当前位置: 仪器信息网 > 行业主题 > >

体核振谱仪

仪器信息网体核振谱仪专题为您提供2024年最新体核振谱仪价格报价、厂家品牌的相关信息, 包括体核振谱仪参数、型号等,不管是国产,还是进口品牌的体核振谱仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合体核振谱仪相关的耗材配件、试剂标物,还有体核振谱仪相关的最新资讯、资料,以及体核振谱仪相关的解决方案。

体核振谱仪相关的论坛

  • 多种核磁共振谱仪使用的基本认识:

    多种核磁共振谱仪使用的基本认识:核磁共振的原理: 化合物在强磁场下, 吸收无线电波.被吸收的波段, 就是化学位移 被吸收的量, 就是积分.核磁共振的检测主要步骤: 样品溶液放入谱仪腔体中, 进行扫描 (提供脉冲, 收集信号), 然后进行分析 (不一定用谱仪的软件, 可以把 FID 文档取出, 另外用软件在家用电脑处理).Bruker 与 国产谱仪的检测步骤较刁钻: 要求必须先给样品命名存谱,然后才接受检测指令. 其他的大小谱仪, 检测后满意觉得有存谱必要, 才进行存谱的操作 (命名, 找存档的位置).检测过程的小修饰:1) 考虑参数是否修改: 检测多少次, 谱宽范围, 使用溶剂种类2) 检测前确定: 匀场合适3) 匀场的前提要求: 锁场下好操作, 防止磁场漂移.所以, 核磁共振的检测步骤很单纯简单. 不要把检测或原理看得太难太复杂. 应该把握好主轴, 尽量避免旁枝修饰补充工作的干扰, 影响了理解.

  • 【金秋计划】+核磁共振波谱仪的分类

    按仪器测定谱线宽度条件,可分为高分辨核磁共振谱仪和宽谱线核磁共振谱仪。 高分辨核磁共振谱仪只能测液体样品,谱线宽度可小于1赫,主要用于有机分析。宽谱线核磁共振谱仪可直接测量固体样品,谱线宽度达10赫,在物理学领域用得较多。高分辨核磁共振谱仪使用普遍,通常所说的核磁共振谱仪即指高分辨谱仪。 按扫描方式,可分为连续扫描(CW-NMR)和脉冲-傅里叶变换(PET-NMR)核磁共振波谱仪。 连续扫描核磁共振波谱仪(CW-NMR)是指射频频率或外磁场强度是连续变化的,即进行连续扫描,一直到被观测的核依次被激发发生核磁共振。脉冲-傅里叶变换核磁共振波谱仪(PET-NMR)是指射频振荡器产生的射频波以脉冲方式(一个脉冲中同时包含了一定范围的各种频率的电磁辐射)将样品中所有化学环境不同的同类核同时激发 ,发生共振 ,得到自由感应衰减(FID)信号,再经计算机进行傅里叶变换,得到可观察的核磁共振图谱。 目前研究使用的仪器大多为脉冲-傅里叶变换波谱仪。 按照测定对象分类,可分为1H-NMR谱(测定对象为氢原子核)、13C-NMR谱及氟谱、磷谱、氮谱等。 有机化合物、高分子材料都主要由碳氢组成,所以在材料结构与性能研究中,以1H谱和13C谱应用最为广泛。 根据1H核的中心工作频率,又可分60MHz、100MHz、200MHz、400MHz 、600MHz、1000MHz等型号波谱仪。04

  • 多种核磁共振谱仪使用的基本认识:

    多种核磁共振谱仪使用的基本认识:核磁共振的原理: 化合物在强磁场下, 吸收无线电波.被吸收的波段, 就是化学位移 被吸收的量, 就是积分.核磁共振的检测主要步骤: 样品溶液放入谱仪腔体中, 进行扫描 (提供脉冲, 收集信号), 然后进行分析 (不一定用谱仪的软件, 可以把 FID 文档取出, 另外用软件在家用电脑处理).Bruker 与 国产谱仪的检测步骤较刁钻: 要求必须先给样品命名存谱,然后才接受检测指令. 其他的大小谱仪, 检测后满意觉得有存谱必要, 才进行存谱的操作 (命名, 找存档的位置).检测过程的小修饰:1) 考虑参数是否修改: 检测多少次, 谱宽范围, 使用溶剂种类2) 检测前确定: 匀场合适3) 匀场的前提要求: 锁场下好操作, 防止磁场漂移.所以, 核磁共振的检测步骤很单纯简单. 不要把检测或原理看得太难太复杂. 应该把握好主轴, 尽量避免旁枝修饰补充工作的干扰, 影响了理解.

  • 【我们不一YOUNG】+核磁共振波谱仪的应用优势

    [font=微软雅黑][size=16px]核磁共振波谱仪(NMR)是一种重要的科学仪器,它在许多领域中发挥着重要作用。下面我将为大家介绍一下核磁共振波谱仪的应用优势。[/size][/font][font=微软雅黑][size=16px]首先,核磁共振波谱仪在化学领域中具有广泛的应用。它可以用来确定化合物的结构和组成,帮助化学家们研究分子的性质和反应机理。通过核磁共振波谱仪,我们可以获得分子的谱图,从而确定分子中各个原子的类型、数量和化学环境。这对于合成新的药物、开发新的材料以及研究生物分子的结构和功能都非常重要。[/size][/font][font=微软雅黑][size=16px]其次,核磁共振波谱仪在医学领域中也有着重要的应用。核磁共振成像(MRI)是一种非侵入性的成像技术,可以用来观察人体内部的结构和功能。通过核磁共振波谱仪,医生们可以获得人体各个部位的详细图像,从而帮助他们诊断疾病、制定治疗方案。与传统的X射线成像相比,MRI没有辐射,对人体无害,因此被广泛应用于临床诊断和研究。[/size][/font][font=微软雅黑][size=16px]此外,核磁共振波谱仪还在材料科学、环境科学、食品科学等领域中发挥着重要作用。在材料科学中,核磁共振波谱仪可以用来研究材料的结构和性质,帮助科学家们设计新的材料。在环境科学中,核磁共振波谱仪可以用来分析土壤、水体和大气中的污染物,帮助我们了解环境污染的来源和影响。在食品科学中,核磁共振波谱仪可以用来检测食品中的成分和质量,确保食品的安全和质量。[/size][/font][font=微软雅黑][size=16px]总的来说,核磁共振波谱仪在各个领域中都有着广泛的应用。它可以帮助科学家们研究分子的结构和性质,帮助医生们诊断疾病,帮助工程师们设计新的材料,帮助环境科学家们了解环境污染的情况,帮助食品科学家们确保食品的安全和质量。核磁共振波谱仪的应用优势不仅在于其高分辨率和灵敏度,还在于其非侵入性和无辐射的特点。相信随着科学技术的不断发展,核磁共振波谱仪的应用前景将会更加广阔。[/size][/font]

  • 核磁共振小谱仪 NMReady 的使用心得_匀场的体验之一_及时匀场效果

    核磁共振小谱仪 NMReady 的使用心得_匀场的体验之一_及时匀场效果

    核磁共振小谱仪 NMReady 的使用心得_匀场的体验之一_及时匀场效果回顾: 新进驻实验室的 NMReady 小谱仪的操作“置入样品, 匀场, 确定扫描参数, 检测, 存谱”.放大补充说明匀场: 体验心得杂感_及时匀场效果l 匀场的必要? 谱仪操作建议, 每一两天对此小谱仪进行至少一次长时间 (Full) 的自动匀场. 之后, 所有样品的检测过程就不必进行匀场.l 经验: 对于常规的样品 (样品溶于 0.5 mL 氘代溶剂, 仿照大谱仪的配様), 可以不必再匀场. 这次的匀场, 似乎也让谱仪学会抓住氘代试剂的锁场信号..l 经验: 不含氘代溶剂的溶液样品, 磁场容易漂移. 检测时, 只好检测一次锁定住. 多扫描几次, 可能得到漂移到其他位置的几组峰.l 经验: 特殊的检测的 (上述不放氘代试剂的简易核磁共振氢谱), 或添加毛细管的定标或定量检测, 就可能需要特别额外的匀场.l 要进行额外的匀场, 就需要观察匀场后的效果. 可以点击 观察及时的匀场与谱图效果.l 默认可能没 3-4 秒扫描一次 (相当于弛豫延迟), 可以改成 1 秒, 方便看匀场的效果.l 手动匀场: 有 G1-G64 个匀场数值可以人工调整. 可以考虑先调前面的 G1 与 G2.l 经验: 甚至, 用手转动核磁管, 或上下调整, 也可以快速的获得较好的匀场信号.l 对匀场满意, 就可以回到检测界面, 进行检测.[img=,900,708]https://ng1.17img.cn/bbsfiles/images/2019/03/201903060801268844_557_1631320_3.jpg!w900x708.jpg[/img]

  • 核磁共振小谱仪 NMReady 的使用心得_前言

    核磁共振小谱仪 NMReady 的使用心得_前言近期实验室有一台 NMReady 小核磁共振谱仪进驻, 使用过程有许多心得经验杂感, 可以和大家分享讨论. 近期也将逐渐利用此小谱仪做一些特殊课题研究.使用心得打算分成几个方面叙述: 仪器操作与经验, 一些匀场技巧经验, 简易氢谱检测应用情况, 弛豫检测应用情况, 各种操作使用杂感等. 叙述时不免会和超导大谱仪以及其他小谱仪做各方面比较, 从中获得核磁共振的综合知识体会.

  • 核磁共振小谱仪 NMReady 的使用心得_前言

    核磁共振小谱仪 NMReady 的使用心得_前言近期实验室有一台 NMReady 小核磁共振谱仪进驻, 使用过程有许多心得经验杂感, 可以和大家分享讨论. 近期也将逐渐利用此小谱仪做一些特殊课题研究.使用心得打算分成几个方面叙述: 仪器操作与经验, 一些匀场技巧经验, 简易氢谱检测应用情况, 弛豫检测应用情况, 各种操作使用杂感等. 叙述时不免会和超导大谱仪以及其他小谱仪做各方面比较, 从中获得核磁共振的综合知识体会.

  • 【我们不一YOUNG】+核磁共振波谱仪应用场景及作用

    [font=微软雅黑][size=16px]核磁共振波谱仪是一种重要的科学仪器,普遍应用于化学、生物、医学等领域的研究和分析。它利用核磁共振现象,通过测量样品中原子核的共振信号,来获取关于样品结构和性质的信息。[/size][/font][font=微软雅黑][size=16px]核磁共振波谱仪的基本原理是基于原子核的自旋和磁矩。当样品置于强磁场中时,样品中的原子核会产生一个自旋磁矩,这个磁矩会与外加的射频脉冲相互作用。通过改变射频脉冲的频率,可以使得特定核自旋发生共振,从而产生一个共振信号。这个共振信号可以通过探测器接收并转化为电信号,再经过处理和分析,得到核磁共振谱图。[/size][/font][font=微软雅黑][size=16px]核磁共振波谱仪由多个主要部分组成,包括磁体、射频系统、探测器和数据处理系统。磁体是核磁共振波谱仪的部分,它产生强大的恒定磁场,用于定向样品中的原子核。射频系统则提供射频脉冲,用于激发和探测共振信号。探测器负责接收共振信号并将其转化为电信号。数据处理系统则对接收到的信号进行处理和分析,生成核磁共振谱图,并提供相关的结构和性质信息。[/size][/font][font=微软雅黑][size=16px]核磁共振波谱仪在化学领域的应用非常普遍。它可以用于确定化合物的结构、确定分子的构象、研究分子间的相互作用等。通过核磁共振波谱仪,化学家们可以了解分子的空间结构、键合情况、官能团的存在等重要信息,从而推断出化合物的性质和反应机理。[/size][/font][font=微软雅黑][size=16px]在生物和医学领域,核磁共振波谱仪也发挥着重要的作用。它可以用于研究生物大分子(如蛋白质、核酸等)的结构和功能,研究代谢物在生物体内的分布和代谢途径,以及研究药物在体内的代谢和作用机制等。通过核磁共振波谱仪,科学家们可以深入了解生物体内的分子组成和相互作用,为疾病的诊断和提供重要的依据。[/size][/font][font=微软雅黑][size=16px]总之,核磁共振波谱仪是一种强大而多功能的科学仪器,它在化学、生物、医学等领域的研究和分析中发挥着重要的作用。通过测量样品中原子核的共振信号,核磁共振波谱仪可以提供关于样品结构和性质的宝贵信息,为科学研究和应用提供了强有力的工具。[/size][/font]

  • 核磁共振谱仪实验室场地要求

    核磁共振实验室,因为仪器周围磁场比较较强的原因比较特殊,一般根据不同厂家仪器的不同会有一定的区别以下是bruker磁体大小通用的一些规格和大家分享。主要分为十一类:(有错请高手协助纠正哦,3q)一, 电磁干扰要求:核磁谱仪应远离电磁干扰。实验室内电磁干扰的峰峰值应小于5 毫高斯。一些典型的干扰源距磁体最小距离如下:干扰源 距磁体最小距离 地铁,电车 250 米电梯,电动叉车 10 米磁场可突变式质谱仪 30 米 二,地面震动要求:一定强度和频率的地面震动会在核磁谱图上产生干扰信号。磁场越强的谱仪对震动越敏感。实验室应远离大的压缩机、发电机、中央空调等机械设备。因楼房高层会产生低频共振,核磁实验室应选在一层。因木质地板会在10-15 赫兹频率内产生共振,而水泥地面共振频率在30-50 赫兹,建议实验室选用水泥地面。实验室地面震动加速度应小于1mm/s2。可以请当地地震局或相关机构测量地面震动。如果震动超过容许范围,则需要加装减震装置。各种减震装置的性能如下:减震装置 有效减震范围震动隔离柱 2 赫兹以上减震气垫 8 赫兹以上磁体标准橡胶垫 20 赫兹以上三,实验室地面承重要求:实验室地面应能满足承载磁体的要求。磁体类型 满载重量 磁体直径300 兆/54mm,(Long Hold) 292 公斤 720mm300 兆/54mm,(1 Year Hold) 379 公斤 720mm300 兆/89mm,(Long Hold) 452 公斤 720mm400 兆/54mm,(Long Hold) 438 公斤 720mm400 兆/54mm,(1 Year Hole) 480 公斤 720mm400 兆/54mm US PLUS(Long Hold) 574 公斤 850mm400 兆/54mm US PLUS(1 Year Hold) 644 公斤 850mm[s

  • 【“仪”起享奥运】+新手应该的解核磁共振波谱仪基础知识

    核磁共振波谱仪是一种重要的科学仪器,普遍应用于化学、生物、医学等领域的研究和分析。它利用核磁共振现象,通过测量样品中原子核的共振信号,来获取关于样品结构和性质的信息。核磁共振波谱仪的基本原理是基于原子核的自旋和磁矩。当样品置于强磁场中时,样品中的原子核会产生一个自旋磁矩,这个磁矩会与外加的射频脉冲相互作用。通过改变射频脉冲的频率,可以使得特定核自旋发生共振,从而产生一个共振信号。这个共振信号可以通过探测器接收并转化为电信号,再经过处理和分析,得到核磁共振谱图。核磁共振波谱仪由多个主要部分组成,包括磁体、射频系统、探测器和数据处理系统。磁体是核磁共振波谱仪的部分,它产生强大的恒定磁场,用于定向样品中的原子核。射频系统则提供射频脉冲,用于激发和探测共振信号。探测器负责接收共振信号并将其转化为电信号。数据处理系统则对接收到的信号进行处理和分析,生成核磁共振谱图,并提供相关的结构和性质信息。核磁共振波谱仪在化学领域的应用非常普遍。它可以用于确定化合物的结构、确定分子的构象、研究分子间的相互作用等。通过核磁共振波谱仪,化学家们可以了解分子的空间结构、键合情况、官能团的存在等重要信息,从而推断出化合物的性质和反应机理。在生物和医学领域,核磁共振波谱仪也发挥着重要的作用。它可以用于研究生物大分子(如蛋白质、核酸等)的结构和功能,研究代谢物在生物体内的分布和代谢途径,以及研究药物在体内的代谢和作用机制等。通过核磁共振波谱仪,科学家们可以深入了解生物体内的分子组成和相互作用,为疾病的诊断和提供重要的依据。总之,核磁共振波谱仪是一种强大而多功能的科学仪器,它在化学、生物、医学等领域的研究和分析中发挥着重要的作用。通过测量样品中原子核的共振信号,核磁共振波谱仪可以提供关于样品结构和性质的宝贵信息,为科学研究和应用提供了强有力的工具。[list][/list]

  • 【原创】核磁共振仪

    [b]1.Varian 200 兆核磁共振仪与[b]Varian 300 兆核磁共振仪的主要功能区别在哪里?2.[b]Varian 200 兆核磁共振仪是否作H谱和C谱都能做?具体怎样做?[/b][/b][/b]

  • 我国首台近室温超低场核磁共振谱仪研制成功

    核磁共振是检查身体的“利器”,但植入心脏起搏器的患者“禁止入内”——这是因为核磁共振的高磁场可能导致心脏起搏器的损坏。但我国科学家日前研制成功的超低场核磁共振谱仪,很可能在不久的将来解除这项“禁令”。 这台仪器是由中科院武汉物理与数学研究所超灵敏磁共振研究组研制成功的,是我国首台近室温(40摄氏度)的超低场核磁共振谱仪。这种仪器不但可用来研究物质分子在地磁场等自然条件下的结构信息与动力学,还能直接探测铁磁性物质如氧化铁磁纳米粒子等样品,有望在生物、医学等领域发挥作用。 核磁共振是一种探测物质分子结构和动力学的技术,探测到的信息则要用磁共振成像来还原,这就需要核磁共振谱仪。传统的核磁共振技术采用射频感应线圈来探测磁共振信号,为了获得更高的信号灵敏度,大多数商用核磁共振谱仪都在向高磁场发展。但是,高磁场有很多局限性。比如不能用于心脏起搏器等体内植入器件;再比如,我们身处的地球磁场是弱磁场,这就让传统的核磁共振谱仪面对处于自然环境中的化学样品和生物组织往往“束手无策”,难以获得可用的信号。 超低场核磁共振谱仪就是一种可以探测极弱磁场下磁共振信号的仪器。该研究组刘国宾博士利用高灵敏原子磁力计替代传统的射频线圈,从而能通过光学技术探测到极弱磁场下的磁共振信号。这种仪器既能在自然条件下保持灵敏性,也降低了制造成本;同时,它对造影剂的探测精度很高,因此在医学、生物等领域有很广阔的应用前景。来源:光明日报 2013年11月19日

  • 【金秋计划】+核磁共振波谱仪的应用

    [font=-apple-system, BlinkMacSystemFont, &][color=#191b1f]核磁共振适合于液体、固体。如今的高分辨技术,还将核磁用于了半固体及微量样品的研究。核磁谱图已经从过去的一维谱图(1D)发展到如今的二维(2D)、三维(3D)甚至四维(4D)谱图,陈旧的实验方法被放弃,新的实验方法迅速发展,它们将分子结构和分子间的关系表现得更加清晰。在世界的许多大学、研究机构和企业集团,都可以听到核磁共振这个名词,包括我们在日常生活中熟悉的大集团。而且它在化工、石油、橡胶、建材、食品、冶金、地质、国防、环保、纺织及其它工业部门用途日益广泛。在中国,其应用主要在基础研究方面,企业和商业应用普及率不高,主要原因是产品开发不够、使用成本较高。但在石油化工、医疗诊断方法应用较多。 1、分析化学核磁共振在化学分析中正发挥越来越大的作用,它不仅是一种研究手段,也是常规分析中不可缺少的一种手段。用它可以对样品进行定性和定量的分析,确定反应过程及反应机理。用它还可以研究各种化学键的性质,研究溶液中的动态平衡,测量液体的粘度,确定各种物质在生产过程中的一些其它性质和控制生产流程等。利用1H、13C、15N、31P等核磁共振谱确定有机化合物分子结构和变化,原子的空间位置和相互间的关联。 2、材料科学领域高功率固体NMR是研究高分子聚合物、玻璃、陶瓷、煤、树脂、新型表面活性剂、压电物质的研究等非常重要的、有的时候甚至是唯一的方法。应用化学中[/color][/font][font=-apple-system, BlinkMacSystemFont, &][color=#191b1f][url=https://zhida.zhihu.com/search?q=%E7%B2%BE%E7%BB%86%E6%9C%89%E6%9C%BA%E5%90%88%E6%88%90&zhida_source=entity&is_preview=1]精细有机合成[/url][/color][/font][font=-apple-system, BlinkMacSystemFont, &][color=#191b1f]的进一步发展,各种新型表面活性剂的合成、涂料的改性、水处理技术添加剂的研制、新型激光材料以及有机反应过程的动态和稳态的研究都必须依靠固体NMR谱仪的配合。高分子化合物聚合度的研究;高分子材料在变温条件下,分子结构的动态变化研究;测定[/color][/font][font=-apple-system, BlinkMacSystemFont, &][color=#191b1f][url=https://zhida.zhihu.com/search?q=%E8%87%AA%E6%89%A9%E6%95%A3%E7%B3%BB%E6%95%B0&zhida_source=entity&is_preview=1]自扩散系数[/url][/color][/font][font=-apple-system, BlinkMacSystemFont, &][color=#191b1f]、化学交换系数随温度变化的研究,核磁共振显示出在动力学方面的功能。利用核磁共振方法有可能解决某些属于分子结构和晶体结构的问题,有可能研究固体中分子运动的性质,研究结构相变(例如铁电体的结构相变),研究磁性材料中不同晶格位置上的超精细场等。利用核磁共振方法研究硅酸盐材料中硅结构的变化,可以知道水泥中硅的聚合度。可以研究硅酸盐玻璃中铝的配位结构及其变化。[/color][/font]

  • 【金秋计划】+核磁共振波谱仪的结构

    [font=-apple-system, BlinkMacSystemFont, &][color=#191b1f]核磁共振仪主要由磁铁、探头、射频发生器、射频接收器、[/color][/font][font=-apple-system, BlinkMacSystemFont, &][color=#191b1f][url=https://zhida.zhihu.com/search?q=%E6%89%AB%E6%8F%8F%E5%8F%91%E7%94%9F%E5%99%A8&zhida_source=entity&is_preview=1]扫描发生器[/url][/color][/font][font=-apple-system, BlinkMacSystemFont, &][color=#191b1f]、信号放大及记录仪六部分组成。[/color][/font] 1. 磁铁 磁铁是核磁共振仪最基本的组成部件。它要求磁铁能提供强而稳定、均匀的磁场。核磁共振仪使用的磁铁有三种:永久磁铁,电磁铁和[url=https://zhida.zhihu.com/search?q=%E8%B6%85%E5%AF%BC%E7%A3%81%E9%93%81&zhida_source=entity&is_preview=1]超导磁铁[/url]。由永久磁铁和电磁铁获得的磁场一般不能超过2.5T。而超导磁体可使磁场高达10T以上,并且磁场稳定、均匀。 目前超导核磁共振仪一般在200~400MHz,最高可打600MHz。但超导核磁共振仪价格高昂,目前使用还不十分普遍。 2. 探头 探头装在磁极间隙内,用来检测核磁共振信号,是仪器的心脏部分。探头除包括试样管外,还有发射线圈接受线圈以及豫放大器等元件。待测试样放在试样管内,再置于绕有接受线圈和发射线圈的套管内。磁场和频率源通过探头作用于试样。 为了使磁场的不均匀性产生的影响平均化,试样探头还装有一个气动涡轮机,以使试样管能沿其纵轴以每分钟几百转的速度旋转。 3. 射频发生器 高分辨波谱仪要求有稳定的射频频率和功能。为此,仪器通常采用恒温下的[url=https://zhida.zhihu.com/search?q=%E7%9F%B3%E8%8B%B1%E6%99%B6%E4%BD%93%E6%8C%AF%E8%8D%A1%E5%99%A8&zhida_source=entity&is_preview=1]石英晶体振荡器[/url]得到基频,再经过倍频、调频和功能放大得到所需要的射频信号源。 为了提高基线的稳定性和磁场锁定能力,必须用音频调制磁场。为此,从石英晶体振荡器中的得到音频调制信号,经功率放大后输入到探头调制线圈。 4、射频接收器 当原子核的[url=https://zhida.zhihu.com/search?q=%E6%8B%89%E8%8E%AB%E5%B0%94%E8%BF%9B%E5%8A%A8&zhida_source=entity&is_preview=1]拉莫尔进动[/url]频率与辐射频率相匹配时,发生能级跃迁,吸收能量,在感应线圈中产生毫伏级信号。 5. 扫描线圈 核磁共振仪的扫描方式有两种:一种是保持频率恒定,线形地改变磁场,称为扫场;另一种是保持磁场恒定,线形地改变频率,称为扫频。许多仪器同时具有这两种扫描方式。扫描速度的大小会影响信号峰的显示。速度太慢,不仅增加了实验时间,而且信号容易饱和;相反,扫描速度太快,会造成峰形变宽,分辨率降低。 在连续NMR中, 扫描方式最先采用扫场方式,通过在扫描线圈内加一定电流,产生10-5T磁场变化来进行核磁共振扫描。相对于NMR的均匀磁场来说,这样变化不会影响其均匀性。 6. 信号检测及记录处理系统 (1)接受单元 从探头预放大器得到的载有核磁共振信号的射频输出,经一系列检波、放大后,显示在示波器和记录仪上,得到[url=https://zhida.zhihu.com/search?q=%E6%A0%B8%E7%A3%81%E5%85%B1%E6%8C%AF%E8%B0%B1&zhida_source=entity&is_preview=1]核磁共振谱[/url]。现代NMR仪器常配有一套积分装置,可以在NMR谱图上以阶梯形式显示出积分数据。由于积分信号不像峰高那样易受多种条件的影响,可以通过他来估计各类核的相对数目及含量,有助于定量分析。 (2)信号累加 若将试样重复扫描数次,并使各点信号在计算机中进行累加,则可提高连续波核磁共振仪的灵敏度。当扫描次数为N时,则信号强度正比于N,考虑仪器难以在过长的扫描时间内稳定,一般N=100左右为宜。

  • 【“仪”起享奥运】+探秘核磁共振波谱仪

    [font=微软雅黑][size=16px]核磁共振波谱仪(Nuclear Magnetic Resonance Spectrometer,简称NMR)是一种重要的分析仪器,广泛应用于化学、生物化学、药物研究等领域。它利用原子核在外加磁场和射频辐射作用下的共振现象,通过测定原子核的共振频率和强度,从而获取样品的结构和性质信息。[/size][/font][font=微软雅黑][size=16px]核磁共振波谱仪的工作原理基于原子核在外加磁场中的磁矩与射频辐射的相互作用。当样品置于强磁场中时,原子核的磁矩会在磁场方向上产生能级分裂,而射频辐射则能够使原子核从一个能级跃迁到另一个能级。通过测定原子核共振频率和强度,可以得到样品分子的结构、构象、动力学等信息。[/size][/font][font=微软雅黑][size=16px]核磁共振波谱仪具有高分辨率、灵敏度高、非破坏性等优点,因此在化学分析和结构表征中得到了广泛应用。在有机化学领域,NMR可以用于确定化合物的结构、判断化学反应的进行情况、研究分子构象等;在生物化学和药物研究中,NMR可以用于研究蛋白质、核酸的结构和相互作用,以及药物与靶标的结合情况等。[/size][/font][font=微软雅黑][size=16px]随着科学技术的不断发展,核磁共振波谱仪的应用领域也在不断拓展,例如在医学影像学中的核磁共振成像(MRI)技术就是基于核磁共振原理的。未来,随着核磁共振技术的进一步发展和完善,相信它将在更多领域发挥重要作用,为人类的科学研究和生活带来更多的福祉。[/size][/font]

  • 【金秋计划】+“核磁共振波谱仪”的谱图分析

    1. 解析[url=https://zhida.zhihu.com/search?q=%E6%A0%B8%E7%A3%81%E5%85%B1%E6%8C%AF%E6%B0%A2%E8%B0%B1&zhida_source=entity&is_preview=1]核磁共振氢谱[/url] 一般先确定孤立甲基及类型,以孤立甲基峰面积的积分高度,计算出氢分布;其次是解析低场共振吸收峰(如醛基氢、羰基氢等),因这些氢易辨认,根据化学位移,确定归属;最后解析谱图上的高级偶合部分,根据偶合常数、峰分裂情况及峰型推测取代位置、结构异构、[url=https://zhida.zhihu.com/search?q=%E7%AB%8B%E4%BD%93%E5%BC%82%E6%9E%84&zhida_source=entity&is_preview=1]立体异构[/url]等二级结构信息。 2. 解析核磁共振碳谱 一般先查看全去偶碳谱上谱线数与分子式中所含碳数是否相同?数目相同说明每个碳的化学环境都不同,分子无对称性;数目不相同(少)说明有碳的化学环境相同,分子有对称性;然后由偏共振谱,确定与碳偶合的氢数;最后由各碳的化学位移,确定碳的归属。 3. 结合应用碳谱和氢谱 C谱和H谱可互相补充。H谱不能测定不含氢的官能团,如羰基和氰基等;对于含碳较多的有机物,如甾体化合物,常因烷氢的化学环境相似,而无法区别,这是氢谱的弱点;而碳谱弥补了氢谱的不足,它能给出各种含碳官能团的信息,几乎可分辨每一个碳核,能给出丰富的碳骨架信息。但是普通碳谱的峰高常不与碳数成正比是其缺点,而氢谱峰面积的积分高度与氢数成正比,因此二者可互为补充。 4. 如何计算偶合常数? 在网上有这样一个求助帖:请教偶合常数的计算, 比如 :—OCH2CH3 这两个碳上的氢之间的化学位移差值一般超过2了,400M核磁,那再乘以400的话,偶合常数岂不是快一千了? 首先我们得搞明白偶合常数的定义:自旋偶合会产生共振峰的分裂后,两裂分峰之间的距离(以Hz为单位)称为偶合常数。不是两组氢之间化学位移的差值,而是一组峰中相邻两个峰之间的化学位移的差值! 可以从偶合常数看出基团间的关系,邻位偶合常数较大,远程偶合常数较小。还可以利用Kapulus公式计算邻位氢的二面角。对于有双键的化合物,顺式的氢之间偶合常数为6~10Hz,反式的氢之间偶合常数为12~16Hz。

  • [仪器介绍]AVANCE 900兆核磁共振波谱仪

    [仪器介绍]AVANCE 900兆核磁共振波谱仪

    [img]http://ng1.17img.cn/bbsfiles/images/2005/07/200507231535_6763_1604620_3.jpg[/img]值此欢庆库尔特维特里希(Prof. KurtWuethrich)教授荣获2002年诺贝尔化学奖的时刻,谈一谈核磁共振新技术显得特别有意义。瑞士科学家库尔特维特里希教授1938年生于瑞士阿尔贝格,1964年获瑞士巴塞尔大学无机化学博士学位,从1980年起担任瑞士苏黎世联邦高等工业大学(ETH)的分子生物物理学教授,还任美国加利福尼亚州拉霍亚市斯克里普斯研究所客座教授。因“发明了利用核磁共振技术测定溶液中生物大分子三维结构的方法”而获得2002年诺贝尔化学奖。瑞士科学家库尔特维特里希拥有布鲁克多台高场核磁共振谱仪,特别是拥有布鲁克世界最先进的900兆核磁共振谱仪。 所有生物都含有包括DNA和蛋白质在内的生物大分子,“看清”它们的真面目曾经是科学家的梦想。如今这一梦想已成为现实。2002年诺贝尔化学奖表彰的就是这一领域的两项成果。 这两项成果一项是美国科学家约翰芬恩与日本科学家田中耕一“发明了对生物大分子的质谱分析法”;另一项是瑞士科学家库尔特维特里希“发明了利用核磁共振技术测定溶液中生物大分子三维结构的方法”。 质谱分析法是化学领域中非常重要的一种分析方法。它通过测定分子质量和相应的离子电荷实现对样品中分子的分析。 美国科学家约翰芬恩与日本科学家田中耕一发明了殊途同归的两种方法。约翰芬恩对成团的生物大分子施加强电场,田中耕一则用激光轰击成团的生物大分子。这两种方法都成功地使生物大分子相互完整地分离,同时也被电离。它们的发明奠定了科学家对生物大分子进行进一步分析的基础。 如果说第一项成果解决了“看清”生物大分子“是谁”的问题,那么第二项成果则解决了“看清”生物大分子“是什么样子”的问题。 第二项成果涉及核磁共振技术。科学家在1945年发现磁场中的原子核会吸收一定频率的电磁波,这就是核磁共振现象。由于不同的原子核吸收不同的电磁波,因而通过测定和分析受测物质对电磁波的吸收情况就可以判定它含有哪种原子,原子之间的距离多大,并据此分析出它的三维结构。这种技术已经广泛地应用到医学诊断领域。 不过,最初科学家只能将这种方法用于分析小分子的结构,因为生物大分子非常复杂,分析起来难度很大。瑞士科学家库尔特维特里希发明了一种新方法,这种方法的原理可以用测绘房屋的结构来比喻:我们首先选定一座房屋的所有拐角作为测量对象,然后测量所有相邻拐角间的距离和方位,据此就可以推知房屋的结构。维特里希选择生物大分子中的质子(氢原子核)作为测量对象,连续测定所有相邻的两个质子之间的距离和方位,这些数据经计算机处理后就可形成生物大分子的三维结构图。 这种方法的优点是可对溶液中的蛋白质进行分析,进而可对活细胞中的蛋白质进行分析,能获得“活”蛋白质的结构,其意义非常重大。1985年,科学家利用这种方法第一次绘制出蛋白质的结构。目前,科学家已经利用这一方法绘制出15-20%的已知蛋白质的结构。 最近两年来,人类基因组图谱、水稻基因组草图以及其他一些生物基因组图谱破译成功后,生命科学和生物技术进入后基因组时代。这一时代的重点课题是破译基因的功能,破译蛋白质的结构和功能,破译基因怎样控制合成蛋白质,蛋白质又是怎样发挥生理作用等。在这些课题中,判定生物大分子的身份,“看清”它们的结构非常重要。专家认为,在未来20年内,生物技术将蓬勃发展,很可能成为继信息技术之后推动经济发展和社会进步的主要动力,由这3位诺贝尔化学奖得主发明的“对生物大分子进行确认和结构分析的方法”将在今后继续发挥重要作用。 而核磁共振谱仪在生物大分子研究方面应用中的一大要求就是高场,其优点不仅提高了灵敏度,更重要的是增大化学位移的赫茨数,将低场时密集在一起的不同立体位置上的核对应的共振峰分开,以便进行分析和确定结构。随着核磁技术的发展,库尔特维特里希教授的实验室里全部使用了布鲁克公司的先进的核磁共振谱仪。从400兆、600兆到750兆,并在900兆核磁谱仪正式安装前,使用了一段时间的800兆核磁谱仪。库尔特维特里希教授实验室于2002年2月正式开始使用布鲁克900兆核磁谱仪。 高场核磁谱仪的关键首先是磁体,布鲁克公司是世界上能生产900兆超导磁体的为数不多的厂家之一,并在技术上居领先地位。布鲁克公司使用了最先进的超导材料,特有的超导焊接技术,磁体超稳定技术,即工作温度为2K的双冷却技术和高超的杜瓦制造技术确保了磁场的稳定度(包括最小的场漂移)、均匀度和最小的液氦消耗。布鲁克公司的900兆核磁共振谱仪在世界上已经安装并投入正常使用的已有4台:美国SCRIPPS研究所、瑞士联邦高等工业大学ETH、德国法兰克福大学和慕尼黑大学。 核磁共振在生物大分子上的应用,要求谱仪有高稳定度、高分辨率、高灵敏度、好线型和适合于各种特殊脉冲系列实验要求的性能(如:成形发射脉冲、梯度场、多通道)。 这样才能取得最佳的核磁参数。布鲁克的 Avance 核磁谱仪是全数字化的谱仪,数字锁、数字频率和相位发生器、过速采样、数字滤波、数字信号处理器、数字正交检波、数字化的前置放大器、数字化的路由连接、数字化的变温单元、数字梯度场等等大大提高了谱仪的性能。数字锁的优点:2H频率可调(± 1 MHz),引入锁场的化学位移偏移(± 200 ppm),保证了不同溶剂时,可以锁在同一磁场上,使最佳匀场值基本不变,而且谱仪可根据实验所用溶剂自动校正化学位移,不需TMS作标准, 如果超导磁场多年后漂移超出磁场可调范围, 就可以用改变氘频率和观察核的频率来解决,而不需调超导磁场, 如果出现特定的频率强干扰,也可改变频率来避开这种干扰;锁通道采用双通道正交检波,提高了信噪比;引入傅立叶变换,能做到快速锁定;用数字化的校正补偿电压,保证了最佳的效果,提高了抗外来磁干扰的能力,保证了磁场的长期稳定度,同时又保证了有脉冲梯度场时的锁场稳定。 过速采样和数字滤波,提高了ADC的动态范围;提高了灵敏度; 消除了折叠峰。数字正交检波(DQD)又消除了镜像峰和零频泄漏。数字频率和相位发生器(SGU),扩大了频率范围(3 – 1100 MHz),保证了频率分辨率为0.005Hz,相位分辨率为0.006度,开关时间小于 300 ns,脉冲幅度的数字化控制,幅度控制范围为90 db,分辨率为0.1 db,开关时间为 50 ns,保证了成形脉冲的精度。布鲁克公司的自动调谐匹配探头(ATM), 实现了全自动调谐匹配,简化了调谐匹配手续,保证了90度和180度脉冲的正确设定,从而保证了不同样品都得到最佳匹配,获得最佳质量的谱图(一维和多维)。其它一系列的数字化部件和最先进的软件,使布鲁克的Avance核磁谱仪具有独特的功能,以满足用户的不同需要。继1991年诺贝尔化学奖得主理查德恩斯特(Prof. RichardErnst)教授(使用的全部是布鲁克的核磁共振谱仪)之后,库尔特维特里希教授应用布鲁克公司的仪器所得到的结果,是布鲁克公司的核磁谱仪支持世界上最前沿的科研工作的又一个最好的证明。我们相信,随着核磁技术的发展,布鲁克公司的核磁谱仪也将为科技界作出更多更大的贡献! 由于一些生物样品提取十分困难,而核磁谱仪本质上是低灵敏度的仪器,所以如何提高核磁谱仪的灵敏度成为一个重大的课题。为此,人们作过许多努力,采取不少方法如:提高场强、去耦、进行累加、设计微量探头等等。利用低温减少热噪声,一向是提高信号噪声

  • 【我们不一YOUNG】+科普核磁共振波谱仪小知识

    核磁共振波谱仪,是指研究原子核对射频辐射的吸收,是对各种有机和无机物的成分、结构进行定性分析的最强有力的工具之一,有时也可进行定量分析。瑞第科普核磁共振波谱仪小知识。 核磁共振波谱仪按工作方式可分为两种: (1)连续波核磁共振谱仪(CW-NMR)射频振荡器产生的射频波按频率大小有顺序地连续照射样品,可得到频率谱; (2)脉冲傅立叶变换谱仪(PET-NMR)射频振荡器产生的射频波以窄脉冲方式照射样品,得到的时间谱经过傅立叶变换得出频率谱。 连续波核磁共振谱仪由磁场、探头、射频发射单元、射频、磁场扫描单元、[k1] [WU2] 射频检测单元、数据处理仪器控制六个部分组成。 频率大的仪器,分辨率好、灵敏度高、图谱简单易于分析。 NMR波谱按照测定对象分类可分为:1H-NMR谱(测定对象为氢原子核)、13C-NMR谱及氟谱、磷谱、氮谱等。 根据谱图确定出化合物中不同元素的特征结构。有机化合物、高分子材料都主要由碳氢组成,所以在材料结构与性能研究中,以1H谱和13C谱应用较普遍。 除了运用在医学成像检查方面,在分析化学和有机分子的结构研究及材料表征中运用较多。 有机化合物结构鉴定 一般根据化学位移鉴定基团;由耦合分裂峰数、偶合常数确定基团联结关系;根据各H峰积分面积定出各基团质子比。核磁共振谱可用于化学动力学方面的研究,如分子内旋转,化学交换等,因为它们都影响核外化学环境的状况,从而谱图上都应有所反映。 高分子材料的NMR成像技术 核磁共振成像技术已成功地用来探测材料内部的损伤,研究挤塑或发泡材料,粘合剂作用,孔状材料中孔径分布等。可以被用来改进加工条件,提高制品的质量。 多组分材料分析 材料的组分比较多时,每种组分的 NMR 参数独立存在,研究聚合物之间的相容性,两个聚合物之间的相同性良好时,共混物的驰豫时间应为相同的,但相容性比较差时,则不同,利用固体 NMR 技术测定聚合物共混物的驰豫时间,判定其相容性,了解材料的结构稳定性及性能优异性。 此外,在研究聚合物还用于研究聚合反应机理、高聚物序列结构、未知高分子的定性鉴别、机械及物理性能分析等等。

  • 生物大分子核磁共振教材之一“蛋白质核磁共振谱学--原理及实践”

    非常经典的教材。我们实验室的“红宝书”,人手一册"Protein NMR Spectroscopy --Principles and Practice"by John Cavanagh, Wayne J. Fairbrother, Arther G. Palmer III and Nicholas J. Skelton理论与实践并重:理论方面,比较详细地介绍了POF(Product Operator Formalism)以及弛豫理论;实践方面,介绍了核磁的硬件部分,脉冲序列及实验设置,并且饱含了应用核磁共振谱解蛋白结构的内容。该书成书于1995年,虽然距今已经10年,但仍不失为一本优秀的教材和参考书。听说最近作者正在进行修订并且准备发行新版,新版会包含核磁技术的新进展例如TROSY(Transverse Relaxation Optimized SpectroscopY)

  • 核磁共振小谱仪 NMReady 的使用心得_样品管用手直接放入取出

    核磁共振小谱仪 NMReady 的使用心得_样品管用手直接放入取出补充“简易操作过程” 中对“进样” 的描述 (置入检测样品: 伸手直接把谱仪上面的标样管取出, 改放入检测的样品管).伸手直接: 说的就是用拇指食指, 捏着核磁管头部, 直接塞入仪器的检测腔体中. 塞入后, 核磁管头部还冒出 2 公分. 取出时, 拇指食指捏着核磁管头部, 提出来就是.这是所接触过核磁共振谱仪中, 进样出样最方便的. 比较其他的谱仪情况如下:*. 超导核磁共振谱仪: 进出样都需要借助压缩空气的气流控制, 强气流把样品管弹出, 降下时也需要一股保护气流的撑托 (bearing).* 类似方便的有 SpinSolve 小谱仪: 也是用手将样品管置入谱仪腔体. 但是由于腔体比较深, 操作上分成步较间接: 先把样品管放入某个长塑料套管中, 再置入谱仪腔体内. 所以看不到核磁管的头部 如果要置入内标毛细管就不如 NMReady 谱仪方便.* 国产的小谱仪 HT 系列: 设计上仍需要空气压缩机的压缩气流, 利用气流升降样品管. 因此仪器设备无法那么小巧可移动性.*. PicoSpin-45 或 80: 设计上是最特别的进样方式,把核磁管改成毛细管, 样品量只需要 20 微升. 进样就是用微量注射器把样品溶液注射入, 出样就是注入溶剂注把腔体内的样品溶液推出来. 有特色, 不代表方便. 注射样品溶液时需要提防气泡, 以及溶液的干净程度. 太脏的样品可能堵塞毛细管.

  • 两个有用的链接: 核磁共振文献全集/磁谱图解析题

    1. 很详尽的核磁共振文献全集,分类列出,如基础知识,二维核磁共振,动力学研究,综述等等。http://wulfenite.fandm.edu/NMRspectroscopy/nmrbiball.htm2. 14题核磁谱图解析的题目http://wulfenite.fandm.edu/NMRspectroscopy/SpecProblems/index.html希望对大家有帮助

  • 核磁共振磷谱的问题

    我想问一下,核磁共振磷谱可以看到磷的无机盐类吗?我有一赤铁矿的矿石,其中的磷元素含量为0.8%.我用了很多种方法都看不出来磷是以什么形式存在于矿石中,可以用核磁共振做吗?或者问一下,核磁共振磷谱能测出含量多少的,呈什么方式存在的磷?谢谢大家

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制