当前位置: 仪器信息网 > 行业主题 > >

陶瓷摩擦仪

仪器信息网陶瓷摩擦仪专题为您提供2024年最新陶瓷摩擦仪价格报价、厂家品牌的相关信息, 包括陶瓷摩擦仪参数、型号等,不管是国产,还是进口品牌的陶瓷摩擦仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合陶瓷摩擦仪相关的耗材配件、试剂标物,还有陶瓷摩擦仪相关的最新资讯、资料,以及陶瓷摩擦仪相关的解决方案。

陶瓷摩擦仪相关的资讯

  • 赛默飞世尔发布适于流变仪产品线的全新摩擦元件
    德国卡尔斯鲁厄(2008年8月5日)-服务科学,世界领先的赛默飞世尔科技公司今天发布了一款用于其流变仪产品线的全新摩擦元件。配有标准力传感器的流变仪,如Thermo Scientific HAAKE MARS或Thermo Scientific HAAKE RheoStress 6000,现在能够用于分析轴承材料的摩擦情况。 两个或两个以上的材料彼此滑动或摩擦时,就会产生摩擦相互作用。摩擦是轴承设计中需要考虑的主要因素,它不仅影响从机械到医药工程等多种学科,同时对航空、国防等行业以及驱动和控制技术也有极大影响。摩擦作用甚至会对口红、洗发水和护发素等化妆品的研制产生影响,化妆品与表面工程工艺息息相关,对后者了解得越多,越有利于化妆品的研制。 用于Thermo Scientific流变仪的摩擦元件由上下两个不锈钢测量结构组成。靠下的结构设计为一个容器,可用于测量轴承材料在使用和不使用润滑剂两种情况下产生的摩擦力。靠上的结构则装有一个挠性轴,用于确保球体始终处于中心位置,球体可用钢或陶瓷等其他材料制成。根据建议,进行任何测试都应使用新球,因此测量元件的设计保证了球体能快速方便地更换。测量单元还可以安装到流变仪控制测试箱或Peltier温度控制单元中,用于执行与温度相关的测试,温度范围从-40°C到200°C。 通过使用流变仪专用的Thermo Scientific HAAKE RheoWin测试和评估软件,可以定义一个全自动过程来测量使用或不使用润滑剂时复合材料的摩擦情况。 赛默飞世尔科技通过全面的材料表征解决方案,可成功地向多个行业提供支持。上述解决方案可对塑料、食品、化妆品、药品及包覆以及各种流体、固体的粘度、弹性、加工性能及温度相关的机械变化等进行分析和测量。欲了解更多详情,请登录www.thermo.com/mc. Thermo Scientific作为赛默飞世尔科技旗下子公司,是服务科学领域的世界领导者。 ---------------------------------------------------------------------- 关于赛默飞世尔科技 赛默飞世尔科技(Thermo Fisher Scientific)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年度营收达到100亿美元,拥有员工33,000多人,服务客户超过350,000家。这些客户包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构以及环境与工业过程控制装备制造商等。公司借助 Thermo Scientific 和 Fisher Scientific 这两大品牌,帮助客户解决从常规测试到复杂的研发项目中所面临的各种分析方面的挑战。Thermo Scientific向客户提供了一整套完整的高端分析仪器、实验室设备、软件、服务、耗材和试剂,以实现实验室工作流程综合解决方案。Fisher Scientific 为卫生保健、科学研究,安全和教育领域的客户提供完整的实验室装备、化学药品、供应品和服务的组合。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,并提升客户价值,帮助股东提高收益,还为员工创造良好的发展空间。欲获取更多信息,请访问公司网站:www.thermo.com.cn(中国),www.thermo.com (全球)。
  • 赛默飞世尔科技发布适用于流变仪产品线的全新摩擦元件
    促进对表面工程工艺更深入的了解 德国卡尔斯鲁厄(2008年8月5日)-服务科学,世界领先的赛默飞世尔科技公司今天发布了一款用于其流变仪产品线的全新摩擦元件。配有标准力传感器的流变仪,如Thermo Scientific HAAKE MARS或Thermo Scientific HAAKE RheoStress 6000,现在能够用于分析轴承材料的摩擦情况。 两个或两个以上的材料彼此滑动或摩擦时,就会产生摩擦相互作用。摩擦是轴承设计中需要考虑的主要因素,它不仅影响从机械到医药工程等多种学科,同时对航空、国防等行业以及驱动和控制技术也有极大影响。摩擦作用甚至会对口红、洗发水和护发素等化妆品的研制产生影响,化妆品与表面工程工艺息息相关,对后者了解得越多,越有利于化妆品的研制。 用于Thermo Scientific流变仪的摩擦元件由上下两个不锈钢测量结构组成。靠下的结构设计为一个容器,可用于测量轴承材料在使用和不使用润滑剂两种情况下产生的摩擦力。靠上的结构则装有一个挠性轴,用于确保球体始终处于中心位置,球体可用钢或陶瓷等其他材料制成。根据建议,进行任何测试都应使用新球,因此测量元件的设计保证了球体能快速方便地更换。测量单元还可以安装到流变仪控制测试箱或Peltier温度控制单元中,用于执行与温度相关的测试,温度范围从-40°C到200°C。 通过使用流变仪专用的Thermo Scientific HAAKE RheoWin测试和评估软件,可以定义一个全自动过程来测量使用或不使用润滑剂时复合材料的摩擦情况。 赛默飞世尔科技通过全面的材料表征解决方案,可成功地向多个行业提供支持。上述解决方案可对塑料、食品、化妆品、药品及包覆以及各种流体、固体的粘度、弹性、加工性能及温度相关的机械变化等进行分析和测量。欲了解更多详情,请登录www.thermo.com/mc. Thermo Scientific作为赛默飞世尔科技旗下子公司,是服务科学领域的世界领导者。 ---------------------------------------------------------------------- 关于赛默飞世尔科技 赛默飞世尔科技(Thermo Fisher Scientific)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年度营收达到100亿美元,拥有员工33,000多人,服务客户超过350,000家。这些客户包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构以及环境与工业过程控制装备制造商等。公司借助 Thermo Scientific 和 Fisher Scientific 这两大品牌,帮助客户解决从常规测试到复杂的研发项目中所面临的各种分析方面的挑战。Thermo Scientific向客户提供了一整套完整的高端分析仪器、实验室设备、软件、服务、耗材和试剂,以实现实验室工作流程综合解决方案。Fisher Scientific 为卫生保健、科学研究,安全和教育领域的客户提供完整的实验室装备、化学药品、供应品和服务的组合。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,并提升客户价值,帮助股东提高收益,还为员工创造良好的发展空间。欲获取更多信息,请访问公司网站:www.thermo.com.cn(中国),www.thermo.com (全球)。
  • 贸易壁垒愈演愈烈严重制约我国陶瓷出口
    据海关统计,2012年1月广东出口各类陶瓷产品(税号:69章,以下简称:陶瓷)4.9亿美元,与去年同期相比(下同)下降5.9%,其中97.8%为一般贸易方式出口。   当前陶瓷出口面临的主要问题:   一是贸易壁垒愈演愈烈,带来的负面影响日渐明显,制约陶瓷出口。从2009年开始,中国陶瓷砖相继遭到东南亚、韩国、欧盟、南美等国家(地区)的反倾销调查,并日趋频繁。特别是去年9月15日被称为中国陶瓷“史上最大反倾销调查”的欧盟对华陶瓷反倾销案公布终裁结果:6家企业获得26.3%至36.5%不等的单独税率,100多家参与调查的企业获得30.6%的加权平均税率,其他企业均被征收69.7%的惩罚性关税,有效期长达5年。由于广东出口至欧洲的瓷砖多为中低档产品,被强征惩罚性关税后,出口成本大幅提升。日前,印尼反倾销委员会发布对华陶瓷餐具反倾销调查终裁前披露,拟对我产品征收87%的反倾销税。此外,越南建筑陶瓷协会也上书越南财政部和相关职能部门,呼吁严格控制中国陶瓷进口以保护国内产品,侧面反映出中国陶瓷对新兴市场出口增长较快,导致贸易摩擦风险加大,将对广东陶瓷出口产生不利影响。另外,绿色壁垒“碳足迹”已开始在发达国家悄然酝酿成型。欧盟及一些发达国家为应对低碳经济下对外贸易面临的新形势,正开始强制推行“碳足迹”标签。作为碳排放量相对较高的传统产业,一旦实施“碳足迹”认证,对广东陶瓷出口产生一定影响。   二是人民币持续升值,进一步压缩企业利润。近期人民币对美元持续升值,2月10日中国外汇交易中心发布公告显示美元/人民币中间价升破6.3,达6.2937,再创人民币汇改以来新高。同时,人民币对其他货币仍持续走强,陶瓷出口的价格优势进一步被削弱,利润被压缩。   三是出口商品附加值低,容易形成低价竞销。除少数大型企业外,广东出口许多陶瓷生产企业研发中心规模较小、研发能力较弱,导致与意大利等发达国家的陶瓷产品相比科技含量较低,无法进入中高端市场。且许多企业品牌意识薄弱,部分企业甚至放弃走品牌路线贴牌生产。对国外市场的极度依赖,使国内的陶瓷行业除了降价没有任何对策,而降价抢占市场的同时也导致反倾销制裁风险愈发增大。   为此建议:一是陶瓷出口企业应多关注国外市场环境变化,积极应诉国外贸易救济案件,同时对部分市场把握出口节奏,谨防贸易摩擦造成的出口风险 二是树立自主品牌,用原创引领产业风向,创新工艺发展技术陶瓷外,更注重配套产业的原创性突破,进一步提升陶瓷产品的国际竞争力。
  • 摩擦磨损试验机 | 航空航天工业材料涂层表征
    航天梦据中国载人航天工程办公室消息,我国载人航天工程已经全面转入空间站在轨建造任务阶段。今年将陆续实施空间站核心舱发射、货运补给、载人飞行等多次任务。追忆漫漫太空之路从人造卫星到载人航天中国航天事业蓬勃发展,探索浩瀚宇宙的伟大事业更加行稳致远,航天梦想实现的脚步越来越近。航空航天工业的发展为航天梦奠定了基础。前言航空航天工业包括从先前设计、建造、测试、销售到后期的飞机维护、飞机零件、导弹、火箭或航天器等各个方面的所有公司和活动。图1展示的就是飞机生产车间。图1 :飞机生产车间民用航空和军用航空的飞机及其零部件是一个非常庞大的产业链,零部件的生产和使用所带来的上下游环节非常之多。而生产一架飞机所用的材料更是种类繁多,这其中包括金属、玻璃、陶瓷、塑料和各种复合材料。为了保证飞机的功能、安全和美观,需要对这些材料的特性进行精确描述和表征。客户痛点分析某飞机部件制造商正在考虑引进一种新型钢材料所制造襟翼滚珠丝杠,然而需要知道它们是否会导致接触材料出现过早磨损的情况。尤其是在航空航天工业体系中,过早磨损是飞机部件制造商面临的一个重要问题。安东帕摩擦磨损试验机可为客户提供摩擦系数的测定和磨损的表征。依照用户的痛点和解析,推荐采用表征仪器为安东帕销盘式摩擦仪(TRB3),如图2所示。如果需要模拟高温服役环境的话还提倡采用高温摩擦仪(THT),如图3所示,安东帕高温摩擦仪能提供非常精准的控温和保证高温下极其高的测试精度。在摩擦学实验结束后,用集成式的表面轮廓仪可以测量磨痕轮廓,直接计算相应的磨损率。图2:销盘式摩擦仪TRB3图3:高温摩擦仪THT实验航空航天工业某部件制造商需要调查制造襟翼滚珠丝杠时使用的两种新的涂层钢材料造成的磨损情况。将两种不同涂层材料的样品制作成样块,如图3所示。图3:客户样品步骤:采用安东帕销盘式摩擦仪对样品进行磨损测试,采用线性往复模式进行试验。摩擦副(对磨体)为100Cr6钢球,硬度大约为60 HRC。实验结束后,记录摩擦系数,并用显微镜观察样品和摩擦副的磨损情况。实验分析与结论经过摩擦学试验后,得到两种不同材料的摩擦系数基本什么变化,具体见图4所示。从摩擦系数的曲线来看,经过25min的磨损试验后两种样品基本没什么损伤。但是,通过显微镜观察后发现摩擦副100Cr6钢球表面有损伤。通过计算得到,1# 样品体系下的100Cr6 钢球的磨损量为0.000186 mm3/(Nm),而2# 样品的磨损量为0.000202 mm3/(Nm)。这样可以看出2# 样品对于对磨体的伤害大。图4:摩擦系数和磨损量过早磨损是航天航空行业制造商的一大难题,而安东帕摩擦仪可以为客户提供这类需求的表征手段。通过结果分析,两种样品的摩擦系数相差不大,摩擦系数随时间的变化的曲线趋势也相一致虽然两种涂层材料的表面基本没有损伤,但是对于对磨体100Cr6 钢球的损伤还是存在的,尤其是2# 样品使对磨体产生更大的损伤。安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • 安东帕销盘式摩擦磨损试验机TRB³ 免费测试开放日活动正式开始
    摩擦在工业领域非常重要,过度摩擦会直接或间接地通过产生热量而导致材料损坏,减少摩擦可以节省大量能源。同时,耐磨性可以很大程度地决定部件的使用寿命。因此,必须对这两种现象进行详细研究,以减少能量消耗并延长滑动部件的使用寿命。摩擦学研究了在各种条件下两种材料在相对运动中的相关问题。你的材料或部件经过耐磨试验吗?你是否担心原材料摩擦力太大给你的生产造成损失?你是否想要自行设置条件模拟真实生产环境进行测试?安东帕自本月起,将长期推出 “销盘式摩擦磨损试验机TRB3测试开放日” 活动,免费为广大对测试有需求,对TRB3有兴趣的企业及高校客户,提供专业的样品测试和相关技术探讨!安东帕销盘式摩擦磨损试验机(原瑞士CSM)30多年来在全球范围内的安装应用超过了1000例,已成为摩擦、磨损和润滑领域事实上的标准。适用各种测试参数、接触形状和环境条件,用户因此能够模拟材料的真实使用条件(高温可达1000℃,超真空10-7mbar和湿度)进行摩擦测试。TRB3以其“操作简单”,高度可重复性和多种模拟真实摩擦条件等优点在众多领域有广泛应用。独特功能:-双LVDT摩擦力传感器,以尽量减少摩擦测量的热漂移误差-多种运动模式:旋转、线性往复和旋转往复模式-采用独立法向加载和摩擦力测量设计,避免不同作用力信号之间相互影响-具有专利设计用于摩擦载荷测量的高线性度“山形”弹性臂-通过Modelization软件快速简便地进行接触力学仿真模拟-采用模块化设计,灵活配置,易于升级(可选配高温、真空、轮廓仪、电腐蚀等模块)应用领域:薄膜(保护性或装饰性硬涂层)金属(体材料、先进合金、金属复合材料)聚合物(体材料、聚合物涂层)润滑系统(液体或固体润滑剂)汽车(涂料、体材料、机油)光学涂层(减反射涂层)生物材料(硬植入物、软植入物、支架)制药(药物)各种(热喷涂,陶瓷等)报名方式:客户本人带上样品来安东帕公司交流,由专业人员负责测试和分析。- 可提前联系预约,讨论测试方案。- 时间:每周四和周五,长期有效。- 地点:上海市合川路2570号科技绿洲三期2号楼11层安东帕公司- 费用:免费- 名额:每场5人- 联系人:潘涛- Email: jason.pan@anton-paar.com来到现场您将可以得到专业的建议,世界领先的技术测试和分析,免费全面的技术指导和资料。还等什么,名额有限,每场限5名,先到先得哦!
  • 中国首套UO2陶瓷抗断强度试验装置在长春机械院研制成功
    4月23日,长春机械科学研究院有限公司为中国核动力研究院四所研发制造的UO2陶瓷抗断强度试验装置顺利通过中国核动力研究院专家组验收,这是长春机械院为我国重大科研项目提供的又一台高精尖试验测试设备,其技术达到国际先进水平。 该设备在环境模拟、夹具设计、挠度测量、数据采集、温度控制等多方面进行了创新,完全符合GB/T6569-2006《精细陶瓷弯曲强度试验方法》,GB/T14390-2008《精细陶瓷高温弯曲强度试验方法》,JIS R1612-2010《精细陶瓷弯曲蠕变试验方法》。 UO2陶瓷抗断强度试验装置的成功研制,打破国外对我国核动力研究领域的封锁局面, 为我国在常用核动力燃料-UO2陶瓷的高温/常温力学性能研究提供了技术保障。 长春机械院作为中国核工业集团公司试验测试领域战略合作伙伴,先后为核工业集团提供过大吨位超低温电液伺服动静试验机、ITER TF支撑多维加载测试平台、摩擦磨损试验机、高、低周疲劳试验机、电子万能试验机等多批次、多台套高性能试验测试设备。 UO2陶瓷抗断强度试验装置主要用于UO2陶瓷在室温及高温环境下的弯曲强度试验和弯曲蠕变试验。UO2陶瓷是最常用的陶瓷燃料,具有熔点高(2865℃),高温稳定性好等特点,普遍用于核动力的轻水反应堆中,是核动力研究的重要方向。 中国核动力研究设计院隶属于中国核工业集团公司,是中国唯一集核反应堆工程研究、设计、试验、运行和小批量生产为一体的大型综合性科研基地。是以研究设计核动力为主,带动其它堆型反应堆相关技术研究设计的国家战略高科技研究设计院。在我国高新技术领域和先进能源开发工业体系中占有重要的地位。关注:【长春机械院】微信号:cimachtest
  • 快速可靠的新一代全二维面探残余应力分析仪助力氮化硅陶瓷领域获新进展
    随着科技和工业技术的快速发展,人们对材料的硬度、强度、耐磨损、热膨胀系数及绝缘性能等提出了更高的要求。而高技术陶瓷作为继钢铁、塑料之后公认的第三类主要材料,一直以来在突破现有合金和高分子材料的应用极限方向被人们寄以厚望。其中,氮化硅陶瓷因具有优异的低密度、高硬度、高强度、耐高温、耐腐蚀、耐磨损、耐氧化等诸多优点,成为了最具发展潜力与市场应用的新型工程材料之一,在高温、高速、强腐蚀介质的工作环境中具有特殊的应用价值,已被广泛应用在精密机械、电气电子、军事装备和航空航天等领域。但另一方面,工程陶瓷具有硬、脆的特性,使得其机械加工性能较差,因此磨削已成为陶瓷零件的主要加工方式。 工程陶瓷在磨削过程中,工件的表面受剪切滑移、剧烈摩擦、高温、高压等作用,很容易产生严重的塑性变形,从而在工件表面产生残余应力。残余应力将会直接影响工程陶瓷零件的断裂应力、弯曲强度、疲劳强度和耐腐蚀性能。工程陶瓷零件的断裂应力和韧性相比于金属对表面的应力更为敏感。关于残余压应力或拉应力对材料的断裂韧性的影响,特别是裂纹的产生和扩展尚需进一步的研究。零件表面/次表面的裂纹极大地影响着其性能及服役寿命。因此,探索工程陶瓷的残余应力与裂纹扩展的关系就显得尤为重要。 Huli Niu等人为了获得高磨削表面质量的工程陶瓷,以氮化硅陶瓷为研究对象,进行了一系列磨削实验。研究表明:(1)提高砂轮转速、减小磨削深度、降低进给速率有利于减小氮化硅陶瓷的纵向裂纹扩展深度。氮化硅陶瓷工件在磨削后,次表面的裂纹主要是纵向裂纹,该裂纹从多个方向逐渐向陶瓷内部延伸,最终导致次表面损伤。(2)氮化硅陶瓷表面的残余压应力随着砂轮转速的增加、磨削深度和进给速度的减小而增大。平行于磨削方向的残余压应力大于垂直于磨削方向的残余压应力。(3)砂轮转速和磨削深度的增加、进给速率增大时,磨削温度有升高的趋势。在磨削温度从300℃上升到1100℃过程中,表面残余压应力先增大后减小;裂纹扩展深度先减小后增加。在温度约为600℃时,表面残余压应力最大,裂纹扩展深度最小。适当的磨削温度可以提高氮化硅陶瓷的表面残余压应力并抑制裂纹扩展。(4)氮化硅陶瓷表面残余压应力随裂纹扩展深度和表面脆性剥落程度的增加而减小。裂纹扩展位置的残余应力为残余拉应力。它随着裂纹扩展深度的增加而增加。此外,残余应力沿进入表面的距离在压缩和拉伸之间交替分布,在一定深度处这种情况消失。(5)通过调整磨削参数、控制合适的磨削温度,可以提高氮化硅陶瓷磨削表面质量。 以上研究结果为获得高质量氮化硅陶瓷的表面加工提供了强有力的数据支撑。关于Huli Niu等人的该项研究工作,更多的内容可参考文献[1]。 Figure 1. Grinding experiment and measuring equipment: (a) Experimental principle and processing (b) SEM (c) Residual stress analyzer.Figure 6. Surface residual stress under different grinding parameters: (a) Wheel speed (b) Grinding depth (c) Feed rate.上述图片内容均引自文献[1]. 作者在该项研究工作中所使用的残余应力检测设备为日本Pulstec公司推出的小而轻的便携式X射线残余应力分析仪-μ-X360s。该设备采用了圆形全二维面探测器技术,并基于cosα残余应力分析方法可基于多达500个衍射峰进行残余应力拟合,具有探测器技术先进、测试精度高、体积迷你、重量轻、便携性高等特点,不仅可以在实验室使用,还可以方便携带至非实验室条件下的各种车间现场或户外进行原位的残余应力测量。我们期待该设备能助力更多的国内外用户做出优秀的科研工作! 小而轻的便携式X射线残余应力分析仪-μ-X360s设备图 参考文献:[1] Yan H, Deng F, Qin Z, Zhu J, Chang H, Niu H, Effects of Grinding Parameters on the Processing Temperature, Crack Propagation and Residual Stressin Silicon Nitride Ceramics. Micromachines. 2023 14(3):666. https://doi.org/10.3390/mi14030666
  • 面料的干湿摩擦性可以用同一台摩擦系数测试仪检测吗
    在纺织行业,面料的摩擦性能是一个至关重要的物理指标,它直接关系到面料的舒适性、耐用性以及其在各种环境下的适用性。而在评估面料的摩擦性能时,干湿两种状态下的表现往往都需要考虑。那么,问题来了:面料的干湿摩擦性是否可以用同一台摩擦系数测试仪来检测呢?一、摩擦系数测试仪的工作原理在深入探讨这个问题之前,我们首先需要了解摩擦系数测试仪的工作原理。摩擦系数测试仪是一种用于测量物体间摩擦系数的专用仪器,它通过模拟物体在实际使用中的摩擦过程,测量并计算出物体间的摩擦系数。在纺织行业中,这类测试仪通常被用于评估面料与皮肤、面料与面料或其他材料之间的摩擦性能。二、干湿摩擦性的差异干湿摩擦性的差异主要源于水分对面料表面性能的影响。在干燥状态下,面料表面的纤维和纱线之间的摩擦主要受到纤维本身的物理性能和纱线结构的影响。而在湿润状态下,水分会改变面料表面的润滑性和粘附性,使得面料之间的摩擦性能发生变化。这种变化可能会影响到面料的穿着舒适性、防滑性以及耐磨损性等方面。三、同一台摩擦系数测试仪的适用性针对上述差异,我们需要评估同一台摩擦系数测试仪在测量干湿摩擦性时的适用性。一般来说,现代的摩擦系数测试仪都具备较高的灵活性和可调节性,可以通过更换不同的测试头、调整测试参数等方式来适应不同的测试需求。因此,从理论上讲,同一台摩擦系数测试仪是可以用于测量面料的干湿摩擦性的。然而,在实际操作中,我们还需要注意以下几点:测试条件的控制:为了准确测量面料的干湿摩擦性,我们需要确保测试条件的稳定性和一致性。这包括温度、湿度、压力等环境因素的控制,以及测试速度和加载方式等测试参数的设置。测试头的选择:不同的测试头适用于不同的面料和测试需求。在选择测试头时,我们需要考虑面料的纤维类型、纱线结构以及测试目的等因素,以确保测试结果的准确性和可靠性。数据处理和分析:在获得测试结果后,我们需要对数据进行适当的处理和分析。这包括数据的清洗、异常值的剔除、统计分析和结果解释等步骤。通过科学的数据处理和分析方法,我们可以更准确地评估面料的干湿摩擦性能,并为后续的产品开发和质量控制提供有力的支持。四、结论综上所述,面料的干湿摩擦性是可以使用同一台摩擦系数测试仪进行测量的。然而,在实际操作中,我们需要注意测试条件的控制、测试头的选择以及数据处理和分析等方面的问题。通过科学的测试方法和严格的质量控制流程,我们可以更准确地评估面料的干湿摩擦性能,并为后续的产品开发和质量控制提供有力的支持。
  • 弗尔德仪器亮相第十一届先进陶瓷国际研讨会--发布陶瓷行业解决方案
    2019年5月25-29日,由中国硅酸盐学会发起的第十一届先进陶瓷国际研讨会(CICC-11)于云南省昆明市完美落幕。此次会议邀请到了来自33个国家和地区的1450名代表参会,CICC已然发展成为亚洲最大、国际知名的陶瓷领域学术盛会。本届CICC-11设置了24个专题研讨会,交流范围基本涵盖了整个特种陶瓷领域及相关学科,汇集业内知名专家学者与会做大会报告、主旨报告及邀请报告。 弗尔德仪器作为陶瓷产品的仪器应用翘楚,应邀赞助第十一届先进陶瓷国际研讨会,为CICC-11的成功举办增砖添瓦。陶瓷领域研究离不开样品前处理、热处理以及理化分析等实验操作,弗尔德仪器应陶瓷行业所需,能够为陶瓷样品的研磨粉碎、热处理、氧/氮/氢/碳/硫元素分析提供先进完善的仪器解决方案。弗尔德仪器旗下产品包括德国Retsch(莱驰)粉碎研磨筛分设备、德国Retsch Technology(莱驰科技)粒度粒形分析仪、德国Eltra(埃尔特)元素分析仪、CarboliteGero(卡博莱特盖罗)烘箱、马弗炉。n 陶瓷制品的研磨粉碎处理对烧结陶瓷的半成品进行检验,需要先对半成品进行研磨粉碎处理。针对不同陶瓷原料、陶瓷粉末以及成品,行星式球磨仪PM 400可以实现陶瓷样品的细粉碎。高能水冷球磨仪Emax优于常规球磨仪能够在更短时间内实现陶瓷样品的纳米研磨。n 陶瓷制品的元素分析、热重分析熔点高达2700℃的碳化硅是陶瓷制品的重要原材料。德国Eltra(埃尔特)元素分析仪特别适用于含碳化硅的陶瓷制品的质量控制。ELEMENTRAC CS-i采用高频感应燃烧法能够对陶瓷样品中的碳含量进行精准测量。ELEMENTRAC ONH-p采用惰性保护气氛熔融技术对陶瓷制品中的氧氮氢元素进行精准可靠的测量。热重分析仪TGA Thermostep由可编程炉连内置天平,加热称重在同一台仪器上完成,大大简化了人工操作,能够一次测量出陶瓷样品的水分、灰分、挥发分。n 陶瓷制品的热处理工艺陶瓷粉末注射成型(CIM)是一种新型陶瓷成型技术,在成型形状复杂的零件和精确控制零件尺寸上有着其他工艺无可比拟的优势。陶瓷注射成型的整个过程主要包括原材料的混合,喂料的注射成型,生胚的排胶和烧结。在CIM工艺过程中,排胶过程最重要的使温度缓慢上升,大量的粘结剂才会析出。CarboliteGero(卡博莱特盖罗)热壁炉——GLO系列,能满足此应用。其加热元件位于炉膛外侧,整个炉膛相当于一个容器。加热元件直接加热炉膛外侧,并向内传导热量,整个炉膛壁是热的,所以叫做热壁炉,也可选配带氢气供气系统的全自动控制系统。退火炉GLO 烧结是CIM工件成形前的最后一个工艺,是一个把粉状物料转变为致密体的传统工艺过程。还有一种工艺是排胶和烧结使用同一台炉子,这样的炉子我们称之为“排胶烧结一体炉”。HTK陶瓷纤维炉,是排胶烧结一体炉,能够在空气环境下排胶和烧结,最高温度2200°C。排胶烧结一体炉HTKn 陶瓷粉末的粒度粒形分析陶瓷粉末注射成型(CIM)对粉末特殊的要求,以使喂料在达到高装载量的同时满足一定的流动性。较理想的粉末一般要求散装密度高、无团聚、颗粒形状为球形、平均粒径小、颗粒内全致密无内孔等。Retsch Technology(莱驰科技)干湿两用多功能粒径及形态分析仪CAMSIZER X2能够满足CIM工艺对陶瓷粉末粒度粒形的检测需求。采用所见即所得的双镜头(CCD)专利技术,能够对陶瓷颗粒的粒径、球形度、纵横比、对称性等粒径粒形参数进行测量与分析。干湿两用多功能粒径及形态分析仪CAMSIZER X2
  • 塑料保鲜膜有必要使用摩擦系数仪测试湿态下的摩擦系数吗
    塑料保鲜膜是家庭和商业厨房中常用的食品包装材料,它的主要作用是保护食品免受污染,减少水分蒸发,并在一定程度上隔绝氧气,延长食品的保质期。摩擦系数是衡量材料表面滑爽性的一个重要参数,尤其在包装和运输过程中,它影响着材料的堆叠、展开和使用便利性。湿态下摩擦系数测试的必要性使用环境:在实际使用中,塑料保鲜膜可能会暴露在潮湿环境中,或者用于包裹含水食品,因此测试湿态下的摩擦系数可以更准确地模拟实际使用条件。产品性能:湿态下的摩擦系数可能会与干态时有所不同,这可能会影响保鲜膜的使用性能,如开合的便利性、包装的密封性等。质量控制:通过测试湿态下的摩擦系数,制造商可以对产品进行更全面的质量控制,确保其满足不同条件下的使用要求。安全标准:某些食品安全标准或包装材料标准可能要求测试材料在不同条件下的性能,包括湿态下的摩擦系数。消费者体验:湿态下的摩擦系数直接影响消费者在使用保鲜膜时的体验,如易拉性、易撕性和易铺展性。摩擦系数仪的选择和测试设备选择:选择能够进行湿态测试的摩擦系数仪,确保设备可以模拟潮湿环境并准确测量摩擦系数。测试条件:设定合适的测试条件,包括湿度、温度和测试速度,以确保测试结果的准确性和可重复性。样品准备:按照标准要求准备样品,确保样品的代表性和测试的有效性。数据记录:记录测试过程中的数据,包括摩擦系数、测试条件等。结果分析:对测试结果进行分析,评估塑料保鲜膜的湿态摩擦性能,并与干态性能进行比较。结论虽然塑料保鲜膜在干态下的摩擦系数测试是常规的质量控制步骤,但进行湿态下摩擦系数的测试同样重要。这不仅可以提供更全面的产品性能评估,还可以确保产品在实际使用中的性能满足消费者的期望和安全标准的要求。因此,使用摩擦系数仪测试塑料保鲜膜湿态下的摩擦系数是有必要的,它有助于提升产品质量和消费者满意度。
  • 佰汇兴业将参加第六届中国国际摩擦学会议(6th CIST)
    第六届中国国际摩擦学会议(6th CIST)(2011 年8 月19 日~22 日,中国兰州) 佰汇兴业(北京)科技有限公司将参加于2011 年8 月19 日至22 日在兰州举办的第6 届中国摩擦学国际会议(CIST 2011),CIST 2011会议由中国科学院兰州化学物理研究所固体润滑国家重点实验室、清华大学摩擦学国家重点实验室、中国机械工程学会摩擦学分会主办,兰州化学物理研究所承办,共同研讨近年来摩擦学与技术研究的最新进展和未来发展方向。 佰汇兴业将在会议期间展示摩擦学试验设备,包括:日本HEIDON摩擦试验机、德国WAZAU摩擦试验机等。欢迎各界人士莅临指导。佰汇兴业(北京)科技有限公司北京市海淀区西八里庄路69号西楼201室电话 010-88115228 传真010-88142618E-mail:info@bhxytech.comwww.bhxytech.com
  • 世界摩擦学大会首次落户中国
    p   作为摩擦学领域级别最高的国际会议——第六届世界摩擦学大会18日至22日在京举行。这也是世界摩擦学大会20周年以来,首次落户中国,旨在总结近期摩擦学各个方向的研究成果,探讨摩擦学未来的研究方向,增强摩擦学的基础与应用研究同工业界之间的联系。 /p p   据介绍,摩擦学是一门研究摩擦、磨损和润滑的科学,在机械、能源、电子等领域具有核心地位。研究发现,每年全世界约30%的一次能源因为摩擦被消耗,约60%的机器零部件因为磨损而失效,约50%的机械装备恶性事故起源于润滑失效和过度磨损。 /p p   清华大学机械学院院长、中国科学院院士雒建斌指出,如今,摩擦学正越来越广泛地运用于各个领域,从航空航天到交通运输、桥梁工程,再到海洋深潜、地球深部探测,世界上几乎所有超级工程的背后都有摩擦学的贡献。随着研究的不断深入,特别是纳米摩擦学、生物摩擦学、绿色润滑、智能润滑和超滑的出现,为摩擦学带来了新的发展机遇。 /p p   世界摩擦学大会始于1997年,每四年一届,前五届分别在英国(伦敦)、奥地利(维也纳)、美国(华盛顿)、日本(京都)和意大利(都灵)举办。本次会议由中国机械工程学会摩擦学分会主办,清华大学承办。 /p p /p
  • 如何通过摩擦系数仪优化化妆品日化产品的滑爽性能
    引言在化妆品与日化产品领域,产品的使用体验是吸引并留住消费者的关键因素之一。其中,滑爽性能作为直接影响触觉感受的重要指标,其优化显得尤为重要。摩擦系数仪作为科学评估材料表面滑爽性能的专业工具,在化妆品与日化产品的研发与优化过程中扮演着不可或缺的角色。本文将深入探讨如何通过摩擦系数仪来优化这类产品的滑爽性能,旨在为行业内的研发人员提供一套系统的实践指南。一、理解摩擦系数仪的工作原理与应用1.1 工作原理概述摩擦系数仪通过模拟实际使用场景下的摩擦行为,测量样品表面与其他材质(如皮肤模拟物、包装材料等)之间的摩擦阻力,从而计算出摩擦系数。这一数值直接反映了产品表面的滑爽程度,是评估产品使用体验的重要指标之一。1.2 在化妆品日化产品中的应用在化妆品领域,摩擦系数仪可用于评估乳液、面霜、防晒霜等产品的涂抹顺畅度;在日化产品方面,则可用于检测洗涤剂、洗洁精等产品的去污能力及使用后表面的爽滑感。通过精确测量,研发人员可以更加科学地调整配方,以达到最佳的滑爽性能。二、摩擦系数仪测试前的准备工作2.1 样品的准备确保测试样品具有代表性,即能够真实反映产品整体的滑爽性能。同时,注意样品的储存条件,避免温湿度变化对测试结果的影响。2.2 测试参数的设定根据产品的特性和测试目的,合理设定测试速度、负载、滑动距离等参数。这些参数的设定将直接影响测试结果的准确性和可靠性。2.3 仪器的校准与维护定期对摩擦系数仪进行校准,确保其测量精度符合标准要求。同时,做好仪器的日常清洁与维护工作,避免外界因素对测试结果造成干扰。三、优化化妆品日化产品滑爽性能的策略3.1 调整配方成分通过改变配方中油脂、乳化剂、增稠剂等成分的种类和比例,可以有效调节产品的滑爽性能。例如,增加适量的硅油或天然油脂成分,可以显著提升产品的润滑感和滑爽度。3.2 优化生产工艺生产工艺对产品的滑爽性能同样具有重要影响。通过改进搅拌速度、温度控制、均质时间等工艺参数,可以使产品更加细腻均匀,从而提高其滑爽性能。3.3 引入新型材料随着科技的进步,越来越多的新型材料被应用于化妆品与日化产品中。这些材料往往具有独特的物理化学性质,能够显著改善产品的滑爽性能。例如,纳米材料、生物基材料等新型添加剂的引入,为产品的优化提供了更多可能性。3.4 数据分析与反馈利用摩擦系数仪获得的测试数据,进行深入的统计分析和趋势预测。通过对比不同配方、工艺条件下产品的滑爽性能差异,找出影响滑爽性能的关键因素,并据此制定针对性的优化方案。同时,建立反馈机制,及时调整优化策略,确保产品性能的持续改进。四、案例分析:某品牌面霜滑爽性能优化实践某知名化妆品品牌在其面霜产品的研发过程中,遇到了滑爽性能不佳的问题。为此,该品牌研发团队借助摩擦系数仪进行了深入的测试与分析。通过调整配方中的油脂比例、引入新型乳化剂以及优化生产工艺等措施,成功提升了面霜的滑爽性能。经过市场验证,优化后的面霜不仅涂抹更加顺畅,而且能够显著提升消费者的使用体验。这一成功案例充分展示了摩擦系数仪在化妆品日化产品滑爽性能优化中的重要作用。五、结论与展望综上所述,摩擦系数仪作为评估化妆品日化产品滑爽性能的重要工具,其在产品研发与优化过程中具有不可替代的作用。通过科学合理的测试与分析方法,结合配方调整、工艺优化等策略手段,可以有效提升产品的滑爽性能和使用体验。未来,随着科技的不断进步和消费者需求的日益多样化,化妆品日化产品的滑爽性能优化将成为一个持续的研究热点。我们期待更多的创新技术和方法能够应用于这一领域,为消费者带来更加优质、舒适的产品体验。
  • 古陶瓷鉴定开启光谱检测新模式
    日前,香港皇廷2016秋季中国艺术品拍卖会在厦门开始了其全国巡展首站,展出了19件历朝陶瓷精品。这些拍品采用了“科技+人文”鉴宝的新模式,也是目前唯一附有国际标准化组织ISO认证机构检测报告的古陶瓷拍品。  据介绍,仪器检测是将瓷器放进真空环境的X荧光光谱仪后,再经过拉曼光谱仪检测釉面成分。随后,专家根据检测数据进行对比和经验分析,给出古陶瓷的年代与真伪的参考报告。
  • 美国Rtec在2018年全国青年摩擦学会议展示最新摩擦学测试技术
    p    strong 仪器信息网讯 /strong 2018年全国青年摩擦学大会由中国机械工程学会摩擦学分会主办,福州大学承办,中国机械工程学会摩擦学分会、国家自然科学基金委员会工程与材料学部支持。中国机械工程学会摩擦学分会理事长、中国矿业大学校长葛世荣教授担任此次会议的大会主席。来自全国100余家高等院校、科研院所、公司企业的近600名摩擦学工作者参加了会议。 /p p style=" text-align: center" img style=" width: 450px height: 263px " src=" http://img1.17img.cn/17img/images/201805/insimg/d5fbfe0c-d462-44d4-a12a-5f02621e25d5.jpg" title=" 会议" height=" 263" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p   4月27至29日,2018年全国青年摩擦学学术会议于在福建福州成功召开。 /p p style=" text-align: center" img style=" width: 450px height: 266px " src=" http://img1.17img.cn/17img/images/201805/insimg/5364724b-5770-45f1-8a52-717c3d800ddd.jpg" title=" 大会" height=" 266" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 2018年全国青年摩擦学大会在福州举行 /span /p p    strong 美国Rtec仪器公司 /strong 是全球研发实力雄厚的摩擦学仪器公司,作为会议协办单位,为本次会议增添了光彩,带来了最新的摩擦学测试技术。 /p p style=" text-align: center" img style=" width: 450px height: 354px " src=" http://img1.17img.cn/17img/images/201805/insimg/90cd2182-5240-4109-8293-613d4282bae4.jpg" title=" 3.jpg" height=" 354" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " Rtec公司参会合影 /span /p p   Rtec公司所携带的MFT-5000多功能摩擦磨损试验机现场为所有参会人员展示了摩擦学测试技术的最新发展,特别是摩擦测试结合原位三维形貌深受广大摩擦学工作者的赞叹,该功能原位动态反映材料摩擦过程中表面微观变化,通过3D图呈现以及及粗糙度、磨痕深度、磨损体积等数据,表征不同材料工艺下、不同使用环境工况下,摩擦所产生的人眼看不到的材料失效形态,如微观腐蚀坑、材料剥离分层情况,通过原位三维形貌对材料摩擦过程中的表面变化进行动态检测分析,非常有助于材料摩擦和失效机理的研究,找到失效原因,从而改善和提高材料性能。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201805/insimg/8898059f-a621-4066-b7c1-9c9cdf089289.jpg" title=" 4.png" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 原位三维形貌 /span /p p style=" text-align: center" img style=" width: 450px height: 352px " src=" http://img1.17img.cn/17img/images/201805/insimg/21a8aaec-8aec-4541-8ac4-60147727ec49.jpg" title=" 5.png" height=" 352" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " /span span style=" color: rgb(0, 176, 240) " 对摩擦学测试技术热烈讨论 /span /p p   Rtec公司在微纳摩擦学论坛发表主题为”Advanced characterization method to investigate friction, wear and surface morphology change with time”的报告,并介绍Rtec超低摩擦系数高精度检测的摩擦试验机在美国阿贡国家重点实验室的应用。 /p p style=" text-align: center" img style=" width: 450px height: 338px " src=" http://img1.17img.cn/17img/images/201805/insimg/69c72fa3-e425-48cf-8f26-fd6045b89d3c.jpg" title=" 6.jpg" height=" 338" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " Rtec公司做报告 /span /p p style=" text-align: center" img style=" width: 450px height: 338px " src=" http://img1.17img.cn/17img/images/201805/insimg/82c189eb-074f-4027-9048-3901ab6a74a0.jpg" title=" 7.jpg" height=" 338" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " /span span style=" color: rgb(0, 176, 240) " 介绍Rtec摩擦仪在美国阿贡国家重点实验室的超低摩擦系数高精度检测应用 /span /p
  • 南方科技大学葛锜/西安交通大学原超团队《Nature Communications》:陶瓷4D打印研
    4D打印是一种基于3D打印发展的新型制造技术。相比3D打印,4D打印将智能材料和力学设计融入制造过程。因此在外界环境刺激(如光、热、电、磁等)下,4D打印结构可随时间产生形状或功能的改变,在生物医疗、航空航天等领域有着广阔的应用前景。目前,实现4D打印的材料主要局限于水凝胶、形状记忆聚合物和液晶弹性体等智能软材料,而对于陶瓷类材料的4D打印仍存在诸多技术瓶颈。现有的陶瓷4D打印主要基于墨水直写工艺,且需模具实现结构预编程,效率和精度有待提高。数字光处理(DLP)技术是一种通过紫外光面投影成型的高精度3D打印技术,但将该技术用于陶瓷4D打印仍面临以下几个挑战:(i)缺乏具有大变形能力的光固化陶瓷弹性体树脂;(ii)缺乏与陶瓷弹性体树脂匹配的光固化驱动材料;(iii)缺乏可以一体化成型陶瓷弹性体-驱动材料的多材料3D打印技术和装备。2024年1月26日,南方科技大学机械与能源工程系葛锜教授与西安交通大学原超副教授研究团队提出了一种简单高效的陶瓷4D打印制造方法和设计策略。采用团队自主开发的多材料光固化3D打印设备制造水凝胶-陶瓷弹性体层合结构,通过水凝胶失水驱动层合结构由平面图案演化为复杂三维结构,在无需额外形状编程的条件下实现陶瓷结构的直接4D打印。该研究成果以“Direct 4D printing of ceramics driven by hydrogel dehydration”为题,发表在《Nature Communications》期刊上。南方科技大学机械与能源工程系研究助理教授王荣、西安交通大学副教授原超和南方科技大学博士研究生程健翔为论文共同第一作者。西安交通大学原超副教授和南方科技大学葛锜教授为论文共同通讯作者。南方科技大学为论文第一单位。图1展示了陶瓷4D打印的基本流程。采用南科大葛锜教授课题组自主研发的多材料光固化3D打印设备一体化成型界面牢固的水凝胶-陶瓷弹性体层合结构,通过水凝胶失水驱动平面图案演化为复杂三维结构,进而利用高温脱脂和烧结得到纯陶瓷三维结构。图1. 陶瓷4D打印的基本原理和流程。图2展示了研究团队为陶瓷4D打印开发出的低粘度光敏陶瓷弹性体浆料和丙烯酸水凝胶前驱体。固化成型的陶瓷弹性体生坯具有大变形能力,可承受高达700%的拉伸应变,其力学性能可通过改变浆料中交联剂含量来调控。水凝胶作为驱动材料,在失水过程中可实现高达65%的体积收缩率和40倍以上的模量提升,在变形失配诱导下带动层合结构产生整体弯曲变形,其更重要的是,光固化陶瓷弹性体-水凝胶层合结构界面韧性好,保证其在变形过程中不会发生界面剥离。图2. 光固化陶瓷弹性体和水凝胶材料的性能表征。如图3所示,在烧结过程中,弯曲的层合结构发生了曲率回撤现象。通过实验研究和有限元模拟,研究团队将现象归因于烧结过程中层合结构厚度方向的不均匀收缩。综合考虑水凝胶失水过程中层合结构变形以及烧结过程中陶瓷结构曲率回撤现象,研究团队建立了基于相转变的本构模型描述水凝胶脱水的刚度增加和体积收缩,进而结合层合梁理论预测陶瓷弹性体-水凝胶层合结构的脱水弯曲过程,最后将陶瓷烧结过程中变形梯度引发的非均匀收缩引入理论模型,计算最终的结构弯曲变形,理论预测与实验结果取得了很好的一致性。利用理论模型绘制的设计机制图可以定量呈现结构变形与结构参数的映射关系,为水凝胶-陶瓷层合结构设计提供了有效指导。图3. 烧结过程中陶瓷结构曲率回撤现象及其理论模型预测。图4展示了陶瓷4D打印的逆向设计流程:1)通过三维建模提取目标构型特征参数;2)设计平面图案确定待定设计参数;3)理论模型计算待定设计参数;4)有限元模拟预测三维形状;5)多材料打印实现层合结构到目标三维形状的构型转换。以正四面体为例,具体展示了陶瓷4D打印的设计流程,实验结果与最初的设计目标一致。图4. 陶瓷4D打印的逆向设计流程。如图5所示,通过对平面层合结构进行多样化图案设计,可实现如立方体盒子、Miura折纸结构、鹤、三叶风扇和蝎子等各种三维陶瓷结构。与模具辅助变形和手动折叠等方法相比,基于水凝胶失水驱动的陶瓷直接4D打印技术能够更简单、更高效、更精准地制造各三维陶瓷结构,为复杂陶瓷结构的设计和制造开辟了新的途径。图5. 陶瓷4D打印的复杂三维结构。MultiMatter C1基于高精度数字光处理3D打印技术和独家离心式多材料切换技术,MultiMatter C1多材料3D打印装备可实现任意复杂异质结构快速成型,在力学超材料、生物医学、柔性电子、软体机器人等领域具有重要应用潜力。设备亮点离心式多材料切换技术:独家开发的离心式多材料切换技术可实现高效材料切换和残液去除。离心转速可调,最高达8000转/分钟,60秒内即可完成多材料切换,单次打印多材料切换最大次数高达2000次,处于业内领先水平。可打印材料范围广:该设备支持粘度在50-5000 cps范围内的硬性树脂、弹性体、水凝胶、形状记忆高分子和导电弹性体等材料及这些材料组合结构的多材料3D打印,为不同行业和应用领域,提供了材料选择的灵活性。多功能多材料耦合结构实现:该设备可打印高复杂度、高精度、多功能、多材料耦合结构,支持同时打印2种材料,可打印层内多材料和层间多材料,且多材料层内过渡区尺寸在200μm以内,为复杂多材料结构制造提供高精度解决方案。
  • 薄膜摩擦系数仪新标准与旧标准在测试原理上的改进与新增测试方法
    在材料科学与工程领域,薄膜摩擦系数仪作为评估薄膜材料表面摩擦性能的关键设备,其测试标准的更新对于提高产品质量、优化工艺流程以及推动科技创新具有重要意义。近年来,随着科技的进步和测试需求的多样化,薄膜摩擦系数仪的测试标准也经历了从旧到新的演变。本文将从测试原理的角度,详细探讨新标准相比旧标准在测试原理上的改进及新增的测试方法。一、测试原理的基础变革1.1 传统测试原理的局限性旧标准下的薄膜摩擦系数仪主要基于库仑摩擦定律,即摩擦力与正压力成正比,与接触面积无关。这种传统的测试方法通过测量试样在摩擦过程中的摩擦力与正压力之比来计算摩擦系数,方法简单直接,但存在诸多局限性。例如,它难以全面反映薄膜材料在不同条件下的摩擦行为,特别是动态和复杂工况下的性能表现。1.2 新标准引入的先进测试原理新标准则引入了更为先进的测试原理,如动态摩擦测试、静态摩擦测试、滑动摩擦测试以及旋转摩擦测试等。这些新方法不仅丰富了测试手段,还提高了测试的全面性和准确性。动态摩擦测试能够模拟材料在实际使用过程中的动态摩擦行为,静态摩擦测试则关注材料在静止状态下的摩擦特性,而滑动摩擦测试和旋转摩擦测试则分别适用于不同类型的摩擦场景,为薄膜材料的摩擦性能评估提供了更多维度的数据支持。二、新增测试方法的详细解析2.1 动态摩擦测试动态摩擦测试是新标准中新增的重要测试方法之一。它通过模拟材料在实际使用中的动态摩擦过程,如包装膜在包装机械中的运动状态,来评估材料的动态摩擦性能。这种方法能够更真实地反映材料在实际工况下的摩擦行为,为产品的设计和优化提供更为可靠的依据。2.2 静态摩擦测试静态摩擦测试则关注材料在静止状态下的摩擦特性。它通过在试样与对磨副之间施加一定的正压力并保持相对静止,然后逐渐增加水平力直至试样开始滑动,来测量静态摩擦系数。这种方法对于评估材料的启动阻力和稳定性具有重要意义,特别是在需要精确控制摩擦力的场合,如精密机械和电子设备中。2.3 滑动摩擦测试与旋转摩擦测试滑动摩擦测试和旋转摩擦测试是两种常见的摩擦测试方法,它们在旧标准中已有应用,但在新标准中得到了进一步的优化和完善。滑动摩擦测试通过使试样在水平面上做直线运动来测量滑动摩擦系数,适用于评估材料的滑动性能和耐磨性。而旋转摩擦测试则通过使试样与旋转的摩擦轮接触并相对运动来测量旋转摩擦系数,这种方法更适用于评估材料在旋转部件中的摩擦性能。三、测试原理改进带来的优势3.1 提高测试的全面性和准确性新标准引入的先进测试原理和新增的测试方法使得薄膜摩擦系数仪的测试能力得到了显著提升。它不仅能够更全面地评估材料的摩擦性能,还能够提供更准确、更可靠的测试数据。这对于材料科学的研究和工程应用具有重要意义。3.2 促进技术创新和产业升级随着测试原理的改进和测试方法的丰富,薄膜摩擦系数仪在材料研发、产品设计、工艺优化等方面将发挥更加重要的作用。它不仅能够为科研人员提供更为精准的测试数据支持,还能够促进技术创新和产业升级,推动相关行业向更高质量、更高效率的方向发展。3.3 提升产品质量和市场竞争力通过采用新标准进行测试,企业可以更加准确地评估其产品的摩擦性能,从而在生产过程中采取相应的改进措施以提升产品质量。高质量的产品不仅能够满足用户的实际需求,还能够提升企业的市场竞争力,为企业带来更大的经济效益和社会效益。四、结论与展望综上所述,薄膜摩擦系数仪新标准相比旧标准在测试原理上进行了显著的改进和新增了多种测试方法。这些改进不仅提高了测试的全面性和准确性,还促进了技术创新和产业升级。未来,随着科技的不断进步和测试需求的不断变化,薄膜摩擦系数仪的测试标准还将继续发展和完善。我们期待在不久的将来能够看到更多先进的测试原理和方法被引入到这一领域中来,为材料科学的研究和工程应用提供更加全面、准确和高效的测试支持。
  • 满足您分析需求,安东帕摩擦学解决方案为您呈现
    2018年全国青年摩擦学学术会议由福州大学承办,4月27日至4月29日在福州召开,来自全国100余家高等院校、科研院所、公司企业的近600名摩擦学工作者参加了会议,其中包括摩擦学领域的院士、国家千人计划特聘教授、国家杰出青年基金获得者、长江学者和企业界专家学者,以及高校和中科院的研究生。会议期间,就围绕材料的摩擦磨损、润滑与摩擦化学、涂层/表面/界面摩擦学、微纳摩擦学、生物摩擦学及其它摩擦学相关问题、工业摩擦学等会议主题,与会代表在分会场开展了深入的研讨与交流,各界摩擦学学者、工作者交流了在摩擦学基础理论和应用方面取得的成果和经验。 奥地利安东帕公司从事摩擦磨损试验机产品和销售已超过35年,作为提供完整摩擦学全套解决方案的摩擦磨损设备的供应商,在历届摩擦学会议上从未缺席,这次会议也不例外,而且表面测试产品的产品专家在会上作了《一种结合原味在线摩擦磨损测量的新型真空气氛下球盘摩擦磨损试验机》相关报告,报告涉及的高温高真空摩擦试验机是得到专家的一致认可,解决了摩擦学实时进行磨损测量的难题。 35 年来,约 1500 套安东帕摩擦试验机已成功应用于全球多家实验室,其坚固性和可靠性均深受认可。基于包括销盘滑动摩擦磨损测试系统、纳米摩擦试验机和高温摩擦试验机等在内的众多解决方案,为您提供市场上种类最齐全的摩擦试验机,并有多种选件。 摩擦学是研究相对运动的作用表面间的摩擦、润滑和磨损,以及三者间相互关系的理论与应用的一门边缘学科,它的研究对象非常广泛。针对其对测量精度和可靠性的独特要求,安东帕公司的高精度智能流变仪、运动黏度计等仪器也可以提供最佳的解决方案。
  • 薛群基院士获2011年“国际摩擦学金奖”
    据国际摩擦学理事会官方网站报道,经国际摩擦学会评奖委员会评审,国际摩擦学领域最具权威性和影响力的奖项,2011 年“国际摩擦学金奖(Tribology Gold Medal)”,授予中国科学院兰州化学物理研究所学术委员会主任、中国工程院院士薛群基研究员。该奖项每年奖励一位在摩擦学领域做出突出贡献的全球学者,自1972年设立以来中国科学家首次获此殊荣。   颁奖仪式拟于2012年2月27日在北京英国驻华大使馆举行,英国驻华大使Sebstian Wood 勋爵将为薛群基院士颁发证书和奖章。   国际摩擦学理事会成立于1969年,其宗旨是协调保持世界各地的摩擦学学术团体之间的联系和接触,促进摩擦、磨损、润滑和相关学科的发展,并在世界范围内遴选和表彰在摩擦学领域做出杰出贡献的学者。   薛群基院士的获奖评价为:“鉴于其在摩擦学领域的杰出成就,特别是在空间润滑领域的出色研究工作,摩擦学领域世界最高奖,2011年度国际摩擦学金奖,授予中国科学院兰州化学物理研究所学术委员会主任薛群基教授。薛群基教授创建了固体润滑国家重点实验室,在他的领导下,实验室成长为中国最大和最出色的摩擦学研究团队之一,为中国的经济建设,特别是在降低成本、能源消耗、摩擦和磨损等方面做出了突出贡献,提高了许多工业产品的可靠性和寿命。薛群基教授是近40年来世界上最杰出和最具影响力的摩擦学家之一(Professor Xue is one of the worlds most outstanding and influential tribologists of the last forty years)。”
  • 安东帕出席全国摩擦学大会
    2013年8月6~8日,第十一届全国摩擦学大会在兰州召开,来自全国各地的专家学者们就摩擦学及其交叉领域内的热点问题,特别是摩擦学技术在节能减排、绿色制造、生物仿生、航空航天等方面的应用展开讨论。国际分析测试仪器领导者安东帕公司在会上展示了旗下黏度计、数字密度计和在线测量仪器等产品和解决方案,赢得与会者关注。 摩擦学是研究相对运动的作用表面间的摩擦、润滑和磨损,以及三者间相互关系的理论与应用的一门边缘学科,它的研究对象非常广泛。针对其对测量精度和可靠性的独特要求,安东帕公司为其提供最先进的高精度智能流变仪、运动黏度计、数字密度计和在线密度传感器等一系列测量测试仪器,以满足全球用户在研发和质量控制等领域的需求。 SVM 3000 Stabinger运动黏度计 SVM 3000 Stabinger 运动黏度计 根据ASTM D7042方法测量油品或燃料的动力学黏度和密度。 并以此结果自动计算 运动黏度 。测量结果与ISO 3104 或 ASTM D445一致。 Stabinger测量原理与帕尔帖控温单元结合在一起,使整个测量系统拥有无与伦比的黏度和温度测量范围。 SVM3000快速、小巧、节省能源、用途广泛、只需很少的样品和溶剂。 SVM3000可以说是市场上最高效的黏度计。 MCR302高级流变仪&摩擦仪 MCR302首先是一台高级旋转流变仪,是模块化的扩展式流变学测试系统,全面的功能模块,可以满足过去、现在和未来的所有流变学应用要求!首先,可以全面研究润滑脂、润滑油的流变学特性,如表观黏度、流动曲线、粘温曲线、触变性、屈服应力、粘弹性、高压黏度、低温凝胶点等流变学特性。 Tribology系统是MCR302流变仪的一个新型扩展模块,利用MCR流变仪的强大性能可以精确描述微小应力、微小摩擦速率(近乎于静摩擦)到高摩擦速率的摩擦系数,既可以做干摩擦、也可以做润滑摩擦、并可以研究不同材料、润滑剂、温度、载荷、速度等条件对摩擦性的影响。 DMA 500数字密度计 DMA 500 是一款轻便小巧的数字式密度计,具有无与伦比的易用性。用户界面简单明了,用户只需稍作了解即可独立操作仪器。此仪器具有诸多功能,可以确保正确进样,还可确保测量结果完全可追溯,需要时可立即调用。配备充电电池,方便携带,让您可以走出传统实验室,离线操作仪器。此外,电压波动或断电对 DMA 500 来说完全不是问题:您可以继续按照原计划进行测量,既不会丢失任何数据,也不会耽误时间。 L-DENS 313密度传感器 L-Dens 313密度传感器是一款功能强大、伸缩性极佳的在线密度测量仪器。它可以持续测定液体的密度和浓度&mdash &mdash 从毫升级别到百公升级别的液体皆可胜任。丰富的应用程序使得该仪器的用途极为广泛。L-Dens 313是要求密度测量精度达到 1x10-3 g/cm3 的各种应用的理想选择。关于安东帕(中国) 奥地利安东帕有限公司(ANTON PAAR GMBH)是工业及科研专用高品质测量和分析仪器的全球领导厂商。公司成立于1922年,总部设在奥地利格拉茨,在全球12个国家和地区设有分公司直接提供销售和售后服务,并在其它主要地区设有代理销售、服务机构。作为为世界上第一台数字式密度计的发明者,安东帕公司的产品在浓度,密度测量仪器仪表行业占全球市场的70%。 安东帕公司的密度仪、黏度测量仪、流变仪、旋光仪、折光仪、固体表面Zeta电位分析仪、 SAXSess 小角X光散射仪、闪点与燃点测定仪、微波消解与合成设备等产品作为分析与质量检测工具,已广泛应用于啤酒饮料,石油,化工,商检,质检,药检等诸多领域和研究机构,并且已作为许多国家行业标准及计量校正仪器。我们的用户包括了一级方程式赛车队,炼油厂,和几乎所有的世界知名饮料制造商。
  • 哈工程与美国RTEC成立“摩擦学联合实验室”
    p    strong 仪器信息网讯 /strong 2018年4月18日,哈尔滨工程大学与美国RTEC-INSTRUMENTS公司共同建立“哈工程-Rtec摩擦学联合实验室”(以下简称实验室)的暨揭牌仪式在哈尔滨工程大学动力楼204会议室举行。动力学院副院长高峰主持仪式,美国Rtec公司中国区销售总监刘福海,华北区销售代表张同迪,哈尔滨工程大学动力与能源工程学院党委书记任义君,哈尔滨工程大学科研院副处长姜述强,动力与能源工程学院学术委员会主任、船舶设备摩擦学中心主任刘志刚出席仪式,实验室相关人员参加仪式。 /p p style=" text-align: center" img style=" width: 450px height: 298px " src=" http://img1.17img.cn/17img/images/201804/insimg/02628082-bacd-4cad-9a54-1ad331aedf4d.jpg" title=" 04.jpg" height=" 298" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p   哈尔滨工程大学表示,实验室旨在支撑研究型大学和“双一流”,改善该校在摩擦学领域的科研条件,提升在船舶设备摩擦学领域的研究水平,新的实验室将由哈尔滨工程大学动力与能源工程学院代为管理。 /p p style=" text-align: center" img style=" width: 450px height: 338px " src=" http://img1.17img.cn/17img/images/201804/insimg/7674e1bd-666b-46b6-9ed0-39cf793d2df8.jpg" title=" 000.jpg" height=" 338" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p   科学技术研究院副处长姜述强宣读了实验室成立的决定,聘任卢熙群同志为哈工程-Rtec摩擦学联合实验室主任,聘任刘福海同志为哈工程-Rtec摩擦学联合实验室副主任。实验室主任卢熙群副教授与Rtec公司代表张同迪现场签署协议。 /p p style=" text-align: center" img style=" width: 450px height: 338px " src=" http://img1.17img.cn/17img/images/201804/insimg/7fc29db8-5fba-45fe-a8e9-51d46439988b.jpg" title=" 02.jpg" height=" 338" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p   动力与能源工程学院党委书记任义君致贺词,并希望双方借助联合实验室这个稳定的合作平台广泛交流、共谋发展,会为校企合作培养英才做出新贡献、得到新经验,会为创造一流的科研成果,培养一流的科研人才,为推动我国船舶设备摩擦学事业的发展做出应有的贡献。 /p p   美国Rtec公司中国区销售总监刘福海致贺词,指出此次校企双方本着自愿、合作、共赢的精神,组建摩擦学联合实验室,联合实验室的建立对RTEC公司的发展是一个重要里程碑,必将促进公司技术的进步。公司鼎力支持实验室的建设,并持续进行技术层面的支持,鼓励双方以产、学、研的模式深度融合、合作开发科技含量更高的摩擦学测试方法和装备。哈工程—RTEC摩擦学联合实验室,是国内外第一个具有鲜明摩擦学特色的联合实验室,相信在双方的共同努力下必将结出硕果。 /p p style=" text-align: center" img style=" width: 450px height: 338px " src=" http://img1.17img.cn/17img/images/201804/insimg/cd3000a5-cbaa-44ce-b46d-f16be9f7b803.jpg" title=" 03.jpg" height=" 338" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p   动力与能源工程学院学术委员会主任、船舶设备摩擦学中心主任刘志刚教授致贺词,并结合实验室成立的背景、船舶设备摩擦学领域的国内外研究现状、国家低速机工程中自主研发体系建设的技术瓶颈、面临的机遇与挑战等内容对实验室未来的发展提出了希望,希望双方能够进行长久深入的合作。 /p p style=" text-align: center" img style=" width: 450px height: 338px " src=" http://img1.17img.cn/17img/images/201804/insimg/3f433531-56c3-46d1-87a9-693cea89d051.jpg" title=" 01.jpg" height=" 338" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p   最后,刘志刚教授和刘福海总监共同为哈工程-Rtec摩擦学联合实验室揭牌。 /p
  • 薄膜摩擦系数仪执行标准GB 10006与ASTM D1894有什么区别
    薄膜摩擦系数仪是一种用于测量塑料薄膜和薄片摩擦系数的设备,它在食品、日化、生活用纸、包装材料等领域具有广泛的应用。在进行摩擦系数测试时,通常会参照不同的标准,其中GB 10006和ASTM D1894是两个常用的标准。这两个标准在测试方法、试样制备、试验要求等方面存在一些差异。GB 10006标准的特点:试样尺寸:GB 10006要求适用于厚度在0.2mm以下的塑料薄膜和薄片,试样尺寸为长20cm宽8cm,滑块试验要取63mm×63mm。试验装置:要求滑块底面边长63mm,面积40cm² ,包括试样在内的滑块总质量为200±2g。试验平台要求选用非磁性材料,且表面平滑。测力系统:要求整个测力系统的总误差(精度)应小于±2%,且在测力系统一侧要安装弹簧,以便准确找出最大静摩擦力。试验速度:要求试验速度为100mm/min。测量判断:国标一般采取力的第一个峰值为静摩擦力Fs,两试样相对移动6cm内的力的平均值为动摩擦力。ASTM D1894标准的特点:试样尺寸:ASTM D1894规定每对试样中,粘附在水平试验台上的试样长250mm,宽13mm。试验装置:除了要求非磁性材料和表面平滑外,还提出高于23℃试验条件下的摩擦系数测定水平试验台装置需要具有加热控温功能。测力系统:ASTM D1894中没有关于弹簧的规定,但建议用柔性材料作牵引。试验速度:要求速度为150mm/min。测量判断:美国ASTM D1894规定为13cm,与GB 10006存在差异。主要区别:GB 10006和ASTM D1894在试样尺寸、试验装置要求、测力系统配置、试验速度以及测量判断等方面有所不同。ASTM D1894只允许薄膜对薄膜的测量,而GB 10006/ISO 8295还允许薄膜对其他材料(如金属或玻璃)的测量。GB 10006-2021标准在2021年10月1日实施,除了常规速度要求外还提出了500mm/min的速度要求,这一点需格外注意。在选择薄膜摩擦系数仪时,需要根据具体的测试需求和应用场景,选择合适的标准进行测试,并确保测试设备能够满足这些标准的要求。同时,随着技术的发展,现代摩擦系数测试仪通常能够实现更高的精度,甚至超出标准提出的精度要求,为用户提供更准确的测试结果。
  • 德瑞克发布六工位口罩耐摩擦测定仪新品
    DRK-128C六工位口罩耐摩擦测定仪用于测定机织物和针织物的耐磨损性能,也可适用于非织造物。不适用于长绒毛织物。可用于测定毛织物在轻微压力下的起毛球性能。不适用于厚度超过3mm的毛织物。适用标准:GB/T4802.2、GB/T21196.1~4、GB8690、ASTMD4966、ASTMD4970、ISO12945.2仪器结构特征: 1、本机由仪器主体和电气两部分组成,是台式结构。金属构件是仪器的主体,它通过电控系统来进行试验工作。其动作由电机驱动,经过减速器、导板等驱动磨头运动,磨头运动的轨迹与织物的实际磨损过程相似。2、当预置次数完成后,仪器自动停机。3、人机界面操作简单方便,显示直观。仪器主要规格和技术特征: 1、磨擦头位数:9个2、试样夹直径:Φ38mm和Φ90mm3、磨台直径:Φ120mm4、直径38mm试样夹和导向杆总重量为:(198±2)g 直径90mm试样夹、导向杆和O型橡胶圈总重量为:(155±1)g 直径90mm试样夹、导向杆、O型橡胶圈和加载块总重量为:(415±2)g 重锤:395g±2g、594g±2g 加载块和试样夹具组件的总质量应为: 大块(795±7)g即施加在试样上的名义压力为12 kPa 小块(595±7)g即施加在试样上的名义压力为9 kPa5、记数范围:预置计数1~990000次6、试验速度(磨头转速):47.5±2.5r.p.m 注:标配只带47.5±2.5r.p.m,其余25r.p.m、75r.p.m均需选配。7、电源:220V±10%、50Hz8、电机功率:120W9、外形尺寸:850mm×600mm×400mm10、重量:仪器120kg  附件箱22kg仪器结构图:图1:仪器结构图图2:试样夾安装示意图图3:偏心盘创新点:人机界面操作简单方便,显示直观。 六工位口罩耐摩擦测定仪
  • 德祥圆满参展“第十届全国摩擦学大会”
    2011年11月5-8日,第十届全国摩擦学大会在武汉科技会展中心隆重召开。本届会议由中国机械工程学会摩擦学分会主办。会议通过学术活动和产品展示交流我国摩擦学界在摩擦学研究和应用方面取得的最新成果。德祥科技有限公司携两大独家代理产品参展。主要展出的产品系列:美国斯派超Spectro Inc.油品监测仪器和海思创Hysitron纳米力学测试仪。 德祥科技有限公司作为Spectro Inc.(斯派超)和Hysitron(海思创)产品在中国的独家代理商,公司技术人员与参会的专家学者积极交流,为行业内研究者提供精确、可靠、方便的油品监测和材料微纳尺度力学分析测试。 技术人员与客户积极交流 美国斯派超Spectro Inc. 29年来一直致力于工业摩擦磨损监测系统的研发与生产。能提供全套的&ldquo 工业摩擦磨损监测系统&rdquo 和全套&ldquo 油品质量监测系统&rdquo 。 客户遍及军队、石化企业、发电厂、矿山、民航、铁路、船运、发动机制造行业、钢铁行业等。油料光谱仪光谱分析仪Spectroil M是*获得美国三军JOAP认证的产品;与Lockheed Martin战术防备系统和海军研究实验室合作研发了自动磨损颗粒分析仪LaserNet Fines,其集颗粒计数,形态识别,粘度分析于一体,极大地增强油液监测预防维护系统的能力;手持式红外油品状态监测仪FluidScan及便携式快速运动粘度计SpectroVisc Q3000,可以随时随地方便快捷的进行现场油品监测。 海思创力学测试技术展台 Hysitron(海思创)公司是*的纳米力学检测仪器的设计和制造商,其TI-750、TI-950纳米力学测试系统及配合原子力显微镜的TS 75纳米压痕仪具有压痕测试、划痕测试、模量成像、动态力学分析、声发射检测、接触电阻测量等功能,检测准确,重复性好;另外Hysitron(海思创)公司还开发了针对扫描电镜的PI 85纳米压痕仪、针对透射电镜的PI95纳米压痕仪,可在电镜下实时观测压痕过程,进行纳米尺度的压痕、压缩、弯曲和拉伸测试,Hysitron(海思创)仪器采用三板电容传感器,大大降低了仪器热漂移,是认识和探索材料的微纳米尺度结构、形貌和性能的重要工具。 美国Hysitron(海思创)TI-950型纳米压痕仪 TS-75型纳米压痕仪 更多产品请登陆德祥官网:www.tegent.com.cn 德祥热线:4008 822 822 联系我们(直接用户) 联系我们(经销商) 邮箱:info@tegent.com.cn
  • 2017上海陶瓷展,你看对重点了吗?
    2017年6月7日,上海已进入初夏,炎热的天气抵挡不住观众如火的热情,第九届上海国际工业陶瓷展览会在上海新国际博览中心拉开帷幕。为期三天的陶瓷展吸引了众多专业观众前来切磋洽谈,弗尔德仪器展位,人潮涌动,产品推广活动火热进行中。好不容易挤进2017上海陶瓷展,您可别看错了重点。弗尔德(上海)仪器设备有限公司携加热处理、研磨粉碎、粒径分析、元素分析四大板块多款产品亮相于W1馆C39-C40展位,为固体样品的前处理及分析提供了领先多方位的解决方案,看点丰富。弗尔德(上海)仪器设备有限公司(Verder Shanghai Instruments and Equipment Co., Ltd.)其前身是弗尔德莱驰(上海)贸易有限公司,是弗尔德集团在华设立的全资子公司,总部位于上海,在北京、广州、武汉等地设有办事处及实验室。全面负责德国Retsch(莱驰)粉碎、研磨、筛分设备,德国Retsch Technology(莱驰科技)多功能粒度粒形分析仪,Carbolite?Gero(卡博莱特?盖罗)烘箱、高温烘箱、箱式马弗炉、灰化炉、管式马弗炉、气氛马弗炉、真空马弗炉、高温马弗炉及工业定制炉,Eltra(埃尔特)碳/氢/氧/氮/硫元素分析仪在中国的市场销售、推广和技术服务。步入W馆,首先引入眼帘的就是弗尔德仪器的展位,现场展示的进口样机格外引人注目。德国Retsch(莱驰)PM100行星式球磨仪适用于粉碎和混合软性的、中硬性的、极硬的、脆性及韧性样品。可以干磨和湿磨,由于巨大的离心力,该仪器能迅速将样品粉碎至纳米级别,除了常规实验室样品粉碎,还可用于纳米研磨及机械合金制备。 为了满足日新月异的科技发展需求,Retsch(莱驰)推出了最新产品高能球磨仪Emax。Emax是一台全新设计的高能球磨仪,最高运转速度达2000转/分,是目前市面上最高转速的研磨仪。它可以在短时间内制备纳米级的样品颗粒。独有的水冷设计保证了研磨过程的高效和样品温度安全性。Emax因而成为高能机械研磨的最佳实验室设备。Carbolite Gero(卡博莱特盖罗)是弗尔德仪器旗下加热设备品牌,专注于进口马弗炉、真空气氛炉、定制炉等研发。展位上的紧凑型开合式管式炉EST吸引不少客户驻足咨询。这类管式炉外形紧凑,可选垂直型和水平型,加热丝内嵌在炉体的保温材料中,最高温可达1200℃。配合使用工作管适配器,能使用不同外径的工作管,灵活方便。 此外,德国Eltra(埃尔特)推出的碳硫分析仪、氧氮氢分析仪备受业内人士的关注。Eltra已经成为元素分析领域的佼佼者,其产品广泛应用于钢铁、采矿、汽车、航空、煤炭、建筑材料等行业。Eltra拥有精密的分析仪并能提供整体解决方案,为全球千万客户所信赖。介绍了这么多看点,你看对了吗?仪器展示之余,弗尔德仪器2017年全球回馈活动火热进行中,奖品为VR游戏机和迷你3D打印机二选一,心动不如行动,立即登录官网官网了解详情吧!
  • 关注有礼:康塔仪器粉末冶金陶瓷展与您相约
    2016年4月27-29日,美国康塔仪器公司将携其全自动比表面积及孔径分析仪NOVAtouch和图像法粒度粒形分析仪、真密度仪等产品亮相“第九届上海国际粉末冶金、硬质合金与先进陶瓷展览会”。欢迎大家莅临我们展位,共同探讨粉末冶金、陶瓷粉末表面改性处理以及多孔陶瓷微观结构表征分析等应用。展位号:A215,凡关注“康塔仪器”微信公众号的观众,可现场领取精美礼品一份。 表征多孔结构的主要参数是:孔隙度、平均孔径、最大孔径、孔径分布、孔形和比表面,这恰是全自动比表面和孔径分析仪的主要功能。NOVAtouch系列全自动比表面积及孔径分析仪作为康塔仪器专利产品,是高质量高性能气体吸附分析系统的代表,共有8个型号,采用彩色触摸屏,完全自动化、操作简单,因为可以不使用氦气,运行成本低;一次可以分析多个样品,因而测量效率高,可充分满足科研或质量控制实验室的需要。 除材质外,材料的多孔结构参数对材料的力学性能和各种使用性能有决定性的影响。由于孔隙是由粉末颗粒堆积、压紧、烧结形成的;因此,原料粉末的物理和化学性能,尤其是粉末颗粒的大小、分布和形状,是决定多孔结构乃至最终使用性能的主要因素。多孔结构参数和某些使用性能(如渗透率等)可以用压汞法等来测定,上图为美国康塔仪器公司的全自动压汞仪,可以同时测定两个样品。 烧结多孔材料的力学性能不仅随孔隙度、孔径的增大而下降,还对孔形非常敏感。孔隙率不变时,孔径小的材料透过性小,但因颗粒间接触点多,故强度大。过滤精度即阻截能力是指透过多孔体的流体中的最大粒子尺寸,一般与最大孔径值有关。孔径分布是多孔结构均匀性的判据。对于过滤材料要求在有足够强度的前提下,尽可能增大透过性与过滤精度的比值。根据这些原理,发展出用分级的球形粉末为原料,制成均匀的多孔结构,用粉末轧制法制造多孔的薄带和焊接薄壁管,发展出粗孔层与细孔层复合的双层多孔材料。康塔Porometer 3G孔径分析仪代表了先进的气体渗透法孔径分析技术:是基于电脑的强大软件控制,拥有卓越性能的紧凑型台式分析测量仪。它提供四种型号,适用于不同的压力(即孔径)和流速范围,以实现材料特性和仪器性能(灵敏度、准确度、再现性)的极佳匹配。精确测定施加于样品上的压力对孔隙分布分析至关重要,而这正是Porometer 3G孔径分析仪的优势所在。 多孔材料的孔径、强度等性能在很大程度上取决于所选用粉末的平均粒度、粒度分布、颗粒形状等;为了制出预定性能的材料,通常要对粉末进行预处理,如退火、粒度分级、球化和球选以及加入各种添加剂(造孔剂、润滑剂、增塑剂)等。粒度粒形分析仪,则可以对这个过程进行监控把关。康塔仪器所提供的欧奇奥图像法粒度粒形分析仪500NANOXY,干法湿法两用,具备颗粒计数功能,可提供50个以上的粒径/形貌分析参数,无疑是满足此类应用的优选产品。
  • 贸易摩擦与国产倾斜 加速外资本土化战略升级—— 访HORIBA Scientific(中国)总经理濮玉梅
    近年来,中美贸易摩擦日趋升温,由此引发的双方科技之争给世界分工带来巨大冲击。宏观来看,政策牵引和支持、国产采购倾斜,支持国产仪器发展似乎已经成为政府、市场以及公众的共识。此背景下,科学仪器外资企业在华本土化战略正迎来质变。从进口到本土生产,到本土设计、本土研发;从扎根中国、服务中国,再到打造本土化高端科学仪器等,正成为越来越多外资仪器企业在中国布局的明确规划。作为知名跨国分析仪器系统及系列产品生产制造商,株式会社堀场制作所 (HORIBA, Ltd.)在中国市场投资始于本世纪初,亲历中国入世20年变化,经历了技术换市场、资本与市场融合、本土伙伴关系布局等阶段后,面临新的挑战,正在抓紧新机遇,建立全新中国工厂,努力成为与中国共生关系和共赢格局的贡献者和受益者。近日,仪器信息网采访了HORIBA Scientific(中国)总经理濮玉梅,请其就HORIBA当前的机遇与挑战、在华本土化战略变化等发表了看法。贸易摩擦背景下,机遇与挑战并存在中美贸易摩擦和全球疫情背景下,外资企业在华市场不断面临挑战,一些在美国生产的产品,或对于一些敏感单位用户,都可能会受到进口或销售限制。同时,国产采购倾斜等政策也给外资企业带来压力。针对这一问题,濮玉梅认为,对于HORIBA,迎接挑战的同时,也蕴藏新的发展机遇。比如,本土化蓬勃发展下,HORIBA对应的OEM产品市场迎来增长;同时,HORIBA本土化加大的基础上,覆盖市场也不断扩大,从以往的科研市场下沉拓延至工业市场;另外,全球疫情也对世界分工带来巨大冲击,一些产业在其他国家比较薄弱,但在中国则得以进一步发展和需求释放,HORIBA全自动检测仪器在国内钢铁行业的增长就是一个案例。所以说,机遇与挑战并存,HORIBA在这方面一直十分敏锐,上半年业绩就可见一斑。据介绍,HORIBA科学仪器业务在中国业绩,虽然受到贸易摩擦等不利因素影响,但由于不断加大本土化投资,抓住半导体等工业市场增长机遇,整体上半年业绩依然达到目标,且下半年还将有可喜的预期。在华本土化战略升级 将建成HORIBA全球第四大研发中心HORIBA在中国投资开始于本世纪初,2002年在上海成立“堀场仪器(上海)有限公司”。起初HORIBA的五大事业部中,汽车测试系统、过程&环境、医疗、半导体等业务部门在中国设置了一定的装配线或研发,但科学仪器业务部由于仪器相对复杂,本地没有研发和生产,产品完全依赖进口。面对新的形势,HORIBA在华本土化战略不断升级,适时做出新的布局,更好地配置资源,发挥竞争优势,进一步落实本土化发展。HORIBA去年财报就曾描述,将投资预算总费用约6亿元在上海建设新工厂,作为新的开发、生产和售后服务基地。濮玉梅表示,新工厂已于今年6月交付,预计明年上半年可以实现正式运营,新工厂的建立对于HORIBA在华本土化战略具有里程碑式意义。首先,在上海新工厂中,科学仪器业务部将作为其中很重要的组成部分,肩负本土化发展的重要使命,主要有三部分:第一部分,科学仪器的本地研发。这意味着,从新工厂运营开始,HORIBA科学仪器将要组建本地研发团队。研发计划方面,分三步走。第一步,目标在国内实现定制化产品的生产,包括研发、设计、生产等都在国内完成;第二步,做到仪器本身在国内专配,而这是国内生产的基础;第三步,实现最终的目标,即国内销售的仪器都可以在本地生产。第二部分,构建全新应用中心“Application Research Center”。命名中增加“Research”,主要是在传统支持售前售后工作的“应用中心”的基础上,更多强调与客户的合作,如在科研领域,与高校院所合作培养学生;在工业领域,与客户共同开发应用方法等。这部分显现出HORIBA围绕本土用户需求全面升级产品力的决心和信心。第三部分,即维修中心。通过新工厂的运营,逐渐改变以往维修依赖国外的局面,逐渐建立国内仪器维系体系。上述三部分目标的实现,将使HORIBA逐步从生产制造、研发体系、营销渠道、本土服务、人才培养等方面全方位融入中国市场,这对HORIBA来说,是本土化发展的一次飞跃。其次,上海新工厂建立的整体目标是建成HORIBA全球继日本、法国、美国之后的第四大研发中心,真正实现在中国销售的产品的整个产业链在本土完成。当然,中国本地的技术与产品将来也会在全球范围内应用,惠及全球用户。最后,濮玉梅也表示,这将是一个长远计划,新工厂的竣工只是计划的开始,但这一切对于HORIBA科学仪器事业部的本土化发展已经具有非凡的意义。在此基础上,HORIBA未来本土化战略有可能还要向更深的层次发展。HORIBA与岛津合作开发LC-Raman系统将进入中国市场据悉,HORIBA与岛津合作开发的LC-Raman系统已于近期在日本市场发布,这项技术为许多领域提供了更多应用空间。濮玉梅表示,该LC-Raman系统将来目标肯定是全球化推广。至于何时进入中国市场,双方近期可能会磋商。双方也期望能够通过共同的努力为广大客户提供更多应用空间的新技术产品,为大家带来更好的体验。
  • Rtec仪器协办第七届世界摩擦学大会
    第7届世界摩擦学大会在法国里昂举办,来自世界各个国家的一千多位学者参加会议。Ali Edmire 教授作大会开幕演讲,来自中国的学者采用了视频方式进行了会议交流。兰州化物所周峰研究员作大会主题报告,青岛理工大学郭峰教授作邀请报告。Rtec仪器作为主要赞助商参与大会协办,本次会议展出具备在线三维形貌功能的摩擦磨损试验机MFT-2000,并现场演示,受到参会学者的热烈咨询,现场还给参会学者们介绍了Rtec摩擦磨损试验机、材料表面性能综合测试平台、划痕仪、压痕仪、三维光学形貌仪、光学轮廓仪和微动试验机等产品。Rtec应用科学家与学者们热情交流最新的摩擦学测试技术。图丨大会主题报告现场图丨周峰研究员作主题报告图丨郭峰教授作邀请报告图丨Rtec在会议现场演示MFT-2000仪器图丨Rtec应用科学家与学者们交流最新的摩擦学测试技术
  • 综述|高导热氮化硅陶瓷基板研究现状
    摘要:为了减少环境污染、打造绿色经济,高效地利用电力变得越来越重要。电力电子设备是实现这一目标的关键技术,已被广泛用于风力发电、混合动力汽车、LED 照明等领域。这也对电子器件中的散热基板提出了更高的要求,传统的陶瓷基板如 AlN、Al2O3、BeO 等的缺点也日益突出,如较低的理论热导率和较差的力学性能等,严重阻碍了其发展。相比于传统陶瓷基板材料,氮化硅陶瓷由于其优异的理论热导率和良好的力学性能而逐渐成为电子器件的主要散热材料。关键词:半导体 陶瓷基板 氮化硅 热导率然而,目前氮化硅陶瓷实际热导率还远远低于理论热导率的值,而且一些高热导率氮化硅陶瓷(>150 W/(mK))还处于实验室阶段。影响氮化硅陶瓷热导率的因素有晶格氧、晶相、晶界相等,其中氧原子因为在晶格中会发生固溶反应生成硅空位和造成晶格畸变,从而引起声子散射,降低氮化硅陶瓷热导率而成为主要因素。此外,晶型转变和晶轴取向也能在一定程度上影响氮化硅的热导率。如何实现氮化硅陶瓷基板的大规模生产也是一个不小的难题。现阶段,随着制备工艺的不断优化,氮化硅陶瓷实际热导率也在不断提高。为了降低晶格氧含量,首先在原料的选择上降低氧含量,一方面可选用含氧量比较少的 Si 粉作为起始原料,但是要避免在球磨的过程中引入氧杂质 另一方面,选用高纯度的 α-Si3N4 或者 β-Si3N4作为起始原料也能减少氧含量。其次选用适当的烧结助剂也能通过减少氧含量的方式提高热导率。目前使用较多的烧结助剂是 Y2O3-MgO,但是仍不可避免地引入了氧杂质,因此可以选用非氧化物烧结助剂来替换氧化物烧结助剂,如 YF3-MgO、MgF2-Y2O3、Y2Si4N6C-MgO、MgSiN2-YbF3 等在提高热导率方面也取得了非常不错的效果。研究发现通过加入碳来降低氧含量也能达到很好的效果,通过在原料粉体中掺杂一部分碳,使原料粉体在氮化、烧结时处于还原性较强的环境中,从而促进了氧的消除。此外,通过加入晶种和提高烧结温度等方式来促进晶型转变及通过外加磁场等方法使晶粒定向生长,都能在一定程度上提高热导率。为了满足电子器件的尺寸要求,流延成型成为大规模制备氮化硅陶瓷基板的关键技术。本文从影响热导率的主要因素入手,重点介绍了降低晶格氧含量、促进晶型转变及实现晶轴定向生长三种提高实际热导率的方法 然后,指出了流延成型是大规模制备高导热氮化硅陶瓷的关键,并分别从流延浆料的流动性、流延片和浆料的润湿性及稳定性等三方面进行了叙述 概述了目前常用的制备高导热氮化硅陶瓷的烧结工艺现状 最后,对未来氮化硅高导热陶瓷的研究方向进行了展望。关键词:半导体 陶瓷基板 氮化硅 热导率00引言随着集成电路工业的发展,电力电子器件技术正朝着高电压、大电流、大功率密度、小尺寸的方向发展。因此,高效的散热系统是高集成电路必不可少的一部分。这就使得基板材料既需要良好的机械可靠性,又需要较高的热导率。图 1 为电力电子模块基板及其开裂方式。研究人员对高导热系数陶瓷进行了大量的研究,其中具有高热导率的氮化铝(AlN)陶瓷(本征热导率约为320 W/(mK))被广泛用作电子器件的主要陶瓷基材。图 1 电力电子模块基板及其开裂方式但是,AlN 陶瓷的力学性能较差,如弯曲强度为 300~400 MPa,断裂韧性为 3~4 MPam1/2,导致氮化铝基板的使用寿命较短,使得它作为结构基板材料使用受到了限制。另外,Al2O3 陶瓷的理论热导率与实际热导率都很低,不适合应用于大规模集成电路。电子工业迫切希望找到具有良好力学性能的高导热基片材料,图 2 是几种陶瓷基板的强度与热导率的比较,因此,Si3N4 陶瓷成为人们关注的焦点。图 2 几种陶瓷基板的强度与热导率的比较与 AlN 和 Al2O3 陶瓷基板材料相比,Si3N4 具有一系列独特的优势。Si3N4 属于六方晶系,有 α、β 和 γ 三种晶相。Lightfoot 和 Haggerty 根据 Si3N4 结构提出氮化硅的理论热导率在200~300 W/(mK)。Hirosaki 等通过分子动力学的方法计算出 α-Si3N4 和 β-Si3N4 的理论热导率,发现Si3N4 的热导率沿 a 轴和 c 轴具有取向性,其中 α-Si3N4 单晶体沿 a轴和 c轴的理论热导率分别为105 W/(mK)、225W/(mK);β-Si3N4 单晶体沿a轴和c轴方向的理论热导率分别是 170 W/(mK)、450 W/(mK)。Xiang 等结合密度泛函理论和修正的 Debye-Callaway 模型预测了 γ-Si3N4 陶瓷也具有较高的热导率。同时 Si3N4 具有高强度、高硬度、高电阻率、良好的抗热震性、低介电损耗和低膨胀系数等特点,是一种理想的散热和封装材料。现阶段,将高热导率氮化硅陶瓷用于电子器件的基板材料仍是一大难题。目前,国外只有东芝、京瓷等少数公司能将氮化硅陶瓷基板商用化(如东芝的氮化硅基片(TSN-90)的热导率为 90 W/(mK))。近年来国内的一些研究机构和高校相继有了成果,北京中材人工晶体研究院成功研制出热导率为 80 W/(mK)、抗弯强度为 750 MPa、断裂韧性为 7.5MPam1/2 的 Si3N4 陶瓷基片材料,其已与东芝公司的商用氮化硅产品性能相近。中科院上硅所曾宇平研究员团队成功研制出平均热导率为 95 W/(mK),最高可达 120 W/(mK)且稳定性良好的氮化硅陶瓷。其尺寸为 120 mm×120 mm,厚度为 0.32 mm,而且外形尺寸能根据实际要求调整。目前我国的商用高导热 Si3N4 陶瓷基片与国外还是存在差距。因此,研发高导热的 Si3N4 陶瓷基片必将促进我国 IGBT(Insula-ted gate bipolar transistor)技术的大跨步发展,为步入新能源等高端领域实现点的突破。近年来氮化硅陶瓷基板材料的实际热导率不断提高,但与理论热导率仍有较大差距。目前,文献报道了提高氮化硅陶瓷热导率的方法,如降低晶格氧含量、促进晶型转变、实现晶粒定向生长等。本文阐述了如何提高氮化硅陶瓷的热导率和实现大规模生产的成型技术,重点概述了国内外高导热氮化硅陶瓷的研究进展。01晶格氧的影响氮化硅的主要传热机制是晶格振动,通过声子来传导热量。晶格振动并非是线性的,晶格间有着一定的耦合作用,声子间会发生碰撞,使声子的平均自由程减小。另外,Si3N4 晶体中的各种缺陷、杂质以及晶粒界面都会引起声子的散射,也等效于声子平均自由程减小,从而降低热导率。图 3 为氮化硅的微观结构。图 3 氮化硅烧结体的典型微观结构研究表明,在诸多晶格缺陷中,晶格氧是影响氮化硅陶瓷热导率的主要缺陷之一。氧原子在烧结的过程中会发生如下的固溶反应:2SiO2→ 2SiSi +4ON+VSi (1)反应中生成了硅空位,并且原子取代会使晶体产生一定的畸变,这些都会引起声子的散射,从而降低 Si3N4 晶体的热导率。Kitayama 等在晶格氧和晶界相两个方面对影响 Si3N4晶体热导率的因素进行了系统的研究,发现 Si3N4晶粒的尺寸会改变上述因素的影响程度,当晶粒尺寸小于 1μm时,晶格氧和晶界相的厚度都会成为影响热导率的主要因素 当晶粒尺寸大于 1μm 时,晶格氧是影响热导率的主要因素。而制备具有高热导率的氮化硅陶瓷,需要其具有大尺寸的晶粒,因此通过降低晶格氧含量来制得高热导率的氮化硅显得尤为关键。下面从原料的选择、烧结助剂的选择和制备过程中碳的还原等方面阐述降低晶格氧含量的有效方法。1.1 原料粉体选择为了降低氮化硅晶格中的氧含量,要先得从原料粉体上降低杂质氧的含量。目前有两种方法:一种是使用低含氧量的 Si 粉为原料,经过 Si 粉的氮化和重烧结两步工艺获得高致密、高导热的 Si3N4 陶瓷。将由 Si 粉和烧结助剂组成的 Si的致密体在氮气气氛中加热到 Si熔点(1414℃)附近的温度,使 Si 氮化后转变为多孔的 Si3N4 烧结体,再将氮化硅烧结体进一步加热到较高温度,使多孔的 Si3N4 烧结成致密的 Si3N4 陶瓷。另外一种是使用氧含量更低的高纯 α-Si3N4 粉进行烧结,或者直接用 β-Si3N4 进行烧结。日本的 Zhou、Zhu等以 Si 粉为原料,经过 SRBSN 工艺制备了一系列热导率超过 150W/(mK)的氮化硅陶瓷。高热导率的主要原因是相比于普通商用 α-Si3N4 粉末,Si 粉经氮化后具有较少的氧含量和杂质。Park 等研究了原料Si 粉的颗粒尺寸对氮化硅陶瓷热导率的影响,发现 Si 颗粒尺寸的减小能使氮化硅孔道变窄,有利于烧结过程中气孔的消除,进而得到致密度高的氮化硅陶瓷。研究表明,当 Si 粉减小到 1μm 后,氮化硅陶瓷的相对密度能达到 98%以上。但是在 SRBSN 这一工艺减小原料颗粒尺寸的过程中容易使原料表面发生氧化,增加了原料中晶格氧的含量。Guo等分别用 Si 粉和 α-Si3N4 为原料进行了对比试验。研究发现,以 Si 粉为原料经过氮化后能得到含氧量较低(0.36%,质量分数)的 Si3N4 粉末,通过无压烧结制得热导率为 66.5W/(mK)的氮化硅陶瓷。而在同样的条件下,以 α-Si3N4 为原料制备的氮化硅陶瓷,其热导率只有 56.8 W/(mK)。用高纯度的 α-Si3N4 粉末为原料,也能制得高热导率的氮化硅陶瓷。Duan 等以 α-Si3N4 为原料,制备了密度、导热系数、抗弯强度、断裂韧性和维氏硬度分别为 3.20 gcm-3 、60 W/(mK)、668 MPa、5.13 MPam1/2 和 15.06 GPa的Si3N4 陶瓷。Kim 等以 α-Si3N4为原料制备了热导率为78.8 W/(mK)的氮化硅陶瓷。刘幸丽等以不同配比的 β-Si3N4/α-Si3N4 粉末为起始原料,制备了热导率为108 W/(mK)、抗弯强度为 626 MPa的氮化硅陶瓷。结果表明:随着 β-Si3N4 粉末含量的增加,β-Si3N4柱状晶粒平均长径比的减小使得晶粒堆积密度减小,柱状晶体积分数相应增加,晶间相含量减少,热导率提高。彭萌萌等研究了粉体种类(β-Si3N4或 α-Si3N4)及 SPS 保温时间对氮化硅陶瓷热导率的影响。研究发现,采用 β-Si3N4粉体制备的氮化硅陶瓷的热导率比采用相同工艺以 α-Si3N4为粉体制备的氮化硅陶瓷高 15% 以上,达到了 105W/(mK)。不同原料制备的Si3N4材料的热导率比较见表1。表 1 不同原料制备的 Si3N4材料的热导率比较综合以上研究可发现,采用 Si 粉为原料制得的样品能达到很高的热导率,但是在研磨的过程中容易发生氧化,而且实验过程繁琐,耗时较长,不利于工业化生产 使用高纯度、低含氧量的 α-Si3N4粉末为原料时,由于原料本身纯度高,能制备出性能优异的氮化硅陶瓷,但是这样会导致成本增加,不利于大规模生产 虽然可以用 β-Si3N4 取代 α-Si3N4为原料,得到高热导率的氮化硅陶瓷,但是 β-Si3N4的棒状晶粒会阻碍晶粒重排,导致烧结物难以致密。1.2 烧结助剂选择Si3N4属于共价化合物,有着很小的自扩散系数,在烧结过程中依靠自身扩散很难形成致密化的晶体结构,因此添加合适的烧结助剂和优化烧结助剂配比能得到高热导率的氮化硅陶瓷。在高温时烧结助剂与Si3N4表面的 SiO2反应形成液相,最后形成晶界相。然而晶界相的热导率只有 0.7~1 W/(mK),这些晶界相极大地降低了氮化硅的热导率,而且一些氧化物烧结添加剂的引入会导致 Si3N4晶格氧含量增加,也会导致热导率降低。目前氮化硅陶瓷的烧结助剂种类繁多,包括各种稀土氧化物、镁化物、氟化物和它们所组成的复合烧结助剂。稀土元素由于具有很高的氧亲和力而常被用于从 Si3N4晶格中吸附氧。目前比较常用的是镁的氧化物和稀土元素的氧化物组成的混合烧结助剂。Jia 等在氮化硅陶瓷的烧结过程中添加复合烧结助剂 Y2O3-MgO,制备了热导率达到 64.4W/(mK)的氮化硅陶瓷。Go 等同样采用 Y2O3-MgO为烧结助剂,研究了烧结助剂 MgO 的粒度对氮化硅微观结构和热导率的影响。研究发现,加入较粗的 MgO 颗粒会导致烧结过程中液相成分分布不均匀,使富 MgO 区周围的 Si3N4晶粒优先长大,从而导致最终的 Si3N4陶瓷中大颗粒的 Si3N4晶粒的比例增大,热导率提高。然而,加入氧化物烧结助剂会不可避免地引入氧原子,因此为了降低晶格中的氧杂质,可以采用氧化物 + 非氧化物作为烧结助剂。Yang 等以 MgF2-Y2O3为烧结添加剂制备出性能良好的高导热氮化硅陶瓷,发现用 MgF2可以降低烧结过程中液相的粘度,加速颗粒重排,使粉料混合物能够在较低温度(1600℃)和较短时间(3 min)内实现致密化,而且低的液相粘度与高的 Si、N 原子比例有助于 Si3N4 的 α→β 相变和晶粒生长,从而提高 Si3N4 陶瓷的热导率。Hu 等分别以 MgF2-Y2O3和 MgO-Y2O3为烧结助剂进行了对比试验,并探究了烧结助剂的配比对热导率的影响。相比于 MgO-Y2O3,用 MgF2-Y2O3作为烧结助剂时 Si3N4陶瓷热导率提高了 19%,当添加量为 4%MgF2 -5%Y2O3时,能达到最高的热导率。Li 等以 Y2Si4N6C-MgO 代替 Y2O3 -MgO 作为烧结添加剂,通过引入氮和促进二氧化硅的消除,在第二相中形成了较高的氮氧比,导致在致密化的 Si3N4 试样中颗粒增大,晶格氧含量降低,Si3N4 -Si3N4 的连续性增加,使Si3N4 陶瓷的热导率由 92 W/(mK)提高到 120 W/(mK),提高了 30.4%。为了进一步提高液相中的氮氧比,降低晶格氧含量,通常还采用非氧化物作为烧结助剂。Lee 等研究了氧化物和非氧化物烧结添加剂对 Si3N4 的微观结构、导热系数和力学性能的影响。以 MgSiN2 -YbF3 为烧结添加剂,制备出导热系数为 101.5 W/(mK)、弯曲强度为822~916 MPa 的 Si3N4 陶瓷材料。经研究发现,相比于氧化物烧结添加剂,非氧化物 MgSiN2 和氟化物作为烧结添加剂能降低氮化硅的二次相和晶格氧含量,其中稀土氟化物能与 SiO2 反应生成 SiF4,而SiF4 的蒸发导致晶界相减少,同时也会导致晶界相 SiO2 还原,降低晶格氧含量,进而达到提高热导率的目的。不同烧结助剂制备的氮化硅陶瓷热导率比较见表 2,显微结构如图 4所示。表 2 不同烧结助剂制备的 Si3N4材料的热导率比较图 4 氧化物添加剂(a)MgO-Y2O3 和(d)MgO-Yb2O3、混合添加剂(b)MgSiN2 -Y2O3 和(e)MgSiN3 -Yb2O3 、非氧化物添加剂(c)MgSiN2 -YF3 和(f)Mg-SiN2 -YbF3 的微观结构目前主流的烧结助剂中稀土元素为 Y 和 Yb 的化合物,但是有些稀土元素并不能起到提高致密度的作用。Guo等分别用 ZrO2 -MgO-Y2O3和 Eu2O3 -MgO-Y2O3作为烧结助剂,制得了氮化硅陶瓷,经研究发现 Eu2O3 -MgO-Y2O3的加入反而抑制了氮化硅陶瓷的致密化。综合以上研究发现,相比于氧化物烧结助剂,非氧化物烧结助剂能额外提供氮原子,提高氮氧比,促进晶型转变,还能还原 SiO2 起到降低晶格氧含量、减少晶界相的作用。1.3 碳的还原前面提到的一些能高效降低晶格氧含量的烧结助剂,如Y2Si4N6C和 MgSiN2 等,无法从商业的渠道获得,这就给大规模生产造成了困扰,而且高温热处理也会导致高成本。因此,从工业应用的角度来看,开发简便、廉价的高导热 Si3N4 陶瓷的制备方法具有重要的意义。研究发现,在烧结过程中掺杂一定量的碳能起到还原氧杂质的作用,是一种降低晶格氧含量的有效方法。碳被广泛用作非氧化物陶瓷的烧结添加剂,其主要作用是去除非氧化物粉末表面的氧化物杂质。在此基础上,研究者发现少量碳的加入可以有效地降低 AlN 陶瓷的晶格氧含量,从而提高 AlN 陶瓷的热导率。同样地,在 Si3N4 陶瓷中引入碳也可以降低氧含量,主要是由于在氮化和后烧结过程中,适量的碳会起到非常明显的还原作用,能极大降低 SiO 的分压,增加晶间二次相的 N/O 原子比,从而形成双峰状显微结构,得到晶粒尺寸大、细长的氮化硅颗粒,提高氮化硅陶瓷的热导率。Li 等用 BN/石墨代替 BN 作为粉料底板后,氮化硅陶瓷的热导率提升了 40.7%。研究发现,即使 Si 粉经球磨后含氧量达到了 4.22%,氮化硅陶瓷的热导率依然能到达 121 W/(mK)。其原因主要是石墨具有较强的还原能力,在氮化的过程中通过促进 SiO2 的去除,改变二次相的化学成分,在烧结过程中进一步促进 SiO2 和 Y2Si3O3N4 二次相的消除,从而使产物生成较大的棒状晶粒,降低晶格氧含量,提高 Si3N4 -Si3N4 的连续性。研究表明,虽然掺杂了一部分碳,但是氮化硅的电阻率依然不变,然而最终的产物有很高的质量损失比(25.8%),增加了原料损失的成本。Li 等发现过量的石墨会与表面的 Si3N4 发生反应,这是导致氮化硅陶瓷具有较高质量损失比的关键因素。于是他们改进了制备工艺,采用两步气压烧结法,用 5%(摩尔分数) 碳掺杂 93%α-Si3N4 -2%Yb2O3
  • ChemPlus® 应用报告 | 陶瓷材料研究中的粉末分装
    在材料科学领域,材料的制备和应用对于众多工业部门,如冶金、陶瓷、电子、医药和化工等,都至关重要。随着科技进步和工业需求的不断提升,对材料质量和性能的要求也日益严格。这就要求在材料配方设计和实验工艺流程中实现更高的精度和效率。尤其在配方研究中,涉及到多种粉末材料的精确配比,粉末加料过程因而成为了一个复杂且耗时的步骤。传统的粉末称量方法主要依赖于人工操作,这不仅效率低,而且结果的准确性易受操作者技能水平的影响,导致加料精度不稳定。同时,人工操作还可能引起粉尘污染和物料浪费。此外,不同粉末的物理特性(如流动性、粒径分布、密度等)对称量过程的影响是显著的,这进一步增加了称量过程的复杂性。因此,传统的人工称量方法已难以满足现代材料研发对于粉末称量精度和效率的严格要求。随着自动化技术的不断发展,自动化粉末称量系统成为了解决这一问题的关键技术。自动化系统能够实现高精度的重量控制和高效率的称量操作,显著提高了材料配比的准确性和可重复性。自动化粉末称量系统通过精密的控制设备和算法,确保了粉末的精确加料,同时减少了粉尘污染和物料浪费,为新材料的研发提供了有力的技术支持。自动化系统通常具备易于操作的界面,能够适应不同粉末特性的变化,并且可以与其他实验室自动化设备无缝集成,进一步提升了实验室的整体工作效率。在陶瓷材料的研发过程中,通常涉及对 5 至 8 种不同的原始粉末进行精确称量,随后执行一系列实验步骤,包括研磨、烧结等。这些步骤之后,还需进行造粒、分装等操作,这些环节往往是劳动强度高且重复性强的工作。传统的手工操作不仅耗费大量的实验人员时间和精力,而且效率低下,且难以保证实验结果的重复性和一致性,容易引入人为误差。高通量自动化固体加样技术的应用,能够有效解决这些问题。该技术通过自动化设备精确控制原料粉末的称量和分配,确保了实验的高效性和准确性。自动化系统的使用显著提升了实验操作的重复性和一致性,同时减少了人为误差的可能性,从而保障了实验数据的可靠性和科研过程的科学性。我们选取了 17 种常用的原料粉末,使用晶泰科技桌面型固体加样仪 ChemPlus® 进行加样测试。目标加样量:500mg、1000mg、2000mg,测量数据如下:除了对原始粉末进行测试,我们还对球磨烧结后的造粒粉末进行了相应测试。鉴于造粒粉末对精度的要求没有特别严格,通常情况下,偏差在 10% 以内即可满足工艺标准。因此,我们选择了 300mg 和 3000mg 这两个不同的加粉量,进行了多轮测试。测试结果显示,使用 ChemPlus® ,可以非常有效地分装造粒粉末,并且在加样过程中不会破坏粉末原有的颗粒状结构。测试结果表明,在不同材料场景下进行粉末加样时,ChemPlus® 能够将标准偏差有效控制在 ±0.5mg 以内。加样时间会根据粉末的具体性状而有所变化,但所有类型的粉末加样合格率均高达 98% 以上。此外,该加样过程还能够很好的处理造粒后的粉末,确保其结构的完整性得到保持。ChemPlus® 桌面型固体加样仪ChemPlus® 桌面型固体加样仪,支持多种固体原料和接收容器,无需人工值守,自动完成重复耗时的固体称重加样操作。 &bull 高通量:可放置多种固体原料和接收容器,全面提升效率;&bull 适用范围广:样品无需特殊处理,覆盖吸潮结块、较大颗粒、蓬松、流动性差的粉末;&bull 智能算法参数调节:自适应加粉算法,多类型粉末智能识别;&bull 压电陶瓷激振技术:多类型粉末出粉更流畅;&bull 除静电:有效降低静电效应,加样更准确;&bull 成本可控:耗材价格低廉,节省成本;&bull 占地小:整机尺寸小,桌面型;&bull 兼容性广:可兼容多种实验室常用尺寸小瓶;&bull 数据追踪:条形码或二维码样品管理,支持审计追踪。ChemPlus® 桌面型固体加样仪是一种专为不同固体粉末设计的自动化加样设备。该设备可以实现精确加样、提升加样效率、操作界面友好,使用安全,有效降低了物料浪费和人工成本。ChemPlus® 的引入为实验室提供了一个高效能、可靠性强和经济性高的固体加样解决方案,特别适用于需要高通量和重复性的粉末处理场景。通过自动化技术,该设备确保了加样过程的一致性和可追溯性,同时减少了潜在的人为误差,从而提升了整体实验流程的质量和产出,对新材料的研发具有重要的意义。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制