当前位置: 仪器信息网 > 行业主题 > >

碳势控制仪

仪器信息网碳势控制仪专题为您提供2024年最新碳势控制仪价格报价、厂家品牌的相关信息, 包括碳势控制仪参数、型号等,不管是国产,还是进口品牌的碳势控制仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合碳势控制仪相关的耗材配件、试剂标物,还有碳势控制仪相关的最新资讯、资料,以及碳势控制仪相关的解决方案。

碳势控制仪相关的论坛

  • 工件变形?从热处理动态碳势控制开始

    工件变形?从热处理动态碳势控制开始

    [align=left]对于工件变形,有多种潜在原因。正确的分析各种因素的影响机理,慢慢疏理问题根源,有针对性地找到根源,就能够有效地减少工件的热处理变形。[/align][align=left] 近期,武汉华敏的技术工程师回访江苏某齿轮厂用户,该用户的渗碳井式炉上安装了武汉华敏热处理炉况监测系统,这套系统采用1+X多点分布结构,分别监控各区炉内碳势,独创的动态模型,24小时不间断运行,炉内渗碳气氛尽在掌握。目前该系统已运行了一年多,热处理加工零件合格率有了明显的提高,渗碳工件的质量和热处理变形的控制得到了根本改进。[/align][align=left] 渗碳工件的表面碳浓度,渗层深度会对渗层组织的膨胀系数产生影响,渗碳工件的表面碳浓度,渗层深度不同时,其公法线的变形就会不一样。本文将从实际生产中碳势控制的角度来疏理工件变形的潜在根源。[/align] 如果渗碳时不对热处理炉气碳势及工艺过程进行精细化控制,每炉零件的表面碳浓度,渗层深度都会不一样,而且波动较大,就会造成工件变形没有规律。武汉华敏的技术工程师回访的许多热处理现场,仍有一部分车间渗碳方法依然凭经验,根据渗碳剂煤油、甲醇的滴入量等,以此来估计炉气气氛,因此得到的渗碳速度,渗层深度就会出现差异。 要使热处理的变形具有良好的重现性,必须采用先进的碳势自动控制技术,对炉气碳势及渗碳工艺过程进行严格控制,来保证每炉渗碳工件的内在质量一致。

  • 低压渗碳工艺中的真空度和温度精密控制解决方案

    低压渗碳工艺中的真空度和温度精密控制解决方案

    [color=#ff0000]摘要:为了满足低压渗碳工艺中对真空度精密控制的要求,本文提出了相应的解决方案,其中包括增加一个混气罐用于渗透气体混合、采用上游和下游形式的动态控制方法和真空度与温度同时配合控制方法,由此可实现渗透工艺中真空度和温度的快速和精密控制。[/color][size=18px][color=#ff0000]一、问题的提出[/color][/size]低压渗碳又称为真空渗碳,是在低压真空状态下,向高温炉内通入渗碳介质进行快速渗碳的工艺过程。真空渗碳工艺可分为一段式、脉冲式、摆动式几种形式,其中真空度、温度和渗碳时间等随具体要求的不同会发生相应变化,特别是真空度会随着温度变化发生剧烈变化。因此在真空渗碳工艺中,真空度控制方面需要解决以下几方面的问题:(1)真空度的快速精确控制问题,如定点控制、程序控制和快速脉冲控制,都要求真空控制系统具有较高的响应速度和控制精度。特别是在真空度全量程范围实现精密控制,势必要根据不同量程采用不同的真空度传感器和相应的上游和下游控制模式。(2)真空度和温度的同时控制问题,这是渗碳是在高温环境下进行,要求真空度和温度的同时协调控制。为满足低压渗碳工艺中对真空度精密控制的要求,本文提出了真空度精密控制解决方案,并采用双通道PID控制实现温度的同步控制。[size=18px][color=#ff0000]二、解决方案[/color][/size]低压渗透工艺中的真空度和温度控制系统,其整体结构如图1所示。[align=center][color=#ff0000][img=低压渗碳中的真空度控制,690,482]https://ng1.17img.cn/bbsfiles/images/2022/04/202204260835413442_9140_3384_3.png!w690x482.jpg[/img][/color][/align][align=center][color=#ff0000]图1 低压渗碳工艺中的真空度和温度控制系统结构示意图[/color][/align]真空度精密控制的基本原理是动态控制方法,即根据控制设定值和真空计测量值,分别调整渗碳室的进气流量和排气流量,使这进出流量达到动态平衡。如果要进行自动化控制,则需采用PID控制算法和相应控制器。如图1所示,本文提出的真空度精密控制解决方案就是采用了动态控制方法,采用电动针阀调节进气流量,采用电动球阀或电动针阀调节抽气流量,真空泵用作真空源,整个真空度的自动控制采用了PID控制器。对于不同的低压渗碳工艺,其真空度的控制范围为1Pa~100kPa范围。因此在具体工艺中,不同真空度范围内的控制需要采用不同的动态控制模式。对于1Pa~1kPa高真空区间内的真空度控制,采用固定抽气流量、调节进气流量的上游控制模式;对于1kPa~100kPa低真空区间内的真空度控制,采用固定进气流量、调节抽气流量的下游控制模式。如图1所示,为了实现对进气流量的调节和控制,在渗碳室的进气端增加一个混气罐,采用气体质量流量计分配各种渗透气体进入混气罐,混合后的渗透气体再通过电动针阀进行流量调节和控制。为了同时实现温度控制功能,本方案采用了双通道的PID控制器,一个通道用来控制真空度,另一个通道用来控制温度。此双通道PID控制器如图2所示。此PID控制具有24位A/D和16位D/A,具有47种(热电偶、热电阻、直流电压)输入信号形式,可连接各种真空度和温度传感器进行测量、显示和控制。2路独立测量控制通道,两线制RS485,标准MODBUSRTU 通讯协议。[align=center][color=#ff0000][img=低压渗碳中的真空度控制,363,400]https://ng1.17img.cn/bbsfiles/images/2022/04/202204260836105451_4665_3384_3.png!w515x567.jpg[/img][/color][/align][align=center][color=#ff0000]图2 VPC2021系列双通道PID控制器[/color][/align]为实现真空度控制过程中的高精度调节,采用了数控步进电机进行精细调节的电子针阀,如图3所示。此系列数控针阀的磁滞远小于电磁阀,并具有1秒以内的高速响应,特别是采用了氟橡胶(FKM)密封技术,使阀具有超强的耐腐蚀性。与数控电子针阀配备有一个步进电机驱动电路模块,给数控针阀提供了所需电源(24VDC)和控制信号(0~10VDC),同时也可提供 RS485 串口通讯的直接控制。[align=center][color=#ff0000][img=低压渗碳中的真空度控制,182,400]https://ng1.17img.cn/bbsfiles/images/2022/04/202204260836266795_6061_3384_3.png!w275x604.jpg[/img][/color][/align][align=center][color=#ff0000]图3 NCNV系列电动针阀[/color][/align]对于较大口径的抽气管路,本方案采用了微型电动球阀,如图4所示。此系列的电动球阀是一种小型电动阀门,阀门开度可根据控制信号(0~10VDC)的变化连续调节,最快开启闭合时间小于7秒,也可达到小于1秒的开启闭合时间,其执行器和阀体的一体化设计,减小了外形体积,价格低廉,常安装在密封容器和真空泵之间用于调节抽气速率。[align=center][color=#ff0000][img=低压渗碳中的真空度控制,309,400]https://ng1.17img.cn/bbsfiles/images/2022/04/202204260836408860_4144_3384_3.png!w521x673.jpg[/img][/color][/align][color=#ff0000][/color][align=center]图4 LCV-DS系列电动球阀[/align]总之,通过本文所述的解决方案,低压渗碳工艺中的真空度控制精度在全量程范围都可以达到1%,同时还可以进行相应的温度控制。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【分享】浅谈医学实验室认可中的标本控制

    [B]摘要:[/B]在医学实验室认可中,质量体系文件必须包含对“检验前程序”的要求。这是ISO15189:2003的的技术要求的一个要素,涉及到检验标本处置过程,决不可失效。标本控制的措施是医疗机构保证质量的一项系统工程,不仅仅是靠医学实验室就能做到,需临床科室的医生、护士、患者、运输人员等的多方密切配合,共同努力。方可做好检验前标本的质量控制工作。本文就医学实验室认可和《医疗机构临床实验室管理办法》中所提到的标本控制问题,谈一下笔者的看法,仅供医学实验室参考。一、检验申请与标本采集前患者准备二、标本采集的量三、标本采集四、标本接收、处理六、标本的追溯七、标本的留存八、总 结检验前程序作为医学实验室质量体系中的一个要素,各检验机构对其理解深浅不一。每个实验室都有自己的实际情况。因此管理方法各不相同。另外,检验前程序也是一个持续改进的过程。真诚希望各位专家、同仁跟贴斧正,不吝赐教。

  • 实验室环境测量与控制技术探讨

    实验室环境测量与控制技术探讨贾文学 秦皇岛市建设工程质量监督站关键词:实验室环境;环境测量与控制;实验室文 摘:论述了符合要求的实验室环境条件建立和维持的正确途径,指出了工程质量检测行业在实验室环境测量与控制方面普遍存在的问题。1.引言实验室的环境条件和环境设备的技术条件对检测结果的质量有着十分重要影响,《实验室资质认定评审准则》在设施与环境一节中规定“实验室的检测和校准设施以及环境条件应满足相关法律法规、技术规范或标准的要求。设施和环境条件对结果的质量有影响时,实验室应监测、控制和记录环境条件。”因此必须对实验室环境条件和环境设备进行正确配置、测量与控制。2.实验室环境条件和环境设备的正确配置2.1 实验室和环境设备计量要求的确定有环境条件要求的实验室和环境设备的计量要求是由检测方法标准导出的。由检测方法标准导出计量要求,首先须明确标准对环境的要求,其次要了解实验室和环境设备的技术特性。标准中一般并不对仪器设备的技术特性作出规定,而是只给出检测/校准环境条件的技术参数,如温度20±2℃,相对湿度50±5%。配置实验室环境控制系统和选择符合要求的环境设备必须对其技术特性有着详细的了解,比如温度场分布、湿度场分布、波动度、温湿度调节措施与调节特性等。不周详考虑上述因素影响,进行配置和选择,是难以使实验室和环境设备真正满足检测方法标准要求的。比如有温湿度要求的几十立方米容积的实验室,如果只设一个温湿度测控点,就有可能由于实验室不可能形成十分均匀的温湿度场,而导致远离测控点的地方温湿度达不到标准要求。由检测方法标准结合实验室和环境设备技术特性导出的对实验室和环境设备的计量要求内容主要包括(不限于):——温湿度场均匀度要求;——温湿度调节措施;——环境控制参数(考虑温度场均匀度问题然后确定);——测量点数量及分布和控制点的选择。环境测量点数量应足够,并合理分布,以能全面反映温湿度场的情况。尽可能选择有效使用空间内的环境温湿度值的中间值作为环境控制参数的中间值。可使用单个传感器测量值或多个传感器测量值的平均值。这里称环境控制参数中间值与测量最大值和最小值间的差的绝对值中的较大者为偏差值。实验室环境控制参数应由标准要求的上下限值分别减去偏差值而得到。2.2 测量控制仪表计量要求的确定实验室和环境设备所使用的测量控制仪表其计量特性须满足检测方法标准、实验室环境控制系统、环境设备对其提出的计量要求。测量控制仪表计量要求主要包括:——测量范围;——测量准确度(不确定度)或最大允许误差;——防尘、抗结露等。由于未能正确地确定对测量控制仪表的计量要求,而使环境控制失效的情况是比较普遍的。《普通混凝土力学性能试验方法标准GB50081—2002》中规定混凝土标准养护室环境要求为温度20±2℃,相对湿度≥95%。该标准并未对测量控制仪表提出任何要求。如果温度测量仪表的最大允许误差大于1℃(20℃时),那么就无法对温度参数进行有效测控;如果湿度控制仪表最大允许误差大于2%,也无法对湿度参数进行有效测控;如果湿度测量仪表不具备抗结露功能,也难以得到真实的湿度测量结果。2.3 正确配置环境调节系统环境调节方式和系统配置对实验室环境的控制特性具有极其重要的影响,必须对其精心设计正确配置。尽量使实验室温湿度场均匀度高,波动度低,稳定性好。尽量避免使用大温差集中空调送风对实验室进行温度调节,这种调节方式的致命缺陷就是,送风升降温时,送风口及其附近温度过高或过低。3.测量控制仪表控制限的正确设定必须对测量控制仪表的控制限进行正确的设定,才能使实验室或环境设备的环境条件满足标准要求。对测量控制仪表的控制限进行设定时,必须考虑测量控制仪表的准确度(不确定度)或最大允许误差对测量结果及合格评定的影响。环境控制要求为温度20±1℃,相对湿度≥95%的混凝土标准养护室,如果温度测量仪表最大允许误差为0.5℃(20℃时),那么温度控制限(在不考虑温度场均匀度的情况下)就应设定为上限不超过20.5℃,下限不低于19.5℃。也就是以实验室环境控制要求的上下限值分别减和加仪表的最大允许误差作为测量控制仪表的上下控制限值。现在普遍的做法是直接以标准要求的温湿度上下限值作为测量控制仪表的控制限值。如混凝土标准养护室测量控制仪表直接设定为上限22℃,下限18℃。考虑到仪表最大允许误差的影响,仪表显示低于19℃或高于21℃时,测量结果的真值就有很大可能是低于18℃或高于22℃的。在进一步考虑到温度场均匀度的影响,实际使用中的混凝土标准养护室环境技术条件不符合标准要求的可能性就更大了。3.工程质量检测机构实验室环境控制要求及存在的问题3.1 工程质量检测机构实验室检测环境控制要求工程质量检测机构实验室检测环境控制要求序号名 称标准要求标准代号1混凝土标准养护室

  • X射线探伤机控制器功能简介

    X射线探伤机控制器是一款深受探伤工欢迎的探伤机。其采用了新的控制技术、新的元器件、新的外形结构,使得其能更好地满足生产要求;体积小,减轻了劳动强度,有利于高空作业和野外施工;其自动化程度高,使用简单,易于修理调试,提高了机械强度。X射线探伤机控制器,有很好的通用性。通过反复试验,X射线探伤机控制器很好地解决了抗干扰能力、稳定性、兼容性较差等问题,并投入生产。X射线探伤机控制器的内部电路由单片机余模拟电子相结合,优点是既有电子控制器的抗干扰能力且具有微机控制器的多功能性。由于其经久耐用、体积小、质量轻、散热快。穿透能力深受广东用户,尤其是施工现场、野外及高空作业者的欢迎。超小型X射线探伤机作为一种理想的无损检测设备,主要用于机械制造、压力容器、航空航天、石油、化工、铁路交通、冶金、造船、军工等工业部门,特别适用于施工现场和高空作业。

  • 【我们不一YOUNG】水质检测质量控制措施探讨

    [font=&][color=#666666]随着工业的崛起和城市化进程的加速,水资源的质量问题已经变得日益复杂。本文旨在探讨水质检测质量控制的重要性及其措施。首先介绍了水质检测的意义和质量控制的必要性,然后总结了当前水质检测质量控制的问题,接着详细阐述了有效的质量控制措施,最后提出了对未来发展的展望。[/color][/font][font=&][color=#666666]随着工业的崛起和城市化进程的加速,水资源的质量问题已经变得日益复杂。本文旨在探讨水质检测质量控制的重要性及其措施。首先介绍了水质检测的意义和质量控制的必要性,然后总结了当前水质检测质量控制的问题,接着详细阐述了有效的质量控制措施,最后提出了对未来发展的展望。[/color][/font]

  • 碳化硅氧化工艺中加热炉的正负压力精密控制方法及装置

    碳化硅氧化工艺中加热炉的正负压力精密控制方法及装置

    [size=16px][color=#339999][b]摘要:在目前的各种半导体材料热氧化工艺中,往往需要对正负压力进行准确控制并对温度变化做出快速的响应,为此本文提出了热氧化工艺的正负压力控制解决方案。解决方案的核心是基于动态平衡法分别对进气和排气流量进行快速调节,具体采用了具有分程控制功能和传感器自动切换功能的超高精度真空压力控制器,并结合高速电控针阀和电控球阀,可很好的实现0.1Torr~800Torr绝对压力范围内的正负压快速准确控制。[/b][/color][/size][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/b][/color][/size][/align][color=#339999][b][size=16px] [/size][size=18px]1. 问题的提出[/size][/b][/color][size=16px] 热氧化工艺是碳化硅等半导体器件制程中的优选工艺,其特点是简便直接,不引入其他杂质,适合器件的大规模生产。目前比较有效的热氧化工艺有微正压和负压控制两种技术:[/size][size=16px] (1)微正压:氧化过程中氧化炉内1.05atm以上压力的恒定控制。[/size][size=16px] (2)负压:生长气压为10mTorr-1000mTorr范围内的控制。[/size][size=16px] 在热氧化工艺中,无论采用上述那种技术,都需要对氧化炉内的气压进行准确控制,以保证氧化硅层的质量,但如何实现准确控制正负压则是一个需要解决的技术问题。为此本文提出相应的解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 目前碳化硅热氧化工艺,正负压控制范围为0.1Torr~800Torr(绝对压力)。对此范围的绝对压力控制,基于动态平衡控制方法,本文设计的控制系统结构如图1所示。[/size][align=center][color=#339999][b][img=碳化硅热氧化工艺真空压力控制系统,690,354]https://ng1.17img.cn/bbsfiles/images/2023/08/202308251740511222_1299_3221506_3.jpg!w690x354.jpg[/img][/b][/color][/align][align=center][size=16px][color=#339999][b]图1 碳化硅热氧化工艺真空压力控制系统[/b][/color][/size][/align][size=16px] 在图1所示的解决方案控制系统中,从加热炉的一端输入工作气体,工作气体流经加热炉以及炉内放置的圆晶后,由真空泵抽气排出。工作气体可根据工艺要求进行选择和配置,可选择多种气体按照比例进行混合。[/size][size=16px] 为了在0.1Torr~800Torr整个量程范围内实现正负压力的准确控制,需要至少采用两只不同量程的真空度,如1Torr和1000Torr,图1中只标识了一只真空计。在图1所示的控制系统中,真空计、电控阀门和真空压力控制器构成一个闭环控制系统,具体控制过程如下:[/size][size=16px] (1)工作气体和真空泵始终处于开启状态。[/size][size=16px] (2)两只真空计分别连接控制器的主输入端和辅助输入端,控制器具有传感器自动切换功能,可根据加热炉内的实际压力自动切换到相应量程的真空计。[/size][size=16px] (3)整个正负压力控制采用PID分程控制功能,电控针阀连接控制器的反向输出端,电控球阀连接控制器的正向输出端,由此可以根据不同的压力设定值自动调节进气和出气流量来实现压力的准确控制。[/size][size=16px] 由于热氧化工艺所使用的温度和正负压力范围较宽,本解决方案采用了以下关键装置:[/size][size=16px] (1)由于在真空压力控制过程中,加热炉始终处于加热或冷却状态,温度变化会对压力控制产生严重的影响。为了始终将氧化过程中的正负压力控制在设定值上,阀门的调节速度起着关键作用,本解决方案配备了响应时间小于1秒的高速电控针阀和电控球阀,由此可以将温度和其他因素对压力的波动影响快速恢复和稳定到设定压力。[/size][size=16px] (2)由于正负压力范围宽泛,跨越了好几个数量级,所采用的2只真空压力传感器往往在较低量程区间的信号输出比较弱小,这就需要真空压力控制器具有很高的采集精度和控制精度。为此,本解决方案配备了超高精度的真空压力控制器,技术指标是24位AD、16位DA和0.01%的最小输出百分比,可完全满足全量程真空压力的准确测量和控制。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 上述正负压力控制解决方案可以在全正负压力量程内达到很高的控制精度和响应速度,真空压力控制器除了具有高控制精度和分程控制功能外,还具有程序控制和PID参数自整定等多种功能。控制器还配备有RS485通讯接口,可便捷的与PLC上位机控制系统进行集成,采用自身所带软件也可在计算机上直接进行工艺调试和控制。[/size][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][b][color=#339999]~~~~~~~~~~~~~~~[/color][/b][/align][size=16px][/size]

  • 二氧化碳培养箱的控制方法

    二氧化碳培养箱CO2浓度控制与二氧化碳温度控制有相似之处:   1、浓度控制是两个传感器区别(红外和热导),而温度控制是温度控制方式区别(水套和气套);   2、浓度控制的自动校准系统和温度控制的温控系统;   3、CO2浓度均一性和温度的均一性。   两种控制系统:   红外传感器(IR)和热导传感器(TCD)   两种传感器都是准确的,但都各有优缺点:   热导传感器监控CO2浓度的工作原理是基于对内腔空气热导率的连续测量,输入CO2气体的低热导率会使腔内空气的热导率发生变化,这样就会产生一个与CO2浓度直接成正比的电信号;红外传感器(IR)它是通过一个光学传感器来检测CO2水平的。   IR系统包括一个红外发射器和一个传感器,当箱体内的CO2吸收了发射器发射的部分红外线之后,传感器就可以检测出红外线的减少量,而被吸收红外线的量正好对应于箱体内CO2的水平,从而可以得出箱体内CO2的浓度。由于IR系统是通过红外线减少来确定箱内CO2浓度,而箱体内颗粒物能够反射或部分吸收红外线,使得IR系统对箱体内颗粒物的多少比较敏感,因此IR传感器应用在含HEPA高效空气过滤器的培养箱内比较合适   CO2测量系统自动校准功能:   无论哪种CO2测量系统在使用一段时间后都会产生漂移,而产生漂移后直接会导致箱体内二氧化碳浓度不能稳定在我们的设定值,致使培养失败,所以我们在这里强烈建议用户在选购培养箱时必须要选择带有CO2测量系统自动校准功能的培养箱。

  • 【“仪”起享奥运】水环境监测质量控制的措施分析与解读探讨

    [font=&][color=#666666]水是大自然中不可或缺的一部分,它对人类的生存至关重要。随着环境污染日益严重,应加强对水质的监控和管理,为人类提供更安全的生活、工业用水。通过实施有效的质量控制,能够更加有效地管控水环境监测工作,从而有效地改善监测分析质量,确保数据的准确性和可靠性,达到科学的监测目的。水环境监测结果的准确性和可靠性取决于对其质量的控制水平。本文从不同角度探究了水环境监测质量控制的问题,旨在为我国的水环境监测质量控制工作提供实用的建议和指导。[/color][/font]

  • 【原创大赛】浅谈我们纺织品实验室的质量控制

    浅谈我们纺织品实验室的质量控制质量控制是实验室的一项重要技术管理工作,其控制的目的是将分析误差控制在容许限度内,以保证数据或结果在给定的置信水平内,达到要求的质量。质量控制的是否有效,到位,可能直接影响到检测结果,影响到报告的准确性,对实验室的整个的体系运作都会有一个不好的影响实验室质量管理包括:取样、样品前处理、检测耗材的管理,仪器设备的管理、器皿的选择与校准,试剂和基准物质的选用,统一检测方法,质量控制程序,数据的记录和整理,检测人员的基本要求和技术培训,实验室的环境条件和个人安全,以及检测相关的文件和手册等。我只说说纺织品实验室质量管理中的一部分---纺织品检测方面的质量控制和管理,纺织品实验室质量控制主要分内部质量控制和外部质量控制1.纺织品实验室内部质量控制:实验室内部质量控制简称“内部控制”。内部控制是实验室自我控制质量的常规程序,它能反映分析质量稳定性状况,以便及时发现分析中异常情况,随时采取相应的校正措施。内部控制包括的内容:①空白试验②标准曲线核查③仪器设备的定期检定和校准④平行样分析⑤加标分析⑥比对试验⑦ “盲样”分析等。这些内控内容不是每一个测试项目的质量控制都用到的,有的测试项目质量控制时只用到几个,也有的可能全部都用到内部控制的精密度以平行性和重复性来体现:①平行性是指在同一实验室中,同一分析人员、同一分析设备、同一分析时间,用同一分析方法对同一样品进行双样或多样平行测定结果之间的符合程度。②重复性是指在同一实验室内,当分析人员、分析设备和分析时间三个因素中至少有一项不相同时,用同一分析方法对同一样品进行双样或多样平行测定结果之间的符合程度。2、实验室外部质量控制:实验室外部质量控制简称“外部控制”。外部控制也称实验室间质量控制。外部控制实际是实验室间测定数据的对比试验。通过这项试验可以发现一些实验室内部不易核对的误差来源,如试剂的纯度,蒸馏水的质量等问题。经常进行这一工作可增加实验室间测定结果的可比性,提高实验室的检测水平。(1)外部控制的方法。①它是在各实验室完成了内部控制的基础上,积极参加相关专业机构的对比测试,由专业机构分发标准样品给相关实验室,各实验室采用标准分析方法或统一方法对标准样品进行测定,并把测定结果上报专业机构,由专业机构负责对这些测定结果进行统计评价,然后将标准参考样品中各参数的“标准值”与统计结果回传给各实验室。通过这种对比测试,使各实验室进行总结分析,可不断提高分析质量,提高检验结果的可比性。②盲样分析。由权威部门提供盲样,即分析人员不知道该样的浓度值的标准样品,由分析人员进行双样平行测定。将测定结果报送给发放盲样的权威部门,进行对分析结果准确度的判断。(2)外部控制的精密度用再现性表示。通常用分析标准溶液的方法来确定。再现性是指在不同实验室,用同一分析方法对同一样品进行多次测定结果之间的符合程度。(3)不同分析方法的比较试验。对同一样品采用不同的分析方法进行测定,比较测定结果的符合程度,判定其可比性。(4)不同仪器、不同人员、不同试剂的比较试验。对同一样品,用同一方法进行测定,比较测定结果的符合程度,判定仪器性能、人员操作水平和试剂性能等方面的可比性。(5)对标准物质进行双样平行测定。将测定结果与该标准物质给定值进行比较,判断其分析结果的准确度。总结:以上就是我们纺织品实验室一般情况下的质量控制方法和内容,当然实验室质量控制还有很多的细节和难点,是我们需要不断的学习和研究的,不管怎么控制和管理,首先要实现标准化操作,要做到有章可依,有章必依,违章必究的原则,我们也要不断加强实验室的质量控制和质量管理,最终的目的就是保证检测结果及数据的精密度,使其误差在可允许的范围内.

  • 从何入手对温湿度控制仪行业进行市场调查

    最近小编对温湿度控制仪行业发展颇感兴趣,很想自己去分析一下温湿度控制仪的市场如何?想要通过自己的分析与研究,亲自体会温湿度控制仪行业的市场现状,以及对行业未来发展方向能有一个预先的看见。当小编准备着手去做的时候,有个非常现实的问题出现在我的面前。之前从来没有接触过市场调查研究的工作,我该怎么做?先做些什么呢? 在小编没有思路的时候,随便地在温湿度控制仪相关行业的论坛逛了逛,这一逛还真有收获,看到有个坛友发了一片关于:“温湿度控制仪行业如何运用好大数据?”,调查研究的第一步我知道是什么了: 数据来源。 在温湿度控制仪行业,如何去找数据库的来源呢? 1.对温湿度控制仪业内相关的专家、厂商、渠道商、业务(销售)人员及客户进行访谈,获取最新的一手市场资料;这一步要是做得好,获取到的数据是相当有价值的。 2.网上资源及各类中英文期刊数据库、图书馆、高等院校的文献资料等都可以获取到温湿度控制仪行业的相关资料。 3.温湿度控制仪业内企业及上、下游企业的季报、年报和其它公开信息; 最后还是应该多多地关注行业内的一些资深专家的观点,他们获取资料的范围比我们更快、更广也更加精确。数据来源收集好之后,就下来就可以对行业的重要数据指标进行连续性对比,反映行业发展趋势;可以帮助自己很好滴看清市场的现状,以及行业的未来发展方向。

  • 浅谈实验室管理质量控制

    [align=center][font=黑体]摘 要[/font][/align][font=楷体]实验室的管理和工作质量的控制,是一项专业化、系统化的管理工程。通过从人员、仪器、试剂、器皿、用水等方面对实验室进行管理与控制,满足了试验要求,保证了测试数据的准确可靠。本文针对化学分析检验工作中涉及的人员、仪器设备、试剂等五个因素的质量管理进行探讨,以期能为化学检测工作科学合理有效的开展提供一些建议。[/font][font=楷体]关键词:实验室;管理;质量控制[/font][b]1. [font=黑体]背景介绍[/font] [/b][font=楷体]化学检测工作是利用可靠简便的方法及灵敏度高的仪器设备.对样品进行化学成分分析。化学检测工作的质量控制保证了实验结果的准确真实,人们常说:“错误的数据比没有数据更可怕,因为它会导致一系列错误的结论。”因此,分析数据只有达到准确性、精密性、可比性和完整性才能为客户提供准确无误的检测结果。在对样品进行分析检测的过程中,操作人员的技术、仪器设备的性能、试剂的质量、分析检验的方法和实验用水以及器皿的等级等几个方面,只要其中任何一个步骤存在问题,都有可能会对分析检测的结果产生一定的影响.从而导致分析误差的产生在化学分析检验的所有环节都应该要有科学、有效的控制,最终才能保证分析检验结果的可靠和准确。[/font][b]2. [font=黑体]具体开展工作[/font]2.1人员的质量控制[/b][font=楷体]人员是影响实验室检测结果的准确性和可靠性的第一因素.对化学检测实验室的人员从技术能力、经验、所学专业知识等提出了严格的要求:[/font][b]2.1.1人员的配置[/b][font=楷体]CNAS[/font][font=楷体]—CL:2006检测和校准实验室能力认可准则在化学检测领域的应用说明》中5.2.1规定:“实验室授权签字人应具有化学专业本科以上学历,并具有三年以上相关技术工作经历。如果不具备上述条件,应具有足够的化学相关领域检测工作经历(至少十年)。”《实验室资质认定评审准则》中5.1.6规定:“实验室技术主管、授权签字人应具有工程师以上(含工程师)技术职称、熟悉业务、经考核合格。”所以要保证检测结果的准确性,我们必须具备一支具有高素质人才的检测队伍。[/font][b]2.1.2人员的培训[/b][font=楷体]实验室在新员工到岗前,要依据其岗位的特性及工作经历、教育培训经历制订培训计划.培训计划要合理、全面,包括检测方法、质量控制方法、化学安全和防护知识、仪器的原理、操作及维护等.培训之后.要保留培训记录,包括现场考核、培训鉴定等。确保培训人员具备能力的同时以证明其对工作及实验室全部设施中潜在的风险受过培训。同样,对于实验室的老员工也要根据实验室的发展及个人能力提高搞好继续教育,而非原地踏步,止步不前。[/font][b]2.1.3人员的监督[/b][font=楷体]化学实验室要有质量监督员。并且要有熟悉检测技术、经验丰富、有责任心,细致公正的人来担当。监督的目的是各类人员能力确认的手段之一,对监督中发现的不满意人员要采取相应有效的处理纠正措施,对不符合项进行跟踪验证。[/font][b]2.2仪器设备的质量控制[/b][font=楷体]仪器设备是检测活动中最基本的工具,其设备的状态直接影响检测结果的准确性。要保证检测结果的准确可靠,仪器设备的管理至关重要。[/font][b]2.2.1仪器设备的日常维护和管理[/b][font=楷体]仪器设备特别是大型仪器设备要经授权才能使用.对部分特殊设备的维护要按作业指导书进行。例如化学检测室常用的紫外分光光度计样品池就需要防潮.一般最好在里面放入干燥剂,严禁出现实验完成把样品遗留样品池的情况。做好设备的日常维护能够有效的延长分析仪器的使用寿命,有效的保证仪器的准确度,确保结果的合理与正确。[/font][b]2.2.2仪器设备的检定和校验[/b][font=楷体]化学检测室应建立仪器设备检定/校准计划并按计划实施,保证在用的每台设备都能够溯源。在检定/校准中,应选取设备常用的测量范围进行检定/校准,确保检校准范围覆盖仪器的使用范围。收到检定/校准证书后,要对其进行确认,确保仪器设备能满足测试要求才可使用。对存在部分缺陷或部分功能丧失,但可在限定范围内使用的仪器设备应降级使用。对检定不合格或超过检定周期的设备应停止使用。并且对所有仪器设备张贴状态标识。对部分使用频率高和性能不够稳定、漂移率大的设备还需定期进行期间核查以保证仪器设备的准确性。[/font][b]2.3试剂的质量控制[/b][font=楷体]化学试剂是化学分析检验工作所需的重要原料,是化学分析检验工作不可或缺的物质基础.化学试剂的适用性、等级和质量好坏都会对分析检验的结果产生不同程度的影响。做好化学试剂的质量控制和管理可以从以下几个方面进行:[/font][b]2.3.1化学试剂的采购[/b][font=楷体]实验室检验人员需要按照检测标准规定的要求提出采购申请,在这个过程中检验人员需要对化学试剂的名称、规格、状态、浓度、级别等要求做出明确的描述。这样才能保证你所需要的化学试剂能够准确无误的买到。[/font][b]2.3.2化学试剂的验收和贮存[/b][font=楷体]采购人员要在收到试剂后对采购品进行符合性检查,一般通过外观及包装标识进行初步识别。如:试剂的级别是分析纯、色谱纯还是基准试剂:是甲醇还是无水甲醇等。对有有效期规定的试剂,还应检查是否在有效期内。通过验收的试剂要按其物理和化学特性进行安全贮存,以防止污染或损坏如密封、避光、干燥、低温等存放要求,防止因贮存不当造成产品变质或失效。特殊试剂(如易制毒品)还应按其特殊要求规范管理及使用[/font][b]2.3.3化学试剂使用[/b][font=楷体]在试剂的使用过程中,检测人员应按照检测标准要求进行配制使用,并张贴标识,包括溶液名称、浓度及单位、介质、配置日期、有效期、配置人等信息,对于标准滴定溶液还要有详细的标定记录。保证化学检测溶液的有效使用。[/font][b]2.4玻璃器皿的使用控制[/b][font=楷体]化学分析检测用玻璃器皿是化学检测中最基本的器具,其器皿的精度和洁净度也影响到化学分析的检测结果,玻璃器皿的质量管理也是至关重要的。[/font][b]2.4.1玻璃器皿的校准[/b][font=楷体]化学检测实验室在收到购买的玻璃器皿后.要按照玻璃器皿的使用用途进行分类,如烧杯、漏斗、锥形瓶等器皿直接清洗干燥即可使用。而对准确度有严格要求的如滴定管、单标线吸管、容量瓶等器皿在清洗后需按照玻璃量器计量检定规程校准合格后方可使用,并对其合格等级张贴标识。[/font][b]2.4.2玻璃器皿的使用和清洗[/b][font=楷体]按照化学检测室的规定,不同的器皿的使用和清洗是不相同的,例如,滴定管、容量瓶等具有精确刻度的不能用毛刷刷洗,以防止在壁上留下划痕,影响准确度。对于痕量分析用的器皿,清洗时要单独清洗摆放,要避免可能的交叉污染。同时储存不同试剂溶液的器皿也有所不同,例如对需要避光保存的试剂要选用棕色的试剂容器,强酸强碱试剂的保存也要考虑不同器皿[/font][b]2.5实验用水的质量控制[/b][font=楷体]实验用水是化学检测中不可或缺的一部分,在进行分析过程中的试剂配制、玻璃器皿的清洗处理等,都离不开一定纯度水质要求的实验用水。而且水的用量远远超过试剂的用量对于水质的要求不亚于化学试剂纯度的要求。为统一规范实验用水的使用,在标准GB/T6682—2008《分析实验室用水规格和试验方法》将分析实验室用水进行等级划分,并对各级水的指标作了要求。有时在部分产品标准中对实验用水做了特殊要求,例如在YY0330—2002《医用脱脂棉》标准中4.1条试验条件提到“制备供试液试验用的蒸馏水pH值为6.5~7.5”。首先化学检测室要对每一批实验用水进行质量检测监控。其次实验人员严格按照检测产品标准、检测项目要求和仪器设备要求正确选择实验用水。[/font][b]3. [font=黑体]结论[/font][/b][font=楷体]在对化学分析检验的实际工作中.会产生许多影响分析结果可靠性以及准确性的因素。对于化学检测的结果的质量控制,应当从样品的处理到试剂使用、仪器设备的操作状态及数据处理整个过程进行严格控制,确保数据的准确可靠。[/font][b]4. [font=黑体]致谢[/font][/b][font=楷体]本论文能够按时完成,首先要感谢宁波质检中心两位技术工程师刘翔和庞一科对我的帮助指导,而且给我提供很多的学习机会,了解到了更多实验室管理方面的知识,其次要感谢我们两位经理给了我现在的岗位机会,让我有更多的机会接触到专业技术和管理知识,最后,要感谢我的师父王竹青是我从进入公司以来一直的领路人,师弟梁志飞和其他许多同事更是我志同道合的朋友也都提供给了我许许多多的帮助,最后的最后我还要感谢我的家人对我工作的支持。论文完成之际,祝福所有人健康、快乐。[/font][font=楷体]参考文献[/font][font=楷体][1][/font][font=楷体]孟庆保,易琳,周志明.检测实验室风险管理.中国检验检测,2019[/font][font=楷体][2][/font][font=楷体]陈梦静,张冷思,李艳,徐春奎.浅谈实验室管理体系的运行[J].中国检验检测,2019(01)[/font][font=楷体][3][/font][font=楷体]王晨霞.检测实验室管理体系的建设探究[J].智库时代,2017(15)[/font][font=楷体][4][/font][font=楷体]于雪冰.关于实验室典型质量控制的方式及实施的探讨[J].现代食品,2018(07)[/font]

  • 【原创大赛】从气质联用的使用谈实验室的质量控制

    作为一个检测实验室,无论是企业内部实验室还是第三方检测,质量控制都是重中之重。企业实验室作为ISO9001质量管理体系中过程的监控和测量,产品的监控和测量的重要部分,其质量控制的好坏对于整个质量体系以及最终产品的质量都有相当大的影响。而根据ISO17025建立的第三方检测实验室本身销售的便是检测服务,质量得不到保证的实验室其检测结果准确性,公信力都会受到质疑, 实验室便无法生存。因此,每一个实验室都应该做好质量控制。 质量控制的方法很多,检测实验室常用一下的方法:1.平行样 对于任何一次测试,误差都是很难避免的,而误差有随机误差和系统误差之分。系统误差一般是测试系统本身存在问题而导致的,是可以消除的,而随机误差无法避免,最好的方法是通过多次平行测试取结果平均值的方法来消除随机误差。但是对于商业化的实验室而言,同一样品多次测试必然带来更大的测试成本,消耗更多的测试时间,但是如果仅以一个样品的测试结果来出数又是十分不严谨的行为,因此一般是做2个平行样,因为两个样品同时进入相近的随机误差是小概率事件,可以忽略,因此一般两个样品平行基本上可以使用平均值作为样品的测试结果,而如果不平行,可能是某一个样品引入了随机误差,重新测试两个平行样品时可以消除这种随机误差,得到准确结果的。2.测试低浓度标准溶液 GC-MS的校准检定中有一项是灵敏度检测,一般是用测试八氟萘的信噪比来判断仪器的灵敏度。但是在日常的测试中,我们测试的项目并不是八氟萘,因此在日常测试中用八氟萘来衡量仪器的灵敏度显然不合适,比较合理的方法是测试低浓度标准溶液,例如我们日常测试项目是多溴二苯醚,仪器检出限是0.1μg/ml,就可以每天测一个0.1μg/ml的标准溶液,通过这个标准溶液的谱图来判断仪器是否可以达到检测灵敏度要求。3.内标和替代加标 内标和替代加标其实重本质上来说没有太大的区别,这两种物质同时同目标物性质相近的物质,都是监控及修正测试结果的,要说两者的不同,根据IEC62321:2008所述,替代加标物是用来监控样品的萃取效率,不起到修正的作用。在萃取之前加入到样品中,内标是用来修正进样误差,在测试前加入。这种区分的方法在于同时将两者都加入到测试中。如果仅加入替代加标物而不加入内标物,那么这时影响替代加标物回收的除了萃取效率还有进样误差,这是也可以把替代加标物的结果对测试结果进行修正,那么替代加标物此时就应该是内标物,而修正的不仅仅是进样的误差,还有萃取效率引入的误差。而单纯在进样前加入内标对于萃取的效率有无法监控。4.实验室控制样品 2中提到的方法实际上是对于仪器的一个控制方法,但是对于整个测试过程并不能起到很好的监控作用。3中所提及的方法虽然可以监控萃取效率和修正进样误差,但是无论在制样时把样品粉碎到何种程度,外加物质和基材中的目标物的萃取机理实际上上不同的,因此这种监控有效性上会大打折扣,比较有效的方法是选择一个合适的实验室控制样品,每天在测试样品时同时测试一个实验室控制样品,并把测试结果收集加以分析,绘制成SPC图,通过SPC来判断当天的测试是否受控,以确定测试数据是否准确。5.加标回收 定期对于测试项目做加标回收测试,也可以对于整个测试体系起到一定的控制目的。6.人员比对 对于测试结果影响最大的是测试人员的因素,除了通过培训等方法提高人员素质之外,定期的进行人员比对测试,也可以有效提高测试质量。7.方法比对 对于很对测试项目,使用的测试标准,方法往往不只一个,例如邻苯二甲酸酯的测试方法就有EN14372,ASTMD3421等,PBDE的有IEC62321 GB/T21276 等。很多标准所使用的溶剂、萃取方法、萃取时间等等都不同,通过比对不同的方法,可以了解各方法的优劣,更好的提升实验室测试质量。8.仪器比对 对于一些第三方检测实验室,同一项目可能由多台仪器测试,因此需要定期进行仪器比对,确保测试质量的准确。 上面提到了8项常用的实验室质量控制方法,其目的都是为了实验室提升质量水平,得到更为准确的测试结果。这些归根到底只是方法,是工具,如何用好这些工具还是要看使用它们的人。

  • 真空室制冷加热恒温控制机组如何节能运行

    在节能减排运行的大环境下,无锡冠亚真空室制冷加热恒温控制机组如何高效运行是一件很重要的事情,接下来看看几个真空室制冷加热恒温控制机组技能降耗的小诀窍,看看如何使用的。  真空室制冷加热恒温控制机组的选型的非常重要的第一步,制冷量过小,影响生产,往往得不偿失;但是过大的制冷量则会在无形中增加企业成本,造成不必要的浪费。建议厂家在选购真空室制冷加热恒温控制机组的过程中将详细的工艺介绍清楚,让专业的人员来计算选配合适的真空室制冷加热恒温控制机组型号,需要冷却的对象以及降至所需温度所要求的时间。  在此过程中,千万要注意某些厂家在制冷量上做些小文章,往往夸大能效比,其实这些东西稍加注意便能返现其中的猫腻,有相关的数据显示制冷量功率理论上的数据,在实际的生产过程中,制冷量会低于理论值,根据环境的实际情况,制冷量会有波动。  真空室制冷加热恒温控制机组在保证生产需求和满足设备或是产品安全的前提下,提高蒸发温度,同时适当的降低冷凝温度,加大冷却塔的流量,以保证冷却水的效果;  完善真空室制冷加热恒温控制机组定期的日常维护保养工作,定期清理管道,减少管阻及防止管道结垢,增大流量,保证蒸发器和冷凝器充分补水,加强换热效率,不清洁的水源在长期的使用过程中,会产生碳酸钙和碳酸镁沉积管道中,影响换热效率,增加设备运行苏需要的功率,使得电费大幅度上升,在无形中增加企业成本。  无锡冠亚真空室制冷加热恒温控制机组采用全密闭管路,在运行的过程中,能够一定程度上降低真空室制冷加热恒温控制机组的能耗比,使得真空室制冷加热恒温控制机组高效运行。

  • 【原创大赛】实验室质量控制:X-R图的应用探讨

    【原创大赛】实验室质量控制:X-R图的应用探讨

    实验室质量控制:X-R图的应用探讨背景:X-R质控图实际上楼主实验室用的并不多,当时为了迎接复评,胆小怕事的楼主看了好多资料做好各种模板,让实验室按照自己的想法去认认真真做了控制图(不要怀疑,怀疑我也不会说真话),总之,记录按时交到我手上了,至于质控的效果嘛,不要问我。一直想写来探讨一下,发现能抽出时间也是好难,想想还有2012年的目标需要实现,2014年的计划还是不要留到2015年去了,凑原创大赛尾巴,与大家讨论X-R图在实验室的应用,欢迎各位交流指正。PS:此文章为2014年12月31日晚5点-10点所写,由于本人离开实验室也未带走任何数据,图表均为今晚制作,数据虚构,请看官们谅解。问题一:为什么要做质量控制我个人的理解就是把误差控制在允许范围。质控实际上就是通过控制整个检测服务实现的过程让他们达到规定要求的一种活动,贯穿于实验室全部质量活动的始终,包括分析前质量保证、分析中质量控制和分析后质量评估。问题二:质控方式有哪些外部质量控制:能力验证、测量审核、实验室间比对...这些已经有很多版友发过原创,还有关于整改的等等,不一一赘述,大家可以在论坛搜索看。内部质量控制:1.从样品制备、测试、原始记录、事故处理到结果报告的全过程2.测定方法的选定,与权威方法的对照3.空白试验、平行样、加标回收率试验4.随机抽取样品进行重复测定5.随同检测样品进行质控样品的分析6.不同操作者不通仪器测试结果的比较7.控制图8.检测报告的核查(正确、完整、符合、规范)质量控制图是根据不同质控目的可采用多种形式的控制图,而X-R控制图是最常用、最基本的控制图,灵敏度高,适用范围广,它的控制对象可以适用于长度、重量、强度、纯度、时间和生产量等计量值的各个场合。一、被测对象的选择用统计方法对实验室进行内部质量控制时,通常通过用测量仪器对某一被测对象进行定期地重复测量,再经计算分析来判断测量过程是否受控。如果实验室有钱任我们花我们可以任性购买质控样,可是我们没钱怎么办?不,我们不任性也不认命。企业实验室可以根据生产产品选择均匀稳定的产品做质控样品(为什么要稳定呢?想想如果被测对象比测量系统稳定性差,核查数据很难判断是被测对象发生了变化,还是测量仪器发生了变化)。于是XX实验室最终选择利用powerE077设备测量某XX产品中G含量为质控目标。二、编制测量方案,建立控制图根据检测过程的特点建立数学模型,确定统计分析的方法。设计方案时,尽量使影响检测过程的各种因素都有机会反映出来,然后在充分考虑各种影响量变化的前提下,进行重复测量。XX实验室总共进行了8组7次重复测量,检测数据如图1;图1http://ng1.17img.cn/bbsfiles/images/2014/12/201412312114_530712_2862045_3.png 作R图,如下图2所示。图2http://ng1.17img.cn/bbsfiles/images/2014/12/201412312114_530713_2862045_3.png 根据控制图判稳准则,可认定R 处于稳定状态。作X 图,如下图3所示。图3http://ng1.17img.cn/bbsfiles/images/2014/12/201412312115_530714_2862045_3.png 根据控制图判稳准则,可认定处于稳定状态。 由此可见,实验室用power E077测试G含量检测处于受控状态。 [/

  • PVT法碳化硅SIC晶体生长工艺高精度压力控制解决方案及其配套装置的国产化替代

    PVT法碳化硅SIC晶体生长工艺高精度压力控制解决方案及其配套装置的国产化替代

    [color=#990000]摘要:本文针对目前PVT法SiC单晶生长过程中真空压力控制存在的问题,进行了详细的技术分析,提出了相应的解放方案。解决方案的核心方法是采用上游和下游同时控制方式来大幅提高全压力范围内的控制精度和稳定性,关键装置是低漏率和高响应速度的电动针阀、电动球阀和超高精度的工业用PID控制器。通过此解决方案可实现对相应进口产品的替代。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px]一、问题的提出[/size]碳化硅单晶材料,作为宽带隙半导体材料,具有优异的物理特性和电学性能,特别适合于制造高温、高频、大功率、抗辐射、短波长发光及光电集成器件,因此被广泛应用于航空、航天、雷达、通讯等领域。目前,碳化硅单晶的生长一般采用PVT法工艺。由于碳化硅单晶生长的最终目的是为了获取大尺寸、低缺陷的碳化硅单晶,随着碳化硅单晶的尺寸增大,对单晶炉内的真空压力控制要求极高,工艺气体的压力变化对SiC晶体的生长速度和晶体质量产生极大影响。图1所示为一典型SiC单晶生长工艺中压力、温度和工艺气体随时间的变化曲线。[align=center][color=#990000][img=01.碳化硅生长中随时间的压力、温度和气体变化过程,690,242]https://ng1.17img.cn/bbsfiles/images/2022/09/202209161032399187_2475_3221506_3.png!w690x242.jpg[/img][/color][/align][align=center][color=#990000]图1 PVT法碳化硅单晶生长过程中压力、温度和气体的随时间变化过程[/color][/align]从图1所示的工艺曲线可以看出,晶体生长炉内的压力控制是一个全真空度范围的精密变化过程,整个真空度变化范围横跨低真空和高真空(10-4Pa~105Pa),特别是在10-1Pa~105Pa的低真空范围内需要精密控制。目前在利用PVT法制备SiC单晶时,普遍还存在以下几方面问题。(1)普遍采用下游模式(调节出气速率)控制全过程的真空度变化,在0.1~1000Pa的较高真空区间控制精度极差,晶体生长容器内的压力波动大(约±10%)。(2)真空控制装置所采用的调节阀和PID控制器基本都采用MKS、VAT和CKD等公司的上游流量控制阀(Upstream Flow Control Valves)、下游排气节流阀(Downstream Exhaust Throttle Valves)及其配套的PID阀门控制器(PID Valve Controllers)。尽管为了降低成本目前已有多种集成了PID控制器的一体式结构的下游排气节流阀,但整体造价还是较高。(3)真空压力国产化替代产品也在逐步兴起,但普遍还存在阀门漏率大、阀门调节响应时间长和不同量程真空计无法自动切换等问题,致使无法同时采用上游和下游控制模式实现全量程范围内的真空压力高精度控制。本文将针对上述PVT法SiC单晶生长过程真空压力控制存在的问题,进行详细的技术分析,并提出相应的解放方案。解决方案的核心是采用上游和下游同时控制方式来大幅度提高全压力范围内的控制精度和稳定性,并介绍相应的低漏率和高响应速度的真空用电动针阀、电动球阀和超高精度的工业用PID控制器,由此实现对相应进口产品的替代。[size=18px][color=#990000]二、碳化硅晶体生长的压力变成过程分析[/color][/size]图1所示为目前PVT法第三代碳化硅单晶生长过程中的压力、温度和气体流量变化曲线,其中红线表示了非常典型的真空压力变化过程。通过对真空压力各个阶段的变化过程进行分析,以期深入理解PVT法SiC单晶生长过程中对真空压力变化的要求。如图1所示,SiC单晶生长过程中真空压力的变化分为以下几个阶段:(1)高真空阶段:在高真空阶段,需要通过机械泵和分子泵在晶体生长容器内形成高真空(1×10-3Pa~1×10-5Pa),以清除容器和物料内的空气和水分。此高真空阶段要求气压需要以较慢的恒定速率进行降压,由此来避免碳化硅粉料形成扬尘。(2)预生长阶段:同理,在预生长阶段,随着工艺气体的充入和温度的逐渐升高,也要求容器内的气压按照恒定速率逐渐升至常压或微正压,此烘烤和气体置换进一步清除空气和水分。(3)生长阶段:在晶体生长阶段要求容器气压按照恒定速度逐渐降低到某一设定值(生长压力),并保持长时间恒定。不同的生长设备和工艺一般会采用不同的生长压力,专利“一种碳化硅晶体的破碎晶粒用于再生长碳化硅单晶的方法”CN114182357A中,生长压力为200~ 2000Pa;专利CN114214723A“一种准本征半绝缘碳化硅单晶的制备方法”中,生长压力为10000~80000Pa;专利CN215404653U“碳化硅单晶生长控制装置”中,生长压力控制在0.2~0.7Pa范围内;专利CN217231024U“一种碳化硅晶体生长炉的压力串级控制系统”中,生长压力范围为100~500Pa。由此可见,所涉及的生长压力是一个从0.2Pa至80kPa的宽泛区间。(4)冷却阶段:在冷却阶段,随着温度的逐渐降低,要求容器内的气压按照恒定速率逐渐升至常压或微正压。从上述单晶生长过程中气压变化的几个阶段可以看出,真空压力控制装置要达到以下主要技术指标,而这些也基本都是进口产品已经达到的技术指标。(1)漏率:小于1×10-7Pa.m3/s(2)控制精度和长期稳定性:在任意真空压力下,控制精度优于1%(甚至0.5%),长期稳定性优于1%(甚至0.1%)。(3)响应速度:小于1s。响应速度往往也决定了控制精度和长期稳定性,特别是在温度和流量的共同影响下,真空压力会产生快速波动,较快的响应速度是保证精密控制的关键。(4)连接不同量程真空计:可连接2只不同量程电容真空计以覆盖整个真空压力测量控制范围,并可根据相应真空度进行传感器的自动切换和控制。(5)可编程控制:可编程进行任意压力控制曲线的设置,并可存储多条控制曲线以便不同工艺控制的调用。(6)PID参数:可自整定,并可存储和调用多组PID参数。(7)上位机通讯:与上位机(如PLC和计算机)进行通讯,并具有标准通讯协议。[size=18px][color=#990000]三、高精度真空压力控制解决方案[/color][/size]从上述分析可以得知,不同的碳化硅晶体生长工艺所需的压力是一个从0.2Pa至80kPa的宽泛区间,目前国内外在晶体生长工艺压力过程中普遍都采用下游控制模式,即在真空泵和生长容器之间安装节流阀,通过恒定上游进气流量,通过节流阀调节下游排气流量来实现真空压力控制。对于大于1kPa的高气压区间,这种下游控制模式十分有效可实现压力精密控制,但对于低压区间(0.1Pa~1kPa),下游模式的控制效果极差,必须要采用调节进气流量和恒定下游抽气流量的上游控制模式。上游模式控制方法在碳化硅单晶生长工艺中应用的一个典型案例是专利 CN217231024U“一种碳化硅晶体生长炉的压力串级控制系统”,其中生长阶段的压力范围为100~500Pa,可将压力稳定控制在±0.3Pa。另外,上游控制模式已经广泛应用在真空控制领域,我们在以往的实际应用和验证试验中也都证实过上游模式可实现1kPa以下低气压的精确控制。综上所述,要实现0.2Pa至80kPa全范围内的真空压力精密控制,需要分别采用上游和下游模式。由此,我们提出了可同时实施上游和下游模式的真空压力高精度控制解决方案,这种上下游同时进行控制的真空压力控制系统结构如图2所示。[align=center][color=#990000][img=02.上下游双向真空压力控制系统结构示意图,550,375]https://ng1.17img.cn/bbsfiles/images/2022/09/202209161032552585_1956_3221506_3.png!w690x471.jpg[/img][/color][/align][align=center][color=#990000]图2 上下游双向真空压力控制系统结构示意图[/color][/align]在图2所示的解决方案中,采用了两只电容真空计来覆盖0.2Pa至80kPa的全真空量程,真空计的测量信号传送给PID控制器,由PID控制器分别驱动上游的电动针阀和下游的电动球阀,由此闭环控制回路实现全量程范围内的真空压力精密控制。真空压力的具体控制过程是:(1)当压力控制设定值位于大于1kPa的高气压范围时,PID控制器处于下游控制模式,PID控制器调节上游的电控针阀为恒定开度,并对下游的电控球阀进行PID自动调节,通过快速调整电控球阀的开度变化使生长容器内的压力测量值快速等于设定值。(2)当压力控制设定值位于小于1kPa的低气压范围时,PID控制器处于上游控制模式,PID控制器调节下游的电控球阀为恒定开度,并对上游的电控针阀进行PID自动调节,通过快速调整电控针阀的开度变化使生长容器内的压力测量值快速等于设定值。[size=18px][color=#990000]四、配套装置的国产化替代[/color][/size]本文提出的解决方案,在真空计、电控阀门和PID控制器满足技术指标要求的前提下,可实现高精度的真空压力控制,通过实际应用和考核试验都验证了控制精度可以达到真空计的最高精度,稳定性可以轻松达到设定值的±0.5%,甚至在大部分真空压力量程内稳定性可以达到设定值的±0.1%。在进行0.1Pa~100kPa范围内的真空度控制过程中,目前真空技术应用领域普遍采用是国外产品,比较典型的有INFICON、MKS、VAT和CKD等公司的薄膜电容真空计、上游流量控制阀、下游排气节流阀及其配套的PID阀门控制器。随着国产化技术的发展,除了薄膜电容真空计和高速低漏率电动蝶阀之外,其他真空压力控制系统的主要配套装置已经完全实现了国产化,低漏率和快速响应等关键技术的突破,使整体技术指标与国外产品近似,PID控制器与国外产品相比具有更高的测控精度,并且还具有国外产品暂时无法实现的双向模式控制功能,真空压力控制比国外产品具有更高的控制精度和稳定性。国产化替代的关键配套装置包括高速低漏率真空用电控针阀和电控球阀,以及多功能超高精度通用型PID控制器,如图3所示。[align=center][color=#990000][img=03.真空控制系统国产化替代装置,690,354]https://ng1.17img.cn/bbsfiles/images/2022/09/202209161033165839_1676_3221506_3.png!w690x354.jpg[/img][/color][/align][align=center][color=#990000]图3 国产化的电动针阀、电动球阀和高精度PID控制器[/color][/align]图3所示的国产化配套装置都达到了第2节中的技术指标要求,特别是高精度的工业用PID控制器更是具有优异性能,其中的24位模数转换、16位数模转换和双精度浮点运算的0.01%最小输出百分比是目前国内外工业用PID控制器的顶级指标,可实现压力、温度和流量等工艺参数的超高精度控制。[size=18px][color=#990000]五、总结[/color][/size]针对PVT法单晶生长工艺,本文提出的上下游双向控制解决方案可实现全量程范围内真空压力的快速和高精度控制,此解决方案已在众多真空技术领域内得到了应用,相应配套的电动针型阀和电动球形阀具有国外产品近似的技术指标,工业用超高精度PID控制器更是具有优异的性能。这些配套装置结合各种真空压力传感器和双向控制方法可实现真空压力的高精度控制。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【资料】混凝土标准养护室自动控制仪安装及使用方法

    1、养护室温湿度自动控制仪的安装方法  (1)首先将养护室温湿度自动控制仪的控制箱固定在养护室外,固定位置以方便操作为宜。选择最近位置将温湿度探头放入养护室内并固定好,温湿度传感器分别按编号连接到控制仪。养护室温湿度自动控制仪应有良好的保温性和密封性,空间大小符合要求。  (2)然后将主机放于养护室中心位置,用塑料水管将增湿器进水口与自来水管连通,打开水龙头(常开小量)进水能自动控制,水位必须高于电热管,以免电热管脱水烧毁。加热、加湿插头分别插在控制箱的插座上。  (3)单冷空调器安装前需将控制系统拆除,然后将压缩机的电源插头直接连接在制冷插座上。注意:如果安装冷暖型空调,不要把空调接入控制仪,让空调独立运行即可。  (4)在养护室温湿度自动控制仪安装时必须接好地线,电源须经闸刀开关才能接至控制仪上。    2.养护室温湿度自动控制仪的使用方法:  (1)养护室温湿度自动控制仪的初始值已按控制20℃±2℃设定好工作程序,用户不必再设定。  (2)利用空载情况下,对控制仪进行试运行,当输出信号无误后,接好外负载(把制冷、加热、加湿的电源插头分别插入控制仪身后的插座上),接上水源即可工作。相关信息搜集于:http://www.hy1758.com/hongyuyiqi-Article-51077/

  • 实验室质量控制及实验室间质量控制有什么不同?

    [align=center][b][size=16px]实验室质量控制及实验室间质量控制有什么不同?[/size][/b][/align][size=15px][color=var(--weui-FG-2)]辉哥聊质量管理[/color][/size] [size=15px]我们的实验室日记[/size] [size=15px][color=var(--weui-FG-2)]2023-03-02 09:22[/color][/size] [size=15px][color=rgba(0, 0, 0, 0)]发表于广东[/color][/size][align=center]实验室质量控制[/align]实验室质量控制是指为将分析测试结果的误差控制在允许限度内所采取的控制措施。它包括实验室内部质量控制和实验室间质量控制两部分内容。实验室内部质量控制包括空白实验、校准曲线的核查、仪器设备的标定、平行样分析、加标样分析以及使用质量控制图等。它是实验室分析人员对对测试过程进行自我控制的过程。[size=18px][b][color=#2fc37f]实验室质控应符合以下基本要求[/color][/b][/size]1 通排风与水电系统和安全设施完备,能满足仪器设备测试要求,并满足检测人员安全作业要求 能避免测试环境对检测结果产生影响和测试过程中的交叉污染影响。2 精密仪器室要具有防火、防震、防电磁干扰、防噪音、防潮、防腐蚀、防尘、防有害气体侵入的功能 室温控制在 18 ℃~25 ℃ ,湿度控制在60%~70% 。3 实验室分析用水、化学试剂、标准溶液配置与标定应符合以下规定:痕量或超痕量分析使用一级水或超纯水 常量分析与常用试剂配置使用二级水 特殊分析项目使用特殊要求的试验用纯水,如无氯水、无氨水、无二氧化碳水、无砷水、无铅(无重金属)水、无酚水、不含有机物的蒸馏水等 实验室制备或购买的纯水,使用前应对其质量进行检验。4 痕量或超痕量分析使用优级纯以上级别的化学试剂 标准溶液配置使用基准级别的化学试剂、常量分析使用分析纯级别的化学试剂 特殊项目分析使用光谱纯、色谱纯和超纯等级别的化学试剂。5 标准溶液直接或间接配置法(标定法),在进行标准溶液标定时,测得浓度值的相对误差不得大于 0.2% 。在质量控制中,仪器设备实验室仪器设备的使用、 维护与检定应符合以下要求[size=18px][b][color=#2fc37f]1 严格执行大型仪器设备操作规程 [/color][/b][/size]2 不得使用未检定校准或检定校准不合格的检测仪器设备 3 对性能不稳定、易漂移、易老化、使用频繁、移动与便携式现场检测仪器设备和恶劣环境下使用的仪器设备,除进行期间核查外,需定期维护、保养与检查,并在每次使用前进行校正后方可投入使用。[size=18px][b][color=#2fc37f]实验室具体质量控制方法[/color][/b][/size][size=18px][b][color=#2fc37f]1 空白样质量控制[/color][/b][/size]空白样主要包括容器、现场、仪器、方法空白样等,通过测定空白样以判断实验用水、试剂纯度、器皿洁净程度、仪器性能及环境条件等的质量状况或是否受控。[size=18px][b][color=#2fc37f]空白实验质量控制应符合以下要求:[/color][/b][/size]①除分析方法另有规定之外,每一批样品小于 10 个时,检验人员制备方法空白样或仪器空白样不得少于 1 个 每一批样品不小于 10 个时, 每 10~20 个样品制备 1 个方法空白样或仪器空白样。②空白试验分析值应低于方法检出限或低于方法规定值 空白平行测定的相对偏差应不大于 50% 。③有质量控制图的,将所测定值的均值点入图中进行控制。④若空白值不符合规定值范围,应查找原因,消除之后,重新分析。[size=18px][b][color=#2fc37f]2 平行样质量控制[/color][/b][/size]平行样质量控制主要包括现场平行样、 实验室平行样和密码平行样, 通过平行样测定判断检测精密度状况或是否受控。[size=18px][b][color=#2fc37f]平行样质量控制应符合以下要求:[/color][/b][/size]①每一批样品小于 10 个时,检验人员制备的平行样不得少于 1 个 每一批样品不小于 10 个,每 10~20个样品制备 1 个平行样。②平行测定值不符合规定值范围的,应查找原因,消除之后,重新测定。③有质量控制图的,将所测定值的均值点入图中,进行控制。[size=18px][b][color=#2fc37f]3 加标回收质量控制[/color][/b][/size]加标回收试验主要包括空白加标、基体加标、实际样品加标和密码加标回收试验,通过加标回收试验判断检测准确度状况或是否受控。[size=18px][b][color=#2fc37f]加标回收试验质量控制应符合以下要求:[/color][/b][/size]①每一批样品小于10 个时,检验人员制备加标样品不得少于 1 个 每一批样品不小于 10 个时,每 10~20 个样品制备 1 个加标样。②加标样品测定值不符合规定值范围的,应查找原因,消除之后,重新分析。③有质量控制图的,将所测定值的均值点入图中,进行控制。[size=18px][b][color=#2fc37f]4 标准物质质量控制[/color][/b][/size]标准物质质量控制是指使用有证标准物质和实际样品同步分析,将标准物质的分析结果与其保证值相比较,评价其准确度和检查实验室内(或检验人员)存在的系统误差。[size=18px][b][color=#2fc37f]标准物质质量控制应符合以下要求:[/color][/b][/size]① 实验室定期采用标准物质质量控制方法对实验室系统误差进行检查和控制 不定期对检验人员或新上岗人员进行分析质量考核检查。②实验室每月标准物质质量控制样品不得少于实验室内质量控制样品总数的 5% ,每个检验项目(参数)室内系统误差检查应不小于 2 次 /a 。③ 检验人员应定期采用标准物质对计量检测仪器和标准溶液进行期间核查 根据实验室检测能力与分析方法变化实际情况等,采用标准物质检查和控制室内系统误差,以保证检测数据的准确性。[size=18px][b][color=#2fc37f]5 精密度偏性分析质量控制[/color][/b][/size]在具有良好管理的实验室中,分析数据的质量取决于分析方法和操作者对分析方法的了解和能否正确运用。好的分析方法应具有较小的随机误差和系统误差,并能达到一定的检出限。因此,对一个方法能否用于分析, 对一个经过改进的方法能否被接受,操作者对分析方法运用的如何等,都需要做出全面评价,然后才可以正式用于分析测试。这种全面评价的试验方法叫做精密度偏性分析质量控制试验。通过对影响分析测定的各种变异因素及回收率的全面分析,确定实验室测试结果的精密度和准确度。[size=18px][b][color=#2fc37f]实验室间质量控制[/color][/b][/size]外部质量控制又称实验室间质量控制,是指由外部的第三者,如上级监督机构!管理部门对实验室及其检测人员的分析检测质量定期或不定期实行考察的过程,其目的是发现和消除实验室检测结果存在的系统误差和影响因素,保证测试结果可溯源性和可比性。外部质量控制有能力验证、实验室间比对和测量审核三种类型。[size=18px][b][color=#2fc37f]1 参加能力验证活动[/color][/b][/size]能力验证是利用实验室间比对来判定实验室和检查机构能力的活动,是对实验室能力状况和管理状况进行客观考核的一种方法,也是认可机构加入和维持国际相互承认协议(MRA)的必要条件之一。化学实验室参加能力验证活动,其结果能客观、公正、科学地反映相关项目的检测现状,是对实验室检测技术水平的最佳检验#通过实验室间比对,可以得到不同实验室对量值测量的一致性和等效性。实验室在可能的情况下要尽可能地参加国际的、国内的(国家认监委、认可委(cnas)组织)能力验证活动。通过参加能力验证活动,发现实验室自身存在的诸如实验室质量管理是否规范、仪器设备是否符合检测要求、采用标准(方法)是否合适、检测人员的技能水平等问题,从中找出差距与不足,有针对性地实施整改措施,最终达到提高检测能力、实现实验室质量控制的目的。[size=18px][b][color=#2fc37f]2 实验室间比对[/color][/b][/size]实验室通过参加国内不同实验室间的比对活动,积极运用科学有效的方法(如Robust法的z值分量评价等)对数据进行统计分析,对实验结果进行评价,可以确定实验室相关检测项目的水平和状态,寻找可能改进和提高的机会,达到检测结果质量控制的目的。此外,当某个实验室开发出一种新的检测方法或技术时,也可以按照预先规定的条件,组织一些实验室进行实验室间比对来验证和评价其有效性和可比性。[size=18px][b][color=#2fc37f]3 测量审核[/color][/b][/size]测量审核是实验室对被测物品进行测试,将测试结果与参考值进行比较的活动,是能力验证活动的一部分,也是实验室检测结果质量控制的重要手段之一。实验室为了考察自己在某个检测项目的能力和水平,通过将某个检测项目的测试结果与提供运作的合作组织、认可机构(如认监委、认可委)指定的参考实验室的参考值进行比较,达到评价实验室是否具有胜任其所从事检测工作的能力以及找出差距、制定补救措施、提高检测质量的目的。进行测量审核通常是在两次能力验证计划之间且没有合适的实验室间比对计划时,采用的一种一对一的能力验证活动,这也是认可组织!政府部门和客户评价实验室能力的重要依据之一。

  • 【转帖】联合国报告:控制排放的最佳方法是“自然碳汇”

    联合国环境署在发布的一份报告中称,利用自然生态系统进行碳汇是控制导致气候变化的温室气体排放的最佳方法。   据美联社报道,该报告说,如果能进一步改善森林管理、农业耕作方式和恢复沼泽地,就能够将大量的二氧化碳消减。二氧化碳已经被公认为是导致全球变暖的罪魁祸首。  “我们需要朝着为解决生态系统问题而建立一个全面的政策框架的方向迈进。”报告作者、联合国环境署气候变化和生物多样性项目主任巴尼迪克森(Barney Dickson)在德国波恩联合国气候会谈上发布该报告时说道。  上百万美元正投资用于研究电厂碳排放的捕捉和封存。但是,该报告表示,如果能投资生态系统来达到同样的目的,花费可以更少。同时还能起到保护生物多样性,改善水源供应和提高生活水平的附加效果。  如果到2050年能减少50%的森林砍伐,并在下一个五十年内维持较低的砍伐速率,那么,就相当于减少以目前排放水平积累五年的碳排放量总和,迪克森说道。  在东南亚,大量的泥炭地被抽干水分以保证那些生产棕榈油和纸张所需要的经济作物的种植,这些泥炭地的消失导致了全球8%的碳排放。  报告还说,如果能恢复农业用地的耕作,中国可以通过农业生产捕捉5%因燃烧化石燃料而产生的碳排放。如果农民使用更加合理的耕作技术,农业可以成为最大的碳汇。这些技术包括避免翻土和拒绝使用化学肥料而使用农家肥等。

  • 【原创大赛】实验室认可之质量控制

    实验室认可工作终于告一段落。现场评审共开出9个不符合项,四个领域,34个项目,全部通过。评审老师对我们实验室的运行评价还不错。我是我们实验室的质量负责人和技术负责人,所以所有的工作从文件编写、体系运行、提交资料、整改、到现场评审都是我在带领实验室人员进行的。在开始运行体系时我对如何做质量控制工作一直很茫然,不知道如何做,做了也不知道如何呈现给老师。后来查资料、看论坛,终于有了一点思路,现将我们实验室的质量控制工作与大家分享一下。1. 首先,我们制定了《质量控制实施细则》,这也是看论坛里的内容,细则里包括空白(实验空白、试剂空白、容器空白等)、检出限、校准曲线核查、精密度、质量控制图等内容,目的就是为了让检测人员对实验过程中的一些概念进行了解,知道如何判断空白是否正常、校准曲线是否可用等。2. 为了让质量控制工作落到实处,我们制定了年度质量控制计划。质量控制计划涵盖了所有检测项目,包括参加人员、实施时间、控制方法、结果判定依据。我们所使用的控制方法有:加标回收实验、人员比对、留样复测、标准样品检测等。按照计划时间安排进行工作,并填写 质量控制记录。3. 第2条中是我们计划性的质量控制工作,进行这个工作的时候需要班组负责人、技术负责人共同在现场监督。除了这个计划性的质量控制,对每个项目的检测,在日常检测工作中,我们还有要求:比如哪个项目每次做平行样、长期使用的标准曲线要每周核查一次、某个项目标准样品每周测试2次、实验用水每周测试一次等。 为了让有效的把握实验室检测质量,也为了更好地向呈现质量控制工作,我每个月都会写月度质量保证与控制情况总结,总结包括人员(人员培训、人员监督情况)、设备(设备期间核查、维护、维修情况)、环境(实验室温湿度、洁净度情况)、质量控制情况(平行样测定情况、空白情况、实验用水情况、质量控制计划完成情况、标准样品测试满20次的制作质量控制图)。总结中平行样测定情况、空白情况我们也是对一些项目抽查。 最终评审老师看到的我们质量控制工作就是《质量控制实施细则》+年度质量控制计划+质量控制记录+月度质量保证与控制情况总结。

  • 【“仪”起享奥运】国务院办公厅印发《加快构建碳排放双控制度体系工作方案》

    各省、自治区、直辖市人民政府,国务院各部委、各直属机构:《加快构建碳排放双控制度体系工作方案》已经国务院同意,现印发给你们,请结合实际认真贯彻执行。[align=right]国务院办公厅[/align][align=right]2024年7月30日[/align](本文有删减)[align=center][b]加快构建碳排放双控制度体系工作方案[/b][/align]为贯彻落实党中央、国务院决策部署,建立能耗双控向碳排放双控全面转型新机制,加快构建碳排放总量和强度双控(以下简称碳排放双控)制度体系,积极稳妥推进碳达峰碳中和、加快发展方式绿色转型,制定本工作方案。一、总体要求以习近平新时代中国特色社会主义思想为指导,深入贯彻党的二十大和二十届二中、三中全会精神,全面贯彻习近平经济思想、习近平生态文明思想,完整准确全面贯彻新发展理念,加快构建新发展格局,着力推动高质量发展,将碳排放指标及相关要求纳入国家规划,建立健全地方碳考核、行业碳管控、企业碳管理、项目碳评价、产品碳足迹等政策制度和管理机制,并与全国碳排放权交易市场有效衔接,构建系统完备的碳排放双控制度体系,为实现碳达峰碳中和目标提供有力保障。到2025年,碳排放统计核算体系进一步完善,一批行业企业碳排放核算相关标准和产品碳足迹标准出台实施,国家温室气体排放因子数据库基本建成并定期更新,相关计量、统计、监测能力得到提升,为“十五五”时期在全国范围实施碳排放双控奠定基础。“十五五”时期,实施以强度控制为主、总量控制为辅的碳排放双控制度,建立碳达峰碳中和综合评价考核制度,加强重点领域和行业碳排放核算能力,健全重点用能和碳排放单位管理制度,开展固定资产投资项目碳排放评价,构建符合中国国情的产品碳足迹管理体系和产品碳标识认证制度,确保如期实现碳达峰目标。碳达峰后,实施以总量控制为主、强度控制为辅的碳排放双控制度,建立碳中和目标评价考核制度,进一步强化对各地区及重点领域、行业、企业的碳排放管控要求,健全产品碳足迹管理体系,推行产品碳标识认证制度,推动碳排放总量稳中有降。二、完善碳排放相关规划制度(一)推动将碳排放指标纳入规划。将碳排放指标纳入国民经济和社会发展规划,充分考虑经济发展、能源安全、群众正常生产生活以及国家自主贡献目标等因素,合理确定五年规划期碳排放目标,并对重点任务和重大工程进行统筹部署。“十五五”时期,将碳排放强度降低作为国民经济和社会发展约束性指标,开展碳排放总量核算工作,不再将能耗强度作为约束性指标。(二)制定碳达峰碳中和有关行动方案。围绕国民经济和社会发展五年规划纲要有关部署,研究制定碳达峰碳中和有关行动方案,细化碳排放目标控制的工作举措、重点任务和保障措施。“十五五”时期,细化落实《2030年前碳达峰行动方案》部署,确保2030年前实现碳达峰。(三)完善碳排放双控相关法规制度。全面清理现行法规政策中与碳排放双控要求不相适应的内容。加快修订固定资产投资项目节能审查办法、重点用能单位节能管理办法等制度,纳入碳排放双控有关要求。三、建立地方碳排放目标评价考核制度(四)合理分解碳排放双控指标。五年规划初期,综合考虑经济社会发展水平、区域和功能定位、产业和能源结构等因素,将碳排放双控指标合理分解至各省份。各省份可进一步细化分解碳排放双控指标,压实地市及重点企业控排减排责任。(五)建立碳达峰碳中和综合评价考核制度。制定出台碳达峰碳中和综合评价考核办法,明确评价考核工作程序及结果运用方式,对各省份开展评价考核。统筹建立评价考核指标体系,以碳排放总量和强度指标为重点,纳入能源结构、能耗强度、资源利用效率、生态系统碳汇、重点领域绿色转型等指标。(六)推动省市两级建立碳排放预算管理制度。推动各地区结合实际开展碳排放核算,指导省市两级建立碳排放预算管理制度,按年度开展碳排放情况分析和目标预测,并加强与全国碳排放权交易市场的工作协同。2025年底前,指导各地区开展碳排放预算试编制工作。“十五五”时期,指导各地区根据碳排放强度降低目标编制碳排放预算并动态调整。“十六五”时期及以后,推动各地区建立碳排放总量控制刚性约束机制,实行五年规划期和年度碳排放预算全流程管理。四、探索重点行业领域碳排放预警管控机制(七)完善重点行业领域碳排放核算机制。发挥行业主管部门及行业协会作用,以电力、钢铁、有色、建材、石化、化工等工业行业和城乡建设、交通运输等领域为重点,合理划定行业领域碳排放核算范围,依托能源和工业统计、能源活动和工业生产过程碳排放核算、全国碳排放权交易市场等数据,开展重点行业碳排放核算。(八)建立行业领域碳排放监测预警机制。摸清重点行业领域碳排放底数与减排潜力,常态化开展碳排放形势分析监测,对碳排放增长较快的行业领域进行形势预警,并视情采取新上项目从严把关、全国碳排放权交易市场从严管控、重点用能和碳排放单位从严管理等措施。条件成熟时,将重点行业领域碳排放管控要求纳入碳达峰碳中和综合评价考核指标体系。五、完善企业节能降碳管理制度(九)健全重点用能和碳排放单位管理制度。制修订电力、钢铁、有色、建材、石化、化工等重点行业企业碳排放核算规则标准。制定出台重点用能和碳排放单位节能降碳管理办法,将碳排放管控要求纳入现行重点用能单位管理制度,推动重点用能和碳排放单位落实节能降碳管理要求,加强能源和碳排放计量器具配备和检定校准。(十)发挥市场机制调控作用。完善全国碳排放权交易市场调控机制,逐步扩大行业覆盖范围,探索配额有偿分配机制,提升报告与核查水平,推动履约企业减少碳排放。健全全国温室气体自愿减排交易市场,逐步扩大支持领域,推动更大范围减排。加快健全完善绿证交易市场,促进绿色电力消费。六、开展固定资产投资项目碳排放评价(十一)完善固定资产投资项目节能审查制度。将碳排放评价有关要求纳入固定资产投资项目节能审查,对项目用能和碳排放情况开展综合评价,将有关审查评价意见作为固定资产投资项目开工建设以及竣工验收和运营管理的重要依据。(十二)完善建设项目环境影响评价制度。将温室气体排放管控纳入环境影响评价,对建设项目温室气体排放量和排放水平进行预测和评价,在电力、钢铁、建材、有色、石化、化工等重点行业开展温室气体排放环境影响评价,强化减污降碳协同控制。制定重点行业建设项目温室气体排放环境影响评价技术规范,健全环境影响评价技术体系。七、加快建立产品碳足迹管理体系(十三)制定产品碳足迹核算规则标准。制定发布产品碳足迹量化要求通则等国家标准,对产品碳足迹核算原则、核算方法、数据质量等明确统一要求。按照急用先行原则,聚焦电力、燃油、钢铁、电解铝、水泥、化肥、氢、石灰、玻璃、乙烯、合成氨、电石、甲醇、煤化工、动力电池、光伏、新能源汽车、电子电器等重点产品,组织相关行业协会、企业、科研单位等制定发布产品碳足迹核算行业标准或团体标准。(十四)加强碳足迹背景数据库建设。加快建设全国温室气体排放因子数据库,建立定期更新发布机制,为地方、企业开展产品碳足迹核算提供基准数据。行业主管部门和有条件的地区可以根据需要建设重点行业碳足迹背景数据库,鼓励相关行业协会、企业、科研单位探索建设细分行业领域产品碳足迹背景数据库。(十五)建立产品碳标识认证制度。制定产品碳标识认证管理办法,研制碳标识相关国家标准,组织有条件的城市聚焦重点产品开展先行先试,鼓励企业按照市场化原则开展产品碳标识认证。八、组织实施各地区、各有关部门要深入贯彻落实党中央、国务院决策部署,加快构建碳排放双控制度体系,结合实际细化落实方案,按照职责分工扎实推进各项重点任务,持续夯实工作基础。国家发展改革委要切实履行“双碳”有关协调职责,强化调度督促和推进落实,加强前瞻性政策研究,及时优化有关任务举措,抓紧补齐制度短板,并会同有关部门加强宣传解读和教育培训。重大事项及时请示报告。

  • 探空仪检定用低压环境模拟舱压力控制系统的升级改造

    探空仪检定用低压环境模拟舱压力控制系统的升级改造

    [color=#990000]摘要:针对上一代探空仪检定用低压环境模拟舱压力控制系统控制精度和稳定性差、压力传感器和控制系统配置不合理等问题,用户提出升级改造要求。本文介绍了新一代低压环境模拟舱压力控制系统的实施方案,采用了双向控制模式,进行了方案验证试验,试验结果证明控制精度和稳定性都大幅提高。关键词:低压模拟舱,探空仪,压力控制,电动针阀,电动球阀,上游模式,下游模式,PID控制器[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#990000]一、问题的提出[/color][/size]检定探空仪的重要手段之一是在地面进行低压环境模拟舱的测试,在用的低压环境模拟舱结构如图1所示。[align=center][color=#990000][img=低气压环境模拟舱压力控制,550,376]https://ng1.17img.cn/bbsfiles/images/2022/01/202201061504557090_7216_3384_3.jpg!w690x472.jpg[/img][/color][/align][align=center][color=#990000]图1 低压环境模拟舱结构示意图[/color][/align]此低压环境模拟舱使用过程中存在压力控制波动较大的问题,越靠近1个大气压时波动越大,通过分析认为主要是以下几方面原因引起:(1)压力传感器选择不合理,在全量程压力范围内传感器误差所占比例并不相同,从而显示出靠近1个大气压时波动大和远离1个大气压时波动小的现象,但实际上整体都存在较大波动,只是压力传感器在1个大气压附近精度最高,而在远离1个大气压处压力传感器误差已经完全涵盖了压力波动范围。(2)压力控制采用的是开关控制模式,真空泵和电磁阀根据压力设定值大小同时开启或关闭,尽管增加了储气罐作为缓冲,但这种半自动控制模式很难实现压力的准确恒定。(3)控制器并没有采用PID自动控制方式,也是影响压力控制精度的主要原因。综上分析,针对上一代探空仪检定用低压环境模拟舱压力控制系统控制精度和稳定性差、压力传感器和控制系统配置不合理等问题,用户提出升级改造要求。本文将介绍新一代低压环境模拟舱压力控制系统的实施方案,拟采用双向控制模式,并进行方案验证试验,由此证明控制精度和稳定性能大幅提高。[size=18px][color=#990000]二、压力控制系统升级改造方案[/color][/size]探空仪检定用低压环境模拟舱工作的绝对压力范围为1torr~760torr,要求在此范围内模拟舱的压力可以在任意设定点上准确恒定,甚至要求可以按照设定变压速率进行控制。为此,具体的升级改造方案是在原压力控制系统的基础上,保留真空泵和真空电磁阀,更换压力传感器和控制器,去掉储能罐,增加数控的进气阀和排气阀,具体方案如下:(1)采用10torr和1000torr两个不同量程的电容压力计来覆盖整个低气压范围的测量,从而保证全量程的测量精度。(2)采用高精度PID真空压力控制器,以匹配电容压力计的测量精度和保证控制精度。(3)分别真空腔体的进气口和排气口安装电动针阀和电动球阀,电动针阀直接安装在进气口处,电动球阀安装在排气口和真空泵的电磁阀之间。(4)控制方式分别采用上游模式和下游模式,上游模式用来控制10torr以下气压,下游控制用来控制10~760torr范围气压。(5)如图2所示,上游模式是维持上游压力和出气口流量恒定,通过调节进气口流量控制仓室压力。(6)如图3所示,下游模式是维持上游压力和进气口流量恒定,通过调节排气口流量控制仓室压力。[align=center][color=#990000][img=低气压环境模拟舱压力控制,400,421]https://ng1.17img.cn/bbsfiles/images/2022/01/202201061506055621_2789_3384_3.jpg!w400x421.jpg[/img][/color][/align][align=center][color=#990000]图2 低气压上游控制模式[/color][/align][align=center][color=#990000][img=低气压环境模拟舱压力控制,450,393]https://ng1.17img.cn/bbsfiles/images/2022/01/202201061506206214_771_3384_3.jpg!w450x393.jpg[/img][/color][/align][align=center][color=#990000]图3 低气压下游控制模式[/color][/align][size=18px][color=#990000]三、方案验证试验[/color][/size]针对上述两种控制模式,分别采用1torr和1000torr两只电容压力计、电动针阀、电动球阀和24位高精度压力控制器进行了考核试验,试验用的真空腔体内部空间为400×400×500mm,试验装置如图4和图5所示。[align=center][color=#990000][img=低气压环境模拟舱压力控制,550,369]https://ng1.17img.cn/bbsfiles/images/2022/01/202201061506318858_3696_3384_3.jpg!w690x464.jpg[/img][/color][/align][align=center][color=#990000]图4 低气压上游控制模式考核试验装置[/color][/align][align=center][color=#990000][img=低气压环境模拟舱压力控制,550,339]https://ng1.17img.cn/bbsfiles/images/2022/01/202201061506474377_3818_3384_3.jpg!w690x426.jpg[/img][/color][/align][align=center][color=#990000]图5 低气压下游控制模式考核试验装置[/color][/align]在上游模式试验过程中,首先开启真空泵后使其全速抽气,然后在 68Pa 左右对控制器进行 PID参数自整定。自整定完成后,分别对 12、27、40、53、67、80、93 和 107Pa共8个设定点进行了控制,整个控制过程中的气压变化如图6所示。在下游模式试验过程中,首先开启真空泵后使其全速抽气,并将进气阀调节到微量进气的位置,然后在300torr左右对控制器进行PID参数自整定。自整定完成后,分别对 70、 200、 300、450 和 600Torr 共5个设定点进行了控制,整个控制过程中的气压变化如图7所示。 [align=center][color=#990000][img=低气压环境模拟舱压力控制,550,333]https://ng1.17img.cn/bbsfiles/images/2022/01/202201061507110485_1025_3384_3.jpg!w690x418.jpg[/img][/color][/align][align=center][color=#990000]图6 上游模式低气压定点控制考核试验曲线[/color][/align][align=center][color=#990000][img=低气压环境模拟舱压力控制,550,327]https://ng1.17img.cn/bbsfiles/images/2022/01/202201061507246957_2391_3384_3.jpg!w690x411.jpg[/img][/color][/align][align=center][color=#990000]图7 下游模式低气压定点控制考核试验曲线[/color][/align]将上述不同低气压恒定点处的控制效果以波动率来表示,则得到图8和图9所示的整个范围内的波动率分布。从波动率分布图可以看出,在整个低气压的全量程范围内,波动率可以精确控制在±1%范围,在12Pa处出现的较大波动,是因为采用 68Pa处自整定获得的PID参数并不合理,需进行单独的PID参数自整定。 [align=center][color=#990000][img=低气压环境模拟舱压力控制,550,309]https://ng1.17img.cn/bbsfiles/images/2022/01/202201061507435250_4590_3384_3.jpg!w690x388.jpg[/img][/color][/align][align=center][color=#990000]图8 上游模式低气压定点控制考核试验曲线[/color][/align][align=center][color=#990000][img=低气压环境模拟舱压力控制,550,340]https://ng1.17img.cn/bbsfiles/images/2022/01/202201061507565906_1701_3384_3.jpg!w690x427.jpg[/img][/color][/align][align=center][color=#990000]图9 下游模式低气压定点控制考核试验曲线[/color][/align]从上述考核试验结果可以看出,升级改造后的控制方法可以将压力控制精度和稳定性提高五倍以上,并大幅提高了低压环境模拟仓自动化水平和可靠性。[align=center]=======================================================================[/align]

  • 控制污泥膨胀的调节运行工艺措施有哪些?

    调节运行工艺控制措施对工艺条件控制不当产生的污泥膨胀非常有效。具体方法有:1、在曝气池的进口加粘土、消石灰、生污泥或消化污泥等,以提高活性污泥的沉降性能和密实性。2、使进入曝气池的污水处于新鲜状态,如采取预曝气措施,使污水尽早处于好氧状态,避免形成厌氧状态,同时吹脱硫化氢等有害气体。3、加强曝气强度,提高混合液溶解氧浓度,防止混合液局部缺氧或厌氧。4、补充氮、磷等营养盐,保持混合液中碳、氮、磷等营养物质的平衡。在不降低污水处理功能的前提下,适当提高F/M。5、提高污泥回流比,降低污泥在二沉池的停留时间,避免在二沉池出现厌氧状态。6、当PH值低时应加碱性物质调节,提高曝气池进水的PH值。7、利用在线仪表的手段加强和提高化验分析的时效性,充分发挥预处理系统的作用,保证曝气池的污泥负荷相对稳定。

  • 电子流量控制装置的控制模式

    在上一节的内容中,我们介绍了[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]使用的电子流量控制装置的组成和简单原理。对于仪器的气路控制系统而言,使用机械阀进行流量/压力控制的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器,其使用的控制阀的类型主要是稳流阀、稳压阀、背压阀和针型阀等;对于电子流量控制装置而言,并没有与上述几种机械阀一一对应的结构,可以近似的说是利用同一套部件组成的装置采用不同的控制方式/算法而分别实现各种机械阀的功能。我们将电子流量控制装置分别实现各种机械阀的功能的过程称之为电子流量控制装置的不同的控制模式。本节中将介绍电子流量控制装置常见的控制模式。本篇为《从气源到检测器》专题的第23篇,为《电子流量控制与[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]》系列的第2篇。1 概述电子流量控制装置一般包括气路部件、比例阀、压力传感器/流量传感器和辅助部件以及控制电路。以单气路通道的结构为例,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/7b/91/97b91fc3c4cba5c6c10c77f71cfa877e.png[/img]2 电子流量控制装置常见的控制模式电子流量控制装置常见的控制模式主要包括三种,即流量模式、压力模式和背压模式,可以简单地对应稳流阀、稳压阀和背压阀。2.1 流量模式流量模式可以简单地认为是采用 流量传感器-控制电路-比例阀 来进行流量调节和控制的模式。通过比较仪器流量设定值和流量传感器的测定值来调节比例阀开度的大小,从而使实际流量达到设定值。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/58/ad/c58ad91f72c9b9274cba998de8ed6d95.png[/img]流量模式的控制类似于稳流阀(请注意是类似但不等同),可以保证出口的流量在出口之后阻力发生变化情况下保持稳定。填充柱进样口的载气控制一般使用流量控制模式;另外,一些厂家检测器的氢气、空气和尾吹气也是用流量控制模式,简单的示意图如下(没有安装压力传感器):[img]https://img.antpedia.com/instrument-library/attachments/wxpic/56/ff/956ffb3ec7784d65bf857e77728c56a4.png[/img]当然,流量模式并不只是恒定流量模式;也可以实现程序流量模式,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/2a/66/92a66118e06b902e02e9b1b54718f1d8.png[/img]通过仪器设置,可以设定仪器的初始流量,最终流量和变化速率等。2.2 压力模式压力模式可以简单地认为是采用 压力传感器-控制电路-比例阀 来进行压力调节和控制的模式。通过比较仪器压力设定值和压力传感器的测定值来调节比例阀开度的大小,从而使实际压力达到设定值。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/2a/8d/02a8d7b2816440648820a2f35fb572d5.png[/img]压力模式的控制类似于稳压阀(请注意是类似但不等同),可以保证出口的压力在出口之后阻力发生变化情况下保持稳定。[color=#ff4c00]需要特别说明的是[/color],使用压力控制模式,如果要保证出口处压力控制稳定,出口之后应当安装有气阻或者起到气阻作用的色谱柱等以形成压降填充柱进样口的载气控制也可以使用压力控制模式;另外,一些厂家检测器的氢气、空气和尾吹气也是用压力控制模式,简单的示意图如下(没有安装流量传感器,请注意图中气阻的位置和作用):[img]https://img.antpedia.com/instrument-library/attachments/wxpic/ac/74/cac743d48184d1389f5d0d850ea93fd9.png[/img]同样,压力模式并不只是恒定压力模式;也可以实现程序压力模式,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/d4/60/bd460ab2ae094167ec51a6e9900b1f4f.png[/img]通过仪器设置,可以设定仪器的初始压力,最终压力和变化速率等。2.3 背压模式背压模式和压力模式类似,可以简单地认为是采用 压力传感器-控制电路-比例阀 来进行压力调节和控制的模式。通过比较仪器压力设定值和压力传感器的测定值来调节比例阀开度的大小,从而使实际压力达到设定值。区别在于背压模式比例阀在压力传感器之后,压力模式比例阀在压力传感器之前。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/d3/7f/6d37f6454b1185a463e42057d8e04ed7.png[/img]背压模式的控制类似于背压阀(请注意是类似但不等同),可以保证比例阀前的压力在入口压力发生变化情况下保持稳定。背压模式可以用于毛细柱进样口柱前压的调节、阀进样时样品源的稳压控制等。可以参考下图的应用:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/7a/33/37a336a54df9a1c56eb8ce2a3f9ab4fd.png[/img]上图所示,描述了六通阀在进样时候使用电子流量装置的背压模式,保证样品源压力波动时,气体采样阀可以在稳定压力下进样,从而提高了样品量的重现性。以上是本节的全部内容,对于电子流量控制装置常见的三种控制模式——流量模式、压力模式和背压模式而言,多数情况下只使用其中的一种模式,如填充柱进样口的流量和压力控制,检测器的燃气(氢气)、助燃气(空气)和尾吹气(氮气)的流量和控制。对于毛细柱进样口的流量和压力控制则较为复杂一些,是多种模式结合在一起。我们将在后续的文章中进行介绍,敬请关注

  • 分布式控制系统适用的仪器讨论~

    覆盖全系统的交叉索引,增强了过程控制的智能性,可帮助改进与生产相关的决策。PlantStruxure PES具有以下性能特点:统一数据库PlantStruxure PES 为工厂的设计、运营和维护提供了单个统一的软件环境,使您的自动化系统更简便易用。您可以通过一个统一的管理界面配置过程自动化应用和网络拓扑(控制器、远程输入/输出、操作员工作站和现场设备)。通过采用PlantStruxure PES控制设施过程,您可以访问智能设备和电表中的能耗数据,并根据已完成的生产目标来审核这些数据,从而智能的实现高能效运营。PlantStruxure PES可以自动创建所有的变量、通信、警报和趋势……这项工作非常繁重复杂,以前我们都是手动配置完成,非常耗时耗力,而现在它帮助我们在操作员界面开发方面节省了大量时间。内置能效管理系统通过将能源和过程控制数据整合到一个系统中,PlantStruxurePES实现了过程控制中管理型节能增效的自动化。您可以通过彼此对照的方式查看数据,并在能源消耗过快的地点减少能源浪费PlantStruxure PES中的集成式能源管理库可将来自整个工厂中所有用电设备的数据汇总,通过提供能源使用的全局视图,使您对能耗状况一目了然。并且,根据自定义的负载优先等级,系统在能源成本超出KPI时执行减载。同时,还可利用专门的仪表盘,操作员可以将能源作为一种过程的对象对其进行跟踪。施耐德电气法国执行团队为我们在法国的一个玻璃熔炉工厂选择了PlantStruxurePES ,目的是将能源管理功能嵌入工厂的控制架构中。工厂控制架构改造的开支全部由玻璃熔炉所节省的能源成本支付。对象库PlantStruxure PES提供专门面向特定应用(设备、过程设备)和行业(矿、水泥、食品饮料、水)的预定义、可扩展对象库,减少项目开发的时间、成本和风险。PlantStruxure PES内置了一个标准的对象库,其中包含所有主流的过程对象,如阀门、电机、泵等。您可以在过程中直接使用这些对象,或根据特定要求配置这些对象。PlantStruxure PES还集成了标准的行业过程库,可满足具体行业的需求,包括水泥、食品饮料和水等。这些库是基于我们广泛的过程经验开发而成,可以帮助在多个地点运营的公司保持统一性和一致性。此外,由于我们考虑到了标准的过程要求,因此使开发时间大大缩短。通过对应用中的所有对象实例化,我们生成了90%的项目内容,因此显著缩短了工程设计时间。支持及服务我们遍布全球的支持中心提供全套支持及服务,确保在工厂生命周期的各个阶段都能为PlantStruxure PES提供可靠的支持。我们提供行业领先的创新支持计划,其中的主要服务将为您带来极大获益。这一计划包括一个内容丰富的知识库和经由一个专用的支持门户提供的综合数字化服务。该门户提供在线案例管理以及由我们的支持专家、解决方案架构师和开发团队协作开发的内容,如白皮书和设计指南等。对于技术支持人员可以迅速解决问题,我感到非常满意。通过电话咨询,技术支持立刻给予我正确的解决方案,并告诉我查找所需信息的支持网页,更难得的是,还将这些信息和我需要的其他可下载资料的信息发给我。总之,我对在CSR上获得的这次支持服务非常满意。标准以太网PlantStruxure PES基于标准以太网和EtherNet/IP,将PLC/SCADA 架构的灵活性和开发性优势扩展到了DCS领域。这意味着系统在支持可定制应用的同时,还继续保有其标准化方法和强大的集成功能。水处理和能源管理是施耐德电气的战略性业务领域。西班牙进行的一个脱盐厂项目为我们提供了一次展示自身实力的绝佳机会,借此项目,我们完美展示施耐德电气的一体化分布式控制系统如何控制所有的能源管理子系统。PlantStruxure PES的标准以太网面向所有的核心过程,集成了仪表检测、电机管理和电力管理功能,这最终促使客户选择PlantStruxure PES。施耐德电气开发构建了一种高效的控制系统,并设计了一个使用通用机柜(即服务器机架、通信柜、控制器和输入/输出柜)和全以太网网络架构的解决方案,从而控制并节省了此项目必需的投资开支。对象模型作为新一代的分布式控制系统,PlantStruxurePES提供了一个独特的对象模型,用户可以选择性地使用其结构中的各个组件,更加具有灵活性。而且用户可以只下载必要的组件,因此可以有效优化源程序代码。该模型还支持对象整个生命周期内的变更传播,为未来的扩展和定制预留了充足的空间,此外,还允许同时运行同一对象的不同版本,并支持更改的可追踪性。PlantStruxure PES提供面向对象的数据库,这意味着您可以在开发了一个过程对象之后,根据需要多次重复使用此对象。这样不仅可以节约系统开发的时间和成本,还能确保在整个项目的各个阶段运用和在其他应用的推广。由于以上原因,PlantStruxure PES 为巴西一个覆盖50个城市的大型水资源项目提供了完美的解决方案。PlantStruxure PES最吸引人的地方是在完成对象实例化之后如何在区块之间创建链接;它大大简化了我的日常工作。全面开放性PlantStruxure PES的开放性不只针对于一种标准。您能够以全新方式,开发一个真正开放的过程自动化系统,这其中不仅包括操作人员电脑,还包括对象模型和对象库、控制网络,甚至系统设计与集成的理念。PlantStruxure PES提供所需的一切,使DCS系统达到全新层次的开放性——譬如,您可根据需求调整对象模型,针对过程调节对象库,向第三方系统开放的控制网络,向任何IT 厂商开放的控制室等等。还有很重要的一点是,功能先进、即插即用、向第三方设备和应用开放的平台,借助它,施耐德电气及其联盟合作伙伴能够全方位满足客户需要。在我们的第一个项目部署完成后,我们不禁要由衷地赞叹PlantStruxurePES。有了它,使我们感到一切皆有可能。无论如何,我们都能够部署符合项目规范灵活变通的方案。可扩展硬件平台PlantStruxure PES支持各类不同的控制器,满足您的过程需要。这些控制器平台采用模块化、可扩展和冗余设计,能够在线增删硬件。它们支持多种输入/输出模块,以及专用通信模块和现场总线模块,提供电机控制,并

  • 【原创大赛】浅谈检测实验室质量控制关键点之人员控制

    检测数据的准确可靠是实验室管理者的目标,也是实验室赖以生存的保证,是占领检测市场的必备武器。为了保证检测结果的准确性,检测过程的质量控制显得尤为重要。 人员是影响实验室检测结果的准确性和可靠性的第一因素,在CNAS-CL01:2006及CNAS-CL52:2014中对检测实验室的人员从技术能力、经验、教育背景、所需专业知识、工作职责及公正性等提出了严格的要求。在人员配备方面CNAS-CL52:2014 5.2条款中对于实验室检测人员有明确规定,对此,实验室在进行人员配备时要充分考虑准则的要求,在人员招聘时要充分考虑人员的教育培训经历、工作经历等。关于人员的培训计划及实施实验室要依据其岗位的特性及工作经历、教育培训经历制订培训计划,培训计划要合理、全面,包括CNAS各个应用说明的要求,明确需要培训的岗位、项目、实施机构、结果评价依据。采用的培训方式可以多样,比如面授、口授、现场演示、座谈等。保留培训记录,包括培训鉴定、小结、现场考核等,评价培训的有效性。对于人员技术能力的确认:根据CNAS-CL01:2006及CNAS的各个应用说明的要求,实验室应定期评价被授权人员的持续能力。人员能力确认的方式很多,对于检测人员,可采用人员比对、仪器比对、阳性样品复测、CRM样品测试、撰写SOP、方法验证报告、项目学习总结等;对于非测试人员,可以采用口试、笔试、现场操作、撰写学习总结等方式进行。 对于人员的监督,重点关注质量监督员的资质及授权、监督计划、监督记录等。监督的方式可采用盲样考核、操作演示、现场提问、留样复测、人员比对、能力验证、质量控制图等方式,监督后要对被监督人或岗位做出评价,对监督发现要采取有效的措施,并进行跟踪验证。 做好上述工作,能使实验室的质量控制工作能有一个质的飞跃。

  • 实验室一般质量控制方式有哪些?质量控制的实施程序及有效性评审!

    [align=left][color=#0000ff][b]1、质量控制方式及计划制定、实施[/b][/color][/align][align=left][b]主要质量控制方式[/b][/align][align=left]1)外部质量控制:实验室之间的比对、能力验证、测量审核。[/align][align=left]2)内部质量控制:[/align][align=left]a)使用不同分析方法(技术)或同一型号的不同仪器对同一样品进行对比检测。[/align][align=left]b)由两个以上人员对保留样品进行对比检测。[/align][align=left]c)由同一操作人员对保留样品进行对比检测。[/align][align=left]d)在日常分析检测过程中使用的标准溶液的配置。[/align][align=left]e)用标液对仪器测试过程中进行质控。 [/align][align=left][b]质量控制计划制定和实施[/b][/align][align=left]1)实验室应在每年年底建立次年的质量控制计划,以确保并证明检测过程受控以及检测结果的准确性和可靠性,质量控制计划包括能力验证、测量审核和实验室内部比对(如:人员比对、方法比对、留样再测),计划中还应包括判定准则和出现可疑情况时应采取的措施,且覆盖申请认可或已获得认可的所有检测技术和方法。[/align][align=left]2)技术负责人指定资深人员负责编写质量控制计划,技术负责人对计划进行审核并负责组织监督质量控制计划的实施。[/align][align=left]3)技术负责人对质控资料进行统计、分析,组织对上述活动的可行性和有效性评审。[/align][align=left]4)质量监督员监督检测人员完成上级下达的样品考核任务和比对、能力验证试验,督促实施内部质量控制要求,审核比对和能力验证试验的结果。[/align][align=left]5)检测人员:完成质控活动中应承担的检测工作,认真填写检测原始记录。 [/align][align=left][color=#0000ff][b]2、质量控制方式及实施程序[/b][/color][/align][align=left][b]实验室间的比对、能力验证、测量审核[/b][/align][align=left]1)实验室认可机构组织的能力验证活动,或下达的各检测实验室间比对检测任务。对此类任务应积极参加。[/align][align=left]2)实验室间比对的执行[/align][align=left]实验室自行组织的与外部实验室之间的比对试验,由技术负责人根据本实验室的能力和外部实验室做同样参数的检测项目比对,尽可能选择相同的检测方法进行。[/align][align=left]3)项目的选择[/align][align=left]要保证3年内参与的能力验证覆盖实验室所有认可项目。[/align][align=left]实验室自行组织的比对和能力验证试验,项目由资深工程师制定并报技术主管审批,主要包括以下几方面内容:[/align][align=left]—客户投诉项目;[/align][align=left]—新开展的检测项目;[/align][align=left]—无法溯源的仪器设备检测的项目;[/align][align=left]—使用非标准检测方法的项目;[/align][align=left]—其它技术水平要求较高或有必要的检测项目。[/align][align=left]4)试验的组织[/align][align=left]明确比对和能力验证试验的任务后,联系参与比对和能力验证试验的外部实验室,安排比对和能力验证试验的时间,以及核算所需实验经费。[/align][align=left]比对和能力验证试验实施计划内容主要包括:[/align][align=left]—比对和能力验证试验的项目选择:一般优先选择通过计量认证或实验室认可的实验室参与实验室间比对和能力验证;[/align][align=left]—比对和能力验证试验的时间安排。 [/align][align=left][b]实验室间的比对、能力验证、测量审核实施程序[/b][/align][align=left]1)在计量认证/实验室认可机构或主管机构组织的比对和能力验证试验中,技术部领取样品后,将其分发给各检测人员检测。[/align][align=left]2)实验室自行组织的比对试验中,由工程师根据计划要求准备数份同样的样品,一份作为检测任务下达给本实验室分析,其它分送给参加比对和能力验证试验的外部实验室委托检测。[/align][align=left]3)比对和能力验证试验任务下达后,由技术负责人负责组织实施,每次至少安排两名检测人员参加。[/align][align=left]4)参加比对和能力验证试验的检测人员在接到检测任务后,应以严谨的科学态度开展检测工作,包括检测环境的确认,仪器设备及有关消耗品的准备,检测过程的控制和检测结果的记录等。[/align][align=left]5)检测人员完成比对和能力验证试验任务后,以书面报告形式出具结果,交技术负责人汇总评价。 [/align][align=left][b]实验室内部质量控制方式[/b][/align][align=left]开发新方法前的质量控制:在开发新方法时,需要用不含目标物质的样品和标准样品去验证经样品准备和前处理后,不会引入目标物质。 [/align][align=left][b]实验室内部比对[/b][/align][align=left]1)在筹备开展新的测试项目时,实验室组织有可能参加此项目的检测人员开展人员间比对和测试方法间比对。人员比对和方法比对的评审需先进行F检验,t检验,两种检验都合格后,方可认为合格。当结果超出要求,出现不满意时,由技术负责人组织各检测人员查找原因,予以改进。[/align][align=left]2)当某个测试项目参加人员有变动时,或作为新参加工作人员的岗前培训,实验室应及时安排人员间比对实验,根据比对结果做出评审。[/align][align=left]3)当对测试结果的准确性或可靠性有怀疑时,实验室要及时安排并充分利用现有条件进行仪器间比对和不同方法间的比对。[/align][align=left]4)检测过程中应包括空白分析、重复检测、加标测试和控制样品的分析。 [/align][align=left][b]日常检测过程中的质量监督控制[/b][/align][align=left]质量监督员不定期对测试方法进行质量控制,方法包括样品的加标回收,用RM标准进行测试控制,保留样品的重现性测试。一般回收率必须在80%-120%。若超出此范围,需要查找原因,进行整改。针对质量监控的数据,需建立控制图,以便于观察其变化趋势,并根据实际情况每两个月制作质量控制图。 [/align][align=left][b]非常规项目质量控制监督[/b][/align][align=left]应加强内部质量控制措施,必要时进行全面的分析系统,包括使用标准物质或已知被分析物浓度的控制样品,然后进行样品或加标样品重复分析,确保检测结果的可靠性和准确性。[b][/b][color=#0000ff][b][/b][/color][/align][align=left][color=#0000ff][b]3、质量控制管理的有效性评审[/b][/color][/align][color=#333333]实验室质量控制管理的有效性每年评审一次,确认其原理和理论是否正确、完整,有无缺陷,操作上是否可行,方法上能否有所改进和补充,组织过程是否完善,并用于下一年度质控工作的改进。[/color]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制