析。&bull 尺寸小巧,便于放置在实验室工作台上或冷柜中。&bull 保证蛋白纯化过程持续稳定可靠。在持续致力于实验室设备、耗材及仪器领域的深度耕耘中,上海昊扩一直坚守开放共赢的合作理念,不断探索和实践。此次与艾纯生物的强强联合,是双方对彼此技术实力和市场影响力的深度认可。展望未来,上海昊扩将携手艾纯生物,致力于为我们的客户提供更加周到、更加高品质的服务,共同书写行业发展的新篇章。
  • 院士专家共商智能影像技术趋势,推动产学研用深度融合
    9月16日,以智能影像技术发展趋势及产学研用探讨为主题的2022年未来影像行业峰会在北京召开,峰会由智能图像处理北京市工程研究中心(以下简称“中心”)举办,邀请院士专家以及50余家企业的近百位行业精英,进行了12场专题分享。工程研究中心主任、小米集团高级副总裁曾学忠介绍了中心过去一年取得的成绩,并对未来影像技术在手机、机器人、汽车、XR(扩展现实)以及AIoT等多个行业出现的新需求做了深入分析,并提出对于未来影像的三个思考点:在多维传感,增强影像方向,拓宽影像传感的维度,突破视觉的限制;在AI赋能,计算摄影领域,用AI算法与硬件进行深入结合,突破硬件的限制;在影像互联,计算互通技术上,用互联互通的计算,打破影像采集以及计算的限制。中国工程院院士、中心专家委主任丁文华院士肯定了中心在影像行业的科研牵引作用,并指出影像多媒体领域对前端基础图像处理技术存在极大需求及市场空间,希望今后中心能够持续发挥平台作用,加深影像行业的产学研用协同创新的深度与广度,为产业的进一步发展起到示范带头作用。中心研究中心常务副主任、清华大学脑与认知科学院院长季向阳教授分享了计算影像的技术发展,介绍了计算影像在光谱成像,多传感器融合,光路编码等多个维度上的突破建议,后续将利用中心的平台创新科研机制,更好地将高校科研技术转化到行业。影像硬件技术企业豪威科技、丘钛微电子、奥比中光分别从图像传感器、相机模组、3D相机领域进行了专题分享。豪威科技总经理刘志碧梳理了当前各个行业对图像传感器的技术需求,并对全局快门、Hybrid EVS、微型化相机等行业新技术做了全面分享。丘钛微电子副总裁胡三木分享了相机模组硬件的发展趋势,并对大光圈、防抖、大推力马达、moding等模组工艺的演进进行了分析。奥比中光高级副总裁江隆业分享了3D视觉在各新兴行业的应用情况,并对3D视觉未来的技术发展方向进行展望。新型影像技术企业与光科技、灵明光子、普诺飞思分别从光谱相机、深度相机及动态相机的技术发展路线以及应用场景切入,进行了专题分享;与光科技CEO王宇认为小型化的光谱传感器是未来的技术趋势,并详细介绍了小型化光谱传感器在辅助色差还原、健康检测上的重要作用;灵明光子CTO张超阐述了dToF替代iToF在远距离深度探测场景的明确趋势,并介绍了dToF在汽车、消费、工业等多个领域的应用价值。普诺飞思中国区GM杨雪飞阐述了这种新型传感器相比于FBS相机的巨大优势,并介绍了DVS在超慢动作检测、边缘跟踪以及高级驾驶辅助等场景下的价值。北京邮电大学、极感科技、黑芝麻智能就影像算法进行了主题分享。北京邮电大学计算机学院执行院长马华东教授就视频处理各算法的发展状况做了介绍,并指出了AI视频算法模型轻量化的发展路径。极感科技高级总监林曦在深度计算和分割算法的现状和发展做了分享,提出了未来影像算法芯片化和工程化的方向。黑芝麻智能总监王超就视觉算法在自动驾驶上的应用做了技术分享,从低噪声、大动态、低延迟等场景举例,提出了视觉算法的需求方向。小米手机部副总裁、相机部总经理易彦博士分享了小米在手机、机器人、XR、智能汽车、智能制造五大主要应用场景中影像技术的深度积累,他表示,未来将依托中心持续加大资源投入,联合更多的上下游产业伙伴,围绕影像行业的系统性需求,做好产业协同,提升行业整体竞争力。据了解,智能图像处理北京市工程研究中心由小米集团牵头,联合清华大学等高校与企业于2021年共同组建,该中心的主要发展目标为联合上下游企业、高校和科研院所等机构,开展图像处理软硬件核心技术的开发、验证以及成果转化等全链路的创新,以推动行业共同发展。
  • 全国人大代表、华中科技大学校长尤政:依托未来产业科技园 以“四链”深度融合培育新质生产力
    全国人大代表、华中科技大学校长 尤政“进一步完善相关机制,让领军企业充分发挥‘出题人’‘阅卷人’作用,以研发投入为‘指挥棒’,引导高校主动打破信息差,让应用研究成果适应产业需求,赋能壮大企业的科技创新主体地位。”近日,全国人大代表、中国工程院院士、华中科技大学校长尤政在接受上海证券报记者采访时表示,建设未来产业科技园,是解决科研供需对位、探索更高效科研成果转化的全新载体,让一流高校的创新链、人才链优势与一流企业在产业链、资金链的优势共同促进“四链”深度融合。今年全国两会,尤政准备了《依托未来产业科技园 以四链深度融合促战略性新兴产业培育》《加快完善卓越工程师培养机制 筑牢现代化产业体系发展根基》等建议。尤政说,当前,新一轮科技革命和产业变革正重塑全球经济结构,战略性新兴产业成为各国角力的新赛道。我国发表在高水平国际期刊论文数量及被引用次数居于全球前列,如何及时将这些创新成果应用到具体产业和产业链上,培育发展新质生产力,对改造提升传统产业、培育壮大新兴产业、布局建设未来产业、完善现代化产业体系至关重要。  科研成果转化仍存在堵点尤政通过深入调研了解到,近年来,高质量发展已成为经济社会发展的主旋律,创新驱动发展成效日益显现,但是,在科研成果高效转化推进产业升级的这个链条上,仍有一些堵点。首先,科研产出与市场需求的信息不对称。从发明专利的数量上看,我国专利申请量、授权量连续多年位居世界第一,但存在海量的“沉睡专利”等待转化利用。国家知识产权局发布的一项数据显示,2020年,我国有效发明专利产业化率为34.7%。其中,企业为44.9%,科研单位为11.3%,高校为3.8%。与之对应的是,美国高校专利转化率约为50%。其次,专利转移转化的渠道不畅。过去一段时间,高校和科研机构的研究成果,是企业技术创新的来源。除了专利质量、权益分配机制等因素外,转移转化的平台模式不够健全,抬高了专利转让和专利许可的交易成本。最后,缺少满足企业需求的转化平台。当前我国“四链”深度融合的创新生态尚未形成,企业参与“四链融合”的内驱动力不足、研发效率和成果转化率低、科技型企业融资渠道不畅、人才培养与产业需求相对脱节等问题仍较为突出。尤其作为国民经济“压舱石”的国资国企,在科技研发投入和投向方面虽有明确目标,但高效发现并识别符合企业需求的项目并不容易,限制了企业发挥创新主体作用。尤政说,加快国内传统产业向价值链高阶跃升进程,推动新旧动能接续进程,需要企业与高校创新合作方式,组成创新联合体,打造原创技术策源地,以新技术培育新产业,进而推动产业升级。打造科研成果转化全新载体2022年以来,有关部门启动了国家未来产业科技园试点及培育工作,依托高校优势学科,既联系产业需求侧,又连接科技供给侧,通过探索“学科+产业”的创新模式,构建未来产业应用场景,加快集聚人才、技术、资金、数据等创新要素,让一流高校的创新链、人才链优势与一流企业在产业链、资金链的优势结合,共同促进“四链”深度融合。“建设未来产业科技园,是解决科研供需对位、探索更高效科研成果转化的全新载体。”尤政说。围绕为更好发挥平台功能、释放校企联合创新的动能活力,尤政提出相关建议:一是“用为导向”,在研发投入渠道和评价机制上,为科研成果涌现和转化护航。释放创新活力,离不开体制机制的保障,需要教育、科技等主管部门进一步完善相关机制,让领军企业充分发挥“出题人”“阅卷人”作用,以研发投入为“指挥棒”,引导高校主动打破信息差,让应用研究成果适应产业需求,赋能壮大企业的科技创新主体地位。高校自身也在科教协同、产教融合中,壮大学科发展,形成产学研之间的良性循环。二是畅通渠道,为领军企业参与并发挥作用提供便利。实现产业整体跃升的战略目标,关键在于领军企业的牵引。其中,国资央企肩负着科技创新、产业控制、安全支撑的任务,需要瞄准国家重大需求,加强重点领域研发投入,提高应用基础研究投入占比,以颠覆性技术和前沿技术催生新产业、新模式、新动能。无论是在功能实现,还是关注的重点产业领域方面,都与未来科技产业园高度一致。因此,加强领军企业与高校等创新环节的互动,并形成创新联合体,有助于更高效地开展关键核心技术协同攻关,以应用为牵引,加速产品迭代升级,培育壮大经济增长新引擎。三是金融支持,建立基础研究经费的多元化投入机制。以政府引导和金融服务为抓手,建立健全科研成果作价入股等配套机制,精准引导金融机构和社会资本加大产业创新链的资金投入,引导金融机构对重点产业创新链项目给予股权融资支持,促进产业链、创新链、资金链的供需精准对接,为创新驱动发展提供资本支撑。
  • 世界上最深的地下实验室开建 深度相当于六个帝国大厦
    据国外媒体6月23日报道,在美国南达科塔州的黑山底下,工人们正在建立世界上最深的地下实验室,其深度相当于六个帝国大厦,该实验室将适合于科学家们寻找像暗物质这样神秘粒子的需求。   22日科学家和其他政府官员出席了位于地表以下4850尺的实验室的破土动工仪式。此处原来是一个金矿,并且是诺贝尔物理学奖获得者的实验基地,这里现在以这位获奖者的名字雷?戴维斯(Ray Davis Jr.)命名,他和他的同事在2002年获得了诺贝尔物理学奖。   近四分之一的宇宙物质被认为由暗物质组成,宇宙射线会直接影响证实暗物质存在的效果。而这个地点因为能远离宇宙射线而被选定为实验的理想场所。   实验室建成前,工人们需要固定隧道,并安装新的基础设施。第一项暗物质实验将是大型地下氙探测实验,或者探测弱相互作用粒子,这为科学家探索人们认为曾经发生过的宇宙大爆炸的秘密提供新的视野。   物理学家说没有暗物质,银河可能就不会形成,希望通过更多了解暗物质,弄清宇宙是在扩张还是收缩。科学家希望在2012年和2016年能够开始建设两个更深的实验室。据估计,这些项目将花费5亿5500万美元。
  • 官方深度揭秘:徕卡华为恋爱史大白!
    p   3月27日,华为发布新旗舰P20系列,其中P20 Pro首创徕卡后置三摄,震惊业界,整体水准领先一两个时代。 /p p   华为和徕卡首次合作是2016年初的P9,迄今已经走过整整两年、诞生了P9系列、Mate 9系列、P10系列、Mate 10系列、P20系列五代产品,每一代都有惊人的飞跃。 /p p   一个是来自于中国的年轻高科技企业,一个是典型的德国百年老店,华为和徕卡,到底是怎么走到一起的? /p p   华为手机战略与业务发展部部长李昌竹今天特意撰写长文,深度揭秘了华为与徕卡合作幕后的故事。这里华为略加调整,呈现给大家。 /p center img style=" width: 450px height: 484px " title=" " alt=" " src=" http://imgs.tom.com/tech/201804/CONTENTE10417448DD94A2F.jpg" height=" 484" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /center p   华为认为,在数字时代,这个世界的本质并没有改变,手机照相成像原理、光学设计和图像质量控制的本质并没有改变。 /p p   华为一直在思考,如何让手机复制胶片时代那些伟大的照片,让手机拍摄的照片也有“情感”和“思想”。 /p p   经过一番研究,华为决定去和这个产业中最顶尖的公司沟通一下,它的名字叫Leica(徕卡)。 /p center img alt=" " src=" http://imgs.tom.com/tech/201804/CONTENT7940889EEEBD4AA4.jpg" height=" 150" width=" 600" / /center p    strong 为什么是徕卡? /strong /p p   在摄影爱好者心目中,徕卡是一个高山仰止的传奇,不仅仅是因为奥斯卡· 巴纳克在1914年手工制造出第一台用35mm电影胶片的徕卡原型机Ur-Leica,这台现代便携式相机的雏形,更是因为一百年来,徕卡相机一直保持着卓越的品质,有多少摄影师用徕卡相机留下了宝贵的瞬间。 /p p   从罗伯特卡帕的“士兵之死”到时代广场的“胜利之吻”,从周恩来总理半身坐像到拳王阿里的出拳照片,徕卡相机始终忠实地记录着历史。 /p p   徕卡相机有着出色的光学系统。徕卡镜片的生产工艺非常复杂,除了独特的配料之外,为了让内部应力达到均衡,甚至要花上数月的时间,让光学玻璃的温度逐步降低到可以加工的温度。 /p p   徕卡所在的小镇Wetzlar,号称欧洲的“光学硅谷”,一代又一代的光学专家在这里潜心研究,改进设计。 /p p   用徕卡相机拍出的照片,图像锐利,色彩饱和,大气沉稳,被摄主体和背景有可分离的立体感,因为镜头的解析力高,图像的过渡层次丰富,有一种特殊的油润感。 /p p   经过百年的发展,徕卡形成了其独特的产品文化。徕卡相机从不会让使用者失望,每一个细节都琢磨到极致。徕卡相机是专业技术的象征,是艺术创作的保证,是摄影师敏锐观察力的延伸。当然由于其高昂的价格,徕卡也是奢侈品的代名词。 /p p   使用徕卡相机是追求一种品位、一种文化,徕卡是为人一辈子而造的相机。 /p p   乔布斯在iPhone 4发布会上曾经这样说:毫无疑问,iPhone 4是其做过的最精密和最漂亮的产品,它就像一台漂亮的老式徕卡相机。 /p center img style=" width: 450px height: 484px " title=" " alt=" " src=" http://imgs.tom.com/tech/201804/CONTENTF617C4C8606F4B5A.jpg" height=" 484" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /center p    strong 一见面就有了化学反应 /strong /p p   华为第一次拜访徕卡,是在2014年的夏天。早在2013年底,华为通过邮件和徕卡沟通,表达希望合作的意愿,被礼貌地回绝了。后来又经过几次邮件的沟通,徕卡终于同意见面。 /p p   见面是从参观开始的。2014年是徕卡的百年纪念,公司也搬进了刚落成的总部。总部从空中看像是一个“8”和“0”的组合,象征着徕卡的两个主要业务:望远镜和照相机。 /p p   徕卡新总部的大厅,是一个对公众开放的小型博物馆,常年有摄影师的作品展览。 /p p   在这里,李昌竹第一次近距离地观赏徕卡的全系列相机,第一次发现原来“这些照片”都是用徕卡相机拍的,也是在这里第一次知道了徕卡M Monochrome,那台著名的只能拍黑白照片的数码相机。 /p p   一楼大厅和后面的工厂相连,参观者可以透过玻璃窗,观看后面的镜头生产和组装产线。 /p p   第一次见面,双方介绍了各自公司的情况,徕卡CEO专门抽出了20分钟来听华为的介绍。双方约定,各自向高层汇报情况,并推动下一次见面。 /p center img style=" width: 450px height: 484px " title=" " alt=" " src=" http://imgs.tom.com/tech/201804/CONTENTFF25567415B84B21.jpg" height=" 484" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /center p   其实徕卡内部也颇不平静。虽然每年的销售还在平稳增长,虽然还保持着优厚的利润,但徕卡的高层也在思考:徕卡的使命是将优质的图像带给消费者,面对着越来越多的照片图像来自于智能手机的今天,徕卡如何把它的百年积累应用在智能手机上。 /p p   为此,它需要一个战略合作伙伴,有相似的文化、愿景、实干的精神、极致的技术。 /p p   一个是来自于中国的年轻高科技企业,一个是典型的德国百年老店,一见面便对上了眼,产生了化学反应。 /p p   双方高层也互动起来,徕卡CEO专门从德国飞到上海,和华为消费者业务CEO当面敲定细节以加速谈判进程。 /p p   经过几轮的深入沟通和评估,双方最后签订了战略合作协议。 /p center img style=" width: 450px height: 484px " title=" " alt=" " src=" http://imgs.tom.com/tech/201804/CONTENT3922AAEE31374201.jpg" height=" 484" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /center p    strong 如何提升镜头模组的良率? /strong /p p   合作一开始双方就成立了技术专家组,分别由徕卡的Dr.Weiler和华为终端的Dr.Yi领导,主要的工作方向是光学设计和图像质量。 /p p   手机虽小,五脏俱全。除了尺寸小一点,手机拍照机构的每个部分都和数码相机相对应。 /p p   但手机的光学设计,有着天然的限制:塑料镜头的光学素质距离光学镜片有差距 由于尺寸的限制,传统光学镜头的设计经验可能无法完全继承 镜头模组的加工难度较大,必须考虑生产的良率、量产和成本。。 /p p   光学系统的设计在高中低各个频段达到均衡,才能保证图像的细节、层次和轮廓的品质,同时徕卡专家在镜头的鬼影和炫光指标上也提出了很高的要求。 /p p   鬼影和炫光是指在有较强的光线进入到镜头里,因为在镜片间多次反射,从而在视野中形成了像骷髅头一样的影子(鬼影)和点状的光斑(炫光)。 /p p   绝大多数情况下,鬼影和炫光的影响要通过光学系统的设计,尽可能降到最低。 /p center img style=" width: 450px height: 484px " title=" " alt=" " src=" http://imgs.tom.com/tech/201804/CONTENT3FEBFA4B53BF4213.jpg" height=" 484" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /center p   当徕卡把他们的测试方法介绍给华为的专家和华为的供应商时,华为的人都惊呆了,因为徕卡测试鬼影和炫光用的光源相当于投影机的光源,比华为平时用的测试光源强了几十倍,只有在这种极端的强光源下,才能彻底暴露镜头在鬼影和炫光上的缺陷。 /p p   徕卡坚持把徕卡镜头的测试标准用在手机镜头测试,因为这是优秀图像的基础。 /p p   一开始的试制良率结果是令人崩溃的,每做出100组镜片,最后只能出品不超过10套符合要求的双镜头模组。 /p p   徕卡的专家团队多次和华为一起拜访生产厂家,一起讨论改进方案,充分发挥他们在光学系统设计和生产上的经验,指导华为如何调整镜片形状和间隔,如何考虑周边系统对光学部分的影响。 /p p   在大家夜以继日的努力下,良率在不断提升,终于在预定的截止日前,达到了量产的标准。 /p p   试产时的每一批次镜头,都要拍摄大量样张做评测。有一次,徕卡专家针对一批和某TOP品牌手机的对比样张,给出了热情洋溢的评测结果,认为镜头的素质已经达到业界一流的水准。 /p p   P9/P9 Plus的镜头是真正徕卡品质的镜头,属于SUMMARIT系列(光圈2.2-2.5)。大家可以试一下,用手机对着一个强光源拍照,可以发现很少鬼影和炫光,光晕柔和,稍加调整,就可以拍出不错的“吃光”作品。 /p center strong img style=" width: 450px height: 484px " title=" " alt=" " src=" http://imgs.tom.com/tech/201804/CONTENT659702138EB74B76.jpg" height=" 484" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /strong /center p strong   如何拍出有“徕卡味儿”的照片? /strong /p p   华为负责图像质量的专家发现,虽然双方在客观评估图像质量的测试仪器和平台是一样的,但徕卡使用的测试标准要高很多。 /p p   比如,用来测试色彩还原的色卡,华为一般要求准确还原几十个色块就不错了,徕卡的标准是140个色块的准确还原。 /p p   要达到徕卡的标准,对手机的器件、ISP算法以及后处理都提出了更高的要求。 /p p   图像质量的测试包括颜色、对焦、纹理、噪声、畸变、动态等很多个维度,这是一个系统工程。 /p p   同时,对图像的评测分为客观和主观两个部分。客观的指标是可量化可重复的,主观的评测主要是针对有代表性的场景。 /p p   华为研发多媒体部有一个专门的图像评测团队,光是有代表性的固定场景就有100多种,还有随机的场景。 /p p   图像测评团队每天不仅要拍大量的样片,还会接收大量的Beta测试图片,分析问题。 /p p   评测团队的几位同事,几乎不分昼夜地工作,不管华为在美国还是欧洲传回有问题的样片,他们都能第一时间答复,澄清问题,反馈解决方案。 /p p   2016年1月到2月间,李昌竹每天都拿着P9样机拍照,在每次升级后都能感觉到照片质量的进步,在一步步向着“徕卡味儿”靠拢。 /p center img style=" width: 450px height: 484px " title=" " alt=" " src=" http://imgs.tom.com/tech/201804/CONTENT4A033BCDE57A4ED0.jpg" height=" 484" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /center p    strong 徕卡加持P9的诞生 /strong /p p   2016年4月3日,英国伦敦,华为向来自全球的数百家媒体超过1500名记者发布了P9/P9 Plus,和徕卡联合研发的双镜头拍照系统,成为发布会最大的亮点和关注点。 /p p   发布会上,华为邀请了4位国际顶级摄影师,向观众展示了他们用P9拍摄的照片,并分享了使用P9拍照的心得。 /p p   4月15日,在上海,华为向中国的消费者发布了P9产品,徕卡的高层以及CEO都参加了发布会并致辞。 /p p   P9的双镜头中有一颗是纯黑白感光器件,不仅承担着双目深度图计算、细节捕捉、辅助降噪等功能,而且还可以作为单独的摄像头,拍摄纯黑白照片。 /p p   徕卡一百多年黑白影像的调校功力,不仅用在了徕卡M Monochrome上,也用在了P9身上。 /p p   另外,P9通过双镜头以及激光测距,能够获得图像的深度图,这就使得通过算法调整焦点和景深成为可能。虽然是算法模拟,但其细腻柔和的焦外虚化效果,很好地烘托了被摄主体。 /p p   P9的操作和UI(用户界面)也是华为和徕卡的设计师一起设计,很多操控菜单和徕卡M系列是一样的,字体也和徕卡一样,甚至按快门的声音都是按照徕卡M相机来调校的。 /p p   李昌竹指出,华为与徕卡真正突破的,不仅仅是技术,而是从手机拍照到手机摄影的升华,是从影像捕捉到情感表达的跨越。华为和徕卡的合作带给用户的是,有温度的影像故事,有情感的自我表达,有情怀的人文互动。为用户提供高品质的产品,和用户在情感上达到共鸣,始终是华为追求的目标和境界。 /p center img style=" width: 450px height: 484px " title=" " alt=" " src=" http://imgs.tom.com/tech/201804/CONTENT89B9A9CFA06D438D.jpg" height=" 484" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /center
  • 专家观点 | 贺泓:NOx深度减排-探索PM2.5和O3协同控制之路
    目前,我国大气污染防治形势严峻,亟需推进以高度复合污染为特征的霾化学污染治理。建立和发展大气霾化学理论,探索PM2.5与O3协同控制策略,寻求NOx深度减排路径,对持续改善我国空气质量,实现美丽中国目标具有重要意义。一、我国大气污染防治挑战:科学问题与现实问题目前,我国PM2.5平均浓度仍高于世界卫生组织指导值,同时O3污染问题凸显,大气污染防治工作已进入深水区,面临治理大气复合污染新挑战。治理大气复合污染亟需解决污染形成机制不明的科学问题和污染前体物减排难度大的现实问题。研究表明,随着我国空气质量逐渐改善(PM2.5平均浓度降低),PM2.5浓度和O3浓度趋于正相关,合理实施政策、精准控制前体物排放,可实现污染物浓度协同下降(图1)。但目前大气复合污染化学机制不完善、前体物贡献不明确、前体物优先控制存争议,导致协同治理政策措施制定难度大。此外,复合污染前体物控制面临着减排技术不成熟、减排效果不确定、减排措施不普及等问题,造成协同治理政策措施落实难度大。因此,我国治理大气复合污染亟需寻求总体抓手和可行路径。二、以NOx深度减排为抓手:推动PM2.5和O3协同控制在大气复合污染条件下,大气氧化性增强,气态污染物向颗粒态污染物转化呈爆发性增长,大气环境容量下降,灰霾污染事件频繁出现。NO2是大气氧化性重要贡献者之一,在复合污染致霾中扮演核心角色。研究表明,大比例削减NOx可实现PM2.5和O3污染协同治理。近年来,随着我国空气质量改善,PM2.5与NO2相关性越来越显著高于PM2.5与SO2相关性(图2)。相关分析显示,削减单位质量NO2带来的PM2.5减少量是削减SO2的3倍以上。因此,进一步降低PM2.5浓度需推进NOx排放控制。此外,外场观测、烟雾箱和模式模拟结果显示,大比例削减NOx直至O3生成的NOx控制区可有效控制O3浓度。目前,我国工业源和移动源NOx排放控制工作已取得一定进展。下一步需以我国新气候目标为持续动力,开展深度减排工作。以柴油车NOx减排为例,在实现“碳达峰、碳中和”与更好空气质量的双重目标下,我国需分别制定短期、中期和长期柴油车发展战略与路线图,实现减污降碳协同增效:1. 短期内,需提高柴油机热效率,发展CO2与大气污染物协同减排技术。加强柴油机内净化技术与后处理技术的研发与应用,实现CO2与污染物协同减排。2. 中期内,需发展碳中性燃料合成技术、碳中性燃料-燃油掺烧技术。加快推进生物柴油和醇类燃料生产和应用,并推广碳中性燃料掺烧技术,替代、减少柴油使用。3. 长期内,需发展碳中性、零碳燃料直接燃烧技术和氢燃料电池技术。逐步发展基于绿氢与CO2捕集以及基于生物质转换的碳中性燃料,并加大力度研发应用氢燃料电池。三、大气霾化学研究的展望目前,我国正面临以高度复合为特征的霾化学烟雾污染,需大力推进霾化学污染机制、组分识别精准溯源、大气污染物协同控制三个方向的研究工作,建立综合交叉的霾化学研究范式和引领学科的霾化学原创理论,助力大气污染防治政策的制定和优化。未来五年,建议构建精准的颗粒物组分识别和溯源平台,揭示二次污染物形成的微观化学机制,建立适用于霾化学污染特征的数值模拟理论与方法,以初步构建大气霾化学理论、初步提出费用效益比最优的PM2.5和O3协同控制策略。未来十年,建议建立引领学科发展的霾化学理论,制定最优化、精细化PM2.5和O3协同控制策略,并引导实施以健康效益为调控目标的大气污染防控和落实“污染物-碳”协同减排和资源化,实现我国空气质量持续有效改善,并将其辐射至“一带一路”国家。
  • 体外诊断行业深度研究报告(四)——各细分市场容量与增速
    分子诊断作为近几年的追捧热点快速发展,未来应用空间充满想象  新技术的出现会带来革命性的变化,但目前依然以临床应用为主。2014年中国市场容量约19亿人民币,年复合增长率是IVD细分市场中增长最快的2011-2015年均复合增长率为30%。市场对于分子诊断的关注度,已远超临床应用现状,尤其是肿瘤早期筛查,个性化诊断等领域。我们认为能应用于临床的诊断产品,依然是近几年分子诊断的主题,但不可否认分子诊断未来的无限可能性。相关标的有:凯普生物,HPV龙头,是分子诊断目前应用最广的领域,期待未来其他产品线的不断补充。  分子诊断的发展具有划时代的意义,但临床应用尚有局限  分子诊断是指应用分子生物学技术对与疾病相关的结构蛋白质、酶、抗原抗体和各种免疫活性分子,以及编码这些分子的基因的检测。根据其检测技术的不同,主要可分为核酸杂交、PCR扩增、基因芯片、基因测序、质谱等。目前分子诊断已经广泛应用于传染病、血筛、 早期诊断、个性化治疗、遗传病、产前诊断、组织分型等领域。  核酸杂交:具有互补碱基序列的DNA分子,可以通过碱基对之间形成氢键等,形成稳定的双链区,通过核素或者荧光来检测靶序列,由于核素污染,越来越多采用荧光标记,称为荧光原位杂交(FISH)。  PCR扩增:PCR是模板DNA,引物和四种脱氧核糖核昔三磷酸(dNTP)在DNA聚合酶作用下发生酶促聚合反应,进行体外扩增,得到所需目的DNA,然后通过凝胶电泳或者荧光定量的方式来定性或者定量靶基因。这是分子诊断中目前应用最广泛的技术。  基因芯片:一种杂交测序方法,在一块固相表面固定了序列已知的带荧光标记的靶核苷酸的探针,当样本中有与基因芯片上核酸探针互补的核酸时,即发生配对,通过检测荧光可重组出靶核酸的序列。  基因测序:根据其原理平台,分为一代、二代和三代测序,其各自的优缺点如下表所示。  目前应用最广泛的为二代测序,全球被Illumina和Life tech(后被Thermofisher收购)垄断(罗氏的焦磷酸测序仪454在2013年退出市场),市面上基本没有国产仪器。三代测序由于测序准确度的问题还未广泛推广使用,多在研究阶段,但由于其无需PCR,避免了在分子扩增过程中由于扩增偏好性产生的错误,且成本低,通量高,真正做到了单分子测序,如能解决准确性和自动化的问题,在临床上具有广阔的应用前景。  目前国内应用最广泛的应用平台是PCR技术,PCR仪器被外资垄断,由于开发周期长,技术门槛高,因此鲜有国内厂家开发仪器,国产厂家产品多为PCR试剂。国内分子诊断临床应用最广的是传染病,占整个分子诊断超过50%的份额。产前筛查是另外一块重要的市场,约占整个分子诊断市场的20%,伴随二胎政策放开,产筛未来会有较大的增长空间。分子诊断中空间最大的是肿瘤早筛,但是目前在临床的应用处于早期,与肿瘤早筛相关的标志物成百上千,特异性是制约该应用的最大因素。  分子诊断广泛应用于传染病,血筛等领域,随着人们生活水平的提高,对分子诊断的认知和需求会越来越多,医疗卫生产业的发展不再局限于诊疗,而延伸到预防性医学。分子诊断在近几年也成为体各投资公司追捧的投资热点。随着人类基因图谱的破译,分子诊断在个体化精准治疗甚至大消费方面也有广阔的前景。  分子诊断作为一个重要的诊断分支平台,在国内的发展速度很快,但是由于其市场和产品的特殊性,在临床的应用相对比较受限。其特点如下:  1.分子诊断仪器平台集技术与资金为一体,由于其技术和监管门槛都相对较高,并且受到进口企业的专利限制,因此国内大多分子诊断厂家都是以试剂为主要产品,同时兼并部分服务,仪器市场主要还是被进口厂家垄断。  2.分子诊断操作要求高,现有实验室认证要求高,对普及有制约,很多医院因为没有足够的房间满足实验室认证的要求,而不能开展,随着医院的发展能达要求的实验室增加。  3.由于中国临床医生的知识结构,对分子诊断之类基础医学较强的项目接受度较慢,需要公司配合实验室进行主动的教育,这是目前国内欠缺的部分。  分子诊断市场容量  2014年中国市场容量约19亿人民币,年复合增长率是IVD细分市场中增长最快的2011-2015年均复合增长率为30%。分子国内客户多为三级医院及部分大型二甲医院检验科或病理科、独立医学实验室,血站,疾控中心等。    分子诊断竞争格局  国内分子诊断处于起步期,各国产厂家的销售额都不大,2014年销售额上亿的厂家较少,主要的分子诊断厂家多集中在HPV筛查和分型领域,其中达安基因、凯普、亚能(被复星收购),安必平,相对市场份额较大,销售额在1亿以上。  分子诊断的发展易受监管制度的制约,在摸索中逐步发展  分子诊断市场的监管力度远高于其他细分市场,大部分产品属于三类产品,各细分领域的增长空间受政策影响较大,比如2010年国家卫计委颁布的血站的核酸筛查试点及推广工作,国家药监局基因诊断叫停等政策等,但整体趋势是监管保守,逐步放开,国家持积极推动态度。因此分子诊断细分领域的龙头公司,由于其产品成熟,渠道完善,具有技术和数据储备,将会是未来最大的受益者。  分子诊断主板上市标的公司销售额过亿的只有达安基因,复星诊断,另外新三板的上市公司,潮州凯普和广州安必平值得关注,尤其是凯普(已主板转板中),是HPV细分领域的龙头。  分子诊断未来充满各种可能性,但要警惕精准诊疗的泡沫  分子诊断作为一项前沿的技术,对医学诊断有很大贡献。对于一些窗口期的细菌和病毒感染,DNA检测是最有效的方法,比如HIV的检测。目前分子诊断在中国的主要应用是传染病的检测,比如HPV,HBV,HCV,HIV等。分子诊断在产前筛查中的应用也相对成熟,如华大基因,贝瑞和康等,胎儿外周血游离DNA检测已逐渐替代羊水穿刺技术。  未来分子诊断在医学领域最大的市场是肿瘤早期筛查,目前在国内的应用还相对不成熟,只能作为辅助诊断参考,如果成本降低,肿瘤标志物的特异性可以满足要求,肿瘤早筛的市场将超百亿。除此以外,遗传病个体化诊断、疾病预测应用、大众消费基因服务等市场随着技术的发展,在逐步打开,随着技术成熟和成本的降低,分子、基因这些词与人民大众的生活会息息相关。  分子诊断市场小结:分子诊断常常被捆绑于精准诊疗,但是目前无论是产品性能、收费标准、政策支持、海量数据分析等都还无法支持真正意义的精准诊疗,仍然处于概念大于市场的阶段。能广泛应用与临床的产品需要具备如下特点:1.临床意义清晰 2.操作自动化,傻瓜化 3.成本可被接受。对于目前国内的公司,PCR试剂盒依然是分子诊断这块蛋糕最实际的应用产品,而大消费,大数据还有很长的路要走。既追前沿,又接地气,清醒分析在分子领域的各种新技术,才能准确判断该技术真正的临床价值。  POCT市场良莠不齐,亟待规范化和标准化  市场份额分散,行业增速快,新技术层出不穷。2014年POCT市场容量48亿,2011-2015年POCT复合增长率在15-20% 之间。POCT市场尚未成熟,各厂家市场份额较小,整体处于量多质劣的阶段。由于检测平台方法差异较大,同一检测项目有多种方法,参考范围难以界定,测量结果准确度难以保证,行业也无相关质量控制标准,将会较长时间保持混沌分散的现状。参考POCT国际巨头Alere的发展史,行业内的并购整合是最高效的发展业务的方式。相关标的有:基蛋生物:心标物已是细分领域的龙头,产品口碑和性能都得到市场认可,目前重点关注POCT质量控制,有望成为行业标准制定者。  POCT不是产品或项目的分类,而是检验的分类  POCT是Point-of-Care Testing,中文一般译成“床边检测”。NACB( NationalAcademy of Clinical Biochemistry ,美国国家临床生化科学院)对POCT的定义是——在接近病人治疗处,由未接受临床实验室学科训练的专业临床人员(professional)或者病人(self)进行的临床检验,是在传统、核心或中心实验室以外进行的一切检验   理论上,POCT只是一种检测平台,目前所有的IVD项目都可以实现POCT检测,但比较常见的有血糖、血气、血凝、传染病(病毒和细菌)、肝功能、肾功能、心脏标记物、肿瘤标记物等   POCT产品种类繁多,可有不同的分类的方法。  1. 根据原理和平台可分为如下几个平台:  干化学:单层试纸、多层涂膜。  免疫:胶体金+免疫层析/渗滤,荧光+免疫层析,免疫比浊。  电化学:电流法、电位法、电阻法、酶电极。  化学发光:小型化化学发光。  色谱:高效液相色谱。  新技术:微流控、生物芯片等。  2. 根据检测的项目可以分为:  临床生化(肝功能、肾功能、血气、离子)、临床免疫(心脏标记物、药物检测)、血液(血球、血凝)、微生物(传染病、分子诊断)等,基本和中心实验室(core-lab)的分类一致   3. 根据如有无仪器(或定性/定量):分为试剂条(无仪器)和仪器/试剂条配套,前者多为定性、后者多为定量   4. 根据应用场景分为专业市场和家用市场(OTC):家用市场主要包括血糖,血压,妊娠等产品。专业市场主要在医院的检验科,临床科室,急诊,ICU,手术室等使用的各类产品。除此之外,POCT还可以应用于救灾,军事,医疗服务站,现场监督执法,食品安全控制,移动医疗等场景,其形式比起大型诊断设备更加灵活多样。  POCT作为一种补充诊断的方式具有其自己的优势和劣势,与大型检验设备的主要异同如下所示:  POCT作为一个相对门槛较低的市场,竞争尤为激烈,同时由于POCT市场难以对其质量进行规范化,无相关行业标准,所以中国市场普遍呈现出“乱花渐欲迷人眼的”的量多质劣的局面。POCT市场主要有如下特点:  1.市场集中度低:POCT在整个IVD细分市场中除生化试剂外最易切入的市场,国内厂家规模普遍偏小,相对而言市场份额较大的厂家大多都有其特色产品,是该细分领域的佼佼者,比如特种蛋白的深圳国赛,心肌标志物的南京基蛋等。  2.行业无统一标准:欧美成熟市场对POCT有明确的监管法令、临床上也有明确的使用规范,但中国医疗机构和监督管理机构目前对POCT产品还没有统一的管理规范。生化、免疫、血球都有相应的溯源体系,可以溯源至国际参考方法和参考物质,保证其结果的准确度。中国每年都会由卫生部临检中心组织室间质评活动,来保证不同实验室间的结果准确和互认。POCT由于种类繁多,方法差异较大,因此暂无统一的质量控制体系,其结果难以保证准确。  3.国内检验科对POCT态度不一:中国医疗资源匮乏,公立大医院处于强势地位,POCT的作用同欧美医疗发达地区的作用是不一致的。不同级别的医院对POCT的态度不同:  1)二甲以上主流医疗机构,资金雄厚,检验科设备多为进口品牌,常规检测为主,不需要POCT。临床科室使用POCT,就会减少检验科的收入,冲击检验科的利益,因此限制了POCT的广泛使用。对于临床科室来说定量/半定量的POCT产品临床意义大,而且用量很大。如能采取更合理的利益分成方式,比如由检验科集中管理仪器,临床科室外借,可能会推动POCT的发展。  2)二甲以下的基层医院,检验科样本量少,技术水平相对低,大型设备的实用性差。因此检验科通常使用POCT产品顶替传统检验方法来做诊断。由于检测量小,产品分散,这块市场相对不受国际厂家和国内一流公司重视。  POCT市场容量  2014年中国POCT市场(不含血糖)约48亿人民币,市场主要集中在心肌、感染、特种蛋白、妊娠等领域。其中炎症、心脏标记物、血气、糖化血红蛋白、电解质的检测主要是定量检测,传染病、毒品、妊娠等主要是定性检测。  POCT竞争格局:竞争厂家众多,规模较小,市场分散程度高  国内有规模的POCT厂家不多,市场集中度很低。最主要的细分领域是血气、电解质,炎症,心标,传染病,糖化血红蛋白,合计约占整个POCT市场90%的份额。  这5个主要的细分领域中,技术平台、销售渠道、市场格局、经营状况都差异较大。血气电解质的检测主要用在各种紧急状态,临床风险极高,对产品要求极高,被进口产品垄断,基于电化学平台,和其他产品不同。  炎症和心脏标志物比较类似,通常以定量半定量方法检测,临床上也有技术成熟的国产产品在使用。传染病主要是定性检测,国内厂家主导地位,价格低,利润薄。这三类方法学类似,国产厂家都以免疫层析技术为基础。  糖化血红蛋白国际主流方法是高效液相法,同其他细分市场技术平台不同。  POCT除了部分细分市场,整体处于发展早期,龙头尚未出现  POCT是高度活跃的IVD市场,竞争格局不稳定,还没有一家独大的局面,国内目前的技术水平较低,且无核心技术和专利保护,因此造成低水平技术外流严重,市场产品同质化严重。虽然短期内受中国临床现状和国内公司技术水平的制约,但行业发展和市场前景长期看好。同时POCT也是医疗器械进入家用市场的必经途径,潜力巨大。  国内上市的POCT公司有三诺,鱼跃,万孚,理邦,乐普等厂家,其他有规模的活跃的未上市公司约有20家,如南京基蛋(已IPO披露),武汉明德,深圳瑞莱,深圳国赛,深圳普门,北京热景,石家庄禾柏等。  POCT经历从定性到定量的发展,未来质量控制标准将规范目前百家争鸣的格局  未来POCT的发展将从定性到定量,一些延展性好的技术平台,如免疫荧光、微流控、生物芯片等为将来的发展方向。技术的发展由单一领域向多领域突破。因此技术先进,结果准确并且能够多项目延伸和兼容的平台具有良好的应用前景。  目前临床应用最大的限制是产品质量和结果的准确性,因此细分领域的龙头,其性能已经过市场考验,能以明星产品为辐射点,渗透其他产品。南京基蛋2014年心肌产品销售额1.5亿,占市场大盘超过20%的份额,具备一定的市场口碑,长期看好。  POCT市场小结:POCT作为临床科室一种重要检测方法,在国外已经广泛应用,由于中国利益分配和国产品牌质量的问题,开展不够广泛。整体市场份额较为分散,细分领域龙头规模也较小,由于不同POCT其方法平台差异较大,产业并购将会是快速扩张的高效方法。  体外诊断(IVD)行业投资策略  近年来越来越多的企业开始转型涉足大健康领域,市场意识到生老病死相关的行业将成为固若汤金的抗风险行业,不易受到经济景气度的影响,没有明显的周期性,经济低迷,物价通胀也不影响病人看病吃药。作为门槛相对较低的体外诊断行业受到市场的疯狂热捧,企业如过江之鲫涌入体外诊断行业,不断加入的竞争者打乱了市场规则,拉低竞争价格,多数厂家集中在中低端市场进行恶性价格战,对于行业发展,以及病人的安全都是极为不利的。  随着监管机构逐步收紧行业法规和政策,一些手工作坊式的厂家将逐渐退出竞争,给那些真正以产品质量为核心追求的厂家创造了良好的竞争环境。大量的研发投入在短期内并不能见到明显成效,公司的业绩也不会有明显提高,但是内涵式的技术积累和沉淀将为企业的发展壮大保驾护航,也是未来企业安身立命的根本。“通常我们认为技术是被高估了,但长远看来 ,技术总是被低估了的”。  长期看好的细分市场的投资机会:生化、发光、POCT。  1、临床生化:临床生化200生产厂家,随着CFDA加强监管,优秀的国产品牌会加速整合市场份额,保持超越大盘的增速。相关上市公司:迈克生物、西陇科学。  2、化学发光:作为容量增速双高的细分市场,国产替代刚刚拉开帷幕。装机量是保证封闭系统增速的前提条件,明星套餐是进入终端的敲门砖和未来安身立命的根本。相关上市公司:郑州安图、迈克生物、新产业。  3、POCT: POCT市场作为大型中心实验室检测的有效补充,其发展尚不成熟,行业无标准,持续关注细分领域龙头公司和未来技术发展方向。相关上市公司:理邦仪器,万孚生物,乐普医疗。  风险提示  行业整合进度低于预期 行业短期估值过高。(全文完)  推荐阅读:  体外诊断行业深度研究报告(一)——国家政策偏好与国产品牌  体外诊断行业深度研究报告(二)——2015年体外诊断全球588亿美金  体外诊断行业深度研究报告(三)——各细分市场容量与增速
  • 温度如何影响污水深度处理膜污染?
    安徽理工大学地球与环境学院青年教师陶晨与加拿大滑铁卢大学工程学院教授Wayne Parker和不列颠哥伦比亚大学教授Pierre Berube课题组合作,针对安大略省多伦多市Keswick污水回用中心冬季深度处理污染加剧的问题,进行了前期历史数据分析和后期实验研究,厘清了二级生物处理运行温度和深度处理超滤运行温度对膜污染的影响机制。相关研究成果发表于《分离纯化杂志》。二级和深度处理运行温度对膜污染影响机制的示意图 安徽理工大学供图污水深度处理是指城市污水经一级、二级处理后,为了达到一定的回用水标准,使污水作为水资源回用于生产或生活的进一步水处理过程。超滤被认为是一种非常有前景的污水回用处置方式,然而膜污染问题一直是限制其长期稳定运行以及运营成本管控的瓶颈性问题。 “因为膜污染会造成跨膜压差的上升,在维持目标处理效率的前提下,需要提高膜清洗与更换的频率,从而增加运营成本和能源消耗。一般来说,膜污染控制成本占运行成本的20%-30%;其中,膜清洗和膜更换成本分别占膜污染控制总成本的9%-30%和40%-65%。而对于污水深度处理的运行场景来说,这些数据会随着冬季温度的降低,进一步升高。”陶晨向《中国科学报》介绍。近年来,各国学者针对温度对膜污染的影响展开了相关研究,然而研究对象多为膜生物反应器(MBR)工艺。一方面,在深度处理中,因为膜不直接与污泥混合液接触,所以膜污染机理与MBR有很大区别;另一方面,深度处理中膜过滤过程与二级生物过程分开进行,温度对二者造成的影响程度不同且存在交叉影响,值得分别去探讨。此次研究中,陶晨等提出了活性污泥模型与实验结合的方法,通过新颖的实验设计,评价了温度通过影响二级生物过程及其代谢产物,以及温度影响膜固有性质对深度处理膜污染的影响机制。“我们研究发现,将二级生物处理运行温度从20℃降低到8℃,且超滤运行温度为20℃不变时,总膜阻力大幅度增加。这主要是由于二级生物过程在低温下产生的可溶性微生物产物大量增加导致,其中与生物质衰减相关的有机质(BAP)是最主要膜污染物质。”陶晨说。进一步地,降低超滤运行温度时,总膜阻力增加了122%,这一部分膜阻力的增加是由于膜孔径的减小和液体黏度的增加。研究发现,总膜阻力的增加并不是各部分影响的简单叠加,而是存在复杂的交互影响。陶晨说,该工作全面探讨了运行温度对膜污染的影响,为不同温度运行条件下设计膜污染缓解措施提供了理论基础,也为探讨其他极端运行条件下二级生物过程与膜污染间的关系提供了方法借鉴。”审稿人认为:作者研究了实际污水处理厂运行温度对深度处理膜污染的影响机制,区分了造成低温条件下总膜阻力上升的不同原因,是一项有趣的研究工作,对缓解膜污染并减少运行成本提供了理论参考,具有实际意义。
  • 突破光学透射深度瓶颈,NIR-II小动物活体成像装机量攀升——恒光智影CTO艾中凯博士
    小动物活体成像技术是指应用影像学方法,对活体状态下的生物过程进行组织、细胞和分子水平的定性和定量研究的技术。广泛应用于生物医学、药物筛选等领域。为帮助广大用户及时了解小动物活体成像前沿技术、产品与整体解决方案,仪器信息网特别策划“小动物活体成像技术”主题征稿活动。本期,特别邀请到恒光智影联合创始人兼CTO艾中凯博士围绕小动物活体成像技术发展与应用展开阐述,着重就恒光智影聚焦的近红外二区(NIR-II)成像技术的优势及未来发展进行分享。 本期嘉宾:艾中凯博士,上海恒光智影医疗科技有限公司CTO/联合创始人2008年-2014年,博士毕业于新加坡国立大学电气与计算器工程系。 2015年 至2019年就职于美国普林斯顿仪器公司 (Princeton Instruments),担任应用科学家职位,负责探索弱光信号探测技术在前沿科学中的结合,深度参与许多前沿的科技项目,在弱光成像技术上有多年持续的积累。2020年至今,作为恒光智影联合创始人之一,参与公司技术专利8项,推出了新一代平台型近红外二区活体成像系统,具有丰富的产学研结合经验。 01 从动物模型到小动物活体成像技术人类疾病动物模型是现代生物医学研究中重要的实验方法与手段,是对医学研究和药物研发的有力支撑,有助于更方便、更有效地认识人类疾病的发生、发展规律以及研究防治措施。与此同时,由于大鼠、天竺鼠、小鼠等小动物作为动物模型具备诸多优势,在生命科学、医学研究及药物研究开发等多个领域的应用日益增多。众所周知,影像技术在基于动物模型的研究过程中发挥着至关重要的作用。近些年随着科学仪器设备技术的创新与突破,面对层出不穷、日新月异及个性化的科研需求,市场涌现出各种小动物成像的专业设备,为科学研究提供了强有力的工具。 02 市场规模破百亿,小动物活体成像五大主流技术路线据调研机构对小动物成像(活体内)行业市场数据的统计显示,2022年全球小动物成像(活体内)市场容量为115.86亿元(人民币)。预计全球小动物成像(活体内)市场规模在预测期将以9.94%的CAGR增长并预估在2028年达203.38亿元。动物活体成像技术是指应用影像学方法,对活体状态下的生物过程进行组织、细胞和分子水平的定性和定量研究的技术。动物活体成像技术目前主要分为光学成像 (optical imaging)、核素成像(PET/SPECT)、核磁共振成像(magnetic resonance imaging ,MRI)、计算机断层摄影(computed tomography,CT)成像和超声(ultrasound)成像五大类。根据数据类型,又可以分为绝对定量数据和相对定量数据两种。在样本中位置而改变,这类技术提供的为绝对定量信息,如CT、MRI和PET提供的为绝对定量信息;图像数据信号为样本位置依赖性的,如可见光成像中的生物发光、荧光、多光子显微镜技术属于相对定量范畴,但可以通过严格设计实验来定量。光学成像和核素成像特别适合研究分子、代谢和生理学事件,称为功能成像;超声成像和CT则适合于解剖学成像,称为结构成像,MRI则介于两者之间。 分子成像技术使活体动物体内成像成为可能美国哈佛大学Weisslede于1999年提出分子影像学(molecular imaging)的概念——应用影像学方法,对活体状态下的生物过程进行细胞和分子水平的定性和定量研究。此前传统成像技术大多依赖于肉眼可见的身体、生理和代谢过程在疾病状态下的变化,而不是了解疾病的特异性分子事件,而分子成像则是利用特异性分子探针追踪靶目标并成像。这种从非特异性成像到特异性成像的变化,为疾病生物学、疾病早期检测、定性、评估和治疗带来了重大的影响。分子成像技术使活体动物体内成像成为可能,它的出现,归功于分子生物学和细胞生物学的发展、转基因动物模型的使用、新的成像药物的运用、高特异性的探针、小动物成像设备的发展等诸多因素。活体动物体内光学成像主要采用生物发光与荧光两种技术。生物发光是用荧光素酶基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP, Cy5及Cy7等)进行标记。该技术最初是由美国斯坦福大学的科学家采用了世界上最优秀的高性能CCD研发与生产制造商最新研发的背部薄化、背照射冷CCD,配合密闭性非常好的暗箱,使得直接监控活体生物体内的细胞活动和基因行为成为现实。科学家借此可以观测活体动物体内肿瘤的生长及转移、感染性疾病发展过程、特定基因的表达等生物学过程。所以说该技术是伴随着背部薄化、背照射冷CCD的产生而产生,并随着该CCD技术的发展而发展。由于具有更高量子效率CCD的问世,使活体动物体内光学成像技术具有越来越高的灵敏度,对肿瘤微小转移灶的检测灵敏度极高。在该技术诞生后的10几年间,科学家借此取得了大量的科学成果,发表了几千篇文献资料,大部分都是应用以背部薄化、背照射冷CCD为核心部件的成像系统而得出的。活体动物光学成像技术的应用史,从设备技术层面,也是生物学家应用背部薄化、背照射冷CCD进行生物微弱发光检测的应用史。该技术之所以促进活体动物光学成像技术的发展,主要是由于超低温的CCD芯片,CCD镜头温度越低,噪音越小,信噪比越好,灵敏度越高因此对物微弱发光具有极高的灵敏度,使近年来产生了大量的高水平的应用活体成像技术进行肿瘤学、基因治疗、流行病学等研究的文献,极大的促进了生物医学在分子成像方面的发展。 03 突破透射深度瓶颈的近红外二区(NIR-II)成像技术 荧光成像技术,对比X-ray CT、PET-CT、MRI、超声等技术,在多个方面具有优势并拥有广阔的应用前景,但透射深度是光学活体成像最关键的瓶颈所在。小动物活体成像技术路线特点分析红外光线应用于活体层面,科学家们常用拓展到 760~900 nm 的近红外一区(NIR-I)窗口进行成像。然而,在该窗口内,在生物组织中传播的光子仍然受到较强的散射作用,这严重限制了组织荧光成像的成像深度和图像分辨率。2003年, 哈佛医学院 Frangioni教授及麻省理工学院 Bawendi 教授等预测了大于 1000 nm 光学窗口的大深度成像潜力。2009年,斯坦福大学戴宏杰教授团队利用单壁碳纳米管实现了首例大于1000 nm的近红外活体荧光成像。不久后,1000~1700 nm 作为第二个近红外成像窗口(近红外二区 NIR-II,又称短波红外波段SWIR)被大家熟知。NIR-II比NIR-I拥有更低的水吸收,不易受组织自发荧光或者实验室光照环境影响,更低光散射等特性,使得NIR-II比NIR-I拥有更佳的组织穿透性,从而获得高清晰度的活体成像数据。近6年,人们发现NIR-II和NIR-I成像更重要的是检测器上的差别。传统NIR-I成像使用的是Si检测器,NIR-II成像使用的是InGaAs检测器。其检测灵敏度如下图所示:传统Si检测器的响应范围在400nm到1000nm之间,InGaAs检测器的响应范围在1000nm到1700nm之间。于此同时NIR-I,NIR-II荧光成像波长的差别带来的荧光成像透射深度及分辨率的差别极为明显,如下图所示:NIR-II染料CH1055-PEG 在1200~1700nm对小鼠脑部血管成像的效果远远好于临床应用的NIR-I染料ICG(750~900nm)。脑部主要血管(~4mm深度)在NIR-II荧光成像中清晰可见,但在NIR-I成像中难以分辨清楚。如下图对比所示,在类似的曝光时间下,3mm深度NIR-II的空间分辨率可达0.04mm,而且产生极少量的自荧光现象。 NIR-II染料与三维光学断层成像技术相得益彰光学分子影像具有高度灵敏、实时直观、成像快速、操作简便、成本低、无放射性危害且可同时观测多分子事件等优点。 尽管光学分子影像学技术已被广泛应用于药物开发、肿瘤早期诊断及复发监测、辅助治疗、预后判断等生物医学领域,但是它也有一些不足,如但荧光分子不稳定性导致其存在重现性差、光在体内散射致使探测深度较浅等问题。此外,由于空间分辨率相对较差并缺乏深度信息,常规平面光学成像不能用于定位组织深处的光学探针,因此难以通过其获得特定分子或目标在组织内的空间分布信息。近年来,多功能光学分子探针和各种三维光学断层成像技术,包括光学相干断层成像(Optical Coherence Tomography,OCT)、荧光分子断层成像(Fluorescent Molecular Tomography, FMT)、生物自发光断层成像(Bioluminescence Tomography, BLT)、切伦科夫荧光断层成像(Cerenkov Luminescence Tomography, CLT)等新技术的发展,提高了光学成像的灵敏性和特异性,探测深度、范围和空间分辨率,使光学分子影像技术在生物医学的基础和应用研究中展现出良好的前景。就荧光分子断层成像(FMT)而言,能够提供目标物在生物体内的分布信息,克服平面荧光成像的局限性,在肿瘤检测、基因表达、蛋白质分子检测、揭示机体功能变化等方面有着很大的应用潜力【1】。荧光分子断层成像以荧光探针标记的分子或细胞为成像源,在外部光源的激发下产生荧光,通过测量组织边界处的荧光光强,结合光子在组织中传播的模型,来重建出组织内部的荧光光学特性的分布图像以及组织光学参数。由于NIR-I染料的兴起,NIR-I荧光分子断层扫描(NIR-I FMT)已被充分开发用于临床前诊断和小动物实验,然而NIR-I FMT要达到令人满意的效果仍然是一个具有挑战性的问题),因为NIR-I光在生物组织中的强烈散射,NIR-I FMT仍然呈现严重的缺陷和问题。NIR-II比NIR-I减少了组织散射效应和更长波长产生的最小自发荧光,因此NIR-II荧光成像具有更深的组织穿透深度(厘米级)和更高的空间分辨率。NIR-II FMT预计可以进一步提高重建精度和空间重叠。另一方面,有效且临床可用染料的缺乏也在技术发展初期限制了NIR-II成像的临床应用。但是最近的研究报道吲哚菁绿(ICG)在NIR-II窗口中发出尾部荧光,适用于NIR-II FMI。这些进展促进了NIR-II成像的发展,为NIR-II FMT创造了有利的条件【2】。 聚焦NIR-II成像,恒光智影突破多项技术攻关上海恒光智影医疗科技有限公司成立于2019年,由海外留学归国团队创办,公司的研发团队核心成员来自斯坦福大学、新加坡国立大学、中国科学院大学、武汉大学、哈尔滨工业大学、中国科学技术大学、浙江大学等国内外知名高校,60%以上具有博士学位,技术研发专注于近红外二区(900-1700nm)及全光谱(400-1700nm)小动物活体成像系统,并整合CT、X-ray、光谱、超声、光声成像技术,可为肿瘤药理、神经药理、心血管药理、大分子药代动力学等一系列学科的科研人员提供清晰的成像效果,为用户提供前沿的生物医药与科学仪器服务。2022年被评为“国家高新技术企业”,上海市“科技创新行动计划”科学仪器领域立项单位。自公司成立以来,恒光智影坚持以产品研发和技术创新为核心驱动力,突破了多项技术攻关,完成新产品研发和交付:• 2020上半年疫情期间,团队克服种种困难,没有间断产品研发,于2020年7月1日,恒光智影自主开发的近红外二区小动物活体成像系统MARS正式面市;• 2020年12月,在南方科技大学完成MARS的首台装机。MARS面市后,凭借出色的产品性能与售后服务,得到了用户和市场的广泛认可。自2021年起,在近红外二区小动物活体成像系统领域的市场占有率遥遥领先;• 2021年7月,恒光智影推出近红外二区高光谱小动物活体成像系统;• 2021年8月,MARS推出自主研发的多波长融合激光光源;• 2022年1月,恒光智影推出全球首款近红外二区小动物体视活体成像系统并实现首台装机交付;• 2022年11月,推出并实现首台全光谱小动物活体成像系统装机;• 2022年11月,推出全球首台近红外二区+CT小动物活体成像系统并实现首台订单;• 2023年6月,推出X射线辐照近红外二区小动物活体成像系统并实现首台装机;• 2023年9月,推出全球首台近红外二区双光子共聚焦成像系统并完成首台装机; 跨尺度全光谱小动物活体成像凸显核心竞争力恒光智影聚焦在近红外二区成像技术,提出跨尺度活体成像概念,其产品组合已覆盖宏观成像、体视成像、共聚焦显微成像、X射线和PET-CT模块、荧光寿命模块、荧光光谱、拉曼光谱等模块,并且整合可见光至近红外一区系统,推出全光谱小动物活体成像设备,全方位满足生物医学、临床前和临床应用科研工作对活体成像的需求。——产品优势/核心竞争力——1、高灵敏度宏观光学系统(MARS),实现高清晰度活体动物成像:1)深制冷InGaAs相机,提供了高灵敏,低噪声,高速读出的优异性能;2)自主开发高光通量宏观镜头,光折损小,对低亮度探针成像适应性更强;3)丰富且灵活可变的荧光通道,轻松滤除干扰信号,获取目标荧光信号。2.可快速切换至体视光路(Pathfinder),1-7X连续变倍观察,实现30mm-2mm小鼠宏观整体到局部介观超宽范围FOV的成像:3.自动化激发时分复用系统(Multicolor),可整合1- 6路激光,可实现单/多波长同时激发,匹配不同探针体系;4.暗室+旋转舱门结构设计,除了提供正常成像过程中所需要的暗室环境外,打开时可提供180°的开阔空间,供2-3名研究人员同时进行手术导航等操作;5.可扩展的多模态平台架构,可在MARS宏观系统上增配体视光路系统、荧光寿命系统、X-ray和CT断层扫描模块,实现多模态功能扩展,节省设备复购的成本,更适合科研应用;——应用领域——近红外二区荧光活体成像技术适用于多个生物医药科研的应用领域,包括:1.肿瘤成像/手术导航/靶向性/诊疗一体化/抗癌药研发等;2.血管成像/颅内血管造影/血栓研究/脑中风模型/血脑屏障BBB等;3.脏器系统/药剂崩解追踪/肠道菌群/肾代谢/外泌体追踪/骨结构成像等;4.药物药理研究、药效评价、分子药物药代动力学研究等;涉及颅内血管、肿瘤、骨关节、肝胆、肠道菌群,淋巴系统等多个器官和组织的活体成像,以及荧光探针的发射光谱、靶向性能、荧光寿命、生物毒性、发光强度等性能指标的研究和测试:自2020年上市以来,恒光智影MARS已在复旦大学、上海交通大学、中科院上海药物研究所、深圳先进技术研究院、西安交通大学、北京化工大学等40多家国内知名院校及医疗机构的相关课题组和重点实验室完成了系统安装和交付使用,已协助科研人员发文20余篇。 04 展望:NIR-II成像技术多领域应用潜力可观对于肿瘤学研究,NIR-II成像为活体内三维结构、血管分布、血流和肿瘤中动态免疫细胞浸润过程的成像提供了可能。通过结合多种内源性和外源性NIR-II探针,进一步发展多种光谱成像方法,将为全面分析肿瘤的发生、发展和转移提供一种独特的工具,从而为肿瘤的精确诊断和治疗提供理论依据。就临床应用而言,NIR-II成像最有希望的应用是图像引导的肿瘤手术;在未来,先进的NIR-II成像技术可能会大大提高肿瘤手术的精度和预后。此外,与FDA批准的基于ICG的NIR-I成像相比,NIR-II成像在组织穿透深度和时空分辨率方面具有优越的性能,因此在临床心血管疾病的精确诊断和治疗方面也具有巨大潜力。在再生医学领域,无创NIR-II成像也将在探索基本生物学问题方面发挥重要作用,如胚胎和器官的发育过程以及干细胞的谱系和命运。应用多光谱NIR-II成像技术可以提供丰富的成像通道,同时监测干细胞的易位、活力、旁分泌、分化和老化,从而全面了解干细胞再生的过程和潜在机制。 05 后记:习近平总书记曾说道:“我们比历史上任何时期都更需要建设世界科技强国”。建设世界科技强国,首先必须建设世界仪器强国。中国在近红外二区荧光成像方向上的科学技术水平引领世界,恒光智影正是怀揣着这样的科研理想,通过在近红外二区成像技术的不断研发创新,打造高端科研仪器,肩负起中国仪器之崛起,助力中国走向世界科技强国,实现中华民族伟大复兴的历史使命。参考文献:【1】“Application of Three-Dimensional Optical Tomography for in Vivo Bioimaging”,LI Zhuhenga,b, ZHANG Huab, LIU Dianjunb, WANG Zhenxinb,DOI: 1000-0518(2018)12-1411-09 【2】”NIR-II/NIR-I Fluorescence Molecular Tomography of Heterogeneous Mice Based on Gaussian Weighted Neighborhood Fused Lasso Method”, Meishan Cai, Zeyu Zhang, Xiaojing Shi, Zhenhua Hu,and Jie Tian , Fellow, IEEE, DOI: 10.1109/TMI.2020.2964853征稿提纲:https://www.instrument.com.cn/news/20230925/685455.shtml欢迎持续投稿!投稿文章后续将在【小动物活体成像技术专题】展示并在仪器信息网相关渠道推广。投稿邮箱:liuld@instrument.com.cn,关于征稿内容要求也可邮件咨询或电话联系刘编辑:13683372576(同微信)。
  • 宁德时代第一代钠离子电池正式发布,哪些科学仪器来助阵?
    7月29日下午,在宁德时代首场线上发布会上,董事长曾毓群发布了第一代钠离子电池。与此同时,宁德时代的市场定位也发生了历史性的转变,在宁德时代的最新简介中,“锂离子电池研发制造公司”的身份,正式变成了“新能源创新科技公司”。寻找打破短板的材料体系,是所有钠离子电池研究者的主攻方向。宁德时代也正是在材料体系上率先取得重要突破,才使得钠离子电池从实验室走向生产线。宁德时代公布的信息显示:第一代钠离子电池在常温下充电15分钟,电量就可以达到80%,具备了快充能力;不仅如此,在零下20℃低温的环境下,仍然有90%以上的放电保持率;同时在系统集成效率方面,也可以达到80%以上;此外,钠离子电池优异的热稳定性,也超越了国家动力电池强标的安全要求。曾毓群认为,“碳中和”催生了万亿瓦时级的电池需求,新的应用场景不断产生,给了不同技术施展的舞台,多元化的技术路线将是未来电池行业的主旋律。实现碳达峰碳中和,努力构建清洁低碳、安全高效能源体系,是党中央、国务院作出的重大决策部署。日前,国家发展改革委、国家能源局正式发布了《国家发展改革委 国家能源局关于加快推动新型储能发展的指导意见》,该指导意见是国家层面首次明确提出量化的储能发展目标:到2025年,实现新型储能从商业化初期向规模化发展转变。新型储能技术创新能力显著提高,核心技术装备自主可控水平大幅提升,在高安全、低成本、高可靠、长寿命等方面取得长足进步,标准体系基本完善,产业体系日趋完备,市场环境和商业模式基本成熟,装机规模达3000万千瓦以上。新型储能在推动能源领域碳达峰碳中和过程中发挥显著作用。到2030年,实现新型储能全面市场化发展。新型储能核心技术装备自主可控,技术创新和产业水平稳居全球前列,标准体系、市场机制、商业模式成熟健全,与电力系统各环节深度融合发展,装机规模基本满足新型电力系统相应需求。新型储能成为能源领域碳达峰碳中和的关键支撑之一。另外,在技术层面上,针对“提升科技创新能力”发布了以下内容:开展前瞻性、系统性、战略性储能关键技术研发,以“揭榜挂帅”方式调动企业、高校及科研院所等各方面力量,推动储能理论和关键材料、单元、模块、系统中短板技术攻关,加快实现核心技术自主化,强化电化学储能安全技术研究。坚持储能技术多元化,推动锂离子电池等相对成熟新型储能技术成本持续下降和商业化规模应用,实现压缩空气、液流电池等长时储能技术进入商业化发展初期,加快飞轮储能、钠离子电池等技术开展规模化试验示范,以需求为导向,探索开展储氢、储热及其他创新储能技术的研究和示范应用。在储能及动力电池需求高速增长拉动下,锂离子电池的需求呈现爆发式增长。2020年动力电池和储能电池的市场规模已达174GWh,而未来10年的复合增长率将超过30%,到2030年,交通和储能对锂离子电池的需求将激增至5.9TWh。然而,锂矿资源储量有限,全世界75%的锂矿资源都分布在澳大利亚和智利中,我国锂资源大量分布于西部山区和盐湖地区,开采难度极大,这就导致我国80%的锂资源供应依赖进口,为摆脱对锂资源依赖的途径,只能开辟新的技术路线。相比之下,钠资源分布在地壳中的储量尤为丰富,是锂的1000倍以上。而且钠的化学性质、电池工作原理都和锂非常相似,两者在元素周期表里属于同一主族。因此,钠也被认为是可利用的电池关键原料,在全球范围内成为新一代电池研究热点。“储量大”这一特点使钠电池在成本上具有天然的优势,同时,钠离子电池低温性能出色,有着更为广阔的使用范围。无论是锂离子电池还是钠离子电池,解决技术难题,提升技术指标,都少不了研发人员的不懈努力,以及科学仪器的精密测量助阵,宁德时代21C创新实验室去年在福建宁德正式奠基,该实验室总投资33亿元,占地约270亩,预计今年底建成部分并投入使用。据悉,该实验室将布局新储能材料化学体系、新储能系统设计与工程、新储能材料应用场景三大主攻方向,和先进材料与器件、先进方法与装备、产业建设体系、能源政策智库四大支撑方向。目前,宁德时代并未有相关实验室信息公开,但是小编针对电池材料和器件的研究方法,整理了在电池材料表征方法以及电化学测量方面的科学仪器,点击下列仪器/技术名称可直达仪器信息网专场。电池材料表征手段:1. 成分分析中比较普遍的有电感耦合等离子体(ICP)技术,包括ICP-MS和ICP-AES,可用来分析物质的组成元素及各种元素的含量;二次离子质谱(SIMS)技术,可以对同位素分布进行成像,探测样品成分的纵向分布;X射线光子能谱(XPS),能测定表面的组成元素以及各元素的化学信息;X射线荧光光谱分析(XRF),应用于电池材料主成分及杂质元素分析,检出限可达10-9的量级;此外,还有电子能量损失谱(EELS)、扫描透射X射线显微术(STXM)、X射线吸收近边谱(XANES)等2. 形貌表征主要通过扫描电镜(SEM)、透射电镜(TEM)和原子力显微镜(AFM),实现对电极材料的形貌表征。3. 晶体结构表征,通过X射线衍射技术(XRD)可以获得材料的晶体结构、结晶度、应力、结晶取向、超结构等信息;核磁共振(NMR)能够探测材料中的化学信息并成像,可探测枝晶反应、测定锂离子自扩散系数,对颗粒内部相转变反应等进行研究;中子衍射(ND)在锂离子电池材料的晶体结构表征中也发挥着重要作用。4. 官能团的表征对电极材料通常使用拉曼光谱,对电解液材料通常使用傅里叶变换红外光谱和深紫外光谱。5. 其他性能此外,还有通过中子衍射(ND)或核磁共振(NMR)得到材料离子运输的信息, 通过开尔文探针力显微镜(KPFM)探测材料表面电势以此得到样品表面的电势分布,还有比表面积分析仪、角分辨光电子能谱(ARPES)、电子淹没技术(PAT)、卢瑟福背散射(RBS)等仪器,在电化学材料的检测中都有着重要的作用。电化学性能测试——电化学工作站对于电化学性能测试,如线性伏安扫描测试(LSV)、电化学阻抗谱测试(EIS)、循环性能(CP)等,都可以通过电化学工作站进行测定。此前,仪器信息网特别采访了上海市磁共振重点实验室副主任、华东师范大学胡炳文研究员,他在采访中也提到了宁德时代将推出第一代钠离子电池的消息。胡炳文课题组主要研究将磁共振仪器应用在电池领域,详细内容可点击此处查看:顺磁共振:电池研究方法中冉冉升起的新星——访华东师范大学胡炳文研究员。
  • 科学家开发合理化深度学习超分辨显微成像方法
    光学超分辨显微成像技术使人们能够从微观纳米尺度观测细胞内的动态生命活动,是当今细胞生物学、发育生物学、神经科学等生命科学领域的重要研究工具。基于深度学习的超分辨成像技术在保证成像指标,如速度、时程或视野等性能的前提下,进一步提升了显微图像分辨率或信噪比,表现出更大的应用前景。近日,中国科学院生物物理研究所与清华大学,联合美国霍华德休斯医学研究所等研究团队,在Nature Biotechnology杂志上发表了题为“Rationalized deep learning super-resolution microscopy for sustained live imaging of rapid subcellular processes”的研究论文。该研究提出了一套合理化深度学习显微成像技术框架,将光学成像模型及物理先验与神经网络结构设计相融合,合理化网络训练、预测过程,从而实现了高性能、高保真的显微图像去噪与超分辨重建,并结合实验室自主研发、搭建的多模态结构光照明显微镜与高速晶格光片显微镜,将传统成像速度/时程提升30倍以上,实现了当前国际最快、成像时程最长的活体细胞成像性能,并首次对高速摆动纤毛中转运蛋白的多种运输行为以及完整细胞分裂过程中核仁液-液相分离过程进行了快速、多色、长时程、超分辨观测。综上,本研究提出了一种合理化深度学习超分辨显微成像框架,解决了现有深度学习成像方法分辨率损失、预测不确定性、训练集不易采集等难题。同时,人工智能算法与光学显微成像技术的交叉创新,也为现代光学显微成像的发展开辟了新的技术路径。  原文链接:  https://www.nature.com/articles/s41587-022-01471-3
  • 喷雾干燥技术深度剖析——瑞士步琦成功举办“为电池行业供能”网络研讨会
    精彩回看2022 年 3 月 25 日,瑞士步琦携手粉体网开展“为电池行业供能”网络研讨会议,会议中主要介绍电池行业的前沿成果、喷雾干燥技术在电池行业中的技术应用,以及瑞士步琦公司喷雾干燥及造粒解决方案,以期为电池行业的客户提供更加专业的技术服务支持。会后应广大客户的需求,我们整理出更加详细的喷雾干燥相关技术内容,对喷雾干燥实验的流程进行详细分析,希望可以在喷雾干燥技术在各行业的推广提供有利帮助。喷雾干燥技术详解喷雾干燥是一种应用广泛的干燥方法,常用于水/有机溶液、乳浊液和悬浊液以获取干燥粉末。自 20 世纪 40 年代以来,喷雾干燥一直是技术强大且应用广泛的制备方法,应用范围涵盖从化学、制药、生物技术到食品工业等所有主要工业行业。几十年来,喷雾干燥技术是我国发展最快的干燥技术种类之一,它带动了我国的食品制造、冶金、材料、化工和陶瓷等行业的发展。通常,喷雾干燥技术可以用于干燥处理、颗粒造粒、包埋或改变材料结构。在喷雾干燥过程中,物料溶液经雾化器雾化剪切成细小雾滴,并与热气流接触,雾滴中溶剂被蒸发最终形成粉末颗粒。一个完整的喷雾干燥工艺可以分为四个步骤:物料溶液的进样料液雾化雾滴的干燥气固分离01相关仪器BUCHI 小型喷雾干燥仪 B-290 喷雾干燥装置BUCHI 纳米喷雾干燥仪 B-90 HP 喷雾干燥装置✓1.1 物料溶液的进样料液的进样一般通过蠕动泵进行,样品溶液放置于特定的容器中,必要时进行连续的样品搅拌和样品控温操作。通过控制蠕动泵的转速快慢来调节进料的速度,最终使得液体物料流入喷嘴中。实验室小型喷雾干燥仪一般都配有相应的内置式蠕动泵,方便对工艺进行控制。✓1.2 料液雾化雾化是非常重要的一个过程,其影响形成液滴的性状、结构和大小分布,从而影响最终产品粉末的大小和特性。雾化形成的细小雾滴大面积暴露在干燥热气流中,溶剂快速蒸发,所以对热敏感物质也同样适用,最终获得所需形态和物理特性的干燥粉末。根据不同的雾化形式,常见的雾化器有压力式喷嘴、超声喷嘴、二流体喷嘴和旋转盘式喷嘴,如下图所示。*从左到右依次是A二流体喷嘴,B旋转式喷嘴,C压力式喷嘴,D超声喷嘴瑞士步琦(BUCHI)小型喷雾干燥仪B-290可以搭配二流体喷嘴(或三流体喷嘴)和超声波喷嘴进行不同造粒需求的喷雾干燥应用。二流体喷嘴可以应用于实验室小批量样品研发和处理需求量更大的工业生产,而超声喷嘴更适合精细样品处理的实验室设备。喷嘴的选择主要取决于工艺的规模、进样液特性和对成品的需求。此外,BUCHI 2009 年推出的纳米喷雾干燥仪 B-90 的雾化原理与以上提到的方式均有所不同,该产品技术先进,非常适合纳米溶液或小颗粒样品需求的应用。截止目前,市场上仍未同类产品出现。纳米喷雾干燥仪利用压电效应驱动喷头处的金属网筛进行高频震动,从而将进样液剪切产生细小雾滴,可以制备亚微米级和纳米级尺寸的颗粒。*BUCHI 纳米喷雾干燥仪 B-90 HP 压电原理雾化器震动示意简图✓1.3 雾滴的干燥雾化后的细小雾滴与加热介质(干燥热气流)发生密切接触,这个过程在干燥室内进行。喷雾干燥仪器的设计影响着雾滴和热气流的接触方式雾滴在干燥室内的行动轨迹和停留时间、颗粒在干燥室内的沉积。根据物料和热气流进入方向的不同,下图中列出了几种不同的雾滴和热气流的接触干燥方式。实验室小型喷雾干燥仪常见的是采用并流式的模式。这种设计方式的好处在于随着干燥的不断进行,系统温度逐渐降低,所以非常适合热敏性产品的喷雾干燥应用,而且物料损失较低。*喷雾干燥仪气流干燥方式:从左到右,并流式/逆流式/混流式雾滴和热气流接触后,溶剂快速干燥,这个过程本质上是一种物理蒸发过程。液滴中水分的蒸发是颗粒成型过程中最关键的步骤,并且与最终产品形态和质量有关。下图中列出了液滴与热气流接触后的时间-温度变化。一旦液滴暴露在热气体中,它会从初始温度迅速加热到与湿球温度相对应的平衡蒸发温度(图5,AB)。水分不断从液滴表面去除,只要液滴表面保持水分饱和,干燥就会以接近恒定的速率进行(图5,BC)。随着干燥的进行,水分无法以保持饱和的速度供应到湿球表面,液滴表面往往会形成薄壳。壳形成后,水分去除成为一个扩散控制的过程,蒸发速率取决于蒸汽通过壳体干燥表面的扩散速率。在此阶段,粒子将开始加热(图5,CD)。如果液滴温度达到水分沸点,蒸发开始,液滴加热停止,因为能量用于蒸发过程(图5,DE)。一旦去除所有剩余水分,温度再次升高,直到达到周围气体温度,也称为出口温度(图5,EF)。因此,产品暴露的最高温度是出口温度,它是溶剂蒸发焓、液体中固体浓度和通过干燥室壁的热损失关联结果。*图5:雾滴溶剂蒸发过程中温度变化雾滴干燥后最终形成的颗粒形状有多种,受物料性质,溶剂性质以及喷雾干燥过程参数如加热温度,喷嘴结构等多种因素影响,常见的形态如下图所示:*喷雾干燥过程中形成的常见颗粒形状和结构喷雾干燥中最常见也是最经济的干燥介质是空气,干燥空气进入喷雾干燥仪时通常会先连接除湿机和过滤器,进行湿度控制和除灰尘,来确保工艺的稳定和重现性,减少污染。另外,对于那些需要避免爆炸风险和防止敏感样品氧化的喷雾干燥应用,惰性气体则是首选,例如氮气。在使用氮气等惰性气体的情况下,可以考虑建立闭环系统保证惰性环境,同时惰性气体可以再循环利用,并且也可以回收溶剂,无论是产品质量,操作安全还是环境友好性都是最好的方案。✓1.4 气固分离干燥之后的产品通过旋风分离器和布袋除尘器与气流分离的方式(或者其他分离方式),得到喷雾干燥目标产品。旋风分离器因其成本低、维护要求低而被广泛使用。如图7所示,它们利用离心力将固体颗粒与载气分离。气流和颗粒从顶部切向进入旋风分离器,并向下移动,形成一个外部漩涡。外旋涡中不断增加的空气速度对颗粒施加离心力,并将其与气流分离。一旦气流到达旋风分离器的底部,就会产生一个反向的内部漩涡,清洁气体从顶部离开旋风分离器作为废气排出系统。不同大小或密度的颗粒在旋转气流中受到大小不同的离心力:较大颗粒因受到较大的离心力,因此更靠近玻璃壁;随着颗粒约接近壁面,离心力作用变小,颗粒会向下掉落收集在底部收集瓶内。*图7:旋风分离工作原理。虚线箭头表示外部漩涡,而带状箭头表示内部漩涡
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制