当前位置: 仪器信息网 > 行业主题 > >

宽带收银秤

仪器信息网宽带收银秤专题为您提供2024年最新宽带收银秤价格报价、厂家品牌的相关信息, 包括宽带收银秤参数、型号等,不管是国产,还是进口品牌的宽带收银秤您都可以在这里找到。 除此之外,仪器信息网还免费为您整合宽带收银秤相关的耗材配件、试剂标物,还有宽带收银秤相关的最新资讯、资料,以及宽带收银秤相关的解决方案。

宽带收银秤相关的资讯

  • 梅特勒托利多高端UC-HTT PC电子收银秤入驻上海世博园
    上海世博会自开幕以来,每日人头涌动,热闹非凡。上海爱屋食品公司(来伊份)是全国最大的休闲食品连锁品牌,在江浙沪地区已有1500多家连锁门店。作为一家具有成长性并在消费者中口碑良好的食品企业,来伊份被特许进入世博园区,开设三家门店,为游客提供优质食品。 梅特勒托利多2005年就与来伊份建立了合作关系,来伊份所有门店均使用梅特勒托利多i-15收银终端。这次世博盛会,我们在要求高、时间紧的情况下,引进了高端UC-HTT PC电子收银秤,短时间内完成软件定制,满足了来伊份的需求,也为2010上海世博会的成功开展贡献了一份力量!
  • 我科学家首创宽带隙半导体材料太阳能电池
    日前,厦门大学物理与机电工程学院康俊勇教授课题组研发成功一种新型太阳能电池,即将氧化锌和硒化锌两种宽带隙半导体材料用作太阳能电池,从而大大稳定了太阳能电池的性能并使其寿命延长。这也是国际上首次实现了宽带隙半导体在太阳能电池中的应用。近期,英国皇家化学学会的《材料化学》杂志发表了这一成果,在国际上引起广泛关注。   所谓宽带隙半导体,一般是指室温下带隙大于2.0电子伏特的半导体材料。从物理学上来讲,带隙越宽,其物理化学性质就越稳定,抗辐射性能越好,寿命也越长 但与此相对应,带隙宽的一个缺点是——这种材料对太阳光的吸收较少,光电转换效率低。由于这种“致命性缺陷”,宽带隙半导体材料以往在太阳能电池中不用作发电的关键结构,而仅用作电极。   据介绍,目前,在太阳能电池中,应用较多的是硅太阳能电池,但其寿命有限。针对硅电池“寿命短”的问题,从2005年起,厦门大学半导体光子学中心的专家们将眼光瞄向了具有稳定物理化学性质、抗辐射性能好、“寿命长”的宽带隙半导体,致力于“宽带隙半导体在太阳能电池应用”的研究。   经过深入研究,课题组发现,有两个制约“转化”的瓶颈:一是能否形成光生电流 二是能否提高宽带隙半导体的吸光率。   最让课题组“费脑筋”的是如何让光电子“流动”起来。经过多次实验,课题组决定,选用两种宽带隙半导体材料——氧化锌和硒化锌作为太阳能电池的材料,形成类似于PN结的带阶,让电流“流动”起来。   同时,课题组在提高吸光率上也大“做文章”——“改革”了以往的制备方式,通过控制条件,让两种材料实现共格生长,首次形成新型量子结构,大幅度降低了宽带隙半导体的有效带隙,增加了吸收太阳光的范围。同时,将叠层状的薄膜形式改为一根一根的同轴线形式,每根仅有200纳米。这样一来,吸光面积大幅度增加,吸光率也随之提高。
  • 电科思仪成功研制110GHz宽带巴伦
    近日,电科思仪突破关键技术,成功研制出110GHz宽带巴伦,满足用户高速测试需求,产品性能达到业内领先水平。巴伦是一种三端口器件,可将一路信号分成大小相等、振动或波动方向相反(镜像)的两路信号,也可将振动或波动方向相反的两路信号合成一路信号输出,在通信系统、光电系统等多种场景中有广泛应用。随着各场景对高性能宽带巴伦的技术要求不断提高,原有频率上限已不能满足用户需求。为解决这一技术瓶颈,电科思仪集中力量攻关,突破关键技术成功研制出110GHz宽带巴伦,充分满足市场需求。
  • 上海交大何祖源、樊昕昱教授团队在宽带高分辨率光谱测量方面取得最新进展
    近日,上海交通大学电子信息与电气工程学院电子工程系何祖源、樊昕昱教授团队提出将电光梳与回音壁散斑图案相结合的方案,实现了宽带高分辨率光谱测量。相关成果以“Whispering-gallery-mode barcode-based broadband sub-femtometer-resolution spectroscopy with an electro-optic frequency comb”为题发表在《Advanced Photonics》(先进光子学)上,该工作得到国家自然科学基金等项目资助。光谱学在分子和原子结构研究中扮演着关键角色,在传感、环境研究、医学诊断等领域发挥着重要作用。光谱仪和光频梳技术都是进行光谱测量的常用方案。然而,受制于现有光谱仪和光频梳技术的实现机制,宽带亚飞米分辨率光谱测量的实现仍面临巨大挑战。结合电光梳和WGM散斑的光谱测量技术的原理示意图本文提出将散斑图案与电光梳相结合的宽带高分辨率光谱测量方案。通过调谐探测激光产生的超精细电光梳谱线记录样品的谱图,使分辨率达到亚飞米级。基于回音壁模式(Whispering-gallery-mode, WGM)的散斑图案(或称“WGM条形码”)对探测激光和超稳激光的频率实现了精准连接,将测量带宽扩大至电光梳带宽的上千倍。该方法利用光纤激光器展示了0.8fm的高分辨率,利用可调谐的外腔激光器展示了80nm的宽带,并实现了超高Q值谐振腔和气体分子吸收的光谱测量。
  • 西安交大:3D打印超宽带太赫兹超材料吸波器
    太赫兹波,指频率为0.1-10 THz的电磁波,位于微波和红外之间,属于电子学与光子学的过渡区间。由于具有光子能量低、穿透力强、特征光谱分辨能力好等属性,太赫兹技术在生物传感、无损检测以及高速无线通讯等领域具有重要的应用前景。然而,由于自然界中的天然材料在太赫兹频段没有电磁响应,导致太赫兹频段的功能材料和器件非常匮乏,这也是造成太赫兹技术尚未广泛应用的重要原因。THz超材料,一种新型的周期性人工电磁材料,其性质主要取决于所设计的结构,通过特定的结构设计,可获得与自然界已知材料截然不同的电磁性质,从而实现丰富的功能器件,如吸波器、调制器和偏振转换器等。目前常见的太赫兹超材料,主要由光刻工艺制备得到,存在制备工艺复杂、加工成本高的问题。此外,目前宽带吸波器常采用上下重叠式多层结构设计,其在太赫兹频段所需的多步光刻工艺更是进一步提高了加工难度及成本。因此,探索太赫兹器件的无光刻、低成本、简单高效的制备方法获得超宽带太赫兹吸波器,将有利于促进太赫兹技术的繁荣发展。 近日,西安交通大学张留洋教授课题组提出了一种偏振不敏感的超宽带太赫兹吸波器设计及其制备方法,该超宽带吸波器由叠堆于类宝塔基底表面的多层环形谐振器构成,通过相邻谐振器共振模式的重叠实现带宽的扩展,最终通过叠堆12层圆形和环形谐振器实现1.07-2.88 THz频段的近完美吸收。该研究结合微尺度3D打印技术(nanoArch S130,摩方精密)制备得到实验样件,实验测试结果验证了宽带吸收机理的准确性。该成果以“Three-Dimensional Printed Ultrabroadband Terahertz Metamaterial Absorbers”为题发表于国际期刊Physical Review Applied上,该研究工作由西安交通大学机械工程学院博士生沈忠磊与硕士生李胜男共同合作完成。图1 具有面外形态的太赫兹吸波器结构示意图图2 太赫兹超宽带吸收谱 通过结合微尺度3D打印技术,超宽带太赫兹吸波器可由简单的三步工艺制备得到。其中,周期性阵列的三维类宝塔结构采用面投影微立体光刻3D打印技术(nanoArch S130,摩方精密)加工得到。实验结果表明:得益于高精度的微尺度3D打印技术,测试所得的宽带吸收谱谐振频率和吸收幅值均与数值模拟结果较为吻合。图3 太赫兹超宽带吸波器实验验证(其中单元周期Px=Py=185μm,顶层圆形谐振器半径r12=10μm, 叠堆环形谐振器宽度w=6μm,叠堆层厚Dt=10μm) 此外,文章进一步证明了该制备方法之于常见太赫兹窄带吸波器制备的适用性。实验结果表明:两种太赫兹窄带吸波器的吸收谱测试结果与数值模拟结果和理论结果均较为吻合,表明基于微尺度3D打印技术的制备方法同样可实现对常见太赫兹窄带吸波器的高质量制备。图4 太赫兹窄带吸波器实验验证原文链接:https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.16.014066官网:https://www.bmftec.cn/links/10
  • 中科院化学所成功研制高分辨宽带和频振动光谱仪
    p   高分辨宽带和频振动光谱(high-resolution broadband sum frequency generation vibrational spectroscopy, HR-BB-SFG-VS)是研究界面分子间相互作用的前沿光谱技术。最近,中科院化学所分子反应动力学国家重点实验室在国家自然科学基金委重大仪器研制项目的支持下,成功研制了具有亚波数分辨(& lt 1cm-1)的界面和频振动光谱系统。 /p p   本仪器最终测试指标达到或优于最初的设计参数。其飞秒红外脉冲的半高宽大于250波数,可一次性覆盖400波数以上的红外区间,光谱分辨率达到0.4个波数,优于国际上已报道的同类型设备参数,比传统飞秒宽带和频光谱10-20波数的光谱分辨率有极大的提高。本仪器可用于测量气液界面、气固界面、超分子手性界面、生物膜界面的分子振动光谱、分子取向结构和动力学。 /p p   鞘脂类分子是细胞质膜的重要组成部分。Ca2+与鞘磷脂的相互作用一直是生命科学中备受关注的研究课题。研究人员使用研制成功的高分辨宽带和频振动光谱研究了气/液界面Ca2+对鞘磷脂(egg sphingomyelin, ESM)单分子膜的结构和取向的影响,提出了Ca2+与ESM相互作用的分子机理(图1),为深入理解神经细胞信号传导的分子机理及生物体内电解质对神经传导影响的机制提供了实验依据。本工作是世界上首次用高分辨宽带和频振动光谱研究磷脂体系,展示了该技术研究复杂体系的能力。相关研究成果近期发表在Biophysical Journal, Volume 112, Issue 10,2017, p2173–2183上,被编辑推荐为Featured Article。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201706/insimg/0429659b-5694-4f57-ad4a-87772b8249f3.jpg" title=" W020170619545828640231.jpg" / /p p   图1 高分辨和频光谱实物图(a),高分辨和频振动光谱研究钙离子与鞘磷脂相互作用(b),钙离子与鞘磷脂之间相互作用机理图(c)。 /p
  • 中科院化学所成功研制高分辨宽带和频振动光谱仪
    p   高分辨宽带和频振动光谱(high-resolution broadband sum frequency generation vibrational spectroscopy, HR-BB-SFG-VS)是研究界面分子间相互作用的前沿光谱技术。最近,中国科学院化学研究所分子反应动力学国家重点实验室在国家自然科学基金委重大仪器研制项目的支持下,成功研制了具有亚波数分辨(& lt 1cm-1)的界面和频振动光谱系统。 br/ /p p   该仪器最终测试指标达到或优于最初的设计参数。其飞秒红外脉冲的半高宽大于250波数,可一次性覆盖400波数以上的红外区间,光谱分辨率达到0.4个波数,优于国际上已报道的同类型设备参数,比传统飞秒宽带和频光谱10-20波数的光谱分辨率有极大的提高。该仪器可用于测量气液界面、气固界面、超分子手性界面、生物膜界面的分子振动光谱、分子取向结构和动力学。 /p p   鞘脂类分子是细胞质膜的重要组成部分。Ca2+与鞘磷脂的相互作用一直是生命科学中备受关注的研究课题。研究人员使用研制成功的高分辨宽带和频振动光谱研究了气/液界面Ca2+对鞘磷脂(egg sphingomyelin, ESM)单分子膜的结构和取向的影响,提出了Ca2+与ESM相互作用的分子机理(如图),为深入理解神经细胞信号传导的分子机理及生物体内电解质对神经传导影响的机制提供了实验依据。该工作是世界上首次用高分辨宽带和频振动光谱研究磷脂体系,展示了该技术研究复杂体系的能力。相关研究成果近期发表在Biophysical Journal, Volume 112, Issue 10,2017, p2173–2183上,被编辑推荐为Featured Article。 /p p    a href=" http://www.sciencedirect.com/science/article/pii/S0006349517304423" target=" _self" title=" " 文章链接 /a /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201708/noimg/c1e862e8-8e40-49ba-92ca-cdac16d2566b.jpg" title=" 1.jpg" / /p p   图:高分辨和频光谱实物图(a),高分辨和频振动光谱研究钙离子与鞘磷脂相互作用(b),钙离子与鞘磷脂之间相互作用机理图(c)。 /p p br/ /p
  • 上海光机所低振荡宽带高色散镜研究取得进展
    p   近期,中国科学院上海光学精密机械研究所薄膜光学实验室在抑制色散镜震荡研究方面取得进展。课题组基于表面减反膜阻抗匹配设计思想,采用啁啾膜系加倾斜沉积雕塑结构低折射率SiO2膜层,设计和制备了低振荡高色散镜,实现单个色散镜在680-920nm近240nm带宽范围内提供平坦的-200fs2群延迟色散。这是相同带宽范围内,群延迟色散量较大的设计结果,并首次实现单个雕塑结构低振荡色散镜应用于飞秒激光器系统进行色散补偿,激光脉冲通过低振荡色散镜2次,能够获得16fs超短脉冲输出。 /p p   色散镜具有反射率高及色散补偿可精确控制等优点,是超强超短脉冲激光系统中重要的色散补偿元件之一。随着超强超短脉冲技术的不断发展,要求色散镜具有很宽的工作带宽和更大的色散补偿量。由于色散镜的带宽、色散量、色散震荡存在相互制约的关系,带宽和色散量的增加必然导致色散振荡的加剧,而色散振荡会严重影响实际应用中脉冲输出质量。传统的色散振荡多采用两个镜子色散曲线相互匹配来抑制。 /p p   采用倾斜沉积雕塑结构SiO2膜层,折射率可调控至1.09(@800nm),能较好地匹配空气介质,从而降低色散振荡。通过离子束溅射工艺制备Nb2O5/SiO2高低折射率材料交错的啁啾膜系,并在此基础上沉积雕塑结构低折射率SiO2膜层。将制备的获得单个低震荡宽带高色散镜应用于钛宝石激光器系统中,反射两次共提供-400fs2色散补偿,可将100fs的激光脉冲压缩至16fs。该研究发表于OpticalMaterialsExpress, 8(4)836 (2018)。 /p p   该研究获国家自然科学基金委员会与中国工程物理研究院联合基金(U1630140)、中科院青年创新促进会(2017289)、中科院战略性先导科技专项(B 类)(XDB1603)等资助。 /p p img src=" http://img1.17img.cn/17img/images/201807/insimg/be7bb3aa-a5d4-46d1-8ef4-8153d3e3fb54.jpg" title=" 04-1.png" / img src=" http://img1.17img.cn/17img/images/201807/insimg/d838b3da-e885-45ff-bc55-d8a30d22d9b4.jpg" style=" float: right width: 315px height: 242px " title=" 04-2.png" width=" 315" height=" 242" / /p p   图1 低振荡色散镜的结构示意图:(a)雕塑结构低振荡色散镜最优设计膜层结构图 (b)低振荡色散镜各部分折射率示意图 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/2a255603-2928-4829-88a9-6995c5caebe4.jpg" title=" 04-3.png" / /p p style=" text-align: center" 图2 雕塑结构低振荡色散镜压缩应用实验装置示意图& nbsp br/ /p p img src=" http://img1.17img.cn/17img/images/201807/insimg/b1a32a9b-84e1-41fa-9609-ae466adf8a49.jpg" title=" 04-4.png" width=" 316" height=" 224" style=" width: 316px height: 224px " / img src=" http://img1.17img.cn/17img/images/201807/insimg/e3bcad71-90f3-4ab7-9fff-e2fce4f8a839.jpg" style=" float: right width: 303px height: 211px " title=" 04-5.png" width=" 303" height=" 211" / /p p   图3(a)最优设计的群延迟色散曲线图和反射率曲线(红色曲线),以及除去顶层低折射率SiO2层的结构的群延迟色散曲线图和反射率曲线(黑色曲线) (b)通过2次雕塑结构低振荡色散镜后的压缩脉冲FROG跟踪 /p p br/ /p
  • 西安交大《Physical Review Applied》:3D打印超宽带太赫兹超材料吸波器
    太赫兹波,指频率为0.1-10 THz的电磁波,位于微波和红外之间,属于电子学与光子学的过渡区间。由于具有光子能量低、穿透力强、特征光谱分辨能力好等属性,太赫兹技术在生物传感、无损检测以及高速无线通讯等领域具有重要的应用前景。然而,由于自然界中的天然材料在太赫兹频段没有电磁响应,导致太赫兹频段的功能材料和器件非常匮乏,这也是造成太赫兹技术尚未广泛应用的重要原因。THz超材料,一种新型的周期性人工电磁材料,其性质主要取决于所设计的结构,通过特定的结构设计,可获得与自然界已知材料截然不同的电磁性质,从而实现丰富的功能器件,如吸波器、调制器和偏振转换器等。目前常见的太赫兹超材料,主要由光刻工艺制备得到,存在制备工艺复杂、加工成本高的问题。此外,目前宽带吸波器常采用上下重叠式多层结构设计,其在太赫兹频段所需的多步光刻工艺更是进一步提高了加工难度及成本。因此,探索太赫兹器件的无光刻、低成本、简单高效的制备方法获得超宽带太赫兹吸波器,将有利于促进太赫兹技术的繁荣发展。 近日,西安交通大学张留洋教授课题组提出了一种偏振不敏感的超宽带太赫兹吸波器设计及其制备方法,该超宽带吸波器由叠堆于类宝塔基底表面的多层环形谐振器构成,通过相邻谐振器共振模式的重叠实现带宽的扩展,最终通过叠堆12层圆形和环形谐振器实现1.07-2.88 THz频段的近完美吸收。该研究结合微尺度3D打印技术(nanoArch S130,摩方精密)制备得到实验样件,实验测试结果验证了宽带吸收机理的准确性。该成果以“Three-Dimensional Printed Ultrabroadband Terahertz Metamaterial Absorbers”为题发表于国际期刊Physical Review Applied上,该研究工作由西安交通大学机械工程学院博士生沈忠磊与硕士生李胜男共同合作完成。图1 具有面外形态的太赫兹吸波器结构示意图图2 太赫兹超宽带吸收谱 通过结合微尺度3D打印技术,超宽带太赫兹吸波器可由简单的三步工艺制备得到。其中,周期性阵列的三维类宝塔结构采用面投影微立体光刻3D打印技术(nanoArch S130,摩方精密)加工得到。实验结果表明:得益于高精度的微尺度3D打印技术,测试所得的宽带吸收谱谐振频率和吸收幅值均与数值模拟结果较为吻合。图3 太赫兹超宽带吸波器实验验证(其中单元周期Px=Py=185μm,顶层圆形谐振器半径r12=10μm, 叠堆环形谐振器宽度w=6μm,叠堆层厚▲t=10μm) 此外,文章进一步证明了该制备方法之于常见太赫兹窄带吸波器制备的适用性。实验结果表明:两种太赫兹窄带吸波器的吸收谱测试结果与数值模拟结果和理论结果均较为吻合,表明基于微尺度3D打印技术的制备方法同样可实现对常见太赫兹窄带吸波器的高质量制备。图4 太赫兹窄带吸波器实验验证原文链接:https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.16.014066
  • 北京理工大学方岱宁院士、董浩文副教授课题组《Natl. Sci. Rev.》:面向超宽带声束工程的色散定制化消色差超构表面
    近年来,作为一种可调控波相位、极化方式、传播模式的超薄声学人工表面结构,声学超构表面(Acoustic metasurfaces)可以实现许多新奇的波控功能,在吸声降噪、医学超声、声波器件、探测、通信等领域展现了广阔的应用前景。然而,绝大多数声学超构表面都面临突出的窄带和功能色散问题,且主动调控的手段也存在功能色散、低可靠性、高系统复杂度和高制造成本等诸多挑战。更重要的是,可重构超构表面虽可保证离散频率下波动功能,但不太可能适用于含多个频率的宽带入射波包。因此,从工程应用的角度来看,声学超构表面亟需实现被动式超宽带、非频变特性,也需更多新的结构形式与调控机理。近期,北京理工大学方岱宁院士和董浩文副教授、香港理工大学成利院士、天津大学汪越胜教授、美国罗文大学沈宸助理教授、青岛大学赵胜东副教授密切合作,并联合德国锡根大学张传增院士、美国杜克大学Steven A. Cummer教授、中科院深圳先进技术研究院郑海荣教授和邱维宝研究员等国内外学者,在超构材料领域取得重要进展。该团队提出了定制化色散的逆向设计方法,利用面投影微立体光刻技术(nanoArch S140,摩方精密)实现了声学超构表面的高精度3D打印,成功构造了消色差声学超构表面,实现了高效、相对带宽为93.3%的声波定向传输、相对带宽为120%的能量聚焦、相对带宽为118.9%的超声粒子悬浮等超宽带声学波束工程,并揭示了超宽带消色差特性的力学机理,为超宽带、高效、多功能超构材料器件提供了新的设计范式,可为先进结构技术与完美波动调控的结合提供系统的理论与方法。该研究以“Achromatic metasurfaces by dispersion customization for ultra-broadband acoustic beam engineering”为题发表于《国家科学评论》(National Science Review, NSR, https://doi.org/10.1093/nsr/nwac030, 2022)。为获得超构表面的定制化色散特性,该研究提出了系统的超宽带消色差 “至下而上”逆向设计框架(图1)。为实现声波异常折射、聚焦和超声悬浮功能,超构表面需分别产生具备线性非色散、非线性非色散、非线性色散特性的三类波束,即:定向传输波束、聚焦束和局域空心束(图1b)。事实上,为实现特定的色散、严苛的相位分布与传输效率,所有超构表面单元必须同时满足特定的等效折射率、相对群延迟以及相对群延迟色散。因此,本研究建立了超构表面单元的“相位-效率-色散”的拓扑优化模型,利用遗传算法完成了超宽带、消色差、高效声学超构表面的逆向设计。图1:超宽带消色差超构表面的逆向设计方法 为证实逆向设计方法的正确性与有效性,本研究首先针对声波异常折射功能,设计出具有非对称局部腔体、弯曲空气通道的超构表面单元(图2a)。在低频宽带范围内(1600-4400 Hz),优化单元具备恒定的等效折射率与高传输率(图2b, 2c)以及线性非色散特性。值得注意的是,这种拓扑特征与传统的Helmholtz共振腔和迷宫结构非常不同。这种区别意味着超宽带非色散特性无法由单一构型所决定,而需要多种拓扑特征的组合来实现。仿真和实验结果也进一步验证了具有恒定折射角的高效、异常透射功能(图2d,2e)。图2:逆向设计的声学超构表面与其超宽带高效异常波束折射 本研究进一步设计出更复杂的非对称超构表面单元(图3a),其具备超宽带恒定的等效折射率(图3b),且折射率增加的程度逐渐降低;大部分超构表面单元均可保持高于80%的传输效率(图3c)。有趣的是,#4、#5、#6和#7单元具有非常相似的拓扑特征,但#3、#2单元却呈现完全不同的特征,这意味着单一的拓扑构型无法实现超宽带非色散功能。结果表明,优化的超构表面可实现具有恒定焦距、高效、声波聚焦功能(图3d,3e),证实了其超宽带[1000 Hz, 4000 Hz]、消色差特性。图3:逆向设计的声学超构表面与其超宽带高效聚焦 为更进一步展示所发展优化模型与方法的优势,本研究还针对宽低频、高度复杂的色散特性,设计出一系列具有非色散、非线性色散特性的高效超构表面单元(图4a)。通过特定的单元集成方式,构建了含13×13个微米尺度单元(4.2 mm×4.2 mm×1.2 cm,S140,摩方精密,10 μm打印精度)、轻质、超薄的3D声波超表面(5.46 cm×5.46 cm×1.2 cm)。结果表明,超构表面可在[16.5 kHz, 66 kHz]内产生具有恒定悬浮位置的局域空心束(图4e),从而实现了单边、稳定、超宽带的超声悬浮现象(图4f),显著优于目前已知的超声悬浮技术。此外,超构表面的波动功能对热粘滞损耗也具有很强的鲁棒性。图4:逆向设计的声学超构表面与超宽带、单边、稳定的超声粒子悬浮 为揭示超宽带消色差特性的机理,本研究详细地考察了具有线性非色散、线性非色散、非线性色散特性的3个代表性超构表面单元,分析了其相位响应(图5a-5c)、等效阻抗矩阵(图5d-5f)和散射性质(图5g-5i)。结果显示,优化的非对称单元均存在明显的内部共振(internal resonance),从而有效地补偿了由单个结构块体色散而产生的复杂相移。此外,3种单元也存在一定程度的双各向异性(bi-anisotropy)。更有趣的是,这种优化的超构表面单元还存在显著的多散射效应,可被视为一种新的超构表面设计自由度。 图5:超宽带消色差特性的协同作用机理 针对声波超宽带声束工程,本研究发展了融合相位、幅值、色散、功能的声学超构表面通用逆向设计框架,设计出一系列新型非对称超表面,实现了超宽带、消色差声波负折射、聚焦和超声悬浮三类功能,揭示了超宽带消色差特性的协同作用机理,即:集成的内部共振、双各向异性以及多散射效应。研究可为超宽带、被动式、多功能超构材料的构造提供系统性逆向设计方法,可为2D/3D弹性波/声波超构材料的大规模、集成设计提供重要的理论指导与结构基础。近年来,本团队已提出了多种弹性波/声波超构材料的逆向设计模型,揭示了宽带力学机理,实现了一系列高性能弹性波、声波、水声功能及器件,为超构材料宽低频响应的系统性创新设计提供了解决方案。作者:董浩文
  • 国产宽带测量迈入新纪元:2023年度中国市场示波器新品盘点
    示波器是电子信息工业的基础设备,是应用最广泛的通用电子测试测量仪器,被誉为电子工程师的眼睛,其主要通过采集电路中的电信号并存储和显示,并对信号进行测量、分析和处理,主要用于研发领域。随着电子工业的持续高速发展,信息技术产品的智能化、网络化以及集成化程度逐步提高以及半导体、5G、人工智能、新能源、航天航空及国防等行业驱动,示波器具有良好的发展前景。Mordor Intelligence的数据显示,数字示波器在2023的市场规模达到23.18 亿美元,在2028年将达到28.7586亿美元,在预测期内的复合年增长率为 4.41%。为了满足逐渐丰富的应用场景和市场需求,电子测试测量仪器企业也在不断推陈出新,大部分主流品牌皆有输出,国产方面也多点开花。以下对2023年示波器新品进行盘点,数据主要统计自公开信息,如有遗漏、错误欢迎在留言区补充或邮件(kangpc @instrument.com.cn )。2023年示波器发布新品速览品牌产品型号国家是德科技UXR-B美国泰克科技4系列B MSO美国罗德与施瓦茨R&S MXO 5德国LecoryWaveMaster 8000HD美国电科思仪4457系列(4457E/F/G/K/EH/FH/GH/KH)中国普源精电DS80000系列中国鼎阳科技SDS800X HD、SDS3000X HD、SDS1000X HD中国鼎阳科技SDS6000 Pro中国玖锦科技PDS6184A中国优利德MSO8000X中国优利德UPO1000X中国麦科信MHO5004中国麦科信STO2002中国麦科信MDO5004中国致远电子ZUS6000中国是徳科技|UXR-B百万级超大带宽高端新品示波器2023年9月,是德科技发布了一款百万级超大带宽高端新品示波器UXR-B。是德科技UXR-B高端示波器整个硬件做了全面加速升级,CPU处理器从I5-3550S升级为I7-9700E,具有8核8线程,内存由16G升级为64G,保证强大的计算处理能力。除此之外,新的UXR-B型号示波器的标配更加强大,标配支持500Mpts内存,波形捕获提升了2.5倍,160MHz带宽的数字下变频(DDC)和实时频谱分析仪(RTSA)加速了无线信号的分析和调试。对于高速数字设计,InfiniiSim Basic去嵌入、PrecisionCable和PrecisionProbe现在是标准配置,这样的组合有助于对信道损耗进行补偿或去嵌。泰克科技|4系列B混合信号示波器(MSO)泰克公司与福迪威公司联合推出4系列B混合信号示波器(MSO),该产品具有多项高级分析功能以及贯穿所有信道的前沿测量性能,可为用户带来丝滑高效的使用体验。泰克4系列B MSO专门面向需要高精度、多功能性和易用性的嵌入式产品设计人员,其带宽为200MHz至1.5GHz,硬件12位ADC, 在高分辨率模式下实现16位的垂直分辨率和6.25GS/s的实时采样率,并可实现与先前版本的4系列同样出色的信号保真度。此外,该产品不仅继承了前代产品备受好评的触控式用户界面,而且对处理器系统进行了升级,用户界面的响应速度可达先前产品的两倍以上,且高级分析功能的运行速度也有明显提升。4系列B MSO具有多达6个输入信道,非常适合执行三相功率分析,且其特有的频谱视图功能可以实现与时域波形同步的多通道频谱分析。除了提升前面板的操作效率之外,经过升级的处理器系统还能够提升远程操作的速度。用户可以使用简单的Web浏览器、专用的TekScope PC端软件或通过自定义编程支持各种通讯接口远程访问和控制4系列B MSO。此外,4系列B MSO还配备了13.3英寸 (1920x1080)高清显示屏,并通过业界领先的光学粘合技术来实现更大的屏幕对比度和可视角度。罗德与施瓦茨|R&S MXO 5示波器罗德与施瓦茨推出了全新的 R&S MXO 5 示波器,提供四通道和八通道模式。这些示波器基于罗德与施瓦茨开发的下一代 MXO-EP 处理 ASIC 技术,该技术在 R&S MXO 4 中首次引入,新的八通道 R&S MXO 5 示波器将测量性能提升到了新的水平。R&S MXO 5是全球首款每秒采集450万次和每秒生成1800万个波形的八通道示波器,极致精确度能够捕获复杂信号细节和偶发事件,在时域和频域中显示了信号活动的更多细节。R&S MXO 5在八个通道上都具有数字触发功能,能够准确隔离小信号异常。45000次每秒快速傅立叶变换(FFT)的性能突破为工程师们提供了极致的频谱信号查看体验,非常适合EMI和谐波测试。R&S MXO 5以超高的采集速度捕获高达99%的实时信号活动,加速信号分析,并能够检测到大多数示波器无法捕捉的罕见随机事件。R&S MXO 5示波器在所有八个通道上提供了标准的500M存储深度,是同类产品存储深度的两倍,可用于大规模数据捕获。R&S MXO 5作为首款具备数字触发功能的八通道示波器,树立了信号分析的新标准。数字触发功能的灵敏度达到0.0001格。R&S MXO 5在时域和频域都表现出色。它是首款每秒进行45000个快速傅立叶变换(FFT)的示波器。并可同时显示四个不同频谱,实现该产品独有的射频信号可见性,这些高级功能均是该产品的标准配置。Lecory|WaveMaster 8000HD高带宽示波器2023年9月5日,纽约Chestnut Ridge,特励达力科今天宣布推出全新 WaveMaster 8000HD 高带宽、高精度示波器 (HDO) 平台,该平台的示波器具有 20 至 65 GHz 带宽、12 位分辨率、高达 320 GS/s 的采样率和业界领先的 8 Gpts存储深度。新型 WaveMaster 8000HD 保留了和其前代一样的无与伦比的验证和调试功能,同时增加了新的 SDA Expert 串行数据分析软件,用于测试下一代串行数据技术。新型 WaveMaster 8000HD 系列高带宽示波器为下一代串行数据技术(如 PCIe 6.0 和 USB4 v2.0)提供卓越的信号表征性能。与前代示波器相比,WaveMaster 8000HD的带宽和采样率增加了一倍多,与竞争对手的示波器相比,提供四倍以上的分辨率和存储深度 — 全带宽和采样率下业界领先的 12 位分辨率以及高达 8 Gpts 的存储深度。12 位分辨率分别为 USB4 v2.0 和 PCIe 6.0 中使用的多级 PAM3 和 PAM4 信号提供了出色的信号表征,8 Gpts 显著增强了链路协商问题的调试。电科思仪|天玑星系列数字示波器产品2023年6月28日,思仪科技在2023MWC上海世界移动通信大会发布并展示了4457系列数字示波器产品,该系列示波器共8个产品型号4457E/F/G/K/EH/FH/GH/KH,模拟通道数4、8个,带宽1GHz、2GHz、3GHz、4GHz,采样率10GSa/s、20GSa/s,垂直分辨率8bit、12bit。4457系列是思仪科技全新推出的天玑星系列数字示波器产品,在通信、工业电子和教育等领域有着广泛的应用。4457系列数字示波器采用AnyAcquire技术,提供更多仪器功能、更快的测试速度和更智能化的操控,为用户提供全新示波器使用体验。具体来讲,一、更多:多合一仪器,为用户提供更多测试功能示波器、实时频谱分析、逻辑分析仪、函数发生器、总线分析仪及数字电压表功能多合一,多达8个模拟通道、16个数字通道,可实现多通道模数混合信号的测试与分析。4457系列示波器还支持眼图与抖动分析、波特图分析、极限模板测试、功率测量与分析、波形录制与回放、参数测量直方图统计等功能,帮助用户轻松应对各种挑战。二、更快:全硬件加速处理技术,为用户提供更快的测试速度4457系列示波器高达120万个波形/秒的波形捕获率,20GSa/s的采样率,极大提高了毛刺和偶发事件捕获的概率;示波器标配了分段存储器采集,即使示波器工作在深度存储模式下,依然可以保持快速的响应速度和屏幕更新率;示波器支持硬件的参数测量功能,支持同时显示20个测量项目的统计分析,全部采集模式下支持全内存自动测量,可提供更加精确的测量结果;示波器采用叠加FFT和数字荧光显示技术使得FFT刷新频率大于40万次/秒,增强查看偶发事件的能力。三、更智能:智能化操控,为用户提供全新使用体验4457系列示波器采用智能化、可视化的区域触发技术,只需在屏幕上观察感兴趣的信号并在它周围绘制一个区域,可以迅速简便地识别想要的触发事件。支持多窗口自由设定,用户可根据观察需求自由对打开的波形窗口进行各种操作。支持快捷栏自由定义,用户可根据自己的使用习惯,将常用功能按键设定为功能区快捷按键。支持智能语音交互,用户可以通过语音向示波器发出指令,从而完成用户想要的操作,解放双手,操作更智能、更便捷。普源精电|DS80000系列数字示波器2023年9月18日,普源精电科技股份有限公司(简称:普源精电)发布公告称,普源精电科技股份有限公司首次正式公开发布13GHz带宽的DS80000系列数字示波器。DS80000系列数字示波器是RIGOL自主研发的第八代数字示波器,基于StationMAX II代平台,实现了最高40GSa/s实时采样率、13GHz模拟带宽。基于RIGOL新一代UltraVision III平台,实现最大4Gpts的存储深度,让DS80000拥有高保真的信号采集能力,并可以在高采样率下采集更长时间的波形。普源精电称,该新产品通过自研核心技术平台,首次实现国产数字示波器产品带宽达到13GHz,具备国内行业技术领先优势和核心技术壁垒。本次推出的DS80000主要对标国外同类产品,包括但不限于是德科技(KEYSIGHT)Infiniium UXR 系列、Infiniium V 系列、 Infiniium S 系列,泰克科技(Tektronix)MSO/DPO70000DX 系列、6 Series B MSO 系列,特励达力科(Teledyne LeCroy)WavePro HD 系列、WaveMaster 8Zi-B 系 列,罗德与施瓦茨(Rohde & Schwarz)R&S®RTP 系列等。鼎阳科技|SDS800X HD、SDS3000X HD及新款SDS1000X HD高分辨率示波器2023年9月26日,鼎阳科技发布两款高分辨率示波器,分别是SDS3000X HD以及新款SDS1000X HD。SDS3000X HD/SDS1000X HD系列示波器全系采用12-bit高分辨率ADC,量化等级高达4096级,高分辨率模式下(ERES)可将分辨率提升至16-bit,配合垂直&水平放大功能,助力用户更完整清晰地观测到波形的细节。比如在LLC半桥式变换电路分析时,需要通过波形观察上管和下管的驱动信号之间存在的死区时间,12-bit示波器还原后的波形细节远比8-bit示波器清晰。SDS1000X HD的ENOB高达8.4-bit,而SDS3000X HD高达8.3~8.6-bit,时间误差、频率杂散都比较小,同时宽带噪声也比较低,能够有效保证测量的精准度。SDS3000X HD最高带宽为1GHz,分辨率为12-bit,高分辨率模式下可达16-bit,波形细节清晰可见,能够观测到微小波形变化;采样率为4GSa/s,存储深度为400Mpts/ch,即使长时间捕获波形,依然不会出现波形失真;Sequence模式下能够实现每秒采集89万个波形,能够在短时间内依据大量波形得出可靠的统计结果,帮助用户快速查找罕见的异常信号,SDS3000X HD不仅支持搜索导航、频率计、万用表、历史模式、区域触发等基本功能,还支持电源分析、波特图、模板测试、混合信号分析等重要功能,能广泛应用在第三代半导体,高精度电源等测试领域。此外,为进一步满足广大用户的需求与期待,鼎阳科技将SDS1000X HD进行了软件与硬件上的升级,SDS1000X HD在保持高性价比与具有诸多基本功能的基础上,诸多指标有一定程度上的提升:采样率将由1GSa/s提升至2GSa/s,波形还原更真实,参数测量更精准;Sequence模式下,波形捕获率最高由400,000wfm/s提升至500,000wfm/s,触发事件的间隔由2.5μs提升至2μs,异常事件捕获概率更高,除此之外,还有部分功能也进行了升级。12月12日,鼎阳科技正式公开发布SDS800X HD高分辨率数字示波器。SDS800X HD系列产品垂直分辨率为12-bit,最高带宽为200 MHz,具有极佳的信号检测和显示能力,波形细节清晰可见,能够观测到微小波形变化,有助于分析信号的细节与特征;采样率为2 GSa/s,存储深度可达100 Mpts/ch,适用于观察分析长时间信号、低频信号和瞬态现象。该系列产品具有丰富的触发功能,包括边沿、斜率、延迟、建立/保持时间和多种总线触发(串行触发),支持嵌入式行业的I2C、SPI、UART协议及汽车行业的CAN、LIN协议的触发与解码,能够准确捕获并直观地将总线的协议信息以表格形式或其他方式显示,稳定进行测试。玖锦科技|PDS6184A高速数字实时示波器2023年12月28日,玖锦科技《信号的复现艺术》主题发布会正式面向全网推出了“守仁”系列产品:18GHz高速数字实时示波器PDS6184A。该款国产自研的高速数字实时示波器产品攻克了三大国际技术壁垒指标:18GHz带宽,80GSa/s采样率和640Gbps高速实时处理算法。玖锦科技PDS6184A高速数字实时示波器是基于超高速数据捕获、校正与实时处理技术及专研ADC技术研制出的一款采样率高达80GSa/s、输入带宽高达18GHz的高速数字实时示波器。PDS6184A具备640Gbps超高速数据实时分析处理能力、高达2Gpts/ch的最大存储深度以及500000wfms/s的最高波形捕获率,能更大程度保留信号的完整性,迎接更复杂的测试及设计挑战,可广泛应用于5G/6G通信与光通信、卫星导航与通信及汽车电子自动驾驶等多领域。优利德|UPO1000X数字荧光示波器、MSO8000X高带宽混合信号示波器UPO1000X系列数字荧光示波器配置100MHz/200MHz 两个级别带宽,实时采样率高达2GSa/s,全系列标配4通道,标配最大存储深度56Mpts,Fast Acquire模式下最高可达500,000wfms/s,硬件实时波形不间断录制和波形分析功能最大达12万幅波形。支持独立的DVM模块,7位数字频率计和拥有丰富的触发功能,可选配全内存硬件实时解码,让协议分析不再成为难题。2023年5月11日,优利德举办了测试仪器新产品发布会,发布了MSO8000X系列高带宽混合信号示波器,分别有带宽4GHz和2.5GHz版本,最高实时采样率20GSa/s。麦科信|MHO5004、MDO5004、STO2002平板示波器麦科信于2023年10月30日推出12位高分辨率示波器MHO系列,并同时发布第五代平板示波器MDO系列。此外,STO2002是一款全新推出的双通道示波器,并且搭配了200MHz的带宽、1GSa/s的采样率、70Mpts的存储深度;支持串行总线触发和解码;具备丰富的测量项和高级数学运算功能;结合 Micsig 独有的触控算法专利技术,以及人性化的操作系统界面,将使用体验做到了极致。在专业级便携平板示波器领域,满足了工程师更多样化的产品需求。致远电子|ZUS6000高精度智能应用型示波器ZUS6000是致远仪器最新推出的采用12bit高速ADC,实现最高1GHz测量带宽,并配备了电源分析、智能硬件时序分析、汽车总线分析、以太网眼图、X-Key等功能的高精度智能应用型示波器。ZUS6000高精度智能应用型示波器可以支持多通道的波形运算功能,提高工程师波形和数据分析效率,并能实现多通道波形的分屏显示,查看更多波形的同时保障细节显示与测量准确。近年来,国产示波器性能进步发展飞快。整体来看,2023年,国产示波器产品买入了新的里程碑。普源精电首先推出了13GHz带宽的示波器,之后玖锦科技又推出18GHz带宽的示波器。而此前,国产示波器最高带宽仅4GHz。国产示波器正逐渐向高端迈进,这主要得益于企业在ADC等核心芯片的不断研发而开花结果。
  • 我国宽带脉宽压缩光栅研制获进展
    中科院强激光材料重点实验室在800nm中心波长宽带脉宽压缩光栅的研制上取得阶段性重要进展。课题组采用模拟退火和傅里叶模式结合的全局优化设计方法,设计出了800nm中心波长宽带全介质脉宽压缩光栅(Pulse Compression Gratings, PCG,图1)(详见:Optical Letters,35(2010)187)。   该课题组成员经过大量的优化和容差计算,结合优良的制膜技术,获得了阈值~1J/cm2(50fs,TE,57°入射)的全介质膜,相关光栅参数具有较大工艺容差。中科大同步辐射光学实验室和清华大学衍射光栅课题组对课题组提供的全介质膜进行了光栅参数的刻蚀验证,得到带宽优于110nm的PCG样品。课题组测试了样品0级反射率谱(图2),采用-1级和0级反射率互补的计算方法,反演得到-1级衍射效率大于95%的带宽110nm以上(图3),在国际同领域中首次得到了带宽百纳米以上全介质PCG样品。   全介质膜PCG相对现行使用的金膜光栅具有高衍射效率和高损伤阈值的优点,在800nm高能飞秒激光器中具有重要应用前景。本项研究得到国家高技术863计划和国家自然科学基金支持。
  • 我国宽带脉宽压缩光栅研制取得重要进展
    中科院强激光材料重点实验室在800nm中心波长宽带脉宽压缩光栅的研制上取得阶段性重要进展。课题组采用模拟退火和傅里叶模式结合的全局优化设计方法,设计出了800nm中心波长宽带全介质脉宽压缩光栅(Pulse Compression Gratings, PCG)(详见:Optical Letters,35(2010)187)。   该课题组成员经过大量的优化和容差计算,结合优良的制膜技术,获得了阈值~1J/cm2(50fs,TE,57°入射)的全介质膜,相关光栅参数具有较大工艺容差。中科大同步辐射光学实验室和清华大学衍射光栅课题组对课题组提供的全介质膜进行了光栅参数的刻蚀验证,得到带宽优于110nm的PCG样品。课题组测试了样品0级反射率谱,采用-1级和0级反射率互补的计算方法,反演得到-1级衍射效率大于95%的带宽110nm以上,在国际同领域中首次得到了带宽百纳米以上全介质PCG样品。   全介质膜PCG相对现行使用的金膜光栅具有高衍射效率和高损伤阈值的优点,在800nm高能飞秒激光器中具有重要应用前景。本项研究得到国家高技术863计划和国家自然科学基金支持。
  • 牛津仪器发布宽带多核台式核磁共振谱仪X-Pulse新品
    p style=" text-align:center " img src=" https://img1.17img.cn/17img/images/201911/pic/8c9c2c18-690f-4b3c-b935-dc07a2f992b4.jpg!w400x400.jpg" alt=" 牛津仪器宽带多核台式核磁共振谱仪X-Pulse" / /p h5 class=" color-black" style=" box-sizing: border-box font-family: " oxford=" " font-weight:=" " line-height:=" " margin:=" " 0px=" " font-size:=" " white-space:=" " background-color:=" " span style=" font-family: arial, helvetica, sans-serif font-size: 16px " strong X-Pulse /strong 提升了台式核磁共振波谱技术的灵活性。X-Pulse融汇了真正的宽频X-核能力、流动化学、反应监测、变温特性,同时具有高分辨率;利用X-Pulse,在您实验室的工作台上就可以完成各种实验。 /span /h5 h5 class=" color-black" style=" box-sizing: border-box font-family: " oxford=" " font-weight:=" " line-height:=" " margin:=" " 0px=" " font-size:=" " white-space:=" " background-color:=" " span style=" font-family: arial, helvetica, sans-serif font-size: 16px " strong X-Pulse /strong 采用60MHz永磁体,均匀性优异,热稳定性高,在实验室中安放方便,无需液体制冷剂。X-Pulse既能使用标准的5mm核磁管,也可搭配我们易用的流通池使用。 /span /h5 h5 class=" color-black" style=" box-sizing: border-box font-family: " oxford=" " font-weight:=" " line-height:=" " margin:=" " 0px=" " font-size:=" " white-space:=" " background-color:=" " span style=" font-family: arial, helvetica, sans-serif font-size: 16px " 系统由我们的新改进版SpinFlow数据采集软件控制,常规实验更为方便;高端用户使用起来,也更为灵活。 /span /h5 h5 class=" color-black" style=" box-sizing: border-box font-family: " oxford=" " font-weight:=" " line-height:=" " margin:=" " 0px=" " font-size:=" " white-space:=" " background-color:=" " span style=" font-family: arial, helvetica, sans-serif font-size: 16px " 标配中就包含的脉冲场梯度和定制射频脉冲可用于相干选择、选择性激励、水与溶剂抑制。 /span /h5 p br/ /p p 创新点: /p p 1.X-原子核:真正的多核的能力X-Pulse 是一台提供真正多核能力的台式核磁共振系统。该系统无需改变NMR探头便可轻松调整任何核从 29Si 到 31P 。这意味着用户可以在一个设备上选择他们想要的原子核。2.变温流动化学独特的流动池和变温探头,可在20° C到60° C之间连续监测动态化学反应,帮助用户详细了解反应过程和动力学。3.高分辨率新一代匀场技术可获得半峰宽低于0.35Hz和0.55%高度处峰宽10Hz的谱线形状,使其更容易分离重叠的峰和识别更低的化合物浓度。高稳定性经典的磁体设计和高热容量的磁体使 X-Pulse 无论是静态还是流动的样品温度变化都不敏感,从而消除了样品温度假峰。 /p p a href=" https://www.instrument.com.cn/netshow/C368934.htm" style=" font-size:22px text-decoration: underline " target=" _blank" strong 牛津仪器宽带多核台式核磁共振谱仪X-Pulse /strong /a /p
  • 我国成功研制系列高准确度宽带大电流计量仪器
    近日,由中国计量科学研究院(以下简称“中国计量院”)牵头承担的国家重大科学仪器设备开发专项“宽带大电流测量仪开发与应用”(2016YFF0102400)项目顺利通科技部高技术发展研究中心组织的项目综合绩效评价。光纤宽带大电流测量仪宽带标准电流传感器及测量分析系统 大电流计量技术在冶金、电力、高端制造、大科学装置前沿研究等领域应用广泛。由于生产连续运行,设备庞大,拆装不便,运行环境等特殊条件,现场大电流测量控制和监测设备一般无法到计量实验室校准,实验室的计量标准也很难下沉至现场,量值传递难以实现。   该项目研制的超大和高频电流校准装置,形成了产品化的标准工艺流程和质量体系,为产品的技术就绪度和可靠性提供了支撑保障。项目相关成果通过了第三方测试,测量准确度、线性度、带宽、噪声和环境适应性等技术指标实现了与国际先进产品的并跑或局部领跑,并且使我国大电流核心校准和测量能力(CMC)通过了国际同行评审,进入国际计量局等效互认数据库。   项目编制了一系列国家、行业和地方标准和计量技术规范,培养了一批高水平的研究和研发人员,帮助了承担工程化计量仪器仪表企业的发展壮大。   项目研究成果应用于EAST(全超导托卡马克装置)、ITER(国际热核聚变实验堆)大科学装置、电解铝、高压直流输电、电气设备性能检测、大型航空航天设备焊接制造、仪器仪表计量检测等领域,解决了行业用户关注的产品价格高、核心部件依赖进口,工业用不起或用不了的痛点和难点问题,以及长期未能解决的宽带大电流在线校准难题,取得了显著的经济和社会效益。   据悉,该项目自2016年立项,历时5年,由中国计量院联合国内10家单位共同攻关。项目基于Faraday磁光、电磁效应,突破了椭圆双折射传感光纤、小型化直波导相位调制器关键工艺,攻克了宽带高线性光纤电流传感,容性误差补偿、组合电磁屏蔽、分布阻抗消振、高频分流器校准方法、宽频矢量电量正交积分算法等关键技术,成功研制了最大电流450 kA,带宽高于100 kHz的柔性光纤宽带大电流测量仪和最大电流2000 A,最高频率1 MHz的宽带电磁式电流传感器及自动测量分析系统,实现了工程化。
  • 上海光机所实现用于单周期艾瓦激光的超宽带脉冲压缩光栅
    近期,中国科学院上海光学精密机械研究所邵建达研究员、晋云霞研究员团队和张江实验室李朝阳研究员在超宽带脉冲压缩光栅领域取得突破性进展。研究团队针对单周期脉冲压缩需求,成功研制超400 nm宽带金光栅,其在750-1150 nm 的波长范围内衍射效率大于90%,比现役金光栅带宽提升近一倍,并且其研制口径可进一步推向米量级。相关成果以“400nm ultra-broadband gratings for near-single-cycle 100 Petawatt lasers”为题发表于《自然-通讯》。  拍瓦激光器的脉冲宽度从目前10-20个周期压缩到单周期(3.3 fs)结合大能量的载入被认为是实现艾瓦激光的未来。研究团队长期深耕于宽带高阈值脉冲压缩光栅领域。在本项工作进展中,超宽带金光栅的仿真设计取得突破,引入方位角扩展了设计和应用自由度 实验上掌握了光栅槽形演化规律,发明了大底宽小尖角金光栅技术(专利号:CN114879293B),成功研制1443 g/mm和1527 g/mm超400 nm宽带金光栅。如此宽带和高阈值(优于0.3J/cm2)的超宽带光栅将在宽角非共线光参量啁啾脉冲放大系统【WNOPCPA,Laser Photonics Rev 17, 2100705(2022). https://doi.org/10.1002/lpor.202100705】中发挥关键性作用,理论计算证明其足以支撑 4 fs 脉冲压缩,可将实现百拍瓦需要的光栅口径从米级缩减至半米级。  啁啾脉冲放大(CPA)及其衍生技术推动激光峰值功率从太瓦推向10PW量级,脉冲压缩器已成为高功率超强超短激光装置的核心模块。受限于大口径、宽光谱、高阈值压缩光栅的单路负载能力,中、欧、美、俄、韩等国均已部署多路相干合成100 PW乃至艾瓦量级的激光设施建设。除此外,单周期(3.3fs)脉冲也是产生艾瓦级激光的重要策略之一。近些年来,WNOPCPA等技术能够在工程上支撑增益介质的带宽拓展至 400 nm,从而支撑 3-6 fs的傅里叶变换极限脉冲。支持单周期脉冲展宽和压缩的超宽带光栅是实现单周期艾瓦激光的一个核心技术难题。目前,团队正将超宽带光栅的口径推向米级,并将其应用于单周期艾瓦激光的原理样机。  研究工作得到了国家重点研发计划、国家自然科学基金、科技部、上海市战略新兴产业项目的支持。
  • 面向毫米波宽带调制信号空口测试全波形计量技术研究方案通过论证
    近日,由中国计量科学研究院(以下简称“中国计量院”)牵头承担的国家重点研发计划“国家质量基础设施体系”重点专项(以下简称“NQI专项”)青年科学家项目“面向毫米波宽带调制信号空口测试的全波形计量技术研究”实施方案论证会在中国计量院和平里院区召开。中国计量院党委副书记徐英国及相关部门负责人、项目负责人、项目咨询专家等20余人参加会议。中国信息通信研究院首席科学家孟艾立、原国家市场监督管理总局副司级巡视员陈红、中国计量测试学会秘书长马爱文、北京无线电计量测试研究所总工程师杨春涛等7位项目领域专家,与项目责任专家、华为技术有限公司标准总监丁蔚,组成项目咨询专家组对实施方案进行了论证。会上,徐英国从加强技术交流、做好经费管理、注重实效等方面对项目提出要求。项目负责人、中国计量院副研究员张亦弛从项目来源与背景、研究内容、技术路线及预期成果等方面详细汇报了项目具体情况。项目咨询专家组成员从各自专业角度为项目实施提出了建设性意见,最终同意通过实施方案评审。据项目负责人张亦弛介绍,针对当前5G毫米波OTA测试方案不能有效解决数字调制溯源的关键问题,该项目面向典型的“毫米波5G频段、宽带数字调制”应用场景,提出了一种基于频域全波形计量的天线系统OTA测试新方法。通过采用自定义信号发生、精确相位同步、幅度谱和相位谱表征、预失真修正等关键技术,产生低EVM的毫米波宽带数字调制激励信号并构建OTA测试系统,形成以EVM参数为核心的天线系统通信质量测评方法。该项目实施后,将有助于实现5G终端计量和测评中关键参数的量值溯源和扁平化量值传递,进一步支撑5G工业终端通信质量测试指标体系的建立和完善,有望为我国5G通信产业发展提供先进测量方法支撑和计量技术保障。
  • 研究|具有超低热导率的宽直接带隙半导体单层碘化亚铜(CuI)
    01背景介绍自石墨烯被发现以来,二维(two-dimensional, 2D)材料因其奇妙的特性吸引了大量的研究兴趣。特别是二维形式的材料由于更大的面体积比可以更有效的性能调节,通常表现出比块体材料更好的性能。迄今为止,已有许多具有优异性能的二维材料被报道和研究,如硅烯、磷烯、MoS2等,它们在电子、光电子、催化、热电等方面显示出应用潜力。在微电子革命中,宽带隙半导体占有关键地位。例如,2014年诺贝尔物理学奖材料氮化镓(GaN)已被广泛应用于大功率电子设备和蓝光LED中。此外,氧化锌(ZnO)也是一种广泛应用于透明电子领域的n型半导体,其直接宽频带隙可达3.4 eV。在透明电子的潜在应用中,n型半导体的有效质量通常较小,而p型半导体的有效质量通常较大。然而,人们发现立方纤锌矿(γ-CuI)中的块状碘化铜是一种有效质量小的p型半导体,具有较高的载流子迁移率,在与n型半导体耦合的应用中很有用。例如,γ-CuI由于其较大的Seebeck系数,在热电中具有潜在的应用。二维材料与块体材料相比,一般具有额外的突出性能,因此预期单层CuI可能比γ-CuI具有更好的性能。作为一种非层状I-VII族化合物,CuI存在α、β和γ三个不同的相。温度的变化会导致CuI的相变,即在温度超过643 K时,从立方的γ-相转变为六方的β-相,在温度超过673 K时,β-相进一步转变为立方的α-相。因此,不同的条件下,CuI的结构是很丰富的。超薄的二维γ-CuI纳米片已于2018年在实验上成功合成 [npj 2D Mater. Appl., 2018, 2, 1–7.]。然而,合成的CuI纳米片是非层状γ-CuI的膜状结构,由于尺寸的限制,单层CuI的结构可能与γ-CuI薄膜中的单层结构不同。因此,需要对单层CuI的结构和稳定性进行全面研究。在这项研究中,我们预测了单层CuI的稳定结构,并系统地开展电子、光学和热性质的研究。与γ-CuI相比,单层CuI中发现直接带隙较大,可实现超高的光传输。此外,预测了单层CuI的超低热导率,比大多数半导体低1 ~ 2个数量级。直接宽频带隙和超低热导率的单层CuI使其在透明和可穿戴电子产品方面有潜在应用。02成果掠影近日,湖南大学的徐金园(第一作者)、陈艾伶(第二作者)、余林凤(第三作者)、魏东海(第四作者)、秦光照(通讯作者),和郑州大学的秦真真、田骐琨(第五作者)、湘潭大学的王慧敏开展合作研究,基于第一性原理计算,预测了p型宽带隙半导体γ-CuI(碘化亚铜)的单层对应物的稳定结构,并结合声子玻尔兹曼方程研究了其传热特性。单层CuI的热导率仅为0.116 W m-1K-1,甚至能与空气的热导率(0.023 W m-1K-1)相当,大大低于γ-CuI (0.997 W m-1K-1)和其他典型半导体。此外,单层CuI具有3.57 eV的超宽直接带隙,比γ-CuI (2.95-3.1 eV)更大,具有更好的光学性能,在纳米/光电子领域有广阔的应用前景。单层CuI在电子、光学和热输运性能方面具有多功能优势,本研究报道的单层CuI极低的热导率和宽直接带隙将在透明电子和可穿戴电子领域有潜在的应用前景。研究成果以“The record low thermal conductivity of monolayer Cuprous Iodide (CuI) with direct wide bandgap”为题发表于《Nanoscale》期刊。03图文导读图1. 声子色散证实了CuI单层结构的稳定性。单层CuI(记为ML-CuI)几种可能的结构:(a)类石墨烯结构,(b)稳定的四原子层结构,(c)夹层结构。(d)稳定的γ相快体结构(记为γ-CuI)。(e-h)声子色散曲线对应于(a-d)所示的结构。给出了部分状态密度(pDOS)。通过测试二维材料的所有可能的结构模式,发现除了如图1(b)所示的弯曲夹层结构外,单层CuI都存在虚频。平面六边形蜂窝结构中的单层CuI,类似于石墨烯和三明治夹层结构,如图1(a,c)所示作为对比示例,其中声子色散中的虚频揭示了其结构的不稳定性[图1(e,f)]。因此,通过考察单层CuI在不同二维结构模式下的稳定性,成功发现单层CuI具有两个弯曲子层的稳定结构,表现出与硅烯相似的特征。优化后的单层CuI晶格常数为a꞊b꞊4.18 Å,与实验结果(4.19 Å)吻合较好。而在空间群为F3m的闪锌矿结构中,得到的优化晶格常数a=b=c=6.08 Å与文献的结果(5.99-6.03 Å)吻合较好。此外,LDA泛函优化得到的单层CuI和γ-CuI的晶格常数分别为4.01和5.87 Å,为此后续计算都基于更准确的PBE泛函。通过观察晶格振动的投影态密度,发现Cu和I原子在不同频率下的贡献几乎相等。此外,光学声子分支之间存在带隙[图1(g)],这可能导致先前报道的光学声子模式散射减弱。相反,在γ-CuI中不存在声子频率带隙[图1(h)]。图2. 热导率及相关参数的收敛性测试。(a)原子间相互作用随原子距离的变化。(b)热导率对截断距离的收敛性。彩色椭圆标记收敛值。(c)热导率相对于Q点的收敛性。(d)单层CuI和γ-CuI的热导率随温度的函数关系。在稳定结构的基础上,比较研究了单层CuI和γ-CuI的热输运性质。基于原子间相互作用的分析验证了热导率的收敛性[图2(a)]。如图2(b)所示,热导率随着截止距离的增加而降低,其中出现了几个阶段。热导率的下降是由于更多的原子间相互作用和更多的声子-声子散射。注意,当截止距离大于6 Å时,热导率仍呈下降趋势,说明CuI单层中长程相互作用的影响显著。这种长程的相互作用通常存在于具有共振键的材料中,如磷烯和PbTe。通过收敛性测试,预测单层CuI在300 K时的热导率为0.116 W m-1K-1[图2(c)],这是接近空气热导率的极低值。单层CuI的超低热导率远远低于大多数已知的半导体。此外,计算得到的γ-CuI的热导率为0.997 W m-1K-1,与Yang等的实验结果~0.55 W m-1K-1基本吻合,值得注意的是Yang等人的实验结果测量了多晶态γ-CuI。此外,单层CuI和γ-CuI的热导率随温度的变化完全符合1/T递减关系[图2(d)]。考虑到温度对热输运的影响,今后研究声子水动力效应对单层CuI热输运特性的影响,特别是在低温条件下,可能是很有意义的。图3. 单层CuI和γ-CuI在300 K的热输运特性。(a)群速度,(b)相空间,(c)声子弛豫时间,(d) Grüneisen参数,(e)尺寸相关热导率的模态分析。(f)平面外方向(ZA)、横向(TA)和纵向(LA)声子和光学声子分支对热导率的贡献百分比。超低导热率的潜在机制可能与重原子Cu和I有关,也可能与单层CuI的屈曲结构有关。声子群速度[图3(a)]和弛豫时间[图3(c)]都较小,而散射相空间[图3(b)]较大。总的来说,单层CuI (1.6055)的Grüneisen参数的绝对总值显著大于γ-CuI (0.4828)。即使在低频下Grüneisen参数没有显著差异[图3(d)],单层CuI和γ-CuI的声子散射相空间却相差近一个数量级,如图3(b)所示。因此,低频声子弛豫时间的显著差异[图3(c)]在于不同的散射相空间。此外,单层CuI的声子平均自由程(MFP)低于γ-CuI,如图3(e)所示。因此,在单层CuI中产生了超低的热导率,这将有利于电源在可穿戴设备或物联网的应用,具有良好的热电性能。此外,详细分析发现,光学声子模式在单层CuI[图3(f)]中的较大贡献是由于相应频率处相空间相对较小,这是由图1(g)所示的光学声子分支之间的带隙造成的。图4. 单层CuI的电子结构。(a)单层CuI和(h)γ-CuI的电子能带结构,其中电子局部化函数(ELF)以插图形式表示。(b-d)单层CuI和(i)γ-CuI的轨道投影态密度(pDOS)。(e)透射系数,(f)吸收系数,(g)反射系数。在验证了CuI单层结构稳定的情况后,进一步研究其电子结构,如图4(a)所示。利用PBE泛函,预测了单层CuI的直接带隙,导带最小值(CBM)和价带最大值(VBM)都位于Gamma点。PBE预测其带隙为2.07 eV。我们利用HSE06进行了高精度计算,得到带隙为3.57 eV。如图4 (h)所示,单层CuI的带隙(3.57 eV)大于体γ-CuI的带隙(2.95 eV),这与Mustonen, K.等报道的3.17 eV非常吻合,使单层CuI成为一种很有前景的直接宽频带隙半导体。此外,VBM主要由Cu-d轨道贡献,如图4(b-d)的pDOS所示。能带结构、pDOS和ELF揭示的电子特性的不同行为是单层CuI和γ-CuI不同热输运性质的原因。电子结构对光学性质也有重要影响。如图4(e-g)所示,在0 - 7ev的能量范围内,单层CuI的吸收系数[图4(f)]和折射系数[图4(g)]不断增大,说明单层CuI在该区域的吸收和折射能力增强。相应的,随着透射系数的减小,单层CuI的光子传输能力[图4(e)]也变弱。当光子能量大于7 eV时,CuI的吸收和折射系数开始显著减弱,最终在8 eV的能量阈值处达到一个平台。值得注意的是,与声子的吸收和传输能力相比,单层CuI对光子的反射效率较低,最高不超过2%。对于光子吸收,单层CuI的工作区域在5.0 - 7.5 eV的能量范围内,而可见光的光子能量在1.62 - 3.11 eV之间。显然,CuI的主要吸收光是紫外光,高达20%。
  • 用于柔性成像的宽带 pbs 量子点石墨烯光电探测器阵列的研制
    胶体量子点(QD)/石墨烯纳米杂化异质结构为量子传感器提供了一种有前途的方案,因为它们利用了量子点中的强量子限制,具有增强的光-物质相互作用、光谱可调性、抑制的声子散射和室温下石墨烯中非凡的电荷迁移率。在这里,我们报告了一个灵活的,九通道的 PbS 量子点/石墨烯纳米混合成像阵列在聚对苯二甲酸乙二酯上的开发,使用了一个简单的工艺,用于器件制造,信号采集和处理。PbS 量子点/石墨烯成像阵列具有高度均匀的光响应特性。在1.0 V 偏置下,400-1000nm 入射光[紫外-可见-近红外(UV-vis-NIR)]的最高响应度为9.56 × 103-3.24 × 103A/W,功率为900pW。此外,该阵列具有一致的光谱响应,弯曲到几毫米的曲率半径。在紫外-可见-近红外(UV-vis-NIR)范围内的宽波长成像表明,量子点/石墨烯纳米杂化体为柔性光探测器和成像器提供了一种可行的方法。图1.(a-c)九通道 PbS 量子点/石墨烯传感器阵列的器件制作方法。(b)石墨烯通道上的 PbS QD 涂层 以及(c) MPA 配体交换。(d,e)是分别在刚性硅和柔性 PET 衬底上制作的9通道 PbS 量子点/石墨烯传感器阵列的示意图。(f)用短链导电 MPA 配体封装 PbS 量子点以促进从量子点到石墨烯的电荷转移的替换长链绝缘 OLA 和 OA 配体的示意图。(g)九通道 PbS 量子点/石墨烯传感器阵列中像素的结构示意图和 PbS 量子点/石墨烯界面上的内置电场。(h)使用 Arduino 读出器在九通道 PbS 量子点/石墨烯光电探测器阵列上进行传输成像的光学设置。图2。(a)在量子点沉积之前,在九通道 PbS 量子点/石墨烯传感器阵列上的石墨烯或“ Gr”通道的光学图像。(b)石墨烯/Si 和 Si 之间边界处的 G 峰(左上)和2D 峰(右上)的拉曼图,以及石墨烯上随机选择的点的拉曼光谱。单层石墨烯的 I2D/IG 2。(c)在1200nm 附近显示吸收峰的 PbS 量子密度吸收光谱。插图显示了 PbS 量子点的 TEM 图像,表明了 PbS 量子点的大小和均匀性。(d) PbS 量子点直径大小的分布。(e) PbS 量子点的高分辨透射电镜图像。条纹间距约为0.3 nm,相当于 PbS 的(200)晶格面。图3。(a)在硅衬底上的九通道 PbS 量子点/石墨烯传感器阵列上的选定像素在制作后的少数选定次数上的动态光响应。入射光功率为230nW,波长为500nm。整个像素的偏置电压为1.0 V (b)三个光开/关周期,显示重现性以及上升和下降时间定义。(c)相同的九通道 PbS 量子点/石墨烯传感器阵列对400-1000nm 范围内几个选定波长的入射光功率的光响应性。(d)相同的九通道 PbS QD/石墨烯传感器阵列对入射光功率为900pW 和偏置电压为1.0 V 的波长的检测率显示相同的九通道 PbSQD/石墨烯传感器阵列对入射光功率为900pW 和波长为500nm 的偏置电压的归一化响应性。数据在6783A/W 的1V 响应下进行了归一化处理。图4。(a)硅基板上的九通道 PbS QD/石墨烯传感器阵列对2.5 μW 的入射光功率和1V 的偏置电压的波长和通道(像素)的响应度(b)在500nm 的波长下9个像素的归一化响应度。(c)在黑暗中使用带有“ X”的阴影掩模显示五个中心通道和四个角通道的透射成像示意图。(d)使用(b)中的归一化方法对9个像素进行归一化响应,显示“ X”阴影掩模成像的结果。图5。(a)显示阴影掩模位置的图像扫描系统,透过线性致动器水平和垂直扫描,以取得安装在“样本”位置的九通道 PbSQD/石墨烯传感器阵列上的传输图像。(b)透过光束扫描以在阵列上产生传输图像的阴影掩模的光学图像。(c-e)通过在(c)400,(d)500和(e)1000nm 的波长的衬底上的九通道 PbS QD/石墨烯传感器阵列获得的图像。图6。(a)在 PET 基板上安装在弯曲虎钳上的九通道 PbS QD/石墨烯传感器阵列。转动图中所示的螺丝,将虎钳的两边连接在一起产生弯曲。(b) PET 阵列对几个选定波长的入射光功率的归一化响应率和1V 的偏置电压(c)柔性 PET 阵列的响应率作为入射光波长的函数以及刚性 Si 阵列,两者都在400nm 处归一化以进行比较。在这种情况下,入射光功率约为120nW,偏置电压为1 V (d)对于具有500nm照明的 PET 阵列,响应率与曲率半径之比。这种情况下的光功率为2.5 μW,偏置电压为1 V。插图展示了在弯曲条件下的阵列,并用500nm 光照明。图7.在 PET 上分别以(a)400,(b)500和(c)1000nm 的波长用9通道 PbS QD/石墨烯混合传感器阵列拍摄的图像。图8.在 PET 上用9通道 PbS QD/石墨烯混合传感器阵列拍摄的图像,阵列(a)平坦,(b)弯曲半径为5厘米。相关科研成果由堪萨斯大学Andrew Shultz、Bo Liu和Judy Z. Wu等人于2022年发表在ACS Applied Nano Materials上。
  • 牛津仪器推出X-Pulse—宽带多核台式核磁共振谱系统
    牛津仪器推出了 X-Pulse —60 MHz台式高分辨率核磁共振系统。 X-Pulse 为实验室里的研究化学家提供了更多研究助力,而这些以前只能在复杂而昂贵的高场核磁共振波谱仪这类专业设施中获得。X-原子核:真正的多核的能力X-Pulse 是一台提供真正多核能力的台式核磁共振系统。该系统无需改变NMR探头便可轻松调整多种核,从 29Si 到 31P 。这意味着用户可以在一个设备上选择多个需要的原子核。变温流动化学独特的流动池和变温探头,可在20°C到70°C之间连续监测动态化学反应,帮助用户详细了解反应过程和动力学。高分辨率新一代匀场技术可获得半峰宽低于0.35Hz和0.55%高度处峰宽10Hz的谱线形状,使其更容易分离重叠的峰和识别更低的化合物浓度。高稳定性经典的磁体设计和高热容量的磁体使 X-Pulse 无论是静态还是流动的样品温度变化都不敏感,从而消除了样品温度假峰。牛津仪器核磁共振部战略产品经理James Sagar博士说:“X-Pulse代表着台式核磁共振波谱仪的能力迈出了重要的一步。研究人员和工业领域的化学家无需在指标上寻求折中,也不必局限于某些实验——X-Pulse已经做到了这一点。”
  • 思迅软件新发布托利多iSmart智能秤管理软件
    2013年,思迅软件公司针对食品连锁店客户,发布了基于iSmart智能秤的梅特勒托利多专版软件。这是思迅软件公司为梅特勒托利多PC秤用户度身定制的一款软件,功能兼顾满足中小门店的日常运营和规模化连锁经营的需求,适用于休闲食品、熟食、水果、烘焙等需要散装称重、结算的食品零售商。该软件从需求调研、合作研讨,到研发、测试经历一年多的时间,可以为食品零售商带来全新的应用体验。 称重、PC、收银一体化 传统的食品连锁店方案一般包括POS、电子秤、软件、打印等多个部分。梅特勒托利多iSmart智能秤的出现,为方案一体化提供了可能。它颠覆了秤和POS机的传统概念,可以集成全部POS功能,运行POS软件,打印POS收据,支持&ldquo 进、销、调、存&rdquo 管理,是零售商运营管理的智能终端。全开放的PC平台,更是向软件商打开了易于合作之门。 全触摸前台操作,连接思迅管理软件 思迅软件公司的这款梅特勒托利多iSmart智能秤专版软件界面精美,操作流畅,给用户带来极佳的应用体验。前台集成零售POS主要业务功能,提供可视化商品称重、全触摸式的前台操作,提高了食品零售业销售收银的效率,帮助食品零售企业更好地服务于顾客。后台与思迅管理软件无缝连接,支持思迅商业之星7、商云8、商锐9等软件产品。 整体方案易于复制 在门店应用iSmart智能秤和思迅软件公司的梅特勒托利多专版软件,收银员即是操作员,耗材为普通收银纸,节省人力和能耗;硬件集成度高,节省店铺空间,外观形象好,故障率低;支持实时通讯、实时价格管理、会员管理,新的功能也可以通过软件升级轻松实现。无论用户处于开店初期,还是大规模发展连锁时,这种模式都非常易于复制,确保业务成长。 关于思迅软件 深圳万国思迅软件有限公司,前身由IBM于1991年投资创立,现在南京、武汉、郑州、昆明、南宁设有5个分公司,全国所有的省份及300多个大中城市设有1000多家合作伙伴及服务机构。思迅软件长期致力于零售流通业、商业自动化与餐饮娱乐行业信息化技术研究开发与推广应用,拥有自主知识产权的&ldquo 思迅&rdquo 全系列商业及餐饮管理软件。 梅特勒托利多iSmart智能秤:http://cn.mt.com/cn/zh/home/products/P_Food_Retail_Solutions/counter_scales/iSmart_PC.html 称重管理软件: http://cn.mt.com/cn/zh/home/supportive_content/news/cn_ret_ismart_siss.html 更多信息,请访问梅特勒托利多官网
  • 8.5万亿“蛋糕”当前 绿色信贷成银行“新宠”
    过去一度遭受“冷落”的环保产业,如今正成了越来越多银行的“新宠”。一方面随着经济转型升级,环保产业已成为极具投资潜能的新兴产业 另一方面金融监管部门陆续发布相关政策指引,各银行借此东风,大力发展绿色信贷。 “我们分行成立才8个月,但绿色信贷已经占贷款投放总量20%多,意向合作金额超百亿元 此外还积极向节能环保企业推广‘绿色债券’,目前已储备三支,金额有二十几亿元。”恒丰银行北京分行行长助理宫海雷告诉记者。 环境治理的迫切要求,使得北京乃至整个京津冀成为当前绿色融资需求最旺盛的地区。据华夏银行公司业务部总经理肖钢介绍,该行已在京津冀做了21个项目,通过转贷世界银行和法国开发署资金加上华夏银行配套资金达十几个亿。截至6月末,该行绿色信贷余额417.5亿元,较年初增长23.1亿元。 各家银行开始在绿色信贷上“摩拳擦掌”,在宫海雷看来,主要因为环保是一个朝阳行业,从行业前景来讲有无限空间,这对银行来说就意味着利润。华夏银行资产管理部总经理许明也表示,过去环境产业盈利主要是靠政府补贴,但其实现在一些环保企业盈利能力很强,特别是上市公司收入成倍增长。 据中国人民银行研究局首席经济学家马骏介绍,未来5年,中国每年至少需要绿色投资2万亿元,而政府的财政预算只能拿出3000亿元,其余的则需要通过构建绿色金融体系来激励民间资本投入环保行业。按此计算,银行未来5年将面临8.5万亿元的市场蓝海。能不能“吃到这块蛋糕”,则考验银行的“眼光”和专业水平。 “作为一个新兴行业,技术是环保项目首要关注的问题。”宫海雷说,“我们支持过一个做变频空调的民营企业,年销售额一个亿,给了3000万元贷款,很多银行都不敢相信,我们就认为它的技术确实是无可替代,有广阔的发展空间。” 专家表示,绿色信贷尚处发展初期,总体规模还是偏小。尽管近两年绿色信贷方面贷款增加较多,但 和经济转型的要求相比,仍有相当大的差距。节能环保企业和项目大多科技含量较高,投资周期较长,预期效益不确定性很大,这让一些商业银行“望而却步”。特别是中小企业,没有抵押品,也找不到担保,贷款更是难上加难。 恒丰银行研究院常务院长胡海峰坦言,总体看环保行业特别是其中的民营企业融资还是比较困难,由于投资巨大、周期冗长,企业能承担的贷款利率往往比较低,但风险又低 有的新兴技术刚开始看不到前景,“见效”很慢,能不能投、投多少,这对银行的专业性提出了很高的要求。 为加强对银行的统一指导,银监会已先后发布《绿色信贷指引》《能效信贷指引》等政策 央行目前正在起草绿色金融债的指导性意见。中国银监会2014年年报显示,截至2014年底,21家主要银行绿色信贷余额达6.01万亿元,较年初增长15.67%,占其各项贷款的9.33%。 专家建议,在当前银行不良率连连攀升的同时,另辟蹊径、把握8.5万亿元绿色融资缺口蕴含的巨大商机,应改变过去“高碳”贷款模式,根据节能环保企业或项目的特点,制定专门的绿色信贷管理机制。同时,金融监管部门也应加强与环保部门的沟通和信息共享,助力银行更多更好地发展绿色信贷。来源:新华网
  • 美产品超九成,高端应用仍是空白,谁能扛起国产替代大旗?
    示波器是一种用途十分广泛的电子测量仪器,是设计和测试电子设备和器件最常用的工具。它能把肉眼看不见的电信号变换成看得见的图像,便于人们研究各种电现象的变化过程。利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等等。早期的示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点(这是传统的模拟示波器的工作原理)。在被测信号的作用下,电子束就好像一支笔的笔尖,可以在屏面上描绘出被测信号的瞬时值的变化曲线。随着微电子技术的发展,数字示波器逐渐成为市场和科研领域的主流,其工作方式是通过模拟转换器(ADC)把被测电压转换为数字信息。数字示波器捕获的是波形的一系列样值,并对样值进行存储,存储限度是判断累计的样值是否能描绘出波形为止,随后,数字示波器重构波形。数字示波器可以分为数字存储示波器看(DSO),数字荧光示波器(DPO)和采样示波器。DPO在示波器技术上有了新的突破,能够实时显示、存储和分析复杂信号,利用三维信息(振幅、时间性及多层次辉度,用不同的辉度显示幅度分量出现的频率)充分展现信号的特征,尤其采用的数字荧光技术,通过多层次辉度或彩色能够显示长时间内信号的变化情势。示波器是电子工程师和维修人员的眼睛。没有示波器等观测仪表,判断电路工作状态是极其困难的。示波器的应用极为广泛,包括通用电子测试、工业自动化、汽车、大学的研究实验室以及航空航天 / 国防产业等。许多公司都依赖示波器来查找缺陷,从而制造出质量过硬的产品。示波器的重要性不言而喻。作为应用最广泛的测量仪器产品,数字示波器在市场规模、应用范围上均占主导地位。数字示波器自上个世纪七十年代诞生以来,其应用越来越广泛,已成为测试工程师必备的工具之一。随着近几年来电子技术取得突破性的发展,全世界数字示波器市场进一步扩大,而作为在世界经济发展中扮演重要角色的中国,飞速发展的电子产业也催生了更庞大的数字示波器需求市场。由于高校的管理模式及制度,这些仪器设备大多养在“深闺”,大量科研资源潜能没有得到充分发挥。为解决这个问题并加速释放科技创新的动能,中央及各级政府在近几年来制订颁布了关于科学仪器、科研数据等科技资源的共享与平台建设文件。2021年1月22日,科技部和财政部联合发布《科技部 财政部关于开展2021年度国家科技基础条件资源调查工作的通知(国科发基〔2020〕342号)》,全国众多高校和科研院所将各种科学仪器上传共享。其中,对示波器的统计分析或可一定程度反映科研领域相关仪器的市场信息(注:本文搜集信息来源于重大科研基础设施和大型科研仪器国家网络管理平台,部分仪器品牌信息不全则根据型号等信息补全,不完全统计分析仅供读者参考)。共享示波器全国分布图北京市共享示波器分布图本次统计,共涉及示波器的总数量为302台,涉及22省(直辖市/自治区),135家单位。其中,北京市共享设备数量最多达84台,占比28%,远超其他地区。共享仪器平台主要来自科研用户上传并服务于科研用户,也因此该类仪器设备主要分布于科研院所众多的北京市。从北京市的分布情况来看,其主要分布于高校集中的海淀区,该地区共有68台共享示波器。除北京外,上海市、江苏省和广东省分别有36、35和33台仪器,数量位列二三四位。共享示波器单位性质分布图这些示波器主要属于哪些单位所有?进一步的分析表明,53.6%的用户韦高校用户,占比最多;其次为科研院所,占比为30.8%。这也表明示波器主要用于科研领域。此外,一些企业、事业单位、政府部门等也有示波器。共享示波器所属学科领域分布从仪器所属学科领域分布可以看出,这些仪器设备主要用于电子与通信技术研究中,占比约为38%。需要注意的是,以上统计存在交叉分布的情况,即该仪器同时属于多类学科领域,实际上电子与通信技术、信息科学与系统科学研究和信息与系统科学相关工程与技术具有很大的重合度。那么这些仪器主要有哪些品牌呢?整体来看,Keysight(是德科技,原安捷伦)和Tektronix(泰克)占比最高,分别为45.2%和32.8%。这两家企业都是在电子测试测量领域深耕多年的企业,技术水平很高,特别是在高端示波器领域。是德科技的历史可以追溯到 1939 年,当时创始人比尔• 休利特和戴维• 帕卡德一起创立了最初的惠普(HP)公司。1999 年,惠普公司拆分,成立了安捷伦科技公司;2014 年,安捷伦科技公司再次拆分,独立出来的部门更名为现在的名称――是德科技。1946年,泰克创始人C.Howard Vollum与Melvin J."Jack" Murdock 发明了世界上第一款触发示波器。多年来,泰克始终专注于此,不断的在革新。图中其它部分的品牌主要为EXFO、北京正有光传输技术有限责任公司、Anritsu、Transmille和Alnair。占比前三的Keysight、Tektronix和LeCroy都是美国公司,是目前高端示波器的主流厂商,占比超九成。在图中国产示波器占比较少的原因主要是国内企业在通用电子测试测量领域起步较晚,技术积累时间较短,且高端ADC芯片进口受到限制,在产品布局及技术积累上与国外优势企业仍存在较大差距,目前主要集中于中低端产品,而科研院所对高端示波器需要更大,且共享仪器要求的是50万元以上的仪器必须登记,中低端产品价格较低,并非必须入库登记。据了解,中低端的国产设备已经有能力替代进口品牌了,但是在高端级别的应用上仍是空白需要赶追。目前市场上带宽最大的示波器是由是德科技生产的 110 GHz 的 UXR 系列示波器。国产示波器在2021年突破了 4 GHz 带宽的限制。对于高速采样,是德科技已达到256 GSa/s,国产尖端示波器采样率已达到20 GSa/s。这意味着高速数字信号的完整性、一致性分析国产仪器大多是做不了的,而高端消费电子产品的研发绝大多数要对接口进行测试,以太网、MIPI、Lora、DDR等不仅需要2GHz~8GHz以上的带宽示波器,更需要一套成熟的测试方案,来界定被测信号的好坏。在这一层面上,话语权很多是由国外品牌厂商把持决定的。国产示波器落后的重要原因在于电子元器件。国内微电子、半导体行业的基础太差,做仪器的技术瓶颈没有,只是器件买不到,都是禁运的。比如高带宽的ADC,以及高性能芯片,全是禁运的;想办法弄到的话成本太高,生产出来的东西价格超出用户接受范围也卖不了,所以不是做不出来,是现实不允许。此外,很多国产示波器生态单一,测量不仅仅是用一台示波器就完事了,越是先进的、越是复杂的,许多应用需要将示波器测量的数据通过其他仪器设备再次分析,多数国产示波器厂商产品线单一,不注重发展仪器生态,从而令数据导出后处理相对麻烦,不兼容问题令工程师最头疼。示波器的数据有可能需要保存,用信号发生器再重现,或者放大后处理、然后在工件运行状态下可能还需要用万用表同时采集电流信号,数据流格式的不统一往往在高端研发测试项目评估中直接pass掉。由于 2GHz 带宽以上示波器核心芯片无法通过公开市场进行采购,国内示波器厂商主要集中在中低端示波器产品领域。随着中国加大对上游 ADC 芯片、 FPGA 等领域的投资,上游芯片供应商发展逐步崛起,国内示波器厂商正逐渐从经济型示波器向中高端型市场发展。国内已经有示波器厂商通过自研示波器核心芯片,特别是在模拟前端芯片和 ADC 芯片上,具有了自主研发芯片的能力,逐渐突破了带宽和采样率的技术壁垒,初步具备在高端型 4GHz 以上带宽市场与国外龙头厂商竞争的能力。谁能扛起国产替代大旗?虽然距离国际先进水平差距较大,但国内企业也在不断突破,开发属于自己的技术和产品。就国内品牌影响力而言,第一梯队就数四十一所ceyear、鼎阳Siglent、普源Riglo。其中,鼎阳和普源在国内算是做的最好的,在低端市场已经有自己的位置,国外也普遍认可,正在往中端爬。如今,这两家也在需求技术突破,以期扛起示波器的国产替代大旗。2021年12月1日,深圳市鼎阳科技股份有限公司(简称“鼎阳科技”)成功登陆上海证券交易所科创板,成为国内“通用电子测试测量仪器行业第一股“。高端通用电子测试测量仪器芯片及核心算法研发项目则是本次发行募集资金投资项目之一。实质研发内容为 4GHz 数字示波器前端放大器芯片和高速 ADC 芯片、低相噪频率综合本振模块和40GHz 宽带定向耦合器模块、宽带矢量信号源和宽带接收机中幅度和相位的补偿算法、网络分析仪的校准算法和 5G NR 信号的解调分析算法等七项内容。根据中国电子仪器行业协会公布的消息,鼎阳科技在2019年上半年拿下示波器出口总量第一,这是有史以来,中国本土企业第一次超越欧美公司,成为示波器出口总量的第一名。2020年,鼎阳科技的新产品SDS6000 PRO的推出,使得其成为了中国唯一、全球第三的2GHz带宽12bit示波器制造商。普源是目前唯一搭载自主研发数字示波器核心芯片组并成功实现产品产业化的中国企业,在高带宽高集成度示波器模拟前端芯片技术、宽带差分探头放大器芯片技术、高带宽低噪声模拟前端技术等前沿技术方向不断投入研发,持续形成和强化在高端电子测量领域的技术壁垒。2019年普源推出的基于自研“凤凰座”示波器芯片组及 UltraVision II 技术平台的 MSO8000 系列国产高端数字示波器,实现了 2GHz 带宽及更深存储、更高捕获率、全数字触发、全内存测量的特性。2020 年,普源推出全新的数字示波器 DS70000 系列标志着正式步入国际高带宽数字示波器行列,凭借自研“凤凰座”示波器专用芯片组的卓越性能,实现了最高 4GHz 带宽、20GSa/s 实时采样率。同时推出的 UltraVision III 技术平台,可实现数字示波器存储深度达到 2Gpts,刷新率高达 1,000,000 波形/秒,并支持 8bit~16bit 可变分辨率,FFT 速率达到 10,000 次/秒,综合性能在国产数字示波器领域中处于领先行列。当你需要一台示波器时,看看指标需要多少,如果低于2GHz,不妨看看国产示波器样机;当你对测试效果评估的把握不足时,可以找这一行业的技术支持,通过经验提供方案,实际看看;不是说非要用国产的,而是你知道自己对采购一台仪器设备的背后,对所牵涉的一系列问题有很全面的了解;当你的测试需求落在国产示波器范围内时,何不选择功能丰富、配件价格低廉、售后有保障的国产设备?
  • 金凤成祥被曝偷卖过期糕点
    声称当日生产的糕点,实际上是隔夜食品,这种情况出现在拥有两百多家门店的连锁面包房金凤成祥,《法制晚报》记者卧底发现,其陶然(微博)亭第一分店将应下架返厂的糕点拿回到柜台继续销售。   暗访 卧底金凤成祥 负责定期下架返厂糕点   今年4月,记者前往位于文慧桥东的金凤成祥总部应聘全职导购,前台接待人员问过是否有健康证、薪金待遇要求等问题后,便为记者办理了入职。   第二天,记者拿着派遣单来到位于陶然亭公园北门斜对面的金凤成祥陶然亭第一分店,该店地处二环内黄金位置,加上是北京知名连锁品牌,客流量较大,一些逛公园的游客经常到店内购买糕点。   按照店长分配的任务,记者主要负责每天将从工厂运送到店的面包摆放到货架上面,并把到下架期限的食品拿下来装进黑色垃圾袋返厂。   店长介绍,根据规定,为保证面包口感以及配料的新鲜,金凤成祥现烤类面包当天没有售罄的,都必须下架返厂,第二天不得再向顾客出售。至于袋装糕点,根据种类的不同,下架时间也不同。一般来说,含有肉类、果酱、奶油的下架时间短,大约3天左右 而含有豆沙的会稍长一些,在5天左右。   每天晚上9点半到10点是店铺盘点的时候,工作人员要将当天所有需要下架返厂的食品倒进黑色垃圾袋中,同时记录下这些食品的销售价格,最后计算总量和总价,将写有总价数额的纸签贴在黑色垃圾袋上,装进货箱中,由厂家次日凌晨来送货的车一同拉走返厂报损。   发现 应返厂老婆饼 次日继续卖   4月23日,记者在店内暗访已有一周时间,当天晚上近10点,记者看到一位较有经验的店员端着一个托盘进了操作间,托盘上放着当天没有卖完的老婆饼,零零散散有十多块,并用一层保鲜膜将其封住。   记者不解,没卖完的食品不是应该装进黑色垃圾袋返厂吗?这名店员说,这些老婆饼是这天的一大早新到的,没有变质,看着还能卖,所以先不返厂。   第二天一早6点上早班,记者在操作间看到老婆饼还在托盘上,从外观来看这些饼没有任何破损,不仔细分辨看不出新旧。随后,另一名店员端起托盘走出操作间,将其放在花点冰柜旁边的桌子上,扯开头晚封住的保鲜膜,紧接着把这些饼放上柜台销售。   当顾客购买时,店内导购、收银员统一口径,一律按照价签介绍老婆饼的生产日期是当天。   在记者暗访期间,这种情况发生得很频繁,不下架返厂的糕点主要集中在老婆饼、法式奶香片和蛋挞这三类。   店长强调 要向顾客说是当天生产的   当把前后两天的老婆饼和蛋挞混在一起后,很难分辨。   记者向店内的老员工询问,得知新鲜老婆饼呈淡黄色,上面的酥皮稍加触碰便非常容易脱落,而头天没卖出去的老婆饼颜色发白、略硬。“不过不仔细看我们自己也分辨不出来。”员工说。   那些一天前剩下的老婆饼再摆上柜台后,如果第二天仍旧没有卖掉,也不会单独挑出来返厂,会在第三天接着卖。   在记者于该店暗访期间,像老婆饼、蛋挞等食品,几乎很难见到下架返厂的情况。像肉松面包这种含肉类的产品,更容易变质,但也并不严格执行规定,偶尔也会被留到第二天。   当记者问如何向顾客解释时,一位从业一年以上的导购说,如有人问起,就说有的老婆饼火大了,所以表面发白发硬,如果没人问就别解释。   对此,店长还特意叮嘱包括记者在内的店员们,如果有顾客问起这些老婆饼和蛋挞是否为当天生产的,都要答“是”。   揭秘 报损金额太多 会遭区域经理斥责   该店为何会违反公司规定,如此操作?   记者观察到,金凤成祥门店店长是在每天中午要货,这个时候无法控制此后的销售情况,有时候要货的数量并不准确,造成每天下架的产品数量不一,报损的金额也不一样,多则两三百元,少则几十元。   如果报损的金额太多,会遭到区域经理的批评。记者曾见到区域经理斥责该店店长:“你怎么要的货?浪费这么多!”   因此,为了减少报损金额,门店有时便会人为地减少下架产品数量。一些本该当天下架返厂的食品被店员们收起来,第二天再次端上柜台销售。   取证 牙签做标记 老婆饼没返厂又上柜台   9月22日晚,金凤成祥陶然亭第一分店临近打烊,此时已经没有顾客进出,店员们正在整理货物,其中的一项工作就是对需要下架的食品进行返厂处理。   此时,一名导购将货架上没有卖掉的老婆饼和肉松面包端进后面的操作间,然后用一层薄纸盖住,随后又出来继续对其他食品进行下架处理。   为了调查取证,记者把两根已消毒的牙签分别插在被拿到操作间里的老婆饼和肉松面包上,并拍下照片。   9月23日早上,店内导购开门准备营业,记者来到操作间时,发现牙签仍在老婆饼和肉松面包上,说明这些食品并未进行返厂处理。待记者取下牙签后不到一分钟,导购便趁着客人尚未进来的时候,把这些食品端到前厅,重新放上柜台,开始新一天的营业。   规定严格是金凤成祥给记者的第一印象,金凤成祥规定,所有食品储藏处都不得有害虫,发现一只苍蝇罚款50元 店员触碰食品必须戴手套,展柜橱窗每天要擦三遍,直接触碰食品的托盘必须保持干净清爽等等。   但是,暗访过程中记者发现,有些规定只有店长在的时候员工们才会遵守,店长不在时,店员们偶尔会图省事,用手直接去抓饼干。很忙的时候,店内导购会帮忙收银,摸完钱来不及洗手就去摆面包了。   4月的一天,记者在操作间的蛋挞托盘内发现一只蟑螂,当时蟑螂紧挨蛋挞,由于托盘上有一层保鲜膜封盖,蟑螂正好夹在中间,跑不出来。一名店员发现后用纸巾将蟑螂捏出,然后扔进垃圾箱内。但托盘内的蛋挞未经任何处理,继续销售。   北京华伦律师事务所的缪蒙京律师接受本报采访时表示,金凤成祥出售的食品虽然并没有超过食品保质期,只是违反了店内的下架期限规定,但同样涉嫌侵权。   店内的规定不仅仅是对店内员工的约束,也是一种对消费者的合同要约,要约中明确承诺不出售前一天的产品,一旦消费者购买,就成为合同内容。因此,该行为可被认定为合同欺诈,侵犯了消费者的权益。   从行政管理角度来说,这种行为也可被视为涉嫌虚假宣传,工商行政管理部门有权对其进行行政管理和处罚。   从消费者维权的角度来说,因为涉及的案值非常小,购买了这些食品的消费者以诉讼方式难以获得实质回报,媒体曝光、进行行政管理和处罚才能更好地遏制这种行为。
  • 中国人民银行设立2000亿元科技创新再贷款(附答记者问)
    为贯彻落实党中央、国务院决策部署,根据国务院常务会议要求,人民银行设立科技创新再贷款,引导金融机构加大对科技创新的支持力度,撬动社会资金促进科技创新。科技创新再贷款额度为2000亿元,利率1.75%,期限1年,可展期两次,发放对象包括国家开发银行、政策性银行、国有商业银行、中国邮政储蓄银行、股份制商业银行等共21家金融机构,按照金融机构发放符合要求的科技企业贷款本金60%提供资金支持。中国人民银行有关负责人就设立科技创新再贷款答记者问  问:设立科技创新再贷款的目的是什么?  答:为贯彻落实党中央、国务院决策部署,强化国家战略科技力量,推进关键核心技术攻关和自主创新,根据国务院常务会议要求,人民银行设立科技创新再贷款。人民银行通过科技创新再贷款向金融机构提供低成本资金,引导金融机构在自主决策、自担风险的前提下,向科技企业发放贷款,撬动社会资金促进科技创新。  问:科技创新再贷款的支持范围和发放对象是什么?  答:科技创新再贷款支持范围包括“高新技术企业”、“专精特新”中小企业、国家技术创新示范企业、制造业单项冠军企业等科技企业,优先支持参与国家科技计划项目企业、国家制造业创新中心、国家级专精特新“小巨人”企业、国家关键产业链龙头骨干企业及上下游关键配套企业、参与组建创新基地平台企业以及国家级科技园区内企业。具体支持的科技企业分别按照科技部、工业和信息化部现行标准认定,并由科技部、工业和信息化部通过国家科技创新创业数据平台、国家产融合作平台等渠道向金融机构推送。  科技创新再贷款发放对象包括国家开发银行、政策性银行、国有商业银行、中国邮政储蓄银行、股份制商业银行等共21家金融机构。  问:科技创新再贷款如何实施?  答:科技创新再贷款采取“先贷后借”的直达机制,按季度发放,按照支持范围内且期限6个月及以上科技企业贷款本金的60%提供科技创新再贷款资金支持。自2022年4月1日起,金融机构按照市场化原则向符合条件的科技企业发放贷款后,于次季度第一个月向人民银行申请科技创新再贷款资金。对于符合条件的贷款,人民银行提供科技创新再贷款资金支持。
  • 国办:引导银行扩大中长期贷款投放,为设备更新改造配足融资
    近日,国务院办公厅印发《第十次全国深化“放管服”改革电视电话会议重点任务分工方案》(以下简称《方案》)。《方案》围绕“依靠改革开放释放经济增长潜力,提升面向市场主体和人民群众的政务服务效能,着力推动已出台政策落地见效”三个方面制定21个分工方案。《方案》提出,抓紧研究支持制造业企业、职业院校等设备更新改造的政策,金融机构对此要增加中长期贷款投放。完善对银行的考核办法,银行要完善内部考评和尽职免责规定,形成激励机制。持续释放贷款市场报价利率改革和传导效应,降低企业融资和个人消费信贷成本。(人民银行、银保监会、国家发展改革委、财政部、教育部、工业和信息化部、人力资源社会保障部等国务院相关部门及各地区按职责分工负责)具体举措:继续深化利率市场化改革,发挥存款利率市场化调整机制作用,释放贷款市场报价利率(LPR)形成机制改革效能,促进降低企业融资和个人消费信贷成本。督促21家全国性银行完善内部考核、尽职免责和激励机制,引导商业银行扩大中长期贷款投放,为设备更新改造等配足融资。(人民银行、银保监会负责)全文如下:第十次全国深化“放管服”改革电视电话会议重点任务分工方案党中央、国务院高度重视深化“放管服”改革优化营商环境工作。2022年8月29日,李克强总理在第十次全国深化“放管服”改革电视电话会议上发表重要讲话,部署持续深化“放管服”改革,推进政府职能深刻转变,加快打造市场化法治化国际化营商环境,着力培育壮大市场主体,稳住宏观经济大盘,推动经济运行保持在合理区间。为确保会议确定的重点任务落到实处,现制定如下分工方案。一、依靠改革开放释放经济增长潜力(一)继续把培育壮大市场主体作为深化“放管服”改革的重要着力点,坚持“两个毫不动摇”,对各类所有制企业一视同仁,依法平等保护各类市场主体产权和合法权益、给予同等政策支持。(市场监管总局、国家发展改革委、工业和信息化部、司法部、财政部、商务部、国务院国资委、国家知识产权局等国务院相关部门及各地区按职责分工负责)具体举措:1.落实好《促进个体工商户发展条例》,抓紧制定完善配套措施,切实解决个体工商户在经营场所、用工、融资、社保等方面面临的突出困难和问题,维护个体工商户合法权益,稳定个体工商户发展预期。(市场监管总局牵头,国务院相关部门及各地区按职责分工负责)2.深入开展制止滥用行政权力排除、限制竞争执法专项行动,进一步健全公平竞争审查制度,建立健全市场竞争状况监测评估和预警机制,更大力度破除地方保护、市场分割,切实维护公平竞争市场秩序。(市场监管总局牵头,国务院相关部门及各地区按职责分工负责)3.持续清理招投标领域针对不同所有制企业、外地企业设置的各类隐性门槛和不合理限制,畅通招标投标异议、投诉渠道,严厉打击围标串标、排斥潜在投标人等违法违规行为。(国家发展改革委牵头,国务院相关部门及各地区按职责分工负责)(二)加快推进纳入国家“十四五”规划以及省级规划的重点项目,运用“放管服”改革的办法,打通堵点卡点,继续采取集中办公、并联办理等方式,提高审批效率,强化要素保障,推动项目尽快落地。同时,进一步压实地方政府和相关业主单位的责任,加强监督。(国家发展改革委牵头,自然资源部、生态环境部、住房城乡建设部、交通运输部、水利部、审计署等国务院相关部门及各地区按职责分工负责)具体举措:1.依托推进有效投资重要项目协调机制,加强部门协同,高效保障重要项目尽快落地,更好发挥有效投资对经济恢复发展的关键性作用。(国家发展改革委牵头,国务院相关部门及各地区按职责分工负责)2.落实好重要项目用地、规划、环评、施工许可、水土保持等方面审批改革举措,对正在办理手续的项目用海用岛审批实行即接即办,优化水利工程项目招标投标程序,推动项目及时开工,尽快形成实物工作量。(自然资源部、生态环境部、住房城乡建设部、水利部等国务院相关部门及各地区按职责分工负责)(三)依法盘活用好5000多亿元专项债地方结存限额,与政策性开发性金融工具相结合,支持重点项目建设。在专项债资金和政策性开发性金融工具使用过程中,注重创新机制,发挥对社会资本的撬动作用。引导商业银行扩大中长期贷款投放,为重点项目建设配足融资。(财政部、国家发展改革委、人民银行、银保监会等国务院相关部门及各地区按职责分工负责)具体举措:指导政策性开发性银行用好用足政策性开发性金融工具额度和8000亿元新增信贷额度,优先支持专项债券项目建设。鼓励商业银行信贷资金等通过银团贷款、政府和社会资本合作(PPP)等方式,按照市场化原则加大对重要项目建设的中长期资金支持力度。(财政部、人民银行、银保监会等国务院相关部门及各地区按职责分工负责)(四)抓紧研究支持制造业企业、职业院校等设备更新改造的政策,金融机构对此要增加中长期贷款投放。完善对银行的考核办法,银行要完善内部考评和尽职免责规定,形成激励机制。持续释放贷款市场报价利率改革和传导效应,降低企业融资和个人消费信贷成本。(人民银行、银保监会、国家发展改革委、财政部、教育部、工业和信息化部、人力资源社会保障部等国务院相关部门及各地区按职责分工负责)具体举措:继续深化利率市场化改革,发挥存款利率市场化调整机制作用,释放贷款市场报价利率(LPR)形成机制改革效能,促进降低企业融资和个人消费信贷成本。督促21家全国性银行完善内部考核、尽职免责和激励机制,引导商业银行扩大中长期贷款投放,为设备更新改造等配足融资。(人民银行、银保监会负责)(五)落实好阶段性减征部分乘用车购置税、延续免征新能源汽车购置税、放宽二手车迁入限制等政策。给予地方更多自主权,因城施策运用好政策工具箱中的40多项工具,灵活运用阶段性信贷政策,支持刚性和改善性住房需求。有关部门和各地区要认真做好保交楼、防烂尾、稳预期相关工作,用好保交楼专项借款,压实项目实施主体责任,防范发生风险,保持房地产市场平稳健康发展。同时,结合实际出台针对性支持其他消费领域的举措。(财政部、税务总局、工业和信息化部、公安部、生态环境部、住房城乡建设部、商务部、人民银行、银保监会等国务院相关部门及各地区按职责分工负责)具体举措:1.延续实施新能源汽车免征车辆购置税政策,组织开展新能源汽车下乡和汽车“品牌向上”系列活动,支持新能源汽车产业发展,促进汽车消费。(财政部、工业和信息化部、税务总局等国务院相关部门及各地区按职责分工负责)2.实施好促进绿色智能家电消费政策,积极开展家电以旧换新和家电下乡。办好国际消费季、家电消费季、中华美食荟、老字号嘉年华等活动。加快培育建设国际消费中心城市,尽快扩大城市一刻钟便民生活圈试点,促进消费持续恢复。(商务部牵头,国务院相关部门及各地区按职责分工负责)(六)支持企业到国际市场打拼,在公平竞争中实现互利共赢。加强对出口大户、中小外贸企业服务,帮助解决生产、融资、用工、物流等问题。加大对跨境电商、海外仓等外贸新业态支持力度,线上线下相结合搭建境内外展会平台,支持企业稳订单拓市场。(商务部、工业和信息化部、人力资源社会保障部、交通运输部、人民银行、银保监会、中国贸促会等相关部门和单位及各地区按职责分工负责)具体举措:1.2022年底前再增设一批跨境电子商务综合试验区,加快出台更多支持海外仓发展的政策措施。鼓励贸促机构、会展企业以“境内线上对口谈、境外线下商品展”方式举办境外自办展会,帮助外贸企业拓市场、拿订单。(商务部牵头,中国贸促会等相关部门和单位及各地区按职责分工负责)2.鼓励金融机构积极创新贸易金融产品,提升贸易融资服务水平。支持金融机构按照市场化原则,为海外仓企业和项目提供定制化的信贷产品及出口信保等金融产品和服务。(人民银行、银保监会牵头,国务院相关部门及各地区按职责分工负责)(七)继续深化通关便利化改革,推进通关业务全流程网上办理,提升港口集疏运水平,畅通外贸产业链供应链。(海关总署、交通运输部、商务部、国家铁路局、中国国家铁路集团有限公司等相关部门和单位及各地区按职责分工负责)具体举措:1.2022年底前,依托国际贸易“单一窗口”平台,加强部门间信息共享和业务联动,开展进口关税配额联网核查及相应货物无纸化通关试点。在有条件的港口推进进口货物“船边直提”和出口货物“抵港直装”。(海关总署牵头,国务院相关部门及各地区按职责分工负责)2.加快推动大宗货物和集装箱中长距离运输“公转铁”、“公转水”等多式联运改革,推进铁路专用线建设,降低综合货运成本。2022年11月底前,开展不少于100个多式联运示范工程建设。(交通运输部、国家发展改革委、国家铁路局、中国国家铁路集团有限公司等相关部门和单位及各地区按职责分工负责)(八)保障外资企业国民待遇,确保外资企业同等享受助企惠企、政府采购等政策,推动一批制造业领域标志性外资项目落地,增强外资在华长期发展的信心。(国家发展改革委、商务部、工业和信息化部、财政部、中国贸促会等相关部门和单位及各地区按职责分工负责)具体举措:1.2022年底前制定出台关于以制造业为重点促进外资扩增量稳存量提质量的政策文件,进一步优化外商投资环境,高标准落实外资企业准入后国民待遇,保障外资企业依法依规平等享受相关支持政策。(国家发展改革委、商务部等国务院相关部门及各地区按职责分工负责)2.更好发挥服务外资企业工作专班作用,完善问题受理、协同办理、结果反馈等流程,有效解决外资企业面临的实际困难问题。(中国贸促会牵头,国务院相关部门及各地区按职责分工负责)二、提升面向市场主体和人民群众的政务服务效能(九)继续行简政之道,放出活力、放出创造力。落实和完善行政许可事项清单制度,坚决防止清单之外违法实施行政许可,2022年底前省、市、县级要编制完成本级行政许可事项清单和办事指南,加快实现同一事项在不同地区和不同层级同标准、无差别办理。(国务院办公厅牵头,国务院相关部门及各地区按职责分工负责)具体举措:1.2022年底前,省、市、县级人民政府按照统一的清单编制要求,编制并公布本级行政许可事项清单,明确事项名称、主管部门、实施机关、设定和实施依据等基本要素。(国务院办公厅牵头,各地区按职责分工负责)2.2022年底前,对行政许可事项制定实施规范,明确许可条件、申请材料、审批程序等内容,持续推进行政许可标准化、规范化、便利化。强化监督问责,坚决防止清单之外违法实施行政许可。(国务院办公厅牵头,国务院相关部门及各地区按职责分工负责)(十)不断强化政府部门监管责任,管出公平、管出质量。依法严厉打击制售假冒伪劣、侵犯知识产权等违法行为,完善监管规则,创新适应行业特点的监管方法,推行跨部门综合监管,进一步提升监管效能。(国务院办公厅、市场监管总局、国家知识产权局等国务院相关部门及各地区按职责分工负责)具体举措:1.2022年底前制定出台关于深入推进跨部门综合监管的指导意见,对涉及多个部门、管理难度大、风险隐患突出的监管事项,加快建立健全职责清晰、规则统一、信息互通、协同高效的跨部门综合监管制度,切实增强监管合力,提高政府监管效能。(国务院办公厅牵头,国务院相关部门及各地区按职责分工负责)2.针对企业和群众反映强烈、侵权假冒多发的重点领域,进一步加大执法力度,严厉打击商标侵权、假冒专利等违法行为,对重大典型案件开展督查督办,持续营造创新发展的良好环境。(市场监管总局、国家知识产权局等国务院相关部门及各地区按职责分工负责)(十一)严格规范公正文明执法,深入落实行政处罚法,坚持过罚相当、宽严相济,明确行政处罚裁量权基准,切实解决一些地方在行政执法过程中存在的简单粗暴、畸轻畸重等问题,决不能搞选择性执法、“一刀切”执法、逐利执法。严肃查处吃拿卡要、牟取私利等违法违规行为。(司法部等国务院相关部门及各地区按职责分工负责)具体举措:1.深入贯彻落实《国务院办公厅关于进一步规范行政裁量权基准制定和管理工作的意见》(国办发〔2022〕27号),进一步推动各地区各部门分别制定本地区本领域行政裁量权基准,指导督促各地区尽快建立行政裁量权基准动态调整机制,将行政裁量权基准制定和管理工作纳入法治政府建设考评指标体系,规范行政执法,避免执法畸轻畸重。(司法部牵头,国务院相关部门及各地区按职责分工负责)2.严格规范行政罚款行为,抓紧清理调整一批违反法定权限设定、过罚不当等不合理罚款事项,进一步规范罚款设定和实施,防止以罚增收、以罚代管、逐利执法等行为。(司法部牵头,国务院相关部门及各地区按职责分工负责)(十二)按照构建全国统一大市场的要求,全面清理市场准入隐性壁垒,推动各地区、各部门清理废除妨碍公平竞争的规定和做法。(国家发展改革委、市场监管总局等国务院相关部门及各地区按职责分工负责)具体举措:1.落实好《市场准入负面清单(2022年版)》,抓紧推动清单事项全部实现网上办理,建立健全违背市场准入负面清单案例归集和通报制度,进一步畅通市场主体对隐性壁垒的投诉渠道,健全处理回应机制。(国家发展改革委、商务部牵头,国务院相关部门及各地区按职责分工负责)2.加快出台细化落实市场主体登记管理条例的配套政策文件,编制登记注册业务规范和审查标准,在全国推开经营范围规范化登记,完善企业名称争议处理机制。(市场监管总局牵头,国务院相关部门及各地区按职责分工负责)(十三)加强政务数据共享,推进企业开办注销、不动产登记、招工用工等常办事项由多环节办理变为集中办理,扩大企业电子营业执照等应用。(国务院办公厅、自然资源部、人力资源社会保障部、市场监管总局等国务院相关部门及各地区按职责分工负责)具体举措:1.2022年底前实现企业开办、涉企不动产登记、员工录用、企业简易注销等“一件事一次办”,进一步提升市场主体获得感。(国务院办公厅牵头,国务院相关部门及各地区按职责分工负责)2.加快国家政务大数据平台建设,依托政务数据共享协调机制,不断完善政务数据共享标准规范,提升政务数据共享平台支撑能力,促进更多政务数据依法有序共享、合理有效利用,更好满足企业和群众办事需求。(国务院办公厅牵头,国务院相关部门及各地区按职责分工负责)3.加快建设全国统一、实时更新、权威可靠的企业电子证照库,并与全国一体化政务服务平台电子证照共享服务系统互联互通,推动电子营业执照和企业电子印章跨地区跨部门互信互认,有序拓展电子营业执照在市场准入、纳税、金融、招投标等领域的应用,为市场主体生产经营提供便利。(国务院办公厅、市场监管总局等国务院相关部门及各地区按职责分工负责)(十四)再推出一批便民服务措施,解决好与人民群众日常生活密切相关的“关键小事”。(国务院相关部门及各地区按职责分工负责)具体举措:1.延长允许货车在城市道路上通行的时间,放宽通行吨位限制,推动取消皮卡车进城限制,对新能源配送货车扩大通行范围、延长通行时间,进一步便利货车在城市道路通行。(公安部牵头,国务院相关部门及各地区按职责分工负责)2.加快开展“互联网+考试服务”,建立中国教育考试网统一用户中心,丰富和完善移动端功能,实行考试信息主动推送,进一步提升考试成绩查询和证书申领便利度。(教育部牵头,国务院相关部门及各地区按职责分工负责)(十五)进一步扩大营商环境创新试点范围,支持有条件的地方先行先试,以点带面促进全国营商环境不断改善。(国务院办公厅牵头,国务院相关部门及各地区按职责分工负责)具体举措:密切跟踪营商环境创新试点工作推进情况,及时总结推广实践证明行之有效、市场主体欢迎的改革举措,适时研究扩大试点地区范围,推动全国营商环境持续改善。(国务院办公厅牵头,国务院相关部门及各地区按职责分工负责)(十六)落实好失业保险保障扩围政策,进一步畅通申领渠道,提高便利度,继续对不符合领取失业保险金条件的失业人员发放失业补助金,确保应发尽发。加强动态监测,及时发现需要纳入低保的对象,该扩围的扩围,做到应保尽保。及时启动价格补贴联动机制并足额发放补贴。加强和创新社会救助,打破户籍地、居住地申请限制,群众在哪里遇到急难就由哪里直接实施临时救助。加强各类保障和救助资金监管,严查优亲厚友、骗取套取等行为,确保资金真正用到困难群众身上,兜牢基本民生底线。(民政部、人力资源社会保障部、国家发展改革委、财政部、退役军人部、国家统计局等国务院相关部门及各地区按职责分工负责)具体举措:1.2022年底前制定出台关于进一步做好最低生活保障等社会救助兜底保障工作的政策文件,指导督促地方及时将符合条件的困难群众纳入社会救助范围,优化非本地户籍人员救助申请程序,全面推行由急难发生地直接实施临时救助,切实兜住、兜准、兜好困难群众基本生活底线。(民政部牵头,国务院相关部门及各地区按职责分工负责)2.深入推进线上申领失业保险待遇,简化申领手续、优化申领服务,推动失业保险金和失业补助金应发尽发、应保尽保。(人力资源社会保障部、财政部及各地区按职责分工负责)3.指导督促各地于2023年3月前阶段性调整价格补贴联动机制,进一步扩大保障范围,降低启动条件,加大对困难群众物价补贴力度,并及时足额发放补贴。(国家发展改革委、民政部、财政部、人力资源社会保障部、退役军人部、国家统计局及各地区按职责分工负责)三、着力推动已出台政策落地见效(十七)用“放管服”改革办法加快释放政策效能,推动各项助企纾困政策第一时间落到市场主体,简化办理程序,尽可能做到直达快享、“免申即享”。各级政府包括财政供养单位都要真正过紧日子,盘活存量资金和资产,省级政府要加大财力下沉力度,集中更多资金落实惠企利民政策,支持基层保基本民生支出、保工资发放。严厉整治乱收费乱罚款乱摊派等行为。(财政部、国家发展改革委、工业和信息化部、司法部、税务总局、市场监管总局等国务院相关部门及各地区按职责分工负责)具体举措:1.落实好阶段性缓缴社会保险费政策,进一步优化经办服务流程,健全部门协作机制,实现企业“即申即享”。优化增值税留抵退税办理流程,在实现信息系统自动推送退税提醒、提取数据、预填报表的基础上,进一步完善退税提醒服务,促进留抵退税政策在线直达快享。(人力资源社会保障部、国家发展改革委、财政部、税务总局等国务院相关部门及各地区按职责分工负责)2.2022年底前,在交通物流、水电气暖、金融、地方财经、行业协会商会和中介机构等重点领域,集中开展涉企违规收费专项整治行动,切实减轻市场主体负担。(国家发展改革委、工业和信息化部、财政部、市场监管总局等国务院相关部门及各地区按职责分工负责)(十八)加大稳就业政策实施力度。着力拓展市场化社会化就业主渠道,落实好各项援企稳岗政策,让各类市场主体在吸纳就业上继续当好“主角”。对200多万未落实就业去向的应届大学毕业生,要做好政策衔接和不断线就业服务,扎实开展支持就业创业行动,对自主创业者落实好担保贷款、租金减免等政策。稳住本地和外来务工人员就业岗位,在重点项目建设中扩大以工代赈实施规模,帮助农民工就近就业增收。支持平台经济健康持续发展,发挥其吸纳就业等作用。同时,坚决消除就业歧视和不合理限制,营造公平就业环境。(人力资源社会保障部、教育部、国家发展改革委、中央网信办、住房城乡建设部、农业农村部、人民银行、市场监管总局、银保监会等相关部门和单位及各地区按职责分工负责)具体举措:1.持续组织开展线上线下校园招聘活动,实施离校未就业高校毕业生服务攻坚行动,为未就业毕业生提供职业指导、岗位推荐、职业培训和就业见习机会,确保2022年底前离校未就业毕业生帮扶就业率达90%以上。深入推进企业吸纳就业社会保险补贴“直补快办”,扩大补贴对象范围,支持企业更多吸纳重点群体就业。(教育部、人力资源社会保障部、财政部等国务院相关部门及各地区按职责分工负责)2.推进新就业形态就业人员职业伤害保障试点。针对新冠肺炎康复者遭遇就业歧视问题,加大监察执法力度,发现一起严肃处理一起,切实维护劳动者平等就业权益。(人力资源社会保障部、财政部、国家卫生健康委、税务总局、国家医保局等相关部门和单位及各地区按职责分工负责)(十九)保障好粮食、能源安全稳定供应,确保全年粮食产量保持在1.3万亿斤以上。围绕保饮水保秋粮继续抓实抗旱减灾工作。强化农资供应等服务保障,把农资补贴迅速发到实际种粮农民手中,进一步保护他们的种粮积极性。稳定生猪产能,防范生猪生产和猪肉价格出现大的波动。(农业农村部、水利部、应急部、国家发展改革委、财政部、商务部、国家粮食和储备局等国务院相关部门及各地区按职责分工负责)具体举措:1.及时启动或调整国家防汛抗旱总指挥部抗旱应急响应,加大对旱区的抗旱资金、物资装备支持力度,督促旱区加快蓄引提调等抗旱应急工程建设。加强预报、预警、预演、预案“四预”措施,及时发布干旱预警。依据晚稻等秋粮作物需水情况,适时开展抗旱保供水联合调度,为灌区补充水源。(应急部、水利部、财政部、农业农村部等国务院相关部门及各地区按职责分工负责)2.压实生猪产能分级调控责任,督促产能过度下降的省份及时增养能繁母猪,重点排查并纠正以用地、环保等名义关停合法运营养殖场的行为,确保全国能繁母猪存栏量稳定在4100万头以上。加强政府猪肉储备调节,切实做好猪肉市场保供稳价工作。(农业农村部、国家发展改革委、财政部、自然资源部、生态环境部、商务部等国务院相关部门及各地区按职责分工负责)(二十)加强煤电油气运调节,严格落实煤炭稳价保供责任,科学做好跨省跨区电力调度,确保重点地区、民生和工业用电。国有发电企业担起责任,应开尽开、稳发满发。(国家发展改革委、国务院国资委、国家能源局等国务院相关部门及各地区按职责分工负责)具体举措:在确保安全生产和生态安全的前提下,加快煤矿核增产能相关手续办理,推动已核准煤炭项目加快开工建设。督促中央煤炭企业加快释放先进煤炭产能,带头执行电煤中长期合同。(国家发展改革委、自然资源部、生态环境部、应急部、国务院国资委、国家能源局、国家矿山安监局等国务院相关部门及各地区按职责分工负责)(二十一)持续推进物流保通保畅,进一步畅通“主动脉”和“微循环”,稳定产业链供应链,保障全行业、全链条稳产达产,稳定市场预期。(交通运输部、工业和信息化部等国务院相关部门及各地区按职责分工负责)具体举措:密切关注全国高速公路收费站和服务区关闭关停情况,及时协调解决相关问题。指导各地认真落实优先过闸、优先引航、优先锚泊、优先靠离泊等“四优先”措施,保障今冬明春煤炭、液化天然气(LNG)等重点物资水路运输。(交通运输部牵头,国务院相关部门及各地区按职责分工负责)各地区、各部门要对照上述任务分工,结合自身职责,细化实化相关任务措施,明确时间表,落实责任单位和责任人,强化协同配合,切实抓好各项改革任务落地,最大限度利企便民,更好服务经济社会发展大局。国务院办公厅要加强业务指导和督促协调,支持地方探索创新,及时总结推广经验做法,推动改革取得更大实效。各地区、各部门的贯彻落实情况,年底前书面报国务院。
  • 迅数科技再次中标世界银行贷款项目
    (长春,2010年5月21日讯)今天,吉林省农业委员会发出中标通知,正式签订为吉林省提供“迅数科技全自动菌落计数仪和分析仪”的合同,提供“世界银行贷款-吉林省农产品质量安全建设项目”框架下的农产品质量安全监督检测体系建设。“迅数科技”中标项目中所有数字化菌落计数设备采购。此次中标一举打破了吉林省农产品质检网络所用高端分析仪器一直由国外厂商供货的局面。 负责本项目的世行项目经理舒义恩(Iain G. Shuker)说:“吉林省农产品质量安全项目,为测试执行农产品安全标准的新方法提供了理想的平台。”本项目是世行在华资助实施的首个食品安全项目,也是世行迄今为止资助的规模最大的食品安全项目。迅数科技凭借产品的卓越性能、完善的售后服务,以及超高的性价比,取得了吉林省农委技术专家的一致认可与青睐。 此次中标的“迅数V系列菌落计数仪/菌落分析仪”一台仪器即可轻松实现倾注/涂布平板、滤膜法平板、螺旋接种平板、3M Petrifilm细菌总数测试片的菌落自动计数分析;计数速度达到每秒钟500个菌落以上,统计范围可在每平板0到20000个菌落;结合选择性显色培养基技术,还可以快速完成大肠菌群计数分析;各项技术指标均达到及优于“食品安全国家标准-食品微生物学检验GB4789-2010系列标准”,为各级科研、检测机构在微生物领域提供了最佳操作平台。 “我们完全有信心为此次吉林省农产品质量安全建设项目及后续的世界银行贷款项目,提供具有国际最高品质的菌落计数仪设备和技术服务。” 迅数科技负责本项目的项目经理包顺峰说。2008年,迅数科技就已连续中标甘肃、内蒙古、四川、贵州、陕西,青海六省的中德财政合作医疗卫生领域一、二、三期CDC项目国际招标中的所有菌落计数仪(Automatic Colony Counter)设备采购。 据统计,目前在中国CDC疾控系统、农产品检测系统、SFDA食品药品检验系统和CIQ商检系统的专业微生物实验室,“迅数全自动菌落计数仪”已经广泛替代进口产品,为中国的食品安全检测行业提供了国标方法微生物检测最为完善的行业解决方案。 关于迅数科技: 迅数科技(SHINESO)公司是一家领先的研发制造现代微生物检测技术与装备的科技型创新企业。总部位于中国杭州,在全国二十多个省区设有代理服务机构。 迅数科技为各地食品质量检验、疾病预防控制中心、环境监测中心和大学研究所等上千家机构的微生物实验室提供了技术领先的《迅数_全自动菌落分析仪》和《迅数_自动菌落计数仪》及《迅数_显微图像分析系统》、《迅数_藻类计数分析系统》、《迅数_自动抑菌圈测量与分析系统》等微生物定量和分析检测仪器。迅数,以提高中国的微生物分析测试技术水平为己任,愿继续不断的研究开发适合各行各业的微生物分析测试技术与仪器装备,为您的微生物分析测试工作提供最新、最快、最经济、最安全的全方位解决方案。更多信息参考:http://www.shineso.com
  • 杨宗银:绘制光谱仪微型化“全景图”
    走进浙江大学信息与电子工程学院智能传感所的百人计划研究员杨宗银的办公室,可以看到电路焊接平台上,电烙铁、电路板、各种零配件一应俱全,办公室俨然是一座实验室。杨宗银(左)指导学生做实验 王崇均/摄“回到浙大任教后,我对自己的办公室做了规划,圆了儿时的梦想。”杨宗银说,“很享受制作机械电路的过程,比打游戏有趣。”继2019年在《科学》杂志刊发世界上最小光谱仪成果后,今年3月,杨宗银作为第一作者撰写的综述,又在线发表于《科学》。该文章首次系统性总结了光谱仪微型化的技术方案和发展历程,引起国际科学界高度关注。150次失败后的成功 把心路写进实验记录本光谱仪是测量光谱线中各个波长强度的设备,可以对物质成份和结构进行测知,广泛应用于科研、生产和生活中。比如一个苹果是否成熟、含糖量如何,通过光谱仪的“火眼金睛”就能一目了然。杨宗银研制的世界上最小光谱仪,直径在一百微米以下,不到头发丝直径的一半。“这么小的尺寸很适合装进我们的手机中,将来或可通过拍摄进行食品安全和健康的监测。”他在谈及未来应用时说,“再过几个月,团队研制的微型高光谱成像样机就将面世。”这样一个比头发丝直径还小的器件,杨宗银前前后后研究了8年。攻读博士期间,杨宗银每天都是剑桥大学电子工程系实验楼最晚走的那个人,但每一次回寝前都对实验结果不甚满意。 “早起努力!” “新idea明天试一下… … 又失败了。”打开杨宗银的实验笔记,上面用英文密密麻麻写着各类实验优化的细节,但每天都有几句中文格外醒目。“刚开始做实验是非常有新鲜感的,但是失败次数越多自己也会感到很无力。”他说,于是自己便在笔记中记下实验中的灵光一闪,或者勉励的话,“每天都期待好的结果,同时又期待新的一天快快到来。”“当时就写了整整三大本笔记本。”杨宗银说,偶尔也会心灰意冷,但是内心的那份热爱总能驱使自己去找失败的原因再尝试一次。2018年8月,历时3年,历经150次失败,实验终于成功,他的论文于第二年5月投稿《科学》杂志,7月便被接受。评审专家评价这个工作是“集合了世界上最先进的材料合成工艺,配上最高超的器件制作水准、实验技巧和巧妙的算法,是一个惊艳之作。”荣誉随之而来,杨宗银获得了剑桥大学国际生全额奖学金和国家优秀自费留学特别优秀奖,还被选为剑桥大学国王学院研究员,是学院第一位华人研究员。交叉与蜕变 兴趣是最好的老师杨宗银这份愈挫愈勇的劲头,在他求学浙大期间就已经打下基础。在浙大读硕士生的杨宗银,在世界上首次“生长”出了彩虹渐变的半导体纳米线。这种材料可以发出五颜六色的光,非常漂亮。这份光亮的背后是他近一万个小时的不断试错改进的艰辛。凭着兴趣与热爱,他在浙大学习时打开了一片新天地。在机械工程学院完成本科学业时,杨宗银就把机器人、机械设计等领域的各类竞赛都参加了一遍,乐在其中,还拿过全国大学生机械创新设计大赛一等奖。浙江大学机械工程学院教授顾大强,在担任杨宗银导师期间,经常教导他“要用最巧妙的机构完成一件复杂的事情”。这种思维训练对杨宗银来说终身受益。后来杨宗银被保送到浙大光电科学与工程学院攻读硕士。他回忆道:“交叉融合的求学经历为我后来研究提供了便利条件,当面临没有现成的设备时,可以直接自己做一个。”“我从小就喜欢做点小发明,比如随着光照自动响的闹钟、光控灯,或者把家里收音机、闹钟等拆开,研究其中的机理。为此也没少挨父母批评。”杨宗银笑称。在硕士期间,杨宗银除了生长出彩虹渐变半导体纳米线,还基于这种材料开发了世界最宽光谱可调谐激光器。就像收音机不同的调台,能够听到不同的节目,不同的激光波长能够对物质进行不同层面的探测。读文献到写文献 绘制一个领域“藏宝图”现如今,传统的光谱仪由于体积庞大已经无法满足日益发展的光谱检测技术的需求,然而,减小光谱仪的分光元件或探测器尺寸将导致光谱分辨率、灵敏度及动态范围显著下降。光谱仪的微型化是目前科技界面临的一项重大技术挑战。回到浙大任职后,杨宗银的研究是将微型光谱仪进一步往应用端迈进。“光电技术终究还是要落实到百姓的实际应用中才更有意义”。其中,向全球科研探索者们展现微型光谱仪领域的“全景”也成为其工作计划之一。杨宗银认为,只是把技术原理和研究进展介绍清楚是远远不够的,还要有全局观,用一个清晰的脉络把全文串起来。一篇好的文献综述,就是认识一个领域的主心骨,是一张“藏宝图”。“我把整个领域几百篇文献捋了好几遍,了然于胸,最后像介绍老朋友一样把它们串起来讲。”杨宗银介绍,“在后续的修改中,我和另外几位合作者讨论了几十次,不厌其烦地对文章进行精雕细琢。记得我在准备文章图片的时候盯着屏幕好几天就为了不让它们有一点瑕疵。”如何用好“藏宝图”?杨宗银也有自己的独家秘籍。担任博导的他,会给新生“打样”,面对面教学生如何读文献管理文献。“每读完一篇文献后,在软件里做个标签,这样日积月累,大量的文献就能理出一个脉络,后续根据这些标签迅速找到需要的文献。”从前沿探究的坚持不懈,到带领学生探索的孜孜不倦。他还会手把手指导学生如何搭建和使用实验仪器,也乐在其中。“如果说,科研的成就感在于做出独创的贡献和价值,”杨宗银说,“那么带学生就是自我价值的延伸。”
  • 下一代功率半导体争夺战开打
    经过多年的研发,几家供应商正在接近出货基于下一代宽带隙技术的功率半导体和其他产品。这些器件利用了新材料的特性,例如氮化铝、金刚石和氧化镓,它们还用于不同的结构,例如垂直氮化镓功率器件。但是,尽管其中许多技术拥有超过当今功率半导体器件的特性,但它们在从实验室转移到晶圆厂的过程中也将面临挑战。功率半导体通常是专用晶体管,在汽车、电源、太阳能和火车等高压应用中用作开关。这些设备允许电流在“开”状态下流动,并在“关”状态下停止。它们提高了效率并最大限度地减少了系统中的能量损失。多年来,功率半导体市场一直由使用传统硅材料的器件主导。硅基功率器件成熟且价格低廉,但它们也达到了理论极限。这就是为什么人们对使用宽带隙材料的设备产生浓厚兴趣的原因,这种材料可以超越当今硅基设备的性能。多年来,供应商一直在出货基于两种宽带隙技术——氮化镓 (GaN) 和碳化硅(SiC) 的功率半导体器件。使用 GaN 和 SiC 材料的功率器件比硅基器件更快、更高效。几家供应商一直在使用下一代宽带隙技术开发设备。这些材料,例如氮化铝、金刚石和氧化镓,都具有比 GaN 和 SiC 更大的带隙能量,这意味着它们可以在系统中承受更高的电压。今天,一些供应商正在运送使用氮化铝的专用 LED。其他人计划在 2022 年推出第一波围绕新材料制造的功率器件,但也存在一些挑战。所有这些技术都有各种缺点和制造问题。即使它们投入生产,这些设备也不会取代今天的功率半导体,无论是硅、GaN 还是 SiC。“它们提供了令人难以置信的高性能,但在晶圆尺寸方面非常有限,” Lam Research战略营销董事总经理 David Haynes 说。“它们在很大程度上更具学术性而不是商业利益,但随着技术的进步,这种情况正在发生变化。但基板尺寸小且与主流半导体制造技术缺乏兼容性意味着它们可能只会用于极高性能设备的小批量生产,尤其是智能电网基础设施、可再生能源和铁路等要求严苛的应用。”尽管如此,这里还是有一波活动,包括:NexGen、Odyssey Semiconductor 和其他公司正在准备第一个垂直 GaN 器件。Novel Crystal Technology (NCT) 将推出使用氧化镓的功率器件。Kyma 和 NCT 正在这里开发子状态。基于金刚石和氮化铝的产品正在发货。什么是功率半导体?功率半导体在电力电子设备中用于控制和转换系统中的电力。它们几乎可以在每个系统中找到,例如汽车、手机、电源、太阳能逆变器、火车、风力涡轮机等。功率半导体有多种类型,每一种都用带有“V”或电压的数字表示。“V”是器件中允许的最大工作电压。当今的功率半导体市场由基于硅的器件主导,其中包括功率 MOSFET、超结功率 MOSFET 和绝缘栅双极晶体管(IGBT)。功率 MOSFET 用于低压、10 至 500 伏的应用,例如适配器和电源。超结功率 MOSFET 用于 500 至 900 伏应用。同时,领先的中端功率半导体器件 IGBT 用于 1.2 千伏至 6.6 千伏应用,尤其是汽车应用。英飞凌销售、营销和分销高级副总裁 Shawn Slusser 表示:“IGBT 功率模型基本上正在取代汽车中的燃油喷射器。“它们从电池向电机供电。”IGBT 和 MOSFET 被广泛使用,但它们也达到了极限。这就是宽带隙技术的用武之地。“带隙是指半导体中价带顶部和导带底部之间的能量差异,”英飞凌表示。“更大的距离允许宽带隙半导体功率器件在更高的电压、温度和频率下运行。”硅基器件的带隙为 1.1 eV。相比之下,SiC 的带隙为 3.2 eV,而 GaN 的带隙为 3.4 eV。与硅相比,这两种材料使设备具有更高的效率和更小的外形尺寸,但它们也更昂贵。每种设备类型都不同。例如,有两种 SiC 器件类型——SiC MOSFET 和二极管。SiC MOSFET 是功率开关晶体管。碳化硅二极管在一个方向传递电流并在相反方向阻止电流。针对 600 伏至 10 千伏应用,碳化硅功率器件采用垂直结构。源极和栅极在器件的顶部,而漏极在底部。当施加正栅极电压时,电流在源极和漏极之间流动。碳化硅在 150 毫米晶圆厂制造。过去几年,碳化硅功率半导体已投入批量生产。Onto Innovation营销总监 Paul Knutrud 表示:“碳化硅具有高击穿场强、热导率和效率,是电动汽车功率转换芯片的理想选择。开发垂直 GaN几家供应商一直在开发基于下一代材料和结构的产品,例如氮化铝、金刚石、氧化镓和垂直 GaN。在多年的研发中,垂直 GaN 器件大有可为。GaN 是一种二元 III-V 族材料,用于生产 LED、功率开关晶体管和射频器件。GaN 的击穿场是硅的 10 倍。“高功率和高开关速度是 GaN 的主要优势,”Onto 的 Knutrud 说。今天的 GaN 功率开关器件在 150 毫米晶圆厂制造,基于高电子迁移率晶体管 (HEMT)。GaN 器件是横向结构。源极、栅极和漏极位于结构的顶部。横向 GaN 器件已投入量产。一些公司正在将 GaN 器件在 200 毫米晶圆厂投入生产。“对于 GaN,它是 GaN-on-silicon 技术在 200mm 和未来甚至 300mm 上改进的性能,这是技术发展的基础,”Lam 的 Haynes 说。今天的 GaN 器件使用硅或 SiC 衬底。衬底顶部是一层薄薄的氮化铝 (AlN),然后是 AIGaN 缓冲层,然后是 GaN 层。然后,在 GaN 顶部沉积薄的 AlGaN 势垒层,形成应变层。如今,有几家公司参与了 GaN 功率半导体市场。今天的横向 GaN 功率半导体器件在 15 到 900 伏的电压范围内运行,但在这些电压之外运行这些器件存在若干技术挑战。一方面,不同层之间存在不匹配。“这真的只是因为当你在不同的衬底上生长 GaN 时,你最终会因两种晶格之间的不匹配而产生大量缺陷。每平方厘米的许多缺陷会导致过早击穿和可靠性问题,”Odyssey Semiconductor 的 CTO Rick Brown 说。解决这些问题的工作正在进行中,但横向 GaN 目前停留在 1,000 伏以下。这就是垂直 GaN 适合的地方。它承诺在 1,200 伏及以上电压下运行。与其他功率半导体器件一样,垂直 GaN 器件在器件顶部有一个源极和栅极,底部有一个漏极。此外,垂直 GaN 器件使用块状 GaN 衬底或 GaN-on-GaN。据 Odyssey 称,GaN 衬底允许垂直传导的 GaN 晶体管具有更少的缺陷。“如果你看硅基高压器件和碳化硅高压器件,它们都是垂直拓扑。出于多种原因,它是高压设备的首选拓扑。它占用的面积更小,从而降低了电容,并且将高压端子置于晶圆的另一侧而不是栅极端子具有固有的安全因素,”Brown说。目前,Kyma、NexGen、Odyssey、Sandia 和其他公司正在研究垂直 GaN 器件。Kyma 和 Odyssey 正在增加 100 毫米(4 英寸)体 GaN 衬底。“垂直 GaN 正在出现,我们正在向研究人员和实验室出售产品,”Kyma 的首席技术官 Jacob Leach 说。“该行业在制作外延片方面遇到了一些挑战。我们有不同的技术。我们能够以低廉的成本制造垂直 GaN 所需的薄膜。”GaN衬底已准备就绪,但垂直GaN器件本身很难开发。例如,制造这些器件需要一个离子注入步骤,在器件中注入掺杂剂。“人们没有对 GaN 使用垂直导电拓扑的唯一原因是没有一种很好的方法来进行杂质掺杂。Odyssey已经找到了解决办法,”该公司的Brown说。Odyssey 正在其自己的 4 英寸晶圆厂中开发垂直 GaN 功率开关器件。计划是在 2022 年初发货。其他人的目标是在同一时期。“我们有垂直导电的 GaN 器件。我们已经证明了 pn 结,”Odyssey 首席执行官 Alex Behfar 说。“我们的第一个产品是 1,200 伏,可能是 1,200 到 1,500 伏。但是我们的路线图将我们一直带到 10,000 伏。由于电容和其他一些问题,我们希望在碳化硅无法访问的频率和电压范围内做出贡献。近期,我们希望能够为工业电机和太阳能提供设备。我们希望给电动汽车制造商机会,进一步提高车辆的续航里程。那是通过减轻系统的重量并拥有性能更好的设备。从长远来看,我们希望实现移动充电等功能。”如果或当垂直 GaN 器件兴起时,这些产品不会取代今天的横向 GaN 或 SiC 功率半导体,也不会取代硅基功率器件。但如果该技术能够克服一些挑战,垂直 GaN 器件将占有一席之地。联电技术开发高级总监 Seanchy Chiu 表示:“Bulk GaN 衬底上的 GaN 垂直器件为可能的下一代电力电子设备带来了一些兴奋,但还有一些关键问题需要解决。” “基于物理学,垂直功率器件总能比横向器件驱动更高的功率输出。但是 GaN 体衬底仍然很昂贵,而且晶圆尺寸仅限于 4 英寸。纯代工厂正在使用 6 英寸和 8 英寸工艺制造具有竞争力的功率器件。由于其垂直载流子传输,需要控制衬底晶体的质量并尽量减少缺陷。”还有其他问题。“GaN衬底比SiC衬底更昂贵,GaN中垂直方向的电子传导仅与SiC大致相同,”横向GaN功率半导体供应商EPC的首席执行官Alex Lidow说。“与 SiC 相比,GaN 中的电子横向迁移率高 3 倍,但垂直方向的迁移率相同。此外,碳化硅的热传导效率高出三倍。这对垂直 GaN 器件几乎没有动力。”氧化镓半导体同时,几家公司、政府机构、研发组织和大学正在研究β-氧化镓 (β-Ga2O3),这是一种有前途的超宽带隙技术,已经研发了好几年。Kyma 表示,氧化镓是一种无机化合物,带隙为 4.8 至 4.9 eV,比硅大 3,000 倍,比碳化硅大 8 倍,比氮化镓大 4 倍。Kyma 表示,氧化镓还具有 8MV/cm 的高击穿场和良好的电子迁移率。氧化镓也有一些缺点。这就是为什么基于氧化镓的设备仍处于研发阶段且尚未商业化的原因。尽管如此,一段时间以来,一些供应商一直在销售基于该技术的晶圆用于研发目的。此外,业界正在研究基于氧化镓的半导体功率器件,例如肖特基势垒二极管和晶体管。其他应用包括深紫外光电探测器。Flosfia、Kyma、Northrop Grumman Synoptics、NCT 和其他公司正在研究氧化镓。美国空军和能源部以及几所大学都在追求它。Kyma 已开发出直径为 1 英寸的氧化镓硅片,而 NCT 则在运送 2 英寸硅片。NCT 最近开发了使用熔体生长方法的 4 英寸氧化镓外延硅片。“氧化镓在过去几年取得了进展,这主要是因为您可以生成高质量的基板。因此,您可以通过标准的直拉法或其他类型的液相生长法来生长氧化镓晶锭,”Kyma 的 Leach 说。这是半导体工业中广泛使用的晶体生长方法。最大的挑战是制造基于该技术的功率器件。“氧化镓的挑战是双重的。首先,我没有看到真正的 p 型掺杂的方法。您可能能够制作 p 型薄膜,但您不会获得任何空穴导电性。因此,制造双极器件是不可能的。您仍然可以制造单极器件。人们正在研究二极管以及氧化镓中的 HEMT 型结构。有反对者说,' 如果你没有 p 型,那就忘记它。这只是意味着它在该领域没有那么多应用,”Leach 说。“第二大是导热性。氧化镓相当低。对于高功率类型的应用程序来说,这可能是一个问题。在转换中,我不知道这是否会成为杀手。人们正在做工程工作,将氧化镓与碳化硅或金刚石结合,以提高热性能。”尽管如此,该行业仍在研究设备。“第一个采用氧化镓的功率器件将是肖特基势垒二极管 (SBD)。我们正在开发 SBD,目标是在 2022 年开始销售,”NCT 公司官员兼销售高级经理 Takekazu Masui 说。NCT 还在开发基于该技术的高压垂直晶体管。在 NCT 的工艺中,该公司开发了氧化镓衬底。然后,它在硅片上形成薄外延层。该层的厚度范围可以从 5μm 到 10μm。通过采用低施主浓度和40μm厚膜的外延层作为漂移层,NCT实现了4.2 kV的击穿电压。该公司计划到 2025 年生产 600 至 1,200 伏的氧化镓晶体管。NCT 已经克服了氧化镓的一些挑战。“关于导热性,我们已经确认可以通过使元件像其他半导体一样更薄来获得可以投入实际使用的热阻。所以我们认为这不会是一个主要问题,”增井说。“NCT 正在开发两种 p 型方法。一种是制作氧化镓p型,另一种是使用氧化镍和氧化铜等其他氧化物半导体作为p型材料。”展望未来,该公司希望开发使用更大基板的设备以降低成本。减少缺陷是另一个目标。金刚石、氮化铝技术多年来,业界一直在寻找可能是终极功率器件 — 金刚石。金刚石具有宽带隙 (5.5 eV)、高击穿场 (20MV/cm) 和高热导率 (24W/cm.K)。金刚石是碳的亚稳态同素异形体。对于电子应用,该行业使用通过沉积工艺生长的合成钻石。金刚石用于工业应用。在研发领域,公司和大学多年来一直致力于研究金刚石场效应晶体管,但目前尚不清楚它们是否会搬出实验室。AKHAN Semiconductor 已开发出金刚石基板和镀膜玻璃。设备级开发处于研发阶段。“AKHAN 已经实现了 300 毫米金刚石晶圆,以支持更先进的芯片需求,”AKHAN 半导体创始人 Adam Khan 说。“在高功率应用中,金刚石 FET 的性能优于其他宽带隙材料。虽然 AKHAN 的兴奋剂成就是巨大的,但围绕客户期望制造设备需要大量的研发、技术技能和时间。”该技术有多种变化。例如,大阪市立大学已经展示了在金刚石衬底上结合 GaN 的能力,创造了金刚石上的 GaN 半导体技术。氮化铝 (AlN) 也是令人感兴趣的。AlN 是一种化合物半导体,带隙为 6.1 eV。据 AlN 衬底供应商 HexaTech 称,AlN 的场强接近 15MV/cm,是任何已知半导体材料中最高的。Stanley Electric 子公司 HexaTech 业务发展副总裁 Gregory Mills 表示:“AlN 适用于波段边缘低至约 205nm 的极短波长、深紫外光电子设备。“除了金刚石之外,AlN 具有这些材料中最高的热导率,可实现卓越的高功率和高频设备性能。AlN 还具有独特的压电能力,可用于许多传感器和射频应用。”几家供应商可提供直径为 1 英寸和 2 英寸的 AlN 晶片。AlN 已经开始受到关注。Stanley Electric 和其他公司正在使用 AlN 晶片生产紫外线 LED (UV LED)。这些专用 LED 用于消毒和净化应用。据 HexaTech 称,当微生物暴露在 200 纳米到 280 纳米之间的波长下时,UV-C 能量会破坏病原体。“正如我们所说,基于单晶 AlN 衬底的设备正在从研发过渡到商业产品,这取决于应用领域,”米尔斯说。“其中第一个是深紫外光电子学,特别是 UV-C LED,由于它们具有杀菌和灭活病原体(包括 SARS-CoV-2 病毒)的能力,因此需求激增。”多年前,HexaTech 因开发氮化铝功率半导体而获得美国能源部颁发的奖项。这里有几个挑战。首先,基板昂贵。“我不知道氮化铝在这里有多大意义,因为它在 n 型和 p 型掺杂方面都有问题,”Kyma 的 Leach 说。结论尽管如此,基于各种下一代材料和结构的设备正在取得进展。他们有一些令人印象深刻的属性。但他们必须克服许多问题。EPC 的 Lidow 说:“这意味着将需要大量资本投资才能将它们投入批量生产。” “额外的好处和可用市场的规模需要证明大量资本投资的合理性。
  • CMRS2018:未来,碳化硅宽禁带半导体发展将呈爆发态势!
    p    strong 仪器信息网讯 /strong 2018年7月14日,2018中国材料大会(CMRS)各分会场会议交流继续进行。本次大会共设35个分会场,仪器信息网编辑走入D11.半导体材料与器件分会场,为读者带来有关半导体行业发展的一场报告。该报告是由中关村天合宽禁带半导体技术创新联盟秘书长陆敏带来的《碳化硅半导体技术与产业发展态势》。报告详述了碳化硅宽禁带半导体材料在国内外不同领域的应用情况和发展趋势,以及介绍了中关村天合宽禁带半导体技术创新联盟在碳化硅半导体产业中有关标准制定的一些工作,提出了我国在该领域所面临的机遇和挑战,引发了广大半导体从业者的讨论和深思。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/c0e149e9-9695-4f24-9631-8c00c0fdb7c9.jpg" title=" 中关村天合宽禁带半导体技术创新联盟秘书长 陆敏.jpg" width=" 400" height=" 267" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 267px " / /p p style=" text-align: center " strong 中关村天合宽禁带半导体技术创新联盟秘书长 陆敏 /strong /p p style=" text-align: center " span style=" color: rgb(31, 73, 125) " strong 碳化硅宽禁带半导体材料在军用、民用领域的核心应用 /strong /span /p p   碳化硅宽禁带半导体材料的应用主要分布在,电力电子器件,新能源汽车,光伏,机车牵引,以及微波通讯器件等领域。 /p p   在微电子领域,碳化硅半导体的优势在于可与氮化镓半导体互补,氮化镓半导体材料的市场应用领域偏向中低电压范围,集中在1000V以下,而1000V以上的中高电压范围,则是碳化硅的天下。1200V以上的碳化硅应用领域有新能源汽车,光伏,机车牵引,智能电网等,高铁机车的牵引电压在6500V以上,地铁则一般在3300V左右。 /p p   我国新能源汽车产业正不断蓬勃发展,去年的销量约在80万辆,今年预计会超过100万辆。推广新能源汽车最主要的目的是降低CO sub 2 /sub 的排放。迄今为止,日本丰田公司推出的油电混合动力汽车已销售超过1100万辆,共计约减少7700万吨CO2的排放。目前,主流发达国家都在推广这类新能源汽车。国家发展和改革委员会也制定了新能源汽车的发展计划,每五年的销量应有成倍的上升。未来,在包括车用,辅助设施,充电桩等的整个新能源汽车产业,均会成为支撑碳化硅在中高电压领域高端应用的重要组成部分。新能源汽车目前存在的核心困难是充电速率过慢,主流的研究热点集中在快速充电技术,而快充技术的实现就需要用到高压碳化硅半导体器件。电动汽车主要有三大部件:一是电池,二是电机控制部分,三是电机。从电池到电机的驱动,中间很重要的衔接环节就是电机控制部分,它需要专门器件碳化硅MOSFET(金属-氧化物半导体场效应晶体管)去转换。丰田的凯美瑞车型就使用了碳化硅半导体模块,核心器件均为碳化硅半导体材料制备。特斯拉的Model 3型汽车车,也全部使用了碳化硅半导体模块,每辆车会用到24个碳化硅模组,现今在道路上行驶的Model 3车辆中该碳化硅模块的数量约为100万。 /p p   碳化硅半导体在军事、航天上也有许多应用,不管是电力电子,还是微波设备,在军工领域均有大量应用。微波器件领域是整个碳化硅器件应用的一个细分市场。微波通讯在军用领域的一个典型应用是相阵控雷达,像美国的F/A-18战斗机,已经装备了碳化硅衬底外延氮化镓HEMT(高电子迁移率晶体管) 还有地基导弹系统,像萨德系统中的核心器件就是碳化硅衬底外延氮化镓的HEMT,美军已基本全面装备使用,而我国仍未完全立项,不过相信出于战略上的考虑也会加快推进实行。军事应用是由于战略的需求,但该领域市场规模应该不会太大。射频微波领域对应于民用就是通讯领域,也是整个碳化硅半导体产业应用增长的关键领域。2018年6月,首个完整版全球统一5G标准正式出炉,相信5G通讯的应用,也会大大推动碳化硅半导体产业化的进程。 /p p   光伏领域是目前碳化硅器件最大的应用市场,之后是新能源汽车领域,应会逐渐超过光伏领域。 /p p   其他的应用方向像LED产品已实现产业化,是非常大的一个应用领域,专利主要是被美国的科锐公司所控制。 /p p   在对2017年国内碳化硅第三代半导体产业产值的统计中,衬底约有1.65亿元,外延、器件、装置的总产值依次升高,分别达2.76亿元、6.92亿元、28.98亿元。总体来看,微波射频应用的产值相较电子电力应用占多数,其产量高,产值大的原因是军事上应用的微波器件。由于军方应用额度毕竟有限,而民间应用市场将会更大,因在2018年产值统计的结果和态势会有明显变化。相信2018年电力电子领域会出现更多的应用和更大的拓展。 /p p   根据美国YOLE公司的统计,2015年电子电力器件用导电型碳化硅衬底约有12万片,预计到2021年,会达到约40万片。美国科锐公司是全球最大的碳化硅衬底企业,拥有1000多台半导体晶体炉,一台的产能约为每年500~1000片,全年可生产约100万片,考虑成品率,一年的成品约为几十万片,可由此推算出市场的大致规模。国内所有的半导体晶体炉约二三百台,在世界范围所占比例较低。 /p p style=" text-align: center " strong span style=" color: rgb(31, 73, 125) " 国内外第三代半导体产业发展政策情况 /span /strong /p p   我国的“中国制造2025”计划中明确提出要大力发展第三代半导体产业。特别设立的国家新材料产业发展领导小组有两位第三代半导体领域的专家,由此可见国家对第三代半导体产业的发展相当重视。北京也有对于第三代半导体产业发展的相关政策,北京目前定位为全国科技创新中心,该职能的实现需要通过一些产业的支撑,北京现正在大力扶持高精尖产业,第三代半导体产业也是其中很重要的一项。希望未来能见到其他各省市都会出台类似政策,来推动第三代半导体产业的研究和发展。 /p p   国际上也有类似政策,美国总统奥巴马主导成立第三代半导体产业联盟,欧洲的Smart PM(Smart Powe Management)组织,日本的“首相战略”等,均瞄准并投入巨资推动第三代半导体产业的研究与发展。大力发展第三代半导体产业已在国内外达成共识,不仅停留在产业研究的初期,更呈现产业的一个爆发态势。 /p p style=" text-align: center " span style=" color: rgb(31, 73, 125) " strong 面临的机遇和挑战 /strong /span /p p   一个产业的发展与两个方面有关:一个是技术层面,另一个重要问题就是产业的生态环境。为建立这样一个产业环境,中关村天合宽禁带半导体技术创新联盟应运而生。标准是彼此之间沟通的平台,产业环境问题的核心是搭建一个成熟的标准体系,产业标准、技术标准等均是支撑产业份额扩大不可或缺的要素。 /p p   世界有两大类标准体系:一类是政府类的标准,例如世界三大标准化组织,ISO、IEC、ITU,这些是美国推行的标准体系 还有一类是以市场为主体,来源于实体的一些标准,例如企业标准和团体标准。国际上常见的IEEE,semi,Bluetooth,中关村标准等,均是团体标准,但它同样担当着国际标准的作用。这类标准在国际上更有生命力和市场,因为它是产业一线从业者制定的标准。 /p p   《中国人民共和国标准化法》不久前通过了修订,在我国的标准体系中,原先只有国家标准,地方标准,行业标准和企业标准,新的标准化法特别提出了团队标准。团队标准需要产业联盟,社会团体等一些非营利性团体来制定。中关村天合宽禁带半导体技术创新联盟目前也是国家标准化管理委员会认定的团队标准制定单位,目前也在做一些工作来帮助这个产业的发展,以使半导体产业在标准制定方面有更多的机会。 /p p   迄今为止, 在碳化硅半导体领域,国际标准、国家标准、行业标准经过统计共有16项,远远滞后于该行业的发展,这对整个市场的秩序及行业的发展是很不利的,因此标准化制定这项工作大有可为。这16项标准基本均发布于近几年,所以近年来碳化硅半导体产业陆续发展了起来。硅材料,是一个比较成熟的材料体系,与硅材料相关的标准约有二百余项,国家标准、行业标准,制定的时间跨度长达三四十年。因此碳化硅与硅材料领域相比,标准体系对产业的支撑是远远不够的,这对以联盟为依托的行业及企业而言,是一个难得的机遇。 /p p   制定标准相当于是制定市场规则,制定市场规则相当于在市场上会拥有更好的话语权和引导力。通过这一机遇,可以依托产业联盟、或其他社会团体,来健全第三代半导体产业的团队标准体系,以更好地支持这个行业的健康发展,提升国家在该领域的市场竞争力。我国是全球最大的市场,但问题的核心在于市场上出售谁家的产品,因此拥有更大的话语权是十分重要的,制定标准就是制定话语权。 /p p   仪器信息网将对2018中国材料大会现场跟踪报道(详见专题报道: a href=" http://www.instrument.com.cn/zt/2018C-MRS" target=" _blank" title=" " style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 2018中国材料大会 /span /a ),欢迎关注CMRS后续精彩内容。 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制