当前位置: 仪器信息网 > 行业主题 > >

导纳式

仪器信息网导纳式专题为您提供2024年最新导纳式价格报价、厂家品牌的相关信息, 包括导纳式参数、型号等,不管是国产,还是进口品牌的导纳式您都可以在这里找到。 除此之外,仪器信息网还免费为您整合导纳式相关的耗材配件、试剂标物,还有导纳式相关的最新资讯、资料,以及导纳式相关的解决方案。

导纳式相关的论坛

  • 射频导纳液位计的原理

    射频导纳物位控制技术是一种从电容式物位控制技术发展起来的,防挂料性能更好,工作更可靠,测量更准确,适用性更广的物位控制技术,“射频导纳”中“导纳”的含义为电学中阻抗的倒数,它由阻抗成份,容性成份,感性成份综合而成,而“射频”即高频,所以射频导纳技术可以理解为用高频电流测量导纳的方法。高频正铉振荡器输出一个稳定的测量信号源,利用电桥原理,以精确测量安装在待测量容器中的传感器上的导纳,在直接作用模式下,仪表的输出随物位的升高而增加。   射频导纳技术与传统电容技术的区别在于测量参量的多样性,三端驱动屏蔽技术和增加的两个重要电路,这些是根据在实践中的宝贵经验改进而成的。上述技术不但解决了连接电缆屏蔽和温漂问题,也解决了垂直安装的传感器根部挂料问题。所增加的两个电路是高精度振荡驱动器和交流鉴相采样器。   对一个强导电性物料的容器,由于物料是导电的,接地点可以被认为在传感器绝缘层的表面,对仪表传感器来说仅表现为一个电容和电阻组成的复阻抗,从而引起两个问题。   第一个问题是物料本身对传感器相当于一个电容,它不消耗变送器的能量,(纯电容不耗能),但挂料对传感器等效电路中含有电阻,则挂料的阻抗会消耗能量,从而将振荡器电压拉下来,导致桥路输出改变,产生测量误差。我们在振荡器与电桥之间增加了一个驱动器,使消耗的能量得到补充因而会稳定加在传感器的振荡电压。   第二个问题是对于导电物料,传感器绝缘层表面的接地点覆盖了整个物料及挂料区,使有效测量电容扩展到挂料的顶端,这样便产生挂料误差,且导电性越强误差越大。   但任何物料都不是完全导电的。从电学角度来看,挂料层相当于一个电阻,传感器被挂料覆盖的部分相当于一条由无数个无穷小的电容和电阻元件组成的传输线。根据数学理论,如果挂料足够长,则挂料的电容和电阻部分的阻抗和容抗数值相等,因此用交流鉴相采样器可以分别测量电容和电阻。测量的总电容相当于C + C 在减去与C 相等的电阻R,就可以获得物位真实值,从而排除挂料的影响。   即C测量=C物位+C挂料   C物位=C测量-C挂料   =C测量-R   这些多参量的测量,是测量的基础,交流鉴相采样器是实现的手段。由于使用了上述三项技术,使得射频导纳技术在现场应用中展现出非凡的生命力。射频导纳料位开关 http://www.yhck8888.com阻旋料位开关 http://www.yhck888.com音叉料位开关 http://www.yhck6666.com射频导纳物位开关 http://www.yhck666.com

  • 射频导纳液位计的原理与特点

    WT-LWY物位控制器为通用型物位计用于连续物位的测量,产品应用于工矿现场,适用于大多数应用场合,仪表由一个电路单元一套防爆外壳和杆式或缆式传感元件组成,传感器有多种型号可选,仪表可选整体或分体安装。    1.射频导纳物位计的测量原理    射频导纳是一种从电容式发展起来的、防挂料、更可靠、更准确、适用性更广的新型物位控制技术,是电容式物位技术的升级。所谓射频导纳,导纳的含义为电学中阻抗的倒数,它由电阻性成分、电容性成分、感性成分综合而成,而射频即高频无线电波谱,所以射频导纳可以理解为用高频无线电波测量导纳。仪表工作时,仪表的传感器与灌壁及被测介质形成导纳值,物位变化时,导纳值相应变化,电路单元将测量导纳值转换成物位信号输出,实现物位测量。    对于连续测量,射频导纳技术与传统电容技术的区别除了上述讲过的以外,还增加了两个很重要的电路,这是根据导电挂料实践中的一个很重要的发现改进而成的。上述技术在这时同样解决了连接电缆问题,也解决了垂直安装的传感器根部挂料问题。锁增加的两个电路是振荡器缓冲器和交流变换斩波器驱动器。    对一个强导电性被测介质的容器,由于被测介质是导电的,接地点可以被认为在探头绝缘层的表面,对变送器来说仅表现为一个纯电容。随着容器排料,探杆上产生挂料,而挂料是具有阻抗的。这样以前的纯电容现在变成了由电容和电阻组成的复阻抗,从而引起两个问题。    第一个问题是液位本身对探头相当于一个电容,它不消耗变送器的能量,(纯电容不耗能)。但挂料对探头等效电路中含有电阻,则挂料的阻抗会消耗能量,从而将振荡器电压拉下来,导致桥路输出改变,产生测量误差。我们在振荡器与电桥之间增加了一个缓冲放大器,使消耗的能量得到补充,因而不会降低加在探头的振荡电压。    第二个问题是对于导电被测介质,探头绝缘层表面的接地点覆盖了整个被测介质及挂料区,使有效测量电容扩展到挂料的顶端。这样便产生挂料误差,且导电性越强误差越大。但任何被测介质都不是完全导电的。从电学角度来看,挂料层相当于一个电阻,传感元件被挂料覆盖的部分相当于一条由无数个无穷小的电容和电阻元件组成的传输线。根据数学理论,如果挂料足够长,则挂料的电容和电阻部分的阻抗相等。因此根据对挂料阻抗所产生的误差研究,又增加一个交流驱动器电路。该电路与交流变换器或同步检测器一起就可以分别测量电容和电阻,从而排除挂料的影响。    这些,多参量的测量,是必须得基础,交流鉴相采样器是实现的手段。由于使用了上述三项技术,使得射频导纳技术在现场应用中展现出非凡的生命力。    2.射频导纳物位计的特点    通用性强:可测量液位及料位,可满足不同温度、压力、介质的测量要求,并可应用于腐蚀、冲击等恶劣场合    防挂料:独特的电路设计和传感器结构,使其测量可以不受传感器挂料影响,无需定期清洁,避免误测量。    免维护:测量过程无可动部件,不存在机械部件损坏问题,无须维护。    抗干扰:接触式测量,抗干扰能力强,可克服蒸汽、泡沫及搅拌对测量的影响。    准确可靠:测量量多样化,使测量更加准确,泽良不受环境变化影响,稳定性高,使用寿命长。

  • 关于射频导纳料位计的技术探讨

    关于射频导纳料位计的技术探讨

    射频导纳物位计(变送器)是一种新颖的物位测量仪表,它采用先进的射频导纳技术,利用电容的变化来测量贮罐内的料位,随着贮罐内料位的变化,电极与罐壁之间的电容量也随之变化,其固态电子线路将连续监测这一变化,并将变化与基准电路进行比较,然后输出与料位成正比的精确而又独立的4~20mA电流信号。它的结构分为主电极和补偿电极两部分。在主电极与补偿电极间分别施加一组RF射频信号,因而具有很好的抗粘料、挂料特性,克服了电容式物位计不能消除导电挂料影响的缺陷,是取代电容料位开关的新型物/液位测量产品。射频导纳物位计具有运行可靠,能抗生挂料层的影响,适用于几乎所有工业现场。仪表还具有安装方便,免维护,低价位等特点。仪表广泛用于石油、化工、冶金、医药、电力、食品、造纸等工业领域。http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_648252_2814155_3.jpg射频导纳料位计由于保护电极的存在,检测电路将检测电极和保护电极的信号进行比较,从而实现克服物料粘附对物位测量的影响。下面详细的介绍相关显著的技术特点:1、通用性强:适用于各种场合,可检测颗粒、飞灰、导电、非导电液体、粘稠物料;2、抗粘附电路:先进的抗粘附电路设计,可以消除物料的粘附而产生虚假错误信号;3、失电保护模式:低位或高位故障报警。现场可调。4、安装调整容易5、不怕粘料、挂料6、稳定性好,不受温度影响7、延时输出可调8、可选耐温最高可达:550℃9、高低位失效保护功能

  • 电容式说明书

    电容式说明书

    产品概述:WW4000系列射频导纳物位计(变送器)是一种新颖的物位测量仪表,它采用先进的射频导纳技术,利用电容的变化来测量贮罐内的料位,随着贮罐内料位的变化,电极与罐壁之间的电容量也随之变化,其固态电子线路将连续监测这一变化,并将变化与基准电路进行比较,然后输出与料位成正比的精确而又独立的4~20mA电流信号。克服了电容式物位计不能消除导电挂料影响的缺陷,仪表具有运行可靠,能抗生挂料层的影响,适用于几乎所有工业现场。仪表还具有安装方便,免维护,低价位等特点。仪表广泛用于石油、化工、冶金、医药、电力、食品、造纸等工业领域。结构原理:WW4000系列射频导纳物位计(变送器)是一种新颖的物位测量仪表,它采用先进的射频导纳技术,利用电容的变化来测量贮罐内的料位,随着贮罐内料位的变化,电极与罐壁之间的电容量也随之变化,其固态电子线路将连续监测这一变化,并将变化与基准电路进行比较,然后输出与料位成正比的精确而又独立的4~20mA电流信号。克服了电容式物位计不能消除导电挂料影响的缺陷,仪表具有运行可靠,能抗生挂料层的影响,适用于几乎所有工业现场。仪表还具有安装方便,免维护,低价位等特点。仪表广泛用于石油、化工、冶金、医药、电力、食品、造纸等工业领域。技术指标1、接线盒材质: 铝合金IP652、感应棒材质: SUS304钢索或极棒3、操作温度: 0~85℃4、输出电流: 4~20mA5、电源电压: 24VDC(二线制)6、量程: 0~1000PF,0~3000PF,0~7000PF,0~10000PF 7、精度: ±0.5%8、带负载能力: 0~600Ω9、接续方式: 3″×5KG/cm2[col

  • 癌症检测新技术知多少——神奇的纳米追踪技术

    http://i1.sinaimg.cn/IT/2012/0710/U5385P2DT20120710181155.jpg癌症早期检测  生物工程师正在开发微小的纳米颗粒,用来检测早期癌症。  一些微小的颗粒可能会解决医学上的一个重大问题。这些所谓的纳米颗粒,直径只有几纳米(一纳米为十亿分之一米),500个这样大小的颗粒排列在一起,才有一根头发丝那么宽。科学家正在对它们进行改造,希望能完成多种任务:将药物输送到人体的特定部位;获取更清晰的器官影像……现在,它们又多了一种用途,科学家想用这些微小颗粒来探测癌细胞,不论它们藏在哪里。  目前,只有当肿瘤大到在扫描图上看得见时,常用的成像工具才能检测到它们。而纳米颗粒,则可以在一个由1 000万个正常细胞组成的样本中发现单个癌细胞。例如,实验性的纳米医学乳腺癌检测,能够发现比乳房X射线所能发现的小100倍的肿瘤。在包裹上肿瘤细胞特有的蛋白质或遗传物质后,纳米颗粒还可以帮助医生区分肿瘤是在恶性生长,还是进行性炎症,或是良性病灶。  美国华盛顿大学圣路易斯分校的生物医学工程教授格里高利•兰萨(Gregory Lanza)和同事正在研制一种纳米颗粒,能够追踪并标记新形成的、专为肿瘤供血的血管,而这类血管的产生,是结肠癌、乳腺癌和其他癌症发生过程中的关键步骤。在非肿瘤的组织中,通常不会有这样的血管。理论上,通过这项技术,医生还可以知晓癌症生长的速度,应该采取怎样的治疗措施。  美国斯坦福大学的诊断放射学教授桑吉夫•萨姆•甘姆希尔(Sanjiv Sam Gambhir)和同事正在研究大肠癌,希望能发现常规结肠镜检查发现不了的轻微恶性病变。研究小组用金和硅制成纳米颗粒,然后添加上一些分子,用来引导纳米颗粒,让它们附着在特定癌细胞上。当附着到结肠或直肠中的肿瘤上时,用一种特殊的内窥镜照射,纳米颗粒就会散射其所发出的光,显示癌细胞的存在。

  • 拓荆科技、盛美上海等4家半导体设备商成立合伙企业 定位产业零部件投资

    [b]近日,拓荆科技、中科飞测、盛美上海、微导纳米4家半导体设备厂商联合成立合资公司。据工商资料显示,广州中科共芯半导体技术合伙企业(有限合伙)(下称“中科共芯”)于2023年12月12日注册成立,注册资本1.8亿元。中科共芯位于广州市,是一家以从事计算机、通信和其他电子设备制造业为主的企业,经营范围包括:半导体分立器件制造和销售;集成电路芯片设计及服务、产品制造和销售;集成电路设计、制造和销售;电子元器件制造、批发、零售;电力电子元器件制造、销售等。从股权结构来看,拓荆科技、中科飞测全资子公司、微导纳米均持股27.7624%;盛美上海持股比例为16.6574%;中科共芯的执行事务合伙人为广州中科齐芯半导体科技有限责任公司,持股0.0555%。记者以投资者身份从拓荆科技、中科飞测公司证券部了解到,中科共芯定位将会是一家投资平台,投资范围将聚焦半导体设备零部件,并将以战略性投资为主。记者关注到,除中科共芯,近两年有多家名称类似的一系列公司亦悄然成立,包括广州中科同芯半导体技术合伙企业(有限合伙)、广州中科锐芯半导体技术合伙企业(有限合伙)、广州中科众芯半导体技术合伙企业(有限合伙)等,分别成立于2021年10月、2023年6月、2021年11月。据前述公司证券部人士称,这几家公司在定位方面类似。以中科同芯为例,其出资额约4亿元,合伙人包括富创精密、安集科技、北京君正、芯源微、北方华创、南大广电、江风电子、概伦电子、同创普润资本等。2023年11月,中科同芯首次对外投资项目为锐立平芯,据介绍,该公司聚焦FDSOI特色工艺量产平台。另据称,中科共芯成立并非由政府或相关单位牵头。不过记者关注到,上述系列公司执行事务合伙人中科齐芯,其执行董事名为李彬鸿。而李彬鸿还曾担任上述几家公司法定代表人。据悉,李彬鸿担任过广东省大湾区集成电路与系统应用研究院院长助理、FDSOI创新中心主任,有约超10年半导体行业从业经验。在2023年的一次公开活动中,李彬鸿曾公开介绍前述锐立平芯及FDSOI项目。[来源:《科创板日报》][/b][align=right][/align]

  • 浙江赋同科技有限公司正在寻找高端设备销售工程师职位,坐标嘉兴市,谈钱不伤感情!

    [b]职位名称:[/b]高端设备销售工程师[b]职位描述/要求:[/b]岗位职责: 1、负责公司产品在高校、科研机构、生物医药领域的销售及推广; 2、负责销售区域内销售活动的策划和执行,完成销售任务; 3、负责辖区市场信息的收集及竞争对手的分析; 4、新客户开发和老客户关系维护,协助公司做好市场活动; 5、代表公司与客户洽谈业务、进行商务谈判、合同的签订及货款回收; 6、与客户进行技术交流; 7、配合公司相关部门,协调安装调试、售后服务、货款回收。 任职条件: 1、光电、机电、物理、光学、仪器仪表等理工类相关专业,本科及以上学历;2、3年以上销售经验,有良好的商务谈判人际沟通能力;3、熟悉高端设备的行业动态及市场情况,熟悉实验室仪器设备领域产品市场和高校科研等销售渠道者优先。[b]公司介绍:[/b] 浙江赋同科技有限公司由中国科学院上海微系统与信息技术研究所(简称中科院上海微系统所)等投资成立,致力于超导单光子探测器等超导电子器件与电路及其周边技术的产业化。是中国信息协会量子信息分会首批理事成员单位。公司核心产品超导纳米线单光子探测器性能指标达到国际一流水平,并已应用于量子通信、卫星测距、量子光源表征等领域。公司的目标是打造一个超导技术和量子信息领域国际领先的小型高科技公司。 ...[url=https://www.instrument.com.cn/job/user/job/position/48396]查看全部[/url]

  • 浙江赋同科技有限公司诚聘高端设备销售工程师,坐标上海,你准备好了吗?

    [b]职位名称:[/b]高端设备销售工程师[b]职位描述/要求:[/b]岗位职责: 1、负责公司产品在高校、科研机构、生物医药领域的销售及推广; 2、负责销售区域内销售活动的策划和执行,完成销售任务; 3、负责辖区市场信息的收集及竞争对手的分析; 4、新客户开发和老客户关系维护,协助公司做好市场活动; 5、代表公司与客户洽谈业务、进行商务谈判、合同的签订及货款回收; 6、与客户进行技术交流; 7、配合公司相关部门,协调安装调试、售后服务、货款回收。任职条件: 1、制冷及低温工程类相关专业,本科及以上学历;2、3年以上销售经验,有良好的商务谈判人际沟通能力;3、有相关专业课题经验,熟悉高端设备的行业动态及市场情况,熟悉实验室仪器设备领域产品市场和高校科研等销售渠道者优先。[b]公司介绍:[/b] 浙江赋同科技有限公司由中国科学院上海微系统与信息技术研究所(简称中科院上海微系统所)等投资成立,致力于超导单光子探测器等超导电子器件与电路及其周边技术的产业化。是中国信息协会量子信息分会首批理事成员单位。公司核心产品超导纳米线单光子探测器性能指标达到国际一流水平,并已应用于量子通信、卫星测距、量子光源表征等领域。公司的目标是打造一个超导技术和量子信息领域国际领先的小型高科技公司。 ...[url=https://www.instrument.com.cn/job/user/job/position/45546]查看全部[/url]

  • 浙江赋同科技有限公司刚刚发布了高端设备销售工程师职位,坐标上海,速来围观!

    [b]职位名称:[/b]高端设备销售工程师[b]职位描述/要求:[/b]岗位职责: 1、负责公司产品在高校、科研机构、生物医药领域的销售及推广; 2、负责销售区域内销售活动的策划和执行,完成销售任务; 3、负责辖区市场信息的收集及竞争对手的分析; 4、新客户开发和老客户关系维护,协助公司做好市场活动; 5、代表公司与客户洽谈业务、进行商务谈判、合同的签订及货款回收; 6、与客户进行技术交流; 7、配合公司相关部门,协调安装调试、售后服务、货款回收。任职条件: 1、制冷及低温工程类相关专业,本科及以上学历;2、3年以上销售经验,有良好的商务谈判人际沟通能力;3、有相关专业课题经验,熟悉高端设备的行业动态及市场情况,熟悉实验室仪器设备领域产品市场和高校科研等销售渠道者优先。[b]公司介绍:[/b] 浙江赋同科技有限公司由中国科学院上海微系统与信息技术研究所(简称中科院上海微系统所)等投资成立,致力于超导单光子探测器等超导电子器件与电路及其周边技术的产业化。是中国信息协会量子信息分会首批理事成员单位。公司核心产品超导纳米线单光子探测器性能指标达到国际一流水平,并已应用于量子通信、卫星测距、量子光源表征等领域。公司的目标是打造一个超导技术和量子信息领域国际领先的小型高科技公司。 ...[url=https://www.instrument.com.cn/job/user/job/position/48378]查看全部[/url]

  • 【资料】关于配料称重仪器仪表,浅谈LONGTEC!

    [i][color=#226ddd][font=Arial]LONGTEC [/font][/color][/i]产品包括:[size=3][/size][b][color=#226ddd]称重自动化[/color][/b] 称重仪表、称重传感器、高精度称重变送器 多物料配料控制仪、包装秤控仪表、累减秤控制仪 失重秤控制仪、皮带秤控制仪、防爆称重控制仪 称重配料控制系统、砼站配料控制系统、配料秤 动态配料仪表、系统成套 (皮带秤、螺旋秤、失重秤、散料秤)工业称重系统的基础元件、成套设备[color=#226ddd][b]物位产品[/b][/color] 阻旋式、电容式、音叉式、振动棒、射频导纳料位开关 射频电容、射频导纳连续物位计 电涡流压力/液位变送器 (测量高温、高粘等物料)[b][color=#226ddd]应变测试[/color][/b] G1000高精度测力计(测计仪)、张力测量、测力传感器 力值测量保持仪(产品质量检验) 生产过程监控系统[b][color=#226ddd]ASAHI数字面板仪表[/color][/b] 条形图显示仪表、条形图显示仪表 交流电压-电流测量用数字面板仪表、模块式数字面板仪表、数字式电阻测量仪表 数字式计数器、数字式频率监视器、数字式温度调节仪表、数字式应变片仪表(压力传感器仪表) 数字温度表、数字显示比例缩放仪表、数字显示旋转仪表、数字仪表继电器、瞬时积分显示仪表[b][color=#226ddd]ASAHI信号变送器[/color][/b] 隔离模块、隔离器 AD转换器、报警设置器、避雷针、电位器仪表变送器、分配器 交流信号隔离变送器、脉冲-模拟变送器、温度变送器、压力传感器变送器、直流信号隔离变送器[b][color=#226ddd]过程称重领域[/color][/b]我们是称重自动化专家,为传统企业实现产业升级提供综合的自动化解决方案。[b][color=#226ddd]物料处理领域[/color][/b]针对物料处理领域散状物料的计量及控制方面,我们拥有丰富的经验和众多成功的应用案例。我们是将电涡流传感技术应用于测量压力的创始者,从而有效地解决高粘、高温的液体压力测量难题。[b][color=#226ddd]应变测试领域[/color][/b]在中国,我们是将先进的闭环品质测试方法应用于机械制造领域的大力倡导者之一,这一方法是中国成为制造业强国不可或缺的一个环节。

  • 纳米材料诱发的化学发光(二)

    望得到大家的指导纳米金粒子浓度的增大而线性增加,并且当纳米金粒子表面柠檬酸根离子被SCN—离子取代时,体系化学发光的强度显著增加;实验采用紫外可见吸收光谱、透射电镜(TEM)和X-射线光电子能谱(XPS)技术研究了CL反应前后纳米金的形貌、粒径和氧化态,在此基础上提出体系化学发光的机理可能是纳米金作为化学发光反应的微尺度反应平台,与反应过程中生成的CO3• 一和O2• 一自由基相互作用,在纳米金表面生成了Au(Ⅰ)络合物、二氧化碳双分子对、单线态氧分子对的激发态而产生化学发光(图4-2(a,b))。 图 4-2a 二氧化碳双分子以及单线态氧分子对参与的化学发光机理Figure 4-2a Mechanism of the chemiluminescence involving carbon dioxide dimer and singlet oxygen molecular pair 图 4-2b 与纳米金表面原子氧化相关的化学发光机理Figure 4-2b Mechanism of the chemiluminescence involving the oxidation of surface gold atoms.4.2.1.2 纳米金催化液相化学发光随后,Zhang[63]等发现不同粒径的纳米金于鲁米诺—H2O2液相化学发光体系具有不同程度的增强作用,其中粒径为38 nm的纳米金对于体系的化学发光具有最大的增强作用;提出了纳米金对该体系化学发光的增强作用可能的机理是由于纳米金对于反应过程中自由基的生成以及后续电子转移反应具有良好的催化作用;发现含有-OH、-NH2和-SH的有机化合物对于鲁米诺—H2O2—38 nm纳米金化学发光体系具有明显的抑制作用,在此基础上,进一步研究了鲁米诺—H2O2—38 nm纳米金化学发光体系测定含有-OH、-NH2和-SH的有机化合物分析应用潜力,取得了很好的结果。4.2.1.3 纳米金作为能量接受体诱导液相化学发光 Cui[64]等报到了粒径为2.6~6.0nm 的纳米金可以接受双(2,4,6-三氯苯基)草酸酯(TCPO)与过氧化氢(H2O2)的反应释放的能量产生间接化学发光,其最大发射波长位于~415nm;发现化学发光的强度与纳米金粒子的浓度(在9.1×10-10—3.3×10-8 mol/L)之间存在良好的线性递增关系;提出该化学发光可能的机理: TCPO被H202氧化生成高能量的中间体过氧环乙烷双酮(1,2-dioxetanedione),该中间体将能量传递给体系中共存的纳米金粒子而使纳米金被激发,激发态纳米金粒子在弛豫回到基态的过程中产生化学发光(图4-3)。 图 4-3 纳米金—TCPO—H2O2-体系的化学发光机理Figure 4-3. CL Mechanism for TCPO-H2O2-Gold Colloid System4.2.1.4 纳米金作为高效还原剂参与液相化学发光Zhang[65]等采用流动注射化学发光法(FIA-CL)研究了纳米金微粒对酸性KMnO4化学发光体系的影响,发现在2.0 mol/L H2SO4介质中纳米金可以与KMnO4发生氧化还原反应;对于粒径为2.6和6.0 nm的纳米金,它们与酸性KmnO4的反应速度快,可以在640 nm左右产生化学发光,并且化学发光的强度与纳米金粒子浓度(在4.6×10-6~2.94×10-4 mol/L浓度范围内)之间存在良好的线性递增关系;对于粒径大于6.0 nm的纳米金,由于与KMnO4的反应速度较慢,反应过程中并不伴随化学发光现象;提出化学发光反应的机理可能是酸性条件下KmnO4被纳米金还原生成激发态Mn(Ⅱ)*而产生化学发光。4.2.2 纳米半导体(NCs)参与的液相化学发光Talapin[66]等首次在碱性H2O2水溶液中,观察到CdSe/CdS 核-壳结构纳米半导体晶体膜的化学发光现象,并认为该化学发光性质与量子约束轨道相关。随后, Wang[67]等发现碱性H2O2和碱性高锰酸钾,可以直接氧化CdTe NCs 产生强的化学发光,化学发光强度与粒度相关,随着粒度的增大而增强。采用流动注射化学发光法(FIA-CL), 在 3.33-nm CdTe NCs浓度为:1×10-3 mol/L,0.1 mol/L NaOH 条件下,考察了发光系统对不同浓度H2O2的响应,CL强度对H2O2 在1×10-4~1 ×10-2 mol/L浓度范围内呈线性增强;同时也考察了表面活性剂对发光体系的影响。通过光致发光光谱法, CL光谱法和透射电镜法探究了可能的氧化化学发光机理(式4.12—4.16)。RSH + O2 + OH- → O2- + RS + H2O (4.12)O2- + CdTe → CdTe(e-1Se) + O2 (4.13)O2- + H2O2 → OH• + 1O2 (4.14)OH• + CdTe → OH- + CdTe(h+1Sh) (4.15)CdTe(h+1Sh) + CdTe(e-1Se) → (CdTe NCs)* → hv (4.16)5 结论与展望目前,半导体纳米粒子和金属纳米粒子的电致化学发光和化学发光行为己经引起了人们的关注。从Bard[24,50-54]、崔华[26,59,62-64]、张新荣[25,68-71]等研究组报道的工作表明,纳米粒子诱导化学发光反应的研究刚刚起步。从他们报道的研究工作可以看出,纳米粒子可以作为能量接受体、微尺度反应平台、还原剂、催化剂等参与化学发光反应。能量接受体:纳米粒子在量子效应的作用下可能使纳米粒子具有块体材料所没有的特殊能级结构而产生良好的荧光特性。这些具有荧光特性的纳米粒子可以被化学反应释放的能量所激发从而产生化学发光。发光体:通过电化学法和化学法可以向纳米粒子注入电子(electron)和空穴(hole),电子和空穴再结合(recombination)之后便形成激发子(exciton),形成的激发子能产生特定波长的光。微尺度反应平台:纳米粒子虽然可以均匀分散在液相,但是纳米粒子与液相本体之间仍然存在固/液界面,从而导致在纳米粒子表面进行的化学反应处于一个固/液界面微尺度反应平台,从而改变了化学发光反应的物理化学过程。还原剂:对纳米粒子液相电化学行为的研究已经表明,在量子尺寸效应的诱导下产生了一定能级分裂的纳米粒子簇,可能作为一个整体接受电子或空穴的注入[72]。另外,组成纳米粒子的活性基本单元(如配位不足的表面原子)也可能独立参与氧化还原反应。故这些具有较高的氧化还原活性的纳米粒子可以作为化学反应的氧化剂或还原剂诱导化学发光。催化剂:纳米粒子可以作为催化剂充当氧化还原过程中电子转移的中介。液相化学发光反应涉及一系列活泼的中间产物如自由基和激发态产物,纳米粒子高的表面活性可能会与参加化学发光反应的初始物质、中间体和激发态物质发生相互作用,从而改变了化学发光反应历程以及化学发光反应的速率。总之,纳米材料作为一种新型化学发光响应单元对提高化学发光反应的效率以及开发新的化学发光反应体系具有重要意义。而且,已报道的一系列基于纳米材料的新的化学发光体系在生命科学、环境科学和分析化学等领域可能具有广阔的应用前景。

  • 市售纳氏试剂

    购买了市售的纳氏试剂,昨天用它按标准做了室内空气 氨和水质氨氮的标准曲线,加入纳氏试剂十分钟后,低浓度点都不显色,线性不好,高浓度点显色和线性却很好。想请教各位老师:市售纳氏试剂是否可以可以同时用于氨和氨氮的检测?有没有做的线性好的纳氏试剂品牌推荐一下?谢谢 !

  • 【资料】GB/T 8753-2005 铝及铝合金阳极氧化氧化膜封孔质量的评定方法

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=35357]GBT 8753.1-2005 铝及铝合金阳极氧化氧化膜封孔质量的评定方法 第1部分 无硝酸预浸的磷铬酸法[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=35358]GBT 8753.2-2005 铝及铝合金阳极氧化氧化膜封孔质量的评定方法 第2部分 硝酸预浸的磷铬酸法[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=35359]GBT 8753.3-2005 铝及铝合金阳极氧化氧化膜封孔质量的评定方法 第3部分 导纳法[/url]

  • 【讨论】纳氏显色的问题?

    我试着用纳氏法测食品蛋白,用消化液与纳氏显色,出现这样的情形,当刚加入纳氏时,出现黄色,但很快就消失了,呈现无色,这样一来就无法比色了,我用硫酸铵作标液没有出这样的情况,请哪位高手来解答!

  • 【转帖】“十大计量”专业领域介绍

    当前,比较成熟和普遍开展的计量科技领域有:几何量(长度)、热工、力学、 电磁、无线电、时间频率、声学、光学、化学和电离辐射, 即所谓“十大计量”。 几何量计量表征有形物体的几何特征和质点的空间位置。涉及波长、刻线量具、光栅、感应器同步器、量块、多面体、角度等具体的测量。生活中常用到直尺、钢卷尺,在军事和交通中广泛应用的卫星定位系统等,都是长度计量的 研究成果。 热工计量的对象是在工业生产中热工过程中常用到的温度、压力、真空、流量和物量和物位等参数。如对普通玻璃液体温度计,红外测温仪的检定、校准,直接关系到医生对病人是否发热的判断,对抗击“非典”斗争提供技术支持。 力学计量是涉及质量、力值、密度、容量、力矩、机械功率、压力、真空、流量以及位移、速度、加速度、硬度等量的测量。如市场上的公平秤、电子计价秤、水表、燃气表、出租车计价器等准确与否都是由力学计量来保证的。 电磁计量涉及的专业范困包括直流和又流的阻抗和电量、精密交直流测量仪器仪表、模数/数模转换技术、磁通量、磁性材料和磁记录材料、磁测量仪器仪表以及量子计量等。与人民生活密切相关的电磁计量内容很多,如家用电能表的准确角度等。 无线电计量包括有关电磁能参数(如电压、电流、功率、电场强度、功率通量密度和噪声功率谱密度)的计量;有关电信号特征参量(如频率、波长、调幅系数、频偏、失真系数和波形特征参量)的计量;有关电路元件和材料特性•参量(如阻抗或导纳、电阻或电导、电感和电容、Q值、复介电常数、损耗角)的计量和有关器件和系统网络特性参量(电压驻波比、反射系数、衰减、增益、相移)的计量。例如,电器维修用的万用表的难确度,手机发射功率的测量等。 时间频率计量用于测量频率值和时间间隔。主要服务领域为:通讯、航天、国防、电子、家电、医疗、科研、电视、服务等领域。如报时服务,各类(手机、电话、停车)服务计时等。 声学计量是研究声压、声强、声强、声功率和响度、听力损失等量的测量。如噪声测量、交通噪声、环境噪声、建筑声学、电声学的测量,对于科研生产、国防和国民经济的发展起到了积极作用。 光学计量的对象有光源、光探测器、光学介质、光学元件以及光学仪器。其中光源包括自然光源、人工光源、激光等。光学计量涉及辐射强度、辐射照度、辐射亮度等参数。如日常生活中灯、汽车灯亮度的测量,色彩的测量等。 化学计量主要针对热量、粘度、密度、电导率、浊度等物质化学特性的测量。化学计量与人民群众日常生活密切相关。例如:饮用水的纯净度、食品中的有害物质含量等。 电离辐射计量是指o、8、y、x和中子辐射的有关参数的测量。电离辐射计量涉及医疗、工业、农业、军事、环境监测等方面。如医用X光机、CT机钻—60治疗机、X刀等设备、工用X射线探伤机、核子皮带秤、农用大蒜辐照加工、环境监测用的水质检测以及用于海关、车站、码头的禁止物品检杏仪等设备。

  • 【求助】纳式试剂问题

    配制纳式试剂时两种方法做出来区别大吗?好像第二种配法比第一种简单好多。配制的溶液瓶上漂浮着一层硬壳,瓶底有一层沉淀,很不方便吸取,而且空白值很高(0.060~0.110)。是不是哪里没掌握好?[em09511]

  • 【资料】十大计量”专业领域介绍

    当前, 比较成熟和普遍开展的计量科技领域有:几何量(长度)、热工、力学、 电磁、无线电、时间频率、声学、光学、化学和电离辐射, 即所谓“十大计量”。 几何量计量表征有形物体的几何特征和质点的空间位置。涉及波长、刻线量具、光栅、感应器同步器、量块、多面体、角度等具体的测量。生活中常用到直尺、钢卷尺,在军事和交通中广泛应用的卫星定位系统等,都是长度计量的研究成果。 热工计量的对象是在工业生产中热工过程中常用到的温度、压力、真空、流量和物量和物位等参数。如对普通玻璃液体温度计,红外测温仪的检定、校准,直接关系到医生对病人是否发热的判断,对抗击“非典”斗争提供技术支持。 力学计量是涉及质量、力值、密度、容量、力矩、机械功率、压力、真空、流量以及位移、速度、加速度、硬度等量的测量。 如市场上的公平秤、电子计价秤、水表、燃气表、出租车计价器等准确与否都是由力学计量来保证的。 电磁计量涉及的专业范困包括直流和又流的阻抗和电量、精密交直流测量仪器仪表、模数/数模转换技术、磁通量、磁性材料和磁记录材料、磁测量仪器仪表以及量子计量等。 与人民生活密切相关的电磁计量内容很多,如家用电能表的准确角度等。 无线电计量包括有关电磁能参数(如电压、电流、功率、电场强度、功率通量密度和噪声功率谱密度)的计量; 有关电信号特征参量(如频率、波长、调幅系数、频偏、失真系数和波形特征参量)的计量;有关电路元件和材料特性参量(如阻抗或导纳、电阻或电导、电感和电容、Q值、复介电常数、损耗角)的计量和有关器件和系统网络特性参量(电压驻波比、反射系数、衰减、增益、相移)的计量。例如, 电器维修用的万用表的难确度,手机发射功率的测量等。 时间频率计量用于测量频率值和时间间隔。 主要服务领域为:通讯、航天、国防、 电子、家电、医疗、科研、电视、服务等领域。如报时服务,各类(手机、电话、停车)服务计时等。 声学计量是研究声压、声强、声强、声功率和响度、听力损失等量的测量。 如噪声测量、交通噪声、环境噪声、建筑声学、电声学的测量,对于科研生产、国防和国民经济的发展起到了积极作用。 光学计量的对象有光源、光探测器、光学介质、光学元件以及光学仪器。其中光源包括自然光源、人工光源、激光等。光学计量涉及辐射强度、辐射照度、辐射亮度等参数。 如日常生活中灯、汽车灯亮度的测量,色彩的测量等。 化学计量主要针对热量、粘度、密度、电导率、浊度等物质化学特性的测量。 化学计量与人民群众日常生活密切相关。例如:饮用水的纯净度、食品中的有害物质含量等。 电离辐射计量是指o、 8、 y、x和中子辐射的有关参数的测量。 电离辐射计量涉及医疗、工业、农业、军事、环境监测等方面。如医用X光机、CT机钻—60治疗机、X刀等设备、工用X射线探伤机、核子皮带秤、农用大蒜辐照加工、环境监测用的水质检测以及用于海关、车站、码头的禁止物品检杏仪等设备。

  • 氨氮-纳氏试剂

    氨氮纳氏试剂显色,刚开始测的时候,颜色不一样,高的高,低的低,过了30分钟往后才稳定下来,测了一下,测出来了,但是标线却是没有问题的,是什么原因?纳氏试剂是全新的,酒石酸钾钠也是现配的

  • 【求助】氨气---纳氏试剂分光光度法中纳氏试剂的配制问题

    在配制氨气---纳氏试剂分光光度法中纳氏试剂的时候在用10ml热水溶解Hgcl2时特难溶解,不明白所谓的热水大概是指多少度,有没有能使Hgcl2好溶解的方法?还有最后再向溶液中加入0.5mlHgcl2溶液时用移液管加入时Hgcl2溶液一遇到冷的移液管就会因降温而析出,该怎样做,请各位大侠指教.

  • 纳氏比色法测氨氮的问题

    检测饮用水中氨氮时,标准系列加无氨水稀到50ml后加酒石酸钾钠、纳氏试剂后不显色,不稀释直接加酒石酸钾钠、纳氏试剂后稀到50ml,色阶显色明显,这样是不是纳氏试剂有问题,会是那种药品失效引起的?

  • 纳氏试剂吸光度

    纳氏试剂吸光度一直大于0.03,一次0.5,一次0.29,问一下大神们 都是怎么做的 , 取纳氏试剂放入1cm比色皿,在420nm测定

  • 氨气纳氏试剂测定问题

    请问利用纳氏试剂分光光度法测定溶液中氨气的含量时,利用附件中的公式得到的单位是mg/m3,我想要换算成单位是mg,那这样是需要乘采样体积还是吸收液体积啊

  • 悬赏 废水氨氮 蒸馏法纳氏试剂法 比 絮凝纳氏试剂法偏低

    说明:1、废水氨氮 蒸馏法纳氏试剂法检测结果0.05-0.2之间,絮凝纳氏试剂法检测结果2-3之间。 2、两种方法做2ppm的标样,结果准确(2.038/2.078)。 3、废水采用2ppm标准加入法,蒸馏法纳氏试剂法检测结果偏低较多。絮凝纳氏试剂法检测结果准确。 (蒸馏法0.1+2ppm,结果1.2ppm;絮凝法2.5+2ppm=4.4ppm)

  • 氨氮纳氏试剂配制

    水质氨氮,配制纳氏试剂,静置过夜后,测空白0.012,太小,一般正常0.025不超过0.030,但是空白加纳氏试剂和酒石酸钾钠后放置一会会有砖红色沉淀析出,但是样品就不会,质控也进不去,其他的药都用的以前的都可以配成功,只是换了氯化汞,重新换了别家的氯化汞配制纳氏试剂还是空白低吸光度低质控进不去,求助纳氏试剂配制需要注意哪些细节,以及氨氮标曲的斜率范围,谢谢

  • 纳氏试剂配制求助

    用碘化汞和碘化钾配置的纳氏试剂为什么显色这么浅啊,做出来的曲线斜率只有用第一种方法氯化亚汞和碘化钾配的纳氏试剂斜率的一半,怎么会这样,是我的配制方法不对吗?

  • 请教纳氏试剂法测氨氮

    在测氨氮时一般用纳氏试剂比色法,很多方法上都说,在水很清亮时,可以不用蒸馏处理,这样我在做样时总发现在加完酒石酸钾钠和纳氏试剂后,显色体系与标样的那的黄色不相近,做标样时好象有点黄红色,但水样则好象带一点黄白色一样的,有时放久了,比色管下面会有细小的颗粒沉积. 请各高手多多发表高见!

  • 哈希纳氏试剂的空白值

    哈希纳氏试剂的空白值

    http://ng1.17img.cn/bbsfiles/images/2014/07/201407170919_506987_1771086_3.jpg本单位用的哈希纳氏试剂,没有使用说明。按氨氮测量标准加1.0ml纳氏,试剂空白是0.06左右,小伙伴自作主张改成0.5ml,空白0.03左右,质控样结果也好。算不算方法偏离?

  • 氨气纳氏试剂问题

    纳氏试剂中的二氯化汞买不到了,用了氨氮标准中的碘化汞代替,配置的纳氏试剂空白值特别高。新配的在0.04左右,用一段时间都能达到0.1。但曲线的线性还能达到0.999以上。想问下前辈们有用过代替的吗?应该怎么解决啊![img]https://ng1.17img.cn/bbsfiles/images/2019/06/201906141605127488_6469_3934621_3.png[/img]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制