当前位置: 仪器信息网 > 行业主题 > >

导纳式

仪器信息网导纳式专题为您提供2024年最新导纳式价格报价、厂家品牌的相关信息, 包括导纳式参数、型号等,不管是国产,还是进口品牌的导纳式您都可以在这里找到。 除此之外,仪器信息网还免费为您整合导纳式相关的耗材配件、试剂标物,还有导纳式相关的最新资讯、资料,以及导纳式相关的解决方案。

导纳式相关的资讯

  • 市值130亿元,微导纳米登陆科创板
    江苏微导纳米科技股份有限公司(以下简称“微导纳米”)于2022年12月23日正式以“688147”为股票代码在科创板挂牌上市。截至10:40,微导纳米报于每股28.55元,较发行价上涨17.93%,市值超129.62亿元。成立于2015年的微导纳米以原子层沉积(ALD)技术为核心,主要从事先进微、纳米级薄膜沉积设备的研发、生产和销售,向下游客户提供先进薄膜沉积设备、配套产品及服务。自成立以来,微导纳米在原子层沉积反应器设计技术、高产能真空镀膜技术、真空镀膜设备工艺反应气体控制技术、纳米叠层薄膜沉积技术、高质量薄膜制造技术、工艺设备能量控制技术、基于原子层沉积的高效电池技术等前沿科技领域持续构筑和强化技术壁垒,并在此基础上继续深化 ALD 技术在下一代光伏电池、集成电路、先进存储等方面的技术储备,为客户提供更丰富的高端薄膜沉积产品。报告期内,微导纳米的产品率先用于光伏电池片生产过程中的薄膜沉积环节,已 覆盖包括通威太阳能、隆基股份、晶澳太阳能、阿特斯、天合光能等在内的多家知名太阳能电池片生产商,且应用于 TOPCon、XBC等新型高效电池生产线的产品已在客户现场验证。在成功将 ALD 技术应用于光伏领域后,微导纳米开发了对技术水平和工艺要求 更高的半导体薄膜沉积设备,已先后获得国内多家知名半导体公司的商业订单,并实现了国产 ALD 设备在 28nm 集成电路制造关键工艺中的突破。此外,微导纳米已与多家国内半导体厂商及验证平台签署了保密协议并开展产品技术验证等合作,针对国内半导体薄膜沉积各细分应用领域研发试制新型 ALD 设备。除了光伏和半导体领域外,微导纳米亦拓展了柔性电子等其他领域的应用。成立至今,微导纳米已获得宁德时代、君联资本、毅达资本、高瓴创投、中芯聚源等知名机构的投资。其中,君联资本于2019年领投微导纳米,是微导纳米的早期投资人之一。君联资本表示:“微纳制造装备产业的国产化亟待解决,微导纳米的ALD技术填补国内空白,实现了光伏和半导体领域的双重突破。公司核心团队创新能力强,不断布局新的增长点并持续投入,我们非常敬佩微导纳米团队在前沿技术不断攻克的创新精神,公司致力于先进薄膜核心装备的国产化,相信上市后,微导纳米会继续深耕ALD技术,成为全球领先的微纳先进制造装备企业。”毅达资本于2020年领投了微导纳米的A轮融资。毅达资本创始合伙人樊利平指出,“与谁同行决定我们能走多远,有幸与最具活力的产业之星共同成长,是投资机构的荣幸。热烈祝贺微导纳米成功登陆科创板,毅达资本将与微导纳米一路同行。期待微导纳米以原子层沉积技术为核心,引领国产高端技术装备产业化,向世界级的微纳技术解决方案装备制造商迈进。”
  • 质谱电离技术重要突破!超导纳米线检测单个蛋白质离子
    Fig. 1: View of the SuperMaMa laboratory at the University of Vienna. The hanging gold-plated insert is the radiation shield behind which the superconducting nanowire detectors are installed. C: Quantennanophysik @ Universität Wien  Fig. 2: Counting single proteins with a superconducting nanowire. The background and nanowire are altered in Photoshop with the Generative Fill AI. (Human Insulin PDB:3I40). C: CC BY-ND 4.0 Quantum Nanophysics University of Vienna.  据奥地利维也纳大学(University of Vienna, Boltzmanngasse, Vienna, Austria.)2023年12月4日提供的消息,由维也纳大学量子物理学家马库斯阿恩特(Markus Arndt)领导的国际研究团队在蛋白质离子检测方面取得突破:超导纳米线探测器凭借其高能量灵敏度,实现了蛋白质离子检测的突破(Quantum physics: Superconducting Nanowires Detect Single Protein Ions)。几乎100%的量子效率,比传统离子探测器在低能量下的探测效率高出1000倍。与传统探测器相比,它们还可以通过冲击能量来区分大分子。这允许更灵敏地检测蛋白质,并提供质谱分析中的附加信息。这项研究的结果于2023年12月1日已经在在《科学进展》(Science Advances)杂志网站发表——Marcel Straus, Armin Shayeghi, Martin F. X. Mauser, Philipp Geyer, Tim Kostersitz, Julia Salapa, Olexandr Dobrovolskiy, Steven Daly, Jan Commandeur, Yong Hua, Valentin Köhler, Marcel Mayor, Jad Benserhir, Claudio Bruschini, Edoardo Charbon, Mario Castaneda, Monique Gevers, Ronan Gourgues, Nima Kalhor, Andreas Fognini, Markus Arndt. Highly sensitive single molecule detection of macromolecule ion beams. Science Advances, 1 Dec 2023, Vol 9, Issue 48. DOI: 10.1126/sciadv.adj2801. https://www.science.org/doi/10.1126/sciadv.adj2801  参与此项研究的除了来自维也纳大学的研究人员之外,还有来自奥地利科学院(Austrian Academy of Sciences, Boltzmanngasse, Vienna, Austria)、荷兰MSVision(MSVision, Televisieweg 40, 1322 AM Almere, The Netherlands)、荷兰单量子(Single Quantum, Rotterdamseweg 394, 2629 HH, Delft, The Netherlands) 瑞士巴塞尔大学(University of Basel, St. Johannsring 19, CH-4056 Basel, Switzerland)以及瑞士洛桑联邦理工学院(école Polytechnique Fédérale de Lausanne简称EPFL, Rue de la Maladière 71b, CH-2002 Neuchatel, Switzerland)的研究人员。  大分子的检测、识别和分析在生命科学的许多领域都很有趣,包括蛋白质研究、诊断和分析。质谱法通常用作检测系统即一种通常根据带电粒子(离子)的质荷比分离带电粒子(离子)并测量检测器生成的信号强度的方法。这提供了有关不同类型离子的相对丰度的信息,从而提供了样品组成的信息。然而,传统探测器只能对具有高冲击能量的粒子实现高探测效率和空间分辨率——这一限制现已被使用超导纳米线探测器的国际研究团队克服。  低能粒子的合力(Joined forces for low energy particles)  在当前的研究中,由维也纳大学与代尔夫特的单量子、EPFL、MSVision和巴塞尔大学的合作伙伴协调的欧洲联盟首次展示了超导纳米线的使用所谓的四极杆质谱(quadrupole mass spectrometry)中蛋白质束的优秀检测器。待分析样品中的离子被送入四极杆质谱仪并进行过滤。“如果我们现在使用超导纳米线而不是传统探测器,我们甚至可以识别以低动能撞击探测器的粒子,”维也纳大学物理学院量子纳米物理小组(Quantum Nanophysics Group at the Faculty of Physics at the University of Vienna)的项目负责人马库斯阿恩特 (Markus Arndt) 解释道。这是通过纳米线探测器的特殊材料特性(超导性)实现的。  借助超导技术实现这一目标(Getting there with superconductivity)  这种检测方法的关键是纳米线在非常低的温度下进入超导状态,在这种状态下它们失去电阻并允许无损电流流动。进入离子对超导纳米线的激发导致返回到正常导电状态(量子跃迁)。在此转变期间纳米线电特性的变化被解释为检测信号。“通过我们使用的纳米线探测器,”第一作者马塞尔 施特劳斯(Marcel Strauß / Marcel Straus)说,“我们利用了从超导到正常导电状态的量子跃迁,因此可以比传统离子探测器性能高出三个数量级。” 事实上,纳米线探测器在极低的冲击能量下具有显著的量子产率-并重新定义了传统探测器的可能性:“此外,配备这种量子传感器的质谱仪不仅可以根据分子的质量到电荷状态来区分分子,还可以根据分子的动能对它们进行分类。这改善了检测并提供了更好的空间分辨率的可能性,”马塞尔施特劳斯说道。纳米线探测器可以在质谱、分子光谱、分子偏转或分子量子干涉测量中找到新的应用,这些领域需要高效率和良好的分辨率,特别是在低冲击能量下。图 2(Fig. 2)是用超导纳米线计数单个蛋白质。  团队和资金(Team & Funding)  单量子(Single Quantum)领导超导纳米线探测器的研究,洛桑联邦理工学院的专家提供超冷电子学,MSVISION 是质谱专家,巴塞尔大学的专家负责化学合成和蛋白质功能化。维也纳大学将所有组件与其在量子光学、分子束和超导性方面的专业知识结合在一起。  本研究得到了戈登和贝蒂摩尔基金会 (Gordon and Betty Moore Foundation: 10771)、欧盟地平线2020框架计划(European Union’s Horizon 2020 Framework Programme: 860713 and 777222)的资助。  上述介绍,仅供参考。欲了解更多信息,敬请注意浏览原文或者相关报道。  Abstract  The analysis of proteins in the gas phase benefits from detectors that exhibit high efficiency and precise spatial resolution. Although modern secondary electron multipliers already address numerous analytical requirements, additional methods are desired for macromolecules at energies lower than currently used in post-acceleration detection. Previous studies have proven the sensitivity of superconducting detectors to high-energy particles in time-of-flight mass spectrometry. Here, we demonstrate that superconducting nanowire detectors are exceptionally well suited for quadrupole mass spectrometry and exhibit an outstanding quantum yield at low-impact energies. At energies as low as 100 eV, the sensitivity of these detectors surpasses conventional ion detectors by three orders of magnitude, and they offer the possibility to discriminate molecules by their impact energy and charge. We demonstrate three developments with these compact and sensitive devices, the recording of 2D ion beam profiles, photochemistry experiments in thegas phase, and advanced cryogenic electronics to pave the way toward highly integrated detectors.文章来源:科学网 诸平
  • 行业应用 | 射频导纳物位技术如何监控火电厂原煤仓料位?
    火力发电占中国超过70%的发电量,全国遍布了成千上百座火电厂,火力发电厂的安全运营对于电力生产商至关重要。在火电厂中,AMETEK DREXELBROOK的物位产品在静电除尘器、输煤程控、气力输送领域以及汽轮机油箱液位监控、润滑油含水测量等领域有非常成熟的应用方案。在输煤程控领域,AMETEK DREXELBROOK的射频导纳物位开关(杆式或平板式)安装在原煤仓上进行低位、高位和高高位料位报警,DR6400/6500系列26/80GHZ雷达料位计安装在罐顶对煤位进行连续监控。下面图片均为AMETEK DREXELBROOK物位产品在现场安装使用的工况照:图1上图1位在原煤仓上的低位报警开关,该工况选用的射频导纳平板开关,开关的安装形式巧妙避免了落煤对传感器的损害,完美的实现了低位报警功能。图2上图2为原煤仓连续煤位测量,采用AMETEK DREXELBROOK DR6500系列80Ghz高频雷达,精确的为客户计算煤位,和开关一起,双重保证原煤仓安全运作。以上用实际应用图片体现了AMETEK DREXELBROOK产品在电厂多个场合的应用,除以上图片所显示实际应用案例之外,还有其他诸多场合,总体火力电厂应用总结如下:AMETEK DREXELBROOK射频导纳产品在国内的火电厂应用非常多,目前开关的使用量累计超过20000台,见证了中国火电厂的发展历程,也维护了火电厂的安全运行。
  • 江苏微导纳米科技股份有限公司首发获通过
    据上交所科创板上市委员会8月1日消息,经审议,江苏微导纳米科技股份有限公司(首发)符合发行条件、上市条件和信息披露要求。
  • 上海微系统所等研制出微纳光纤耦合超导纳米线单光子探测器
    style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style p   超导纳米线单光子探测器(SNSPD:Superconducting nanowire single-photon detector)作为一种高性能的单光子探测器,已广泛应用于量子信息、激光雷达、深空通信等领域,有力推动了相关领域的科技发展。 /p p   SNSPD器件主要有两种光耦合方式,一种是垂直光耦合方式,光纤端面平行于SNSPD光敏面,光子垂直入射到纳米线上,采用光学腔体或反射镜结构实现高效光耦合。利用该类耦合结构,中国科学院上海微系统与信息技术研究所已实现NbN基SNSPD系统探测效率超过90%,相关结果发表后受到国内外广泛关注。该光耦合结构的特点是,可以实现高光耦合效率,但受限于光耦合结构,工作波长范围受限。另一种光耦合方式是波导光耦合方式,将纳米线制备在光波导上,可实现高效的本征吸收。但光纤到波导的耦合效率较低,使这类器件仅能作为片上光子学的解决方案,无法作为独立单光子探测器使用。 /p p   上海微系统所/中国科学院超导电子学卓越创新中心尤立星研究员团队和浙江大学教授方伟、童利民团队合作,首次提出微纳光纤耦合的SNSPD器件结构。该结构将SNSPD器件置于微纳光纤的倏逝场内,实现纳米线对微纳光纤中传输的光子吸收。光学计算显示,该类结构有望实现高吸收效率的同时,保持很好地宽谱特性。经过上海微系统所巫博士君杰和浙江大学博士徐颖鑫等近3年实验探索,科研团队研制出微纳光纤耦合SNSPD器件。在1550nm/1064nm工作波长,系统探测效率分别达到20%/50%。相关成果近日发表在 em Optics Express /em 上,该结果有望在新型SNSPD器件及微纳光纤领域开辟新的研究方向。 /p p   研究工作得到了国家重点研发计划项目“高性能单光子探测技术”、中科院战略性先导科技专项(B)“超导电子器件应用基础研究”、自然科学基金以及上海市科委等的资助。 /p p br/ /p p style=" text-align:center " img alt=" " oldsrc=" W020171213665024470514.jpg" src=" http://img1.17img.cn/17img/images/201712/uepic/bc478657-1ca0-4a06-a7b0-fc3659b0aeca.jpg" / /p p style=" text-align: center " 微纳光纤耦合超导纳米线单光子探测器原理示意图 /p
  • 微导纳米即将交付ALD量产设备,填补国产设备空白
    p style=" border: 0px margin-top: 0.63em margin-bottom: 1.8em padding: 0px counter-reset: list-1 0 list-2 0 list-3 0 list-4 0 list-5 0 list-6 0 list-7 0 list-8 0 list-9 0 color: rgb(25, 25, 25) font-family: & quot PingFang SC& quot , Arial, 微软雅黑, 宋体, simsun, sans-serif white-space: normal background-color: rgb(255, 255, 255) " span style=" border: 0px margin: 0px padding: 0px " 江苏微导纳米科技股份有限公司(微导TM)喜获来自某先进半导体芯片制造企业的首个订单,即将交付首台用于先进技术节点的原子层沉积(ALD)量产设备。该产品聚焦全球IC制造市场,为逻辑、存储等超大集成电路制造提供关键工艺技术和解决方案。尤其是在国内尖端半导体芯片制造方面,产品技术可覆盖45纳米到5纳米以下技术节点所必需的高介电常数栅氧层ALD工艺需求,填补了该领域无国产设备的空白。 /span /p p style=" border: 0px margin-top: 0.63em margin-bottom: 1.8em padding: 0px counter-reset: list-1 0 list-2 0 list-3 0 list-4 0 list-5 0 list-6 0 list-7 0 list-8 0 list-9 0 color: rgb(25, 25, 25) font-family: & quot PingFang SC& quot , Arial, 微软雅黑, 宋体, simsun, sans-serif white-space: normal background-color: rgb(255, 255, 255) " span style=" border: 0px margin: 0px padding: 0px " 2020年,作为国内尖端微纳制造核心装备企业,微导迎来了一个新的重要里程碑:再一次突破技术“无人区”,自主研发的凤凰系列ALD薄膜沉积系统成功实现量产化,专用于先进超大集成电路(VLSI)制造所需各类ALD薄膜沉积工艺。当前尖端半导体芯片制造必需采用的极少数ALD设备技术仅对用户提供单一或特定工艺制程。不同于此,微导通过自主创新,在产品设计性能上力求超越,使该产品具有强大的材料选择功能,可提供包括HfO2, ZrO2,Al2O3, SiO2, Ta2O5, TiO2, La2O3, ZnO, TiN, 以及AlN等多种工艺功能。其中可用于FINFET结构栅氧层的高介电常数材料(HfO2)的12寸晶圆工艺已达到片内及片间薄膜厚度均匀性均在1%以内,无可探测的氯、碳杂质含量,工艺性能不仅可满足当前45-14nm技术节点需求,更重要的是该产品可进行10nm乃至5nm以下技术节点的工艺材料升级,为客户提供在尖端芯片设计和制造过程中更多的核心工艺选择性,从而为更好的提升关键制造技术开发和知识产权保护提供重要保障。 /span /p p style=" border: 0px margin-top: 0.63em margin-bottom: 1.8em padding: 0px counter-reset: list-1 0 list-2 0 list-3 0 list-4 0 list-5 0 list-6 0 list-7 0 list-8 0 list-9 0 color: rgb(25, 25, 25) font-family: & quot PingFang SC& quot , Arial, 微软雅黑, 宋体, simsun, sans-serif white-space: normal background-color: rgb(255, 255, 255) " span style=" border: 0px margin: 0px padding: 0px " ALD技术的诞生最早可以追溯到20世纪六、七十年代,自2001年国际半导体协会将ALD技术列入与微电子工艺兼容的候选技术以来,其发展势头强劲,受到了广泛关注。2007年底,美国Intel公司推出了基于45纳米节点技术的酷睿处理器,首次将ALD技术沉积的高介电常数材料(high-?)和金属栅组合引入到集成电路芯片制造中,顺利将摩尔定律延续至当下最先进的5纳米鳍式晶体管(FinFET)工艺制程,并将继续支撑集成电路制造技术延续到3纳米和2纳米的全环绕栅极晶体管(Gate-All-Around GAAFET)技术。 /span /p p style=" border: 0px margin-top: 0.63em margin-bottom: 1.8em padding: 0px counter-reset: list-1 0 list-2 0 list-3 0 list-4 0 list-5 0 list-6 0 list-7 0 list-8 0 list-9 0 color: rgb(25, 25, 25) font-family: & quot PingFang SC& quot , Arial, 微软雅黑, 宋体, simsun, sans-serif white-space: normal background-color: rgb(255, 255, 255) " span style=" border: 0px margin: 0px padding: 0px " 然而,由于栅氧层对场效应晶体管(MOSFET)性能的直接影响,这道工艺制程对ALD设备的要求极高,全球范围内也只有极少数国外的知名半导体设备公司能够提供满足此工艺要求的ALD设备,此项技术因此也处于被绝对垄断的状态。尤其是对于起步较晚的中国半导体芯片制造,严格把控的技术壁垒使得ALD设备成为阻碍中国芯片技术进步的“真空镀膜技术三座大山”之一。微导的技术团队克服了重重困难,经过两年多的潜心钻研和大量的实验验证,终于突破了限制该工艺制程的多个技术瓶颈,成功开发出了可用于沉积high-?栅氧层薄膜的新一代ALD量产设备。 /span /p p style=" border: 0px margin-top: 0.63em margin-bottom: 1.8em padding: 0px counter-reset: list-1 0 list-2 0 list-3 0 list-4 0 list-5 0 list-6 0 list-7 0 list-8 0 list-9 0 color: rgb(25, 25, 25) font-family: & quot PingFang SC& quot , Arial, 微软雅黑, 宋体, simsun, sans-serif white-space: normal background-color: rgb(255, 255, 255) " img src=" http://p5.itc.cn/q_70/images03/20201105/83a8f1eef75a4e8ba416a3a912390108.jpeg" style=" border: 0px margin: 10px auto 0px padding: 0px display: block max-width: 100% height: auto " / /p p style=" border: 0px margin-top: 0.63em margin-bottom: 1.8em padding: 0px counter-reset: list-1 0 list-2 0 list-3 0 list-4 0 list-5 0 list-6 0 list-7 0 list-8 0 list-9 0 color: rgb(25, 25, 25) font-family: & quot PingFang SC& quot , Arial, 微软雅黑, 宋体, simsun, sans-serif white-space: normal background-color: rgb(255, 255, 255) " span style=" border: 0px margin: 0px padding: 0px " 图一:Dragon 3000 Advanced ALD薄膜沉积系统搭载凤凰系列ALD反应腔 /span /p p style=" border: 0px margin-top: 0.63em margin-bottom: 1.8em padding: 0px counter-reset: list-1 0 list-2 0 list-3 0 list-4 0 list-5 0 list-6 0 list-7 0 list-8 0 list-9 0 color: rgb(25, 25, 25) font-family: & quot PingFang SC& quot , Arial, 微软雅黑, 宋体, simsun, sans-serif white-space: normal background-color: rgb(255, 255, 255) " img src=" http://p8.itc.cn/q_70/images03/20201105/175b9d8caca24c7abd3452e0b6c79aa0.png" style=" border: 0px margin: 10px auto 0px padding: 0px display: block max-width: 100% height: auto " / /p p style=" border: 0px margin-top: 0.63em margin-bottom: 1.8em padding: 0px counter-reset: list-1 0 list-2 0 list-3 0 list-4 0 list-5 0 list-6 0 list-7 0 list-8 0 list-9 0 color: rgb(25, 25, 25) font-family: & quot PingFang SC& quot , Arial, 微软雅黑, 宋体, simsun, sans-serif white-space: normal background-color: rgb(255, 255, 255) " span style=" border: 0px margin: 0px padding: 0px " 图二:凤凰系列ALD薄膜沉积的栅氧/金属栅(high-?/metal-gate)叠层 /span /p p style=" border: 0px margin-top: 0.63em margin-bottom: 1.8em padding: 0px counter-reset: list-1 0 list-2 0 list-3 0 list-4 0 list-5 0 list-6 0 list-7 0 list-8 0 list-9 0 color: rgb(25, 25, 25) font-family: & quot PingFang SC& quot , Arial, 微软雅黑, 宋体, simsun, sans-serif white-space: normal background-color: rgb(255, 255, 255) " span style=" border: 0px margin: 0px padding: 0px " 微导副董事长兼首席技术官黎微明博士表示,微导推出的ALD设备面向全球市场,将改变长期以来半导体先进制程关键工艺被极少数装备制造商垄断的现状,为尖端半导体制造提供了更多选择,同时对国内的半导体产业链成长具有极大的意义。感谢我们客户对微导技术和产品的信任和支持。我期待首台ALD设备在客户产线能够以最快速度顺利导入量产,以此为起点和客户一起建立先进制程开发和制造能力。微导还将推出一系列半导体领域ALD技术和装备,用于逻辑、存储、特色工艺、化合物半导体等芯片制造,力争成为ALD技术产业化应用的先行者与领导者。微导作为中国本土的半导体设备制造商,一定会肩负起推动ALD技术在半导体及微纳加工领域量产应用的重任。 /span /p
  • DNA制成迄今最小天线可监测蛋白质运动
    纳米天线工作示意图 图片来源:物理学家组织网  据物理学家组织网2022年1月10日报道,加拿大蒙特利尔大学科学家在最新一期《自然方法》杂志上撰文称,他们利用DNA,制造出了一种5纳米长的天线,这种天线可用于监测蛋白质结构随时间如何变化(当蛋白质发挥生物功能时会产生独特的信号),有望在生物医药等多领域“大显身手”。  该研究资深作者、加拿大生物工程和生物纳米技术研究主席亚历克西斯瓦雷-贝利斯勒说:“近年来,化学家们意识到,DNA可以用于构建各种纳米结构和纳米机器。DNA可以像乐高一样组装,受此启发,我们制造出了这种基于DNA的荧光纳米天线,它可以帮助我们描述蛋白质的功能。”  他解释道:“就像双向无线电既能接收也能发射无线电波一样,我们制造出的荧光纳米天线可以接收一种颜色(波长)的光,并根据它感应到的蛋白质运动,以另一种颜色将光发射回来,通过检测反射光,我们可以了解蛋白质的运动情况。”  研究第一作者、蒙特利尔大学化学博士生斯科特哈伦解释道,使用DNA设计纳米天线的主要优势之一是,DNA相对简单且可编程,可用其制造出不同长度的天线,而且,研究人员很容易让荧光分子与DNA相连,然后将这种荧光纳米天线与生物纳米机器(如酶)相连。  研究人员表示,这种天线有望在生物化学和纳米技术等诸多领域“大显身手”。哈伦说:“我们能在它的帮助下,首次实时检测到碱性磷酸酶的功能,这种酶与癌症和肠道炎症等许多疾病有关。此外,还可以帮助化学家识别有前途的新药,并指导纳米工程师开发更好的纳米机器。”  瓦雷-贝利斯勒强调:“这种纳米天线很容易使用,世界各地的许多实验室可以很方便地利用它们来研究蛋白质,识别新药或开发新的纳米技术。我们计划成立一家初创公司,将这种纳米天线商业化,并将其提供给研究人员和制药行业。”
  • 苏州纳米产业要建自己的“军工厂”
    在苏州纳米技术产业专家咨询委员会第二届专家咨询会上,全国顶级纳米专家就如何进一步加快创新资源集聚、推进产业化进程、关于苏州工业园区纳米技术发展的重点领域布局等问题进行了深入探讨。纳米技术产业发展需要“金管家”  借力智库,实现专利增值 苏州纳米技术产业要有自己的“军工厂”等新颖的提法,引发了一场关于“1号产业”的“头脑风暴”。   关键词   金管家   一些发达国家设立了特殊的“研究所”,研究所专家到大学、科研机构评估科学家的科研成果,并为科学家提供申请专利等服务,还会帮助联系对口企业进行科研成果转化,“研究所”从企业收益中收取服务费用。这样的“研究所”就成为服务纳米产业的“金管家”。   智库   目前我国的纳米科技研究论文总数已居世界第二位,知识产权数量也名列世界前茅,园区可以建立一个关于纳米专利的数据库,通过这个“智库”,可以利用全国纳米技术基础研究成果 寻找适用的技术、人才 借鉴国外专利分析整合公司的做法,实现专利增值。   军工厂   纳米测试设备、加工设备,材料设备等领域是纳米科技中最关键的环节,重要程度类似于两军对垒中的“军工厂”,而这也是园区打造国际一流纳米高地必不可少的“利器”。   白春礼:纳米产业需要一个“金管家”   目前,园区通过政府引导、政策扶持、推动企业和社会资源集聚的模式,初步形成了较为完善的科技创新体系。据了解,今年园区政府科技投入将超过9亿元,先后出台了涵盖产业促进、人才服务、技术研发、科技服务、知识产权五大板块的政策性文件30多个,形成了较完整的创新政策扶持体系。   今年10月,园区经过深入调研,出台了专项政策《关于进一步推进纳米技术创新与产业化发展的若干意见》,根据该政策,园区每年用于设立各类引导基金、产业基金和扶持补贴的资金达10亿元,鼓励纳米技术领域的创新、产业化、人才引进与培育、科技金融服务、产学研与国际化等各方面工作。   白春礼指出,进一步加快科技成果转化,园区还需要一个可以把“政、产、学、研、用”诸多环节连接起来的“金管家”。   纳米技术产业是一个高投入的产业,但并不是所有科研成果都可以真正转化为产品,其中政、产、学、研、用这根产业链条中存在信息壁垒是重要原因,比如,科学家研究的一般都是很前沿的东西,大多是根据自己的兴趣在做不一定符合企业需求,而企业对科学家做的东西可以有哪些产业化运用也不甚了解,这样的信息不对称就形成了壁垒。   国外的经验值得我们学习,现在一些发达国家设立了特殊的“研究所”,这些“研究所”有专门的专家到大学、科研机构评估科学家的科研成果,并为科学家提供申请专利等服务,完成专利申请后还会帮助科学家联系对口的企业进行科研成果转化,等到技术全部完成转化后“研究所”从企业收益中收取服务费用。   这样的“金管家”服务突破了科学家、企业等产业环节间的壁垒,加快了各环节的对接和贯通,对推动纳米技术产业发展是非常有利的。   侯建国:借力“智库”,实现专利增值   昨天记者从会议上获悉,园区省内首创了“纳米特派员”制度,借鉴“科技镇长团”经验,园区聘请省内外高校纳米专家到园区做科技特派员,指导纳米企业发展,为园区纳米技术产业发展提供智力支持。今年,已有南京大学、东南大学、南京邮电大学等8位纳米专家在园区科技局等单位任职,在纳米科研机构和企业之间构建起桥梁,推进纳米科研成果的转化。   另据了解,经过近5年的发展,目前园区已逐步引进了一流的纳米技术创新成果及产业资源,园区集聚了以中科院苏州纳米所为龙头、包括东大、中科大、西交大、苏大等高校和院所在内的近20家纳米技术相关研究所和实验室以及创新研发机构。在创新成果方面,已累计获得包括国家重大专项、 “973”计划、“863”计划等在内的各级各类科技项目立项600余项,得到资金支持近4亿元,累计申请与受理专利超过1500多项。侯建国指出,推进园区纳米技术产业发展,还要充分利用好中国这个全球最大的纳米技术产业“智库”。他介绍说,我国是最早开始研究纳米技术的国家之一,目前我国的纳米科技研究论文总数已居世界第二位,纳米科技知识产权数量也名列世界前茅,园区可以建立一个关于纳米专利的数据库,通过这个“智库”,其一可以充分利用全国纳米技术基础研究的成果,其二可以根据园区企业发展寻找适用的技术,寻找需要的人才。更重要的是,建立智库后,还可以借鉴国外专利分析整合公司的做法,实现专利增值。具体来说,通过专业人士对“智库”中的专利进行收集整理分析后,用合理的价格购买一些目前看起来价值不高的专利,然后将其打包,形成不同类别的知识产权板块提升专利价值。   江雷:打造纳米高地,还要有“利器”   昨天会议明确了园区纳米技术产业未来发展将继续聚焦纳米材料、微纳制造、纳米光电子、纳米生物医药以及纳米环保五大领域,形成纳米技术产业生态圈。   目前,园区已投资3.4亿元,建成了江苏省纳米加工、测试分析和工程化平台、江苏省纳米技术产业产学研联合创新服务平台等公共技术服务平台,向全国近300家科研院校和企业提供了相关技术支持与服务。   江雷指出,园区纳米技术产业发展制定这样的布局是非常合理的,但在未来发展中,苏州还应当注重纳米测试设备、加工设备,材料设备等领域的布局,因为这些领域是纳米科技中最关键的环节,重要程度类似于两军对垒中的“军工厂”,而这也是园区打造国际一流纳米高地必不可少的“利器”。   此外,江雷还指出,纳米技术产业的发展需要很长时间,是一个长期的过程,希望苏州政府部门能研究制定长期政策,推进纳米技术产业稳健发展。
  • 赵宇亮/陈春英/谷战军研究团队——人造纳米材料的毒性研究
    近几十年来,纳米材料或纳米产品在能源、航空航天、农业、工业、生物医药等诸多领域得到了蓬勃发展和广泛应用。然而近些年报道的纳米材料对人类健康和环境安全造成的潜在负面影响引起了各界的担忧,这催生了“纳米毒理学”领域的诞生。该领域主要研究纳米材料或纳米产品在生命周期内对生物的不良健康影响,并进行安全性评估和风险管理,最终实现纳米材料的安全生产、使用和废弃。大量的基础毒理学研究和国际纳米技术标准表明纳米材料的物理化学性质包括化学组分、尺寸、形状、表面化学、结晶度、溶解度、氧化还原电位等会广泛地影响纳米材料与生物体在器官/组织、细胞和分子层次上的相互作用。因此,深入了解纳米材料的理化性质在介导不同水平纳米–生物相互作用中所扮演的角色具有重要意义,这不仅利于实现进行可靠的纳米毒性评估,也有助于设计更加安全的纳米产品。为此,赵宇亮/陈春英/谷战军团队在Particuology上发表综述文章,深入探讨了人造纳米材料的关键物理化学性质对诱发潜在生物毒性的影响。该文章首先概述了纳米材料如何在器官/组织、细胞和分子水平上与生物体发生相互作用,并在此基础上深入讨论了尺寸、形状、化学性质、表面化学,以及上述理化性质所介导的纳米材料的团聚/聚集、生物冠形成和降解等行为对其毒理学特征的影响。另外,该文章还介绍了研究纳米–生物相互作用的主要分析方法、不同地区和/或国家目前对含纳米材料产品的监管和立法框架,提出了纳米毒理学领域面临的挑战和可能的解决方案,以期为纳米材料的安全性评价提供参考。图1. 纳米材料的毒性相关特性及研究纳米–生物相互作用的分析方法器官、细胞、分子层面上的纳米-生物相互作用根据所处的生命周期阶段的不同,人造纳米材料对人类的主要暴露方式包括肺部吸入、口服摄取、皮肤接触和静脉注射等。大多数经肺、胃肠和皮肤暴露的纳米产品会被滞留在暴露器官中并可能在被机体逐渐清除之前诱发毒性;只有少数局部暴露的纳米材料可能被吸收到血液和/或淋巴循环。由于缓慢的剂量率、独特的吸收途径和特殊生物冠的生成/演变,非静脉注射的纳米材料在体内分布更广泛、更均匀。相比之下,静脉注射纳米材料则更快地从血流中清除,并主要聚集在富含单核-吞噬系统(MPS)的器官,如肝脏和脾脏。此外,无论暴露途径如何,进入体循环的纳米材料可能通过血脑屏障、血睾丸屏障和胎盘屏障,并对这些器官造成影响。基于纳米材料的性质,其代谢和排泄方式多种多样,主要发生在肝脏和肾脏。综上,根据纳米材料的毒物动力学过程,可以推断肺、肠、肝、脾和肾是纳米材料的主要毒性靶点。 图2. 器官、细胞和分子水平上的纳米生物相互作用。(a) 毒物动力学(即纳米材料在体内的吸收、分布、代谢和排泄) (b) 纳米材料的潜在毒性机制在细胞、亚细胞和分子水平上,纳米材料可能粘附、切割、嵌入细胞膜而造成膜损伤,或被细胞内化而进入细胞。包括网格蛋白依赖、小窝蛋白依赖、非网格蛋白和非小窝蛋白依赖的内吞、微胞饮和吞噬在内的多种胞吞途径是纳米材料进入细胞的主要方式。不同的内化途径将进一步影响其在细胞内的定位、命运和下游的细胞毒性。纳米材料通过多种毒性机制发挥细胞毒性,本质上可归因于其对细胞组分和结构的氧化损伤和物理损伤。一方面,纳米材料可以通过促进活性氧(ROS)的生成、消耗细胞内抗氧化系统和/或干扰线粒体的功能而引起氧化应激,造成脂质、蛋白质和核酸分子的氧化损伤。另一方面,纳米材料可能会改变生物大分子的构像和功能,通过直接的生物物理相互作用干扰或破坏细胞。二者可能引起的下游事件包括:细胞膜渗漏、线粒体功能障碍、溶酶体膜通透性(LMP)、内质网应激、刺激或阻断涉及细胞增殖和死亡、细胞骨架破坏、基因毒性等信号通路,最终导致炎症反应、细胞周期阻滞和细胞死亡(凋亡、坏死、自噬、铁死亡和焦亡等)。影响纳米材料毒性的关键特性 本节作者重点讨论了经合组织成立人造纳米材料工作组提出的11种典型纳米材料(包括纳米氧化铈、纳米氧化锌、纳米二氧化钛、金纳米材料、银纳米材料、富勒烯、多壁碳纳米管、单壁碳纳米管、纳米粘土、二氧化硅、树状聚合物)的关键理化性质以及其所介导的团聚/聚集、形成生物冠和降解行为对不同水平纳米–生物相互作用的影响。化学组成纳米材料核心的化学本质决定了纳米材料的溶解性、催化活性、氧化还原能力、电离特性、与生物大分子的亲和性,从而决定了纳米材料的毒性及其机理。除了核心纳米材料的化学性质,表面涂层/接枝和元素掺杂等材料设计也会影响纳米材料的毒理学特征。元素掺杂通过改变纳米材料的催化性能和溶解特性而影响其毒性。另外,纳米材料制备过程中的金属和杂质残留、内毒素污染等也是其生物毒性的潜在来源。粒径经肺、胃肠、皮肤暴露的纳米材料,其吸收行为表现出不同的尺寸依赖性。体循环中的纳米材料因其尺寸不同可能发生:快速经肾脏清除、被肝脾吞噬而积聚、经胆汁排泄或实现相对长的血液循环而遍布全身,可见其分布和排泄行为也受尺寸的影响。在细胞水平,尺寸是影响纳米材料内吞途径的重要因素。另外,尺寸直接影响纳米材料造成氧化应激和物理破坏的能力。形状纳米材料可以制成多种形状,如纳米球、纳米管、纳米棒、纳米线、纳米立方体、纳米片等。不同形状的纳米材料可能表现出不同的毒代动力学行为、细胞摄取和毒性效应。这可能与形状影响纳米材料晶面暴露、催化性能、生物冠形成等有关。表面特性由于纳米生物相互作用通常发生在纳米–生物界面上,故而纳米材料的表面性质(特别是表面电荷、表面疏水性和表面原子/基团)对其吸收、分布、排泄、细胞摄取及毒性潜力等至关重要。这些表面特性通过综合影响纳米材料在生物介质中的分散性、所形成的生物冠、与细胞表面配体的亲和力、核心纳米材料的ROS生成能力和有毒离子释放程度等方面而发挥作用。影响纳米材料毒性的生物转化行为纳米材料由于其超高的表面能而极不稳定,倾向于发生系列转变以降低其表面活性。形成团聚体、表面吸附生物分子而形成生物冠、发生降解是其常见的降低表面能的方式。聚集状态本质上,团聚对纳米材料的毒物动力学、细胞摄取和毒性的影响可归因于纳米材料表观尺寸的增强。在人体暴露前形成聚集体可极大地减小经肺、肠、皮肤的吸收而降低系统暴露风险和毒性。然而,纳米材料一旦进入或在机体中形成聚集体,似乎具有很高的毒性潜力。在细胞水平,团聚状态可以改变原始纳米材料的细胞内化途径和摄取程度而产生复杂的影响。总之,团聚状态对最终纳米毒性的影响仍存在争议,需进一步讨论。生物冠的形成及演化生物冠的形成及演化高度依赖于初级纳米材料的理化性质(如尺寸、表面化学、形状等)及其周围生物环境。它会改变原始纳米材料的合成特性并赋予其全新的生物特性。生物冠在介导纳米生物的吸收、血液循环、分布、代谢、细胞摄取和毒性机制等多种相互作用中发挥着主导作用。在大多数情况下,纳米材料表面生物冠的形成可缓解其非特异性的毒害作用,这可能与生物冠抑制细胞摄取、减少ROS生成、降低团聚率、减轻有毒表面活性剂诱导的细胞毒性,减缓纳米材料溶解及释放有毒金属离子等有关;然而生物冠可能具有激活免疫而诱发炎症、改变基因表达、诱发内质网应激、细胞凋亡等负面影响。生物降解纳米材料暴露可能会经历恶劣的胃肠道环境、肝细胞微粒体酶、MPS系统的酸性富含氧化性物质和离子的溶酶体环境,这都将挑战纳米材料的完整性并促进其降解。根据降解程度和速率、完整纳米材料和降解产物的毒性潜力,生物降解对纳米材料的毒理学特征具有深远的影响。例如,银纳米材料降解释放银离子已经被认为是其毒性作用的重要机制之一。而二硫化钼纳米片降解产生的钼酸盐可以参与肝细胞的钼酶合成并提高其活性。吸入不可降解的碳纳米管会长时间聚集在肺部而诱发肉芽肿、肺泡炎和纤维化反应。纳米毒理学研究的分析方法 本小节作者首先从分子层面探讨了用于原位分析蛋白冠结构、组成、形成动力学的先进技术,接着在细胞层面介绍了用于可视化纳米材料摄取、转位、毒性作用的高分辨显微镜成像和质谱成像技术、以及基于流式的单细胞技术和多组学技术;最后,在器官层面概述了纳米材料的体内定量方法和活体成像技术用以研究纳米材料的吸收、分布、代谢、排泄。图3. 针对不同水平纳米-生物相互作用的分析方法纳米产品的监管 现阶段,世界各国对含纳米材料产品的监管由现有的一般和特定行业的监管和立法体系覆盖。例如,不同领域纳米产品在欧盟的流通均须遵守the Registration, Evaluation, Authorization, and Restriction of Chemicals regulations和the Classification, Labelling and Packaging Regulation regulations。此外,欧洲食品安全局、欧洲医药局、健康和消费者保护联合研究中心以及欧洲工作安全与健康机构等细分机构还出台了针对本领域纳米产品的监管办法和指导。另外,各国普遍认为纳米材料的风险评估应在个案基础之上,可能的风险与特定的纳米材料和特定的用途有关。比如,美国的食品药品监督管理局(FDA)以特定纳米产品作为重心,通过上市前审查和/或上市后监管系对其进行监管。FDA针对纳米材料的详细监管参见“FDA’s Approach to Regulation of Nanotechnology Products”。美国的环境保护署还出台了一系列法规包括Toxic Substances Control Act, Federal Insecticide, Fungicide and Rodenticide Act, CleanAir Act, and Clean Water Act等对纳米材料整个生命周期进行监管。虽然目前纳米材料与普通化学品有着相似的监管和立法框架,但几乎所有的监管机构都对纳米材料安全性评价的几乎每个阶段都给予了特别的关注,并推出了指南或标准化。还有一些倡导者呼吁建立专门针对纳米材料的立法和监管框架。相信随着纳米材料风险评估的发展,对纳米材料的监管和立法将进一步完善。总结与展望 尽管纳米毒理学领域取得了巨大的进展,但纳米材料的安全性评价仍面临着严峻的挑战。第一,确定纳米材料毒性与其理化特性之间的因果关系非常困难。为此,通过精细的材料设计和制造提供一个可在单变量水平控制的覆盖广泛毒理学相关性质的纳米材料库尤为紧迫。第二,有相当一部分的毒理学研究忽略了诱导纳米毒性的现实情况。在这方面,有必要避免内毒素污染、未纯化或分离的有毒催化剂/表面活性剂和剂量过大而造成的毒性。第三,针对纳米材料在生物环境中的动态转化,特别是非静脉注射给药的纳米材料所形成的生物冠,对其毒性的影响仍然十分匮乏。第四,基于多组学技术的系统毒理学手段对微小的生物分子改变的解读具有挑战性,很难获得纳米材料毒性机制的整体图像。幸运的是,上述问题已经引起了广泛的关注,并有望通过精细的实验设计、先进的原位分析技术和生物信息学方法的发展来解决。这些努力将在纳米材料理化性质和纳米生物相互作用之间的因果关系方面带来重大突破,从而促进人造纳米材料的风险评估和管理,以及更好地设计生物兼容的新型纳米产品。
  • Nature Communications:纳米红外研究无机纳米颗粒-聚合物复合材料界面效应
    Nature Communications:纳米红外研究无机纳米颗粒-聚合物复合材料界面效应布鲁克纳米表面事业部 魏琳琳 博士英文题目:Nature Communications: Unraveling bilayer interfacial features and their effects in polar polymer nanocomposites摘要以聚合物为基体,无机纳米粒子为填料的聚合物纳米复合材料具有优异的力学、电学和热学性能。纳米颗粒和聚合物之间的界面效应通常被认为是实现这些性能增强的关键因素。然而,如何理解界面效应以及界面微区的结构与性能是聚合物纳米复合材料领域长期面临的基础性难题。近期,来自武汉理工大学、清华大学、伍伦贡大学等学校的科学家们将Bruker的光热诱导纳米红外技术与其他先进技术相结合,直接探索纳米颗粒-聚合物纳米级界面区域。研究发现无机纳米颗粒与聚合物基体的界面存在强极性构型的“双界面层”结构,包括10纳米厚的内层和大于100纳米的外层界面。分子动力学及相场模拟结果表明纳米颗粒表面电势以及颗粒间距的协同作用是形成界面极性构型的关键作用机制。这项研究的结果有助于阐明界面处的相互作用机制,并为制备纳米复合材料以获得最佳性能提供有价值的见解。利用无机纳米粒子/聚合物复合材料的高极性“双界面层”行为,科学家们在具有超低无机填料含量的纳米复合材料中获得了显著增强的介电及压电性能。相关研究成果以Unraveling bilayer interfacial features and their effects in polar polymer nanocomposites为题,发表在Nature Communications上。实验内容实验选择典型的铁电聚合物PVDF作为基体,填充TiO2纳米颗粒。其中PVDF膜层的厚度低于纳米颗粒的直径,使TiO2能够暴露在膜层表面(图1 a)。图1b,c 样品表面和横截面的SEM图像显示颗粒表面存在约10nm的包裹层。HADDF和碳成像图(图1d,f)进一步表明10nm的结合层富含碳元素,为有机碳链键合在纳米颗粒表面。采用布鲁克nanoIR3纳米红外系统进一步研究了界面区域的化学结构(图1 e f)。采用PVDF极性构象的波数(866cm-1)和非极性构象的吸收波数(766cm-1)进行红外成像,分别对应图1f中图和右图。红外成像图显示纳米颗粒周围存在100nm以上强极性构象区域。压电力显微镜(PFM)采集平行于膜平面和垂直于膜平面的L-PFM图像及面外V-PFM图像,结果显示颗粒的L-PFM呈现一半亮一半暗的结构,V-PFM呈现全亮的结构。表明纳米颗粒/聚合物的内层界面区域内偶极子的极化方向垂直于纳米颗粒表面。综合以上的观测结果,作者揭示了无机纳米颗粒与聚合物基体的界面存在强极性构型的“双界面层”结构, 由10nm的极性偶极子内层界面的和100nm强极性构象的外层界面组成。 图1 直接观测无机纳米颗粒与聚合物基体的“双界面层”结构作者采用nanoIR3纳米红外系统进一步研究了纳米颗粒的间距对界面效应的影响(图2)。距离较远的纳米颗粒会形成强极性构象结构界面(图2 b左图);距离相对较近的纳米颗粒,其界面区域相互重叠,将抑制极性构象的形成(图2 b中图);纳米颗粒相互连接时,界面区域也倾向于相互合并(图2 b右图)。FTIR检测不同TiO2纳米颗粒含量的宏观材料中极性构象的比例(840 cm&minus 1/766 cm&minus 1及 1279 cm&minus 1/766 cm&minus 1峰强比),TiO2纳米颗粒含量0.35%时极性构象最多,继续增加纳米颗粒含量,由于纳米颗粒间距变小,界面区域相互重叠使极性构象含量降低。分子动力学及相场模拟表明极性构象界面的形成取决于纳米颗粒表面电势以及颗粒间距的协同作用。图2 纳米颗粒/聚合物复合材料界面极性区域采用纳米叠层设计(Al2O3/PVDF/ Al2O3)表征单一界面层的贡献。纳米叠层纳米复合材料的介电常数εr与PVDF的膜厚具有很大的相关性,并随着PVDF膜厚的减小而增加。由于界面极性层的影响,纳米叠层纳米复合材料显示出比Al2O3(εr~9.8)和PVDF(εr~7.8)更高的εr。而Al2O3 (15 nm)/PVDF (10 nm)/Al2O3 (15 nm)/PVDF (10 nm)/Al2O3 (15 nm),包含两层内层界面层结构,表现出86 J/cm3的超高介电能量密度,远高于文献报道的纳米复合材料的介电能量密度。同时具有76%的能量效率,与大多数介电聚合物或纳米复合材料相当。图3 内层界面层增强复合材料介电性能 总结借助于布鲁克纳米红外系统,直接观测到纳米颗粒-聚合物复合材料的极性界面构象,并研究了颗粒间距对极性构象的影响。结合其他科学工具的结果,本文的工作促进了对聚合物纳米复合材料中界面基础科学问题的理解,可为高性能极性聚合物复合材料的设计与开发提供指导,并推动介电储能、电卡制冷、柔性压电传感等高新前沿技术领域的发展。 本文相关链接:Unraveling bilayer interfacial features and their effects in polar polymer nanocomposites [J] Nature Communications volume 14, Article number: 5707 (2023)https://www.nature.com/articles/s41467-023-41479-0
  • 纳米毒理学家加入雾霾健康效应研究阵营
    10月13日,北京持续几天的雾霾刚刚散去。   此时,国家纳米科学中心中科院纳米生物效应与安全性重点实验室的科学家们正在实验室里忙碌着。作为纳米毒理学研究者,中科院纳米生物效应与安全性重点实验室主任赵宇亮和同事们最近开始了一项新的研究计划。他们计划利用在纳米颗粒健康效应研究中所积累的经验,开展大气雾霾颗粒的健康效应研究。   这也是我国纳米毒理学家首次参与雾霾健康效应研究。   搞清机制迫在眉睫   今年3月,世界卫生组织公布:2012年全球因为空气污染致死700万人,超过了恶性肿瘤的致死人数。然而,雾霾中到底哪些成分是导致健康损害的关键因素,细/超细颗粒物到底产生何种生物效应,这些问题仍然困扰着科学家。   以&ldquo 雾霾颗粒物的健康效应&rdquo 为主题的第504次香山科学会议日前在北京召开,会议主题吸引了环境科学、纳米毒理学、分析科学、医学等多学科跨领域的科学家前来参会。   专家们发现,目前,不同粒径、不同来源的大气雾霾细/超细颗粒物,尤其是纳米尺度的超细颗粒的健康效应尚不明确,粒径、来源与健康效应相关性的研究也存在空白。   身为此次会议执行主席之一的赵宇亮告诉《中国科学报》记者:&ldquo 长期的流行病学统计研究结果表明,雾霾的健康危害已有定论,但对雾霾危害的机制和定量化研究还很少。&rdquo   大气环境学家也意识到,如果对雾霾颗粒物的健康危害缺乏深入的认识,容易造成雾霾防治的盲目性。因此,我国著名环境科学家、中国工程院院士唐孝炎呼吁:&ldquo 为了今后能制定更有效的控制措施,开展这方面的研究十分重要,也迫在眉睫。&rdquo   借鉴纳米毒理学   唐孝炎经常到各地考察大气污染情况。&ldquo 每到一处,老百姓最关心的就是健康问题。&rdquo 她说。   在大气雾霾中,细颗粒物对健康的影响可能最大,这在学界已基本形成共识。作为此次香山科学会议的执行主席,唐孝炎提出,在纳米科学领域,科学家们为了研究人造纳米颗粒的健康效应,已经建立了较为系统的研究方法和实验技术,因此,环境科学家应与从事纳米颗粒、超细颗粒物研究的专家合作,共同解答科学难题。   近年来,科学家已在纳米材料的毒性研究上取得诸多进展。例如,我国学者发现,人体内存在的生物体膜泡结构可以介导纳米颗粒引起机体免疫活化,成为易感人群呼吸系统疾病发生的重要信号转运体,被学术界称为&ldquo 特洛伊木马效应&rdquo 。进入血液的纳米颗粒会吸附血液蛋白分子形成&ldquo 蛋白冠&rdquo ,从而直接影响纳米颗粒在体内的分布、吸收、转运和生物毒性等。   国家纳米中心研究员陈春英向记者表示:&ldquo 纳米毒理学的研究方法和已有知识,将促进对大气雾霾超细颗粒物健康效应作用机制的认识。&rdquo   在纳米毒理学的研究中,为了模拟研究人呼吸纳米颗粒后的健康效应,赵宇亮、陈春英等在国家纳米科学中心建立起一套计算机控制的动态呼吸暴露系统,是目前国内最先进的研究呼吸暴露的实验系统之一。除了细胞暴露,这套装置还能向动物暴露舱和鼻吸入暴露单元发生纳米、亚微米和微米级的颗粒物,开展全身暴露和口鼻吸入暴露的定量实验研究。   如今,这套系统正用于大气雾霾颗粒物健康效应研究中,一系列呼吸暴露实验即将开展。研究人员将致力于揭开雾霾健康危害的谜题。   更复杂的研究手段   不过,在纳米毒理学家看来,相对于人造纳米材料,大气雾霾中的超细(纳米级)颗粒物的组分更加复杂,结构更加复杂,尺寸更加复杂,还需要发展一套专门的研究方法。   在此次香山科学会议上,科学家们经讨论提出了研究大气雾霾颗粒物健康效应的基本框架,包括分子水平、细胞水平、动物水平及模式生物系统的选择等方面。   一些高通量、定量检测分析技术的兴起,也为开展雾霾健康效应研究提供了&ldquo 利器&rdquo ,如蛋白质组学、基因组学、金属组学等新兴方法。此外,同步辐射X射线技术和单细胞荧光成像技术,已经快速发展到纳米毒理学研究体系中,也为雾霾颗粒物健康效应研究提供了独特的超高分辨成像分析技术,能够实现三维观察、化学元素原位解析研究雾霾颗粒在单细胞内的行为。  纳米毒理学的研究者们期待与环境科学家一起,为阐明我国大气雾霾污染问题作出贡献。
  • 技术标准解析 - CDE纳米药物质量控制研究指导原则解读
    本文摘要本文将通过对马尔文帕纳科两款纳米颗粒表征设备NTA和DLS在测量颗粒粒径上的相同点和区别点,为您选择符合技术标准的不同技术用于纳米药物质量控制研究中的颗粒表征提供有意义的指导。相关技术标准中的粒度表征技术为规范和指导纳米药物研究与评价,在国家药品监督管理局的部署下,药审中心组织制定了《纳米药物质量控制研究技术指导原则(试行)》等三项关于纳米药物研究、质控、评价的技术指导原则。其中《纳米药物质量控制研究技术指导原则》主要内容是围绕着纳米药物的安全性、有效性以及质量可控性展开的。在这三个方面,质量的可控性显得尤为重要,它一定程度上决定了药物的安全性和有效性。在粒径表征方面,该指导意见关于粒径表征的相关表述如下:“应选择适当的测定方法对纳米药物的粒径及分布进行研究,并进行完整的方法学验证及优化。粒径及分布通常采用动态光散射法(Dynamic light scattering,DLS)进行测定……粒径分布一般采用多分散系数(Polydispersity index,PDI)表示。除此之外,显微成像技术(如透射电镜(Transmission electron microscopy,TEM)、扫描电镜(Scanning electron microscopy,SEM)和原子力显微镜(Atomic force microscopy,AFM)、纳米颗粒跟踪分析系统(Nanoparticle tracking analysis, NTA)、小角X射线散射(Small-angle X-ray scattering,SAXS)和小角中子散射(Small-angle neutron scattering,SANS)等也可提供纳米药物粒径大小的信息。”注:本文介绍的两种纳米颗粒表征技术如何选择合适的颗粒表征技术呢?那么,测量纳米级颗粒粒径该如何选择合适的技术呢?本文将着重给大家讲一下NTA和DLS在测量颗粒粒径上的相同点和区别点,方便大家更好的去选择不同的技术。DLS技术利用分散在溶液中的纳米颗粒的布朗运动测量颗粒粒径,其粒径检测范围在0.3nm-10μm之间。NTA技术利用激光照射溶液中的悬浮纳米颗粒,后者产生的散射光被高灵敏度的相机捕获并成像。由于该技术是单颗粒跟踪技术,所以能提供极高精度的颗粒粒度的数量分布,既适合分析粒度分布较窄,也适合分析粒度分布较宽的样本,其粒径检测范围在10-1000nm之间。我们以100nm和200nm的聚苯乙烯颗粒(PS)标准品为考察对象。研究NTA 和 DLS两种技术分别在粒径窄分布和宽分布的样品上的测量差异。图1 NTA和DLS测量窄分布样品合并图(上)和宽分布样品合并图(下)从图上可以看出,DLS和NTA都能很好的表征粒径窄分布的样品,且其平均值及主峰值都十分接近,但是NTA得到的粒径分布峰更窄,这也和其采用的单颗粒跟踪技术相符合。右图明显可以看到DLS对体系中的大颗粒更敏感,而NTA对体系中大、小颗粒的敏感程度较为接近。总体来说,NTA的粒径分辨率能达到1:1.3,而DLS的粒径分辨率最低只能到1:3。MADLS (多角度动态光散射)技术是马尔文帕纳科专为Zetasizer Ultra系列产品开发的新技术。MADLS可从多个光散射角度对样品进行自动全面分析,提供更高的分辨率,为样品提供更完整的视角。下图以脂质体为例,分别用NTA和MADLS技术测量样品粒度,可以看到二者测得的粒径均值及主峰值都十分接近,MADLS得到的粒径分布峰也和NTA同样窄。图2 脂质体样品的粒度分布,上图为马尔文帕纳科NanoSight的测量结果,下图为马尔文帕纳科Zetasizer 的测量结果。MADLS和NTA两种技术互补:MADLS可在较宽范围内快速获得包括粒径、颗粒浓度等信息,几乎不需要样品的前处理;NTA则可用于获得粒径分布更多的细节,用于颗粒浓度分析时,测量下限也更低。在两种技术重叠的测量范围内,获得的结果也高度一致。马尔文帕纳科MADLS和NTA技术今年又再添新品,Zetasizer 智能样品助手,可实现无人值守过夜测量,解放研究人员的双手;NanoSight Pro新一代纳米颗粒跟踪分析仪,通过神经网络人工智能算法加持,实现对脂质体(LNP)、外泌体和细胞外囊泡(EV)等样品的高分辨率的粒径和浓度检测。感兴趣的老师可观看新品发布回放,了解更多内容。 关注马尔文帕纳科微信公众号观看回放视频
  • 技术标准解析 - CDE纳米药物质量控制研究技术指导原则解读(二)
    Hot政策解读纳米药物质量控制研究技术指导原则#本文由马尔文帕纳科应用专家张鹏博士供稿#2022 为规范和指导纳米药物研究与评价,在国家药品监督管理局的部署下,药审中心组织制定了《纳米药物质量控制研究技术指导原则(试行)》、《纳米药物非临床药代动力学研究技术指导原则(试行)》《纳米药物非临床安全性评价研究技术指导原则(试行)》三项关于纳米药物研究、质控、评价的技术指导原则。并由经国家药品监督管理局审查同意,8月27日予以发布通告,三项技术指导原则自发布之日起开始施行。其中《纳米药物质量控制研究技术指导原则》主要内容是围绕着纳米药物的安全性、有效性以及质量可控性展开的。在这三个方面,质量的可控性显得尤为重要,它一定程度上决定了药物的安全性和有效性。在粒径表征方面,该指导意见原文如下:原文关于粒径表征的相关表述“应选择适当的测定方法对纳米药物的粒径及分布进行研究,并进行完整的方法学验证及优化。粒径及分布通常采用动态光散射法(Dynamic light scattering,DLS)进行测定,需要使用经过认证的标准物质(Certified reference material,CRM)进行校验,测定结果为流体动力学粒径(Rh),粒径分布一般采用多分散系数(Polydispersity index,PDI)表示。除此之外,显微成像技术(如透射电镜(Transmission electron microscopy,TEM)、扫描电镜(Scanning electron microscopy,SEM)和原子力显微镜(Atomic force microscopy,AFM)、纳米颗粒跟踪分析系统(Nanoparticle tracking analysis, NTA)、小角X射线散射(Small-angle X-ray scattering,SAXS)和小角中子散射(Small-angle neutron scattering,SANS)等也可提供纳米药物粒径大小的信息。对于非单分散的样品,可考虑将粒径测定技术与其它分散/分离技术联用”上一期我们已经和大家介绍了基于DLS技术的粒径测量,这一期我们准备和大家讲一讲纳米颗粒跟踪分析技术(NTA)测量颗粒粒径。纳米颗粒跟踪分析技术原理是如何进行颗粒粒径测量的呢?激光照射溶液中的悬浮纳米颗粒,后者产生的散射光被高灵敏度的相机捕获并成像。为了得到观测区域每个颗粒的粒径大小,相机通过拍照的方式记录下每个颗粒的运动轨迹,并分析得到每个颗粒的运动速率,最终这些单个颗粒的运动速率通过斯托克斯-爱因斯坦方程转化为粒径值,整个样本的粒径分布就是由这些颗粒的粒径汇集而成(图1)。图1. 利用纳米颗粒跟踪分析技术(NTA)对纳米颗粒进行粒径分析(红色线条表示颗粒的布朗运动轨迹)由于该技术是单颗粒跟踪技术,所以能提供极高精度的颗粒粒度的数量分布,既适合分析粒度分布较窄,也适合分析粒度分布较宽的样本,其粒径检测范围大致在10-2000nm之间。此外,如果样品本身具有荧光,或者能够标记上荧光素,可以单独采集其荧光信号,进而对荧光颗粒进行粒度分析,不受溶液复杂体系的影响。NTA 和 DLS 对比实验测量纳米级颗粒粒径该如何选择?接下来通过粒径宽窄分布不同的样品的测量实例,着重给大家讲一下NTA和DLS在测量颗粒粒径上的相同点和区别点,方便大家更好的去选择不同的技术。 NTA & DLS 粒径窄分布样品NTA 和 DLS两种技术在粒径窄分布样品上的差异,我们以200nm的聚苯乙烯颗粒(PS)为考察对象。DLS:Z average: 217.7 nm PDI: 0.04827NTA: Mean: 199.7nm Mode: 196.2nm图2 DLS、NTA表征200 nm聚苯乙烯颗粒(PS)的粒径分布我们再将两种技术表征的结果合并到一块,看看有没有差异。图3 NTA和DLS测量窄分布样品合并图从图3中我们能够看到,NTA和DLS技术都能很好的表征粒径窄分布的样品,但是NTA得到的粒径分布图比DLS的更窄。通过图2、3我们得出如下结论:DLS和NTA都能很好的表征粒径窄分布的样品,且其平均值及主峰值都十分接近,但是NTA得到的粒径分布峰更窄,这也和其采用的单颗粒跟踪技术相符合。 NTA & DLS 粒径宽分布样品再来看看宽分布的样品。我们将100 nm和200 nm的PS标准品混合后,获得粒径宽分布样品,将其做为考察对象。分别利用NTA和DLS对他们进行粒径表征:DLS: Z average: 206.7 nm PDI: 0.002214NTA: Mean: 171.4 nm Mode: 194.8 nm图4 DLS、NTA表征100、200 nm聚苯乙烯颗粒(PS)混合体的粒径分布从图4我们可以看出来,DLS仍旧显示出一个单峰,其Z均值为206.7 nm;NTA成功将100 nm和200 nm的PS颗粒区分开来,在粒径分布图上呈现出两个明显的单峰(109 nm、195 nm),这说明NTA的粒径分辨率是要高于DLS的。 实际案例 NTA适用:细胞外囊泡(EV)
  • 二闯科创板,这家半导体设备商IPO获受理,拟募资10亿元
    3月3日,江苏微导纳米科技股份有限公司(以下简称“微导纳米”)科创板上市申请正式获得上交所受理。据了解,微导纳米以原子层沉积(ALD)技术为核心,主要从事先进微、纳米级薄膜沉积设备的研发、生产和销售,向下游客户提供先进薄膜沉积设备、配套产品及服务。自成立以来,微导纳米通过不断吸纳国内外优秀人才和研发投入,先后设立江苏省原子层沉积技术工程技术研究中心、江苏省外国专家工作室、江苏省博士后创新实践基地、江苏省研究生工作站等科研平台,在原子层沉积反应器设计技术、高产能真空镀膜技术、真空镀膜设备工艺反应气体控制技术、纳米叠层薄膜沉积技术、高质量薄膜制造技术、工艺设备能量控制技术、基于原子层沉积的高效电池技术等前沿科技领域持续构筑和强化技术壁垒,并在此基础上继续深化 ALD 技术在下一代光伏电池、集成电路、先进存储等方面的技术储备,为客户提供更丰富的高端薄膜沉积产品。2018 年,微导纳米的光伏领域夸父(KF)原子层沉积设备被评定为“江苏省首台(套)重大装备产品”。目前,微导纳米应用于 TOPCon 新型高效电池生产线的产品已在客户现场验证。在成功将 ALD 技术应用于光伏领域后,微导纳米开发了对技术水平和工艺要求更高的半导体薄膜沉积设备,已先后获得国内知名半导体公司、腾讯、盛吉盛等多家公司的商业订单,并在报告期内实现了国产 ALD 设备在 28nm 集成电路制造关键工艺(高介电常数栅氧层材料沉积环节)中的突破。此外,微导纳米已与多家国内半导体厂商及验证平台签署了保密协议并开展产品技术验证等合作, 针对国内半导体薄膜沉积各细分应用领域研发试制新型 ALD 设备。除了光伏和半导体领域外,还拓展了柔性电子等其他领域的应用。本次微导纳米科创板IPO拟募资10亿元,主要用于将投资于以下项目:基于原子层沉积技术的光伏及柔性电子设备扩产升级项目拟基于公司现有 ALD 设备产线进行升级扩产,开发适用于光伏、柔性电子的 ALD 设备,新增年产120台ALD设备的生产能力。基于原子层沉积技术的半导体配套设备扩产升级项目拟基于公司现有 ALD 设备产线进行升级扩产,开发适用于半导体的 ALD 设备,新增年产 40 套 ALD 设备。集成电路高端装备产业化应用中心项目用于推动基于 ALD 技术的集成电路高端制造装备产业化应用。实际上这并不是微导纳米首次申报科创板IPO,2020年6月17日,公司及中信证券股份有限公司向上海证券交易所报送了《江苏微导纳米科技股份有限公司关于首次公开发行股票并在科创板上市的申请报告》(微导纳米[2020]第01号)及相关申请文件(以下简称“前次上市申请”),于2020年6月22日收到《关于受理江苏微导纳米科技股份有限公司首次公开发行股票并在科创板上市申请的通知》(上证科审受理[2020]155号),分别于2020年7月21日、2020年9月29日、2020年10月29日收到上海证券交易所关于公司首次公开发行股票并在科创板上市申请文件的首轮、第二轮和第三轮审核问询函,并予以回复。前次申报主要关注发行人报告期内存在委托给关联方先导智能委托经营管理的事项。2020年12月,微导纳米经研究决定暂停前次发行上市申请工作,并于2020年12月15日根据《上海证券交易所科创板股票发行上市审核规则》第六十七条第(二)项向上交所申请撤回微导纳米首次公开发行股票并在科创板上市申请文件,并于2020年12月16日收到了上交所出具的《关于终止对江苏微导纳米科技股份有限公司首次公开发行股票并在科创板上市审核的决定》(上证科审(审核)[2020]1017 号)。而此次,微导纳米表示,发行人不断完善自身管理制度和体系,资产、人员、财务、机构和业务等方面保持独立,具有完整的资产、采购和销售业务体系,独立面向市场。2019年9月委托经营管理终止后已规范运行满两年,前次申请撤回不会对公司本次 发行上市申请造成实质性影响。
  • 【技术标准解析】CDE纳米药物质量控制研究技术指导原则解读(一)
    #本文由马尔文帕纳科应用专家张鹏博士供稿# 为规范和指导纳米药物研究与评价,在国家药品监督管理局的部署下,药审中心组织制定了《纳米药物质量控制研究技术指导原则(试行)》、《纳米药物非临床药代动力学研究技术指导原则(试行)》《纳米药物非临床安全性评价研究技术指导原则(试行)》三项关于纳米药物研究、质控、评价的技术指导原则。并由经国家药品监督管理局审查同意,8月27日予以发布通告,三项技术指导原则自发布之日起开始施行。 其中《纳米药物质量控制研究技术指导原则》主要内容是围绕着纳米药物的安全性、有效性以及质量可控性展开的。在这3方面,质量的可控性显得尤为重要,它一定程度上决定了药物的安全性和有效性。 该指导原则进一步将纳米药物细分为三类:药物纳米粒、载体类纳米药物以及其他类纳米药物,前两类药物适用于该指导原则。 在研发过程中,纳米药物的质量控制指标又可以分为纳米相关特性和制剂基本特性两大类。其中纳米相关特性是可能与药物在体内行为息息相关的重要质量指标。又包括例如平均粒径及其分布、纳米粒结构特征、微观形态、表面性质(电荷、比表面积等)包封率、载药量、纳米粒浓度、纳米粒稳定性等等。 质量控制指标涉及方面较多,本文重点关注以下三个方面的指标: 1. 粒径(平均粒径及其分布)2. 表面电荷3. 纳米粒浓度 在粒径表征方面,该指导意见原文如下:“应选择适当的测定方法对纳米药物的粒径及分布进行研究,并进行完整的方法学验证及优化。粒径及分布通常采用动态光散射法(Dynamic light scattering,DLS)进行测定,需要使用经过认证的标准物质(Certified reference material,CRM)进行校验,测定结果为流体动力学粒径(Rh),粒径分布一般采用多分散系数(Polydispersity index,PDI)表示。除此之外,显微成像技术(如透射电镜(Transmission electron microscopy,TEM)、扫描电镜(Scanning electron microscopy,SEM)和原子力显微镜(Atomic force microscopy,AFM)、纳米颗粒跟踪分析系统(Nanoparticle tracking analysis, NTA)、小角X射线散射(Small-angle X-ray scattering,SAXS)和小角中子散射(Small-angle neutron scattering,SANS)等也可提供纳米药物粒径大小的信息。对于非单分散的样品,可考虑将粒径测定技术与其它分散/分离技术联用。” 在了解动态光散射技术(DLS)之前,我们先来讲一讲粒径测量时的“等效球体”的概念。 想象一下,当我们完成颗粒粒径测试后,该如何用准确的数值来描述这些三维颗粒的大小呢?当颗粒是规则的形状时,比如说正方体、球体,我们可以用一个数值,例如:边长、直径,来表示这个颗粒的大小;但是,当颗粒呈现的形貌是无规则的话,我们就无法用一个数值来描述这个颗粒大小了,那有人会说,用一系列数值来描述这些颗粒不就行了吗,这个方法确实可行,但是随之带来了数据呈现的复杂度以及颗粒粒径大小比较的困难度。这个时候我们就必须引入“等效球体”概念了。 什么叫做等效球体呢? 当我们通过某种技术测量颗粒在某一方面的性质,并得到了一个具体的数值,如果一个刚性球体在该性质方面的数值和前者一样,那么我们就认为待测物的颗粒大小和这个刚性球的大小一致。 等效球体概念在粒径上的应用既能满足准确表示待测颗粒的粒径大小,又能使得这些数值能够被用来进行大小比较(单个数值)。 如图1所示,我们可以得知,当一个不规则的颗粒采用不同的测量技术(沉降法、电阻法、体积法等等)去进行测量时,往往会得到不同的粒径值。 而我们说的动态光散射技术测量的是颗粒的扩散速度,所以,具有同样大小扩散速度的刚性球体的直径就是待测颗粒的粒径大小,我们一般称之为流体力学直径。 动态光散射 接着我们进一步来了解一下什么是DLS技术: 分散在溶液相的纳米颗粒由于受到溶剂分子的撞击,呈现出无规则的运动,我们称之为布朗运动(Brownian motion),如果我们将一束激光照射至含有该纳米颗粒的溶液中,溶液相中的颗粒会产生散射光,随后在一定的角度收集相关的散射光,我们就能得到如图2所示的散射光强随时间的变化曲线,可以看出大颗粒布朗运动较为缓慢,散射光强的变化频率较慢(图2,上)。小颗粒则相反,由于其布朗运动剧烈,接收到的散射光强的变化频率较快(图2,下)。 而动态光散射技术则可以捕获上述散射光变化的频率,进而获得颗粒的布朗运动速率大小,最后通过反演算法获得颗粒的粒径和分布。 根据斯托克斯-爱因斯坦方程(Stokes-Einstein)的定义,我们可以看出,颗粒的运动速率是和它的粒径成反比的,运动速率越快,粒径越小,运动速率越慢,粒径越大。 该方程式:DH=KT/3πηD K:玻尔兹曼常数T:整个体系的绝对温度值η:溶剂粘度值D:颗粒平动扩散系数 那具体如何获得颗粒的布朗运动速率(D)呢? 接下来我们要引入“相关性”这个概念,如图3所示,如果我们将t时刻的散射光强度和其后较长时间的散射光强相比较,显然,他们没有什么相关性。但是,当我们将时间缩短至极短时间范围内,也就是将t和t+δt时刻的光强值进行比较,就能得到很强的相关性,随着时间的增加(δt, 2δt, 3δt, 等等),其散射光强值和t时刻的相关性不断衰减,最后接近0值,相关性通常用数值来描述(1→0),数值越靠近“1”代表相关性非常高,越接近“0”代表相关性很低。δt的时间非常短,一般在纳秒(nanosecond,ns)或者微秒(microsecond,μs)。 散射光强在不同时间点的相关性我们用G (τ)来表示:G (τ)=A[1+Bexp (-2Γτ)] τ代表着信号采集滞后时间Γ=Dq2,q=(4πn/λ0) sin(θ/2),散射矢量D:颗粒平动扩散系数n:溶液的折光指数λ0:入射光波长θ:散射光接收角度 最后,我们用相关方程来描述这种相关性随时间的变化(图4),大颗粒的散射光强的相关性随时间变化慢,信号衰减慢(左),小颗粒的散射光强的相关性随时间变化快,信号衰减快(右)。 聊完了DLS的基本原理,我们再来看看大家比较关注的几个问题: 1. 什么是Z-average size(平均粒径)、PI(polydispersity index,多分散指数)? Z-average size表示样品中颗粒的平均粒径大小,根据ISO 13321:1996,我们可以知道,该数据是通过累计分析法得到的。 PI代表着样品的粒径分布宽度,数值越小,说明体系里的粒径大小越一致,数值越大,说明体系里的粒径分布群体越多,粒径分布较宽,一般我们认为当PI值大于0.7时,表示这个体系不再适合用DLS这种技术进行表征了。 除了平均粒径和PI,我们还能得到颗粒的光强粒径分布图,在这个分布图里,我们能得到不同粒径下对应的散射光强占比数据,这些分布图是根据分布算法得到的。 2. 如何看待不同测量角度下得到的粒径数据? 市面上主要存在两种测量角度的纳米粒度仪,分别是90°和173°,前者我们称之为侧向角,后者我们称之为背向角。 当测试的样品为粒径窄分布时,例如聚苯乙烯标准样品,两种测量角度都能得到很好的粒径分布图,结果也非常一致(图5)。 当测试的样品为粒径宽分布时,比如一些生物样品,两种测量角度得到的粒径分布图就会有区别(见图6)。 这是为什么呢? 这其实是和颗粒的散射性质有关系的,当颗粒的粒径大小小于入射波段的1/10时,颗粒在各个方向上的散射光强度都一样,我们称之为各向同性,那么在这两个角度上进行测量,都能得到正确的数值。但是随着颗粒粒径的增加,颗粒在各个方向上的散射光强开始变得不一致,越靠近0度角,其散射光强增加越强烈,我们称之为各向异性。在绝大多数情况下,不同粒径的颗粒其散射强度在90°要比在173°要强一些,当体系中大颗粒开始变多时,来自于大颗粒的散射光强贡献度在90°角下就会比在173°角下要更多,因为粒径分布的数据是根据不同粒径的散射光强在整个体系的占比中得到的,所以在90°角下会使得颗粒的粒径分布更容易倾向于体系中存在的大颗粒。
  • 火电厂如何保证除尘器灰斗的安全运营?这篇文章告诉您!
    火力发电占中国超过70%的发电量,全国遍布了成千上百座火电厂,火力发电厂的安全运营对于电力生产商至关重要。近年来,我国火力发电厂出现过多次电除尘器灰斗严重积灰坍塌事故,典型案例如下:12005年湖北某电厂 1号机组(30万千瓦)2号电除尘器“1.1”整体坍塌事故;22005年内蒙古某电厂2 号机组(20万千瓦)电除尘器一电场“3.20”灰斗整体坍塌事故;32005 年内蒙古某铝电公司自备电厂一期3号机组“4.9”灰斗脱落事故;42006年安徽某发电公司2号机组电除尘器“3.14”坍塌事故;52014年唐山某公司“9.23”电除尘器灰斗坍塌事故;62021年9月份湖南某电厂发生严重除尘器灰斗事故。电厂除尘器灰斗积灰如果不及时清理,会给电厂安全运营造成极大隐患。如何保证除尘器灰斗的安全运营?需要安装在除尘器灰斗高、低位的报警开关能够真实无误的发出继电器信号给控制阀,飞灰到达高位报警启动落灰阀门,避免造成积灰,导致安全事故。AMETEK 旗下DREXELBROOK品牌的射频导纳物位开关可以完美胜任该任务,专为电除尘飞灰灰斗设计的射频导纳开关,具有高度的稳定,Cote Shield防挂料屏蔽层可以保证该型号开关稳定的输出正确的报警信号,避免挂料造成的误报。图1 在某电厂静电除尘器灰斗高低位报警开关现场应用工况对于静电除尘器的灰位测量,除了必须采用用于开关量报警输出的开关之外,同时可以安装连续量测量的射频导纳料位计,AMETEK DERXELBROOK独特的“钓鱼竿式”传感器,专为灰斗这类应用开发,具有测量准确、耐用、抗挂料等优良性能,可为电除尘器灰斗的安全运营带来双重保证,下面图2和图3是“钓鱼竿式”传感器和安装示意图:图2图3AMETEK DREXELBROOK射频导纳开关 ✅ 坚固,耐用,免维护,无移动部件;✅ 防挂料误报,专利的Cote-shield屏蔽技术,可以有效忽略积灰挂料可能带来的误报;✅ 探头耐高温至260摄氏度;✅ 输出DPDT继电器信号;✅ 原装进口,常年备有现货库存,交货期快;✅ 应用业绩多AMETEK DREXELBROOK射频导纳连续料位计✅ 坚固,耐用,免维护,无移动部件;✅ 防挂料传感器,可以准确测量积灰物位;✅ 探头耐高温至500摄氏度;✅ 输出4-20ma信号;✅ 原装进口,常年备有现货库存,交货期快射频导纳开关射频导纳连续料位计AMETEK DREXELBROOK射频导纳产品在国内的火电厂有大批量的应用,目前开关的使用量累计超过20000台,见证了中国火电厂的发展历程,也维护了火电厂的安全运行
  • 客户案例 | 在物料输送中测量其电特性确保输送正确的化工物料
    客户:土耳其-Organik Kimya问题:客户遇到了难点有6种不同的化工物料输送。它们的物理特性非常接近,很难防止输送出错。那些液体都是无色的,非常相似的粘度和密度。用 Drexelbrook 射频导纳UIV就能检测出每种物料的介电常数。当装载或卸载物料到过程储罐时,会常发生错误。一次错误的装卸就是一次昂贵的代价。✔ 需要测量:介电常数✔ 测量点:装载管道到储罐管道上✔ 介质:化工液体单体✔ 过程温度:-20度到+70度✔ 过程压力:0-65bar✔ 介电常数:1-10✔ 能力:能测量非常小的电容变化 解决方案尽管它的物理特性很接近,但是介质的电特性有点偏差。Ametek Drexelbrook 就利用UIV 射频导纳技术来测量。测量其很小的电容变化,小于0.1PF。这些偏差是正比于介电常数变化。这介电常数变化在流动的管道里被实际测量出来。客户Organik Kimya,安装了2台 Drexelbrook UIV射频导纳管道介电常数分析仪在他们的卡车装卸平台上,他们成功的检测小于5PF电容偏差在他们化工液体之间。这台分析仪能确保合适的物料进入反应容器。这减少废品产出,给客户每年节约很多很多费用。基于这个成功应用,客户在他们所有物料输入管线都应用我们UIV射频导纳液位计。
  • Magnetrol和Drexelbrook合力强化AMETEK物位产品线
    AMETEK STC事业部原来的物位产品以DREXELBROOK(DE)品牌为主,主要产品包括射频导纳、雷达、磁致伸缩、超声波、音叉等不同原理的物/液位计及开关。DREXELBROOK在射频导纳技术领域拥有很高的行业地位,公司可以提供射频导纳连续量物位/液位计,开关产品以及基于电容原理的油中水分析仪,产品应用遍及不同行业,包括电力、炼油、化工、水处理、冶金、医药等。 Magnetrol是物位测量领域的品牌,自从1932年发明第一台液位控制仪表并推向市场以来, Magnetrol品牌代表着高品质和创新,如今Magnetrol产品服务于超过100多个国家,凭借着科技并且多样化的液位和流量测量技术, Magnetrol成为仪表行业的品牌,尤其是导波雷达、磁翻板、浮子液位开关、浮筒变送器、热式气体流量计、超声波液位开关等产品都受到电力、石化等行业用户的广泛好评。 Magnetrol在2021年加入AMETEK大家庭,成为AMETEK STC事业部的一员。Magnetrol产品线的加入,极大地丰富了AMETEK物位产品的适用范围,扩大了AMETEK物位产品的影响力。AMETEK现在可以给各行业用户提供更多的物位解决方案。 以下是Magnetrol以及DREXELBROOK品牌的部分产品列表
  • 15家!2022年国产半导体设备商IPO情况盘点
    半导体设备是半导体产业的基石,也是国内半导体产业最为薄弱的环节之一。随着集成电路产业,特别是新型芯片和先进工艺的产能扩张为半导体设备行业带来了广阔的市场空间。值此半导体产业爆发之际,国产半导体设备商开启IPO之路,以期募集资金提升技术实力并扩张产能。近日,仪器信息网对公开信息进行梳理,统计了2022年半导体设备企业的IPO情况,以飨读者。(统计数据可能不全,欢迎联系补充,邮箱:kangpc@instrument.com.cn)。由于上半年已盘点过部分企业的上市情况,对于未发生情况变更的企业,可直接查看链接:2022上半年国产半导体设备商IPO情况盘点市值130亿元,微导纳米登陆科创板2022年3月3日,江苏微导纳米科技股份有限公司(以下简称:微导纳米)再度闯关科创版。微导纳米此前两次冲刺A股上市均无疾而终,此后更换了辅导机构。微导纳米掌握ALD核心技术,此前面临关联交易质疑,以及专利纷争。撤回IPO申请一年之后,微导纳米整装再出发,以全新股东阵容冲刺科创板,25名股东中不仅包含11家私募基金股东,其中更不乏君联资本、高瓴投资等明星机构的身影。拟募资规模也提高了1倍,由前次的5亿元调至10亿元,主要用于基于原子层沉积技术的光伏及柔性电子设备扩产升级、集成电路高端装备产业化应用中心等项目和补充流动资金。其中,补充流动资金预计金额为1.5亿元。2022年12月23日, 微导纳米正式以“688147”为股票代码在科创板挂牌上市。截至当日10:40,微导纳米报于每股28.55元,较发行价上涨17.93%,市值超129.62亿元。资料显示,微导纳米成立于2015年12月25日,主要从事先进微、纳米级薄膜沉积设备的研发、生产和销售, 向下游客户提供先进薄膜沉积设备与相关改造服务及备品备件。拓荆科技正式登陆科创板详情请查看:2022上半年国产半导体设备商IPO情况盘点中科飞测赴科创板IPO详情请查看:2022上半年国产半导体设备商IPO情况盘点华海清科登陆科创板详情请查看:2022上半年国产半导体设备商IPO情况盘点联动科技成功登陆创业板9月22日,联动科技(301369)成功登陆创业板,公司此次募集资金将用于投入半导体封装测试设备产业化扩产建设项目、半导体封装测试设备研发中心建设项目、营销服务网络建设项目、补充营运资金等,项目落地后将进一步扩充半导体自动化测试系统的产能、提升公司研发实力和核心技术产业化能力并提升全球销售网络的覆盖。联动科技成立于1998年,专注于半导体行业后道封装测试领域专用设备的研发、生产和销售,主要产品包括半导体自动化测试系统、激光打标设备及其他机电一体化设备,由于所处行业为技术密集型,公司自成立之初就将自主研发和科技创新作为企业发展的核心竞争力,将行业前沿的技术与创新思维相结合,力图不断实现半导体专用设备相关产品及技术的革新。联动科技作为国内少数能够提供全自主研发配套半导体自动化测试系统的设备供应商以及国内测试能力和测试功能模块覆盖面最广的半导体分立器件测试系统供应商之一,其近年来快速发展,招股书显示,联动科技目前在国内半导体分立器件测试系统市场占有率在20%以上,在模拟及数模混合集成电路测试领域的市场开拓情况良好,2019年-2021年营业收入分别为1.48亿元、2.02亿元、3.44亿元,实现净利润分别为3174.01万元、6076.28万元、1.28亿元,保持较快增长。恒普科创板IPO被终止8月25日晚间,上交所官网显示,宁波恒普真空科技股份有限公司(以下简称“恒普科技”)科创板IPO终止。上交所表示,由于恒普科技撤回了其发行上市申请,保荐人方正证券承销保荐有限责任公司撤销保荐。根据《上海证券交易所科创板股票发行上市审核规则》第六十七条规定,上交所终止其发行上市审核。恒普曾计划募资3.52亿元,其中,1.82亿元用于宽禁带半导体及金属粉末材料用高端热工装备扩产项目,1亿元用于研发中心建设项目,7000万用于补充流动资金。恒普是中国主要烧结炉制造厂商之一,其在金属粉末注射成形(MetalInjectionMolding)用烧结炉有优势,恒普除MIM用烧结炉外,硬质合金、热处理、非氧化陶瓷、增材制造(AM)、晶体生长、半导体、实验室等行业用炉或设备,具有丰富的设计及制造经验。招股书显示,恒普2018年、2019年、2020年营收分别为9044万元、1.85亿元、2.15亿元;净利分别为1045.97万元、2747.8万元、3176万元。晶升装备冲刺科创板上市11月11日,南京晶升装备股份有限公司(以下简称“”)发布首次公开发行股票并在科创板上市招股说明书(注册稿)。本次冲刺科创板上市,晶升装备计划募资4.76亿元。其中,2.73亿元用于总部生产及研发中心建设项目,2.02亿元用于半导体晶体生长设备总装测试厂区建设项目,实施主体分别为晶升装备、晶升半导体。晶升装备是一家成立于2012年2月的半导体专用设备供应商,专业从事8-12英寸半导体级硅单晶炉、6-8英寸碳化硅、砷化镓等半导体材料长晶设备及工艺开发的企业。公司产品主要包括半导体级单晶硅炉、碳化硅单晶炉和蓝宝石单晶炉等定制化的晶体生长设备。截至招股书签署日,晶升装备享有已授权国内专利76项,其中发明专利27项。晶升装备表示,该公司承担了“江苏省科技项目—12英寸半导体硅单晶炉研发高端装备研制赶超工程项目—12英寸半导体硅单晶炉”等项目。矽电股份已回复第二轮审核问询函矽电半导体设备(深圳)股份有限公司于12月13日更新上市申请审核动态,该公司已回复第二轮审核问询函,回复的问题主要有,关于创业板定位,关于客户关联方入股,关于房产租赁等。据悉,矽电股份主要从事半导体专用设备的研发、生产和销售,专注于半导体探针测试技术领域,系境内领先的探针测试技术系列设备制造企业。探针测试技术主要应用于半导体制造晶圆检测(CP, Circuit Probing)环节,也应用于设计验证和成品测试(FT, Final Test)环节,是检测芯片性能与缺陷,保证芯片测试准确性,提高芯片测试效率的关键技术。公司自主研发了多种类型应用探针测试技术的半导体设备,产品已广泛应用于集成电路、光电芯片、分立器件、第三代化合物半导体等半导体产品制造领域。公司已成为中国大陆规模最大的探针台设备制造企业。矽电股份创业板上市计划发行不超过 1043.1819 万股,计划募资约5.56亿元。募投项目为“探针台研发及产业基地建设项目”、“分选机技术研发项目”、“营销服务网络升级建设项目”、补充流动资金。精智达科创板IPO成功过会11月16日,据科创板上市委2022年第89次审议会议结果显示,深圳精智达技术股份有限公司(简称:精智达)科创板IPO成功过会。据了解,精智达是检测设备与系统解决方案提供商,主要从事新型显示器件检测设备的研发、生产和销售业务,产品广泛应用于以 AMOLED 为代表的新型显示器件制造中光学特性、显示缺陷、电学特性等功能检测及校准修复,并逐步向半导体存储器件测试设备领域延伸发展。精智达此次募集资金6亿元,其中,1.98亿元用于新一代显示器件检测设备研发项目;1.62亿元用于新一代半导体存储器件测试设备研发项目;补充流动资金2.40亿元。卓海科技已回复第二轮审核问询函无锡卓海科技股份有限公司于12月12日更新上市申请审核动态,该公司已回复第二轮审核问询函,回复的问题主要有,关于创业板定位及核心技术,关于历史沿革,关于员工持股平台等。卓海科技拟在深交所创业板上市募资5.47亿元,其中,1.04亿元用于半导体前道量检测设备扩产项目,1.84亿元用于研发中心建设项目,2.6亿元用于补充流动资金。卓海科技成立于2009年,十多年来始终专注于半导体前道检测与量测设备领域的研发、制造、修理、技术服务等,为客户提供检测与量测设备领域全方位、整体化的解决方案,从前期的选型,到后期的设备维护、备件维修等等,可以满足客户对各种特殊材质晶圆以及保障良率的量测需求。耐科装备成功登陆科创板11月7日,耐科装备正式登陆上交所科创板。公开资料显示,耐科装备成立于2005年10月,主要从事应用于塑料挤出成型及半导体封装领域的智能制造装备的研发、生产和销售,为客户提供定制化的智能制造装备及系统解决方案。具体产品为塑料挤出成型模具、挤出成型装置及下游设备、半导体封装设备及模具。其中,主营业务之一的塑料挤出成型模具、挤出成型装置及下游设备以外销为主。耐科装备凭借独到的设计理念、成熟的工艺技术、过硬的产品质量、丰富的调试经验和完善的售后服务,成功将塑料挤出成型模具、挤出成型装置及下游设备远销全球40多个国家,服务于德国Profine GmbH、德国Aluplast GmbH、美国 Eastern Wholesale Fence LLC、德国Rehau Group、比利时Deceuninck NV等众多全球塑料门窗著名品牌,出口规模连续多年位居我国同类产品首位。根据招股书,耐科装备本次拟发行2050万股,募集资金约7.76亿元,用于高端塑料型材挤出装备升级扩产项目、半导体封装装备新建项目、先进封装设备研发中心项目以及补充流动资金。金海通主板IPO获通过11月10日,据中国证监会第十八届发审委2022年第126次会议审核结果显示,天津金海通半导体设备股份有限公司(简称:金海通)主板IPO获通过。金海通是一家从事研发、生产并销售半导体芯片测试设备的高新技术企业,属于集成电路和高端装备制造产业,公司深耕集成电路测试分选机(Test handler)领域,主要产品测试分选机销往中国大陆、中国台湾、欧美、东南亚等全球市场。目前,金海通的客户涵盖安靠、联合科技、嘉盛、南茂科技、长电科技、通富微电、益纳利、环旭电子、甬硅电子、欣铨科技等国内外知名封测企业,博通、瑞萨科技等知名IDM企业,兴唐通信、澜起科技、艾为电子、英菲公司、芯科科技等国内外知名芯片设计及信息通讯公司,以及国内知名研究院校和机构。此次IPO,金海通计划拟募资不超过7.46亿元,其中4.36亿元用于半导体测试设备智能制造及创新研发中心一期项目,值得注意的是,另外还有1.10亿元用于年产1000台半导体测试分选机机械零部件及组件项目。大族激光分拆第二家子公司(大族封测)冲刺IPO9月28日,大族激光旗下深圳市大族封测科技股份有限公司(以下简称“大族封测”)向深交所提交《首次公开发行股票并在创业板上市招股说明书(申报稿)》获受理,拟在深交所创业板上市。大族封测原名大族光电,于2007年由大族数控和国冶星共同出资成立。成立之初,大族光电主要产品集中于LED封装环节的固晶机、焊线机、分光机及编带机,经过15年的发展,已经开启国产焊线机在半导体和泛半导体市场的品类全替代和全面布局,设备保有量已过万台。公司本次公开发行新股不超过4022.20万股,占本次发行后公司总股本的比例不低于10%,原股东不公开发售老股,本次募集资金用于项目及拟投入的募资金额为:高速高精度焊线机扩产项目,拟使用募集资金金额约1.51亿元;研发中心扩建项目,拟使用募集资金金额约1.1亿元。汇成真空创业板首发过会2022年12月22日,创业板上市委举行了2022年第87次审议会议,广东汇成真空科技股份有限公司(简称“汇成真空”),成功过会。汇成真空是一家以真空镀膜设备研发、生产、销售及其技术服务为主的真空应用解决方案供应商,主要产品或服务为真空镀膜设备以及配套的工艺服务支持。经过多年技术发展和经验积累,公司具备了完整的真空镀膜设备研发、制造能力以及镀膜工艺开发能力,可为不同行业客户提供定制化、专业化的真空镀膜设备及其工艺解决方案。2021年8月,公司被授予第三批“专精特新‘小巨人’企业”称号。公司此次欲募集2.35亿元,其中1亿元用于研发生产基地项目,7500万元用于真空镀膜研发中心项目,6000万用于补充流动资金。京仪装备冲刺科创板IPO,拟募资超9亿元2022年12月8日,北京京仪自动化装备技术股份有限公司(下称“京仪装备”)冲刺科创板IPO获上交所受理,本次拟募资9.06亿元。公司主要从事半导体专用设备的研发、生产和销售,主营产品包括半导体专用温控设备(Chiller)、半导体专用工艺废气处理设备(LocalScrubber)和晶圆传片设备(Sorter)。公司自成立以来,主营业务未发生重大变化。截至2022年9月30日,京仪装备已获专利173项,其中发明专利56项。京仪装备在招股书中称,该公司是目前国内唯一一家实现先进制程半导体专用温控设备大规模装机应用的设备制造商。本次拟募资用于集成电路制造专用高精密控制装备研发生产(安徽)基地项目、补充流动资金,主要募投项目分别是集成电路制造专用高精密控制装备研发生产(安徽)基地项目、补充流动资金。
  • 2022上半年国产半导体设备商IPO情况盘点
    半导体设备是半导体产业的基石,也是国内半导体产业最为薄弱的环节之一。随着集成电路产业,特别是新型芯片和先进工艺的产能扩张为半导体设备行业带来了广阔的市场空间。值此半导体产业爆发之际,国产半导体设备商开启IPO之路,以期募集资金提升技术实力并扩张产能。近日,仪器信息网对公开信息进行梳理,统计了2022年上半年半导体设备企业的IPO情况,以飨读者。(统计数据可能不全,欢迎联系补充,邮箱:kangpc@instrument.com.cn)微导纳米二闯科创板2022年3月3日,江苏微导纳米科技股份有限公司(以下简称:微导纳米)再度闯关科创版。微导纳米此前两次冲刺A股上市均无疾而终,此后更换了辅导机构。微导纳米掌握ALD核心技术,此前面临关联交易质疑,以及专利纷争。撤回IPO申请一年之后,江苏微导纳米科技股份有限公司(以下简称“微导纳米”)整装再出发,以全新股东阵容冲刺科创板,25名股东中不仅包含11家私募基金股东,其中更不乏君联资本、高瓴投资等明星机构的身影。拟募资规模也提高了1倍,由前次的5亿元调至10亿元,主要用于基于原子层沉积技术的光伏及柔性电子设备扩产升级、集成电路高端装备产业化应用中心等项目和补充流动资金。其中,补充流动资金预计金额为1.5亿元。资料显示,微导纳米成立于2015年12月25日,主要从事先进微、纳米级薄膜沉积设备的研发、生产和销售, 向下游客户提供先进薄膜沉积设备与相关改造服务及备品备件。此次IPO,多家知名机构的入股为微导纳米增色不少,不过此类投资机构向来逐利特征明显,通常会在企业上市之后迅速获利抽离,所以很难对企业的长远发展起到助力作用。更值得关注的是,该公司财务数据钩稽关系不成立,企业存在为扮靓业绩调整数据的可能性。拓荆科技正式登陆科创板4月20日,拓荆科技股份有限公司(688072)正式登陆上海证券交易所科创板。作为高端半导体专用设备企业,拓荆科技一直秉持自主创新发展,凭借一系列独创性的设计,完善的知识产权体系,以及达到国际先进水平的核心技术,公司已在国际市场展露头脚。拓荆科技表示,此次发行上市,是公司发展史上的一个重要里程碑,公司将借助资本市场这一平台,全面提升公司综合实力和公司价值,实现投资者利益最大化。拓荆科技作为自主创新的半导体设备供应商,为进一步提高技术先进性,丰富设备种类,拓展技术应用领域,提升市场占有率,开发台湾市场,公司拟借助资本力量,募集资金用于高端半导体设备扩产、先进半导体设备的技术研发与改进,以及ALD设备研发与产业化等项目。按照发展规划,公司将开展配适10nm以下制程的PECVD产品研发;开发Thermal ALD 和大腔室PE ALD;同时升级SACVD设备,研发12英寸满足28nm以下制程工艺需要的SACVD设备。华海清科成功登陆科创板6月8日,华海清科股份有限公司(以下简称“华海清科”)成功登陆科创板。华海清科的主营业务为CMP(化学机械抛光)设备,是目前国内唯一一家能够提供半导体12英寸CMP商业机型的厂商,其产品可覆盖8英寸(200mm)、12英寸(300mm)晶圆产线,已应用于中芯国际、长江存储、华虹集团、英特尔等国内外芯片厂商的产线中。报告期内,华海清科营收增长较快,2019年-2021年总营收分别为2.11亿元、3.86亿元和8.05亿元。截至招股书签署日,清华大学拥有华海清科37.854%的股份,为公司实际控制人和间接控股股东。本次IPO,华海清科计划募资10亿元,将分别用于“高端半导体装备(化学机械抛光机)产业化项目”、“高端半导体装备研发项目”、“晶圆再生项目”和“补充流动资金”4个项目,扣除发行费用后共募集了34.9亿元,超募近2.5倍。中科飞测赴科创板IPO6月16日,深圳中科飞测科技股份有限公司(以下简称“中科飞测”)首发申请上会。中科飞测公开发行股票数量不超过80,000,000股,占发行后已发行股份总数比例不超过于25%。本次募集资金100,000.00万元,主要用于高端半导体质量控制设备产业化项目、研发中心升级建设项目和补充流动资金。中科飞测将登陆上交所科创板上市,保荐机构为国泰君安证券。据了解,中科飞测是一家国内领先的高端半导体质量控制设备公司,自成立以来始终专注于检测和量测两大类集成电路专用设备的研发、生产和销售,产品主要包括无图形晶圆缺陷检测设备系列、图形晶圆缺陷检测设备系列、三维形貌量测设备系列、薄膜膜厚量测设备系列等产品,已应用于国内28nm及以上制程的集成电路制造产线。随着半导体制程技术快速发展,质量控制设备也向更小的工艺节点发展,研发难度逐渐提高。当前,国际巨头普遍能够覆盖 2Xnm 以下制程,先进产品已经应用在 7nm 以下制程。中科飞测产品虽然已能够覆盖 2Xnm 及以上制程,但对于应用于 2Xnm 以下制程的质量控制设备仍在研发或验证中,与科磊半导体、应用材料、创新科技等国际巨头在制程工艺的先进性方面尚存在较大差距。报告期内,中科飞测营业收入分别为5,598.37万元、23,758.77万元、36,055.34万元,扣除非经常性损益后归属于母公司所有者的净利润分别为-7,238.70万元、-132.58万元、348.01万元,2021年度中科飞测首次实现微利。同时,报告期内,中科飞测经营活动现金流量净额分别为-2,848.82万元、-8,672.18万元和-9,989.46万元,存在持续为负的情况。报告期内,中科飞测产品已广泛应用在中芯国际、长江存储、士兰集科、长电科技、华天科技、通富微电等国内主流集成电路制造产线,打破在质量控制设备领域国际设备厂商对国内市场的长期垄断局面。与此同时,其积极承担了多个国家级、省级、市级重点专项研发任务,助力国内集成电路产业领域关键产品和技术的攻关与突破。联动科技冲关创业板公开资料显示,联动科技主营半导体行业后道封装测试领域专用设备的研发、生产和销售,其主要产品包括半导体自动化测试系统、激光打标设备及其他机电一体化设备。在首次冲击科创板IPO却以主动撤回上市申请而铩羽之后,改弦更道期望于创业板挂牌的联动科技,在经过深交所近9个月时间和前后共计三轮问询及一次落实审核中心意见之后,终于即将在2022年3月25日召开的创业板上市委2022年第15次审议会议上迎来其IPO之旅中至关重要的表决。与在2020年9月首次申请科创板上市时一样,此次瞄准创业板IPO的联动科技同样计划发行不超过1160万股,但募集资金则较之前足足提高了1.62亿达到6.37亿。这近6.4亿资金将被联动科技用来投向“半导体封装测试设备产业化扩产建设”、“半导体封装测试设备研发中心建设”、“营销服务网络建设”等三大项目及补充营运资金。恒普科技科创板IPO恢复上市审核2022年3月30日,上交所正式受理了宁波恒普真空科技股份有限公司(简称:恒普科技)科创板上市申请。本次拟募资3.52亿元,投建于宽禁带半导体及金属粉末材料用高端热工装备扩产项目、研发中心建设项目以及补充流动资金。2022年5月5日,宁波恒普真空科技股份有限公司及其中介机构因受疫情影响,无法在规定时限内完成尽职调查、回复审核问询等工作,向上交所申请中止审核。2022年6月28日,根据《审核规则》第六十六条,《审核规则》第六十四条(七)所列中止审核情形消除,上交所恢复宁波恒普真空科技股份有限公司发行上市审核。资料显示,恒普科技是一家以材料研究为基础,以高温热场环境控制为技术核心的金属注射成形(MIM)领域和宽禁带半导体领域的关键设备供应商,主要从事金属注射成形(MIM)脱脂烧结炉、碳化硅晶体生长炉、碳化硅同质外延设备等热工装备的研发、生产和销售。财务数据显示,公司2018年、2019年、2020年、2021年前9月营收分别为9,044.24万元、1.85亿元、2.15亿元、2.57亿元 同期对应的净利润分别为1,045.97万元、2,747.81万元、3,176.34万元、3,424.05万元。晶升装备申请科创板IPO4月27日,上交所已受理南京晶升装备股份有限公司(下称:晶升装备)科创板IPO申请。晶升装备本次拟公开发行股票数量不超过3,459.1524万股,不低于本次发行完成后公司总股本的25.00%,本次发行全部为新股发行,不涉及原股东公开发售股份的情形。招股书显示,成立于2012年2月的晶升装备是一家半导体专用设备供应商,主要从事晶体生长设备的研发、生产和销售。晶升装备此次IPO募集资金4.76亿元,将用于总部生产及研发中心建设项目、半导体晶体生长设备总装测试厂区建设项目。矽电股份IPO获创业板受理6月30日消息,矽电股份近日创业板上市申报材料获受理,计划发行不超过 1043.1819 万股,计划募资约5.56亿元。募投项目为“探针台研发及产业基地建设项目”、“分选机技术研发项目”、“营销服务网络升级建设项目”、补充流动资金。矽电股份主要从事半导体专用设备的研发、生产和销售,专注于半导体探针测试技术领域,系境内领先的探针测试技术系列设备制造企业。根据SEMI 和 CSA Research 统计,2019 年矽电股份占中国大陆探针台设备市场 13%的市场份额,市场份额排名第四,为中国大陆设备厂商第一名。矽电股份强调,公司经过多年发展,已全面掌握了高精度快响应大行程精密步进技术、定位精度协同控制、探针卡自动对针技术、晶圆自动上下片技术、基于智能算法的机器视觉、电磁兼容性设计技术等探针测试核心技术。探针测试核心技术水平在境内处于领先地位,新一代全自动超精密 12 英寸晶圆探针台已实现产业化应用,晶粒探针台核心技术指标已达到国际同类设备水平。截至2021年12月31日,矽电股份已获得授权专利172项(其中发明专利18项),软件著作权59项。精智达闯关科创板上市进入“已问询”状态6月25日,深圳精智达技术股份有限公司(简称:精智达)申请科创板IPO审核状态变更为“已问询”。招股书显示,精智达去年营收45,831.36万元,净利润6,741.97万元,研发投入占营业收入的比例为7.44%。精智达是检测设备与系统解决方案提供商,主要从事新型显示器件检测设备的研发、生产和销售业务,产品广泛应用于以AMOLED为代表的新型显示器件制造中光学特性、显示缺陷、电学特性等功能检测及校准修复,并逐步向半导体存储器件测试设备领域延伸发展,相关产品应用于以DRAM为代表的半导体存储器件制造的晶圆测试、封装测试及老化修复。精智达此次募集资金6亿元,其中,1.98亿元用于新一代显示器件检测设备研发项目;1.62亿元用于新一代半导体存储器件测试设备研发项目;补充流动资金2.40亿元。卓海科技拟创业板IPO6月14日,无锡卓海科技股份有限公司披露招股说明书(申报稿),拟公开发行股票不超过约2389.56万股,不低于发行后总股本的25%。本次发行不涉及公司股东公开发售股份的情况。卓海科技此次IPO拟募资5.47亿元,募集资金用于项目及拟投入的募资金额为:半导体前道量检测设备扩产项目,拟使用募集资金金额约1.04亿元;研发中心建设项目,拟使用募集资金金额约1.84亿元;补充流动资金,拟使用募集资金金额2.60亿元。本次股票发行后拟在深交所创业板上市。卓海科技作为国内重要的半导体前道量检测设备供应商,主要通过对退役设备的精准修复和产线适配来实现其再利用价值,为客户提供高稳定性、品类丰富的前道量检测修复设备,并通过配件供应及技术服务满足客户全方位需求。此外,公司也致力于前道量检测设备(如应力测量设备、四探针电阻测试仪等)及其关键配件(如激光器等)的自主研发。值得注意的是,近年来,受益于国产替代的趋势,从2019年以来,国产半导体设备企业业绩呈现爆发式增长,甚至有很多企业业绩翻倍增长。大量半导体设备企业业绩表现良好,产值增长迅速,随之而来的便是扩产的需求。由于业绩表现良好,半导体企业开始大量冲刺IPO,迎来了上市大潮。
  • 光损失波色采样实验成功,光量子计算保持国际领先
    p   最新发现与创新 /p p   中国科学技术大学潘建伟教授及其合作团队实验研究了一种量子计算模型玻色采样对光子损失的鲁棒性,证明容忍一定数目光子损失的玻色采样可以带来采样率的有效提升。该研究成果为通过玻色采样实现量子霸权开辟了一条高效的途径。 /p p   在量子计算领域,能演示量子机器在特定问题上优于经典计算机的实验,被国际学术界称为量子霸权。2010年,麻省理工学院Aaronson等在理论上提出玻色采样,并严格证明此模型是实现量子霸权的有效途径之一。但是玻色采样的一个实验挑战是光子的损耗。 /p p   对此,潘建伟及其同事陆朝阳等首次在实验上探索了可容忍光子损耗的玻色采样。研究人员发展了国际上最高效率和品质的量子点单光子源,并自主研发了集成127个分束器的具有最高透过率的光量子线路。结合上海微系统与信息技术研究所尤立星团队研制的高性能超导纳米线单光子探测器(SNSPD),实验证明,在损耗一定光子数的情况下,玻色采样仍然保持其原来的计算复杂度。与此同时,这种新型的玻色采样可以指数级地提升采样速率。该研究成果表明我国继续在光学量子计算方面保持国际领先水平,并向超越经典计算能力的量子霸权研究目标又近了一步。 /p p   据了解,该成果近日以“编辑推荐文章”的形式在线发表于国际著名的《物理评论快报》上。美国物理学会网站邀请澳大利亚量子计算和量子通信技术国家研究中心Austin Lund博士以“光子损耗不会使得量子采样脱轨”为题,对这一研究成果作了评述。 /p
  • 我国成功研制出世界首台分辨力最高紫外超分辨光刻装备
    p style=" text-align: center " strong 我国成功研制出世界首台分辨力最高紫外超分辨光刻装备 /strong /p p style=" text-align: center " strong 可加工22纳米芯片 /strong /p p style=" text-align: center " strong img width=" 500" height=" 332" title=" 超分辨光刻装备核心部件纳米定位干涉仪以及精密间隙测量系统.jpg" style=" width: 500px height: 332px " alt=" 超分辨光刻装备核心部件纳米定位干涉仪以及精密间隙测量系统.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/630030e2-5fa9-438d-b88b-dcedfe27b36a.jpg" border=" 0" vspace=" 0" / /strong /p p style=" text-align: center " strong ▲超分辨光刻装备核心部件纳米定位干涉仪以及精密间隙测量系统。 /strong /p p   军报记者成都11月29日电(吕珍慧、记者邹维荣)国家重大科研装备研制项目“超分辨光刻装备研制”29日通过验收,这是我国成功研制出的世界首台分辨力最高紫外超分辨光刻装备。该光刻机由中国科学院光电技术研究所研制, span style=" color: rgb(255, 0, 0) " 光刻分辨力达到22纳米,结合多重曝光技术后,可用于制造10纳米级别的芯片。 /span /p p style=" text-align: center " img width=" 500" height=" 331" title=" 超分辨光刻设备核心部件超分辨光刻镜头.jpg" style=" width: 500px height: 331px " alt=" 超分辨光刻设备核心部件超分辨光刻镜头.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/1db46f1b-ecd9-405c-b92b-55165c103455.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong ▲超分辨光刻设备核心部件超分辨光刻镜头。 /strong /p p   中科院理化技术研究所许祖彦院士等验收组专家一致表示,该光刻机在365纳米光源波长下,单次曝光最高线宽分辨力达到22纳米。项目在原理上突破分辨力衍射极限,建立了一条高分辨、大面积的纳米光刻装备研发新路线,绕过了国外相关知识产权壁垒。 /p p style=" text-align: center " img width=" 500" height=" 331" title=" 超分辨光刻设备加工的4英寸光刻样品.jpg" style=" width: 500px height: 331px " alt=" 超分辨光刻设备加工的4英寸光刻样品.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/a67133f0-7251-46a3-ba62-6cc159084915.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong ▲超分辨光刻设备加工的4英寸光刻样品。 /strong /p p style=" text-align: center " img width=" 500" height=" 332" title=" 采用超分辨光刻设备加工的超导纳米线单光子探测器.jpg" style=" width: 500px height: 332px " alt=" 采用超分辨光刻设备加工的超导纳米线单光子探测器.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/bfbf977d-f735-4c4a-ada2-968e62a904ea.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong ▲采用超分辨光刻设备加工的超导纳米线单光子探测器。 /strong /p p   光刻机是制造芯片的核心装备,我国在这一领域长期落后。它采用类似照片冲印的技术,把一张巨大的电路设计图缩印到小小的芯片上,光刻精度越高,芯片体积可以越小,性能也可以越高。但由于光波的衍射效应,光刻精度终将面临极限。 /p p style=" text-align: center " img width=" 500" height=" 332" title=" 中科院光电所科研人员展示利用超分辨光刻设备加工的超导纳米线单光子探测器.jpg" style=" width: 500px height: 332px " alt=" 中科院光电所科研人员展示利用超分辨光刻设备加工的超导纳米线单光子探测器.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/2b4c7150-dcc7-4844-9278-610ae7a5c3a4.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong ▲中科院光电所科研人员展示利用超分辨光刻设备加工的超导纳米线单光子探测器。 /strong /p p   为突破极限、取得更高的精度,国际上目前采用缩短光波、增加成像系统数值孔径等技术路径来改进光刻机,但也遇到装备成本高、效率低等阻碍。 /p p   项目副总师胡松介绍,中科院光电所此次通过验收的表面等离子体超分辨光刻装备,打破了传统路线格局,形成了一条全新的纳米光学光刻技术路线,具有完全自主知识产权,为超材料/超表面、第三代光学器件、广义芯片等变革性领域的跨越式发展提供了制造工具。 /p p style=" text-align: center " img width=" 500" height=" 331" title=" 项目副总设计师胡松研究员介绍超分辨光刻装备研制项目攻关情况.jpg" style=" width: 500px height: 331px " alt=" 项目副总设计师胡松研究员介绍超分辨光刻装备研制项目攻关情况.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/8f9b7048-0983-4614-ad32-83bac74326ce.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong ▲项目副总设计师胡松研究员介绍超分辨光刻装备研制项目攻关情况。 /strong /p p style=" text-align: center " strong img width=" 500" height=" 331" title=" 中科院光电所科研人员操作超分辨光刻设备.jpg" style=" width: 500px height: 331px " alt=" 中科院光电所科研人员操作超分辨光刻设备.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/ae8c0ca4-deed-4fe3-8449-59092f2b080b.jpg" border=" 0" vspace=" 0" / /strong /p p style=" text-align: center " strong ▲中科院光电所科研人员操作超分辨光刻设备。 /strong /p p   据了解,该光刻机制造的相关器件已在中国航天科技集团公司第八研究院、电子科技大学太赫兹科学技术研究中心、四川大学华西医院、中科院微系统所信息功能材料国家重点实验室等多家科研院所和高校的重大研究任务中取得应用。 /p p style=" text-align: center " img width=" 500" height=" 330" title=" 中科院光电所科研人员操作超分辨光刻设备2.jpg" style=" width: 500px height: 330px " alt=" 中科院光电所科研人员操作超分辨光刻设备2.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/0064094a-2a60-4744-9875-2b41b0f467e2.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong ▲中科院光电所科研人员操作超分辨光刻设备。 /strong /p p & nbsp /p
  • 拓荆科技、盛美上海等4家半导体设备商成立合伙企业 定位产业零部件投资
    近日,拓荆科技、中科飞测、盛美上海、微导纳米4家半导体设备厂商联合成立合资公司。据工商资料显示,广州中科共芯半导体技术合伙企业(有限合伙)(下称“中科共芯”)于2023年12月12日注册成立,注册资本1.8亿元。中科共芯位于广州市,是一家以从事计算机、通信和其他电子设备制造业为主的企业,经营范围包括:半导体分立器件制造和销售;集成电路芯片设计及服务、产品制造和销售;集成电路设计、制造和销售;电子元器件制造、批发、零售;电力电子元器件制造、销售等。从股权结构来看,拓荆科技、中科飞测全资子公司、微导纳米均持股27.7624%;盛美上海持股比例为16.6574%;中科共芯的执行事务合伙人为广州中科齐芯半导体科技有限责任公司,持股0.0555%。记者以投资者身份从拓荆科技、中科飞测公司证券部了解到,中科共芯定位将会是一家投资平台,投资范围将聚焦半导体设备零部件,并将以战略性投资为主。记者关注到,除中科共芯,近两年有多家名称类似的一系列公司亦悄然成立,包括广州中科同芯半导体技术合伙企业(有限合伙)、广州中科锐芯半导体技术合伙企业(有限合伙)、广州中科众芯半导体技术合伙企业(有限合伙)等,分别成立于2021年10月、2023年6月、2021年11月。据前述公司证券部人士称,这几家公司在定位方面类似。以中科同芯为例,其出资额约4亿元,合伙人包括富创精密、安集科技、北京君正、芯源微、北方华创、南大广电、江风电子、概伦电子、同创普润资本等。2023年11月,中科同芯首次对外投资项目为锐立平芯,据介绍,该公司聚焦FDSOI特色工艺量产平台。另据称,中科共芯成立并非由政府或相关单位牵头。不过记者关注到,上述系列公司执行事务合伙人中科齐芯,其执行董事名为李彬鸿。而李彬鸿还曾担任上述几家公司法定代表人。据悉,李彬鸿担任过广东省大湾区集成电路与系统应用研究院院长助理、FDSOI创新中心主任,有约超10年半导体行业从业经验。在2023年的一次公开活动中,李彬鸿曾公开介绍前述锐立平芯及FDSOI项目。
  • 830KM!科大实现量子密钥分发距离新纪录,Scontel提供背后助力!
    830KM!科大实现量子密钥分发距离新纪录,Scontel提供背后助力!近日,据中国科学技术大学发布消息:中科大郭光灿院士领导的中国科学院量子信息重点实验室在量子密钥分发研究方面取得了重要进展。该成果以“Twin-field quantum key distribution over 830-km fibre”为题发表于国际知名学术期刊《Nature Photonics》上。该实验室的韩正甫教授及其合作者王双、银振强、何德勇、陈巍等实现了830公里光纤信道量子密钥分发,将安全传输距离的世界纪录提升了200余公里,而且将安全码率提升了50~1000倍,向实现千公里量级陆基广域量子保密通信网络迈出了重要的一步! 值得一提的是,在该成果的合作单位中,由上海昊量光电设备有限公司独jia代理的俄罗斯Scontel公司,提供了具有卓越性能的超导纳米线单光子探测器用于测量超远距离光纤传输下的微弱光子信号。该超导纳米线单光子探测器具有57.6%效率,暗记数低至0.1274Hz,时间抖动小于50ps的超导探测器。这个超低的暗记数可以减少误码率,在实验中能发挥不可替代的作用!在这个项目中,俄罗斯Scontel公司工程师 Alexander V.Divochiy博士和Pavel V.Morozov博士为设备稳定运行提供了积极维护和技术支持,并有幸成为此项成果的署名作者,在此特别感谢中科大团队对Scontel工作的认可。 现在Scontel推出了不同种类的探测器,可以达到@1550nm 93%±3%的效率,小于100cps的暗记数,死时间小于15ns,时间抖动小于50ps,或者提供@1550nm 80%效率,0.1cps暗记数,死时间小于15ns,时间抖动小于50ps。可以在高效率和低暗计数之间根据自己的需要进行抉择,但是死时间和时间抖动可以一直做到zui好维持不变,且计数率可以做到30MHz甚至更高。 关于昊量光电:上海昊量光电设备有限公司作为俄罗斯Scontel公司的独jia代理,公司认真学习习总书记在中俄建交70周上的讲话,牢记新时代的中俄关系,着力深化利益交融,拉紧共同利益纽带,携手并肩实现同步振兴。公司和俄罗斯Scontel公司同呼吸共命运,牢牢的将销售与售后捆绑在一起。作为一家具有十几年专业光学产品代理经验的技术服务公司,昊量光电专注于引进国外顶ji光电产品制造商的技术与产品,为国内客户提供优质的产品与服务。公司代理着上千款产品,产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,具有独jia代理的品牌四十多家,一级代理达到上百家,代理品牌均处于相关领域的发展前沿,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、先进激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务,助力中国智造与中国创造!
  • 上海微系统所实现集成3D打印编码滤波器的超导单光子光谱仪
    近日,中科院上海微系统所尤立星、李浩团队,陶虎团队以及上海交通大学王增琦团队合作,结合超导纳米线单光子探测技术、双光子3D打印编码滤波技术、计算重构技术等实现单光子计数型光谱分析仪。相关成果以“Superconducting Single-Photon Spectrometer with 3D-Printed Photonic-Crystal Filters”为题于2022年9月27日在线发表在中科院一区学术期刊ACS Photonics上,并被选为当期副封面论文。 图1 集成3D-打印滤波器的超导单光子光谱仪概念图   光谱作为物质的指纹,是人类认知世界的有效手段,在科学研究、生物医药等领域已经有了较为普遍的应用。目前,在单光子源表征、荧光探测、分子动力学、电子精细结构等领域的光谱测量,已经达到了量子水平,例如,在生物、化学和纳米材料领域需要对单个原子、分子、杂质等微弱光谱进行探测分析,这些光谱覆盖范围广,强度弱,因此,对宽谱、高灵敏度、高分辨率的光谱探测器存在迫切需求。   传统的半导体探测器如光电倍增管(PMT)、雪崩二极管(SPAD)等虽然实现了单光子灵敏度的探测,但是存在近红外探测效率低,噪声大,探测谱宽有限等问题。近年来快速发展起来的超导纳米线单光子探测器(SNSPD)因其高效率(90%)、低暗计数(0.1cps)、低抖动(~3ps )、宽谱(可见~红外)的优异性能,在众多领域都得到了应用。将SNSPD集成到光谱分析仪中,不仅能够实现极弱光的光谱测量,还具备非常宽的工作范围,在量子信息技术、天文光谱、分子光谱等领域具有重要的应用价值。该工作中,合作团队利用超导单光子探测器的高效、宽谱等性能优势,首先设计制备4*4阵列型偏振不敏感超导单光子探测器,然后借助双光子3D打印技术的灵活性在每个探测器像元上制备光子晶体编码滤波器,最后通过分析探测像元光谱响应特性等建立了计算光谱重构问题的数学模型,最终实现光子计数型光谱分析仪。   文中该光谱分析仪工作范围覆盖 1200~1700nm,灵敏度达到-108.2dBm,分辨率~5nm。相比当前商业光谱仪的灵敏度(一般灵敏度在-60~90dBm),具有两个数量级以上的提升,为单光子源表征、前沿天文光谱学、荧光成像、遥感、波分复用量子通信等微弱光谱分析领域的研究提供了有效的解决方案。论文第一作者为上海微系统所博士研究生肖游,第二作者为上海微系统所博士研究生维帅,第三作者为上海交通大学徐佳佳。通讯作者为上海微系统所陶虎研究员、李浩研究员、尤立星研究员。该研究得到了国家自然科学基金(61971408 、61827823), 重点研发计划 (2017YFA0304000), 上海市量子重大专项 (2019SHZDZX01), 上海市启明星(20QA1410900)以及中科院青促会 (2020241、2021230)等项目的支持。论文致谢清华大学张巍教授、郑敬元博士的讨论。
  • 中国科大实现综合性能最优的测风激光雷达
    p & nbsp /p p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201709/insimg/318b981e-2228-459f-9191-905c9b9c37ec.jpg" / /p p style=" text-align: center " strong Raw lidar signals over 1& nbsp h /strong /p p   中国科学技术大学窦贤康课题组夏海云与潘建伟课题组张强合作,在国际上首次实现基于超导纳米线单光子探测器的双频多普勒测风激光雷达。采用最精简的光学结构实现了系统最高稳定性,提高了测风激光雷达的实用性和可靠性,更适合机载、星载平台运行。研究成果发表在《光学学报》上。9月6日,美国光学协会(OSA)、美国科学促进会(AAAS)官方网站以“新闻发布(News& nbsp Release)”形式,首次对我国激光雷达研究进行了专题采访报道。 /p p   测风激光雷达具有广泛的社会效益,如精确的大气风场数据可应用于大气污染溯源和扩散预报、航空气象保障、气象气候学研究、风电系统的管理和调配等,此外还可应用于军事。 /p p   当采用更短激光脉冲提高多普勒激光雷达的距离分辨率时,传统相干探测激光雷达的相干效率就会下降,实时数据采集和处理均面临挑战。相干激光雷达本质是单模探测,需要大气回波和本振信号波前匹配,增加了制造和运行难度。直接探测激光雷达则可以避免这些问题。由于直接探测测风激光雷达可以利用大气分子、气溶胶的回波信号反演风场,其工作波长可以覆盖紫外到红外。 /p p   该直接探测激光雷达工作在1548.1纳米,该红外波长人眼允许曝光功率最高、大气透过率最优、太阳和天空辐射背景低。该工作波长属于光纤通信C波段,光电集成器件成熟。全光纤构造的系统采用了单个双频光纤激光器、单个单通道光学鉴频器、单个单模探测器,不需要重复校准。这种最精简的构造提高了系统稳定性,并可以模块分离式安装。因此,该系统更适合在机载、舰载、星载等大温差、强震动平台上运行。该系统采用双频激光器替代传统的多通道鉴频器,实现了激光器和光学鉴频器的高精度锁频(误差小于0.08米/秒)。该激光雷达采用超导纳米线单光子探测器:其理想的高量子效率和低暗计数噪声保证了最高的探测信噪比;其100兆/秒的最大计数率避免了激光雷达的信号饱和现象。该激光雷达采用时分复用技术,基于集成光电子学器件实现不同方向的径向风探测,无机械扫描器件。 /p p   在实验室内,该系统10天重复测量误差小于0.2米/秒。在比对试验中,将激光雷达测量的水平风速数据与超声波风速传感器的数据进行了比对,风速和风向的平均误差分别小于0.1米/秒和1度。在外场试验中,采用弱激光光源(脉冲能量50微焦)、小望远镜(口径80毫米),在10米高度分辨率、10秒时间分辨率条件下,实现了2.7km高度以下大气的风切变探测。 /p p 原文:Dual-frequency Doppler lidar for wind detection with a superconducting nanowire single-photon detector /p p & nbsp /p
  • 第十届(2022年)中国半导体设备年会在锡开幕
    2022年10月28日,第十届中国半导体设备年会暨半导体设备与核心部件展示会在无锡太湖国际博览中心开幕。中国科学院院士褚君浩,中国集成电路创新联盟秘书长、中国半导体协会集成电路分会理事长叶甜春,江苏省工信厅副厅长池宇,无锡市副市长周文栋出席会议并致辞。会议由中国电子专用设备工业协会主办。中国电子专用设备工业协会常务副秘书长金存忠主持了高峰论坛。中国半导体设备年会伴随着中国半导体产业走过了十个年头。十年来,中国半导体设备市场规模持续发展,中国半导体设备行业的销售收入、研发投入都保持了持续增长的态势。金存忠说,无锡市是我国半导体设备产业的重镇,无锡高新区半导体产业的规模已经破千亿,形成了半导体全产业链的发展格局。中国集成电路创新联盟秘书长、中国半导体协会集成电路分会理事长叶甜春在致辞中强调,既然我们有自己的体系,就要以我为主,从系统应用、设计、制造、封测、装备、材料、零部件形成内循环,然后把国际资源接进来,形成国际国内双循环。重要的是打造一个以我为主的全球化的新生态,现在看来这个任务越来越迫切了。江苏省工信厅副厅长池宇致辞中指出。当前世界百年未有之大变局加速演进,新冠肺炎疫情影响深远,国际环境错综复杂,围绕科技制高点的竞争空前激烈,全球集成电路产业发展格局面临深刻调整,产业发展面临新的问题和挑战。与此同时,新一轮科技革命的产业变革深入发展。人工智能、大数据、云计算、区块链等技术不断融合创新,也给产业发展提供了广阔的空间。无锡市副市长周文栋在致辞中指出,无锡是长三角区域中心城市,不仅有深厚的文化底蕴、优越的生态禀赋广受青睐,还以厚实的产业基础,倍受推崇。从60年前的742厂成立以来,无锡一路见证和参与了中国集成电路产业的起步发展,经过了半个多世纪的精心培育,集成电路产业已成为无锡地标产业,闪亮名片,全局地位突出。中国科学院院士褚君浩在高峰论坛上作了《智能时代背景下的仪器设备技术》精彩演讲,受到与会者的高度关注和好评。无锡高新区党工委委员、新吴区委常委、无锡高新区管委会副主任、新吴区政府副区长顾国栋作了《不忘初芯 聚焦硬核》重点推介。高新区作为无锡市集成电路产业发展的主阵地,多年来积极培育头部企业,努力延伸上下游产业链,无锡高新区集成电路产业健康快速的发展吸引了全国各地产业界的注视。高峰论坛上,上海陛通半导体能源科技有限公司市场销售副总裁陈浩作了题为《国内半导体产能的快速提升将面临设备供给的挑战》演讲;江苏微导纳米科技股份有限公司副董事长兼首席技术官黎微明演讲了《原子级工程:原子层沉积技术的展望》。复旦大学积塔集成电路联合实验室副主任、研究员陈俊宇博士,作了《国产半导体设备进程》的演讲;盛美半导体设备(上海)股份有限公司副总经理陈福平作了《半导体设备产业发展的机遇与挑战》的演讲。出席本次活动的还有无锡市政府各主要职能部门负责人、各板块分管负责人。还有中国电子专用设备工业协会会员单位的企业家,以及产业界、高等院校、研究机构、投融资服务机构和有关媒体的代表。高峰论坛作为国内设备行业权威交流平台,中国半导体设备年会在举办十周年之际,会议同期举办国产半导体装备、零部件成果展,本次展览参与企业百余家,展馆面积近五千平方,首次汇聚众多行业龙头企业,集中展示半导体专用设备,为打通产业链上下游提供良好机遇,不失为一场业界盛会。
  • 客户见证---日本SDI浸渍提拉镀膜仪成功入驻北京航空航天大学
    热烈祝贺东方德菲代理的日本株式会社SDI浸渍提拉镀膜仪成功入驻北京航空航天大学国际交叉科学研究院。北京航空航天大学化学学院的刘欢教授是从事超润湿表面诱导纳米材料自组装研究方面的专家,刘教授的纳米材料自组装研究离不开高精度的镀膜仪,多年来,刘教授发现国产镀膜仪微米级的速度、精度和稳定性无法满足纳米材料自组装的需求。SDI株式会社是日本研发生产镀膜仪的专业厂家,他们与日本东京大学共同研发的纳米级高精度浸渍提拉镀膜仪NanoDip ,不仅速度精度可以达到1nm/秒,而且速度可控范围大,从1nm/秒到60mm/秒,且性价比高,运行稳定,操作简便,实验精度与实验效率极高,刘教授终于找到了心仪的高精度超低速镀膜仪,且一次性购买了两台。培训时,东方德菲的工程师为刘欢教授课题组成员热心细致地讲解了仪器的操作程序,指导每一位成员动手操作直至熟练。日本SDI浸渍提拉镀膜仪解决了刘教授课题组在仿生多尺度纤维材料的动态浸润行为及液体可控运输研究方面的诸多难题,课题组成员纷纷表示对仪器的满意和认可。 北京航空航天大学是东方德菲的老客户,在接触角测量仪器方面就有很深的渊源,这一次浸渍提拉镀膜仪的入驻更加给与了我们信心,奠定了新的里程碑,鞭策着我们为用户介绍更先进的实验技术,提供更专业更优质的技术服务。
  • 半导体设备行业逐渐复苏 多家上市公司在手订单充足
    半导体设备国产化率持续提升下,半导体设备行业复苏态势逐渐显现。Wind数据显示,2024年一季度,半导体设备板块上市公司合计实现营业收入130.03亿元,同比增长37.11%;实现归属于上市公司股东的净利润19.91亿元,同比增长26.35%,高于半导体行业整体水平。  5月15日下午,在2023年度科创板半导体设备专场集体业绩说明会上,多家上市公司表示,自去年四季度开始,行业逐渐出现复苏迹象,市场需求转暖,在手订单充足。  多家公司订单充足  本次参加业绩说明会的12家半导体设备公司,覆盖了清洗、薄膜沉积、测试等关键环节。  微导纳米是一家面向全球的半导体、泛半导体高端微纳装备制造商,公司专注于先进微米级、纳米级薄膜设备的研发、生产与销售。2024年一季度,公司实现营业收入1.71亿元,同比增长125.27%;实现归属于上市公司股东的净利润357.34万元,同比扭亏为盈。  截至2024年3月31日,公司在手订单81.91亿元(含Demo订单),其中光伏在手订单70.26亿元,半导体在手订单11.15亿元,产业化中心新兴应用领域在手订单0.5亿元。  微导纳米董事会秘书龙文向《证券日报》记者表示,目前公司订单较为充沛,为经营业绩提供了一定的保障。  华峰测控专注于半导体自动化测试系统领域,2024年一季度,公司实现营业收入1.37亿元,同比减少31.61%;实现归属于上市公司股东的净利润2343.83万元,同比减少68.62%。  华峰测控董事长、董事会秘书孙镪向《证券日报》记者表示,半导体市场在经历一段时期的去库存后,自去年四季度开始,逐渐出现复苏迹象,市场需求逐渐转暖。得益于公司丰富的产品布局和覆盖多领域的客户群体,截至目前,公司订单量明显回升,大客户批量订单明显增加。  晶升股份董事长、总经理李辉也向《证券日报》记者表示,公司目前在手订单充足。预计未来订单增长将有很大一部分来源于公司的8英寸碳化硅长晶设备和新产品。  黑崎资本首席投资执行官陈兴文在接受《证券日报》记者采访时表示:“半导体设备行业2023年及2024年一季度的业绩表现彰显了强劲复苏和持续增长趋势。国内晶圆厂扩产和国产设备份额提升是景气度上升的关键因素。”  合同负债及存货数额通常可以表明公司在手订单和新签订单是否充足。开源证券研报数据显示,2024年一季度,半导体设备板块合同负债总额达183.4亿元,同比和环比分别增长8.89%和11.73%。  止于至善投资总经理何理向《证券日报》记者表示:“半导体设备公司具有较高的合同负债,表明公司已经获得了大量订单,且客户已经提前支付了一部分款项,这些预收款项将在随后的财务周期中逐步转化为公司的收入。”  有望延续高景气度  何理表示,2024年一季度,半导体设备板块出现了订单高速增长的情况。随着国内晶圆厂扩产、国产设备渗透率提升,半导体设备板块有望在2024年延续高景气度。  根据SEMI(国际半导体协会)预测,2024年,全球半导体行业计划开始运营42个新的晶圆厂;全球半导体每月晶圆(WPM)产能将增长6.4%,首次突破每月3000万片大关(以200mm当量计算)。SEMI预计,中国芯片制造商将在2024年开始运营18个项目,产能同比增加13%,达到每月860万片晶圆。  在业绩说明会上,多家上市公司也表示,正加速扩展海外市场。  德科立董事长桂桑在接受《证券日报》记者提问时表示:“公司目前有效的在手订单超3亿元,在手订单保持稳定。公司将在现有主要客户中扩大成熟产品份额,加快导入新品。以高端低耗能的800G光模块、DCI等优势产品为突破点,进一步开发数据中心新客户,扩大海外市场份额。公司还将加快泰国生产基地建设,进一步扩大100G、400G和400G以上高速率光模块、高速率光器件的生产规模,新建泰国光放大器生产能力,强化DCI、COMBO PON产线能力建设,全面满足全球市场需求。”  耐科装备董事长黄明玖在回复《证券日报》记者提问时表示:“目前公司在手订单充足,且在不断增长。从目前了解到的情况看,半导体封装装备市场在复苏,订单情况将持续向好。公司挤出成型装备订单主要来自海外,增长持续稳健。”
  • 埃瑞微半导体前道套刻设备总部项目签约
    据“无锡高新区在线”公众号消息,12月1日,埃瑞微半导体前道套刻设备总部项目在无锡高新区正式签约。据了解,埃瑞微在半导体前道套刻设备领域拥有深厚的产业背景和丰富的技术经验,下一步将全力以赴加快样机研发进度,尽快成长为国产半导体检测设备领域的龙头企业,为无锡高新区集成电路产业发展添砖加瓦。无锡高新区党工委书记、新吴区委书记崔荣国表示,无锡高新区拥有设计、制造、封测、装备及零部件全产业链,产业规模占全省三分之一、全国九分之一,培育有微导纳米、邑文电子等一批优质集成电路装备企业。半导体前道套刻设备是IC装备、半导体制造和控制领域的核心环节,埃瑞微团队在这一领域拥有深厚的产业背景和丰富的技术经验,希望企业能够发挥自身优势,加快人才集聚和技术创新突破,助力提升无锡高新区集成电路产业能级,为无锡高新区产业高质量发展注入新动能。资料显示,无锡埃瑞微半导体设备有限责任公司是一家专注于集成电路前道工艺量检测设备研发及制造的科技创新型企业,致力于为光刻工艺的大批量生产提供以套刻误差为代表的量测设备及其他缺陷检测设备,拥有国内顶尖的技术开发能力和坚实的设备量产经验。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制