探头测试器

仪器信息网探头测试器专题为您提供2024年最新探头测试器价格报价、厂家品牌的相关信息, 包括探头测试器参数、型号等,不管是国产,还是进口品牌的探头测试器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合探头测试器相关的耗材配件、试剂标物,还有探头测试器相关的最新资讯、资料,以及探头测试器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

探头测试器相关的厂商

  • PinTech品致,全球示波器探头第一品牌,示波器探头技术标准倡导者,专业提供差分探头,电流探头,示波器探头,隔离探头,高压放大器,功率放大器,数字万用表,示波器等耐压测试仪,高压测试棒,中国大陆免费电话:020-82510899,欢迎在线咨询!
    留言咨询
  • PinTech品致,仪器仪表品牌,示波器探头技术标准倡导者,“两点浮动”电压测试创始人“Pintech品致”商标,“品致”两字取之《易经》坤卦第二章“品物咸亨”“至哉坤元”中的“品至”二字,至谐音致,蕴含精雕细琢出精品,视产品的品质为生命之含义。经过品致人多年来孜孜不倦地辛勤付出,公司技术日益成熟,在不断推陈出新的探索过程中,获得了30多项发明专利和技术专利;至今为止,公司已推出了70多款产品,包括数字示波器,信号发生器、有源差分探头、高压探头、高压电表、电流探头、静电发生器、高压放大器、超高压电源等产品,深受广大工程师的青睐。
    留言咨询
  • 深圳市品控科技开发有限公司,位于广东省深圳市,是一家集生产、研发、贸易为一体的公司,贸易部在福永,工厂在公明。我公司技术人员有着深厚的测量测控技术基础,承接各种自动化非标设备产品开发及工业自动化产品检测监控软件开发。 品控科技是一支一流的产品服务队伍,我们的宗旨是为客户省钱,并解决产品问题。 公司产品有:应变测试、应力测试仪、应变片、电路板分板机、温度验证系统、温度探头、无线温度传感器,并承接系统工程解决方案。代理品牌:西门子触摸屏、西门子PLC,阿克蒙德应变片、KYOWA应变片、NMB应变片、阿克蒙德应力测试仪Pentronic温度探头、铂热温度探头、温度验证系统、走刀式分板机等。 公司一贯坚持“质量第一,用户至上,优质服务,信守合同”的宗旨,凭借着高质量的产品,良好的信誉,优质的服务,产品畅销全国近三十多个省、市、自治区。竭诚与国内外商家双赢合作,共同发展,共创辉煌!
    留言咨询

探头测试器相关的仪器

  • 多探头测试系统 400-860-5168转2128
    MPA4(Multi Probe Adapter)系统是德国CK公司皮肤测试仪的一个多功能测试平台,可连接最多四个相同或不同的皮肤测试探头。每种探头均有不同的分析软件和显示方式。可选配的探头包括:Corneometer CM825(水分测试探头)Mexameter MX18 (黑色素和血红素测试探头)Tewameter TM Hex(水分流失测试探头TEWL)Colorimeter CL400(皮肤颜色测试探头)Skin-pH-Meter PH905 (酸碱度测试探头)Glossymeter GL200 (皮肤光泽度测试探头)Frictiometer FR700(皮肤摩擦力测试探头)、Skin-Thermometer ST500(皮肤表面温度测试探头)、Temperature & Rel. Air humidity (环境温度湿度测试探头)欢迎致电:010-62186640
    留言咨询
  • 探头初粘力测试仪 400-860-5168转6027
    探头初粘力测试仪产品介绍:探头式初粘力试验仪 胶带探针式初粘力试验仪 全程自动 触屏显示又叫探针式初粘力试验机(Probe Tack Tester),是胶带初粘力测试的方式之一,主要用于各种胶带、粘合剂类等各种不同产品的初始粘着力测试,产品满足ASTM D2979 的规范等标准,适合各类研究机构、胶粘剂企业、不干胶等检验检疫机构等。测试原理:使用5mm直径研磨的平面探头压在黏胶面,完全接触之后,再反方向恒速完全分离所产生的 大力,这个 大力值即为所测试样的初粘力,机器会记录离开时 大拉力数值。 探头初粘力测试仪全程自动 触屏显示特点:1.数据收集系统具有即又易用的特点,是当前先进的测量仪器。2.采用微电脑控制技术,,精度高,操作简便。3.采用高精度传感器,度可以达到重量感应器标准的+0.1%。4.先进的静音电机和滚珠丝杠,传动运行平稳,位移测量更加准确。5.高清晰LCD显示,操作一目了然6.连接微型打印机:可实现实验日期、试验结果,直接及时打印.7.具有试验力值保持功能,查看实验结果更加方便。8.无级调速可在1—800范围内任意设定精度探头初粘力测试仪技术参数:1.负荷范围:0-20N2.精 度:0.5级3.分 辨 率:0.01N4.试验速度:24 ipm (英寸/分),61cpm (公分/分),610 mm/min(0.001~800mm/min可调 )5、试验行程:600mm(标配)或1000mm(可定做)6、速度控制范围:1mm/min~800mm/min7、试验机尺寸:530*266*1450或1810 mm8、供电电源:220V,50Hz9、重量:75kG 探头式初粘力试验仪 胶带探针式初粘力试验仪 全程自动 触屏显示标准配置:主机、电源线、探头一副、试验板3片,夹持辅具一副。
    留言咨询
  • 埋地钢质管道阴极保护邦信ER腐蚀速率探头BX-ER100/6技术参数●标准材质:碳钢(可定制)●防腐层破损点面积:0.4cm2 1.0cm2 10cm2●试片标准厚度:100-500μm(可定制)●电缆长度:6m或12m(可定制max30m)●执行标准:ANSI/NACE RP0104-2004 The Use of Coupons for Cathodic Protection Monitoring Applications产品说明该产品用于交直流杂散电流引起的管道腐蚀速率监测以及阴极保护有效性的验证。可以监/检测:探头试片腐蚀速率、通电电位、极化电位、交流电压、直流电流密度、交流电流密度、防腐层破损点扩散电阻等参数。河南邦信ER腐蚀速率探头是一个精密的电子产品,使用一个试片模拟防腐层缺陷。该产品安装在临近管道的土壤中,探头试片通过测试桩与管道电连接。使用配套的BXICL-02i数据记录仪测量该探头试片的电阻变化可以得到试片的腐蚀速率(该过程无需开挖、取出试片)。此外,该数据记录仪还可以测量和记录管道电位、交流电压、电流密度、扩散电阻等参数。BXICL-02i数据记录仪可以安装在阴极保护测试桩中。BXICL-02i数据记录仪的数据可以通过接口导入计算机,也可以使用GSM/GPRS网络无线传输。 注意事项:1、产品易碎,搬运时要小心轻放,以免摔碎,震裂探头,不许扯拉电缆线作搬运工具。2、在埋设以前应置放于阴凉干燥处,避免阳光爆晒和雨淋。3、避免与其它化学药品放在一起。河南邦信防腐材料有限公司阴极保护厂家
    留言咨询

探头测试器相关的资讯

  • 质构仪在乳制品质地分析中的应用及探头选择
    呈固体块状的均质样品乳制品中的塑性粘性固体有人造黄油、黄油、奶油干酪、乳清干酪、乳化干酪等产品,此类产品关键物性特点是硬度即延展性、融化性与温度相关性、加工过程中的硬度变化、内聚性等。而蜡质和绵软弹性固体样品则主要是意大利干酪、荷兰干酪、羊乳酪、白乳酪、软质乳酪等,通过质构仪可分析其硬度、表面粘附性、成熟度、货架期、水分丧失引起的表面结构变化等。典型实例 1:奶油的铺展性分析(挤压/挤出实验) 该探头专业用于检测黄油、人造黄油的铺展性、蜡质性的特殊探头,通过实验可得到样品的硬度、粘附性、柔软度等指标。实验结果解读:如图所示为不同状态下黄油的测试曲线。曲线的正向峰值反映了黄油样品的硬度,可见 Dry 的黄油由于含水量少,故而在质地上较为坚硬,而 Wet 的黄油则硬度最小,Good 的黄油硬度处于二者之间,硬度的大小也反映了反映了产品的柔软度,硬度小则柔软度高,反之则柔软度差。从图中可见,太干或太湿的黄油在硬度上都会与“Good”产品存在明显的差异。典型案例 2:传统与素食奶酪产品的质地分析(穿刺实验)实验结果解读:用小直径的柱形探头做奶酪的穿刺实验,穿刺实验主要比较的是破裂力(正向峰值前面出现的小的峰)、硬度(正向峰值)、穿刺做功(正峰面积)、粘附力和粘附性。通过质构仪分析可见,素食产品在硬度和表面粘性上均小于传统奶酪,素食产品的内部均一性要优于传统产品(穿刺过程中力量基本不发生变化),而传统产的内部随着挤压的进行力量在缓慢的增大,可见其均一性不如素食产品,即脂肪含量的不同使得素食产品含水量较少且更脆,可见素食产品还需要在硬度、表面粘性、含水量等方便进行优化与改良。典型实例 3:黄油的硬度检测分析实验结果解读:人造黄油改善了黄油脂肪含量高的问题,为了使人造黄油在口感和质地上与黄油更加的接近,生产商需要了解二者在质地和口感上存在的差异具体表现在哪里。切线切割探头可以反应切割黄油时的平均力量(最大峰值),以及挤压做功(正峰面积),通过力量与做功的比较发现,人造黄油切割力与做功都远小于天然黄油,由此可见在质地上人造黄油更为柔软。
  • 新品发布|苏州纽迈冻土高灵敏内置探头新品发布,邀您见证!
    3月28日,苏州纽迈分析于2024年第八届全国岩石物理学术研讨会举行冻土高灵敏内置探头新品发布。会议现场,我们有幸与各位岩石物理方向的参会代表共同见证纽迈成长,详细介绍了冻土高灵敏内置探头新产品。产品介绍:纽迈分析在原有一英寸夹持器探头的基础上深度研发。相比传统的外置探头,针对一英寸样品将夹持器探头线圈的内径从70mm缩减到32mm,大幅度提高信噪比,同时节省测试时间,能够满足一些特定的样品例如冻土,煤炭等低温常压的测试需求。应用范围:适用于短弛豫,弱信号的冻融循环、冻结损伤实验。显著优势:1.信噪比提高五倍,节省大量测试时间;2.最短回波时间从120μs缩减为60μs;3.温度平衡(-25-30℃)时间从45min降低到30min。
  • 易轻忽之肯綮:扫描电镜工作距离与探头的选择(下)——安徽大学林中清32载经验谈(10)
    p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " strong 【作者按】 /strong 前文【 a href=" https://www.instrument.com.cn/news/20200616/551389.shtml" target=" _self" strong span style=" font-family: 宋体, SimSun font-size: 16px color: rgb(0, 176, 240) " 扫描电镜工作距离与探头的选择(上) /span /strong /a 】我们通过实例展示并探讨了:工作距离与探头的不同组合与样品表面形貌像的分辨力之间存在怎样的关系,列表对比了不同工作距离和探头组合的优缺点。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 本文将进一步以实例来展现并探讨,正确的工作距离和探头的选择,将会对扫描电镜的测试结果和状态的维持产生怎样的影响。给大家在进行扫描电镜测试工作时,对于工作距离及探头的选择,提供一定参考。 /span /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-family: 宋体, SimSun color: rgb(0, 176, 80) font-size: 18px " 一、工作距离和探头的选择与表面形貌像的形成 /span /h1 p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 如前面一再强调,形成扫描电镜表面形貌像的基础在于反映表面形貌高低差异的形貌衬度。形成形貌衬度的因素,取决于探头对样品信号的接收角度,而形成这个接收角度的主要因素,依据样品特性及信息需求的不同分为两个层面。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 第一个层面:低倍,观察的样品表面形貌起伏较大(大于20纳米)。要表达这类信息,需要相应的形貌衬度也较大。只有在探头、样品和电子束之间存在一定角度,所形成的形貌衬度才能充分展现这种位置上的差异。 strong 此时样品仓探头(L)将作为接收样品信息的主体 /strong 。不同的形貌衬度,要求这三者之间形成的最佳接收角不同,需要进行不停的调整。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 实际操作时,由于探头和电子束中轴位置是固定的,因此这个角度的改变就落实在样品位置的调整上。工作距离和样品台倾斜角的改变是进行这个角度大范围调整的唯二之法。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 第二个层面:高倍,观察区域缩小,样品表面起伏减弱,形貌高低位置的差异也将削弱,样品电子信息的溢出角度所形成的形貌衬度足以呈现样品表面高分辨形貌特征。因观察的细节小,小于10纳米,信息扩散对这些细节的干扰将左右最终结果。用小工作距离、镜筒内探头来获取充分的二次电子信息是最佳方案,此时形成高分辨表面形貌像的关键点在于 strong 镜筒内探头(U)能否充分获取样品的低角度电子信息 /strong 。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 在扫描电镜的实际测试过程中,所要获取的样品表面形貌信息,绝大部分都落实在第一个层面中。因此充分利用样品仓探头来形成样品的表面形貌像,就应当成为日常测试工作的主要选择。以此为基础,依据样品所表现出的特性及所需获取的样品信息,来改变测试条件,将会使得测试工作真真做到有的放矢,获取的样品信息也更充分。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 十分可惜,由于认识上的偏差,对工作距离和探头的选择思路往往与此背道而驰。将小工作距离做为获取高分辨像的唯一途径,进而推广为常规测试条件,这容易形成样品信息不充分、假象多、压缩样品操作空间、增加镜筒污染和样品损伤几率的结果。这些事例都将在本文中给予充分的体现。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun font-size: 16px " 要使表面形貌像含有充足的样品信息,关键是如何调控样品仓探头(L)和镜筒内探头(U)对样品信息的获取。而这个调控工作的关键点又在于工作距离的选择 /span /strong span style=" font-family: 宋体, SimSun font-size: 16px " 。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 下面将以工作距离的改变为主轴,从表面形貌像的信息量、样品荷电的应对、磁性材料的观察这几个方面来探讨不同的工作距离和探头选择究竟能带来怎样的测试结果。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun font-size: 16px " 1.1& nbsp 工作距离的改变与表面形貌像的获取 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 利用扫描电镜对样品的表面形貌进行观察,其过程和我们对日常事物的观察并无不同。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 要充分观察一个物体,在这个物体与眼睛离开一定距离时,获取的信息最多。太远,无法分辨;太近,虽然看的细致,但往往只能观察到局部,获取的信息精细但贫乏。即所谓鼠目寸光,可明察秋毫,也容易以偏概全、以点代面。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 获取一个物体信息的过程都始于全貌观察。由整体到局部、远观到近考。近考是以远观为基础,而物体的大部分信息都是在一定距离下从各种不同角度去观察来获得。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 对于扫描电镜来说也是如此:探头如同人的眼睛,工作距离就如同物体所处的观察位置。大量的样品信息都应当在一个特定的工作距离上,从侧面(样品仓探头)和顶部(镜筒内探头)来获取。少量的细节信息( strong & lt 10nm /strong )需要靠近样品,用镜筒内探头,小工作距离来观察。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 这个特定的工作距离各电镜厂家都不相同,个人认为日立冷场扫描电镜是15mm。下面将从各种不同工作距离获取的信息对比开始,用实例来展示各种工作距离和探头组合的优劣,同时分享我在测试时对其选择的流程,供大家参考。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun font-size: 16px " 1.1.1图像的清晰度和辨析度 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 清晰度:是指影像上各细部纹理及其边界的清晰程度。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 辨析度:是指影像上各细部纹理及其边界的分辨程度。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 瑞利判据:一个爱里斑中心与另一个爱里斑的第一级暗环重合时, 刚好能分辨出是两个像。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 依据瑞利判据,图像辨析度要求的是图像足够清晰而并不追求绝对清晰。在获取扫描电镜图像时常常发现,图像的高清晰并不一定带来高分辨。许多高清晰的图像其细节分辨并不好,而某些图像虽然清晰度较差,但并不影响对微小的细节信息进行分辨。辨析度高才能带来高分辨能力,这种情况在对不同放大倍率和采用不同测试条件获取的表面形貌像进行对比时会经常出现,前面有充分的实例给予展示。 /span /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 395px height: 193px " src=" https://img1.17img.cn/17img/images/202007/uepic/74932b14-2635-4e9f-9673-707661babbbf.jpg" title=" 扫描电镜工作距离与探头的选择1.png" alt=" 扫描电镜工作距离与探头的选择1.png" width=" 395" height=" 193" border=" 0" vspace=" 0" / /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 395px height: 186px " src=" https://img1.17img.cn/17img/images/202007/uepic/3d61fa9f-335d-4a6c-bbbf-6fdb80bff7c4.jpg" title=" 扫描电镜工作距离与探头的选择2.png" alt=" 扫描电镜工作距离与探头的选择2.png" width=" 395" height=" 186" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 关于扫描电镜图像的清晰度与辨析度,以后还有专文探讨。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun font-size: 16px " 1.1.2样品仓探头的最佳工作距离 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 各电镜厂家的样品仓探头位置设计不同,因此它们的最佳工作距离也不相同,日立冷场电镜在15mm。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 如上篇的实例所示:样品仓探头在工作距离小于8mm时接收到的样品信息较少,小于4mm基本接收不到样品信息。大于8mm接收到的样品信息逐渐增多,15mm达到最佳的成像效果,大于15mm接收效果及图像立体感缓慢减弱。 /span /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 395px height: 236px " src=" https://img1.17img.cn/17img/images/202007/uepic/b4abd10c-402d-4db3-825b-afe30e288b80.jpg" title=" 扫描电镜工作距离与探头的选择3.png" alt=" 扫描电镜工作距离与探头的选择3.png" width=" 395" height=" 236" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 依据样品仓探头对样品信息的接收效果,可将工作距离大于8mm称“大工作距离”,小于4mm称为“小工作距离”。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 小工作距离下,对样品信息的接收局限在镜筒内探头,接收到的样品信息较为单调。虽有利于在高倍时呈现小于10nm的样品细节信息,但不利于全面获取样品的表面信息。故将样品至于样品仓探头的最佳工作距离就十分必要。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 样品仓探头位置设计的越合理,利用探头组合来改变表面形貌像中SE2:BSE的比值和信息接收角度的范围就越大,同时样品的可操控范围也越大。这将使得图像中的各种衬度信息更能得到充分的展现,形貌像的信息内容也越多。& nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 下面将从图像的分辨能力、信息量、倍率变化范围以及样品操控等几个方面来对比大、小工作距离测试的优劣。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun font-size: 16px " A)大工作距离与图像细节的分辨能力 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 对于图像细节分辨力,目前在认识上存在一种简单的单调思维方式。所谓简单的单调思维方式就是用部分代替整体。如某测试条件在高倍时对极细小的细节拥有非常好的测试效果,就想当然的认为在低倍时也会拥有非常好的测试结果。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 实际情况往往并非如此,高倍有好的细节分辨力,不代表这个测试条件就一定能在低倍获得良好的结果。这在上篇有充分的展示,本文将再以一个实例来介入该问题的探讨。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 二氧化硅介孔样品。选择小工作距离、镜筒探头这组测试条件有利于对孔道信息的展现。但是否在低倍观察二氧化硅颗粒的整体信息时,也有同样的表现?请看以下这一组图片: /span /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 395px height: 546px " src=" https://img1.17img.cn/17img/images/202007/uepic/6242e319-3fc5-4cfa-9265-f8cab4995494.jpg" title=" 扫描电镜工作距离与探头的选择4.png" alt=" 扫描电镜工作距离与探头的选择4.png" width=" 395" height=" 546" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 上述实例可以看到,图像分辨力的主要影响因素是动态变化的。随着样品特性以及信息需求的变化,形成形貌像的主导因素也会发生改变。因此测试条件也应随之变更,否则将无法获得充分的样品信息和图像的高分辨力。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 不少样品表面形貌细节的高分辨观察并不需要用小工作距离来进行。在大工作距离下就可以获取非常优异的高分辨像,且高分辨像的空间伸展更加充分。如下图:& nbsp & nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " /span /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 395px height: 264px " src=" https://img1.17img.cn/17img/images/202007/uepic/6a4a204e-120c-43f4-83ce-37a47487776c.jpg" title=" 扫描电镜工作距离与探头的选择5.png" alt=" 扫描电镜工作距离与探头的选择5.png" width=" 395" height=" 264" border=" 0" vspace=" 0" / span style=" font-family: 宋体, SimSun text-align: justify text-indent: 2em " & nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 仪器性能优异,即便是介孔样品的介孔信息,在大工作距离下采用镜筒内探头或混合探头,该信息也并非无法观察。但因上探头的接收效果变差,图像整体清晰度及信号量有所减弱,但介孔却可被明确分辨,且能保证一定的图像质量。 /span /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 395px height: 539px " src=" https://img1.17img.cn/17img/images/202007/uepic/17ae15f9-81ab-4e92-8e5c-5b4df1f6d027.jpg" title=" 扫描电镜工作距离与探头的选择6_看图王.png" alt=" 扫描电镜工作距离与探头的选择6_看图王.png" width=" 395" height=" 539" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun font-size: 16px " B)大工作距离获取的图像,空间信息更充分 /span /strong /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 395px height: 301px " src=" https://img1.17img.cn/17img/images/202007/uepic/bc5317f4-233a-496d-95ba-0fb5e2424ad9.jpg" title=" 扫描电镜工作距离与探头的选择7.png" alt=" 扫描电镜工作距离与探头的选择7.png" width=" 395" height=" 301" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 高分子膜和二氧化硅小球,左图采用大工作距离,下探头从侧向接收样品信息,图像的形貌衬度充分,空间立体感强烈,信息更丰富。右图小工作距离,只能是镜筒内探头从顶部接收样品信息,形貌衬度薄弱。图像如同被压扁,空间信息贫乏,整体分辨力不足。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun font-size: 16px " C)大工作距离有较大的倍率变化空间 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 采用大工作距离测试,获得图像的倍率变化空间大。有利于在原位从低倍到高倍进行倍率的大范围改变,获取样品的信息更全面,形成的样品信息系统性更为优异。 /span /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 395px height: 336px " src=" https://img1.17img.cn/17img/images/202007/uepic/2a84df37-7a41-498a-af58-38005c84c34c.jpg" title=" 扫描电镜工作距离与探头的选择8.png" alt=" 扫描电镜工作距离与探头的选择8.png" width=" 395" height=" 336" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 小工作距离的起始倍率较高,对低倍获取样品的全貌有所限制,特别是应对那些体积较大的样品。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun font-size: 16px " D)大工作距离有利于样品做大范围移动 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 工作距离越大样品的可移动范围也越大,越有利于我们从多个侧面来对样品进行观察。特别是对空间差异较小的样品,大角度的倾斜,可改变探头获取样品信息的角度,将有利于充分展现样品的空间形态,减少误判。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun text-indent: 2em " /span /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 395px height: 212px " src=" https://img1.17img.cn/17img/images/202007/uepic/6b060682-9fe3-4a92-bcd3-caad054258a4.jpg" title=" 扫描电镜工作距离与探头的选择9.png" alt=" 扫描电镜工作距离与探头的选择9.png" width=" 395" height=" 212" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 以上多个实例,充分展示大工作距离测试所带来的强大优势,下面将对大工作距离、样品仓探头组合做重点探究。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun font-size: 16px " 1.1.3大工作距离、样品仓探头组合的测试优势 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 样品仓探头在大工作距离测试时,如同从侧上方观察样品,获取的样品表面形貌衬度要远大于从样品顶部采用镜筒内探头所获取的结果。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 形成表面形貌像的优点:空间信息丰富,立体感强,样品信息更充分,可减少假象的形成,低倍时图像的分辨能力强,Z衬度更优异,受荷电影响极小。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/0adc0222-c481-4f28-b16b-2c48174c697e.jpg" title=" 扫描电镜工作距离与探头的选择10.png" alt=" 扫描电镜工作距离与探头的选择10.png" / /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/f57a85d1-c7fd-4ee6-9c89-080d03abda74.jpg" title=" 扫描电镜工作距离与探头的选择11.png" alt=" 扫描电镜工作距离与探头的选择11.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 样品仓探头(下探头)获取的图像形态对工作距离、样品倾斜角度、加速电压的改变都比较敏感,这为充分获取样品信息提供足够的保障,可以多维度展现样品的形貌特征。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun font-size: 16px " A)工作距离的改变对下、上探头接收样品信息的影响 /span /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/90c24635-fbff-4738-8b75-e7266d0ce577.jpg" title=" 扫描电镜工作距离与探头的选择12.png" alt=" 扫描电镜工作距离与探头的选择12.png" / /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/a76b631c-75f0-4fe5-8b91-d4cb2b251d97.jpg" title=" 扫描电镜工作距离与探头的选择13.png" alt=" 扫描电镜工作距离与探头的选择13.png" / /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun font-size: 16px " B)样品倾斜对下、上探头接收样品信息的影响 /span /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/7a00753c-32a0-4541-9a54-31ebcb1df725.jpg" title=" 扫描电镜工作距离与探头的选择14.png" alt=" 扫描电镜工作距离与探头的选择14.png" / /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/041513de-536d-41ce-9892-254c4612bbe9.jpg" title=" 扫描电镜工作距离与探头的选择15.png" alt=" 扫描电镜工作距离与探头的选择15.png" / /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/85154b75-b112-4a41-b918-0adf46978691.jpg" title=" 扫描电镜工作距离与探头的选择16.png" alt=" 扫描电镜工作距离与探头的选择16.png" / /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun font-size: 16px " C)加速电压的变化对上、下探头接收样品信息的影响 /span /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/2c486494-f5cf-49e0-8105-9654120bd323.jpg" title=" 扫描电镜工作距离与探头的选择17.png" alt=" 扫描电镜工作距离与探头的选择17.png" / /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun font-size: 16px " 1.1.4& nbsp 大工作距离、样品仓探头组合的测试劣势 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 下探头位于样品侧上方,直接面对的是低角度电子信息。低角度位置上分布的主要是背散射电子,故以下探头为主形成的表面形貌像,容易受背散射电子在样品中扩散的影响。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 结果是:高倍图像的清晰度不足,十纳米以下的细节容易被掩盖,随着镜筒内探头被添加进来,此现象所改善。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 样品仓探头对以二次电子为主导的电位衬度及二次电子衬度信息的展现较差。具体实例如下: /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/23d449e2-83bf-48f6-83fe-1848a196b968.jpg" title=" 扫描电镜工作距离与探头的选择18.png" alt=" 扫描电镜工作距离与探头的选择18.png" / /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/45799b39-6caa-4e64-afc4-ad88cad42370.jpg" title=" 扫描电镜工作距离与探头的选择19.png" alt=" 扫描电镜工作距离与探头的选择19.png" / /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun font-size: 16px " 1.1.5大工作距离测试有利于材料的缺陷分析 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 通过对以上大工作距离下各种探头组合的优、缺点展示可见:无论哪种组合都有局限,很难用一种条件包打天下。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 大工作距离条件下,可轻松切换上、下探头,对比不同探头获取的不同样品讯息,可得到单一探头组合所无法展现的异常现像,这将有利于对材料进行缺陷分析。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 如:在大工作距离条件下,切换上、下探头,获取样品表面的电位衬度不同。通过对比因不同的电位衬度所展现的图像形态差异,可以得到样品表面局部被污染或氧化的信息。下面是两个我遇到的非常成功案列。 /span /p p style=" text-align:center" span style=" font-family: 宋体, SimSun font-size: 16px " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/d203ac91-933a-4634-bc34-aba2b70f6678.jpg" title=" 扫描电镜工作距离与探头的选择20.png" alt=" 扫描电镜工作距离与探头的选择20.png" / /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun font-size: 16px " 1.2工作距离和探头的选择与样品荷电的应对 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 样品荷电现象指的是:样品中由于电荷累积形成荷电场,该荷电场对样品表面信息的正常溢出产生影响,在形貌像上叠加形成异常亮、异常暗或细节磨平的现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " & nbsp & nbsp 不同能量的电子信息受到荷电场的影响程度也会不一样。能量弱小的二次电子极容易被荷电场所影响,使得由其为主形成的表面形貌像上,荷电现象显得较为严重。如果减少二次电子的含量,表面形貌像上的荷电现象将会减轻。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 采用混合探头进行测试时,加大工作距离可减少形貌像中二次电子信息的含量,有效改善荷电的影响。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " & nbsp /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/98dc7be3-89b7-4746-b791-20c77add4ded.jpg" title=" 扫描电镜工作距离与探头的选择21.png" alt=" 扫描电镜工作距离与探头的选择21.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " & nbsp & nbsp /span br/ /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 下探头接收的主要是背散射电子。应对样品荷电,大工作距离下单选下探头常常是一个极其有效的方法。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/ee2e6d7a-1c62-4111-8aa3-a7b13975e33b.jpg" title=" 扫描电镜工作距离与探头的选择22.png" alt=" 扫描电镜工作距离与探头的选择22.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 样品的荷电现象及应对方式,后面将有专文加以探讨。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun font-size: 16px " 1.3磁性样品的观察 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 物质的磁性来自核外轨道电子自旋。因此严格来说,所有物质都带有一定磁性,都可被称为:磁性材料。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 原子核外都是成对电子,电子之间的磁矩相互抵消,所以无论物质进不进入磁场都对外不显露磁性,称“反磁性”。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 原子核外有不成对电子,不成对电子在热扰动影响下杂乱排列,形成原子或分子间磁矩相互抵消。进入磁场后,不成对电子受磁场作用克服热扰动的影响,按磁场方向有序排列,对外表现出磁性。取消外加磁场,不成对电子在热扰动影响下又进入杂乱排列状态,显现的磁性消失,这就是“顺磁性”。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 将不成对电子换成“磁畴”,所谓“磁畴”指的是多个同方向电子的集合,这类物质进入磁场后表现出的磁性非常强。外加磁场达到一定值,撤除磁场,热扰动无法使磁畴恢复无序状态,形成极强的磁滞现象。这就是“铁磁性”。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 高分辨扫描电镜为了使镜筒内探头获取更多的样品表面电子信息,物镜磁场对样品仓做一定量的泄露,称“半内透镜物镜”设计。这种类型的物镜,当具有“顺磁”或“铁磁”等性质的样品靠近时,会被物镜的漏磁磁化并吸入物镜,污染镜筒并干扰磁透镜的磁场。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 采用大工作距离观察,在样品远离物镜达到一定值以后,这种影响将会减弱直至消失,镜筒也很难被其污染。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 顺磁及铁磁性物质的表面细节都比较粗大,用样品仓探头在大工作距离条件下获取的表面信息往往更优异也更充分。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 如果扫描电镜在大工作距离上有强大的成像能力,可轻松获取高质量的几十万倍高分辨形貌像,则对这些材料的表面形貌测试将不会受到任何限制。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 关于物质的磁性及磁性物质的区分,以及在扫描电镜测试时该如何应对,这些都将在下一篇经验谈中有详细探讨。 /span /p p style=" text-align:center" strong span style=" font-family: 宋体, SimSun font-size: 16px " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/de374333-8a9e-44df-a56b-15ef53770d09.jpg" title=" 扫描电镜工作距离与探头的选择23.png" alt=" 扫描电镜工作距离与探头的选择23.png" / /span /strong /p p style=" text-align:center" strong span style=" font-family: 宋体, SimSun font-size: 16px " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/257f0ab6-4546-4706-a3b8-b2ce7ba015a4.jpg" title=" 扫描电镜工作距离与探头的选择24.png" alt=" 扫描电镜工作距离与探头的选择24.png" / /span /strong /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-family: 宋体, SimSun font-size: 18px color: rgb(0, 176, 80) " 二、大、小工作距离对样品热损伤的影响 /span /h1 p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 大工作距离,电子束的离散度较大,会使得电子束能量也发生较大程度的离散,对样品的热损伤也会减少。应对容易被热损伤的样品,采用大工作距离测试也是重要方式之一。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/6d474a4f-8cd6-424b-bc86-8378e70bd334.jpg" title=" 扫描电镜工作距离与探头的选择25.png" alt=" 扫描电镜工作距离与探头的选择25.png" / /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-family: 宋体, SimSun font-size: 18px color: rgb(0, 176, 80) " 三、大工作距离与仪器状态的维持 /span /h1 p br/ /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 没有好的仪器状态,仪器调整的再优异都无济于事。要保持良好的仪器状态,维持样品仓、镜筒环境的真空是基础。由于清洁镜筒极为困难,故对其环境的维持也最为关键。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 镜筒污染除了物质的磁性质,还来自以下两个方面: /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 1. 样品中含有的各种挥发物。因此扫描电镜测试对样品的要求是:样品尺寸尽可能的小,固定样品所用的胶体尽可能少,样品表面尽可能地处理干净、干燥。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 2. 电子束从样品表面轰击出来的各种极性或非极性物质,这类物质在镜筒表面的吸附性超强。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 减少镜筒污染,控制样品是一方面,更关键的是将样品远离物镜。样品靠镜筒越近,进入镜筒的污染物会成倍增加,更不用说那些所谓的磁性物质。无论那种类型物镜,长期在小工作距离下测试,仪器状态都无法得到保证。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 本人的S-4800使用十几年了,测试量很饱满,长期坚持大工作距离测试,同时对样品严格控制,因此从09年仪器安装至今,灯丝未更换、仪器也从未做过专门的大保养,但却一直都能保持极佳的工作状态。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 下面以一组拍摄于2019年,用各种低电压、大工作距等较差的测试条件,拍摄的碳球高分辨图像来结束本章节。& nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /span /p p style=" text-align:center" strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/36ce59dc-a082-44a5-88fa-d060a32c294f.jpg" title=" 扫描电镜工作距离与探头的选择26.png" alt=" 扫描电镜工作距离与探头的选择26.png" / /strong /p p style=" text-align:center" strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/844c4116-35ce-491a-8fab-009e54f4e3d4.jpg" title=" 扫描电镜工作距离与探头的选择27.png" alt=" 扫描电镜工作距离与探头的选择27.png" / /strong /p p style=" text-align:center" strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/b8494443-4a3c-451c-bbbf-da813c4e2337.jpg" title=" 扫描电镜工作距离与探头的选择28.png" alt=" 扫描电镜工作距离与探头的选择28.png" / /strong /p p style=" text-align:center" strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/e4c326c7-d26c-464f-b986-51f56c1082f7.jpg" title=" 扫描电镜工作距离与探头的选择29.png" alt=" 扫描电镜工作距离与探头的选择29.png" / /strong /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-family: 宋体, SimSun font-size: 16px " span style=" font-family: 宋体, SimSun font-size: 18px color: rgb(0, 176, 80) " 四、结束语 /span /span /h1 p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 样品仓探头和镜筒内探头是从不同角度来获取样品信息。它们获取样品信息的侧重点不同,所适合应对的样品及展现的样品信息特征也不一样。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 镜筒内探头获取的样品信息以二次电子为主,对尺寸小于20nm的样品细节影响小,故图像清晰度高,二次电子衬度及边缘效应充分,电位衬度明显。但由于是从顶部通过物镜来获取样品信息,形貌衬度不足,使得其对于较粗大的样品细节(20nm以上)信息获取效果不佳,荷电应对能力差。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 样品仓探头获取的样品信息是背散射电子和二次电子的混合信息,背散射电子为主导。由于背散射电子的影响,高倍图像清晰度不足,对20nm以下的样品细节分辨影响较大,几纳米的样品细节几乎无法分辨。但该探头从样品的侧上方获取样品信息,形貌衬度及Z衬度充足。对低倍下观察表面起伏较大的细节信息(大于20nm)有极其明显的优势。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 改变工作距离的主要目地就是为了调控样品仓探头和镜筒内探头对样品表面信息的接收,形成最佳的效果。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 工作距离越小,越有利于镜筒内探头对样品信息的获取。过小的工作距离,样品仓探头接收不到样品信息,整个表面形貌像的特征都由镜筒内探头来决定。有利于展现10纳米以下的细节,但低倍时图像效果差,信息类型较为单一。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 大工作距离有利于样品仓探头对样品表面信息的接收,同时也能兼顾镜筒内探头接收样品信息。两个探头信息的合理组合,将使获取的形貌像内容更加充实。各种衬度信息的组合越合理,获取的样品信息越丰富,形貌分析的手段更多样,形成的表面形貌假象也越少。大工作距离测试的缺点是镜筒探头接收效果不佳,10纳米以下细节质量退化较严重。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 加大工作距离会使得电子束的离散度增加,从而降低样品热损伤的程度。但对图像清晰度有影响,超过一定值(过度)也会影响到图像细节分辨。该影响也会遵循适度性的原则,不同样品、不同的形貌细节,影响程度不同。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 在工作距离与探头的选择中,工作距离的选择是基础。只有工作距离合适了,探头的作用才能发挥出来。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 扫描电镜的每次测试都会有一个初始工作距离的选择,个人认为这个值应满足以下条件:1. 样品信息尽可能丰富,能为后续调整指明方向;2. 样品的操作空间尽可能大,使得样品能够充分移动;3. 图像的信息尽可能多,使得后续调整更容易;4. 尽可能兼顾样品分析;5. 离物镜尽可能远,保护镜筒,远离样品磁性及污染物的影响。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 对日立的冷场扫描电镜来说这个工作距离应该是15mm。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 加速电压、束流、工作距离、探头这四个测试条件的正确选择是获取高质量扫描电镜测试结果的基础。在工作距离和探头的选择上,目前存在的曲解极其严重,不利于充分获取样品信息。希望本文能给大家提供一个全新的视野。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun font-size: 16px " 参考书籍: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 《扫描电镜与能谱仪分析技术》 张大同 2009年2月1日& nbsp /span span style=" font-family: 宋体, SimSun text-indent: 2em " 华南理工出版社 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 《微分析物理及其应用》 丁泽军等 2009年1月& nbsp /span span style=" font-family: 宋体, SimSun text-indent: 2em " 中科大出版社 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 《自然辩证法》 恩格斯 于光远等译 1984年10月& nbsp /span span style=" font-family: 宋体, SimSun text-indent: 2em " 人民出版社& nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 《显微传》 章效峰 2015年10月& nbsp /span span style=" font-family: 宋体, SimSun text-indent: 2em " 清华大学出版社 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 16px " 日立S-4800冷场发射扫描电镜操作基础和应用介绍& nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun text-indent: 2em " 北京天美高新科学仪器有限公司& nbsp /span span style=" font-family: 宋体, SimSun text-indent: 2em " 高敞 2013年6月 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun text-indent: 2em " img style=" max-width: 100% max-height: 100% float: left width: 85px height: 131px " src=" https://img1.17img.cn/17img/images/202007/uepic/4d9b5e9c-3ce3-4651-9e2d-ceb0eb6b94de.jpg" title=" 林中清.jpg" alt=" 林中清.jpg" width=" 85" height=" 131" border=" 0" vspace=" 0" / 作者简介: /span /strong span style=" font-family: 宋体, SimSun text-indent: 2em " 林中清,1987年入职安徽大学现代实验技术中心从事扫描电镜管理及测试工作。32年的电镜知识及操作经验的积累,渐渐凝结成其对扫描电镜全新的认识和理论,使其获得与众不同的完美测试结果和疑难样品应对方案,在同行中拥有很高的声望。2011年在利用PHOTOSHIOP 对扫描电镜图片进行伪彩处理方面的突破,其电镜显微摄影作品分别被《中国卫生影像》、《科学画报》、《中国国家地理》等杂志所收录、在全国性的显微摄影大赛中多次获奖。& nbsp /span strong span style=" font-family: 宋体, SimSun text-indent: 2em " & nbsp /span /strong /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun text-indent: 2em " 延伸阅读: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) font-family: 宋体, SimSun text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200616/551389.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " 易轻忽之肯綮:扫描电镜工作距离与探头的选择(上)——安徽大学林中清32载经验谈(9) /a /span /strong /span /p

探头测试器相关的方案

  • 质构仪有哪些探头
    质构仪常规探头: 1.柱形探头可以有不同材质如不锈钢、树脂、铝合金等等,尺寸由2mm-100mm,可测弹性、硬度、延展性、回复性和坚实性等参数; 2. 针形探头可测量样品表皮硬度、穿刺强度等参数 3. 锥形探头可测量样品硬度、稠度等流变特性 4. 球形探头可测量薯片酥脆性、肉类弹性。。根据测试需求、样品不同等不同因素,又有许多特殊多功能探头,如轻型切刀、面团拉伸、精细刀具、检测钳口等等
  • PH计如何选择合适的探头?酸度计如何选择合适的电极?
    PH如何使用大家都知道,接上电源线,接上电极(探头)线,再将电极(探头)放入溶液中就可以了,但是,往往有很多人发现测量的数据和实际的数据有出入,就是仪表不准确的问题,而出现仪表不准确的问题往往和我们电极(探头)的选用有很大的关系,目前市场上的PH电极(探头)有上百种型号,而这些型号都是根据不同的工况条件而专门研制出来的,我们现实的工况条件也有很多种,如:污水、纯水、高纯水......,面对这么多的电极(探头)型号和这么复杂的工况条件,如何选择正确的电极(探头)是决定仪表测量是否准确的关键,此方案综合了各类工况和各种电极(探头)型号,方便大家在选择PH电极(探头)时,能够做到尽可能的准确。
  • 基于光纤耦合显微探头的光致发光/拉曼测量方案
    光致发光和拉曼光谱是材料研究的重要技术手段,但样品可能具有多种形状和大小,或不易移动。采用光纤耦合、能够适合特殊样品的光学探头进行探测显得尤为重要。由Superhead光纤耦合的探头、iHR光谱仪及CCD探测器组成的模块化光致发光、拉曼测量系统,可进行在线、远程的光致发光和拉曼分析测量,大大拓展了测量系统的灵活性。

探头测试器相关的资料

探头测试器相关的试剂

探头测试器相关的论坛

  • 示波器高压探头的操作说明及使用注意事项

    操作说明:连接探头衰减端的地线(鳄鱼夹)到好的接地点或可靠的接地测试端。连接BNC头到示波器的BNC输入端口。选择示波器要求的量程范围。注意:请务必在连接测试前把高压电源关闭。注意事项:请勿将测试设备的接地线从地面接线柱上移开。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/04/202404021025091607_2636_5294479_3.jpg!w690x690.jpg[/img]接地连接是探头安全操作的一个关键点。当高压测量的时候,如果没有这种连接将可能导致人身伤害或者对连接的示波器、探头产生损害。在探头测试端测试连接高压前,要先连接好地线,并且地线连接不能轻易挪开,直到高压测试端远离高压源。不能把接地线与高压电源连接或者把探头测试端接地。打开高压源前,要保证身体的任何部位都没有和测试设备接触。测量电压时,请牢记被测电压是实际读数的 1000 倍。在移走接地夹前,要把探头高压测试端从高压源上断开。

  • 示波器电流探头,探头的选择及使用

    正确的探头选择会扩展和增强仪器的性能,而错误的探头选择往往会降低你的系统性能。对探头特性的深思熟虑会帮助保证你的仪器性能满足你的应用要求。虽然对合适的探头主要考虑是它的负载影响和信号逼真度的传送。但物理参数例如:探头尺寸大小、电缆长度和与被测装置互相连接的适配器对你测量的成功可能更重要。在高频段正确使用探头也是很重要的。 许多信号源都有一个接地参考点(OV),用无源的或有源的单端探头都能很好地工作。如果信号源的参考点不是OV,就应使用差分测量法,否则会发生短路现象,损坏仪器。 不要把示波器与地隔离开而浮置起来。用单端探头做差分测量是很危险的。通常示波器的输入端与地之间接有10pF或15pF电容,也有少数大型示波器在输入端与地之间接有100pF的电容,若用它做差分测量,由于存在不平衡的容性负载,使信号扭曲。 量无零点参考信号时,用差分探头能解决这些问题,用两个探头分别接在示波器的两个通道上,设置示波器显示出两者相减的结果,此两探头应选用匹配好的一对,所谓匹配好实际上是指两探头的电缆要一样长,即对信号的延迟要一样,其输入电容、电阻和衰减也一样。用微调电容可以减小两者的差别。 多信号源都有一个接地参考点(OV),用无源的或有源的单端探头都能很好地工作。如果信号源的参考点不是OV,就应使用差分测量法,否则会发生短路现象,损坏仪器。 以上信息由Agitek整理,希望对大家有所帮助。

  • 【资料】探头是怎样工作的

    探头是怎样工作的  示波器探头不仅仅是把测试信号判定以示波器输入端的一段导线,而且是测量系统的重要组成部分。探头有很多种类型号各有其没的特性,以适应各种不同的专门工作的击破要,其中一类称为有源探头,探头内包含有源电子元件可以提供放大能力,不含有源元件的探头称为无源探头,其中只包含无源元件如电阻和电容。这种探头通常对输入信号进行衰减。  我们将首先集中讨论通用无源探头,说明共主要技术指标以及探头对被测电路和被测信号的影响,接着简单介绍几种专用探头及其附近。屏蔽  探头的一个重要任务是确保只有希望观测的信号才在示波器上出现,如果我们仅仅使用一面导线来代替探头,那到它的作用就好象是一根天线,可以从无线电台、荧光灯,电机、50或60Hz的电源的交流声甚至当地业余无线电爱好者那里接收到很多不希望的干扰信号,其些这类噪声甚至还能抽向注入到被测电路中去所以我们首先需要的是屏蔽的电缆,示波器探头的屏蔽电缆通过们于探头尖端的接地线和被测电路连接,从而保证了很好的屏蔽。探头带宽  和示波器一们,探头也具有其允许的有限带宽。如果我们使用一台100MHz的示波器和一个100MHz的探头,那么它们组合起来的响应就小于100MHz,探头的电容和示波器的输入电容相加,这就减小了系统的带宽,加大了显示的上升时间tr见第一章1.3节上升时间。使用1.3节的公式  tr(ns)=350/BW(MHz)  如果示波器和探头各自均为100MHz带宽,其上升时间均为tr=3.5ns 。则有效系统上升时间就由下式给出:  trsystem=sqr(t2rscope+t2rprobe)  =sqr(3.52+3.52)ns  =sqr(24.5)2ns  =4.95ns  根据4.95ns的系统上升时间求得,系统带宽为350/4.95MHz=70.7MHz。  Fluke公司给所有示波器配备的探头都能使示波器保证在探头尖端获得规定的示波器带宽,从上述的计算可以看出,视觉要求探头本射的带宽要比示波器的带宽宽得多。负载效应  当我们进行测量时,我们常常以为测得的电压和电路中未连入示波器时是完全一样的。  实际上,每个探头都有其输入阻抗,输入阻抗包含了电阻、电容和电感分量。由于探头引入的额外负载,所以连入探头后就会影响被测电路我以当我们分析测量结果时必须考虑探头的特性以及测试电路的阻抗。  有些探头里没有串联的电阻,这类探头主要就由一段电缆和一个测试头构成,因此,在其工作频率范围或有用带宽之内,探头对信号没有衰减作用。这类探头称为1:1或X1探头。由于这类探头在测试点处将其自身的电容(包括电缆的电容)与示波器的输入阻抗连在了一起,所以这种探头具有负载效应。见图42。图42 探头的等效电路  当信号频率啬时,探头的容性负载效应京戏得更加显著。由于电缆的类型和长度的不同以及探头本身构造等原因,1:1探头的输入电容通常可以从大约35pF到100pF以上,这等于给被测电路施加了一个低阻抗菌素负载,具有47pF输入电容1:1探头在20MHz之下的电抗仅为169W,这就使得这个探头在此频率无法使用。衰减式探头减小了负载效应  我们可以在探头中增加一个和示波器输入阻抗相串联的阻抗,用这种办法就可以减小探头的负载效应。然而,这就意味着输入电压不能完全加到示波器的输入端,因为我们现在已经引入了一个分压器。  图43给出了一处简化的探头等效电路,Rp和Rs构成了一个10:1的分压器,Rs为示波器的输入阻抗。调节补偿电容C补偿使得探头和示波器械相匹配,视觉保证了在探头的尖端获得正确的频率响应曲线,宋一来就使得这种探头的频率响应比1:1探头频率响应要宽得多。图43 10:1探头电路图  示波器的标准输入电阻为1MΩ。这就要求在探头中串联9MΩ的电阻,使得在低频时探头尖端的输入阻抗为10MΩ。探头补偿  一个实际的10:1探头具有几个可调的电容和电阻以便在很宽的频率范围内获得正确的频率响应,这些可调元件的大多数都是在制造探头时由工厂调好的。只有一个微调电容留给用户去调节。这个电容称为低频补偿电容,应当通过调节这个电容使得探头和与相配用的示波器匹配,使用示波器前面板上的信号输出可以很容易地进行这项调节工作,示波器的这个输出端标有"探头调节"、"校准器""CAL"或者"探头校准"等标志,并能送出一个方波输出电压。方波中包含很多频率分量。当所有这些分量都以正确的幅度送至示波器时,就能在示流器屏幕上再现方波信号。图44示出探头欠补偿,正确补偿和过补偿的影响。图44 在2kHz方波和1MHz正弦波之下观察不同探头补偿情况的影响。  可以看出,在较高的的频率下探头过补偿和欠补偿和欠被偿情况下1MHz正弦波的幅度是很不准确的。  所以在使用的衰减探头之前一定不要忘记检查探头的补偿情况。由于一台示波器的不同输入通道的输入电容可能有小的差异,所以您应当按照示波器上要使用的通道来进行探头补偿调整工作。最大输入电压  多数通用10:1探头的构造使这些探头适合于最大输入电压为峰值400V或500V的情况下使用,所以这些探头可以用于信号电平高达数百伏的广泛的应用场合,对于需要测量更高电压的场面合,我们推荐使用电压额定值更高的100:1探头。探头读出  现代示波器探头都装有编码系统,使得示波器能够识别与它相连年的探头类型。 从而使示波器能够高速垂直偏转指示值及所有幅度测量结果以避免发生泥淆。而如果使用不带这种识别系统的探头,则用户就不得不自己为所有波形显示和测量结果重新定樯以便反映出探头的衰减量。接地引线电感  图45说明探头的接地引线电感如何与探头及示波器的输入电容形成串联谐振电路。而探头的输入电阻则在谐振电路中引入阻尼。图45 带有接地引线电感的探头等效电路  像其它谐振电路一亲,如果在探头上加入阶跃电压则此谐振电路也会发生振铃现象,过大的接地引线电感还会使示波器显示的上升时间变差,图46显示出使用不同长度的接地引线时,连至示波器的快速上升沿脉冲的显示波形。图46 接地引线对脉冲响应的影响  从图中我们可以清楚的看到接地引线电感对测量结果的影响,所以一定要使探头的接地引线尽可能的短,特别是在测高频和快速上升沿的信号时尤应注意。安全接地  为保证电气上的安全,多数示波器都通过电源线与安全地线相连。被测信号有可能和地线具有相同的参考电位,但并非必然如此,因此在连接探头的地线时,一定要注意不要因此而把被测系统的某一部分短路。另一方面,既使被测系统和示波器的地线具有相同的参考电位,这也并不意味着可以用安全地线来作信号返回通路,这是由于安全地线连接走线很长,具有很大的引线电感,因此不适合作信号返回通路。这时一定要用探头的接地引线来作为信号的参考地线。4.2 探头类型  我们已经研究了10:1和1:1两种探头,此外还有多种其它类型的通用探头。可切换式探头  这种探头将10:1探头和1:1探头容为一体,使用起来非常方便,在一般情况下最好使用10:1档,因为在这一档探头对被测电路的负载效应小,而且频带宽。而1:1档则可在测量低频低电平信号时使用。衰减器探头  另一种常用的衰减器探头为100:1探头,其输入电容较低,典型值为2.5pF,输入电阻为20MW,探头的额定电压值很高,典型值为4KV。因此这种探头适合于在测量高压变换器等电压很高的场合使用。FET探头  这是一种可在高频下使用的有源探头,其使用频率可达650MHz。其输入电容可低达1.4pF,因此特别适合于在具有很高源阻抗的电路中测量快速瞬变,或者其它要求探头负载效应最小的场合。由于采用有源设计方案,所以FET探头也可用于1:1的情况,仍具有极低的输入电容。电流探头  顾名思义,使用这种探头时示波器上显示的是导体中的电流而不是其上的电压。在这种探头的头上装有一个电流感应变压器,使用时只要把探头卡到电缆导线上而无需切断电路,探头获得的信号首先变换成电压,再经过比例变换后送到示波器的端,这时示波器显示的单位为A/格或mA/格。探头的频率范围可达70MHz以上。  使用电流探头以后,具有数学处理能力的示波器就可以通过将电压波形和电流波形相乘来进行功率的测量,详细情况见2.3节。隔离放大器  隔离放大器虽然不是一般意义下的探头,但我们可以把它看成是一种用来把示波器测量点和地电位隔离开来的特殊类?quot;探头"。这种"探头"之所以必要是因为,除非使用电源隔离变压器或者电池来为示波器供电,不然的话,示波器的输入参考地线总是在地电位,采用隔离放大器还使我们能够测量叠加于很大的共模电压之上的小信号(见图47)。隔离放大器的输入单元整个由塑料构成。并由电池供电,以保证安全。隔离放大器大都应用在电力和控制系统等领域。图47 具有共模电压的电路带有命令开关的探头  在探头方面的一项最新改进是针对使用探头进行大量测试工作的用户。在PM3094和PM3394A系列的示波器中,Fluke公司采用了一项称为探头命令开关的新技术,为此在探头体上装了一个小开关,使用空虚开关可以启动预选的功能,如启动自动设置,或者从设置存储器中选择另一组设置参数,在组合示波器中命令开送还可以用来启动"接触、保持和测量"功能

探头测试器相关的耗材

  • 四探针测试探头
    340-TT四探针测试探头探针间距选择1mm;2mm;3mm探针材质选择:铜/钨钢针探针尖形态选择:尖针,半球型
  • 探头应用-粘度指针测试装置
    该装置使用球形探头可以测试10个个别的粘性数据,可得到单一样品的平均代表性测试值,适用于粘性指针系统(Adhesive Indexing System).
  • 四探针方阻测试探头 4PP光伏硅片4点探头 KLA、CDE、NAPSON 原厂;晶圆 ITO薄膜电阻探头
    四点探针头是用于方阻测试设备上的精密零件,我公司生产的探头能适配到国内外所有的方阻测试设备上,稳定性和一致性十分优秀;无缝替代由国外生产的探头JANDEL、CDE等国外品牌,打破国外技术垄断和封锁。探针的针尖材料一般是用碳化钨。每一种探头的主要选择配置参数: A,探头主体材料及外形尺寸 B,针尖半径 C,针头的间隔 D,针头的负载 E,针头排列,线型,或者正方形。 F,连接方式: 连接器,或导线联接及长度主要的应用领域: 硅片电阻率的测量。 晶圆的电阻率的4点测量。 外延、离子注入层的4点电阻测量。 金属薄膜和其他薄膜的4点电阻测量。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制