磁性角度规

仪器信息网磁性角度规专题为您提供2024年最新磁性角度规价格报价、厂家品牌的相关信息, 包括磁性角度规参数、型号等,不管是国产,还是进口品牌的磁性角度规您都可以在这里找到。 除此之外,仪器信息网还免费为您整合磁性角度规相关的耗材配件、试剂标物,还有磁性角度规相关的最新资讯、资料,以及磁性角度规相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

磁性角度规相关的厂商

  • 力田磁电科技有限公司(原力田磁电技术应用研究所)位于中国西部电子科技城—四川绵阳。绵阳为国家重要的国防科研基地和产业配套生产基地,拥有中国工程物理研究院、西南自动化研究所、西南科技大学等国防科研院所,以及长虹电子集团、九州电子集团等产业集团公司。公司拥有100%%的知识产权,独立经营核算、是集开发、生产、销售为一体的高科技型公司,拥有多种类型、实战十年以上工作经验的专业工程师。自2002年5月公司成立以来,公司团队认真务实,追求卓越,优质优价,先后开发出:PEM电磁铁、PTC退磁机/脱磁机/消磁器、PTM/PMC脉冲脱磁器、PFD恒压充磁机、PF/PEX数字特斯拉计(高斯计)、PF-900数字磁通计(磁通表)、PF-100B/200B/300B/400B智能振实密度仪、YCB标准磁体、CTB/N-XCRS磁选机、PXC-100H硬盘消磁器、MPS磁处理装置等系列产品。力田产品按ISO9001国际质量体系进行研发生产管理销售,力田产品性能稳定可靠,性价比高,品质高、式样美观,已得到磁性测式、磁性材料研究、电磁学研究、应用电磁产品等领域的使用认可,专为清华大学,香港理工大学,浙江大学等知名大学,中科院固体物理研究所,韩国国家材料研究所,上海硅酸盐研究所,中国工程物理研究院等研究单位设计开发了电磁应用设备。同时为威能科技(苏州)公司,铁母肯恩斯克(TIMKEN)轴承(苏州)有限公司,香港新科实业有限公司(SAE),香港兴利电脑制品有限公司,等国内外知名企业提供了力田公司产品。公司宗旨:以诚信为本;以品质求生存;制造出优质优价的产品公司坚持“管理以人为本”的工作理念,为客户提供具有专业技术水准、品质高的产品与服务。力田公司真诚地、谦虚地面对客户和广大同仁,愿与您进行多种形式的技术交流与合作,期待您的光临指导!
    留言咨询
  • 上海金昆磁电科技有限公司专业生产磁铁、钕铁硼、橡胶磁、冰箱贴、电机磁瓦、铁氧体等磁铁性产品。上海金昆磁电科技有限公司前道工厂设在稀土出产丰富的北方—山西;深圳、上海、江苏有后道加工。工厂拥有线切割机、切片机、磨床、全套电镀、电泳设备,可以根据用户要求设计、加工各种规格产品,表面可镀锌、镀镍及环氧电泳处理。生产装置中选用了高真空熔炼、烧结炉和先进的自动控制气流磨,保证了生产过程基本无氧运行,使产品的矫顽力和使用温度均有突破性提高。  公司专业生产的磁铁(高性能磁铁、方形磁体磁铁、圆柱形磁铁)、钕铁硼(粘结钕铁硼磁铁、烧结钕铁硼)、橡胶磁、冰箱贴(软胶磁冰箱贴、橡胶磁冰箱贴、磁性卡通冰箱贴)、电机磁瓦、铁氧体(永磁铁氧体磁铁、永磁铁氧体磁瓦)等磁性产品,可适用于贵公司的工艺礼品、彩盒包装、磁纽扣、磁开关、文具、箱包、电机、喇叭、电子、玩具等系列产品之所需。本工厂自主生产,自主销售,产品品质优良,价格优惠。  公司生产的钕铁硼强磁系列产品品种齐全,具有高磁能积,高矫顽力和高磁感应强度的特点,同时还有良好的稳定性,不易受温度、外界磁场振动和冲击的影响,表面处理可满足72小时以上盐雾试验要求。产品规格、性能可根据用户需求生产。  我们的产品符合欧盟的Rohs环保认证,有SGS、Rohs认证证书。本公司有进出口经营许可权,专为国外客户提供各种优质高端产品。
    留言咨询
  • 企业简介上海贵尔机械设备有限公司是专业设计、研发、制造、销售高温热处理设备的综合性企业。公司拥有一支高素质的无机材料、热工、空气动力学、电气、机械及自动控制等专业领域的专家型技术研发团队,5000多平方米的现代化厂房,成套的加工设备,国际标准的三维设计,完善的质量检测体系。公司通过多年的生产高温设备积累的经验和通过与国外厂家的技术交流,目前已自主研发出数百种高温热处理设备,深受国内的工厂、高校、科研所的一致好评。高温热处理设备主要应用于特种陶瓷,电子陶瓷,磁性材料,化工粉末,荧光粉,抛光粉,锂电池材料,稀土材料,电子器件,长余辉发光粉,硬质合金,陶瓷金属化,石油催化剂,珠光云母,氧化钛粉体,氧化锆粉体或其它无机新材料等产品的烧结加热之用。●企业核心理念:用品质取得信任,用创新制造差异●企业经营目标:技术领先,质量第一,服务至诚●企业主要产品:GR.AF系列箱式气氛炉 GR.BF系列高温炉GR.TF系列管式炉 GR.VF系列真空炉GR.ZZF系列鈡罩炉 GR.TRF系列台车炉各种型号电炉配件
    留言咨询

磁性角度规相关的仪器

  • 国仪量子自旋磁力仪 SpinMag -Ⅰ量子自旋磁力仪利用碱金属原子外层电子自旋性质,以泵浦激光作为操控手段,使碱金属原子产生自旋极化。在外界弱磁场的作用下,碱金属原子发生拉莫尔进动,改变对检测激光的吸收,从而实现高灵敏度的磁场测量。量子自旋磁力仪具有灵敏度高、体积小、能耗低、易于携带的特点,未来将引领人类在科学研究、生物医学等磁传感领域进入量子时代。应用案列:1.生物医学领域量子自旋磁力仪主要应用于心磁和脑磁研究。量子自旋磁力仪通过采集人体心脏磁场信号,获得心磁分布图像,可对心肌缺血、冠脉微循环障碍心肌病等进行功能性诊断及预后研究。脑磁比心磁的磁信号更弱,量子自旋磁力仪能够测量神经电流产生的磁场,实现人脑的电生理直接成像,为临床提供宝贵的信息。2.地球物理领域量子自旋磁力仪通过精确捕捉地球磁场的变化,获得地磁异常信息,可用于石油工业的定向钻井、地质灾害监测、矿产资源勘探等方向。国仪量子自旋磁力仪 SpinMag -Ⅰ磁性测量
    留言咨询
  • BPMB磁性底座及BP垫板、固定板 BPMB-1/BPMB-2磁性底座 磁性底座因其灵活方便的安装固定方式而广泛应用于实验室。使用时只需将需要固定物件安装在磁性底座上,移动磁性底座调整好位置后转动开关即可。本公司提供的磁性底座,吸力大,十分稳定。并在传统底座的基础上发展创新,使您在稳固的同时,还可保留灵活与方便。适用于本公司多种调整架。 BPMB-3磁性底座 它除了具备前两款磁性底座的功能外,又能进行XY 两维平移微调,并可锁紧。微调螺杆采用M4x0.3 细牙螺杆,调整精度更高。若与升降杆座或旋转杆座配合使用,即可实现XYZ 或XY&theta z 三维调节。 BPMB-4超薄磁性底座 除了具有一般磁性底座的功能外,主体材料为钢,具有轻巧、超薄、磁力可调的特点。台面可固定多种类多规格的光学器件;永久磁性提供超强吸附力,磁力从&ldquo OFF&rdquo 状态到&ldquo ON&rdquo 连续可调;其表面配有标准孔距的螺纹孔,方便各种连接,可以更好的和其它产品配套使用。 BPKB-2可复位磁性底座 上下两块板分离,之间用磁性件连接,下板可用螺丝固定在光学平台或光学面包板上,通过定位机构保证上板的复位精度。 BP-AL10/20/50铝合金垫块 BP-S1/2/5不锈钢垫板 BP-DPSS半导体激光器通用安装板 说明:● 包含67× 95,59× 81,78× 150三种尺寸的4个M6安装孔,可安装卓立提供的DPSS激光器,见375页相关产品。● 中心为M6沉孔&phi 8的通用孔● 其它地方,分布M6和M4螺纹孔及沉头孔 BP-DC相机固定板 说明:数码相机(DC)的安装接口通常为1/4",部分云台式三脚架上也有3/8" 的螺纹。BP-DC 带有标准1/4" 的螺丝,可将数码相机固定在安装板上,然后将安装板通过接杆固定。
    留言咨询
  • 磁性器件需要在磁场扫描下测试,测试晶圆所花费的时间会增加芯片成本。在晶圆上方以高扫速改变磁场是工业化大批量市场面临的挑战。Hprobe产品的主要目的是通过实现每个器件的快速测试时间,以极高的通量对晶圆在磁场下进行电探测。Hprobe的专有磁场发生器技术使这一目标成为可能。 Hprobe的3D磁场发生器和Hcoil-2T磁场发生器是专利技术,与大规模生产中的晶圆级电子探测要求兼容。独特设计的磁场发生器通过电源供电和空气冷却,不需要复杂的液体冷却。 Hprobe测试设备使用100-300mm自动晶圆探针台。集成了磁场发生器的测试头被置于晶圆探针台上。测试设备与以下自动探针台兼容:TEL (Tokyo Electron Limited)、ACCRETECH、Electroglas。技术原理 Hprobe磁场发生器技术应对了磁性集成电路工业测试的挑战。这些技术的发展目标是产生对场强和角度具有极快扫描速率的高强度磁场。磁场发生器集成到测试设备产品中,专用于高通量运行的磁性器件晶圆级测试。 Hprobe公司的三维磁场发生器和Hcoil-2T磁场发生器均为专利技术,符合批量生产对晶圆级电子探测的要求。独特设计的磁场发生器通过电源供电和空气冷却,不需要复杂的液体冷却。快速:极高的磁扫率,每秒高达10000件样品,实现高通量 测试,并与批量生产的测试时间相匹配。灵活:具有独立可控空间轴的三维磁场,用于垂直和平面磁场的任意组合。强大:单一方向的超高强度磁场,结合极快的扫描速度,可在20微秒内达到2特斯拉。 1、三维磁场发生器:三维磁场发生器能够产生三维磁场,其中每个空间轴可被独立驱动。该发生器具有多种组态,可在特定的1D、2D或3D方向上最大化磁场强度或表面覆盖。磁场的扫描速率在场强和角度上上是可控的,扫描速率可达每秒10000件样品。 2、Hcoil-2T磁场发生器:Hcoil-2T磁场发生器是一种创新性的超紧凑型技术,能够以极快的扫描速度在单一方向产生超强磁场。利用这项技术,可以在不到20微秒的时间内达到±2特斯拉磁场。主要特点平面内和垂直方向的高磁场强度磁场的三维控制场强和角度扫描(旋转场)嵌入式校准传感器自动化测试程序MRAM参数提取软件可用于100至300 mm晶圆与标准探针卡兼容完整并可用户定制的软件,可创建测试序列和自动探测空气冷却测试设备1、测试头:磁场发生器集成在测试头中,后者被安装在自动晶圆探针台上,与单个直流或射频探针和探针卡兼容。2、仪表架:测试设备使用高端控制和传感设备。测试设备的仪器组态可以按照用户需求而配置。3、磁场校准套件:磁场发生器配有磁场校准组件,由三维磁传感器和自动定位系统组成,用于在与被测设备完全相同的位置校准磁场。4、软件:带图形用户界面GUI(graphical user interface)的软件,用于磁场的生成、校准,以及MRAM和磁传感器的自动化电测量。软件还包括晶圆厂自动化和生产控制功能。IBEX平台(用于MRAM测试) IBEX平台与200毫米和300毫米自动晶圆探针台兼容,专用于测试MRAM磁性隧道结,以及基于自旋转移矩(STT-MRAM)、自旋轨道矩(SOT-MRAM)和电压控制(VC-MRAM)技术的位单元。该系统能够在快速可变磁场和超窄脉冲信号下进行高通量测试。1、IBEX-P MRAM参数测试 IBEX-P系统以单通道或多通道配置运行,测试结构中包含过程控制和监控(PCM),因而可用于晶圆验收测试(WAT)时生产产量的统计过程控制(SPC)。 IBEX使用Hprobe的带有图形用户界面的专用一站式软件,既可在研发环节中手动操作,又可在全自动晶圆厂中自动操作。该软件包括专用于MRAM器件的最优化生产测试程序。 该系统采用Hprobe的磁场发生器专利技术,将磁场发生器集成到测试头中,后者安装在晶圆探针台上。 该测试设备由精选高端仪器驱动, 从而以极快的测试时间来表征MRAM磁性隧道结或位单元。涉及的仪器包括Keysight、Tektronix和NI等品牌,并使用Hprobe的专有构架模块集成。2、IBEX-F功能测试 IBEX-F系统专用于测试位阵列和片上系统(SoC)嵌入式MRAM存储器。 测试系统以单点或多点配置运行,用于MRAM阵列的表征和测试。其目的是进行产品开发、验证和鉴定,并转入生产。它还可用于嵌入式MRAM器件的大规模生产环境、,在后端(BEOL)过程中进行芯片探测(CP)的筛选和分级。 该测试设备由精选高端仪器驱动,从而以极快的测试时间来表征MRAM磁隧道结或位单元。涉及的仪器包括Keysight、Tektronix和NI等品牌,并使用Hprobe的专有构架模块集成。关于MRAM 测试 与传统采用电荷存储数据的半导体存储器不同,MRAM(磁阻随机存取存储器)是一种非易失性存储器,使用磁化(例如电子自旋)方向来存储数据位。 与现有的半导体技术相比,MRAM具有许多优点,因为它本质上是非易失性的(例如,当电源切断时能够保存数据),同时还表现出非常好的耐久性(例如读/写周期数)和较低的运行功率。最新一代的MRAM为pSTT-MRAM(垂直自旋转移矩随机存取存储器),已被业界选择取代28/22nm以下技术节点的嵌入式闪存,目前各大半导体代工厂均可提供该产品。1)MRAM设备是如何发展的? 第一代MRAM基于所谓的嵌套型(toggle)技术,即通过内部磁场写入数据(例如磁化翻转)。Toggle-MRAM至今仍然非常成功,但是它耗电量大,且工艺尺寸很难 减小。之后几代MRAM器件开始使用另一种称为自旋转移矩(STT)MRAM的方法。STT-MRAM使用自旋极化电流写入数据。这种方法的优点是提供较低和可调节的翻转电流,从而开发出更高密度的存储器产品。2)MRAM的应用有哪些? 把pSTT-MRAM首选为先进技术节点的嵌入式非易失性存储器(eNVM),业界对此充满兴趣,并已被一级半导体代工厂的生产计划所证实。STT MRAM现在已可被批量生产,以满足多样化的应用领域,如工业、汽车、物联网、移动、人工智能以及计算和存储。3)MRAM的未来是什么? 虽然STT MRAM目前是NVM技术的主流,但全球的研究人员已经在研究下一代的产品即SOT-MRAM(自旋轨道矩MRAM)。通过同时实现STT无法做到的无限耐久性和高速性,SOT可以把MRAM的应用拓展到高速缓存中。SOT-MRAM有可能成为一种通用的嵌入式存储器,同时取代微控制器、微处理器和片上系统中的嵌入式NVM和/或嵌入式SRAM。4)MRAM市场预测前景如何? 根据Objective Analysis and Coughlin Associates于2020年5月发布的一份报告,到2030年,新兴存储市场将达到360亿美元。取代多种现有技术将在很大程度上推动这一惊人的增长,,如取代微控制器、处理器和ASIC中的嵌入式NOR闪存和SRAM模块,以及专业的独立DRAM内存芯片。此外,存储行业向新兴内存技术的转移将促使资本设备支出的稳步增长,相应的制造设备收入将达到6.96亿美元。5)Hprobe对MRAM的成功有何贡献? 高通量、高可靠性的后端(BEOL)制造设备的可用性是新半导体技术出现的关键。作为一家在MRAM领域拥有独特专业知识的自动测试设备(ATE)供应商,Hprobe为IC制造商提供了一站式解决方案,将加速MRAM产品的开发,确保产品的成功升级。 测试时间是生产中的关键性能指标,也是缩短开发时间的重要附加值。 为STT-MRAM技术 构建最优化的晶圆测试设备,使其具有最大的灵活性和最短的测试时间,可在MRAM开发阶段带来巨大的价值,并可缩短向大批量制造(HVM)升级的时间。Hprobe的方案可解决 对灵活性和产品性能的需求冲突,进而在从技术发布到生产控制和监控的漫长道路上为工程师提供帮助。6)Hprobe产品如何运行? 本质上,MRAM要求在外加磁场的同时对晶圆进行电测试。此外,探测必须用高频硬件完成,该硬件提供MRAM器件工作时的超窄时域电压/电流脉冲。 因此,晶圆级参数测试通过以下方式完成:扫描器件上方的磁场(垂直和/或平面),同时通过直流电流测量器件电阻。这样可以得到磁滞回线,它反映了存储单元从一种状态切换到另一种状态并保留存储信息的能力。垂直磁场必须高达5000 奥斯特(5特斯拉),以切换器件中的两个不同磁性层。向器件施加超窄(低至300ps, 强度高 至5V)脉冲信号,以复制芯片上的读写操作,并表征其可靠性(击穿电压)。 一旦晶圆制造结束并且芯片制造完成,器件测试就需要在外部磁场下进行,以表征MRAM模块在与环境相关的磁场干扰下工作的抗干扰性。这种测试可以在切割之前的晶圆级或封装芯片级完成。在这两种情况下,都需要在自动化测试设备上施加三维磁场。LINX 平台(用于传感器测试) LINX平台与200mm和300mm自动晶圆探针台兼容,用于测试基于xMR(磁阻)和霍尔效应技术的磁性传感器。该系统能够在静态和快速变化的磁场下进行测试,磁场在空间任何方向可控。LINX-1–磁性传感器测试仪 LINX-1测试仪专用于磁性传感器芯片的晶圆级分选。 该产品使用Hprobes的带有图形用户界面的专用一站式软件,以单通道或多通道配置来生成和校准磁场,包括静态或动态模式下优化的磁场生成模式。该系统具有可编程功能,可与用户的测试平台集成。 LINX-1采用Hprobe专有的磁场发生器技术,与3轴自动化测试头集成。它可以使用手动或自动加载的探针卡进行操作。 磁场的产生由高性能仪器驱动,以实现稳定的静态磁场或高扫描率的可变场。 仪器组包括Keysight、Tektronix和NI等品牌,并使用Hprobe的专有构架模块集成。关于传感器测试 磁性传感器检测由磁铁或电流产生的磁场和地磁场的强度。它们将磁场或磁编码信息转换成电信号,供电子电路处理。 磁性传感器正变得越来越流行,因为它们可以用于多种应用场合,如传感位置、速度或运动方向。磁性传感器有以下几种类型:霍尔效应传感器 霍尔效应传感器 由半导体衬底上的条形载流导体构成,当置于磁通量中时,通过霍尔效应产生垂直于电流方向的电压。霍尔效应传感器被广泛应用于汽车和工业领域。AMR传感器 各向异性磁阻(AMR)传感器由条形或带状磁性各向异性材料组成,其等效电阻与磁化方向和导电方向的夹角有关。与其他磁电阻传感器相比,AMR传感器具有相对较低的磁电阻(MR)率。它们被用于工业、商业和空间技术,作为位移或角度传感器以及地磁场传感器。GMR传感器 巨磁阻(GMR)传感器具有三明治结构,由被界面导电层隔开的磁性薄膜组成。该传感器有两种电阻状态:当两个磁性层磁化方向平行时,器件为低阻态;而当两个磁性层磁化方向相反 时,器件为高阻态。GMR传感器是一种温度稳定性好的精密磁场传感器。它们已被广泛应用于硬盘驱动器(HDD)行业以及工业应用中。TMR传感器 隧道磁阻(TMR)传感器由被隧穿势垒层分离的铁磁多层膜组成。TMR器件的电阻与两铁磁层磁化方向的夹角有关。与其 它种类 的磁场传感器相比,TMR传感器具有更好的信噪比、前所未有的精度、 以及极低的功耗。TMR传感器在温度和寿命方面具有可靠稳定的性能。因此,TMR传感器在要求苛刻的应用中是首选。1)磁性传感器市场和应用有哪些? 磁性传感器的应用范围很广泛,包括汽车、消费类电子产品、电子医疗系统、电信、工业过程控制等。以往它们被用作罗盘来探测地球磁场,现在被用于多种环境中,用来探测位移、旋转或测量角度。2)磁性传感器的未来发展是什么? 磁性传感器在很多行业中有大量应用,包括 新型导航设备、 人员侦测(楼宇自动化相关应用)、医疗领域、汽车行业、机器人技术和工厂自动化,这些正引领全球磁性传感器市场的范式转变。全球对物联网、消费电子产品、电动汽车和混合动力汽车、以及高质量传感设备的需求日益增加,正在影响磁性传感器在几个终端用户行业的应用。由于工业0的影响,工厂自动化采用机器人技术的情况越来越多,推动了全球市场在各种安全应用领域对磁性传感器的需求。服务业的发展以及数据中心和云供应商的高速增长,进一步增加了对这些传感器的需求。汽车行业对磁性传感器的需求预计将会增加。传感装置越来越多地被运用于此行业,以提高车辆的便利性和燃油效率。此外,政府机构的强制性规定,如在汽车中安装安全设备和传感元件,预计也会为磁性传感器的发展创造重要机遇。3)磁性传感器市场预测如何? 根据市场预测,2019年全球磁传感器市场估价为22.83亿美元。预计2020年将达到32.58亿美元,2025年将达到120亿美元,2020-2025年复合年增长率为51%。4)Hprobe对磁性传感器的成功有何贡献? 作为一家拥有专利技术的自动测试设备(ATE)供应商,Hprobe为IC制造商提供了一站式解决方案,将加速磁性传感器产品的开发,确保成功升级。 测试时间是生产中的关键性能指标,也是缩短开发时间的重要附加值。打造专用于传感器技术和产品晶圆测试的最佳测试设备,使其具有最大的灵活性和最短的测试时间,将在开发阶段带来巨大的价值,并可大大缩短大批量制造(HVM)的上市时间(TTM)。Hprobe的解决方案满足了对灵活性和性能的需求,从而在从技术发布到生产控制和监控的漫长道路上为工程师提供支持。5)Hprobe产品如何运行? 传感器测量磁场以提取位置、角度、强度和磁场方向的信息。测量得到传感对象运动或电流方向的数据。为了验证芯片产品的最终应用,测试是在晶圆层面上进行的,在改变晶圆上方磁场的同时进行电探测。 晶圆级测试通过以下步骤完成:在空间1D、2D或3D的任何方向施加能够快速稳定的静态磁场,并测量传感器的输出电响应。施加快速扫描场强或角度的可变磁场,以高通量分拣产品,在限制测试成本的同时,实现晶圆上的完全测试覆盖。 关于Hprobe 法国Hprobe公司成立于2017年,总部位于具有“法国硅谷”的美誉格勒诺布尔,是SPINTEC(全球领先的自旋电子学研究实验室之一)的一家衍生公司。 法国Hprobe基于独有的三维磁场发生器等专利技术,致力于为磁性器件和传感器的晶圆级表征和测试提供系统解决方案。目前产品提供的服务内容涵盖磁技术开发所有阶段,能针对性的为MRAM(STT、SOT、VCMA)和磁性传感器(TMR、GMR等)进行表征和测试提供专用设备和服务。 依托投资方的自身优势,普瑞亿科半导体事业部聚焦国内半导体产业工艺发展,与Hprobe协力打造国内领先的晶圆级表征和测试系统解决方案,致力于为中国半导体行业客户提供研究级和生产级的MRAM和磁检测解决方案和服务支持。
    留言咨询

磁性角度规相关的资讯

  • 快速灵活强大丨HPROBE 磁性自动测试设备 开启晶圆测试新纪元
    在全球半导体产业高速发展的今天,中国正以其前瞻性的战略布局和政策支持,推动国内半导体行业的跨越式发展。随着物联网、大数据和人工智能驱动的新计算时代的发展,我国对半导体器件的需求日益增长,对器件可靠性与性能指标的要求也越发严格。晶圆测试:质量与效率的保障 晶圆测试是半导体制造过程中不可或缺的一步,它能够确保芯片在制造过程中的每一个阶段都能达到设计规格和性能要求。自动化和高精度的测试设备可以显著提高测试速度,缩短生产周期;通过精确检测,确保每一片晶圆的可靠性和一致性,降低不良品率;有效的测试可以减少返工和废品,从而降低生产成本。 在晶圆测试中,磁性器件需要在磁场扫描下测试,而传统的设备和方法较为耗时,会增加芯片的制造成本。在晶圆上方以高扫速改变磁场是工业化大批量生产正面临的挑战,今天要为大家介绍的Hprobe 磁性自动测试设备,其专利的磁场发生器技术,可以完美应对这项挑战。Hprobe 磁性自动测试设备 Hprobe 磁性自动测试设备是通过实现每个器件的快速测试时间,以更高的通量对晶圆在磁场下进行电探测。其专利技术3D磁场发生器和Hcoil-2T磁场发生器,能够满足大规模生产中对晶圆级电子探测的要求,独特设计的磁场发生器通过电源供电和空气冷却,不需要复杂的液体冷却。快速:更高的磁扫率,每秒高达10000件样品,实现高通量测试,并与批量生产的测试时间相匹配。灵活:具有独立可控空间轴的三维磁场,用于垂直和平面磁场的任意组合。强大:单一方向的超高强度磁场,结合更快的扫描速度,可在20微秒内达到2特斯拉。 Hprobe 磁性自动测试设备使用100-300mm自动晶圆探针台。集成了磁场发生器的测试头被置于晶圆探针台上。测试设备与以下自动探针台兼容:TEL (Tokyo Electron Limited)、ACCRETECH、Electroglas。技术原理 1、三维磁场发生器:三维磁场发生器能够产生三维磁场,其中每个空间轴可被独立驱动。该发生器具有多种组态,可在特定的1D、2D或3D方向上更大化磁场强度或表面覆盖。磁场的扫描速率在场强和角度上是可控的,扫描速率可达每秒10000件样品。 2、Hcoil-2T 磁场发生器:Hcoil-2T 磁场发生器是一种创新性的超紧凑型技术,能够以更快的扫描速度在单一方向产生超强磁场。利用这项技术,可以在不到20微秒的时间内达到±2特斯拉磁场。主要特点平面内和垂直方向的高磁场强度磁场的三维控制场强和角度扫描(旋转场)嵌入式校准传感器自动化测试程序MRAM参数提取软件可用于100至300 mm晶圆与标准探针卡兼容完整且可定制的软件,可创建测试序列和自动探测空气冷却测试设备1、测试头:磁场发生器集成在测试头中,后者被安装在自动晶圆探针台上,与单个直流或射频探针和探针卡兼容。 2、仪表架:测试设备使用高端控制和传感设备。测试设备的仪器组态可以按照用户需求而配置。3、磁场校准套件:磁场发生器配有磁场校准组件,由三维磁传感器和自动定位系统组成,用于在与被测设备完全相同的位置校准磁场。 4、软件:带图形用户界面GUI(graphical user interface)的软件,用于磁场的生成、校准,以及MRAM和磁传感器的自动化电测量。软件还包括晶圆厂自动化和生产控制功能。IBEX平台(用于MRAM测试) IBEX平台与200毫米和300毫米自动晶圆探针台兼容,专用于测试MRAM磁性隧道结,以及基于自旋转移矩(STT-MRAM)、自旋轨道矩(SOT-MRAM)和电压控制(VC-MRAM)技术的位单元。该系统能够在快速可变磁场和超窄脉冲信号下进行高通量测试。1、IBEX-P MRAM参数测试 IBEX-P系统以单通道或多通道配置运行,测试结构中包含过程控制和监控(PCM),因而可用于晶圆验收测试(WAT)时生产产量的统计过程控制(SPC)。 IBEX使用Hprobe的带有图形用户界面的专用一站式软件,既可在研发环节中手动操作,又可在全自动晶圆厂中自动操作。该软件包括专用于MRAM器件的更优化生产测试程序。 该系统采用Hprobe的磁场发生器专利技术,将磁场发生器集成到测试头中,后者安装在晶圆探针台上。 该测试设备由精选高端仪器驱动, 从而以更快的测试时间来表征MRAM磁性隧道结或位单元。涉及的仪器包括Keysight、Tektronix和NI等品牌,并使用Hprobe的专有构架模块集成。2、IBEX-F功能测试 IBEX-F系统专用于测试位阵列和片上系统(SoC)嵌入式MRAM存储器。 测试系统以单点或多点配置运行,用于MRAM阵列的表征和测试。其目的是进行产品开发、验证和鉴定,并转入生产。它还可用于嵌入式MRAM器件的大规模生产环境,在后端(BEOL)过程中进行芯片探测(CP)的筛选和分级。 该测试设备由精选高端仪器驱动,从而以更快的测试时间来表征MRAM磁隧道结或位单元。涉及的仪器包括Keysight、Tektronix和NI等品牌,并使用Hprobe的专有构架模块集成。关于MRAM 测试 与传统采用电荷存储数据的半导体存储器不同,MRAM(磁阻随机存取存储器)是一种非易失性存储器,使用磁化(例如电子自旋)方向来存储数据位。 与现有的半导体技术相比,MRAM具有许多优点,因为它本质上是非易失性的(例如,当电源切断时能够保存数据),同时还表现出非常好的耐久性(例如读/写周期数)和较低的运行功率。全新一代的MRAM为pSTT-MRAM(垂直自旋转移矩随机存取存储器),已被业界选择取代28/22nm以下技术节点的嵌入式闪存,目前各大半导体代工厂均可提供该产品。LINX 平台(用于传感器测试) LINX平台与200mm和300mm自动晶圆探针台兼容,用于测试基于xMR(磁阻)和霍尔效应技术的磁性传感器。该系统能够在静态和快速变化的磁场下进行测试,磁场在空间任何方向可控。LINX-1–磁性传感器测试仪 LINX-1测试仪专用于磁性传感器芯片的晶圆级分选。 该产品使用Hprobes的带有图形用户界面的专用一站式软件,以单通道或多通道配置来生成和校准磁场,包括静态或动态模式下优化的磁场生成模式。该系统具有可编程功能,可与用户的测试平台集成。 LINX-1采用Hprobe专有的磁场发生器技术,与3轴自动化测试头集成。它可以使用手动或自动加载的探针卡进行操作。 磁场的产生由高性能仪器驱动,以实现稳定的静态磁场或高扫描率的可变场。 仪器组包括Keysight、Tektronix和NI等品牌,并使用Hprobe的专有构架模块集成。关于传感器测试 磁性传感器检测由磁铁或电流产生的磁场和地磁场的强度。它们将磁场或磁编码信息转换成电信号,供电子电路处理。磁性传感器正变得越来越流行,因为它们可以用于多种应用场合,如传感位置、速度或运动方向。磁性传感器有以下几种类型: 霍尔效应传感器 霍尔效应传感器由半导体衬底上的条形载流导体构成,当置于磁通量中时,通过霍尔效应产生垂直于电流方向的电压。霍尔效应传感器被广泛应用于汽车和工业领域。AMR传感器 各向异性磁阻(AMR)传感器由条形或带状磁性各向异性材料组成,其等效电阻与磁化方向和导电方向的夹角有关。与其他磁电阻传感器相比,AMR传感器具有相对较低的磁电阻(MR)率。它们被用于工业、商业和空间技术,作为位移或角度传感器以及地磁场传感器。GMR传感器 巨磁阻(GMR)传感器具有三明治结构,由被界面导电层隔开的磁性薄膜组成。该传感器有两种电阻状态:当两个磁性层磁化方向平行时,器件为低阻态;而当两个磁性层磁化方向相反时,器件为高阻态。GMR传感器是一种温度稳定性好的精密磁场传感器。它们已被广泛应用于硬盘驱动器(HDD)行业以及工业应用中。TMR传感器 隧道磁阻(TMR)传感器由被隧穿势垒层分离的铁磁多层膜组成。TMR器件的电阻与两铁磁层磁化方向的夹角有关。与其它种类的磁场传感器相比,TMR传感器具有更好的信噪比、更高的精度、以及更低的功耗。TMR传感器在温度和寿命方面具有可靠稳定的性能。因此,TMR传感器在要求苛刻的应用中是首选。 关于Hprobe 法国Hprobe公司成立于2017年,总部位于具有“法国硅谷”的美誉格勒诺布尔,是SPINTEC(全球领先的自旋电子学研究实验室之一)的一家衍生公司。 法国Hprobe基于独有的三维磁场发生器等专利技术,致力于为磁性器件和传感器的晶圆级表征和测试提供系统解决方案。目前产品提供的服务内容涵盖磁技术开发所有阶段,能针对性的为MRAM(STT、SOT、VCMA)和磁性传感器(TMR、GMR等)进行表征和测试提供专用设备和服务。 依托投资方的自身优势,普瑞亿科半导体事业部聚焦国内半导体产业工艺发展,与Hprobe协力打造国内领先的晶圆级表征和测试系统解决方案,致力于为中国半导体行业客户提供研究级和生产级的MRAM和磁检测解决方案和服务支持。
  • 磁性随机存储器(MRAM)和斯格明子研究的最新利器!可精确调控磁性薄膜或晶圆磁性的离子辐照磁性精细调控系统Helium-S®
    今年1月,三星电子在学术期刊 Nature 上发表了全球基于 MRAM(磁性随机存储器)的存内计算研究。存内计算由于毋需数据在存储器和处理器间移动,大大降低了 AI 计算的功耗,被视作边缘 AI 计算的一项前沿研究。三星电子的研究团队通过构建新的 MRAM 阵列结构,用基于 28 nm CMOS 工艺的 MRAM 阵列芯片运行了手写数字识别和人脸检测等 AI 算法,准确率分别为 98% 和 93%。研究人员表示,MRAM 芯片应用于 in-memory computing(内存内计算)电脑,十分适合进行神经网络运算等,因为这种计算架构与大脑神经元网络较为相似。 MRAM 器件在操作速度、耐用性和量产等方面具有优势,但其较低的电阻使 MRAM 存储器在传统的存内计算架构中无法达到低功耗要求。在本篇论文中,三星电子的研究人员构建了一种基于 MRAM 的新存内计算架构,了这一空白,这是MRAM研究的又一新突破。 近期,国内的众多课题组也在MRAM研究上取得了许多重量的工作。例如北航的赵巍胜课题组在2020年发表在APL上的——具有垂直各向异性的氦离子辐照W-CoFeB-MgO Hall bars中的自旋轨道矩(SOT)驱动的多层转换一文中,运用了特的氦离子辐照技术对W(4 nm)/CoFeB (0.6 nm)/MgO (2 nm)/Ta (3 nm)多层膜进行了结构的调控,通过对调控前后以及过程中磁学和电学性质变化的研究,表明这种使用离子辐照调控多层电阻的方法在实现神经形态和记忆电阻器件领域显示出巨大的潜力。图中Kerr 图像显示了 SOT 诱导的磁化转换过程中Hall bars电流的增加,白色虚线表示纵向电流线和横向电压线。红色方框对应于氦离子辐照区域。(ii) 和 (iv) 中的黄色箭头代表畴壁运动的方向。 离子辐照除了在MRAM研究领域小试牛刀外,在斯格明子的研究中也令人眼前一亮。 法国自旋电子中心(SPINTEC) 和法国Spin-Ion公司合作发表在NanoLetters上的一篇文章,题目为:氦离子辐照让磁性斯格明子“走上正轨”。文中指出,氦离子辐照可被用于在“赛道上”“创造”和“引导”斯格明子,文章证明了氦离子辐照带来的垂直磁各向异性和DMI的变小,可导致稳定的孤立斯格明子的形成。图中红色轨道尺寸为6000×150 nm2,间距为300 nm,用氦离子辐照的区域。图中显示了氦离子辐照的红色轨道区域不同磁场下的MFM图像。 以上两篇文章采用的离子辐照设备来自法国Spin-Ion公司。法国Spin-Ion公司于2017年成立,源自法国研究中心/巴黎-萨克雷大学的知名课题组。Spin-Ion公司采用Ravelosona博士的创新技术,在磁性材料的离子束工艺方面有20年的经验,拥有4项和40多篇发表文章。Spin-Ion公司推出的产品——可用于多种磁性研究的离子辐照磁性精细调控系统Helium-S® ,可通过紧凑和快速的氦离子束设备控制原子间的位移。该设备使用特有的离子束技术在原子尺度上加工材料,可通过离子束工艺来调控薄膜和异质结构。目前全球已有20多家科研和工业的用户以及合作伙伴使用该技术。2020年Spin-Ion公司在中国也已安装了套系统,Helium-S® 有的技术能力正吸引来自相关科研圈和工业领域越来越多的关注。 产品主要应用领域:磁性随机存储器(MRAM):自旋转移矩磁性随机存储(STT-MRAM), 自旋轨道矩磁性随机存储(SOT-MRAM), 磁畴壁磁性随机存储(DW-MRAM)等自旋电子学:斯格明子,磁性隧道结,磁传感器等磁学相关:磁性氧化物,多铁性材料等其他:薄膜改性,芯片加工,仿神经器件,逻辑器件等 产品特点:● 可通过紧凑和快速的氦离子束设备控制原子间的位移,通过氦离子辐照可调控磁性薄膜或晶圆的磁学性质。● 可提供能量范围为1-30 keV的He+离子束● 采用创新的电子回旋共振(ECR)离子源● 可对25毫米的试样进行快速的均匀辐照(如几分钟)● 超紧凑的设计,节省实验空间● 也与现有的超高真空设备互联 测试数据:调控界面各向异性性质和DMI 低电流诱发的SOT转换获取 控制斯格明子和磁畴壁的动态变化 用户单位 已经购买该设备的国内外用户单位:University of California San Diego (USA)University of California Davis (USA)New York University (USA)Georgetown University (USA)Northwestern University (USA)University of Lorraine (France)SPINTEC Grenoble (France)University of Cambridge (UK)University of Manchester (UK)Beihang University (China)Nanyang Technological University and A*STAR (Singapore)University of Gothenburg (Sweden)Western Digital (USA)IBM (USA)Singulus Technologies (Germany) 文章列表:[1]. Tailoring magnetism by light-ion irradiation, J Fassbender, D Ravelosona, Y Samson, Journal of Physics D: Applied Physics 37 (2004)[2]. Ordering intermetallic alloys by ion irradiation: A way to tailor magnetic media, H Bernas & D Ravelosona, Physical review letters 91, 077203 (2003)[3]. Influence of ion irradiation on switching field and switching field distribution in arrays of Co/Pd-based bit pattern media, T Hauet & D Ravelosona, Applied Physics Letters 98, 172506 (2011)[4]. Ferromagnetic resonance study of Co/Pd/Co/Ni multilayers with perpendicular anisotropy irradiated with helium ions, J-M.Beaujour & A.D. Kent & D.Ravelosona &E.Fullerton, Journal of Applied Physics 109, 033917 (2011)[5]. Irradiation-induced tailoring of the magnetism of CoFeB/MgO ultrathin films, T Devolder & D Ravelosona, Journal of Applied Physics 113, 203912 (2013)[6]. Controlling magnetic domain wall motion in the creep regime in He-irradiated CoFeB/MgO films with perpendicular anisotropy, L.Herrera Diez & D.Ravelosona, Applied Physics Letter 107, 032401 (2015)[7]. Measuring the Magnetic Moment Density in Patterned Ultrathin Ferromagnets with Submicrometer Resolution, T.Hingant & D.Ravelosona & V.Jacques, Physical Review Applied 4, 014003 (2015)[8]. Suppression of all-optical switching in He+ irradiated Co/Pt multilayers: influence of the domain-wall energy, M El Hadri & S Mangin & D Ravelosona, J. Phys. D: Appl. Phys. 51, 215004 (2018)[9]. Tuning the magnetodynamic properties of all-perpendicular spin valves using He+ irradiation, Sheng Jiang & D.Ravelosona & J.Akerman, AIP Advances 8, 065309 (2018)[10]. Enhancement of the Dzyaloshinskii-Moriya Interaction and domain wall velocity through interface intermixing in Ta/CoFeB/MgO, L Herrera Diez & D Ravelosona, Physical Review B 99, 054431 (2019)[11]. Enhancing domain wall velocity through interface intermixing in W-CoFeB-MgO films with perpendicular anisotropy, X Zhao & W.Zhao & D Ravelosona, Applied Physics Letter 115, 122404 (2019)[12]. Controlling magnetism by interface engineering, L Herrera Diez & D Ravelosona, Book Magnetic Nano- and Microwires 2nd Edition, Elsevier (2020)[13]. Reduced spin torque nano-oscillator linewidth using He+ irradiation, S Jiang & D Ravelosona & J Akerman, Appl. Phys. Lett. 116, 072403 (2020)[14]. Spin–orbit torque driven multi-level switching in He+ irradiated W–CoFeB–MgO Hall bars with perpendicular anisotropy, X.Zhao & M.Klaui & W.Zhao & D.Ravelosona, Appl. Phys. Lett 116, 242401 (2020)[15]. Magnetic fieldfrustration of the metal-insulator transition in V2O3, J.Trastoy & D.Ravelosona & Y.Schuller, Physical Review B 101, 245109 (2020)[16]. Tailoring interfacial effect in multilayers with Dzyaloshinskii–Moriya interaction by helium ion irradiation, A.Sud & D.Ravelosona &M.Cubukcu, Scientific report 11, 23626 (2021)[17]. Ion irradiation and implantation modifications of magneto-ionically induced exchange bias in Gd/NiCoO, Christopher J. Jensen & Dafiné Ravelosona, Kai Liu, Journal of Magnetism and Magnetic Materials 540, 168479 (2021)[18]. Helium Ions Put Magnetic Skyrmions on the Track, R.Juge & D.Ravelosona & O.Boulle, Nano Lett. 2021 Apr 14 21(7):2989-2996 参考文献:[1]. Nature 601, 211-216(2022)[2]. Appl. Phys. Lett 116, 242401 (2020)[3]. Nano Lett. 2021 Apr 14 21(7):2989-2996
  • 行业应用 | 国仪量子钻石原子力显微镜:打开二维磁性材料新天地
    几个世纪以来,人类探索磁性及其相关现象的脚步从未停歇。在电磁学和量子力学发展的早期,人类很难想象磁石对铁的吸引力,鸟、鱼或昆虫在相隔数千英里的目的地之间的导航能力,这些神奇又有趣的现象具有相同的磁性起源。这些磁性来源于基本粒子的运动电荷与自旋,它和电子一样普遍存在。近年来,二维磁性材料在国际上成为备受关注的研究热点,它们为自旋电子学器件的研发开辟了新的方向,在新型光电器件、自旋电子学器件等方面都有着重要的应用价值。近日,《物理学报》2021年第12期也推出了二维磁性材料专题,从不同的角度描述了二维磁性材料在理论与实验方面的进展。《物理学报》2021年第12期你能想象得到吗?只有几个原子厚度的二维磁性材料就可以为极小的硅电子器件提供基板。这种神奇的材料由成对的超薄层制成,超薄层通过范德瓦耳斯力,即分子间作用力堆叠在一起,同时层内原子以化学键进行连接。虽然只有原子级的厚度,但依然保持着磁学、电学、力学、光学等方面的物理和化学特性。二维磁性材料 图片引用自https://phys.org/news/2018-10-flexy-flat-functional-magnets.html打个有趣的比方,二维磁性材料中的每个电子都像一个微小的罗盘,拥有北极和南极,这些“罗盘针”的方向决定了磁化强度。当这些无穷小的“罗盘针”自发对齐时,磁序就构成物质的基本相位,因此可制备出很多功能性装置,例如发电机和电动机、磁阻存储器和光学阻隔器等。这种神奇的特性也让二维磁性材料变得炙手可热起来,虽然现在集成电路制造工艺在不断提高,但由于器件在不断缩小,已经受到量子效应的限制,微电子行业已经遇到了可靠性低、功耗大等瓶颈,延续了近50年的摩尔定律也不再“吃香”(摩尔定律:集成电路上可以容纳的晶体管数目在大约每经过18个月便会增加一倍)。如果未来二维磁性材料能够在磁传感器、随机存储器等新型自旋电子学器件领域得到应用,说不定有望突破集成电路性能瓶颈。我们已经知道,具有磁性的范德瓦耳斯晶体带有特殊的磁电效应,因此在二维磁性材料的研究过程中,定量的磁性研究是必不可少的步骤。然而,对此类磁体在纳米尺度上磁性响应的定量实验研究依然非常缺乏。现有的一些研究报道了在微米尺度上实现了对晶体磁性的检测,但这些技术不仅还无法提供关于磁化的定量信息,还极容易干扰阻碍超薄样品的磁信号。因此,检测技术的更新对于探测材料纳米尺度上的磁性质是非常紧迫的挑战。国仪量子QDAFM为了解决这一难题,国仪量子提供了一种新的测量途径——量子钻石原子力显微镜(QDAFM)。QDAFM是基于NV色心和AFM扫描成像技术的量子精密测量仪器。通过对钻石中氮—空位(NV)色心发光缺陷的自旋进行量子操控与读出,可实现磁学性质的定量无损成像,具有纳米级的高空间分辨率以及单个自旋的超高探测灵敏度,可用于定量检测范德瓦耳斯磁体的关键磁学性质,并对其磁化、局部缺陷和磁畴进行高空间分辨率的磁成像,具有非侵入性、可覆盖宽温区、大磁场测量范围等独到优势,在量子科学,化学与材料科学,以及生物和医疗等研究领域有着广泛的应用前景。二维碘化铬的磁化图引用自Probing magnetism in 2D materials at the nanoscale with single-spin microscopy(Science, 2019, DOI: 10.1126/science.aav6926)下面,为大家介绍QDAFM在微纳磁成像、超导磁成像、细胞原位成像、拓扑磁结构表征等方面的具体应用。01微纳磁成像对于磁性材料,确定其静态自旋分布是凝聚态物理中的重要问题,也是研究新型磁性器件的关键。QDAFM提供了一种新的测量途径,能够实现高空间分辨率的磁性成像,具有非侵入性、可覆盖宽温区、大磁场测量范围等独到优势。布洛赫型磁畴壁成像引用自Tetienne, J. P.et al. The nature of domain walls in ultrathin ferromagnets revealed by scanning nanomagnetometry.Nature Communications6, 6733(2015)02超导磁成像对超导体及其涡旋的微观尺度研究,能够为理解超导机理提供重要信息。利用工作在低温下的QDAFM,可以对超导体的磁涡旋进行定量的成像研究,并扩展到众多低温凝聚态体系的磁性测量。单个磁性涡旋的杂散场定量成像引用自Thiel, L.et al.Quantitativenanoscale vortex imaging using a cryogenic quantum magnetometer. Nature Nanotechnology 11,677- 681 (2016).03细胞原位成像在细胞原位实现纳米级分子成像是生物学研究的重要手段。在众多成像技术中,磁共振成像技术能够快速、无破坏地获取样品体内的自旋分布图像,已经广泛应用在多个科学领域中。特别是在临床医学中,因其对生物体几乎无损伤,对疾病的机理研究、诊断和治疗起着重要的作用。然而,传统的磁共振成像技术使用磁感应线圈作为传感器,空间分辨率极限在微米以上,无法进行细胞内分子尺度的成像。利用QDAFM的高空间分辨率特性,研究人员观测到了细胞内部存在于细胞器中的铁蛋白,分辨率达到了10纳米。细胞原位铁蛋白分子的纳米磁成像引用自Wang, P. et al. Nanoscale magnetic imaging of ferritins in a single cell. Science advances 5, 8038 (2019).04拓扑磁结构表征磁性斯格明子是具有拓扑保护性质的纳米尺度涡旋磁结构。磁性斯格明子展现出丰富新奇的物理学特性,为研究拓扑自旋电子学提供了新的平台,在未来高密度、低能耗、非易失性计算和存储器件中也具有潜在应用。但是室温下单个斯格明子的探测在实验上仍具有挑战性。QDAFM的高灵敏度和高分辨率特点,是解决这一难题的有力工具,通过杂散场测量可重构出斯格明子的磁结构。斯格明子磁场成像引用自Dovzhenko, Y. et al. Magnetostatic twists in room-temperature skyrmions explored by nitrogen-vacancy center spin texture reconstruction. Nature Communications 9, 2712 (2018).参考文献:1.《物理学报》2021年第12期,二维磁性材料专题2.Two-dimensional magnetic crystals and emergent heterostructure devices(Science, 2019, DOI: 10.1126/science.aav4450)3.https://phys.org/news/2018-10-flexy-flat-functional-magnets.html4.Probing magnetism in 2D materials at the nanoscale with single-spin microscopy(Science, 2019, DOI: 10.1126/science.aav6926)

磁性角度规相关的方案

磁性角度规相关的资料

磁性角度规相关的试剂

磁性角度规相关的论坛

  • 大家怎么对付磁性材料?

    保险起见,目前,我管的2100 HRTEM对外都是禁止磁性粉末材料的,但有的学生或老师总来找麻烦,说是顺磁或弱磁,没什么关系。我一般用吸铁石吸一下,能吸住我就拒了。大家一般怎么对付磁性材料,从一个管理员的角度

磁性角度规相关的耗材

  • 磁性样品架
    型号规格:通用型品牌:PIKE磁性样品架由钢制的样品底板和磁性样品盖板组成。样品底板上有定位销,方便使用。磁性样品架适用于13mmKBr片和薄膜样品的红外光谱透射测量使用。薄膜的厚度不宜超过0.5mm。
  • 磁性低温样品管
    磁性低温样品管Magnetic CryoVials磁性低温样品管,主要用来保存在测角仪样品座上的样品,按照样品座的大小设计,具有精细的尺寸和可靠的低温稳定性。磁性使得蛋白晶体样品座可牢固置于其上,管子与样品座goniometer bases大小匹配,低温样品管不仅可以确保样品转移时保持低温,同时也保护样品免受损失或者损伤。货号产品名称规格CV-1-50磁性低温样品管Magnetic CryoVials50个CV-1-100磁性低温样品管Magnetic CryoVials100个
  • PALL 磁性过滤漏斗
    47 mm 磁性过滤漏斗订购信息 货号 说明 包装 4247 150ml 1个/包装 4242 300ml 1个/包装 4241 300ml,有盖 1个/包装 4238 500ml 1个/包装 备件 货号 说明 包装 4235 不锈钢支架筛 1个/包装 87264 聚苯砜支架筛 1个/包装 4244 底座,无支架筛 1个/包装 4246 盖(仅用于300ml漏斗) 1个/包装 4248 150ml 漏斗外壳 1个/包装 4243 300ml 漏斗外壳 1个/包装 4254 500ml 漏斗外壳 1个/包装 美国PALL 47mm磁性过滤漏斗 独有的磁性密封便于液体的真空过滤 特点 ◇ 决不渗漏的磁性密封专利技术使单手操作成为可能。 ◇ 新的聚砜材质可与抗泡沫剂及其它多种溶剂相兼容。 ◇ 使用便利:各种规格可精确计量,均可高温高压或紫外方式灭菌。 ◇ 坚固、安全;经济、耐用的聚砜漏斗比易碎的玻璃漏斗更具有安全性。 特性 ◇ 制造材料:聚砜 ◇ 滤膜规格:47mm过滤膜 ◇ 有效过滤体积:150、300、500ml。 ◇ 出口联接:标准8号胶塞。 ◇ 最大操作温度:121℃或由滤膜确定。 应用 ◇ 用于MF技术。 ◇ 城市水处理测试。 ◇ 地表水分析。 ◇ 工厂工艺用水测试。 ◇ 饮用水分析。 灭菌 出售未经灭菌,可进行多次高压灭菌*,121 - 123 ° C (250 -253 ° F),1.0 bar (100 kPa,15 psi) ,15-20分钟;可进行紫外线灭菌 *重复使用含有聚乙氧基烷基酚和酒精,和/或防腐蚀、防结垢锅炉添加剂的清洁剂,可能导致聚苯砜破裂,从而缩短产品的使用寿命。不要对橡胶塞进行高压灭菌。不要使用铝箔进行高压灭菌,应使用高压灭菌纸。请咨询Pall公司技术服务部是否使用薄膜,如磁轨侵蚀材料。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制