当前位置: 仪器信息网 > 行业主题 > >

太阳池检测

仪器信息网太阳池检测专题为您提供2024年最新太阳池检测价格报价、厂家品牌的相关信息, 包括太阳池检测参数、型号等,不管是国产,还是进口品牌的太阳池检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合太阳池检测相关的耗材配件、试剂标物,还有太阳池检测相关的最新资讯、资料,以及太阳池检测相关的解决方案。

太阳池检测相关的论坛

  • 检测中心用太阳能热水器检测试验机

    检测中心用太阳能热水器检测试验机

    检测中心用太阳能热水器检测试验机太阳能热水器测试全自动水路运行控制装置,内部装有高温电磁阀组,采用逻辑组合管路结构,与微型混水泵配合,通过智能控制器,自动实现水路进入,流出,混水,测试等功能。并通过混合搅拌,使水箱中水温均匀一致,满足测试需要。热水水温控制装置根据国标检测要求,测试前热水器中的水具有一定的温度,因此需对水温进行定温加热控制.本系统采用动态加热原理,循环泵配合完成,具有加热均匀,升温速度快等特点。太阳能热水器检测试验机自动控制台是将测试仪器与检测设备中的控制部分集成一体的综合自动控制装置。其采用微机控制技术对混水泵,电磁阀,自动加热,水泵等设备进行集中控制,并使测试数据自动登录微机打印检测报告,使太阳能热水系统性能检测过程自动进行,提高工作效率。太阳能热水器检测试验机室外防水结构设计,保证室外全天候工作。[img=太阳能热水器检测试验机,400,400]https://ng1.17img.cn/bbsfiles/images/2022/07/202207110909481436_9289_4136176_3.jpg!w690x690.jpg[/img]太阳能热水器检测试验机组成分别有测试传感器(管路温度,环境温度,水流量,太阳总辐射,风速,电功率),太阳能测试系统数据采集仪,水温控制装置,全自动水路运行控制装置,自动控制台,热水器测试管路连接器,太阳能热水器测试系统平台(含软件),遮阳罩板及配件。太阳能热水器检测试验机各部件技术指标与特点:精度2%的专用测试传感器用于测量太阳辐射、温度(水温)、环境温度、环境风速、水流量、电功率等参数。太阳能测试系统数据采集仪:用高性能微处理器为主控CPU,大容量数据存储器,数据采样率高于0.5秒/通道,工业控制标准设计,便携式防震结构,大屏幕汉字液晶显示屏,轻触薄膜按键,操作简单。适合在恶劣工业环境使用。具有停电保护功能,当交流电停电后,由充电电池供电,可维持24小时以上。[img=太阳能热水器检测试验机,400,400]https://ng1.17img.cn/bbsfiles/images/2022/07/202207110910092369_3517_4136176_3.jpg!w690x690.jpg[/img]

  • 路面太阳辐射反射系数检测仪

    路面太阳辐射反射系数检测仪

    路面太阳辐射反射系数检测仪太阳辐射反射系数检测仪是在水平表面上从2π球面度立体角中接收到的太阳直接辐射和太阳散射辐射之和(短波),即太阳直接辐射的垂直分量和水平面上接受到的散射辐射总量,业务上通常用太阳辐射反射系数检测仪来进行观测。根据安装状态不同,太阳辐射反射系数检测仪可分别测量太阳总辐射、反射辐射,或借助遮光装置测量散射辐射。对于太阳辐射反射系数检测仪传感器的选择主要有以下三点:一、能否达到既定的太阳辐射测量精度要求;二、在满足测量精度的情况下,太阳辐射反射系数检测仪尽量使用低功耗的传感器,这是由于系统的设计电源是采用电池供电;三、太阳辐射反射系数检测仪传感器要能满足被测介质和使用环境的特殊要求,例如在高温、低温下的工作情况以及防腐等。[img=太阳辐射反射系数检测仪,400,400]https://ng1.17img.cn/bbsfiles/images/2022/10/202210170914044180_4640_4136176_3.jpg!w690x690.jpg[/img]用于测量太阳和天空辐射,适应很宽的波长范围。太阳辐射反射系数检测仪为可以借助不同牌号的有色光学玻璃制作的半球形外进行不同宽波段太阳辐射的测量。太阳辐射反射系数检测仪由一个组合热电堆电路组成,可以很好的抵抗机械震动和打击。太阳辐射反射系数检测仪的接收器上有一层黑漆,底部为一个半球形玻璃项罩。玻璃半球使用的是测量用玻璃,其对于0.305pm-2.8pm的波长具有非常好的透光性,而且能量传输非常的均一。太阳辐射反射系数检测仪根据黑色涂料吸收太阳辐射产生热效应的温升值来确定辐射强度。温升值采用热电堆测得。[img=太阳辐射反射系数检测仪,400,400]https://ng1.17img.cn/bbsfiles/images/2022/10/202210170914391157_1723_4136176_3.jpg!w690x690.jpg[/img]

  • 太阳能集热器检测系统技术指标

    太阳能集热器检测系统技术指标

    太阳能集热器检测系统技术指标太阳能热水器测试系统组成分别有测试传感器(管路温度,环境温度,水流量,太阳总辐射,风速,电功率),太阳能测试系统数据采集仪,水温控制装置,全自动水路运行控制装置,自动控制台,热水器测试管路连接器,太阳能热水器测试系统平台(含软件),遮阳罩板及配件。太阳能集热器检测系统各部件技术指标与特点:精度2%的专用测试传感器用于测量太阳辐射、温度(水温)、环境温度、环境风速、水流量、电功率等参数。绿光新能源太阳能集热器检测系统数据采集仪:用高性能微处理器为主控CPU,大容量数据存储器,数据采样率高于0.5秒/通道,工业控制标准设计,便携式防震结构,大屏幕汉字液晶显示屏,轻触薄膜按键,操作简单。适合在恶劣工业环境使用。具有停电保护功能,当交流电停电后,由充电电池供电,可维持24小时以上。[img=太阳能集热器检测系统,400,400]https://ng1.17img.cn/bbsfiles/images/2022/05/202205171017048732_5440_4136176_3.jpg!w690x690.jpg[/img]太阳能集热器检测系统全自动水路运行控制装置,内部装有高温电磁阀组,采用逻辑组合管路结构,与微型混水泵配合,通过智能控制器,自动实现水路进入,流出,混水,测试等功能。并通过混合搅拌,使水箱中水温均匀一致,满足测试需要。热水水温控制装置根据国标检测要求,测试前热水器中的水具有一定的温度,因此需对水温进行定温加热控制.本系统采用动态加热原理,循环泵配合完成,具有加热均匀,升温速度快等特点。绿光新能源自动控制台是将测试仪器与检测设备中的控制部分集成一体的综合自动控制装置。其采用微机控制技术对混水泵,电磁阀,自动加热,水泵等设备进行集中控制,并使测试数据自动登录微机打印检测报告,使太阳能热水系统性能检测过程自动进行,提高工作效率。室外防水结构设计,保证室外全天候工作。[img=太阳能集热器检测系统,400,400]https://ng1.17img.cn/bbsfiles/images/2022/05/202205171017271783_2105_4136176_3.jpg!w690x690.jpg[/img]

  • 【原创】针对建筑节能,太阳能真空管,集热器,太阳能发电系统进行全方面检测

    【原创】针对建筑节能,太阳能真空管,集热器,太阳能发电系统进行全方面检测

    [B]TRM—FD1太阳能发电测试系统(太阳能发电站现场检测[/B]) 一、概述   能源危机,电力紧张是困扰当今中国的一大难题,太阳能作为绿色能源之首已经越来越得到人类的重视,随着太阳能产业的不断发展,其应用产品不断增多,针对太阳能发电的检测及研究显得十分重要,我单位在具有三十余年生产太阳能检测仪器经验基础上,与中国科学院电工研究所共同开发研制的TRM—FD1型太阳能发电测试系统,可保障太阳能发电质量及运行状态检测,已得到广泛应用。可满足太阳能发电站,太阳能发电测试,太阳能光电研究,太阳能实验室等领域的使用。 二、适用范围   用于太阳能发电站的实时监测,对研究太阳能发电质量,效率,故障诊断数据管理,提供数据保障。 三、系统技术指标如下   环境数据是决定太阳能发电的重要指标,对太阳能发电质量起着决定性作用,同时也是对太阳能发电站的设计提供有效的数据保证。本系统即可以独立使用,也可与发电站配合工作,系统主要测试功能如下:风速、风向、环境温度、太阳能电池温度、蓄电池温度、太阳总辐射、太阳直接辐射、充电电流、充电电压、逆变输出电流、逆变输出电压、工作电流、工作电压,该系统可对10W---30KW太阳能电池组件及方阵直接测量,利用自然光做光源能快速测出方阵I-V特性,功率特性等指标。 (1).风速:  通道数:1路;  范 围:0~60米/秒;  精 度:±0.3米/秒;  显示分辨率:0.1米/秒;(2).风向:  通道数:1路;  范 围:0~360度;  精 度:±3度;  显示分辨率:1度;(3).太阳能辐照度:  通道数:4路;3.1 总辐射(水平面和电池板平面)  范 围:0~2000W;  精 度:小于5% ;  显示分辨率:1W;3.2 自动跟踪直接辐射  范 围:0~2000W;  精 度:小于5% ;  显示分辨率:1W;  光谱范围:280—3000nm;3.3 太阳散射辐射  范 围:0~2000W;  精 度:小于5% ;  显示分辨率:1W;  光谱范围:280—3000nm;(4).温度:(蓄电池温度1路,太阳能电池温度2路,环境温度1路)  通道数:4路  范 围:-50~100℃;  精 度:±0.2℃;  显示分辨率:0.1℃;  结构:全密封结构,防潮,防水,粘贴电池表面;   尺寸:20*40*4(mm)(长方形薄片);(5).电压接口(蓄电池电压,逆变器输出电压,太阳能电池电压)  通道数:4路  电压范围:0~250V(交直流均可);  精 度: 小于0.5%;  显示分辨率:0.1V;(6).电流接口(总充电电流,逆变输出电流,太阳能电池电流)  通道数:4路  电流范围:0~30A;  精 度:小于0.5%;  显示分辨率:0.1A;(7).数据存储容量:6000条(小时整点数据连续存储半年以上),存储内容为设定时间内的数据平均值。(8).供电: 交流220V, 直流12V;(9).通讯接口:  标准RS232接口,与管理微机有线连接,实时传送采集数据;也可通过无线通讯器实现远程遥测,进行异地监控,保证发电系统的正常运行。(10).管理微机及软件:  TRM—FD1型太阳能发电测试系统管理软件可在WINDOWS98以上环境即可运行,实时显示各路数据,每隔10秒更新一次,小时整点数据自动存储(存储时间可以设定),与打印机相连自动打印存储数据,数据存储格式,EXCEL标准格式,可供其它软件调用。(11). TRM—FD1型太阳能测试系统数据采集器一台。  该采集器采用高性能微处理器为主控CPU,大容量数据存储器,可连续存储正点数据三个月以上(存储时间可以设定),工业控制标准设计,便携式防震结构,大屏幕汉字液晶显示屏(一屏显示多路监测要素,替代微机),轻触薄膜按键。适合在恶劣工业环境使用。具有停电保护功能,当交流电停电后,由充电电池供电,可维持72小时以上,既可与微机同时监测,又可以断开微机独立监测。11.1.显示方式:大屏幕液晶汉字及图形显示,一屏显示多路数据, 液晶尺寸:115*65(mm);11.2.记录仪具有先进的轻触薄膜按键,操作简单,实现对各路数据的实时观测;11.3.仪器尺寸:340*150*300(mm);    重量:6.5Kg,金属外壳;11.4.显示及存储内容:温度,辐射,电流,电压,风速,风向等信息; TRM—FD1型太阳能发电测试系统基本配置 序号 名  称 型 号 数量 单位 1 数字风速传感器 EC-9S 1 台 2 太阳能总辐射表 (水平面辐射) TBQ-2 1 台 3 太阳能总辐射表(电池板平面辐射) TBQ-2 1 台 4 太阳散射辐射 TBD-1 1 台 5 自动跟踪直接辐射表 TBS-2-2 1 台 6 数字风向传感器 EC-9X 1 台 7 温度传感器(太阳能电池,充电电池) PTWD-3A 3 只 8 环境温湿度传感器(含辐射罩) PTS-2 1 台 9 电压,电流传感器接线箱(电流4路,电压4路) VCS-1 1 台 10 太阳能发电测试记录仪 TRM-FD1 1 台 11 太阳能发电测试系统管理软件 TRM-FD1 1 套 12 传感器支架 TRM-ZJ1 1 台 注:以上传感器连接电缆均为20米 [B] 单位:北京天裕德科技有限公司联系人:石冬 13426494679地址:北京市朝阳区小营路9号邮编:100101开户行:北京农商行亚运村支行小营北路分理处帐号:0111090103000002527电话:010—64931393传真:010—64931393网址:www.bjtyd.com电子邮箱:sales@bjtyd.com[/B] [img]http://ng1.17img.cn/bbsfiles/images/2008/11/200811252245_120446_1670114_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/11/200811252246_120447_1670114_3.jpg[/img]

  • 太阳能光热检测设备生产要求

    太阳能光热检测设备生产要求

    太阳能光热检测设备生产要求随着太阳能热利用产业的迅猛发展,对太阳能热水器热性能测试技术准确化、简洁化的要求与日俱增,而若有一套功能完善、界面友好直观的太阳能热水器热性能测试专用软件和性能稳定、可靠的数据采集系统,将能更大程度地满足产品研发的需要,它将大大缩短产品的测试周期,减少人工操作的工作量及由此带来的误差,以适应行业的迅速发展,利用计算机实现数据的自动采集与处理以提高试验的智能化程度将势在必行。[img=太阳能光热检测设备,400,400]https://ng1.17img.cn/bbsfiles/images/2022/09/202209020929050520_3873_4136176_3.jpg!w690x690.jpg[/img]太阳能光热检测设备能源建筑提升示范技术水平。对应用可再生能源并综合利用节能、节地、节水、节材及环保技术且达到绿色建筑评价标准的项目,应优先列入示范任务,统筹推进可再生能源建筑应用与绿色建筑发展。要严格落实12层及以下居住建筑和集中供应热水的公共建筑安装使用太阳能热水系统,并与建筑进行一体化设计和施工的要求。鼓励和支持高层建筑太阳能光热系统、太阳能中高温、太阳能与热泵复合系统供暖制冷等技术应用。太阳能光热检测设备强化项目建设管理。相关示范所在地住房城乡建设主管部门对示范项目要进行可再生能源应用施工图专项审查、专项验收,加强对示范项目在规划、设计、施工、监理、验收等环节的过程管理。示范项目必须依法委托有资质的单位,太阳能光热检测设备严格执行建筑节能设计标准,按照相关技术规范进行设计、施工与安装。鼓励采用合同能源管理的模式,实施建设运营管理一体化,确保工程质量和能效水平。[img=太阳能光热检测设备,400,400]https://ng1.17img.cn/bbsfiles/images/2022/09/202209020929498796_9792_4136176_3.jpg!w690x690.jpg[/img]

  • 太阳能集热器性能检测装置参数配置

    太阳能集热器性能检测装置参数配置

    太阳能集热器性能检测装置参数配置太阳能热水系统的性能究竟如何,是否达到了设计的要求,这是使用者最为关心的问题。因此,对太阳能热水系统和集热器产品的检测非常有必要。太阳能热水器测试系统可以取得太阳能热水系统的供热效果和能源消耗情况,对于太阳能热水器的性能评价至关重要。在全球提倡绿色环保并采用新型能源的今天,太阳能热水器得到了广泛的应用,因为具备节省能源,接近零污染,以及使用简便的产品优点。在太阳能热水器的整个系统中,起到至关重要的作用的中心环节就是检测控制系统。[img=太阳能集热器性能检测装置,400,400]https://ng1.17img.cn/bbsfiles/images/2022/04/202204250909212347_8583_4136176_3.jpg!w690x690.jpg[/img]太阳能热水器按结构形式分为真空管式太阳能热水器和平板式太阳能热水器。真空管式太阳能热水器是由集热管、储水箱及支架等相关附件组成。把太阳能转换成热能主要依靠集热管。集热管利用热水上浮冷水下沉的原理,使水产生微循环而达到所需热水。对太阳能热水器做系统性能测试可以检测热水器各项指标性能和运行可靠性。绿光新能源太阳能集热器性能检测装置包括系统热学指标、集热效率、太阳能保证率、实际运行工况等测试项目,提前检测出不符合使用质量的太阳能热水器。[img=太阳能集热器性能检测装置,400,400]https://ng1.17img.cn/bbsfiles/images/2022/04/202204250909573329_8800_4136176_3.jpg!w690x690.jpg[/img]太阳能集热器性能检测装置可以对太阳能热水器做热性能、耐压、水质、过热保护、空晒、外热冲击、淋雨、内热冲击等检验项目,自动采集并记录试验期间的温度、风速、辐照等气象信息。通过全方位的测试项目,提高太阳能热水器的产品质量。

  • 太阳能热水系统检测设备能效等级检定

    太阳能热水系统检测设备能效等级检定

    太阳能热水系统检测设备能效等级检定太阳能空气集热器在准稳态下照射到太阳能空气集热器上的太阳能辐射量等于工质带走的热量和集热器散失到环境周围热量之和。根据这个基本原理,建立太阳能空气集热器测试条件下的热平衡方程。在稳态条件下运行的太阳能空气集热器的瞬时效率定义为集热器实际获得的有用功率与集热器接收的太阳辐射功率之比。太阳能热水系统检测设备试验条件在试验期间,集热器采光面上的总日射辐照度应不小于700W/m2;实验期间总太阳辐照度变化应不大于50W/m2。集热器采光口上的直接日射入射角应保持在该入射角±2.5。的范围内。集热器周围环境的平均风速应在2-4m/s之间。当集热器进口温度等于室外环境温度时,空气流量应根据集热器总面积设定在约0.01m3/(m2?s)。在每个试验周期内,流量应稳定在设定值的±1%以内。[img=太阳能热水系统检测设备,400,400]https://ng1.17img.cn/bbsfiles/images/2022/05/202205110921091413_9131_4136176_3.jpg!w690x690.jpg[/img]太阳能热水系统检测设备测试方法如下:1)在被测集热器安装到集热器试验台架上之前,测量集热器的长度和宽度,并测量集热器采光口的长度和宽度;2)按照集热器试验台架操作规程对试验台架进行操作;3)按照太阳热水器热性能试验系统的操作步骤打开计算机控制程序,预设系统各控制点参数,观察室外各控制点参数情况,确定满足2.3中规定的实验条件;4)具体操作步骤:用遮阳布遮住集热器,调节集热器试验台架,使集热器的太阳入射角在整个瞬时效率试验期间始终为零;合上风机开关,调节空气风量至要求值;开启电加热,控制太阳能空气集热器的进口温度到规定值,移去集热器上的遮阳布;5)太阳能热水系统检测设备需要记录的参数:集热器采光口上的总日射辐照度;集热器采光口上的漫射日射辐照度;环境空气速度;环境空气温度;集热器进口工质温度;集热器出口工质温度;空气流量。在稳态测量期内测得的参数若满足表1规定的范围,则本工况的试验可结束。若不满足规定的范围,则继续进行试验,直至满足规定的范围要求。上一工况试验结束后,调节电加热器,控制太阳能空气集热器的进几温度到下一工况规定的值,进入下一工况的试验,步骤和要求同上一工况。4个工况的试验都完成后结束试验。[img=太阳能热水系统检测设备,400,400]https://ng1.17img.cn/bbsfiles/images/2022/05/202205110923023655_1907_4136176_3.jpg!w690x690.jpg[/img]太阳能热水系统检测设备结论1)按照本测试条件和要求,完全可进行太阳能空气集热器热性能的测试,得出的实验结果符合太阳能空气集热器的基本传热规律;2)与液体为传热工质的太阳集热器相比,太阳能空气集热器的效率截距较低,比一般的液体集热器低20%以上,这是因为空气的比热容小于液体的比热容,太阳能空气集热器工质(空气)带走有效热量少,太阳能空气集热器的效率截距较低;3)与液体为传热工质太阳集热器相比,太阳能空气集热器的瞬时效率随入口空气温度增加下降更快,即空气集热器的热损系数较大,当集热器归一化温差达0.067时,太阳能空气集热器的热性能已经为零,所以,太阳能空气集热器的工作温度不宜过高,否则,集热效率很低,甚至为负值;4)从2)、3)分析可知,太阳能空气集热器的工作温度不宜过高,对于太阳能空气集热器研究与开发,应重点放在优化集热器结构、加强集热器保温方面,而不应放在提高集热器瞬时效率截距方面。

  • 太阳能热水器性能检测系统绿光设计

    太阳能热水器性能检测系统绿光设计

    太阳能热水器性能检测系统绿光设计太阳能热水器性能检测系统在建筑设计中的应用:太阳能在建筑节能中的应用形式主要分为太阳能光热应用和太阳能光电应用。对应形式涵盖内容和特点分述如下。1.太阳能光热应用主要形式(1)被动式太阳能建筑(2)太阳能热水系统(3)太阳能采暖系统(4)太阳能空气集热采暖系统(5)太阳能空调系统2.太阳能光电应用主要形式(1)按系统形式分①独立光伏发电系统②并网光伏发电系统(2)按建筑结合形式分①附着于建筑物上的光伏系统②集成到建筑物上的光伏发电系统②集成到建筑物上的光伏发电系统。被动式太阳能建筑:不实用机械动力,仅通过太阳能的有效利用,使建筑物具备一定冬季采暖和夏季降温的功能。主要形式用:直接受益式被动太阳能建筑;集热蓄热墙式被动太阳能建筑;附加阳光间式被动太阳能建筑;组合式被动太阳能建筑。太阳能热水器性能检测系统在被动式太阳能建筑的应用中要注意冬季采暖应用应在综合考虑气候条件、建筑用途和建筑围护结构保温性能等综合因素后确定合理形式。夏季被动降温应考虑遮阳和建筑通风有效措施。设计阶段应进行综合评估,以使被动太阳能建筑即满足使用功能又建造美观、维护方便。[img=太阳能热水器性能检测系统,400,400]https://ng1.17img.cn/bbsfiles/images/2022/06/202206290919584073_5644_4136176_3.jpg!w690x690.jpg[/img]太阳能热水器性能检测系统主动式太阳光建筑:太阳能结合常规能源有效利用,满足建筑物的生活热水、采暖、空调和生活用电需求。主要应用形式有:(1)太阳能热水系统(这是太阳能光热利用最成熟的方式之一,因其技术成熟且经济效益显著,已实现大规模商业化应用);(2)太阳能采暖系统(将太阳能转化成热能,供给建筑物冬季采暖的系统,系统主要包括集热器、贮热器、供热采暖末端设备、辅助加热装置和自动控制系统等。);(3)太阳能空气集热采暖系统(由太阳能空气集热器、风机、散流器、温控器等部件组成。当太阳能辐射较好时,风机开启,循环加热室内空气,以解决建筑室内采暖问题。)(4)太阳能空调系统目前的主要形式是太阳能吸收式空调,太阳能热水器性能检测系统主要构成包括太阳集热器、吸收式制冷机和辅助热源。一般夏季空调周期,太阳集热器负责向吸收式制冷机提供所需要的热媒水,吸收式制冷机负责将吸收制冷转化后的冷水提供至建筑室内,供空调使用;冬季采暖周期,由太阳能集热系统直接向建筑供暖。[img=太阳能热水器性能检测系统,400,400]https://ng1.17img.cn/bbsfiles/images/2022/06/202206290920151363_7918_4136176_3.jpg!w690x690.jpg[/img]

  • 高效率检测太阳能热水器能效测试装置

    高效率检测太阳能热水器能效测试装置

    高效率检测太阳能热水器能效测试装置太阳能集热器是决定太阳能热水系统热性能的关键集热部件,对太阳能产品的发展起着决定性的作用。因此对集热器的研究和测试非常重要,绿光新能源根据国家检测标准要求和多年生产太阳能检测设备的经验,特推出太阳能集热器测试系统,该产品全部采用微机自动控制与检测,具有测试精度高,性能稳定,测试效率高等方面特点。得到国内外多户的使用与认可,是先进的太阳能集热器检测设备。可广泛应用于太阳能生产厂、太阳能实验室、太阳能检测中心、产品质量检验机构、大中专科研院所等对太阳能研究部门的使用。太阳能热水器能效测试装置按照国标GB/T4271-2007、GB/T17581-2007、GB/T6424-2007集热器热性能测试方法执行,系统指标符合国标中检测仪器指标要求。[img=太阳能热水器能效测试装置,400,400]https://ng1.17img.cn/bbsfiles/images/2022/05/202205300904513882_7812_4136176_3.jpg!w690x690.jpg[/img]集热器测试项目包括热性能,压力降落,外观,耐压,刚度,强度,闷晒,空晒,外热冲击,内热冲击,淋雨,耐冻,耐撞击共计13项。集热管被称作是太阳能热水器的核心技术所在。太阳能热水器能效测试装置适用于全玻璃真空太阳集热管,热性能检测完全依据GB/T17049全玻璃真空太阳集热管的标准要求,满足全自动检测要求,可以自动生成空晒、闷晒、热损等曲线图,有效保证了每一根全玻璃真空管的检测精准、快捷。太阳能热水器能效测试装置的运行环境在环境温度:-40℃~60℃,相对湿度:≤90%,工作电源:220V(±10%),50Hz(±2%),测评内容包括:热性能,空晒,闷晒,热损,环境温度,太阳辐射,环境风速等。绿光新能源太阳能集热管热性能测试系统主要适用于质检所、质检中心、太阳能热水器生产厂家、科研教学等。[img=太阳能热水器能效测试装置,400,400]https://ng1.17img.cn/bbsfiles/images/2022/05/202205300906483639_8318_4136176_3.jpg!w690x690.jpg[/img]

  • 【网络会议】:2015年04月14日 14:00 安捷伦分子光谱在太阳能材料检测领域内的整体解决方案

    【网络会议】:安捷伦分子光谱在太阳能材料检测领域内的整体解决方案 ——Cary 5000/7000 UV-Vis-NIR及4300手持式FTIR【讲座时间】:2015年04月14日 14:00【主讲人】:张晓丹(2012年加入安捷伦科技(中国)有限公司,任分子光谱应用工程师)【会议介绍】 随着国家对光伏产业投入的加大,太阳能电池行业得到了前所未有的发展,与此同时用户对太阳能材料检测的需求也在逐年增加。 在此基础上,安捷伦提出了分子光谱在太阳能材料检测领域的整体解决方案。 报告中不仅包含了最新的Cary7000全能型UV-Vis-NIR及4300手持式FTIR的产品介绍,同时针对组成太阳能电池的不同材料提出了相应的应用解决方案,如Cary5000及7000 UV-Vis-NIR对前层盖板玻璃及EVA膜的测试以及4300手持FTIR对太阳能电池背板的无损检测,并对成品进行质量控制。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名并参会用户有机会获得100元手机充值卡一张哦~3、报名截止时间:2015年04月13日4、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/13965、报名及参会咨询:QQ群—379196738

  • 太阳辐射监测系统气象太阳辐射测量仪

    太阳辐射监测系统气象太阳辐射测量仪

    太阳辐射监测系统气象太阳辐射测量仪太阳辐射监测系统足利用光电转换感应原理,采用绕线半导体式多接点热电堆。当有光照时,冷热接点产生温差即产生电势值,也就是将光信号转换为电信号输出。在线性误差范围内,输出信号与太阳辐照度成正比,其所测量的光谱范围为0.3-3.0um,输出电信号属于微伏级别。在外接太阳辐射监测系统后,即可观测记录太阳的总辐射量。太阳辐射监测系统信号检测分辨率但主机内多只可记录7天的数据,并仅记录整点瞬时辐射强度和小时累计辐射,主机数据存储容量极为有限。[img=太阳辐射监测系统,400,400]https://ng1.17img.cn/bbsfiles/images/2022/06/202206090921218900_3115_4136176_3.jpg!w690x690.jpg[/img]太阳辐射监测系统多功能数据采集仪是一种高精度多用途数据采集仪器,其主机内有一个准确、稳定和具有噪声抑制功能的数字万用表,可以在6100mV量群的情况下准确测量直流电压信,其测量精度太阳辐射监测系统。通过使定标的功能,我们可以将测量得到的电压信号转换为太阳辐射强度值直接显示在仪器的前面板液晶显示器,并使保存数据为太阳辐射强度值。该仪器可以按指定间隔进行扫描,并可存储多达50000个读数。当在扫描期间断电后又重新给电的情况下,仪器自动回到关机前的状态并继续进行中的扫描,可以实现在不需要人工干预的情况下进行连续观测,满足现场测试要求。当扫描正在进行时,仪器自动存储小和大读数并计算平均值,我们可以随时通过液晶显示器查看这些数值,所存储的数据可导人计算机并形成excel格式的数据文,方便用户进行后续处理。[img=太阳辐射监测系统,400,400]https://ng1.17img.cn/bbsfiles/images/2022/06/202206090921599804_5839_4136176_3.jpg!w690x690.jpg[/img]

  • 现行太阳能光热利用检测系统测试方法

    现行太阳能光热利用检测系统测试方法

    现行太阳能光热利用检测系统测试方法有效利用可再生能源,促进可再生能源建筑应用发展,是建设资源节约型、环境友好型社会,实现城市可持续发展的重要战略措施,对优化能源结构,提高能源利用效率,保护和改善生态环境具有重要作用。而建筑节能指在建筑材料生产、房屋建筑和构筑物施工及使用过程中,满足同等需要或达到相同目的的条件下,尽可能降低能耗。太阳能光热利用检测系统具体指在建筑物的规划、设计、新建(改建、扩建)、改造和使用过程中,执行节能标准,采用节能型的技术、工艺、设备、材料和产品,提高保温隔热性能和采暖供热、空调制冷制热系统效率,加强建筑物用能系统的运行管理,利用可再生能源,在保证室内热环境质量的前提下,减少供热、空调制冷制热、照明、热水供应的能耗。因而对于可再生能源的利用是建筑节能设计中重要的一部分。太阳能光热利用检测系统应根据委托合同和有关技术标准要求,及时对受委托的建筑进行建筑能效测评,出具建筑能效测评报告,并对测评结果的公正性、准确性和真实性负责。施工单位应配合建设单位收集相关设计图纸和配套资料,并做好建筑能效测评现场配合工作。监理单位应对建设单位提供给建筑能效测评机构的设计图纸和配套资料予以确认,并根据建筑能效测评机构出具的报告,将建筑能效测评情况和结果写入工程监理评估报告。[img=太阳能光热利用检测系统,400,400]https://ng1.17img.cn/bbsfiles/images/2022/06/202206300907556465_2058_4136176_3.jpg!w690x690.jpg[/img]太阳能光热利用检测系统应加强对建筑能效测评的监管,并将建筑能效测评结果记入工程质量监督报告。建筑能效测评结果未达到节能设计标准,按下列要求进行处理:(一)建筑能效测评机构应在测评报告中提出进一步改进的初步建议;(二)建设单位应组织设计单位、施工单位、监理单位及建筑能效测评机构,对测评结果不合格的原因进行分析、论证,并研究制定整改方案。设计单位应出具设计整改方案,施工单位应在通过施工图审核机构审核的设计整改方案基础上编制施工整改方案,施工整改方案应经监理单位审批后方可实施;(三)施工整改完成后,应按照设计整改方案和验收标准进行质量验收,并重新进行建筑能效测评,直至结果合格后方可进行建筑节能分部工程验收;[img=太阳能光热利用检测系统,400,400]https://ng1.17img.cn/bbsfiles/images/2022/06/202206300908268921_2824_4136176_3.jpg!w690x690.jpg[/img]

  • 太阳辐射表检测

    太阳[url=https://www.hach.com.cn/product-list/pinpaiyiqi]辐射表[/url]在检测过程中温度变化会影响读数嘛?比如我们在现场测量时候温度可能最低在零下十来度,中午的时候测量现场有三十度左右,还可能会在仪器表面产生一些水汽。

  • 太阳能热水器测试系统实时显示检测数值

    太阳能热水器测试系统实时显示检测数值

    太阳能热水器测试系统实时显示检测数值太阳能作为清洁能源备受大家欢迎,阳台壁挂系统的成熟已然走进了千家万户,本着无动力自然循环,可靠、稳定、节能的优势,以及分户独立、方便管理的优点,加上无过热技术、安全防护技术、智能控制技术,让用户使用做到舒适、安全、节能。太阳能热水器测试系统及测量过程:平板集热器方向正南,累计辐照量大于16mJ/m2;白天试验期间的平均环境温度应大于15℃,小于30℃;温度传感器安装在水箱中部;总日射表传感器应安装在平板集热器高度的中间位置,并与平板集热器采光平面平行,两平行面的平行度相差应小于1°。太阳能热水器测试系统安装位置应避免太阳集热器的反射对其测量结果产生影响。在整个测试期间,总日射表不应遮挡太阳集热器采光,并不被其它物体遮挡。[img=太阳能热水器测试系统,400,400]https://ng1.17img.cn/bbsfiles/images/2022/04/202204150909587972_5007_4136176_3.jpg!w690x690.jpg[/img]太阳能热水器测试系统组成及型号:相同的平板集热器2块(尺寸L×W×H为2400×800×80mm,采光面积1.76m2);夹套式100L水箱2台;集热器循环管道采用不锈钢波纹管Φ16-22,单路循环管道长度小于1.5米。混水循环水泵2台;太阳能测试系统一套;安装工具一套。测试系统1:平板集热器的安装倾角与建筑南立面夹角∠28°(与地面夹角62°);测试系统2:平板集热器的安装倾角与建筑南立面夹角∠0°(与地面夹角90°);试验开始,需测储水箱的试验水量,测量如下:打开上水阀门给储水箱上水,当水箱热水出水口流量稳定后,说明水箱已注满水,关闭上水阀门。随后进行储水箱放水试验,测量水箱能放出水的容量,测试结果:系统1储热水箱放水量97.5升;系统2储热水箱放水量97.4升。接下来按照规范要求进行测试仪器安装。[img=太阳能热水器测试系统,400,400]https://ng1.17img.cn/bbsfiles/images/2022/04/202204150910249656_2650_4136176_3.jpg!w690x690.jpg[/img]阳台壁挂太阳能系统作为高层住宅的一种清洁能源解决方案得到了普及,现有的阳台壁挂式太阳能热水系统在安装时为保证系统的效率要求集热器必须与建筑立面有15~30°的倾角,而集热器在建筑立面上倾斜安装,会影响到整个建筑的外观,并且会对下层住户的采光造成一定影响,降低住宅使用功能的舒适性。现在楼盘对建筑立面的效果要求越来越高,亟需解决壁挂太阳能与建筑完美结合的问题。而集热器垂直安装、嵌入建筑的南立面是一种有效的解决方案。我们对垂直安装与倾斜安装的太阳能热水系统热效率、日有用的热量、水箱温升等进行了研究。平板太阳能集热器是指吸热体结构基本为平板形状的太阳能集热器。它具有结构简单,维护方便,集热效率高,使用寿命长,可利用直射和散射太阳光等优点。它可用于产生40~80℃中等温度的热水,也可用于空气加热。平板集热器的基本结构主要由透明盖板、吸热体、保温层、边框外壳组成。其工作原理为:当太阳光透过透明玻璃盖板射到表面涂有太阳能吸收涂层的吸热体板上时,吸热体吸收太阳辐射能,并将吸收的太阳辐射能转换成热能。

  • 太阳能热水器能效检测器满足测试功能

    太阳能热水器能效检测器满足测试功能

    太阳能热水器能效检测器满足测试功能太阳能热水器能效检测器的热性能指标,日有用得热量(与标准GB/T19141相同)设备升温性能(与标准GB/T19141相似)储水箱保温性能(与标准GB/T19141有区别)太阳能热水器能效检测器试验及检验方法日有用得热量和温升性能试验先测试出一定太阳能辐照量情况下的日有用得热量,再折算出17mJ/m2条件下的日有用得热量。试验对气象条件和太阳辐照量的要求,为了解决折算的非线性问题,对试验条件给予了一定限制:a)环境温度8℃≤ta≤39℃;b)环境空气的平均流动速率≤34m/s;c)对于太阳集热器采光面正南放置和南偏东、南偏西放置且试验时间可以达到8h的太阳热水设备,H≥17mJ/m2;对于太阳集热器采光面南偏东、南偏西、正东、正西放置,但试验时间达不到8h的太阳热水设备,在当地太阳正午时4h到太阳正午时后4h期间,正南方向与太阳集热器同一倾角斜面上的太阳辐照量应≥17mJ/m2。GB/T19141要求冷水温度为20℃,试验结束时水温,温升25℃以上。工程要求冷水水温8℃≤ta≤25℃,折算成7mJ/m2辐照量的温升≥25℃。太阳能热水器能效检测器参数测量(1)太阳能辐照量的测量总日射表传感器应安装在太阳集热器高度的中间位置,并与太阳集热器采光平面平行,两平行面的平行度相差应小于±1°。总日射表传感器的安装位置应避免太阳能集热器的反射对其测量结果产生影响。应防止总日射表的座体及其外露导线被太阳晒热。在整个测试期间,总日射表不应遮挡太阳能集热器采光,并不被其它物体遮挡。对于太阳能集热器处在不同采光平面上的太阳热水设备,应根据太阳能集热器不同的采光平面分别设置总日射表。总日射表的放置位置和要求同上。(2)周围空气速率测量应分别测量太阳能集热器和贮水箱周围的空气流速。风速仪应分别放置在与太阳能集热器中心点同一高度和贮水箱中心点同一高度的遮荫处,分别距离太阳能集热器和贮水箱1.5~10.0m的范围内。[img=太阳能热水器能效检测器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/04/202204180909056758_2764_4136176_3.jpg!w690x690.jpg[/img](3)环境温度测量应分别测量太阳能集热器和贮水箱周围的环境温度。温度测量仪表应分别放置在与太阳能集热器中心点相同高度和贮水箱中心点相同高度的遮阳通风处,分别距离太阳能集热器和贮水箱1.5~10.0m的范围内。(4)贮水箱试验水量测量试验水量是指试验结束时贮水箱内的水在冷水进水状态下的水量。试验水量不包括管路和太阳能集热器或换热器内的水。对于贮水箱内的水是直流式加热的太阳能热水设备,可将流量仪表安装在太阳能热水设备的冷水进水管路上,通过测量计算试验结束和开始时流量仪表流量读数的差值,就可计算出贮水箱的试验水量。[img=太阳能热水器能效检测器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/04/202204180909287603_7258_4136176_3.jpg!w690x690.jpg[/img]对于贮水箱内的水是自然循环或强制循环加热的太阳能热水设备,可在设备的冷水进水管路上安装一块流量仪表,测量进入设备的总水量;在贮水箱水循环加热设备的下,循环管路与贮水箱连接口处安装另一块流量仪表,测量进入循环管路和太阳能集热器或换热器的水量。两块流量仪表测量的水量读数差值的绝对值就是贮水箱的试验水量。注意在设备注水过程中应通过贮水箱的下循环管向设备循环管路(包括太阳能集热器或换热器)注水。

  • 海洋光学发布 RaySphere系列测量系统用于太阳光模拟器的质量检测

    海洋光学(www.oceanopticSChina.cn)近日推出一款 RaySphere 光学测量系统,用以测量太阳光模拟器和其他辐射源的绝对辐照度。RaySphere系统可测量从紫外线到近红外光谱(380-1700nm)的不同光谱范围的绝对辐照度(mW/cm2/nm)。作为一种用于验证已安装的太阳能闪光灯输出的工具,RaySphere 特别适用于太阳光模拟器制造商以及研发实验室。太阳光模拟器的闪光可用于目的为根据光谱反应组合细胞像素的光电制造流程、以及目的为测量最终光电效能的光电制造流程。RaySphere 的系统具有必要的精确度和分辨率,以测量和分析闪光器的性能和稳定性,并通过高级的低频抖动方式触发电子设备为闪光测量计时。RaySphere 的刻度经过公认的认证实验室的确认,以确保精确的探测,并使太阳能闪光灯和太阳光模拟器的评估和资格认证符合由 ASTM 和 IEC(IEC60904-9 2007)等标准制定机构制定的标准。两台热电冷却探测器使太阳能闪光灯的光谱分析(380-1700nm)可复验性高且准确。第二种型号的 RayShere 含有一个冷却探测器,以测量最多 1100nm 的光谱。该系统同时包含高级、高速的电子设备,以及直观、强大的软件界面。极少的测量次数可实现在闪光期间,甚至于闪光间隔期间的完整光谱检测。此外,测量还可以由一个快速反应的发光二极管促发。该二极管可在百万分之一秒内通过增加闪光强度而做出反应。

  • 太阳能电池全套测试系统

    太阳能电池(光电材料)I-V特性测试系统 目前,石油、天然气等不可再生能源价格的居高不下,使得人类对太阳能电池(光电材料)的研究开发进入了一个新的阶段,国内很多实验室和科研院校也都加紧了对太阳能电池材料(光电材料)的研究和开发。 太阳能电池(光电材料)测试作为太阳能电池(光电材料)研究开发的一个环节,至关重要,需要专业的测试系统来完成。针对当前人们对太阳能电池材料(光电材料)的研究和开发,以及太阳能电池(光电材料)研究人员搭建太阳能电池(光电材料)测试系统的耗时耗力,我公司特推出太阳能电池(光电材料)测试系统,并已在很多太阳能电池材料(光电材料)研究、测试实验室广泛使用。 一、我公司太阳能电池(光电材料)测试系统的优势: 1. 技术服务全面 我公司始终把客户需求摆在首要位置,针对客户特殊需求量身定做,为客户提供全套解决方案,终身提供技术服务,为客户节省了搭建太阳能电池(光电材料)测试系统所消耗的时间和人力物力,同时也得到了客户的一致好评。 2. 针对性强 凭借雄厚的光电技术知识和行业经验,针对不同类型的太阳能电池(光电材料)以及客户对测试系统的不同需求,我公司对太阳能电池(光电材料)测试系统也做出了相应的调整,以达到较好的测试效果。目前,针对硅太阳能电池、多元化合物为材料的太阳能电池、功能高分子材料制备的大阳能电池、纳米晶太阳能电池等不同的太阳能电池,我公司也都搭建了不同的测试系统。 3. 性价比高 我公司太阳能电池(光电材料)测试系统采用国外知名公司仪器集成,信噪比高,性能稳定,技术先进,对太阳能电池(光电材料)的测试过程实现自动化,过程简单方便,测试结果在行业内也会具有一定的权威性和说服力。同时,我公司推出的整套太阳能电池(光电材料)测试系统具有很高的性价比。 4. 成熟的太阳能电池(光电材料)测试系统 凭借测试系统的高性价比以及全面的技术服务,我公司太阳能电池(光电材料)测试系统已在国内很多单位的实验室投入使用,包括清华大学等知名大学、国家权威的太阳能计量单位、中国科学院等研究机构以及众多的太阳能相关企业,经过大量客户对我公司太阳能电池(光电材料)测试系统的使用,证明了我公司的太阳能电池(光电材料)测试系统的成熟。 二、太阳能电池(光电材料)光谱响应测试系统简介 太阳能电池(光电材料)光谱响应测试,或称量子效率QE(Quantum Efficiency)测试,或光电转化效率IPCE (Monochromatic Incident Photon-to-Electron Conversion Efficiency) 测试等,广义来说,就是测量光电材料的光电特性在不同波长光照条件下的数值,所谓光电特性包括:光生电流、光导等。我公司的光谱测试系统由宽带光源、单色仪、信号放大模块、光强校准模块、计算机控制和数据采集处理模块组成。我们可以与用户密切协作,根据用户需要测试的样品的类型、测试指标、测试条件,设计和组建最适合每个客户测试需要的系统。 三、太阳能电池I-V特性测试系统简介 我公司太阳能电池I-V特性测试系统主要用来测试太阳能电池的I-V特性等。光源光谱和强度特性可模拟各种条件下的太阳光谱(AM0、AM1.0、AM1.5、AM1.5Global、AM2.0、AM2.0Global),稳定性高,均匀性好,均可达到A类标准,多种光照射面积尺寸;样品台可控温;高精度表头、可调负载和配套软件组成的系统能够通过计算机对测试参数进行设置,并且读取数据,在计算机内进行数据处理,绘制I-V和曲线和显示其它参数并打印输出;系统还可根据客户的具体情况和特殊需求进行相应的系统扩展太阳能电池(光电材料)IPCE/QE/量子效率/光谱响应测试系统   太阳能电池测试行业长期的经验,使得我公司太阳能电池(光电材料)IPCE/QE/量子效率/光谱响应测试系统始终处于行业领先位置。符合IEC, JIS, ASTM标准规定,我公司太阳能电池(光电材料)IPCE/QE/量子效率/光谱响应测试系统具有很高的稳定性和重复性。   作为光伏器件厂商和科研工作者,为了获得高效的产品,就需要一套高性能太阳能电池(光电材料)IPCE/QE/量子效率/光谱响应测试系统来帮助完成产品改进。我公司太阳能电池(光电材料)IPCE/QE/量子效率[font=宋体, MS So

  • 太阳辐射观测站基准太阳辐射监测仪

    太阳辐射观测站基准太阳辐射监测仪

    太阳辐射观测站基准太阳辐射监测仪太阳辐射观测站使用温度补偿检测器技术,它特别适合于气象网络和1.66秒的响应时间降低(63%)符合太阳能应用的要求。防水插座安装的签名黄色信号电缆,可在一个范围内的长度,天生防水插头。整体水平提高到壳体的顶部,可被视为没有去除遮阳板重新设计的单元,其中也包括连接器。镀金触点的连接器可以很容易地交换和重新校准。在干燥筒螺杆易于拆卸和更换干燥剂填充包提供方便。[img=太阳辐射观测站,400,400]https://ng1.17img.cn/bbsfiles/images/2022/07/202207050855440174_6281_4136176_3.jpg!w690x690.jpg[/img]气象辐射观测是地面观测业务中重要的观测项目之一,包括总辐射、发射辐射、散射辐射、直接辐射和净辐射,其中总辐射是辐射观测中基本的项目。太阳辐射观测站是一种应用于太阳辐射观测的短波太阳辐射观测站。它符合新的ISO和WMO标准的“一级”表技术指标。太阳辐射观测站是用来测量从180°视场,以W/m2为单位,入射在一个区域表面的太阳辐射通量,采取完全无源工作方式,利用一个热电偶传感器生成一个与辐射通量成正比的输出电压。由于使用了两个球型玻璃罩,减少了测量误差;特别是热偏差,所以传感器具有很高的测量精度。太阳辐射观测站的使用十分简单,用户仅仅需要一个精确的毫伏量级的电压表来读取数据。要计算辐射等级,电压必须除以灵敏度,而灵敏度是一个每一台仪器都提供的常数。可以与大多数常用的数据采集系统连接。可以用于科学气象观测,建筑物理学,气候和太阳光采集试验。通常的应用是作为气象站的一个部分来测量户外的太阳辐射。[img=太阳辐射观测站,400,400]https://ng1.17img.cn/bbsfiles/images/2022/07/202207050855590376_1581_4136176_3.jpg!w690x690.jpg[/img]

  • 太阳电池的基本结构与种类

    目前,单晶硅太阳电池的输出电压约为0.6V左右,其最大输出的功率和 太阳电池本身的效率与表面积有关。譬如说一个效率16%、6时的太阳电 池,最大输出功率约为2.5W。一个太阳电池输出电压和输出功率对大部分的 电器产品相对偏低,要和一般用电兼容或配合应用,就将多个太阳电池并联和串联起来形成模块(module),其中串联的功用,是为了提高输出电压,而并联的功用,是为了增加输出功率。同样的道理,若需要再提高模块的输出电压或 输出功率,多个模块并联或串联起来就形成数组(array)系统。而一般太阳能应 用系统(system),不仅只有电池、模块、或数组,还可能包括储电装置(storage devices)、功率调 器(power conditioner)、和安装固定结构(mounting structures),这些接口设备,统称为平衡系统(balance of systems)。下面,我们 就简单地介绍太阳电池的基本结构,了解太阳电池工作原理、制造程序,包括半导体材料。 在不同的材料和制造工艺程序下,会产生不同结构的太阳电池。但归纳而言,太阳电池最基本的结构可分为基板、p-n二极管、抗反射层、和金属电极 四个主要部分。基板(substrate)是太阳电池的主体,p-n二极管是光生伏特效应 的来源,抗反射层乃在减少入射光的反射来增强光电流,金属电极则是连接器件和外部负载。 所谓ingot-based的太阳电池是使用芯片(wafer) 当基板,芯片本身就是光生伏特的作用区。因为是用芯片作基板,一般就使用扩散(diffusion)工艺技 术,在p-型芯片上进行n-型扩散,或在n-型芯片上进行p-型扩散,形成p-n二极管。单晶娃和多晶硅太阳电池都是ingot-based,其芯片是由硅ingot切割而 得。工业界使用的太阳电池硅芯片,大都是p型。当然硅芯片的制造,不一定 非由ingot切割不可,也有其它特殊的方式,如ribbon或sheet制造方式。 薄膜太阳电池则可以使用玻璃、塑料、陶瓷、石墨,金属片等不同材料当基板,非晶或多晶薄膜光生伏特器件则沉积在基板上,基板本身并不参与光生 伏特作用。在薄膜太阳电池制造上,可使用各式各样的沉积技术,一层又一层 地把P-型或n-型材料沉积上去。常见的薄膜太阳电池有非晶硅、CUInSe2 (CIS)、CuInGaSe2 (CIGS)、和CdTe薄膜。随着薄膜技术的发展, microcrystalline,甚至nanocrytalline硅薄膜也被研究开发。薄膜太阳电池大优点就是生产成本较低,但其效率和稳定性较差。 III-V族(如GaAs、InP、GaN)太阳电池,则是使用不同的外延(epitaxy) 技术,如 metal-organic chemical vapor deposition (MOCVD),或 molecular beam epitaxy (MBE)方法,将p-型和n-型晶体直接长在芯片基板上,而基板本身通 常也不参与光生伏特作用。这样的epitaxy方式生长晶体的优点,使得电池结构 多样化,例如:异质结、多结、量子井、量子点、和超晶格等结构。正因如此,III-V族太阳电池通常具有较高的效率,但其生产成本也相对的偏高。 太阳电池的光照面一般都会有抗反射层或texture结构,来减少入射阳光的反射。如果没有的话,入射阳光会有约30%的反射损失,这对太阳电池而言足是相当严重的。晶硅太阳电池一般是使用氮化硅(SiN)来形成抗反射层,它不仅 能有效地减少入射光的反射,而且还有钝化(passivation)的作用,甚至能保 护太阳电池,有防刮伤、防湿气等功能。除了使用抗反射层外,一般单晶硅太 阳能电池,期光照的表面都会先经过texture处理,来更进一步地减少入射阳光 的反射。这个texture处理,会在表面形成大小不等的金字塔(pyramid)结构, 让入射光至少要经过芯片表面的二次反射,因此就大大地降低了入射光经过第 一次反射就折冋的几率。需要注意的是,因texture金字塔的大小约儿个um, 而一般n-型扩散的深度只有0.5um作用,所以二极管实际上是形成于textur金字塔的表面。[url=http://www.hyxyyq.com][color=#ffffff]手持万用表[/color][/url][url=http://www.hyxyyq.com][color=#ffffff]http://www.hyxyyq.com[/color][/url] 太阳电池需要金属电极一层来连接外部的电路。通常,光入射的表面有二条平行条状金属电极来提供外界连接的焊接处。背表面通常会全部涂上一层所谓的back surface field (BSF)金属层,在光入射的表面,会从条状金属电极,伸展出 一列很细的金属手指(finger)。BSF金属层可以增加载流子的收集,还可回收没 有被吸收的光子。金属finger的设计,除了要能有效地收集载流子,而且要尽 量减少金属线遮蔽入射光的比例,因光照面的金属线通常会遮蔽3〜 5%的入射 光。太阳电池金属电极用的材料通常是铝和其它金属的合金,但在薄膜太阳电池中,为了实现一体成型(monolithically)的要求,上层金属电极则会使用透明导电的氧化物 transparent conducting oxide (TCO)。 必须注意的是,有别于一般平板(flat plate)模块的结构,太阳电池还可以 使用额外的聚光器(concentrator)来增加入射光的强度。聚光器可以是一般透 镜,或是特殊结构的Fresne透镜,或者甚至是Fresnel zone plate。聚光器的使 用,可以大幅度地提高系统光照的有效面积。但是,聚光器要求太阳电池的正 射,因此应用上必须配合tracking系统。

  • 【转帖】自动除尘太阳能电池板提高能源效率

    高达240亿美元的太阳能电池板市场应该采用更先进的除尘技术。很多人都知道太阳能的优点,但很少人知道其致命弱点:尘土。很少量(0.00484367821 kg / m2)尘土就可以让太阳能电池板的能量转化率降低40%。  为了解决这个问题,科学家们把目光转向火星,人们把类似技术用在了火星上。美国宇航局和波士顿大学为执行火星任务开发了一种自清洁技术,用来对抗火星上的红色尘土。这种自清洁涂料可以帮助宇航员和航空设备清理太阳能电池板上的尘土。  目前该技术还没有实现商业化,其中包括一种带有尘土监测传感器的透明涂料。当电池板上尘土积累过多时,这些传感器会向涂料发射一个电荷,然后涂料会发出一束电子冲击波,通过有限能量震掉电池板上的尘土。每当尘土过多的时候,这种技术可以在两分钟之内最高可除去90%的尘土。

  • 太阳模拟器光源等级对太阳能电池测试的影响

    光伏行业发展初期,晶体硅电池和组件达到批量化生产时,BAA级的模拟器被行业普遍使用,但随着行业的发展和科学技术的进步,尤其是现在各种不同技术类型和不同规格的光伏电池/组件的产品的涌现,其B级光谱的限制性和对多标准板的要求以及测试误差的过大,对AAA级的模拟器成为行业的必然需求,即  A(光谱等级)A(辐照不均匀度等级)A(辐照不稳定性等级,通常指LTI)。  1.光谱对测试结果的影响  不同基材的电池光谱响应差别很大。实际上,即使基材相同的电池在生产过程中由于晶体生长或其它条件和工艺等的差异,也会导致光谱响应的差异,由于无法保证校准设备时使用的标准电池和其它被测电池的绝对一致性,因此如果要得到更为准确的结果,就需要高等级光谱的太阳模拟器。  2.光强均匀性对测试结果的影响  晶体硅太阳电池组件中单体电池之间焊接不良及同串单体电池IV特性不匹配等因素会导致输出功率降低。在工业上,为了防止由以上原因造成的热斑效应和功率消耗,在组件制造时一般都会在每十几片串联的电池片两端并上旁路二极管。这样做虽可降低组件的热斑效应,但同时也可能会使组件的IV特性曲线出现畸变。造成热斑效应的原因有很多,其中两个主要的原因是:一是电池组件本身工艺或品质造成的单体电池IV特性不匹配,二是遮盖等外界原因造成的组件受光不均匀。  因此,一个光强均匀性良好的太阳模拟器,可以通过测试从一定程度上反映出太阳电池组件的单体电池IV特性不匹配的问题。  模拟器的光均匀性还会影响测试结果的FF,如果模拟器的光均匀度不好,一般情况下,测试IV曲线的FF就会比实际值偏小。  3.辐照不稳定度对测试结果的影响  辐照稳定度对测试结果的影响是很容易理解的,模拟器辐照不稳定,就必然会造成测试结果不稳定,辐照稳定度保证了所测试的I-V特性是在同一条件下量测的,为数据的可参考性提供了前提。

  • 【科普】有机太阳能电池(OSCs)

    [font=&]太阳能是指太阳的热辐射能,又被称为“太阳光线”。地球上自生命诞生以来。就主要依靠太阳提供的热辐射生存。而在化石燃料日趋减少情况下,面对能源的巨大需求和日趋严重的环境污染问题,太阳能是大自然赋予人类的一个取之不尽、用之不竭的能源宝库。太阳能电池又称为“太阳能芯片”或“光电池”,是一种利用太阳直接发电的光电半导体薄片。它只要被满足在一定光照条件下,瞬间就可以输出电压及在有回路的情况下产生电流。在物理学上可以称为太阳能光伏。太阳能电池是通过光电效应或者光化学效应直接把光能转换成电能的装置。[/font][font=&]目前占主导地位的太阳能电池主要以无机半导体材料构成,主要包括单晶硅、多晶硅和非晶硅无机太阳能电池。经过多年的发展,硅太阳能电池技术最为成熟,在大规模应用和工业化生成中占据主导地位。但是,提纯硅工艺复杂,成本高,造成在制造硅太阳能电池过程中能耗大、污染高等问题,同时制备工艺复杂且成产设备昂贵,限制其发展。高效的非晶硅薄膜无机太阳能电池包括硫化镉、碲化镉、砷化镓等多晶薄膜,但是由于镉、砷等元素有毒性,同时会造成严重环境污染,因而这类材料的发展也必然受限。有机太阳能电池,顾名思义,就是由有机材料构成核心部件的半导体材料替代无机材料,以光伏效应而产生电压形成电流,实现太阳能发电的效果。[/font][align=center][font=&][img]https://img.chemsoc.org.cn/web/2020/04/%E5%9B%BE%E7%89%8748.png[/img] [/font][/align][align=center][font=&]太阳能电池的广阔应用(网络图)[/font][/align][font=&]有机太阳能电池(OSCs)具有低成本、质量轻、超薄、柔性、易于大面积制备等诸多优点,在便携式、柔性电池、光伏建筑供能等领域具有广阔的应用前景。[/font][align=center][font=&][img]https://img.chemsoc.org.cn/web/2020/04/%E5%9B%BE%E7%89%8749.png[/img] [/font][/align][align=center][font=&]柔性透明电极与柔性有机太阳能电池的示意图(南开大学提供)[/font][/align][align=center][font=&][b]有机太阳能电池发展历程[/b][/font] [/align][font=&]1958年美国加州大学伯克利分校Kearns和Calvin将镁酞菁夹在两个功函不同的电极之间,检测到了200 mV的开路电压;表现出了光伏效应,成功制备出了第一个有机太阳能电池(Organic Solar Cells,简称OSCs),但是能量转换效率(Power Conversion Efficiency, 简称PCE)非常低。科学家们也一直在尝试不同的有机半导体材料,但是所得到的PCE都很低。直到1986年,柯达公司邓青云博士创造性制备双层异质结有机太阳能电池,以四羧基苝的一种衍生物(PV)作为受体,铜酞菁(CuPc)作为给体,制备双层活性层,其PEC1%。异质结的引入,就像是给有机太阳能电池注入新鲜血液一样,为其开辟了新的研究方向。有机太阳能电池也逐渐成为科学家的研究热点。[/font][align=center][img]https://img.chemsoc.org.cn/web/2020/04/%E5%9B%BE%E7%89%8750.png[/img][/align][align=center][font=&]邓青云教授[/font][/align][align=center][img]https://img.chemsoc.org.cn/web/2020/04/%E5%9B%BE%E7%89%8751.png[/img][/align][align=center][font=&]双层有机太阳能电池结构和PV、CuPc的化学结构[/font][/align][align=center][font=&]Appl. Phys. Lett., 1986, 48, 183-185[/font][/align][font=&]1992年,Sariciflci等人发现,激子在有机半导体材料和富勒烯的界面上可以快速实现电荷分离,并且激子分离成的电子和空穴在界面上不复合,从而更利于电荷的收集。次年他们首次将富勒烯作为活性层中的受体材料应用于有机太阳能电池器件中,并且取得较好的光伏器件能量转换效率。在很长一段时间内,富勒烯都成为有机太阳能电池的主要受体材料。1995年,诺贝尔化学奖得主Heeger等人首次提出体异质结结构(Bulk Heterojunction Structure)的有机太阳能电池,创造性将富勒烯衍生物(PCBM)和聚苯乙炔(MEH-PPV)溶液混合,并旋涂加工,获得具有三维互传网络结构的有机太阳能电池活性层,其PCE高达2.9%,自此,体异质结有机太阳能电池成为主流,并且进入快速发展期。2003年Sariciflci等人使用聚3-己基噻吩(P3HT)作为给体,富勒烯衍生物(PC61BM)为受体,制备体异质结有机太阳能电池,PCE达到3.5%。随着加工工艺的不断改善和提高,基于富勒烯衍生物作为受体材料的有机太阳能电池PCE已经超过10%。同时,性能优良的给受体有机半导体的不断被开发,PCE不断提高。中科院化学所李永舫院士、华南理工大学曹镛院士、中科院化学所侯剑辉研究员、北京大学占肖卫教授、南开大学陈永胜教授、香港科技大学颜河教授、中南大学邹应萍教授等国内外众多有机太阳能电池领域的科研团队的不懈努力以及卓越的科研工作,有机太阳能电池的PCE已经达到18%,取得巨大进展。[/font][align=center][img]https://img.chemsoc.org.cn/web/2020/04/%E5%9B%BE%E7%89%8752.png[/img][/align][font=&]另外,McGehee教授的研究报告表明,基于P3HT/PC70BM和PCDTBT/PC70BM体系的有机太阳能电池各项器件参数均表现出良好的稳定性,经过理论模拟,有机太阳能电池的的理论寿命可达7年以上。有机太阳能电池的高能量转化效率以及高稳定性,充分展现出其商业应用前景。[/font][align=center][font=&][img]https://img.chemsoc.org.cn/web/2020/04/%E5%9B%BE%E7%89%8753.png[/img] [/font][/align][align=center][font=&]有机太阳能电池工作4400 h之后的器件参数[/font][/align][align=center][font=&]Adv. Energy Mater. 2011, 1, 491–494[/font][/align][align=center][font=&][b]有机太阳能电池的器件参数[/b][/font] [/align][font=&]太阳能电池器件在光照条件下测试电流密度-电压([i]J[/i]-[i]V[/i])曲线,从中可以获得重要的输出特征参数:开路电压([i]V[/i][sub]oc[/sub])、短路电流([i]J[/i]sc)、填充因子([i]FF[/i])以及能量转换效率(PCE)。[/font][align=center][font=&][img]https://img.chemsoc.org.cn/web/2020/04/%E5%9B%BE%E7%89%8754.png[/img] [/font][/align][align=center][font=&]太阳能电池的电流密度-电压(J-V)曲线[/font][/align][font=&]开路电压([i]V[/i][sub]oc[/sub])是指在没有电流回路(正负电极断路)时经过光照后器件产生的电压,即太阳能电池的最大输出电压,单位为V;开路电压由给体的HOMO能级和受体的LUMO能级的能级差决定。短路电流([i]J[/i]sc)是指在外加电场为零时,受光照的器件在形成回路(正负电极短路)时所能产生的电流,即太阳能电池的最大输出电流;单位为A/cm[sup]2[/sup]或mA/cm[sup]2[/sup]。短路电流可根据[i]J[/i]-[i]V[/i]曲线中,电压为0时的电流值获得。理论上,吸收的光子越多,短路电流越大。填充因子([i]FF[/i])是电池具有最大输出功率时的电流和电压的乘积与短路电流和开路电压乘积的比值,理论最大值为1。能量转换效率(PCE)是指太阳能电池将太阳能转化为电能的效率,是输出功率([i]P[/i]m)与入射光功率([i]P[/i]in)的比值。[/font][align=center][font=&][img]https://img.chemsoc.org.cn/web/2020/04/%E5%9B%BE%E7%89%8755.png[/img][/font] [/align][font=&]式中[i]V[/i][sub]oc[/sub]是在开路时的光电压;[i]J[/i]sc是在零电压时的电流密度,即短路电流密度;FF为填充因子。当入射光为AM 1.5太阳光时辐射照功率为[i]P[/i]in = 100 mW/cm[sup]2[/sup],这也是实验室实验条件下的常用模拟光照辐射照功率。[/font][align=center][font=&][b]有机太阳能电池的器件结构和工作原理[/b][/font] [/align][font=&]有机太阳能电池的工作原理主要包括四个重要步骤:(1)活性层吸收光子并产生激子;(2)激子扩散到给受体界面层;(3)激子在界面层分离成正负电荷,并迁移至正负电极;(4)正负电极收集正负电荷。[/font][font=&]有机太阳能电池的器件结构可以分为单层Schottky器件、双层异质结器件、体异质结器件和叠层器件等。[/font][align=center][font=&][img]https://img.chemsoc.org.cn/web/2020/04/%E5%9B%BE%E7%89%8756.png[/img][/font][/align][align=center][font=&]单层Schottky器件结构和工作原理[/font][/align][font=&]由于两个电极功函数不同,有机半导体与具有较低功函数电极之间将形成Schottky 势垒(能带弯曲区域W),即内建电场。光照下,有机半导体材料吸收光后产生激子。由于较大的库仑力使得这些激子不能分离成自由电子和空穴。有机半导体内激子的扩散长度一般都很小,只有扩散到Schottky势垒附近的激子才有机会被分离,所以单层Schottky结构电池的能量转换效率很低,在目前的有机太阳能电池研究中很少再使用这种结构。[/font][align=center][font=&][img]https://img.chemsoc.org.cn/web/2020/04/%E5%9B%BE%E7%89%8758.png[/img][/font][/align][align=center][font=&]双层异质结器件结构和工作原理[/font][/align][font=&]在双层异质结器件中,给体和受体有机材料分层排列于两个电极之间,形成平面型给体-受体界面。而且阳极功函数要与给体HOMO能级匹配;阴极功函数要与受体LUMO能级匹配,这样才有利于电荷收集。双层异质结器件结构中电荷分离的驱动力主要是给体材料和受体材料的LUMO能级之差,即给体和受体界面处的电子势垒。在界面处,如果电子势垒较大,大于激子结合能,激子的解离更为有利,电子易转移到有较大电子亲和能的材料上(较低LUMO),从而使得激子有效分离,明显高于单层结构,使得器件性能获得很大提升。双层异质结器件的最大优点是同时提供了电子和空穴传输的材料。当激子在D-A界面产生电荷转移后,电子在受体材料中传输至阴极收集,空穴则在给体材料中传输至阳极收集。[/font][align=center][font=&][img]https://img.chemsoc.org.cn/web/2020/04/%E5%9B%BE%E7%89%8759.png[/img] [/font][/align][align=center][font=&]体异质结器件结构和工作原理[/font][/align][font=&]在本体异质结器件结构中,给体和受体在整个活性层范围内充分混合,D-A界面分布于整个活性层,其工作原理和双层异质结器件结构相似,都是利用D-A界面效应来转移电荷。主要区别在于:(1)本体异质结中的电荷分离产生于整个活性层,而双层异质结中的电荷分离只发生在界面处的空间电荷区域。因此,本体异质结器件中的激子可以高效解离,同时激子符合降低,从而减少或者避免由于有机物激子扩散长度小而导致的能量损失;(2)由于界面存在于整个活性层中,本体异质结器件中载流子向电极传输主要是通过粒子之间的渗滤作用,双层异质结器件中的载流子传输介质时连续空间分布的给受体,因此双层异质结中具有相对高效的载流子传输效率。[/font][font=&]本体异质结可以通过将含有给体和受体材料的混合溶液以旋涂方式制备,也可以通过共同蒸镀的方式获得,还可以通过热处理的方式将真空蒸镀的平面型双层薄膜转换为体异质结器件结构。[/font][align=center][font=&][img]https://img.chemsoc.org.cn/web/2020/04/%E5%9B%BE%E7%89%8760.png[/img] [/font][/align][align=center][font=&]两个子电池组成的叠层器件结构和工作原理[/font][/align][font=&]叠层器件结构电池是将两个或两个以上的电池单元以串联的方式做成一个器件。一般子电池单元按照活性材料能隙不同采取从大到小的顺序从外向背电池串联,即与电池非辐射面(背面)最近的机构单元,其活性层材料的能隙最小。子电池1中产生的空穴和子电池2中产生的电子扩散至连接层并复合,每个子电池中只有一种电荷扩散至相对应的电极。叠层结构电池可利用不同光吸收谱的材料来改善电池对太阳光的吸收,减少高能量光子的热损失,最终提高电池效率。由于串联的叠层电池的开路电压一般大于子单元结构,其转换效率主要受光生电流的限制。因此叠层电池设计的关键是合理地选择各子电池地能隙宽度和厚度,并保证各个电池之间地欧姆接触,以达到高效能量转换效率地目的。[/font][align=center][font=&][b]有机太阳能电池展望[/b][/font] [/align][font=&]有机太阳能电池作为一种新兴高效太阳能电池,近年来得到飞速发展,虽然有机太阳能电池的PCE以及达到18%,初见商业化应用曙光,但是和成熟的无机太阳能电池相比,有机太阳能电池无论从能量转换效率、机理还是器件稳定性等方面都处于尚未成熟阶段。因此,成熟的无机太阳能电池技术以及研究思路对有机太阳能电池的发展具有重要的借鉴意义。挑战与机遇并存,随着科学家对有机太阳能电池的不断深入的探索,高能量转换效率、高稳定性、可大规模生产的有机太阳能电池必将很快问世,有机太阳能电池的商业化前景可期。[/font][font=&]参考文献:[/font][font=&][1] D. Kearns, M. Calvin, J Chem Phys 1958, 29, 950-951.[/font][font=&][2] C. W. Tang, Appl. Phys. Lett. 1986, 48, 183-185.[/font][font=&][3] N. S.Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Science 1992, 258, 1474 [/font][font=&][4] G. Yu, K.Pakbaz, A. J. Heeger, Appl. Phys. Lett. 1994, 64, 3422-3424.[/font][font=&][5] G. Yu, J. Gao,J. C. Hummelen, F. Wudl, A. J. Heeger, Science1995, 270, 1789.[/font][font=&][6] C. H.Peters, I. T. Sachs-Quintana, J. P. Kastrop, S. Beaupré, M. Leclerc, M. D.McGehee, Adv Energy Mater 2011, 1, 491-494.[/font][font=&][7] Y. Cui,H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C.He, Z. Wei, F. Gao, J. Hou, Adv. Mater. 2020, 1908205.[/font][font=&][8] 张剑,杨秀程,冯晓东.有机太阳能电池结构研究进展[J].电子元件与材料, 2012, 31(11):75-78.[/font][font=&][9] 黄辉.有机太阳能电池的发展、应用及展望[J].工程研究-跨学科视野中的工程, 2017, 9(06): 547-557.[/font][font=&][10] 袁峰,周丹,谌烈,徐海涛,陈义旺.有机太阳能电池空穴传输材料的研究进展[J].功能高分子学报, 2018, 31(06): 530-539.[/font][align=right][color=#808080]来源:化学通讯微信公众号,闵阳/撰稿[/color][/align]

  • 用温度计可检测太阳伞的好坏

    你的伞质量如何,能不能抗紫外线呢?许多人未必清楚。夏天日光度很强,脸部、手臂及腿部等受紫外线伤害后,很容易出现红斑、热疹、疖肿等皮肤疾病。选择用伞来防护紫外线是一种有效的方法。 然而,防紫外线伤害,我们首先要了解U鄄VB段的紫外线造成人体皮肤伤害最大,看一把伞能不能防紫外线,主要是看其对UVB紫外线透过率的防护能力。 用紫外线分光光度仪检测实验表明,用不同材料所制做的伞,其防紫外线透过率的能力不一样。 如银胶面伞,紫外线透过率仅为0.01%;白布面伞透过率为0.98%;亚麻布面伞为2.17%;花布面伞为9.92%;尼龙绸面伞为10.34%,紫外线透过率越小,其防护能力越好。 国家尚未出台统一检测防紫外线标准,但在上述检测中发现,尼龙绸面伞的防紫外线能力最差,买时应注意。 如果自己想检测伞的防紫外线质量,有一个简单的方法:将几把不同材料的伞撑开放在室外,每把伞的里外各放一个同型号的温度计,暴晒10分钟后,观察伞内外温度计的相差度,如果内外温度计差度大,说明伞的隔热、防紫外线功能好,反之则质量不好。 夏天防紫外线伤害不只是伞,还可以使用防晒霜、太阳帽、竹编帽、斗笠等工具进行防晒。

  • 太阳能电池测试中的不确定因素及排除

    太阳能电池测试中的不确定因素及排除要想在各种太阳能电池测试系统,如:IPCE测试,量子效率/QE测试,光谱响应测试,IV测试中从根本上全面降低测试结果的A类和B类不确定度,保证测试数据呈现最佳的精度和准确度,就要充分考虑整个测试过程中所涉及的全部环节,在太阳能电池测试过程中不确定度的主要来源有以下几种:人员操作、仪器设备、标准溯源、测试方法、环境条件等等。◆人员操作 人员的操作在测试结果的不确定度分析中是很重要的。如在同一测试过程中不同的测试人员的操作流程、参数读取时机、对同一结果的读数都不可能完全相同;即使同一操作人员在两次实验中的操作也会有所不同,这些都会导致测试数据的不准确。 解决方案: 实现计算机全程自动化控制,依据国际太阳能电池测试的最新标准、最科学测试方法编制成的计算机软件可实现一键式操作,将避免人员操作差异;能最大程度的保证系统测试数据的重复性。◆仪器设备 测试系统中的相关设备的准确度、精度是影响测试数据的直接因素。也是实验结果权威性、科技性的根本保障。如构建测试系统中的各功能部件性能不好,虽然每个部件的不确定度分量不大,但其会造成各部分设备不确定度的叠加,使最终结果的不确定度很大,从而使测试的最终数据不准确。 解决方案: 测试系统选用国际知名品牌、世界顶尖技术的锁相放大器、斩波器、万用表等仪器设备进行构建,这些高端的专业设备可以为您有力的保障测试数据的权威性、准确性。◆标准溯源 测试系统的计量/校准标准也是系统不确定度的主要来源之一,在太阳能电池光谱响应/量子效率(QE/IPCE)测试系统中所要用到的标准探测器;I-V特性测试系统中标定太阳能模拟器用的标准电池的性能好坏,其校准数据的不确定度都严重影响着测试结果。 解决方案: 采用性能稳定可靠、线性度好、受温度等环境影响小的标准设备,其校准数据必须可溯源至国际、国内各著名计量校准机构(如NREL、NIST、NIM等)。◆测试方法 目前太阳能电池的种类很多,各种类电池的特性也均有不同,测试方法的选择选择的正确与否对测试结果有着很大的影响,例如:交流测试方法选用于响应速度快的电池;直流测试法则更适用于测响应速度较慢的电池,交流方法中对系统光源的交流调制的频率设置等都会影响您测试的结果。 解决方案: 确定合理的测试方案必须要依据依据ASTM 、IEC等国际标准,最重要的是要根据大量的电池测试实验经验,这就要求设备提供商不能仅仅有很强的研发能力、专业技术基础,更为重要的是要有众多客户的成功案例。◆环境条件[/f

  • 有晶体硅太阳能电池分析的吗?

    最近我们公司新买了台Hitachi S4800,用于晶体硅太阳能电池的分析。太阳能电池的尺寸较大(可达156mm×156mm),而样品台的尺寸很小(最大只有1 inch),因此只能从太阳电池上取一小块区域进行观察。但是取样面临这两个问题:一是由于太阳能电池易碎,而我们没有专门的取样工具,通常采用直接敲碎的方法取样,结果很难取到想要观察的区域;二是取到的样品的断面很不平整,很不好观察。所以想请大家推荐取样的方法或工具,以及获取平整断面的方法,谢谢大家。

  • 太阳辐射仪光伏电站监测仪器

    太阳辐射仪光伏电站监测仪器

    太阳辐射仪光伏电站监测仪器太阳辐射仪可以根据响应时间、零点偏移、年稳定性、温度响应、倾斜响应、光谱灵敏度等指标辨别性能的优劣。以光伏发电站为例,根据光伏发电质量需要,在光伏环境监测仪上提供太阳辐射仪,直接辐射传感器和反射传感器等配置方案。具有2%精度和毫秒级响应时间的太阳辐射仪可以让太阳追寻系统自动调节光伏发电板的佳辐射位置,提高光伏发电站的整体发电效率。[img=太阳辐射仪,400,400]https://ng1.17img.cn/bbsfiles/images/2022/06/202206060918526325_663_4136176_3.jpg!w690x690.jpg[/img]太阳太阳辐射仪是由2个太阳辐射仪组成的净辐射传感器,主要用于科研级的能量平衡研究。仪器分为短波测量和远红外长波测量两部分。其中短波辐射由2个短波太阳辐射仪进行测量,长波辐射由2个长波太阳辐射仪测量。与以往的净辐射传感器相比,性能得到大幅提升,具有更高的精度,而体积则更加小巧,重量减轻。长波太阳辐射仪中可选配一个PT100温度传感器,用于测量内部温度,以进行温度修正。为了防止凝露、霜降对观测产生的不利影响,内置了加热装置,为长波太阳辐射仪进行加热,使其在低温等恶劣环境下也能正常工作。技术参数:温度范围:-40~80℃测量范围:0~2000W/m2温度传感器:pt100,用户也可以根据自身的需要自行选择其他温度传感器短波辐射表ISO级别:二级短波光谱范围:305~2800nm短波校准溯源:WRR长波光谱范围:4500~50000nm长波校准溯源:ITS90国际温标太阳辐射值在1000w/m2时的窗口热偏移:15w/m2加热时功耗:1.6W(12VDC时)[img=太阳辐射仪,400,400]https://ng1.17img.cn/bbsfiles/images/2022/06/202206060919098823_847_4136176_3.jpg!w690x690.jpg[/img]

  • 黑磷-提升太阳能电池效率的新思路

    研制高效的低成本的太阳能电池是全球共同面临的巨大挑战。染料敏化太阳能电池因其具有成本低廉、工艺简单、可小型化、环境友好等优点,展现出广阔的产业化前景。而实现太阳能电池高转化效率的首要途径是尽可能提高太阳光的利用率,这就要求电池电极能最大限度地捕捉太阳发出的各种光线,并实现高效的光电转换。新材料的研发为提升太阳能电池的效率提供了新思路。黑磷,作为一种具有二维层状结构的直接带隙半导体材料,展现出优异的光电性能,被广泛视为新的“超级材料”,在半导体工业、光电器件、光学探测、传感器、光热治疗等多个领域展现出巨大的潜在应用价值。近期研究发现,大小仅为几个纳米的黑磷量子点还具有很高的近红外消光系数,可实现近红外光的高效吸收。近期,中国科学院深圳先进技术研究院喻学锋研究员与中南大学杨英副教授以及肖思副教授等合作,创新性地将黑磷量子点应用于构筑染料敏化太阳能电池的光阴极。团队利用黑磷量子点的近红外强吸收和高光电转换能力,将黑磷量子点沉积于多孔导电聚苯胺薄膜表面,制备出可红外光响应的光阴极,与光阳极形成互补的光吸收,将器件的光吸收范围扩展至可见-红外波段,从而组装成可双面进光的准固态染料敏化太阳能电池。电池性能测试结果表明,沉积黑磷量子点后光阴极实现了对低能红外光子的充分利用,并有效增加了器件的光生载流子浓度,从而将太阳能电池的光电转换效率提高了20%。该研究成果表明黑磷在太阳能电池、光伏器件等领域的巨大应用潜力。相关论文发表在AdvancedMaterials(DOI: 10.1002/adma.201602382),并被选为当期封面故事。巨纳集团低维材料在线商城91cailiao.cn,专注材料服务,主要销售以低维材料为代表的相关的实验室耗材和工具,比如各类二维材料(包括狄拉克材料),一维材料,零维材料,黑磷BP,石墨烯,纳米管,HOPG,天然石墨NG,二硫化钼MoS2,二硒化钼MoSe2,二硫化钨WS2,hBN氮化硼晶体,黑磷,二碲化钨WTe2,二硫化铼ReS2,二硒化铼ReSe2量子点,纳米线,纳米颗粒,分子筛,PMMA.....积极为广大科研院所提供更加优异的低维材料,推动新型材料的研究。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制