当前位置: 仪器信息网 > 行业主题 > >

陶瓷耐定仪

仪器信息网陶瓷耐定仪专题为您提供2024年最新陶瓷耐定仪价格报价、厂家品牌的相关信息, 包括陶瓷耐定仪参数、型号等,不管是国产,还是进口品牌的陶瓷耐定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合陶瓷耐定仪相关的耗材配件、试剂标物,还有陶瓷耐定仪相关的最新资讯、资料,以及陶瓷耐定仪相关的解决方案。

陶瓷耐定仪相关的论坛

  • 耐火陶瓷纤维的判断

    请问各位大虾是如何判断成品中的耐火陶瓷纤维?我这里有个样品,用ICP做出来Si有9万多ppm,Al也有8千多,材料像是那种包裹电线用的纤维布,不知道有没有错判。还有如果有数,各位是怎么做进一步确认的?谢谢!

  • 分析仪器中的陶瓷和陶瓷金属连接电极

    分析仪器中的陶瓷和陶瓷金属连接电极

    陶瓷目前在分析仪器的应用主要有四极杆上的陶瓷固定环,陶瓷金属连接电极。陶瓷固定环对陶瓷的表面精度和公差范围要求很高,目前国内厂商的加工能力很难满足要求。陶瓷金属连接电极主要是通过金属和陶瓷的钎焊实现,对气密性和连接强度要求高。http://ng1.17img.cn/bbsfiles/images/2013/06/201306261050_447775_2751433_3.jpg

  • 艺达思现已推出 新一代水质监测用耐用型陶瓷流控阀!

    艺达思现已推出 新一代水质监测用耐用型陶瓷流控阀!

    *满足上百万次阀门掣动的免维护设计*超硬陶瓷 vs 陶瓷密封端面可耐受强侵蚀性化学品*内置容积小,可提升结果准确度和降低试剂损耗*阀门掣动时无瞬时流体泵送现象更多详细介绍,请登录: http://www.instrument.com.cn/netshow/SH101586/q1322137.htmhttp://ng1.17img.cn/bbsfiles/images/2012/06/201206061118_370658_1587_3.jpg

  • milestone主控罐(陶瓷管)的作用与保护

    陶瓷管是一根中空的陶瓷制品,外面覆盖一层聚四氟涂层。陶瓷管的作用是将温度传感器插在里面,陶瓷管一端浸泡酸液里,探测溶液温度。陶瓷起到了密封、耐压的作用,聚四氟涂层起到了耐酸、耐碱的作用。陶瓷管一旦断裂,主控罐压力将会保持不住,导致酸气外泄,温度不能按照程序设定升温,会导致其它消解罐温度失控而泻压。陶瓷管十分脆弱,一旦摔倒地上或者被什么较重的物品砸到了,必须认真检查陶瓷管是否断了。因为陶瓷管外覆盖一层聚四氟,所以并不会断成两段,如果发现陶瓷管上有一条白色的印迹,陶瓷管就可能是断了。

  • 纤维之十一------陶瓷纤维

    纤维之十一------陶瓷纤维

    陶瓷纤维是一种纤维状轻质耐火材料,具有重量轻、耐高温、热稳定性好、导热率低、比热小及耐机械震动等优点,因而在机械、冶金、化工、石油、交通运输、船舶、电子及轻工业部门都得到了广泛的应用,在航空航天及原子能等尖端科学技术部门的应用亦日益增多.发展前景十分看好。陶瓷纤维在我国起步较晚,但一直保持着持续发展的势头,生产能力不断增加,并实现了产品系列化,我国已发展成为世界陶瓷纤维生产大国。陶瓷纤维在中国的发展:到目前为止,中国国内现在大大小小的陶瓷纤维生产厂家共有二百多家,但分类温度为1425℃(含锆纤维)及以下的陶瓷纤维的生产工艺,只分为甩丝毯与喷吹毯两种。普通陶瓷纤维又称硅酸铝纤维,因其主要成分之一是氧化铝,而氧化铝又是瓷器的主要成分,所以被叫做陶瓷纤维。主要用途1、各种隔热工业窑炉的炉门密封、炉口幕帘。2、高温烟道、风管的衬套、膨胀的接头。3、石油化工设备、容器、管道的高温隔热、保温。4、高温环境下的防护衣、手套、头套、头盔、靴等。5、汽车发动机的隔热罩、重油发动机排气管的包裹、高速赛车的复合制动摩擦衬垫。6、输送高温液体、气体的泵、压缩机和阀门用的密封填料、垫片。7、高温电器绝缘。8、防火门、防火帘、灭火毯、接火花用垫子和隔热覆盖等防火缝制品。9、航天、航空工业用的隔热、保温材料、制动摩擦衬垫。10、深冷设备、容器、管道的隔热、包裹。11、高档写字楼中的档案库、金库、保险柜等重要场所的绝热、防火隔层,消防自动防火帘。陶瓷纤维是一种新型纤维状轻质耐火材料, 应用领域很广,主要用于金属基和陶瓷基复合材料和隔热功能材料,如应用于航空、航天和其它要求耐高温和较好力学性能的部件, 包括烧蚀材料如宇航器重返大气层的隔热罩、火箭头锥体、喷嘴、排气口和隔板等。此外还可应用于熔融金属或高温气液体的过滤材料和耐极高温的绝热材料等。http://ng1.17img.cn/bbsfiles/images/2015/06/201506041409_548791_2974654_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/06/201506041409_548790_2974654_3.pnghttp://ng1.17img.cn/bbsfiles/images/2015/06/201506041409_548792_2974654_3.pnghttp://ng1.17img.cn/bbsfiles/images/2015/06/201506041409_548793_2974654_3.png

  • 【原创】最新导电陶瓷材料的耐温2300度以上抗氧化测温热电偶及发热体,坩埚,炉管等产品

    我们刚开发与生产的热电偶,可以在氧化气氛测温2300度。导电陶瓷的发热体,蒸发舟,坩埚,电极,烧嘴,炉管炉衬,喷管喷嘴等这些产品是目前国内外领先的产品,材料的当前最先进的陶瓷,是铪的化合物的复合陶瓷,抗热震,耐腐蚀,有良好的导电与导热性能。这些陶瓷产品可以在氧化气氛耐温2300度,最高达3000度。 材料的突破往往带来一系列设备与产品进步与突破。 我们刚开发与生产的超高温、抗氧化、抗热震,耐腐蚀 ,长寿命导电导热性良好的陶瓷应用就很广,是一个重大利好消息。以此可以提高现有产品质量及开发新的设备,使以前所不能完成的研究与产品生产变为现实。 这种陶瓷是锆的化合物的复合陶瓷。经过复杂的工序制作经等静压后热压2100度烧结。是目前国内外(美、日、俄、欧等)投巨资正在热门研究的材料。这种产品首先是航空航天所急需。如火箭,导弹的鼻锥,翼前缘,发动机内衬,喷管等,所以我国也不例外,如上海硅所,哈工大,西北工大等已研究数年。是863计划。但多年并没有见走出实验室的社会应用报道。 目前我们将这种陶瓷制作于超高温热电偶保护管。利用我们自己的两项专利技术,生产的热电偶可以在氧化气氛及其它气氛准确测温达2300度,在航空航天发动机燃烧室测温,冶金连铸连续测温,高温窑炉,铝电解业连续温,阳极焙烧,燃烧炉,真空炉等以前所不能完成的测温变成现实或使用寿命短的热电偶温情况得到改善。而目前国内外氧化气氛热电偶测温小于1800度,影响了科研与生产的进步。大于1800度往往使用光学等法,由于光亮反射及气氛的影响,测温误差较大。在大于1800度的氧化气氛温度也通常凭经验进行估计。这对于温度要求严格的科研与生产是很不科学的。所以可以在氧化气氛测温超过1800度的热电偶是很有意义的产品。 同样这种陶瓷还可以应用于; 如这种导电陶瓷管以组成超高温氧化气氛感应电炉,可以在氧化气氛长期2300度使用,冲击使用温度最高可达3000度,比现在国内外氧化气氛电炉2000度,提高500度以上。是世界上氧化气氛使用温度最高的电炉。目前国内外最高氧化气氛使用电炉如氧化锆炉,铬酸镧炉等,由于其抗热震差容易炸裂,升降温很慢,浪费能源。并且氧化锆炉需要热启动,热电偶测温在1750度时要慢慢退出,另加光学测温。铬酸镧有严重挥发物影响。(最高使用温度小于1900度)。 以前的氧化气氛超高温炉中多使用碳化硅,硅钼,氧化锆,铬酸镧等,在保护气氛炉中多使用钨,钼,钽,石墨等这些炉管炉衬在超高温时往往不能很好满足研究与生产的特种需求。如高温氧化气氛下材料性能实验根本不能完成。我们这种导电陶瓷套管可以在空气中稳定使用,不需要气体保护。如在真空炉,保护气氛炉中使用该炉管制作的电炉可以一炉多用。大大节省设备投资。应用广泛。 如在石英拉丝炉中使用避免了保护气体的干扰影响产品质量及保护气体的密闭麻烦,并且没有石墨高温挥发造成的产品污染等等。对于开发更高熔点的新光纤产品提供了条件。尤其氧化物加工在氧化气氛是适当的。使拉丝机使用简单方便实用。也可以使得拉丝一机多用。 另外可以在高温光纤予制棒加热设备中得到应用。对于予制棒的研究也将发挥很大的作用。 同样在高温电炉业可以有升级换代的作用,对于氧化物的宝石及激光晶体生长炉也特别适宜,是宝石及晶体生产行业重要的新设备,是以前所绝无仅有的。对于容易氧化的材料加工也可以使用气氛保护,可以一炉两用。 陶瓷件的应用更加广泛,如导电蒸发舟的使用,可以直接接入电源,其效果及寿命远远好于现有产品及进口产品(如硼化钛,氮化硼陶瓷蒸发舟)。 导电陶瓷可以应用于磁流体发电的电极,通道。由于之前没有可以满足磁流体发电所需要的耐高温、抗氧化、耐腐蚀及有良好的导电与导热性能的材料,我国自从60年代在中科院电工所制作样机使用时间短,一直不能得到实际应用。而磁流体发电是一个没有机械传动直接由热能变电能的高效能低污染的发电方式。有很大的发展前途。 有其它如坩埚、蒸发舟,匝钵、电极、烧嘴、水口、铸模、等等在冶金,化工,航空航天,国防,军工等领域都是 前所未有的高档产品。也将发挥前所未有的作用。 这些产品是目前国内外领先的产品 ,在社会上是第一次推出。 导电陶瓷性能;熔点 : 3200度电阻率 : 9.2-11.5微欧.CM密度 : 4.8-6G.CM致密化 : 96%抗弯强度: 330Pa洛氏硬度: 92烧蚀率或抗氧化 : 氧-乙炔焰1950度3.2X10-5MM/S热胀系数: 25-1500;7.2X10-6/DEG导热率 : 0.07CAL/CM.SEC.DEG蒸汽压 : 4.3X10-3(1800度)抗热震 : 1200度放水中反复5次不炸裂耐腐蚀 : 耐金属铁、铝、铜、铅,硅,镁等熔体及冰晶石,氟化物,酸碱、气体等腐蚀可用气氛: O,V,R,N生产方法: 200MP等静压2100度热压烧结 热电偶参数;测温范围: 0-2300度(超过2300度须特别设计与制作)测温气氛: O,V,R,N分度号 : WRe5/26偏差 : 0-500;+ -5; 500-2300+ -1%;2300以上+ -2%丝径 : 0.1-0.5MM;超过1800度非标0.8特制抗热震 : 良好耐腐蚀 : 良好规格 : 直径10,12,14,16,18,20,22 ,24, 26,28,30,35MM;长度陶瓷部分小于200MM价格 : 高 导电陶瓷炉管发热体;感应加热:需要根据炉管尺寸及形状确定其电阻设计电源电阻加热:设计电源及引线体,引线体也可以是发热体材料加大横截面等方法。规格 :外径14,18,22,26,30...100MM;长度小于200MM。性能同上。

  • 掌握极化技巧:打造全面提升的压电陶瓷片,一款四通道压电陶瓷极化装置”

    [size=18px][font=&][back=#ffffff][b]掌握极化技巧:打造全面提升的压电陶瓷片”[/b][/back][/font][font=&][back=#FFFFFF][/back][/font]压电陶瓷片是一种具有压电效应的陶瓷材料,可将机械能转化为电能或将电能转化为机械能。由于其良好的压电性能、机械性能、热稳定性和耐腐蚀性等特点,广泛应用于传感器、马达、声学器件、医疗设备和精密仪器等领域。[/size][align=center][size=18px][img]https://pic.rmb.bdstatic.com/bjh/down/eddfc122fad8910350f98844ecc499b1.jpeg?x-bce-process=image/watermark,bucket_baidu-rmb-video-cover-1,image_YmpoL25ld3MvNjUzZjZkMjRlMDJiNjdjZWU1NzEzODg0MDNhYTQ0YzQucG5n,type_RlpMYW5UaW5nSGVpU01HQg==,w_18,text_QOeTt-W9lUNlcmFtYXRz,size_18,x_14,y_14,interval_2,color_FFFFFF,effect_softoutline,shc_000000,blr_2,align_1[/img][/size][/align][size=18px]在压电陶瓷片的生产和使用过程中,极化是一个重要的工艺步骤。[b]什么是极化?[/b]极化是指在电场的作用下,使压电陶瓷片内部的电偶极子沿着一个特定方向排列,形成一个固定的极化方向。这样可以使压电陶瓷片具有压电效应,从而实现电能和机械能的相互转换。然而,在一次极化过程中,可能会因压电陶瓷片内部结构的复杂性和极化电场的不均匀性导致极化不完全。这种现象可能会影响压电陶瓷片的性能,如降低其压电系数和热稳定性等。因此,为了充分发挥压电陶瓷片的性能,通常需要进行二次极化。二次极化是在一次极化后,在相反方向施加电场,使未极化的区域再次进行极化,以达到饱和强度。这样可以提高压电陶瓷片的极化程度和稳定性,使其具有更好的性能和可靠性。需要注意的是,二次极化的电场应控制在适当的范围内,以避免损坏压电陶瓷片的内部结构和性能。此外,二次极化的时机应选择在适当的时间点,以确保压电陶瓷片在使用前达到最佳的性能状态。[b]压电陶瓷片的极化方法[/b]压电陶瓷片的完全极化可以采用多种方法,其中常用的方法包括电场极化、热极化和气体极化。[b]电场极化[/b]是将压电陶瓷片放入电极板之间,施加电场,通过电场的作用,使陶瓷片内部的电偶极子沿着一个特定方向排列,形成一个固定的极化方向。这种方法能够使陶瓷片的极化达到饱和强度,从而提高其压电系数和稳定性。[b]热极化[/b]是将压电陶瓷片加热至一定温度,然后在施加电场的同时冷却,使内部的电偶极子沿着一个特定方向排列,形成一个固定的极化方向。这种方法能够在较短的时间内完成极化过程,并且可以提高陶瓷片的极化程度和稳定性。[b]气体极化[/b]是将压电陶瓷片暴露在某些气体环境下,通过气体分子的作用,使内部的电偶极子沿着一个特定方向排列,形成一个固定的极化方向。这种方法适用于极化大型的陶瓷片,并且可以在较短时间内完成极化过程。总之,对于压电陶瓷片的生产和使用需要注意的是,压电陶瓷的二次极化过程需要谨慎操作,并且需要根据具体情况进行调整和选择。在进行二次极化前,应该进行充分的测试和评估,以确保其对陶瓷材料的性能和稳定性没有负面影响。同时,在进行极化过程时也需要注意安全,避免损坏陶瓷片和设备。建议在进行极化过程时咨询专业人士的建议和指导,以确保极化过程的稳定性和可靠性。压电极化装置 PZT-JH10/4北京精科智创科技发展有限公司 1. 能够同时极化1-4片试样2. 安全可靠,温度补偿快、恒温精度高3. 每路当漏电流超过规定值时,都具有切断保护功能,不影响其它样片的极化,其它回路可按正常极化时间完成极化。4. 任意夹持样品尺寸为3-40mm片方型或是圆型试样5.工作电源:AC220V 50/60HZ6.额定功率:2.0kw*7.压电材料极化或耐压测试:DC:0-10KV(±5%+2个字)连续可调8.总电流:10mA9.每路切断电流:0.5mA10.加热时间:可以自动设定 11.加热元件 :优质电阻丝*12.1次测试试样数量:可加载1-4片试样13.额定温度 :≤180℃14..最高温度 :200℃15.控温方式 :智能化恒温控制(进口表),多段程序可控16.样片 :样品尺寸为3-40mm片方型或是圆型试样17.外形尺寸 : 875*470*400(mm)18.极化探头:优质铜电极(0.2mm)19.配套设备装置:能够配合ZJ-3和ZJ-6压电测试仪进行测量20.配套设备装置:可以配置10MM,20MM,30MM,40MM压片夹具[/size]

  • 陶瓷轴承为什么需要润滑?

    [align=left]陶瓷轴承是一种高转速轴承,具备耐腐蚀、耐磨损、耐高温、不导磁、不导电、强度高、刚性好、比重轻等特性。可用于极度恶劣的环境及特殊工况,广泛应用于航空、航天、航海、石油、化工、汽车、电子设备,冶金、电力、纺织、泵类、医疗器械、科研和国防军事等领域,是新材料应用的高科技产品。我们都知道,陶瓷材料具备自润滑的特性,那么为什么还需要使用润滑剂进行润滑呢?[/align][font='calibri'][size=13px]陶瓷轴承的选择[/size][/font]陶瓷轴承用轴承钢制造,并经过热处理,内部间隙很小,各零件的加工精度较高,运转精度较高。某些陶瓷轴承可同时承受径向负荷和轴向负荷,可以简化轴承支座的结构。陶瓷轴承的套圈及滚动体采用全陶瓷材料,有氧化锆(ZrO2)、氮化硅(Si3N4)、碳化硅(Sic)三种。选择陶瓷轴承时需注意的事项:润滑剂的种类是润滑脂或润滑油;工作环境和工作温度;占用空间的大小;轴的支承结构优点及其允许角度偏差;密封表面的圆周速度。[img]https://ng1.17img.cn/bbsfiles/images/2022/07/202207291544364697_5578_5650439_3.jpeg[/img][font='calibri'][size=13px]陶瓷轴承的润滑[/size][/font][font='calibri'][size=13px]润滑方法[/size][/font]陶瓷轴承使用过程中,若是使用时间久,那么灵活性必然不是很好,那么这时需要使用润滑油,能够降低轴承磨损,减少轴承报废率,保证轴承正常的使用寿命。其润滑分为脂润滑和油润滑,若只考虑润滑,油润滑的润滑性则占优势。但是脂润滑具有可以简化陶瓷轴承周围结构的特长。为了让陶瓷轴承很好地发挥作用,要选择适合的使用条件和目的的润滑方法。[font='calibri'][size=13px]润滑作用[/size][/font]简化陶瓷轴承周围结构;散热作用和减振作用;防锈、防腐蚀、防尘和密封;减少相对运动金属表面之间的摩擦和磨损;减小接触应力,延长陶瓷轴承的接触疲劳寿命;带走陶瓷轴承运转中产生的磨损颗粒或污染物;[font='calibri'][size=13px]润滑脂的选择[/size][/font]润滑脂对陶瓷轴承的运转和寿命有着极为重要的影响,在这里简单介绍选择润滑脂的一般原则。在选择时要注意,不同种类和同一种不同牌号的润滑脂性能相差较大,允许的旋转极限不同。润滑脂的性能主要由基础油决定,一般低粘度的基础油适用于低温、高速;高粘度的适用于高温、高负荷。增稠剂也关系着润滑性能,增稠剂的耐水性决定润滑脂的耐水性。原则上,不同牌子的润滑脂不能混合,还有,即使是同种增稠剂的润滑脂,也会因添加剂不同会相互带来不良影响。[font='calibri'][size=13px]通过润滑延长使用[/size][/font][font='calibri'][size=13px]寿命[/size][/font]常用的陶瓷轴承寿命有疲劳寿命、磨损寿命、故障寿命和使用寿命等。陶瓷轴承在使用过程中,由于本身质量和外部条件的原因,其承载能力、旋转精度和耐磨性都会发生变化。当陶瓷轴承的性能指标低于使用要求而不能正常工作的话,就会发生故障甚至失效。润滑对滚动陶瓷轴承的疲劳寿命和摩擦、磨损、升温、振动等有重要影响,没有正常的润滑,陶瓷轴承就不能工作。分析陶瓷轴承的损坏原因表明,40%左右的陶瓷轴承损坏都与润滑不良有关,因此陶瓷轴承的良好润滑是减小陶瓷轴承摩擦和磨损的有效措施。陶瓷轴承的疲劳寿命,通常是以陶瓷轴承的正常设计、制造、维修和运用条件,其中也包括正常的润滑条件为前提的。平时需要对陶瓷轴承多做了解,多留意使用情况,一定在平时对陶瓷轴承多做一些维护和保养工作,多对机械设备上油、并且一定要对陶瓷轴承进行定期检查。[font='calibri'][size=13px]陶瓷轴承的[/size][/font][font='calibri'][size=13px]保养[/size][/font]为了尽可能长时间地以良好状态维持陶瓷轴承本来的机能,最好定期对其进行检查与保养。包括监视运转状态、补充或更换润滑剂、定期拆卸。另外,陶瓷轴承的清洗和也是定期要做的事情,这部分也是陶瓷轴承检修过程中的主要工作程序。必要时,还要对陶瓷轴承进行化验,弄清油脂为铁、铜、灰尘等污染的程度,并综合上述检查,确定润滑脂能否胜任该轮工况,提出性能改进,更换油脂品种或改进陶瓷轴承及油封结构等方面的建议。如何清洗陶瓷轴承:清洗之前,首先检查油脂保有量的情况,用以确定和判断现行加油、补油制度的有效性;其次检查油脂的理化状态,看有无发干、变硬、结块、析油、稀化、变色等变质情况,用以确定和判断油脂老化更换周期的合理性,调整换油周期和补油制度。

  • 【分享】陶瓷材料的力学性能

    概况陶瓷、金属、高分子材料并列为当代三大固体材料之间的主要区别在于化学键不同。金属:金属键高分子:共价键(主价键)+范德瓦尔键(次价键)陶瓷:离子键和共价键。普通陶瓷,天然粘土为原料,混料成形,烧结而成。工程陶瓷:高纯、超细的人工合成材料,精确控制化学组成。工程陶瓷的性能:耐热、耐磨、耐腐蚀、绝缘、抗蠕变性能好。硬度高,弹性模量高,塑性韧性差,强度可靠性差。常用的工程陶瓷材料有氮化硅、碳化硅、氧化铝、氧化锆、氮化硼等。

  • 【转帖】陶瓷材料硬度表示方法

    硬度是衡量材料力学性能的一项重要指标,它是指物体抵抗外力进入其中的能力,即由于其他物体给与的外力与物体的形变尺寸之间的关系。 陶瓷材料作为无机非金属材料的一个重要门类,取得了很大的发展。结构陶瓷以其高机械强度、高硬度、耐腐蚀性等优点被广泛用于冶金、矿厂及航天等领域。硬度是结构陶瓷一项重要技术参数。它与材料的强度、耐磨性、韧性及材料成分、微观组织结构等有着密切关系。陶瓷材料的硬度是其内部结构牢固性的表现,主要取决于其内部化学键的类型和强度。简单来说,共价键型硬度最高,然后依次是离子键、金属键、分子键。原子价态和原子间距是决定化学键强度因而也是决定材料硬度大小的重要因素。

  • 实验室台面 釉晶板跟陶瓷板的相对优势

    实验室台面 釉晶板相对优势釉晶板跟陶瓷板的相对优势:1) 一体透芯,无需封边2) 釉晶板没有分层,整个板材都为同一材质,无需封边。而陶瓷板为高岭土、蓝瓷土和长石等混合成基材,表面封涂含特殊材料的耐腐蚀釉面,不是一体透芯材料,需要封边。3) 致密度高,无毛细孔釉晶板的致密度比陶瓷板要高,整个板材,从里到外,表面,侧面均无毛细孔,不会藏污纳垢。4) 刚玉质感,色泽透亮釉晶板的外观比陶瓷板外观要好,刚玉质感,色泽透亮,延伸视觉空间感。5) 耐压强度高(二代的高,一代的不高;一代的跟陶瓷板差不多)因生产工艺和原料配比的不同,釉晶板的耐压强度比陶瓷板要高,安全性更高。6) 抗污染,有效抑制细菌滋生表面光滑平整,易清洁,绝不藏污纳垢,有效抑制细菌滋生。7) 釉晶化学板可与水槽无缝烧结,一体成型可接收釉晶化学板与水槽无缝烧结需求,一体成型,美观大方。

  • 【求助】如何对要进行成分分析特种陶瓷取制样?

    本人看了很多陶瓷成分分析的标准,有很多疑问:1、大多没有介绍样品前处理,特别是取样、制样2、大多标准针对的是日用普通陶瓷,而对于高强度、高硬度、高耐腐蚀性的特种陶瓷是否适用,特别是如何取制样?3、特种陶瓷如氮化硅都是以高纯工业化学制品为原料,因此标样怎么选取?以上问题,希望能得到指点,本论坛新手不胜感激![em0901]联系:13235661470

  • 关于硅酸铝耐火陶瓷纤维(Al-RCF)定性问题

    [font=Arial, sans-serif][size=13px][color=#333333]SVHC中的硅酸铝[/color][/size][/font][font=Arial, sans-serif][size=13px][color=#f73131]耐火陶瓷纤维[/color][/size][/font][font=Arial, sans-serif][size=13px][color=#333333](Al-RCF),我们测得硅和铝均有值,这个还不好完全确定是否有该物质,我看了某检测公司报告上写的结合显微镜判断,请问有板油有这个显微镜判断经验吗?想请教一下。[/color][/size][/font]

  • 提供真空陶瓷金属电极

    质谱里面的电极引入一直是国产仪器的一个难点,许多国内仪器在这个方面一直有困难,那陶瓷金属焊接电极是目前唯一的解决方法,能搞耐高压 高温 不具有任何挥发性,而国内该工艺还没有成熟,如果您对此感兴趣,可以联系我,我可以提供该方面的加工

  • 【原创大赛】陶瓷棉RCF在船舶的应用及危害

    文/周国 华测检测(船舶产品线)耐火陶瓷棉(RefractoryCeramic Fibers,RCF)自20世纪50年开始商业化运用以来,因其良好的高温热绝缘性能在各行业得到了广泛的运用。然而近些年来随着吸入毒理学对其跟踪研究发现陶瓷棉RCF在生产和使用过程中释放的可吸入性纤维在人体内具有生物耐久性。目前经动物实验表明,长期吸入陶瓷棉RCF纤维后,可产生肺纤维化,肺癌及间皮瘤(胸腔内壁的罕见肿瘤,通常仅于接触石棉有关)的潜在风险。CTI华测海事将在本文中结合丰富的海事检测经验介绍目前陶瓷棉RCF在船舶领域的应用及危害。[b]1. 陶瓷棉RCF定义及简介[/b]陶瓷棉RCF(CASNo.142844-00-6),也称为铝硅酸盐玻璃棉(Alumino-Silicate GlassWool,ASW)。与玻璃棉(Glass wool)、岩棉(Rock Wool)、矿渣棉(Slag wool)等都属于合成玻璃纤维材料(SVF),也称为人造矿物纤维(MMMF)。陶瓷棉RCF通常由AL[sub]2[/sub]O[sub]3[/sub]和SiO[sub]2 [/sub]的混合物按照不同比例熔制而成,目前在欧洲地区对于陶瓷棉RCF使用约25000吨/年,其中90%应用于工业热绝缘领域。陶瓷棉RCF作为高温绝缘材料具有以下几种特性:热传导率低、低热储存性(热容小)、优异的抗热抗震性、耐腐蚀性好、易于安装。特别是根据配方的不同,其最高使用温度可高达1000℃。这些优异的绝缘特性在当今石棉严格管控禁用的背景下使得陶瓷棉RCF在海事领域的使用范围和数量呈现大幅提升的趋势。[b]2. 陶瓷棉RCF在船舶领域的运用[/b]根据CTI华测海事多年的船舶调查及检测经验,目前陶瓷棉RCF在船舶领域的应用主要有以下几种情况:a) 用于防火及热绝缘的船舶舱室结构;b) 用于发热设备(主机、辅机、锅炉等)的阻热绝缘部分;c) 用于管路系统(如蒸汽、重油、热水等)的保温绝缘层; [table=614][tr][td=3,1] [align=center]陶瓷棉RCF在船舶领域的应用[/align] [/td][/tr][tr][td=1,4] [color=windowtext]舱室结构[/color][color=windowtext]Hull and Structure[/color][/td][td=1,2] [color=windowtext]天花板[/color][color=windowtext]Ceiling[/color][/td][td][color=windowtext]天花板壁板内绝缘([/color][color=windowtext]Panel Insulation[/color][color=windowtext])[/color][/td][/tr][tr][td][color=windowtext]结构绝缘[/color][color=windowtext]([/color][color=windowtext]Wall Insulation[/color][color=windowtext])[/color][/td][/tr][tr][td=1,2] [color=windowtext]壁板[/color][color=windowtext]Wall [/color][/td][td][color=windowtext]壁板内绝缘[/color][color=windowtext]([/color][color=windowtext]Panel Insulation[/color][color=windowtext])[/color][/td][/tr][tr][td][color=windowtext]结构绝缘[/color][color=windowtext]([/color][color=windowtext]Wall Insulation[/color][color=windowtext])[/color][/td][/tr][tr][td=1,9] [color=windowtext]设备及管系[/color][color=windowtext]Equipment &Piping system[/color][/td][td=1,3] [color=windowtext]主机[/color][color=windowtext]/[/color][color=windowtext]辅机[/color][color=windowtext]/[/color][color=windowtext]应急发电机[/color][color=windowtext]Main Engine[/color][color=windowtext]Generator Engine[/color][color=windowtext]Emergency G. E.[/color][/td][td][color=windowtext]热油(水)管绝缘[/color][color=windowtext]Pipe Insulation[/color][/td][/tr][tr][td][color=windowtext]涡轮增压器绝缘[/color][color=windowtext]Turbocharge Insulation [/color][/td][/tr][tr][td][color=windowtext]排气管绝缘[/color][color=windowtext]Exhaust gas Insulation[/color][/td][/tr][tr][td=1,2] [color=windowtext]焚烧炉[/color][color=windowtext]Incinerator[/color][/td][td][color=windowtext]炉体绝缘[/color][color=windowtext]Body Insulation[/color][/td][/tr][tr][td][color=windowtext]排气管绝缘[/color][color=windowtext]Exhaust gas Insulation[/color][/td][/tr][tr][td=1,2] [color=windowtext]锅炉[/color][color=windowtext]Boiler[/color][/td][td][color=windowtext]炉体绝缘[/color][color=windowtext]Body Insulation[/color][/td][/tr][tr][td][color=windowtext]排气管绝缘[/color][color=windowtext]Exhaust gas Insulation[/color][/td][/tr][tr][td][color=windowtext]热交换器[/color][color=windowtext]Heat Exchanger[/color][/td][td][color=windowtext]内部绝缘[/color][color=windowtext]Body Insulation[/color][/td][/tr][tr][td][color=windowtext]管路系统保温[/color][color=windowtext]Piping system Insulation[/color][/td][td][color=windowtext]蒸汽、热水、燃油[/color][color=windowtext]Steam/ Hot water / Fuel oil etc. piping system Insulation[/color][/td][/tr][/table][b]3. 陶瓷棉RCF的使用危害[/b]前面提高陶瓷棉RCF 属于人造矿物纤维的一种,由硅酸盐纤维组成。因此,在生产及使用的过程中会将硅酸盐纤维的扩散至周围环境中,能对处于环境中的人引起皮肤、眼睛和上呼吸道等的刺激。特别是当纤维足够细时,可以被吸入并沉积在肺部。若长期处于陶瓷棉RCF的扩散纤维环境中,具有潜在的严重健康影响。目前已有动物实验表明,长期吸入陶瓷棉RCF纤维可以产生肺纤维化,甚至是肺癌及间皮瘤。同时特别值得注意的是若陶瓷棉RCF长时间在高温(超过1000℃)烧灼下,陶瓷棉RCF会析出结晶二氧化硅,这也是一种有害物质,其最大暴露限值是0.3mg/m[sup]3[/sup]。若多年暴露于结晶二氧化硅的环境里会导致矽肺病,同时二氧化硅也是公认的肺癌病因。另外,陶瓷棉RCF纤维暴露环境的一个主要长期健康问题是这些纤维可能会产生与石棉相同的健康影响。研究人员发现石棉对于健康的影响在于石棉纤维的形状和生物耐久性。直径小于5μm且长度大于5-10μm的石棉纤维能够数月甚至数年的停留在人体内,并由此带来较大的健康风险。同样的,陶瓷棉RCF纤维具有与石棉纤维相类似的形状并能长期停留在肺中。虽然陶瓷棉RCF的纤维相较于石棉纤维稍大些,但相对来说仍能进入人体肺部并具有一定的生物耐久性。目前虽然缺乏足够的流行病学数据,但普遍认为在患癌症风险方面暴露于陶瓷棉RCF中的中的风险要低于石棉。然而经过欧洲工业和工会代表专家工作组的多年讨论,在1998年将纤维加权平均直径小于6mm的陶瓷棉RCF纤维定义为2类致癌物质。[b]4. 陶瓷棉RCF的管控[/b]目前虽然没有禁用陶瓷棉RCF,但对于陶瓷棉RCF的管控也日趋严格,这也意味着进行任何与陶瓷棉RCF相关的工作都将受到更严格的管控措施。根据《1994年有害健康物质管制条例》(COSHHRegulations)、《致癌物批准业务守则》(COSHH[color=#111111]Carcinogens [/color]ACOP)的条例要求,雇主应评估使用危险物品的风险,并确保采取适当的控制措施。COSHH致癌物质ACOP规定,使用致癌物质的第一选择是避免使用或使用危害性较低的替代物。如果不能做到避免接触或使用,那么必须实施必要的暴露风险管控措施。目前,对于所有的人造纤维(包括陶瓷棉RCF)职业卫生暴露极限的管控限制有两种,分别是在8小时内的平均暴露极限为5mg/m[sup]3[/sup]或2 fibres/ml.另外,基于上述陶瓷棉RCF的使用危害,欧盟法规《化学品的注册、评估、授权和限制》(REGULATIONconcerning the Registration, Evaluation,Authorizationand Restriction of Chemicals,简称“REACH”)对可能致癌的陶瓷棉RCF纤维进行了管控。2012年06月18日,欧盟化学品管理机构(EuropeanChemicals Agency,简称“ECHA”)发布第七批SVHC清单(13项)。同时,将第二批中的硅酸铝耐火陶瓷纤维(Al-RCF)和氧化锆硅酸铝耐火陶瓷纤维(ZrAl-RCF)整合到第六批SVHC清单中。[b]5. 陶瓷棉RCF的防护要求[/b]对于陶瓷棉RCF的防护根本在于避免与其接触或控制接触区域的纤维暴露限值。CTI华测海事基于丰富的海事经验对船舶领域的陶瓷棉RCF作业防护提出以下建议:1) 陶瓷棉RCF作业场所的防尘要求ž 在处理(如分割陶瓷棉RCF)时应注意通风,建议在陶瓷棉RCF作业时设置通风排气设施,以便及时将作业过程中散布于作业场所的陶瓷棉RCF纤维排出;ž 购买已处置好的陶瓷棉RCF模块。建议购买预先包裹好的陶瓷棉模块,减少现场分割作业,减少陶瓷棉RCF的散布机会;ž 取出或移动陶瓷棉RCF时应进行彻底湿润,根据进行空气取样的经验表明,充分湿润可减少暴露于空气中的陶瓷棉RCF纤维含量10倍以上;ž 在指定的区域存放陶瓷棉RCF,并用塑料薄膜包装好。同时注意张贴警告标识,进行风险提示。2) 配备呼吸防护设备采用适当的呼吸防护设备(RPE)可减少暴露于陶瓷棉RCF纤维中的风险。根据不同的健康公害性物质控制(COSHH)的评估结果应采用不同等级的呼吸防护设备,同时应注意这些防护设备必须经过CE认证或HSE认证。ž 一次性过滤式面罩呼吸器,如FFP2和FFP3等级的口罩ž 重复使用的配有微粒过滤器的P2/P3型半面罩ž 动力呼吸器,包括带头盔或头罩的呼吸器。它们具有更高的保护系数3) 防护服处理陶瓷棉RCF时应穿戴防护工作服。对于多尘的操作,应使用整体式的一次性工作服,最好带有头罩,因工作服上往往会有残留的纤维,所以也应谨慎的处理使用过的工作服。同时在进行陶瓷棉RCF的作业过程中注意佩戴手套以防止皮肤过敏。

  • 低介电常数微波介质陶瓷基覆铜板的研究

    微波介质陶瓷是指应用于微波(主要是300MHz~30GHz频段)电路中作为介质材料并完成一种或多种功能的陶瓷、在现代通信中被用作谐振器、滤波器、介质基片、介质天线、介质波导回路等,应用于微波电路的介质陶瓷除了必备的机械强度、化学稳定性之外,还应满足如下介电特性,微波频率下大的相对介电常数C^2高Qf值以及接近零的频率温度系数微波介质陶瓷可以按照其组成系统,介质特性及应用领域加以分类,较为常见的是按其介电常数的大小来分类,可分为低介电常数类(20~40);中介电常数类(40~80);高介电常数(>80)。低介电微波陶瓷主要应用于微波基板、卫星通讯以及军事应用等通讯系统中。目前研究的较多的低介微波陶瓷主要是以AL2O3和AIN的应用,低介微波陶瓷基覆铜板用绝缘散热材料的理想性能是既要导热性能好,散热好,还要在高频微波作用下产生损耗尽量小。BeO陶瓷是目前陶瓷基覆铜板中绝缘散热的绝佳材料,但由于BeO粉料具有毒性,在制造过程中需要采取严格的防护措施,且在美日等发达国家已禁止生产BeO陶瓷。因此研制替代BeO陶瓷的覆铜板用新型绝缘散热材料已迫在眉睫。AIN陶瓷是一种散热性能较好、无毒的陶瓷材料,其热导率理论值为320W/(mK),与BeO陶瓷热导率的理论值370 W/(mK)相近,并且已研制出热导率在200 W/(mK)以上的AIN陶瓷材料。所以AIN陶瓷材料被认为是最有希望替代BeO陶瓷的绝缘散热材料。 由于BN的介电常数较小,但AIN陶瓷中加入了h-BN,根据复相材料的介电常数公式计算,将h-BN加入到AIN中,还可以降低AIN陶瓷介电常数。本文旨在研制出满足陶瓷基覆铜板使用要求的高热导率、低介电损耗AIN及BN-AIN基陶瓷材料,以替代BeO陶瓷材料。 因为BN,AIN均为共价化合物,难以烧结,为了获得高致密度陶瓷,需添加烧结助剂。烧结助剂的选择应从两个方面考虑,其一,能形成低熔物相,实现液相烧结,促进致密;其二,能与AIN中的氧杂质反应,使AIN晶格净化。基于此两点,选用Y2O3为烧结助剂。因为Y2O3与AIN表面的氧化铝形成Y3AI5O12,Y3AI5O12的液相温度为1760℃,这样既促进了烧结又净化了晶格。但是,若烧结助剂分散不均匀,也很难烧制出结构致密的陶瓷材料。通过化学工艺,将BN包裹到AlN粉体表面,从而实现将BN均匀分散到AIN基体中的目的,并且利用包裹型复合粉体,制备出显微结构均匀的复相陶瓷,其热导率为78.1 W/(mK),在Ka波段介电常数为7.2、介电常数最小值为13×10-4。通过对AIN及BN-AIN基复相陶瓷在Ka波段的微波特性研究,发现AIN基陶瓷材料的介电常数随频率变化的幅度很小,但材料的介电损耗随频率的变化较大,并且在该区间内存在最大值和最小值。

  • 【求助】求以下有关陶瓷ASTM标准

    求以下标准:ASTM C1607--Standard test method for determination of microwave safe for reheating" for ceramicware 陶瓷器皿在微波炉中加热安全性标准测试方法ASTM C1644--Standard test method for graphite furnace atomic absorption spectrometric determination of lead and cadmium extracted from ceramic foodware 用石墨原子反应堆吸收光谱法测定陶瓷餐具中铅镉溶出的标准试验方法ASTM C368--Standard test method for impact resistance of ceramic tableware 陶瓷餐具抗冲击性的标准试验方法ASTM C872--Standard test method for lead and cadmium release from porcelain enamel surfaces 从搪瓷表面析出铅及镉的试验方法ASTM C539--Standard test method for linear thermal expansion of porcelain enamel and glaze frits and ceramic whiteware materials by interferometric method用干扰法测定搪瓷、釉瓷和白色陶瓷材料线性热膨胀的试验ASTM C927--Standard test method for lead and cadmium extracted from the lip and rim area of glass tumblers externally decorated with ceramic glass enamels外表用陶瓷玻璃釉装饰的玻璃酒杯杯口及外缘析出铅和镉的试验方法ASTM C735--Standard test method for acid resistance of ceramic decorations on returnable beer and beverage glass containers可反复使用的饮料瓶(玻璃容器)上陶瓷装饰耐酸性的标准试验方法ASTM C676--Standard test method for detergent resistance ofceramic decorations on glass tableware玻璃餐具上陶瓷装饰耐洗涤性的标准试验方法ASTM C675--Standard test method for alkali resistance of ceramiC decorations on returnable beverage glass containers可反复使用的饮料瓶(玻璃容器)上陶瓷装饰耐碱性的标准试验方法

  • 【求助】-陶瓷的消解

    玻璃可以用HF搞定,但陶瓷我用HF溶解了好几天也没什么反应(用电加热板),不知道大家有什么办法消解的?

  • 陶瓷+金属焊接

    近期公司计划开发新产品---氧化锆陶瓷管+金属焊接。。。我们需要焊接的陶瓷是8Y氧化锆陶瓷,密度等比氧化铝陶瓷大很多,外露(焊接部位)部份估计温度也有1400℃左右,哪位在做或有朋友在做的,请留下联系方式或联络我,谢谢。

  • 陶瓷前处理?

    请教各位以下样品前处理方法,使用火焰AAS测试其中铅镉含量PCB板,可能材质为玻璃纤维电子元件,可能为陶瓷的,这种陶瓷一般由钛酸钡,钛酸鋅,氧化鋅构成。

  • 【资料】哥伦比亚制定食品、饮料接触性陶瓷或玻璃材料技术要求

    [size=6][b][size=3]哥伦比亚制定食品、饮料接触性陶瓷或玻璃材料技术要求[/size][/b][/size] 据2010年5月27日安第斯共同体秘书处通报消息,哥伦比亚于近期制订了另一项食品接触性材料技术标准——与食品、饮料接触性陶瓷或玻璃材料、容器、物品、设备的技术要求。 法规文本主要包括如下几部分:目标、范围、定义、良好生产规范、基本要求、总的和特定物质迁移量限量,玻璃制品铅(Pb)的迁移限量,物质迁移量测定方法,监督、检查与合格评定,复审与更新等方面。 其中,对物质迁移限量的规定如下: 陶瓷、珐琅、釉彩等材质的食品、饮料接触性物体或容器的总物质迁移限量:50mg/kg水,或者8mg/dm2接触面;特定物质迁移量:对于非盛装性物体,(Pb): 0.8 mg/dm2 ; (Cd): 0.07 mg/dm2;对于盛装性容器,(Pb): 4.0 mg/L; (Cd): 0.3mg/L;对于烹饪用具、容量大于3L容器,(Pb):1.5 mg/L;(Cd): 0.1mg/L。 对于水晶/玻璃材质的食品、饮料接触性物体或容器,特定物质铅(Pb)迁移限量(LME)为:非盛装性物体LME: 0,8 mg/dm2;容量低于600ml的容器LME: 1.5 mg/L;容量介于600~3000ml的容器, LME: 0.75 mg/L;容量大于3L的容器,LME: 0.50 mg/L。

  • 纳米材料在陶瓷胶粘剂中的作用

    胶粘剂一种发展示迅速的多功能合成高分子材料,由于其原料品种的多样化以及分子结构的可调性,可以设计出具有不同用途的、适合于各种材料间粘接的多功能胶黏剂。胶黏剂分子结构中大多含有强极性的及化学活泼的基团,因而能够与材料之间产生优良的化学粘接力。但在实际应用中,某些品种的胶黏剂仍然存在诸多不足,如耐水性、耐溶剂性、耐高温等性能较差,有的胶黏剂初粘性、粘接强度等也有待改进以满足特殊的使用要求等。随着纳米技术的基础性和应用性研究的发展,纳米材料不同于普通补强型填料的小尺寸效应、表面效应、宏观量子隧道效应等优良特性在胶黏剂的应用方面显出基独特的优势,少量纳米材料的加入即可大幅度改善胶黏剂性能,所以纳米材料已成为胶黏剂领域关注点。例如优锆纳米研发的纳米陶瓷粘合剂UG-Z01该产品为优锆纳米材料有限公司采用最新纳米材料和美国公司合作研制出的最新陶瓷、煅烧钵子、刚玉粘合剂。该产品为全无机材料,没有任何有机污染,采用耐高温纳米a氧化、纳米锆等纳米氧化物为主做的粘钵子陶瓷全新材料,弥补了耐高温性等特点。

  • 陶瓷贴片电容有哪些注意事项?

    贴片电容是电子电路常用的元件之一。陶瓷贴片电容是人们常见的贴片电容。从表面来看,它似乎很简单。很多设计师和专业人士认为贴片电容的工艺很简单。其实,陶瓷贴片电容是非常脆弱的元件,在生产和使用时都有许多注意事项。首先,随着科技的发展,贴片电容的层次越来越多,有的甚至有上千层,每层的厚度非常小,稍微不注意就容易产生褶皱。其次,贴片电容受温度的影响较大,在生产中一般都是由熟练的工人焊接,焊接时时刻注意控制温度,以防烧毁了电容。再者,贴片电容的受力面也非常脆弱,在设计时,受力面较大的地方尽量不要安排较大的电容。最后,在安装时也要时刻注意,尽量不要撞击、重压等。总之,贴片电容是很脆弱的,我们要给予一定程度的重视,否则,在操作过程中很容易影响电容的 使用寿命和性能。

  • 【原创大赛】显微镜在陶瓷研究中的应用

    【原创大赛】显微镜在陶瓷研究中的应用

    扫描电子显微镜在陶瓷研究中的的应用描电子显微镜对陶瓷原料的研究十分方便,可以直接观察和分析原料的矿物结构形态及颗粒的大小、形状、均匀程度等。普通陶瓷的原料之一粘土是一种含水铝硅酸盐矿物,是陶瓷生产的基础原料。扫描电子显微镜可以观察非常细微的粒子构造,它和粒度分析相结合用以从理论上制定该粘土的可塑性及浇注性能。高岭土是一种主要由高岭石组成的纯净粘土,在各地高岭土的扫描电子显微镜分析,主要发现有六角形片状、管状和柱状(见图1)三种结构,图2为高岭土微小片状结构和柱状结构共生的扫描电子显微图象。扫描电子显微镜可以直接观察色料粉末的微观形态,色料合格品颗粒均匀,结晶度较好(见图3):http://ng1.17img.cn/bbsfiles/images/2012/09/201209051009_388763_2105598_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/09/201209051009_388764_2105598_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/09/201209051009_388765_2105598_3.jpg 陶瓷材料及其制品因具备许多其它材料所没有的性能而得到吃速发展。特别是多品种的普通及尖端新型工业瓷的出现,使陶瓷材料进入了各个领域。陶瓷生产的工艺条件、显微结构与制品的性能三者具有紧密的相互关系。研究陶瓷的显微结构,可以推断工艺条件的变化。另外,一定的显微结构又确定和反映出陶瓷性能的优劣。因此通过在陶瓷的生产和研究中把扫描电子显微镜作为一种观察其显微结构的工具加以应用从而为改进瓷胎配方、指导生产和合理控制工艺过程的科学依据。

  • UV-LED中陶瓷线路板的应用

    UV-LED中陶瓷线路板的应用

    陶瓷线路板作为PCB的一种,在各种大功率对散热有比较高要求的电子器件中被广泛使用,UV-LED也不例外。 目前市面上的UV-LED灯具,都是把多个UV-LED芯片集成在一个小模块里面,从而获得比较大光强的光源。因为单个的UV-LED的功率比较小,没办法达到比较大的光强,所以就只能这么去做。一般采用的都是COB封装技术,因为COB算是最利于散热的封装技术之一,使用该技术可以尽可能的减少从芯片到外部环境的接触层,减小热阻、降低结温的发生和材料不匹配等问题。再配合上外部的制冷器,可以让大功率UV-LED芯片在持续的低温环境中保持较长时间的高强度发光。 我们不能只考虑散热,同时还要思考出光效率的问题,由于芯片的发光是从芯片的四周向外界各个方向进行发射,因此在进行UV-LED点光源结构设计时,影响UV-LED 出光效率主要有以下四个方面:1)用于光反射的反射杯结构 2)光线通过透镜的透过率和折射率 3)封装工艺的好坏 4)封装材料的防紫外老化能力。 这些参数都会直接影响到UV-LED的出光效率,如果UV-LED 的封装结构里面没有设计反射杯,则很大一部分光线则会损失,转化成热量,从而也间接地增加了热管理难度。 目前UV-LED 主要有环氧树脂封装和硅胶/玻璃透镜封装。前者主要应用于大于400 nm 的近紫外LED封装;后者主要应用于波长小于400 nm 的LED 封装。又由于GaN和蓝宝石折射率分别为2.4 和1.76,而气体折射率为1,较大的折射率差导致全反射限制光的逸出较为严重,封装后器件的出光效率低。因此在透镜的设计方面,要综合考虑器件在紫外波段的光透过率、耐热能力和耐紫外老化能力。[align=center][img=,554,370]http://ng1.17img.cn/bbsfiles/images/2017/09/201709261632_01_3305913_3.png[/img][/align] 从上图可以看出,两种封装结构都有使用到陶瓷基板,根据光的萃取原理,这两种结构均采用了折射率很高的硅胶和玻璃透镜,充分消除了光的全反射效应,大大提高了出光效率。这两种结构非常类似,都是将LED芯片直接固晶在陶瓷基板上,陶瓷基板通过锡球焊接在铜铝散热片或热沉上,整个封装结构的热阻非常小,外层封装折射率为1.5 的硅胶和玻璃透镜,反射板采用陶瓷基板自带的反射腔体,唯一的区别在于后者多加了一层封装硅胶B,形成折射率递减的三层结构,减少全反射的光线损失。 在整个封装结构中,树脂层厚度都较薄,可以尽可能地减少硅树脂对紫外光的吸收损耗,且折射率逐层递减的三层结构有利于减少光在传播过程中的菲涅尔损耗。在某些场合,若需更大地提高光线透过率,可以在光学系统各面均镀制光学增透膜。 在上述封装结构中,反射腔体的设计也尤为重要。为达到最佳的出光光强,反射腔体的反射角度应该为55°为最佳反射角,或腔体夹角为70°,反射角过大或过小都会导致发光强度降低。 另外根据光学上的出光原理,为有效地减少全反射现象,我们选取胶水的原则一般是由里到外,胶水折射率从高到低(外层胶水的折射率可以小于或等于内层胶水折射率,但绝不能高于内层胶水的折射率。 从图可以看到,图中的陶瓷基板是直接将覆铜陶瓷基板连接到陶瓷热沉上进行热传输的,同样作为陶瓷材料,基板与热沉有差不多的热膨胀系数,相对来讲,会比第一种更加的安全。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制