当前位置: 仪器信息网 > 行业主题 > >

天细菌定仪

仪器信息网天细菌定仪专题为您提供2024年最新天细菌定仪价格报价、厂家品牌的相关信息, 包括天细菌定仪参数、型号等,不管是国产,还是进口品牌的天细菌定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合天细菌定仪相关的耗材配件、试剂标物,还有天细菌定仪相关的最新资讯、资料,以及天细菌定仪相关的解决方案。

天细菌定仪相关的资讯

  • 美国发明航天器细菌快速检测新技术
    美国航天局科研人员最近开发出一种能快速检测航天器细菌的新技术。这项技术也能同时运用于军事、医疗、制药等领域,如检测可引发炭疽病的炭疽杆菌。   美航天局下属喷气推进实验室的科研人员在10月刊的《应用与环境微生物学》(Applied and Environmental Microbiology)杂志上报告说,这项新技术能找到构成细菌芽孢的主要物质吡啶二羧酸,从而发现细菌芽孢的位置。而芽孢是细菌生长到一定阶段在细菌体内形成的一种微生物体,其数量及其生长状况等是鉴定细菌的依据之一。   该项技术的工作原理是,先在被检测物表面约一角钱硬币大小的地方涂上铽 ,然后将其置于紫外线灯下照射,几分钟内,人们通过显微镜和特殊相机便能看到是否有细菌芽孢,因为铽能把细菌芽孢的主要物质吡啶二羧酸变成明亮的绿色。铽是一种化学金属元素,它的化学符号是TB,被用于生成电视机屏幕上的绿色。   参与开发这一新技术的艾德里安庞塞说,细菌芽孢可以在极其恶劣的环境下生存,可抵御高温、低温、强辐射和化学物质,并最多可以在太空存活6年之久。庞塞说,发现了细菌芽孢,就可以发现细菌本身。   目前这项被称为“航天器洁净方法”的技术已引起了美国国土安全部的兴趣。美国国土安全部化学生物研究项目负责人詹姆士安东尼认为,该技术将有助于加快生物污染事件发生后的现场检测工作,并节省时间和成本。
  • 吃”尼古丁的细菌——戒烟新方法
    近日,发表在国际杂志Journal of the American Chemical Society上的一篇研究论文中,来自斯克里普斯研究所的研究人员通过研究开发出了一种细菌酶类,其或许可以被用作候选药物来帮助吸烟者戒烟,研究者指出,这种特殊的细菌酶类可以在实验室中被获取并且具有一系列药物开发的潜力特性。研究者Kim Janda教授表示,目前我们的研究尚处于早期阶段,但相关研究结果表明细菌酶类具有正确的特性来变为成功的戒烟疗法,这种新型的戒烟疗法或可代替当前的戒烟策略,当前的戒烟策略已经在至少80%至90%的吸烟者中被发现是无效的。细菌产生的特殊酶类在尼古丁进入到吸烟者大脑之前就可会被酶类所破坏,进而降低吸烟者对尼古丁的依赖性,从而达到戒烟的目的。在至少超过30年的时间里,研究者和其同时一直致力于在实验室开发这种特殊酶类,当前他们利用恶臭假单胞菌成功地制造产生了名为NicA2的酶类,实验结果表明这种细菌可以有效消耗尼古丁。研究者表示,这种细菌就好象是“吃豆人”一样,其会不断前进并且吃掉尼古丁;这项研究中研究人员对负责降解尼古丁的细菌特殊酶类进行了特性研究,并且检测了这种酶类作为疗法的有效性;首先研究者在一根香烟中将小鼠血清和一个剂量的尼古丁相结合,当添加特殊酶类后,尼古丁的半衰期从原来的2-3小时降低为9至15分钟,而高剂量的酶类可以更加有效缩短尼古丁的半衰期,从而尽可能地保持其不进入吸烟者的大脑。下一步研究者计划将这种酶类进行测试来验证其是否可以作为候选戒烟药物来使用,研究者Song Xue说道,这种酶类在血清中相对稳定,因此其对于开发新型治疗性药物非常关键;研究者计划后期通过改变细菌的酶类组成来帮助其更加有效地作为戒烟的新型策略xyL872Hu01 USP6氨基端样蛋白(USP6NL)重组蛋白 Recombinant USP6 N-Terminal Like Protein (USP6NL) Homo sapiens (Human)xyL882Hu01 UL16结合蛋白2(ULBP2)重组蛋白 Recombinant UL16 Binding Brotein 2 (ULBP2) Homo sapiens (Human)xyL907Ra01 N-myc下游调节基因2(NDRG2)重组蛋白 Recombinant N-myc Downstream Regulated Gene 2 (NDRG2) Rattus norvegicus (Rat)xyL915Hu01 Nei内切核酸酶Ⅷ样蛋白1(NEIL1)重组蛋白 Recombinant Nei Endonuclease VIII Like Protein 1 (NEIL1) Homo sapiens (Human)xyL917Hu01 信号素3A(SEMA3A)重组蛋白 Recombinant Semaphorin 3A (SEMA3A) Homo sapiens (Human)xyL918Hu01 信号素3B(SEMA3B)重组蛋白 Recombinant Semaphorin 3B (SEMA3B) Homo sapiens (Human)xyL919Hu01 信号素3C(SEMA3C)重组蛋白 Recombinant Semaphorin 3C (SEMA3C) Homo sapiens (Human)xyL920Hu01 信号素3E(SEMA3E)重组蛋白 Recombinant Semaphorin 3E (SEMA3E) Homo sapiens (Human)xyL921Hu01 信号素4A(SEMA4A)重组蛋白 Recombinant Semaphorin 4A (SEMA4A) Homo sapiens (Human)xyL924Hu01 信号素5A(SEMA5A)重组蛋白 Recombinant Semaphorin 5A (SEMA5A) Homo sapiens (Human)xyL926Hu01 信号素5B(SEMA5B)重组蛋白 Recombinant Semaphorin 5B (SEMA5B) Homo sapiens (Human)xyL930Hu01 信号素3F(SEMA3F)重组蛋白 Recombinant Semaphorin 3F (SEMA3F) Homo sapiens (Human)xyL934Hu01 NEL样蛋白2(NELL2)重组蛋白 RecombinantNEL Like Protein 2 (NELL2) Homo sapiens (Human)xyL935Hu01 再生蛋白1(NEO1)重组蛋白 Recombinant Neogenin 1 (NEO1) Homo sapiens (Human)xyL939Hu01 神经束蛋白(NFASC)重组蛋白 Recombinant Neurofascin (NFASC) Homo sapiens (Human)xyL941Mu01 激活T-细胞核因子1(NFATC1)重组蛋白 Recombinant Nuclear Factor Of Activated T-Cells, Cytoplasmic 1 (NFATC1) Mus musculus (Mouse)xyL969Hu01 醌NADH脱氢酶1(NQO1)重组蛋白 Recombinant NADH Dehydrogenase, Quinone 1 (NQO1) Homo sapiens (Human)xyL979Hu01 核糖体蛋白S6激酶β1(RPS6Kβ1)重组蛋白 Recombinant Ribosomal Protein S6 Kinase Beta 1 (RPS6Kb1) Homo sapiens (Human)xyL980Hu01 增殖关联蛋白2G4(PA2G4)重组蛋白 Recombinant Proliferation Associated Protein 2G4 (PA2G4) Homo sapiens (Human)xyM011Hu01 肽酶D(PEPD)重组蛋白 Recombinant Peptidase D (PEPD) Homo sapiens (Human)
  • 国产首个细菌检验质谱仪进入临床应用
    中国科技网讯(记者 张克 通讯员 陈捷)近日,我国自主研发的首款飞行时间质谱仪(Clin-ToF)通过北京协和医院的论证,已正式进入该医院检验科开始临床使用。根据北京协和医院检验科的实验对比,这款国产质谱仪在革兰阴性菌方面的检测与国际领先的布鲁克质谱系统鉴定效能相当。对此,北京协和医院检验科主任徐英春表示,这说明在一些特定的细菌检测领域,拥有自主知识产权的国产质谱仪已达到国际领先水平。据了解,这款可对细菌蛋白质组、基因组进行全方位研究的先进质谱仪由毅新博创公司研发,于2012年通过了欧盟CEIVD认证,2014年通过中国食品药品监督管理总局认证。它能够快速检测识别革兰氏阴性菌,而这类细菌是常见的引发人体腹泻、肺炎、伤口感染等病症的病原微生物。北京协和医院检验科大夫表示,呼吸科、皮肤科、消化科、骨科、妇科等诸多科室有超过40%的疾病与细菌有关,而医院的重症监护病房(ICU)由于其接收病人的特殊性,也成为医院感染的高危科室之一,而快速准确检测细菌可以正确指导医生用药,避免使用无效抗生素引发的药物滥用问题,同时也能提高救治因细菌感染导致病情加重的患者的效率。据协和医院检验科专家介绍说,北京协和医院本次使用这款国产质谱仪评估了该院1999年—2000年、2014年—2016年间所保存的1025株革兰氏阴性菌,包括大肠埃希菌、流感嗜血杆菌及铜绿假单胞菌等,同时利用国外先进的布鲁克质谱系统进行对比。检测结果显示,这款国产质谱仪(Clin-ToF)鉴定的准确率达98.05%,在革兰氏阴性菌方面的鉴定能力和效率方面,与国际领先技术相当。根据该评估实验所撰写的论文已于近日发表在《中华检验医学杂志》上。据介绍,革兰氏阴性菌是多种细菌的统称,包括痢疾杆菌、肺炎杆菌、流感(嗜血)杆菌、百日咳杆菌等致病细菌,而运用质谱仪来检验细菌是检验医学领域的新技术。这种检测设备能够准确、快速地鉴定患者体内致病细菌的耐药性。通过对质谱分析,可以判断对细菌的蛋白质进行鉴定,准确判断出其对哪一种抗生素具有耐药性,从而帮助医生拟定更精确的治疗方案,避免不能准确判断时,可能要尝试多种抗生素才能找到有效药物的情况出现,从而实现个体化精准治疗,并遏制治疗过程中的抗生素滥用。然而,此前很多临床微生物实验室都面临着标本检测周期过长的问题,运用质谱检测技术则可缩短至少1天的鉴定时间,而有研究证实,在重症监护室(ICU)临床治疗中,抗生素如果晚一小时准确治疗,病人存活率下降8%。因此,这种技术也被认为是临床微生物实验室的革命,而我国此前在该领域尚无自主产品。此次检测可以说是国产医学检验质谱仪的一大突破,北京协和医院已将该仪器应用于临床检测。实际上, 除了在医疗领域之外,微生物检测在食品安全、生物安全等领域都有着极为重要的意义。而毅新博创公司在国家重大科学仪器设备开发专项项目的支持下,与军事医学科学院等机构合作,已经建立了包含2200种微生物蛋白指纹图谱的数据库,可以实现以蛋白指纹图谱对微生物进行管理。据介绍,蛋白指纹图谱是每种微生物的标志物,类似于人类的指纹一样,建立这个数据库就如同给细菌一个身份证,据此可以准确辨别它们,从而为防止微生物危害人体健康筑好屏障。
  • 超级细菌的中国现实
    10月26日,中国疾病预防控制中心公布,在对既往收集保存的菌株进行监测中,发现了3株NDM-1基因阳性细菌(即超级细菌)。   自从8月国外报道有患者感染携带NDM-1基因细菌以来,中国有没有“超级细菌”(Superbug)的问题就是公众的关注焦点,直到此次公布之前一星期,中国的官方说法还是,中国没有发现“超级细菌”。   在国外广泛报道发现携带NDM-1耐药基因细菌之后,中国的卫生部组织了对既往收集保存的菌株进行NDM-1耐药基因检测,检出3株NDM-1基因阳性细菌。   中国疾病预防控制中心发现的2株携带NDM-1耐药基因细菌来自今年3月宁夏回族自治区2名新生儿的粪便标本,是有NDM-1耐药基因的屎肠球菌。对该2名幼儿再次进行的NDM-1耐药细菌的检测,结果均为阴性。   另一株携带NDM-1耐药基因的鲍曼不动杆菌,自福建省一名患肺癌的老年病例分离得出,该患者已死亡,其主要死亡原因为晚期肺癌。鲍曼不动杆菌是条件致病菌,可导致免疫功能低下的病人感染。其在该患者病程发展中的作用尚不明确。   监测网络滞后   此次发现的携带NDM-1基因细菌来自相距很远的宁夏和福建 且是完全不同的两类细菌 (一种是革兰氏阳性菌,一种是革兰氏阴性菌),差别很大,不可能来自同一感染源 住院时间分别是3月和5月。因此,几乎可以完全排除境外传入的可能,携带NDM-1基因的超级细菌早已存在于中国,只是未被监测到而已。这就暴露了中国监测体系的滞后。   8月份,国外出现了“超级细菌”的报道。中国开始加强印度等国外进入中国的旅客检疫。与此同时,卫生部与国家传染病重大专项平台,就开展了NDM-1耐药基因细菌的检测。   “两名新生儿是3月份患病,住院时间是10天左右。当时还没出现‘超级细菌’。按此推断,当时医院肯定不是按‘超级细菌’治疗的,应该是按腹泻、肠道感染治疗的。”中国疾病预防控制中心传染病预防控制所所长、传染病预防控制国家重点实验室主任徐建国说。后来有专家调查过一次,由于治疗档案没提取到,无法得知治疗方式。据了解,两名新生儿是在一个县级医院治疗。按卫生政策有关要求,进入医院的患者都要留存档案。但有关专家表示,“县级医院,可能管理松散”。   在军事医学科学院疾病预防控制所的实验室,从福建省一个医院报送的200多株菌株中检出1株NDM-1基因阳性鲍曼不动杆菌,经过表型鉴定、基因分析和测序,最后经过中国医学科学院实验室的平行检测,证实这株菌带有NDM-1基因。   根据浙江大学医学院第一医院、传染病诊治国家重点实验室教授肖永红介绍,从这三名患者分离得到菌株来自“卫生部细菌耐药监测网”中的医院。   在2005年,卫生部、国家中医药管理局和总后卫生部决定建立全国“抗菌药物临床应用监测网”和“细菌耐药监测网”。“卫生部细菌耐药监测网”由两大部分组成,第一部分为初级监测网,第二部分为中心监测网。   到2010年,监测网已覆盖全国170余家三级甲等医院。其中,中心网包括全国不同地区20家医院,已开展3届中心网监测工作。基础网主要为各省市的三级甲等医院,目前已覆盖全国一百多家医院,每年分四个季度将临床分离菌株药敏结果上报。   但从监测网建立之始就参与其中的肖永红介绍,现有的监测是被动监测,主要是获得细菌耐药性变化趋势和不同地区之间的比较等方面的信息,是对现在已经发生的耐药做一个常规的监测。这样的监测网络时间上会滞后,不适于监测新发的耐药现象,或者一些耐药率比较低的情况。   “其次,现在的监测网络只覆盖到了省会城市和三甲医院,其广度和深度都有限 而且是年度监测,一年一个报告,时效性差,”肖永红说,“监测的发展方向,在深度、广度和时效性方面都应该提高,获得技术,采取措施及时加以研究。”   药高一尺,菌高一丈   抗生素与细菌之间的战争始于1929年弗莱明 (Fleming)的伟大发现——青霉素。抗生素首战大胜。   1943年,发现了链霉素,并在1947年投入了市场。人类战胜了结核病。抗生素再下一城。   抗生素日益发展,建立了庞大的抗菌素制药工业。在1971年至1975年达至巅峰,5年间共有52种新抗生素问世。   但形势随之逆转,从1980年代开始,每年新上市的抗生素逐年递减。一方面的原因是开发新抗生素越来越难,另一方面则是细菌快速形成的耐药性。   细菌对抗生素形成耐药性,实际上只是一种“被选择”。在数量惊人庞大的细菌群体中,细菌个体并不完全相同,彼此之间总是存在一些差异。这些差异产生的原因在于突变。突变在漫长的生命演化过程中一直就存在,只是偶然,一些突变改变了细菌的基因,使之获得了耐药性。   在抗生素出现之前,这些产生耐药性的突变会在细菌群体中逐渐消失。但抗生素出现后,这些突变有了新的意义。抗生素对细菌进行了“选择”,没有耐药性的细菌被杀灭了,而有耐药性的基因生存了下来,菌群的结构发生了变化:非耐药菌越来越少,耐药菌越来越多。   耐药性对于抗生素如影相随,只要使用抗生素就会形成耐药性,使用抗生素越多,形成耐药性也就越快。   此次的“超级细菌”实际上就是对几乎全部已有抗生素都具有耐药性的“泛耐药菌(pan-resistantbacteria)”在9月28日,卫生部下发的《产NDM-1泛耐药肠杆菌科细菌感染诊疗指南(试行版)》中,“超级细菌”的正式名称也是泛耐药菌。   卫生部抗菌药物临床应用监测中心顾问专家、复旦大学附属华山医院抗生素研究所的张永信教授告诉本报记者,感染了泛耐药菌并不是不可治愈,采用多粘菌素或多种抗生素联合用药的方式可以治疗泛耐药菌感染。   国外的资料显示,某些临床疾病已经治愈的出院患者仍可携带NDM-1耐药基因细菌,但由于这类耐药菌多为条件致病菌或人体正常菌群细菌,通常不会在社区环境内普通人群中传播。在中国检出的两类细菌都是条件致病菌。   在卫生部的《诊疗指南》中写道,“超级细菌”的“传播方式尚无研究报道,但根据患者感染情况以及细菌本身特点,可能主要通过密切接触,如污染的手和物品等方式感染。”易感人群为:“疾病危重、入住重症监护室、长期使用抗菌药物、插管、机械通气等。”   张永信认为,一般公众不会轻易感染“超级细菌”,因为这些细菌是还局限在医院的特定环境中。“医生和护士天天与之打交道”,应该注意的是具有危险因素的人,如“开了大刀的人、老人、新生儿、进行化疗免疫功能下降的肿瘤病人等”。   但这次欧美国家发现的病例已经表明,“超级细菌”可以通过接受医疗服务的人体进行洲际传播。“健康人一般不会感染‘超级细菌’。即便在医院等地有接触到,回到社区一段时间后,就消失了。目前的感染还局限在特殊人群,但值得关注的是,一旦耐药性基因传到了致病性强的细菌中,情况就会变得严重。”肖永红说。   抗生素使用大国   弗莱明自微生物之间的 “抗生现象”中发现了青霉素之后,人类已经开发了超过130种抗生素,是人类医疗健康无与伦比的福音。但因为放肆随意地使用抗生素,耐药菌越来越多,耐药性的形成也越来越快。在对细菌的战斗中,人类正在失去最重要的,几乎是唯一的依靠。   在中国,抗生素不合理、不规范的使用一直普遍存在。   据2006-2007年度卫生部全国细菌耐药监测结果显示,全国医院抗菌药物年使用率高达74%。在美、英等发达国家,医院的抗生素使用率仅为22%~25%。而中国的住院患者中,抗生素的使用率则高达70%,其中外科患者几乎人人都用抗生素,比例高达97%。   抗生素在养殖业中也大量使用。这些药物一是用于预防动物生病 二是在饲料中添加抗生素,可以促进动物生长,这已是养殖业内通行的做法。这类做法的后果就是抗生素弥漫到整个环境中,可以通过各种途径,在人体内蓄积。   不惜用抗生素后果严重。中国耐药菌的分离率远高于抗生素使用受到严格控制的国家,耐药菌的形成速度也远远快于这些国家。以耐甲氧西林金黄色葡萄球菌 (MRSA)为例,“在印度和中国,MRSA在菌群中已经占到50%-70%,而在瑞典、丹麦、芬兰等北欧国家,还不到5%,”肖永红告诉记者,“而且2000年之后,增加的速度非常快。细菌产生突变速度相同,是抗生素泛滥的环境加快了耐药菌的形成。”   金黄色葡萄球菌是一种常见的病菌,可引起皮肤、肺部、血液、关节感染。最开始,青霉素对之有效,但很快失效。后来采用了甲氧西林(半合成青霉素),仅两年就出现了耐药菌,形成了难以杀灭的MRSA。   在2004年,卫生部等部门颁行了《抗菌药物临床应用指导原则》,对抗生素的使用作出了详尽的规定,随后又有2008年的48号文和2009年的38号文强化抗生素药物的使用规范。力度不可谓不大。   然而,情况虽有所改善,但执行仍旧不力。“不是每一所医院和每一位医生都能做到。”肖永红叹道。参与了《指导原则》制定的卫生部合理用药专家委员会副主任委员吴永佩也表示,不规范使用抗生素是耐药菌急剧形成的原因之一。对于在养殖业中使用抗生素,至今仍无明确的法规。   抗生素的不合理使用其实只是中国医疗体系中药物不合理使用的一个层面。影响药物合理使用的所有因素也都影响到了抗生素的使用。例如,因“医患关系”和“举证责任倒置”产生的“保护性医疗”反映在抗生素的使用上就是多用抗生素,用好抗生素。“以药养医”的困境投射到抗生素使用上,也大大增加了其用量。
  • 首台国产细菌检验质谱仪进入临床应用
    近日,我国自主研发的首款飞行时间质谱仪(Clin-ToF)通过北京协和医院的论证,已正式进入该医院检验科开始临床使用。根据北京协和医院检验科的实验对比,这款国产质谱仪在革兰阴性菌方面的检测与国际领先的布鲁克质谱系统鉴定效能相当。对此,北京协和医院检验科主任徐英春表示,这说明在一些特定的细菌检测领域,拥有自主知识产权的国产质谱仪已达到国际领先水平。  据了解,这款可对细菌蛋白质组、基因组进行全方位研究的先进质谱仪由毅新博创公司研发,于2012年通过了欧盟CEIVD认证,2014年通过中国食品药品监督管理总局认证。它能够快速检测识别革兰氏阴性菌,而这类细菌是常见的引发人体腹泻、肺炎、伤口感染等病症的病原微生物。  北京协和医院检验科大夫表示,呼吸科、皮肤科、消化科、骨科、妇科等诸多科室有超过40%的疾病与细菌有关,而医院的重症监护病房(ICU)由于其接收病人的特殊性,也成为医院感染的高危科室之一,而快速准确检测细菌可以正确指导医生用药,避免使用无效抗生素引发的药物滥用问题,同时也能提高救治因细菌感染导致病情加重的患者的效率。据协和医院检验科专家介绍说,北京协和医院本次使用这款国产质谱仪评估了该院1999年—2000年、2014年—2016年间所保存的1025株革兰氏阴性菌,包括大肠埃希菌、流感嗜血杆菌及铜绿假单胞菌等,同时利用国外先进的布鲁克质谱系统进行对比。检测结果显示,这款国产质谱仪(Clin-ToF)鉴定的准确率达98.05%,在革兰氏阴性菌方面的鉴定能力和效率方面,与国际领先技术相当。  根据该评估实验所撰写的论文已于近日发表在《中华检验医学杂志》上。  据介绍,革兰氏阴性菌是多种细菌的统称,包括痢疾杆菌、肺炎杆菌、流感(嗜血)杆菌、百日咳杆菌等致病细菌,而运用质谱仪来检验细菌是检验医学领域的新技术。这种检测设备能够准确、快速地鉴定患者体内致病细菌的耐药性。通过对质谱分析,可以判断对细菌的蛋白质进行鉴定,准确判断出其对哪一种抗生素具有耐药性,从而帮助医生拟定更精确的治疗方案,避免不能准确判断时,可能要尝试多种抗生素才能找到有效药物的情况出现,从而实现个体化精准治疗,并遏制治疗过程中的抗生素滥用。  然而,此前很多临床微生物实验室都面临着标本检测周期过长的问题,运用质谱检测技术则可缩短至少1天的鉴定时间,而有研究证实,在重症监护室(ICU)临床治疗中,抗生素如果晚一小时准确治疗,病人存活率下降8%。因此,这种技术也被认为是临床微生物实验室的革命,而我国此前在该领域尚无自主产品。此次检测可以说是国产医学检验质谱仪的一大突破,北京协和医院已将该仪器应用于临床检测。  实际上, 除了在医疗领域之外,微生物检测在食品安全、生物安全等领域都有着极为重要的意义。而毅新博创公司在国家重大科学仪器设备开发专项项目的支持下,与军事医学科学院等机构合作,已经建立了包含2200种微生物蛋白指纹图谱的数据库,可以实现以蛋白指纹图谱对微生物进行管理。据介绍,蛋白指纹图谱是每种微生物的标志物,类似于人类的指纹一样,建立这个数据库就如同给细菌一个身份证,据此可以准确辨别它们,从而为防止微生物危害人体健康筑好屏障。
  • 鲜奶检出β-内酰胺酶 长期进服易产生超级细菌
    继三聚氰胺之后,老百姓又要从牛奶行业里学习到一个全新的名词了--β-内酰胺酶。   日前,有网友在宁波的论坛里贴出一份"2012年宁波奶制品抽检不合格清单",此份清单实为"宁波市食品安全委员会办公室"《关于2012年宁波市乳制品评价性抽检结果的通报》。其中,有宁波牛奶、新希望、光明和涌优这4个牛奶品牌的标本检出大肠菌群超标或β-内酰胺酶。   那么β-内酰胺酶到底是什么东西?含有β-内酰胺酶的牛奶有什么危害?市民平时又如何做到健康饮用牛奶?   鲜奶检出β-内酰胺酶   去年,宁波市食安办、市食品药品监管局委托宁波出入境检验检疫局检验检疫技术中心对宁波市2012年下半年市场上销售的乳制品进行了评价性抽检。在《关于2012年宁波市乳制品评价性抽检结果的通报》中指出,全年共抽检鲜奶(巴氏杀菌乳)、酸奶、纯奶(超高温灭菌奶)、婴幼儿配方奶粉4个品种乳制品608批次,不合格63批次,合格率89.64%.4个品种中,酸奶、婴幼儿配方奶粉、纯奶的合格率均为100%.乳制品中的不合格样品均是鲜奶 共抽检鲜奶201批次,63批次不合格,合格率为68.66%.   《通报》中指出,鲜奶合格率较低,原因是部分样品检出大肠菌群超标和β-内酰胺酶阳性。63批次不合格鲜奶中,大肠菌群超标41批次、β-内酰胺酶阳性40批次。大肠菌群超标会引起呕吐、腹泻等症状,危害人体健康安全。而β-内酰胺酶被列入食品中可能违法添加的非食用物质名单,是不能在牛奶中添加的。   检测部门分析,造成鲜奶大肠菌群超标的可能原因包括:生乳在采集、贮存或运输过程中被污染 生产加工过程中消毒杀菌不严 运输、贮存、销售鲜奶过程中冷链断裂导致微生物繁殖。常温下乳制品很容易导致微生物生长,家庭订奶户取奶不及时造成冷链断裂是鲜奶大肠菌群超标的主要原因。   企业质疑检测过程   昨天,宁波牛奶集团在微博上发出声明,当时的抽查是在酷暑时对宁波市整个乳制品市场进行的,在抽检过程中,有可能脱离了2-6℃的保存温度条件而影响了产品的质量。这并不能代表公司2012年全年产品的整体质量。2012年,质监部门共对公司进行鲜奶出厂检验335批次,合格率100%.   针对此次抽检的β-内酰胺酶为阳性,宁波牛奶集团回应称一定为内源性,属于奶牛本身产奶过程带入的,"我们绝对不会添加β-内酰胺酶".   声明中分析,导致鲜奶β-内酰胺酶阳性的主要原因有两个,一个是内源性的即由奶牛体内的耐药菌株产生的 二是为降解牛乳中残留的抗生素而外源性加入的。对内源性β-内酰胺酶的监测方法和判定标准从2009年至今尚无国家标准,也无科学的检验鉴定方法,因此该指标只能作为参考指标,不能直接作为牛奶质量判定标准。而公司的奶源是100%自控化的,无任何中间贩卖环节,自己不会进行添加,那么只可能是内源性的。   杭州新希望双峰乳业有限公司赵总昨天告诉记者,目前还未收到宁波有关部门的通知,但对检测的过程和结果存在疑义。他表示,针对大肠菌群超标的结果,在检测报告的分析中就指出有可能是运输、销售等过程中冷链断裂的原因。以往的现场抽查都是要用冰块保证牛奶的温度,再送到抽检中心进行检测。"最重要的冷链不能断。"赵总说,2012年,公司对大肠菌群的检测上万多次,都是符合标准的。β-内酰胺酶则是奶牛自己产生的,而且去年,公司对β-内酰胺酶也自检过上千次,都未呈现阳性。赵总表示,由于目前未收到任何通知,公司还是正常进行乳制品的生产。   光明乳业股份有限公司华东区帅经理则表示,对有关部门的抽检从头到尾不清楚,目前总部准备对此事进行核实。   β-内酰胺酶可分解抗生素   在这次检测报告中,大肠菌群超标可以用冷链断裂来解释,而β-内酰胺酶从何而来却没有定论。   浙江大学生物化学研究所所长李永泉告诉记者,β-内酰胺酶是一种细菌所特有的分解抗生素的酶,这种酶能分解β-内酰胺类的抗生素,比如青霉素、头孢等都属于β-内酰胺类的抗生素。而β-内酰胺类抗生素是在牛乳生产中应用最广泛的抗生素,用于治疗牛乳腺炎和其他细菌感染性疾病。因此,牛奶中检测出β-内酰胺酶有可能是奶牛体内自身产生的,也有可能是牛奶在加工过程中感染了一些细菌所产生的。   另一种可能就是在加工过程中,人为加入β-内酰胺酶,因为它能分解牛奶中残留的β-内酰胺类抗生素,为抗生素打掩护。《食品卫生微生物学检验鲜乳中抗生素残留检验》标准中,对青霉素、链霉素、庆大霉素等抗生素都设定了标准。李永泉说,β-内酰胺酶可以从细菌中进行提炼,这一技术并不复杂。记者在某电子商务网站上看到,有企业在销售β-内酰胺酶,价格在158元到500元不等。   杭州市畜牧兽医局的有关负责人则表示,在对乳制品进行检测时,并未对β-内酰胺酶进行检测,而是会对部分抗生素进行检测。该负责人表示,一些企业为了增加牛奶中蛋白的含量就添加三聚氰胺,当然也有为了减少抗生素而添加β-内酰胺酶的可能。   β-内酰胺酶存在一定危害   记者查阅相关资料,发现《医药前沿》2012年第17期上有一篇《细菌的耐药性与超广谱β-内酰胺酶》的论文。论文作者于源认为:"自1929年发现青霉素,1940年将其研制成功并用于临床至今,β-内酰胺类抗生素经历了半个多世纪的发展,为治疗人类感染性疾病起了重要作用。目前,用于临床的各类抗生素近200种,其中仅β-内酰胺类抗生素就达130多种。然而随着抗生素的应用,细菌的耐药性随之产生,细菌产生耐药性的原因很多,如产生各种各样的酶,水解、钝化相应抗生素 细胞壁通透性下降或排泄力提高 抗生素作用的靶位发生改变等等。但是β-内酰胺酶仍是细菌对抗生素耐药的主要原因。"   昨天记者还就此采访了浙江大学药理毒理与生化药学研究所所长楼宜嘉,她告诉记者:"微量的β-内酰胺酶对人体不会产生明显的危害。β-内酰胺酶的本质是一种蛋白,摄入体内之后,会被分解,不会长期存在体内。"   李永泉则认为,在偶然的情况下,还是会对人体产生危害的。"假设,病人在服用β-内酰胺类抗生素后,再喝下含有β-内酰胺酶的牛奶,那么抗生素的作用就会减弱,从而影响疾病的治疗。"时间久了,临床上将无药可用,即产生所谓的超级细菌。
  • 探访山西“超级细菌”检测实验室
    工作人员正在检查实验结果   10月26日上午,中国疾病预防控制中心通报,国内已发现3例超级细菌(NDM-1耐药基因细菌)病例。29日,记者从山西省疾病预防控制中心了解到,我省还未发现超级细菌病例,但省疾控中心的实验室以及我省一些条件较好的市疾控中心实验室,都具备了监测“超级细菌”的条件。11月1日,本报记者走进山西省疾病预防控制中心实验室,独家探访“超级细菌”检测实地。   出了省疾控中心主楼6层的电梯向左一拐,便可以通过透明玻璃看到一个长廊,玻璃上写着“生物安全实验室,授权后方可进入”几个字,检测“超级细菌”的实验室就在里面。判定超级细菌并非难事   “嘟!”随着疾病检验科科长张凡非将门禁卡一刷,中心实验室的门应声而开。穿上隔离衣,戴上鞋套,记者跟随张凡非进入。走廊两侧有各种实验室,还有工作人员专用的更衣室、准备室、洗涤室等。几个实验室门口还贴着“生物危害”的标志。“我是全单位唯一持实验室门禁卡及密码的人,因为实验室安全性要求极高。我是第一责任人。”张凡非说。   穿过长廊,来到最里面的一间实验室。“这里就可以检测超级细菌了。”张凡非说。实验室里,两名工作人员正在一台“生物安全柜”前工作,戴着口罩、手套,全副武装。他们正在做肠道病菌试验。如果是做超级细菌的实验,专业上称“药敏试验”,第一步,也需要在生物安全柜里将病菌分纯。   “大家可以放心的是,判定超级细菌并非难事。”张凡非介绍。耐药性强的细菌并不是首次发现,而是一直存在,并且数量很多,比如耐青霉素的肺炎链球菌,过去对青霉素、红霉素、磺胺等药品都很敏感。而这次超级细菌引起的问题,主要是发现肠杆菌对抗生素不敏感了,产生了很强的泛耐药性,而之前这种细菌并没发现耐药性。所以说,省疾控中心实验室及我省一些条件较好的市疾控中心实验室,一直就具备检测及监测这种超级细菌的条件。2—3天就可确认试验结果   药敏试验通俗的解释,就是做某一种细菌对指定的药物敏感试验。如果不敏感了,也就说明耐药了。张凡非介绍。   检测是否是超级细菌需要经过4道程序。首先要从临床上取患者感染部位的标本,比如取呼吸道感染患者的痰标本,然后放在培养基上进行细菌培养,培养时间一般需要48小时。   培养出细菌后,就要进行耐药反应。耐药反应所选抗生素,是严格按照国家的监测要求进行的。目前,省疾控中心实验室所用抗生素有十几种,都是临床常用抗生素,针对不同的病菌,将不同的抗生素涂抹在药敏试纸上。之后,观察其结果。   结果有3种:敏感、中度敏感及耐药。涂抹过抗生素的药敏试纸上,都会出现直径、大小不同的药敏环儿。如果药敏环儿周围,细菌被抑制不滋生了,说明细菌对抗生素是敏感的 如果药敏环儿周围的细菌抑制情况不太明显,说明结果属于中度敏感 若药敏环儿周围的细菌依旧滋生,没有一点抑制效果,说明细菌产生了耐药性。   发现疑似耐药性反应,实验室就会将其送到中国CDC“临床基因扩增检验实验室”做基因分析,如果确认其含有耐药基因,那就可以确认这个细菌是超级细菌了。最快两三天就可以确认是否是超级细菌。一旦发现疑似耐药性反应,那么细菌的“主人”,就应第一时间被“隔离”。   整个监测过程并不复杂,但条件要求很严格。“比如菌株的存放就要求放置于-80℃的超低温环境内,”张凡非指着房间内的一个大冰柜,“那就是存放菌株的地方。”超级细菌不是传染病   “超级细菌是感染病,而非传染病。这是两种截然不同的概念。感染病是一种条件致病,并不是接触性传染病。”张凡非说。“感染性疾病需要具备一定的条件。打个比方,有人吃了西瓜会拉肚子,但有人就不会。细菌感染也一样,同样的细菌,由于不同的个体免疫力不同会有不同的反应,由于细菌感染而致病的还是少数。因此,大众没必要恐慌。”   张凡非还表示,真正的问题根源是超级细菌背后反映的抗生素滥用问题。“这个问题解决不了,超级细菌才会真正无敌。”
  • 超级细菌如何检测? 需过“四道关”
    记者探访超级细菌监测室   超级细菌,最快两三天可确认   超级细菌进入大众视野,引起部分人的恐慌。我们能否建立—道抵御细菌侵袭的监测网络?超级细菌能否被及时监测?监测过程又是什么样的?今年9月底,卫生部在国内设立了19个超级细菌监测哨点医院,山东省济南市中心医院、齐鲁医院位列其中。10月28日,记者走进济南市中心医院门诊楼5楼的中心实验室,带您—探这个监测超级细菌的神秘场所。   工作人员正在打开生物安全柜。   耐药性强的细菌—直存在,且数量很多   “嘟”,随着工作人员门禁卡的晃动,济南市中心医院中心实验室的门应声而开。穿上隔离衣,戴上鞋套,记者跟随工作人员走进实验室,眼前是一个长长的走廊。走廊两侧有各种实验室,实验室门口都挂着“生物危害”的标志。   “其实并不是所有的微生物都是有害的。”病原微生物实验室工作人员裴凤艳说,人体内有大量微生物存在,大多数对人体有益,比如肠道内的一些细菌,会维持肠道良好的消化环境。   穿过长廊,来到最里面的一间实验室———“病原微生物学实验室”,这就是卫生部9月份确立的山东省两个超级细菌监测哨所之一。   该实验室工作人员纪明宇介绍,所谓的超级细菌,其实就是泛耐药细菌,这种耐药性强的细菌一直存在,并且数量很多,比如耐青霉素的肺炎链球菌,过去对青霉素、红霉素、磺胺等药品都很敏感,现在几乎刀枪不入。“这次超级细菌引起恐慌,主要是发现肠杆菌对抗生素不敏感了,产生了很强的泛耐药性,而之前这种细菌并没发现耐药性。”   发现疑似超级细菌,“主人”立即隔离   实验室里,一位工作人员正在一台“生物安全柜”前工作,她戴着口罩、手套,全副武装。   纪明宇介绍,该工作人员正在进行菌株培养,“我们平时都会对临床送来的各种病人标本进行监测,监测各种细菌的耐药性,并且每三个月或六个月公布一次各种细菌的耐药率。”   “大家可以放心的是,以我国目前的监测技术,判定超级细菌并非难事。”纪明宇说,针对上报的疑似菌株,可以先进行实验,确定有可疑性后,再接着做基因测试,“最快两三天就可以确认是否是超级细菌,但至今为止还没发现感染病例。”   纪明宇拿出一份卫生部9月29日下发的监测方案,监测方案要求,全国任何一家医疗机构如果发现疑似超级细菌的耐药情况,如不具备实验室监测条件,须立即将菌株送至最近的19家哨点医院。同时,须在12小时内上报至国家细菌耐药监测网。   一旦发现疑似超级细菌,那么将在进行确认检验的同时,立即对其“主人”采取隔离措施,避免细菌进一步扩散。“这样的监测网络一定程度上会抗拒潜在的疫情威胁。”该实验室主任汪运山说。   检测需经四道关,菌株存放双人双锁   在实验室中央的一张桌子上放着许多红色的圆盒,这是培养细菌的容器。   “检测是否是超级细菌需要经过四道程序。”裴凤艳说,首先要从临床上取患者感染部位的标本,比如取呼吸道感染患者的痰标本,然后放在培养基上进行细菌培养,“就像种花需要土壤一样,这种培养基也是提供细菌繁殖的土壤。”   她说,培养出细菌后,就要进行耐药反应,如果发现疑似耐药性反应,就会将其送到“临床基因扩增检验实验室”做基因分析,如果确认其含有耐药基因,那就可以确认这个细菌是超级细菌了。   整个监测过程并不复杂,但条件要求很严格。“比如单纯菌株的存放就要求放置于-80℃的超低温环境内,”纪明宇指着一间房间内的两个大冰柜,“那就是存放菌株的地方,双人双锁,必须两个人同时签字才能打开柜子取菌株。”   细菌耐药性与致病性并不成正比   按照监测方案要求,哨点医院对免疫力低下、危重症、急诊患者、南亚次大陆来我国就医的人员开展监测工作。   纪明宇说,超级细菌是感染病,而非传染病,“这是两种截然不同的概念,之前我们国家对传染病宣传得比较多,尤其是SARS和甲流之后,而对于感染病老百姓却知之不多,其实感染病是一种条件致病,并不是接触性传染病。”   “耐药性与致病性并不成正比,并且感染性疾病需要具备一定的条件。”汪运山打了个比喻,有人吃了西瓜会拉肚子,但有人就不会。   “细菌感染也一样,同样的细菌,由于不同的个体免疫力不同会有不同的反应,由于细菌感染而致病的还是少数。”汪运山说,“比如医院内进行侵入性手术,或者体质较差、免疫力低下的病人,被感染的可能性较大。一般来说,通过接触或者空气传播从而感染疾病的可能很小。因此,大众没必要恐慌。”   他同时表示,超级细菌更让人可怕的是它背后反映的抗生素滥用的问题。“这个问题解决不了,超级细菌才会真正无敌。”   当记者走出实验室时,“控制医院内感染,从正确洗手开始”的大标语映入眼帘。裴凤艳说,“手卫生是很重要的防护措施,加强锻炼,提高免疫力,是抵御任何细菌感染的良药。”   耐药监测网还需再完善   据《光明日报》报道,“耐药基因就像细菌的一件衣服,所以不是细菌耐药,而是基因耐药。”军事医学科学院疾病预防控制所的所长黄留玉解释说,超级细菌规范称呼应该是NDM-1耐药基因细菌。   “微生物要生存,会和人类永远处在博弈中,耐药是其中的一种表现。新耐药细菌监测对控制耐药方面,包括对抗菌药合理使用方面都是非常有价值的工作。”卫生部合理用药专家委员会委员肖永红认为,现在我国的监测网,达到了对已经发现的耐药细菌做一个常规监测的水平。   据肖永红介绍,现有的监测还需进一步发展和完善。目前监测已覆盖到170余家三级甲等医院,而我国仅三级医院就有七八百家。   “实际上,我国上万家二级医院至今还没有被纳入到国家的监测网里。”肖永红介绍,把二级医院纳入进来是非常必要的。   滥用抗菌药严重可致命   据新华社北京10月28日电(记者 李亚红)北京市卫生局负责人28日称,抗菌药物是治疗感染性疾病的有效药,一旦被滥用,不仅不利于健康,还会给人体带来严重伤害。因此,希望广大医务人员合理使用抗菌药物,患者应在医生指导下使用抗菌药物,避免抗菌药物滥用引发不良反应和细菌耐药性增强。   北京市卫生局新闻发言人毛羽说,凡超时、超量、不对症使用或未严格规范使用抗菌药物,都属于抗菌药物滥用。滥用抗菌药物首先会引起细菌的耐药性。据国家权威医疗部门统计,我国每年都有部分患者因抗菌药物使用不当,引起不良反应致病住院,也有部分患者因滥用抗菌药物导致死亡。
  • 2017年动物源细菌耐药性监测计划公布 含仪器配置要求
    为贯彻落实《遏制细菌耐药性国家行动计划(2016-2020年)》,进一步加强动物源细菌耐药性监测工作,保证动物源性食品安全和公共卫生安全,我部制定了《2017年动物源细菌耐药性监测计划》(附件1,以下简称《监测计划》),现印发给你们,请遵照执行。有关事项通知如下。  一、任务分工  农业部负责组织全国动物源细菌耐药性监测工作。  各省(自治区、直辖市)兽医行政管理部门负责选定连续定点监测养殖场(猪场、肉鸡场、蛋鸡场或奶牛场各1个,共3个),保证监测工作的连续性,并协助监测任务承担单位做好屠宰场和养殖场采样工作。在完成国家监测计划的同时,有条件的省份,应制定并组织实施辖区动物源细菌耐药性监测计划。  中国兽医药品监察所、中国动物疫病预防控制中心、中国动物卫生与流行病学中心和辽宁省兽药饲料畜产品质量安全检测中心、上海市兽药饲料检测所、河南省兽药饲料监察所、四川省兽药监察所、广东省兽药饲料质量检验所、湖南省兽药饲料监察所、陕西省兽药监测所等10家监测机构承担《监测计划》的检测任务。  中国兽医药品监察所负责全国动物源细菌耐药性监测的技术指导和数据库建设与维护工作 负责罕见表型菌株的确认、收集和保存 负责各地耐药性监测实验室分离的人畜共患菌(沙门氏菌和弯曲杆菌)的菌种保存,并指导任务承担单位进行沙门氏菌血清分型。  二、技术要求  (一)各监测任务承担单位应按照《2017年动物源细菌耐药性监测采样和检测技术要点》(附件2)开展采样、细菌分离和鉴定、耐药性监测和结果上报等工作。  (二)样品应从养殖场(包括鸡场、猪场、奶牛场)或屠宰场抽取。其中,规模养殖场和小型养殖场应各占50%。  (三)采样的同时,应做好养殖场用药情况和饲料来源调查,认真填写《采样记录表》(附件3)。对同一养殖场用药情况不同的动物群,应分开填写采样表。  (四)大肠杆菌、肠球菌、沙门氏菌、金黄色葡萄球菌和弯曲杆菌的分离和鉴定按照《动物源细菌分离和鉴定方法》(附件4)或参照相关国际标准执行。  (五)中国兽医药品监察所负责药敏试验板的质量控制,各监测任务承担单位进行药敏试验时应按照药敏板使用说明书进行检测。药敏试验检测试剂盒(MIC测定)使用方法见附件5。  三、结果报送  (一)监测结果电子版和纸质材料并行上报。其中,电子版直接登录中国兽药信息网(www.ivdc.org.cn),在中国兽药数据库下选择“耐药性监测”数据库,输入本单位用户名和密码,打开后直接输入监测结果。纸质采样记录和药物敏感性试验统计表(附件6)应按统一格式填报。  (二)各监测任务承担单位的电子版总结于2017年11月25日前上报中国兽医药品监察所。2017年12月31日前,由中国兽医药品监察所完成汇总报我部兽医局。  联 系 人:农业部兽医局冯华兵  中国兽医药品监察所徐士新  联系电话:010-59192829,59191652(传真)  010-62103658,62103698(传真)  附件:1.2017年动物源细菌耐药性监测计划  2.2017年动物源细菌耐药性监测采样和检测技术要点  3.采样记录表  4.动物源细菌分离和鉴定方法  5.药敏试验检测试剂盒(MIC测定)使用方法  6.耐药性监测结果统计表  农业部  2017年2月9日  附件1-6:2017年动物源细菌耐药性监测计划.doc
  • 共赴武汉 | 天隆科技与您相约儿童呼吸道非细菌病原学检测及诊断论坛
    会议预告目前,呼吸系统感染仍然是儿科常见的感染性疾病之一。但儿童免疫系统发育不完善,往往导致呼吸系统感染性疾病症状隐匿、不典型且临床诊断困难。儿童呼吸系统感染性疾病病原学研究的相对滞后更造成临床上抗菌药物使用的不合理。因此,及时准确地进行病原学诊断,是临床选择合理治疗方案从而有效控制病情的关键。为进一步加强儿童呼吸系统病原学检测的临床认识,提高儿童呼吸系统感染性疾病的诊疗水平,普及呼吸道系统病原学检测新技术,同时加强临床医师、检验科医师以及院感医师等医务人员的交流与合作,由中华医学会杂志社和《中华儿科杂志》编辑委员会主办,华中科技大学同济医学院附属同济医院儿科承办的“儿童呼吸道非细菌病原学检测及诊断论坛”将于2021年 7月30日-8月1日在湖北省武汉洪广大酒店举行。特邀专家报告会议期间,天隆科技有幸邀请到华中科技大学同济医学院附属同济医院鲁艳军教授就《核酸检测技术在儿童呼吸道感染中的应用》开展专题讲座,探讨核酸检测技术在儿童呼吸系统感染性疾病病原学诊断的应用与发展。报告题目《核酸检测技术在儿童呼吸道感染中的应用》报告时间7月31日 15:10-15:40演讲嘉宾鲁艳军 教授副主任医师 硕士研究生导师华中科技大学同济医学院附属同济医院博士毕业于华中科技大学同济医学院,一直工作于同济医院检验科分子诊断与遗传室,从事各种疾病的分子诊断及咨询。参与多项国家自然基金和省级课题等的研究工作,累计发表SCI论文20余篇,参与编写《实验诊断临床指南》。先后利用基因测序平台、基因芯片平台,建立了多种感染性疾病、遗传病及个体化用药分子诊断方法。目前担任中西医结合检验分会分子诊断专业专业委员会委员和妇幼保健检验医学专业委员会委员。
  • FDA批准质谱仪系统VITEK MS用于鉴定193种不同致病细菌和真菌
    2013.8.21,FDA批准美国第一个质谱仪检测系统用于自动识别已知能导致人体严重疾病的细菌和酵母的上市。该质谱仪系统VITEK MS能鉴定出193不同微生物,可在一系列自动化测试过程中进行192种不同的测试,而且每个测试只需要大约一分钟。   谱仪系统VITEK MS可以鉴别诸如念珠菌、隐球菌和马拉色氏霉菌属组的酵母茵和葡萄球菌科、链球菌科、肠杆菌科、假单胞菌科和类杆属组的细菌,这些酵母茵和细菌跟皮肤感染、肺炎、脑膜炎和血液感染有关。HIV或AIDS、癌症治疗或器官移植后的抗排斥治疗损害或削弱免疫系统的患者特别容易受到这些细菌感染。   VITEK MS采用基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)技术,该技术利用激光打破酵母和细菌标本成小颗粒,形成一个独特的微生物模型。VITEK MS在检测系统数据库自动将这些微生物模型与193种已知的酵母和细菌进行比对,从而鉴别微生物。   此与其他要求大量微生物繁殖来检测的鉴别方法相比,质谱分析方法只需要少量的酵母或细菌繁殖,所以只要微生物生长到可视程度后就可以马上开始检测,通常在在18到24小时内。传统的方法需要五天才能得出相同的鉴别结果。   FDA通过新型分类程序审查了VITEK MS,这是对一些新型低中度风险且不完全等同于已知合法市售的医疗设备的调控途径。   VITEK MS再临床上用于鉴别由人体标本培养得到的微生物,它与联合其它临床和实验室发现相互结合,从而辅助诊断细菌和真菌感染。   VITEK MS的制造商为北卡罗来纳州达勒姆的生物梅里埃公司。
  • 吉林省4家医院监测超级细菌
    医生正在分离病菌标本 许医生表示,超级细菌并不可怕,滥用抗生素才是最可怕的   “超级细菌并不可怕,滥用抗生素才是最可怕的。”吉林大学白求恩第一医院检验科主治医师许建成说,2005年卫生部成立了全国细菌耐药监测网,目前吉林省吉林大学白求恩第一医院、吉林大学白求恩第二医院、吉林大学中日联谊医院、吉林省人民医院4家医院是这个监测网的成员单位,今年9月末开始启动监测超级细菌。   9月末吉林省已启动监测   吉林大学白求恩第一医院检验科主治医师许建成说,2005年,卫生部成立了全国细菌耐药监测网,目的就在于掌握我国抗菌药物应用于细菌耐药状况,制定相应管理措施,为临床抗菌药物选择提供技术支持。   “吉林省4家医院属于成员单位,9月29日我代表院里到北京参加‘全国多重耐药菌感染控制研讨会’,主要研讨的就是超级细菌问题。”许建成说,卫生部对超级细菌非常重视,已经对监测网内各成员单位下达了书面的监测和诊治指南,“9月末开始,吉林省4家医院开始启动监测超级细菌。”   传播通过手、物品接触   在北京开会期间,卫生部对参会人员进行了超级细菌的监测培训,许建成回到长春后,对本院工作人员进行培训。   “对于超级细菌的检测,吉林省也高度重视,9月30日,吉林省卫生厅召开了电视电话会议,专门部署了这项工作。”许建成说,超级细菌从今年6月开始引起国内外广泛关注,这种细菌的传播方式尚无研究报道,但根据患者感染状况以及细菌本身特点,可能主要通过密切接触,如污染的手和物品等方式感染。   超级细菌的临床特点,与其他多重药菌感染相似,许建成说,有一些患者属于易感人群:疾病危重、入住重症监护室、长期使用抗菌药物、插管、机械通气等。主要感染类型包括泌尿系统感染、伤口感染、医院获得性肺炎、血液感染、导管相关感染等。   监测篇   微生物室7人进行日常监测   对于超级细菌的出现,很多市民都充满了畏惧和好奇,医院对这种细菌如何监测呢?   27日,许建成将记者带到了该院的监测室。“对超级细菌的监测,只是细菌耐药监测中的细菌种类之一,我们日常监测的细菌种类非常多。”许建成说,医院每日都会采集住院患者分离出来的细菌,然后对各类细菌进行监测。对于超级细菌的监测,他表示目前由该院微生物室7名医务人员完成。   三步完成监测诊断工作   许建成说,超级细菌实验室诊断包括筛查、表型确认和基因确认三个步骤。   第一步:在细菌药物敏感性测定中,以美洛培南或亚胺培南纸片法(K-B法)或最低抑菌浓度(MIC)测定法对肠杆菌科细菌产酶情况进行初步筛查,如果抑菌圈直径达不到标准,即进入表型确认。   第二步:双纸片协同实验,当判定产金属酶时,即进入基因确证。   第三步:最终被锁定的细菌将送到中心实验室进一步确认,据了解,这种实验室是由国家统一设定的,不在我省。   在实验室记者看到,超级细菌的监测工作,跟所有的耐药细菌监测同属一个流程,没有特殊的仪器和设备。   治疗篇   两种药物对其有一定作用   从9月末监测开始,直到27日吉林省没有监测到超级细菌,对于这种细菌,很多市民都称它为“无药可救的病毒”,许建成说,“其实超级细菌并不可怕,最可怕的是滥用抗生素。”这种病毒之所以让人望而却步,是因为它具有极高的耐药性,目前,有两种抗菌药物对其有一定作用,一个是替加环素,另一个是多粘菌素。但是,随着这种细菌的自身发展,这两种药物未来也可能对其失效。   “细菌和抗生素就好比矛和盾,在不断的‘斗争’中,各自发展着。细菌这种东西遇强则强,随着抗生素的大量滥用,细菌自身正在不断壮大,最后可能导致无药可医。”   诊所打抗生素 药店买消炎药   在长春都很容易   长春市内抗生素的使用情况如何呢?27日,记者随机走访了多家诊所和药店,只要患者有需要,诊所就会给注射抗生素,药店抗生素消炎类药也可以随意购买。   27日上午10时许,长春市二道区某诊所,“我嗓子疼,流鼻涕,还有点发烧。”记者对诊所大夫说。“这次感冒挺严重,你打个针吧,打点消炎药两三天就能好。”大夫说道。“吃点药不行吗?我挺害怕打针的。”记者试探地说。“打针来的快,你能少遭罪,否则感冒不爱好。发烧严重了,还可能烧出肺炎呢!”看到大夫这么说,记者也不好再说什么。便以回家取医保卡为由,先行离开。   记者又来到一家诊所,医生问哪不舒服,记者又把感冒症状说了一次,此家诊所大夫也建议记者打点滴。“我们这的点滴比大医院的口服药都便宜,打点针好的快,光吃药如果不见好,再打针还得遭两次罪。”随后记者又走访了2家诊所,得到的结果都是劝记者打抗生素。   打针容易,那么买抗生素药品呢?抗生素药品也就是百姓俗称的消炎药。   27日中午,记者走访了重庆路附近的部分药店,发现抗生素消炎类药可以随意购买。   对比篇   90%的患者感冒后会选择消炎药   许建成说,国家通过监测发现,目前中国抗生素滥用情况十分严重。“抗生素其实就是老百姓说的‘消炎药’,就拿感冒来讲,90%的患者在有感冒症状后,都会选择使用‘消炎药’。”   在美国孩子高烧40℃也没打上消炎针   对于抗生素药品的使用,美国则要求得十分严格,许建成说他和家人曾在美国生活过一年,他感冒时想要买点消炎药非常困难。   有一次他几个月大的儿子高烧近40℃不退,他和妻子带孩子来到医院,希望能打一些消炎药,但是医院表示孩子并不是细菌性感染所以不能给注射,最终孩子也没有打上消炎药,两天后孩子自己就退烧了。   许建成说,一般来讲,感冒分病毒性和细菌性两种,美国规定如果是细菌性感染可以用抗生素,如果是病毒性的则不能使用抗生素。为此,在美国看病都必须先做化验。   外延篇   医院用抗生素正趋于规范   对于抗生素的使用,许建成说,医院和医生也存在着很大的责任。“以前医院存在以药养医的问题,为了经济利益,一些医院和医生拼命给患者开好药、开贵药,最终导致抗生素大量滥用。”国家在监测到这种情况后,近年来已经采取各种措施进行制止。许建成提到,以他们医院为例,目前医院对医生开药进行了限制,实行分级制。“医生开药前必须严格遵循化验单,根据感染情况开抗生素,普通医生只能开一般性质的抗生素,如果要开更好、更贵的药,必须向上一级申请。”因此,抗生素在医院内的使用正在被进一步规范。   牛肉和牛奶中也可能含抗生素   抗生素的滥用最终导致的结果,可能就是“无药可用”,许建成认为,中国一定要进一步加强对抗生素类药品的监管力度,监管部门也应该承担起应有的责任。   但是目前一些百姓也提出一些质疑,“我从来都不吃药,为什么到医院检查耐药性很高呢?”许建成说,这种耐药性可能是从食品上来的,为了得到更大的经济效益,一些饲养企业在牲畜、家禽生长阶段喂食了大量抗生素,当这些牲畜和家禽被百姓食用后,百姓身体内就会获得这些抗生素,随即产生很高的抗药性。“以牛为例,饲养者都会在其饲料中加一些复方新诺明,这样牛就不易生病,但是牛肉和牛奶中会含有抗生素。”还有就是鱼类,饲养者在其还是鱼苗时,就播撒大量抗生素,防止其减产死亡,可想而知当我们将这些鱼端上餐桌时,有多少抗生素被吃到肚子里。
  • 打好遏制动物源细菌耐药“行动战” 微生物检测仪器机会多
    p   6月22日,农业部正式印发《全国遏制动物源细菌耐药行动计划》,明确2017至2020年间将建立完善国家、省、市、县四级兽药残留监测体系,完成31种兽药272项限量指标以及63项兽药残留检测方法标准制定。同时鼓励研发耐药菌高通量检测仪器设备、适合基层兽医实验室的微生物快速检测仪器设备。随着遏制动物源细菌耐药“行动战”的打响,微生物检测仪器设备将迎来一大波发展机遇。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 全国遏制动物源细菌耐药行动计划 /strong /span /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong (2017—2020年) /strong /span /p p   为加强兽用抗菌药物管理,遏制动物源细菌耐药,保障养殖业生产安全、食品安全、公共卫生安全和生态安全,根据《遏制细菌耐药国家行动计划(2016-2020年)》《“十三五”国家食品安全规划》和《“十三五”国家农产品质量安全提升规划》,制定本行动计划。 /p p   strong  一、前言 /strong /p p   我国是畜禽、水产养殖大国,也是兽用抗菌药物生产和使用大国。兽用抗菌药物在防治动物疾病、提高养殖效益、保障畜禽水产品有效供给中,发挥了重要作用。但是,兽用抗菌药物市场秩序不够规范、养殖环节使用不尽合理、从业人员科学用药意识不强、公众对细菌耐药性认知度不高等问题依然存在,加之国家动物源细菌耐药性风险评估和防控体系薄弱,细菌耐药形势日趋严峻。动物源细菌耐药率上升,导致兽用抗菌药物治疗效果降低,迫使养殖环节用药量增加,从而加剧兽用抗菌药物毒副作用和残留超标风险,严重威胁畜禽水产品质量安全和公共卫生安全,给人类和动物健康带来隐患。当前亟需构建动物源细菌耐药性控制和残留超标治理体系,提高风险管控能力。 /p p    strong 二、行动目标 /strong /p p   动物源细菌耐药和抗菌药物残留治理能力、养殖环节规范用药水平、畜禽水产品质量安全水平和人民群众满意度明显提高。到2020年,实现以下目标: /p p   (一)推进兽用抗菌药物规范化使用。省(区、市)凭兽医处方销售兽用抗菌药物的比例达到50%。 /p p   (二)推进兽用抗菌药物减量化使用。人兽共用抗菌药物或易产生交叉耐药性的抗菌药物作为动物促生长剂逐步退出。动物源主要细菌耐药率增长趋势得到有效控制。 /p p   (三)优化兽用抗菌药物品种结构。研发和推广安全高效低残留新兽药产品100个以上,淘汰高风险兽药产品100个以上。畜禽水产品兽用抗菌药物残留监测合格率保持在97%以上。 /p p   (四) span style=" color: rgb(255, 0, 0) " 完善兽用抗菌药物监测体系。 /span 建立健全兽用抗菌药物应用和细菌耐药性监测技术标准和考核体系,形成覆盖全国、布局合理、运行顺畅的监测网络。 /p p   (五)提升养殖环节科学用药水平。结合大中专院校专业教育、新型职业农民培训和现代农业产业体系建设,对养殖一线兽医和养殖从业人员开展相关法律、技能宣传培训。 /p p    strong 三、重点任务 /strong /p p    strong (一)实施“退出行动”,推动促生长用抗菌药物逐步退出 /strong /p p   加强重要兽用抗菌药物风险评估和预警提示,加大安全风险评估力度,明确评估时间表和技术路线图,加快淘汰风险隐患品种,推动促生长用抗菌药物逐步退出。 /p p   1.开展促生长用人兽共用抗菌药物风险评估,参照世界卫生组织(WHO)、联合国粮农组织(FAO)、国际食品法典委员会(CAC)、世界动物卫生组织(OIE)等国际组织有关标准,结合我国实际,2020年前完成相关品种清理退出工作。 /p p   2.开展促生长用动物专用抗菌药物风险评估,收集、分析和评价相关技术资料,有针对性地开展残留和耐药性监测,2020年前形成保留或退出的意见。 /p p   3.对可能存在安全隐患的其他兽用抗菌药物开展风险评估,收集监测数据,分析技术资料,2020年前形成风险管控意见。 /p p    strong (二)实施“监管行动”,强化兽用抗菌药物监督管理 /strong /p p   1.严格市场准入。加快兽用抗菌药物审评审批制度改革,推进兽用抗菌药物分类管理,鼓励研制新型动物专用抗菌药物。人用重要抗菌药物转兽用、长期添加用于促生长作用、易蓄积残留超标、易产生交叉耐药的抗菌药物不予批准。依据抗菌药物的重要性、交叉耐药和临床应用品种等情况确定应用级别,研究制定兽用抗菌药物分级管理办法和分级目录。 /p p   2.规范养殖用药。制定发布《兽用抗菌药物临床使用指南》,进一步规范兽医临床用药行为。推进养殖环节社会化兽医服务体系建设,推动实施兽用处方药管理、休药期规定等兽药安全使用制度。加强兽药使用记录监管,对出栏动物应当查验用药记录。开展兽药使用质量管理规范研究工作,明确养殖主体兽药采购、储存、使用等各环节管理要求。修订药物饲料添加剂安全使用规范、禁用兽药清单、休药期规定、兽药最高残留限量等技术标准。 /p p   3.加强饲料生产环节用药监管。组织实施药物饲料添加剂监测计划,以超量、超范围为重点,严厉打击饲料生产企业违法违规添加行为 加大预警监测力度,持续完善相关检测标准和判定标准。 /p p   4.建立应用监测体系。设立全国兽用抗菌药物应用监测中心和区域分中心,依托兽用抗菌药物生产经营企业、重点养殖企业等形成监测网络。通过国家兽药“二维码”追溯信息系统,监测兽用抗菌药物临床应用种类、数量、流向等情况,分析变化趋势。 /p p    strong (三)实施“监测行动”,健全动物源细菌耐药性监测体系 /strong /p p   1.完善动物源细菌耐药性监测网。 span style=" color: rgb(255, 0, 0) " 构建以国家实验室、区域实验室、省级实验室为主体,以大专院校、科研院所等实验室为补充,分工明确、布局合理的动物源细菌耐药监测网。依托现有基础,完善国家动物源细菌耐药性监测中心。分区域建立8家专业化实验室,各省(自治区、直辖市)设立省级监测实验室,并在养殖或屠宰企业建立3-5个监测站(点)。监测站(点)负责细菌初步分离,专业化区域实验室负责细菌鉴定和耐药性监测,通过国家监测网报送结果。 /span /p p   2.细化动物源细菌耐药性监测工作。科学合理制定养殖领域细菌耐药监测方案,积极开展普遍监测、主动监测和目标监测。监测面覆盖不同领域、不同养殖方式、不同品种的养殖场(户)和有代表性的畜禽水产品流通市场,获得动物源细菌流行病学数据。 /p p   3.加强兽医与卫生领域合作。建立兽医与卫生领域抗菌药物合理应用和细菌耐药性监测网络的联通机制,实现两个领域的监测信息资源共享。 /p p    strong (四)实施“监控行动”,强化兽用抗菌药物残留监控 /strong /p p    span style=" color: rgb(255, 0, 0) " 1.建立完善国家、省、市、县四级兽药残留监测体系,鼓励第三方检测力量参与,持续实施抗菌药物残留监控计划,依法严肃查处问题产品。完成31种兽药272项限量指标以及63项兽药残留检测方法标准制定。 /span /p p   2.建立养殖场废弃兽药回收和无害化处理制度,逐步实施兽用抗菌药物环境危害性评估工作。开展养殖粪污中抗菌药物残留检测,建立评估方法和标准,推广先进的环境控制技术、粪污处理技术,促进生态养殖发展。 /p p    strong (五)实施“示范行动”,开展兽用抗菌药物使用减量化示范创建 /strong /p p   在奶牛养殖大县、生猪养殖大县、水产养殖大县、全国绿色养殖示范县、水产健康养殖示范县和具有规模养殖的国家农产品质量安全县(市)选择生猪、家禽和奶牛等优势品种,开展兽用抗菌药物使用减量化示范创建活动,推广使用安全、高效、低残留的中兽药等兽用抗菌药物替代产品,从源头减少兽用抗菌药物使用量。及时总结经验、逐步推广,并研究相关补贴制度。 /p p    strong (六)实施“宣教行动”,加强从业人员培训和公众宣传教育 /strong /p p   强化兽医等从业人员教育,将兽用抗菌药物使用规范纳入新型职业农民培育项目课程体系。鼓励有条件的大中专院校开设抗菌药物合理使用相关课程。加强从业人员科学合理用药培训。充分利用广播、电视等传统媒体和互联网、微博、微信等新媒体,广泛宣传安全用药知识,提高公众对细菌耐药性的认知度。 /p p    strong 四、能力建设 /strong /p p   (一)提升信息化能力。综合运用互联网、大数据、云平台等现代信息技术,完善国家兽药基础数据平台,深入推进国家兽药“二维码”追溯实施工作,推动省市县三级配备必要的软硬件设施设备,与国家兽药基础信息平台对接,保证兽用抗菌药物产量、销量、用量全程可追溯,实现兽用抗菌药物生产、经营和使用全程监管。 /p p   (二)提升标准化能力。 span style=" color: rgb(255, 0, 0) " 建立动物源细菌耐药性监测标准体系,针对细菌分离和鉴定方法、最小抑菌浓度测定方法、药物耐药性判定等制定统一的检测标准,开展实验室能力比对。收集、鉴定、保藏各种表型及基因型耐药性菌种,建立菌种库和标本库,实现各级实验室标准化管理。 /span /p p   (三)提升科技支撑能力。发挥科研院所、龙头企业技术优势,创立全国兽用抗菌药物科技创新联盟,围绕动物专用抗菌药物、动物源细菌耐药性检测、中兽药等抗菌药物替代品种和养殖领域新型耐药性控制技术等领域,开展产品研发和关键技术创新。 span style=" color: rgb(255, 0, 0) " 鼓励研发耐药菌高通量检测仪器设备、适合基层兽医实验室的微生物快速检测仪器设备。 /span 鼓励开展细菌耐药分子流行病学和致病性研究。 /p p   (四)提升国际合作能力。主动参与WHO、FAO、CAC、OIE等国际组织开展的耐药性防控策略、抗菌药物敏感性检测标准制修订等工作,与其他国家和地区开展动物源细菌耐药性监测协作,控制耐药菌跨地区跨国界传播。加强与发达国家抗菌药物残留控制机构及重要国际组织合作,参与国际规则和标准制定,主动应对国际畜禽水产品抗菌药物残留问题突发事件。 /p p   strong  五、保障措施 /strong /p p   (一)加强组织领导。各地兽医行政管理部门要深刻认识做好遏制动物源细菌耐药工作的极端重要性,强化组织领导。要根据本计划确定的行动目标和重点任务,制定辖区工作方案,认真开展日常监管、监督抽检等具体工作。要强化责任,落实地方人民政府的属地管理责任,明确养殖者的主体责任,各级监管部门的监管责任,层层传导压力,切实将各项工作任务落到实处。 /p p   (二)加大政策支持。按照《全国动植物保护能力提升工程建设规划(2017-2025年)》(发改农经〔2017〕913号),统筹考虑相关项目建设。积极争取发改、财政、科技等部门支持,加大动物源细菌耐药性防控体系建设、监测评估、监督抽查和抗菌药物使用减量化示范创建等工作的支持力度 逐步建立多元化投入机制,鼓励、引导企业和社会资金投入。 /p p   (三)发挥专家作用。成立全国兽药残留与耐药性控制专家委员会,为动物源细菌耐药性监测、监管体系建设与完善提供专业指导 承担兽用抗菌药物耐药性风险评估任务,提供风险管理和政策建议。在相关国家现代农业产业技术体系中增设疫病防控、质量安全等岗位,鼓励各地建立兽用抗菌药物研究团队,加强抗菌药物替代研发、细菌耐药机制研究、耐药检测方法与标准研究等工作。 /p p   (四)落实目标考核。将兽用抗菌药物使用监管及动物源细菌耐药控制纳入国家食品安全和农产品质量安全考核范围,对动物源细菌耐药性监管体系、违法行为查处率、条件保障和经费预算等指标进行量化考核。农业部制定考核评价标准,按年度、区域、进度进行量化、细化,各地要根据工作要求,进一步细化分解工作目标和任务措施,确保行动计划有效落实。 /p
  • 中国三例超级细菌病例仍未查出传播途径
    10月26日,中国疾病预防控制中心通报三起感染超级耐药致病细菌病例,但截至目前为止,超级细菌的传播途径仍无法定性。   据专家介绍,该种细菌的背后,与滥用抗生素有着直接的关系,直到目前,未找到传播途径,是空气传播还是接触性传播无法定性。唯一可以暂时定性的一点是该细菌是一种“医院内的相关性感染”。   中国疾病预防控制中心传染病预防控制所所长徐建国表示,目前看,该耐药性细菌的感染方式是医院相关性感染,国外报告的病例都是医院的病例,而中国目前发现的三例,也都是在医院。而超级细菌事实上只是表现出一种耐药性,还并不是一种真正意义上的细菌,不会传染,只是感染。也不会引起其他疾病。   徐建国称,有关资料显示,两名新生儿属于正常分娩,但体重比较低,低于正常新生儿的体重。低体重儿一般营养跟不上,也许家里经济条件并不是很好,刚生下来4天就出现拉肚子。   “两名新生儿是3月份患病,住院时间是10多天左右。当时还没关于超级细菌的报道。按此推断,当时医院肯定不是按超级细菌治疗的,应该是按腹泻、肠道感染治疗的。”徐建国介绍,专家们调查过一次,由于治疗档案没提取到,治疗方式无法预知。   据了解,两名新生儿是在一个县级医院治疗。按卫生政策有关要求,进入医院的患者都要留存档案。但有关专家表示,县级医院,可能管理比较松散。
  • 我国检出三例超级细菌病例 一患者因肺癌死亡
    我国检出3例超级细菌病例 一患者死亡   近日,中国疾控中心和和中国军事医学科学院实验室,在对既往收集保存的菌株进行检测时,检出三株NDM1基因阳性细菌,也就是俗称的超级细菌。其中,两株细菌是由宁夏自治区疾控中心送检,菌株分离自该区某医院的两名新生儿粪便标本 另一株由福建省某医院送检,菌株分离自该院一名住院老年患者的标本。   宁夏的两名新生儿都是低体重儿,两名患儿在出生两三天之后出现了腹泻和呼吸道感染的症状,目前经过治疗后已经痊愈出院,现在健康状况良好,福建省的老年患者已于6月11号死亡,主要死亡的原因是肺癌晚期,超级细菌在这个患者的病程发展中的作用还不明确。   关于超级细菌:   性质:一种带有NDM-1基因的大肠杆菌   病理:具有强大的抗药性,能够分解绝大多数的抗生素。能潜入其他种类的病菌并互相传递蔓延   起源地:源自印度、巴基斯坦,已在16个国家或地区,造成至少200起病例   感染途径:现在还是在医院内感染为主,没到印度医院接受侵入性治疗,不会感染   预防:目前不知有何特效预防方法,但做好勤洗手等个人卫生防护很有必要。
  • 14部门打响细菌耐药“抗击战” 仪器研发也不能少
    近日,国家卫生计生委、发展改革委等14个部门联合印发了《遏制细菌耐药国家行动计划(2016-2020年)》(以下简称《行动计划》),旨在为加强抗菌药物管理,遏制细菌耐药,维护人民群众健康,促进经济社会协调发展。  《行动计划》明确,争取研发上市全新抗菌药物1-2个,新型诊断仪器设备和试剂5-10项。具体而言,加强细菌耐药防控科技部署,支持新型抗感染药物研发,特别是具有不同作用机制与分子结构的创新药物研发;支持耐药菌感染快速诊断技术的研发,特别是快速鉴别细菌感染与非细菌感染的技术设备、耐药菌快速检测仪器设备以及基层医疗机构应用微生物检测仪器设备的研发;支持相关疫苗研发等。  全文如下:关于印发遏制细菌耐药国家行动计划(2016-2020年)的通知国卫医发〔2016〕43号  各省、自治区、直辖市及新疆生产建设兵团卫生计生委(卫生局)、发展改革委、教育厅(教委、教育局)、科技厅(委、局)、工业和信息化主管部门、财政厅(局)、国土资源厅(局)、环境保护厅(局)、农业(农牧、农村经济、畜牧兽医)厅(委、局)、文化厅(局)、新闻出版广电局、食品药品监督管理局、中医药管理局,解放军各大单位卫生部门:  为积极应对细菌耐药带来的挑战,提高抗菌药物科学管理水平,遏制细菌耐药发展与蔓延,维护人民群众身体健康,促进经济社会协调发展,国家卫生计生委等14部门联合制定了《遏制细菌耐药国家行动计划(2016-2020年)》(以下简称《行动计划》,可从国家卫生计生委医政医管栏目下载)。现印发你们,请结合各地、各部门的工作实际认真组织实施,切实落实各项政策和保障措施,保证《行动计划》目标如期实现。国家卫生计生委 国家发展改革委教育部 科技部工业和信息化部 财政部国土资源部 环境保护部农业部 文化部新闻出版广电总局 食品药品监管总局国家中医药管理局 中央军委后勤保障部卫生局2016年8月5日遏制细菌耐药国家行动计划(2016-2020年)  为加强抗菌药物管理,遏制细菌耐药,维护人民群众健康,促进经济社会协调发展,制定本行动计划。  一、前言  我国是抗菌药物的生产和使用大国。抗菌药物广泛应用于医疗卫生、农业养殖领域,在治疗感染性疾病挽救患者生命、防治动物疫病提高养殖效益以及保障公共卫生安全中,发挥了重要作用。但是,由于新型抗菌药物研发能力不足、药店无处方销售抗菌药物、医疗和养殖领域不合理应用抗菌药物、制药企业废弃物排放不达标、群众合理用药意识不高等多种因素,细菌耐药问题日益突出。细菌耐药最终影响人类健康,但造成细菌耐药的因素及其后果却超越了卫生领域,给人类社会带来了生物安全威胁加大、环境污染加剧、经济发展制约等不利影响,迫切需要加强多部门多领域协同谋划、共同应对。  二、工作目标  从国家层面实施综合治理策略和措施,对抗菌药物的研发、生产、流通、应用、环境保护等各个环节加强监管,加强宣传教育和国际交流合作,应对细菌耐药带来的风险挑战。到2020年:  (一)争取研发上市全新抗菌药物1-2个,新型诊断仪器设备和试剂5-10项。  (二)零售药店凭处方销售抗菌药物的比例基本达到全覆盖。省(区、市)凭兽医处方销售抗菌药物的比例达到50%。  (三)健全医疗机构、动物源抗菌药物应用和细菌耐药监测网络 建设细菌耐药参比实验室和菌种中心 建立医疗、养殖领域的抗菌药物应用和细菌耐药控制评价体系。  (四)全国二级以上医院基本建立抗菌药物临床应用管理机制 医疗机构主要耐药菌增长率得到有效控制。  (五)人兽共用抗菌药物或易产生交叉耐药性的抗菌药物作为动物促生长应用逐步退出 动物源主要耐药菌增长率得到有效控制。  (六)对全国医务人员、养殖一线兽医和养殖业从业人员完成抗菌药物合理应用培训 全面实施中小学抗菌药物合理应用科普教育 开展抗菌药物合理应用宣传周。  三、主要措施  (一)发挥联防联控优势,履行部门职责。  发展改革部门促进抗菌药物研发和产业化 科技部门通过相关科技计划(专项、基金等)统筹支持抗菌药物和细菌耐药研究 财政部门安排细菌耐药控制相关经费,加强资金管理和监督 食品药品监管部门加强抗菌药物的审批、生产、流通管理,重点加强零售药店凭处方销售抗菌药物管理 工业和信息化部门完善医药产业政策,促进抗菌药物绿色生产和相关成果的产业化 卫生计生部门负责加强抗菌药物临床应用管理,做好遏制细菌耐药工作的组织协调和督促落实,中医药管理部门、军队卫生部门分别做好中医医疗机构、军队医疗机构的抗菌药物临床应用管理 农业部门加强兽用抗菌药物生产、经营、使用环节监管,减少动物源细菌耐药 国土资源部门加强土壤环境抗菌药物监测能力建设 环境保护部门加强抗菌药物环境污染防治工作,加强抗菌药物环境执法和环境监测能力建设,加快抗菌药物污染物指标评价体系建设 教育部门将抗菌药物合理应用相关知识纳入中小学健康教育内容并落实 文化部门、新闻出版广电部门通过广播、电视等主要媒体向公众广泛宣传抗菌药物合理应用知识。  (二)加大抗菌药物相关研发力度。  1.鼓励开展细菌耐药分子流行病学和耐药机制研究。及时掌握我国不同地区、人群、医疗机构、动物等细菌耐药发展趋势、传播与差别,加大基础研究力度,阐释细菌致病和耐药机制,为制订耐药控制策略与研究开发新药物新技术提供科学数据。  2.支持新型抗感染药物、仪器设备和疫苗的研发。加强细菌耐药防控科技部署,支持新型抗感染药物研发,特别是具有不同作用机制与分子结构的创新药物研发 支持耐药菌感染快速诊断技术的研发,特别是快速鉴别细菌感染与非细菌感染的技术设备、耐药菌快速检测仪器设备以及基层医疗机构应用微生物检测仪器设备的研发 支持相关疫苗研发。推动动物专用抗菌药物和可替代抗菌药物的动物疾病预防与促生长产品研究与开发。  3.支持耐药菌感染诊断、治疗与控制研究。包括新的治疗方案、优化剂量、耐药菌感染治疗策略以及临床少用抗菌药物的再评价等,提高临床治疗感染性疾病的能力水平。  4.开展抗菌药物环境污染控制研究,进行抗菌药物污染治理技术、抗菌药物在水环境和土壤中的去除以及修复技术等研究。  (三)加强抗菌药物供应保障管理。  1.完善抗菌药物注册管理制度。按照药品审评审批制度改革要求,严格抗菌药物的上市审批。依据政策对用于耐药菌感染相关创新药物、仪器设备以及疫苗加快审评审批。研究建立抗菌药物环境危害性评估制度,在医药、兽药、肥料注册登记环节,开展药物的环境危害性评估。  2.加强抗菌药物生产流通管理。加大对生产流通领域抗菌药物的监管力度,严格落实零售药店凭处方销售抗菌药物,禁止抗菌药物网络销售,打击假冒伪劣抗菌药物销售。零售药店须做好处方存留备查工作,对以各种形式规避凭处方销售抗菌药物的行为,加大处罚力度。  3.推进抗菌药物产业升级。完善医药产业政策,引导企业发展新型抗菌药物,支持抗菌药物新品种产业化。推动抗菌药物生产企业兼并重组,鼓励其采用新技术、新设备进行技术改造,促进抗菌药物绿色生产。  (四)加强抗菌药物应用和耐药控制体系建设。  1.规范抗菌药物临床应用管理。严格落实《药品管理法》、《医疗机构管理条例》、《处方管理办法》、《医疗机构药事管理规定》、《抗菌药物临床应用管理办法》、《医院处方点评管理规范(试行)》、《抗菌药物临床应用指导原则》等有关规定。鼓励建立多学科合作机制,由临床科室、感染性疾病、临床微生物、药学、医院感染管理等多学科组成工作团队,提升专业化管理水平。继续开展抗菌药物临床应用、细菌耐药监测工作,适时发布监测报告,提高监测结果利用水平。加强医务人员抗菌药物合理应用能力建设,重点加强基层医务人员知识培训。改善医疗机构基础环境,加强医院感染管理。大力加强医疗机构信息化建设,将抗菌药物管理要求通过信息化手段予以体现,逐步实现科学、高效管理,形成可持续发展的耐药控制机制。  2.加强兽用抗菌药物监督管理。制订兽用抗菌药物安全使用指导原则和管理办法,及时修订药物饲料添加剂使用规范、禁用药清单。实施兽药分类管理制度,推行凭兽医处方销售使用兽用抗菌药物管理。严格管理抗菌药物原料药的各种销售渠道。实施动物健康养殖方式,加强养殖场所卫生管理,改善养殖环境、加强饲养管理,维持动物健康状态。加强药物饲料添加剂管理,减少亚治疗浓度的预防性用药,禁止人用重要抗菌药物在养殖业中应用。加大兽用抗菌药物安全风险评估力度,加快淘汰高风险品种。制订人用、兽用抗菌药物分类表,区分人用与兽用抗菌药物种类,并依据药物的重要性、交叉耐药和临床应用品种等情况确定应用级别。  (五)完善抗菌药物应用和细菌耐药监测体系。  1.完善抗菌药物临床应用和细菌耐药监测网络。在依托现有机构基础上,设立全国抗菌药物临床应用和细菌耐药监测中心,负责医疗机构抗菌药物与耐药监测,制订监测标准和监测方案,组织实施监测工作。进一步完善抗菌药物临床应用监测网和细菌耐药监测网,开展普遍监测、主动监测和目标监测工作。监测面覆盖三级、二级医院和基层医疗机构,监测对象涵盖住院和门诊患者,获得全面细菌耐药流行病学数据。  2.建立健全养殖领域抗菌药物应用和细菌耐药监测网络。在依托现有机构基础上,设立全国兽用抗菌药物应用和动物源细菌耐药监测中心,负责养殖领域抗菌药物与耐药监测,制订监测标准和监测方案,组织实施监测工作。建立完善兽用抗菌药物应用监测网和动物源细菌耐药监测网,开展普遍监测、主动监测和目标监测工作。监测面覆盖不同领域、不同养殖方式、不同品种的养殖场(户)和有代表性的动物源性食品流通市场,获得动物源细菌耐药流行病学数据。  3.建立医疗与养殖领域抗菌药物合理应用和细菌耐药监测网络的联通机制,实现两个领域的监测结果相互借鉴参考。建立科学、合理的评价指标体系,为医疗与养殖领域加强抗菌药物应用管理提供依据。  4.建立细菌耐药参比实验室和生物标本库。实验室负责耐药菌的鉴别工作,建立标准耐药研究与监测技术体系,收集保存分离到的各种耐药细菌,提供临床与研究所需标准菌株。  (六)提高专业人员细菌耐药防控能力。  1.加强医药专业学生培养。鼓励有条件的高等医学院校在临床医学专业、药学专业开设合理用药课程。鼓励有条件的高等农林院校在动物医学专业开设动物感染性疾病治疗相关课程。  2.加强相关专业医务人员培养。大力培养抗菌药物合理应用与耐药控制人才,重点培养感染性疾病、临床药学、临床微生物等专业人才,并保证培养的数量满足医疗机构需求。加强医务人员抗菌药物合理应用与耐药控制继续教育,医务人员每年要完成一定课时的继续教育培训并考核通过。  3.加强养殖业与兽医从业人员教育。培养壮大兽医队伍,加强兽医和养殖业从业人员抗菌药物合理应用教育培训。通过开展定期或不定期培训,促进相关制度规范的落实,提高兽用抗菌药物合理应用水平。  (七)加强抗菌药物环境污染防治。  从规划及规划环评角度严格抗菌制药企业选址,同时新、改、扩建抗菌制药项目必须严格执行环境影响评价制度。加快抗菌药物污染物指标评价体系建设,就抗菌药物环境污染问题有针对性地加强环境执法以及水、土壤、固体废物等抗菌药物监测技术方法和规范等能力建设。开展抗菌药物可能的生态环境影响相关科研工作,研究抗菌药物环境污染的防治措施,推动抗菌药物废弃物减量化。  (八)加大公众宣传教育力度。  充分利用广播、电视等传统媒体和互联网、微博、微信等新媒体,广泛宣传抗菌药物合理应用知识,提高公众对细菌耐药危机的认识。将合理应用抗菌药物与社会主义新农村建设和文化、科技、卫生“三下乡”等支农惠农活动相结合,在基层文化活动中增加抗菌药物内容,减少不必要抗菌药物应用。开展中小学抗菌药物合理应用与细菌耐药科普教育与宣传活动,从小树立抗菌药物合理应用观念。医疗机构加强对患者合理应用抗菌药物的教育指导,纠正自我抗菌药物治疗行为。定期开展抗菌药物合理应用宣传周,每年与世界卫生组织同步开展宣传活动。  (九)广泛开展国际交流与合作。  积极参与世界卫生组织、世界动物卫生组织、联合国粮食及农业组织等国际组织开展的相关工作,包括防控策略与技术标准制订、抗菌药物应用和细菌耐药监测、人员培训、专题研讨等。与其他国家和地区开展耐药监测协作,控制耐药菌跨地区跨国界传播。与国际社会分享相关耐药监测结果与研究成果,共同制订具有国际危害耐药菌的控制策略。与国际社会开展新型耐药控制技术与产品的研究与开发。积极支持需要帮助的国家和地区开展耐药控制活动。  四、保障措施  (一)加大保障力度。根据政府卫生投入政策、经济社会发展水平和细菌耐药趋势,加大对遏制细菌耐药工作的投入,用于建设耐药控制相关设施、设备及人员培训等,并将遏制细菌耐药任务完成情况和绩效考核结果与财政补助挂钩。  (二)发挥专家力量。国家成立遏制细菌耐药咨询专家委员会。咨询专家委员会由医学(基础与临床医学、中医学)、兽医学(兽药)、微生物学、药学、生物制药、卫生管理、环境保护、流通管理、流行病学、生物统计、经济学、教育、传媒、信息化建设等专家组成,对抗菌药物管理与耐药控制工作提供咨询意见和政策建议。各地可以参照成立本地区的遏制细菌耐药咨询专家委员会。  (三)加强督导检查。各地要根据本行动计划要求,将工作目标和任务措施分解到具体部门,落实工作责任。各地有关部门要对地区年度工作情况进行检查,重点是医疗卫生和农业养殖应用抗菌药物、零售药店凭处方销售等情况进行检查,发现问题依法处罚,确保行动计划有效落实。
  • 三全水饺被曝细菌超标
    上海家乐福超市紧急下架问题批次产品   “思念”未了 三全“水饺”也被曝细菌超标   “思念”水饺被检出金黄色葡萄球菌事件余波未了,三全水饺却也跟着传来“不安全”的信息。日前,三全水饺被广州市工商局查出细菌超标,有意思的是这种细菌和“思念”如出一辙,也是金黄色葡萄球菌。虽然三全方面表示已经追溯召回问题产品,但部分超市采购人员表示并没接到企业通知。上海家乐福表示第一时间已要求对问题批次产品撤柜。   不久前,北京市工商局在对思念牌一批次水饺的抽检中,检测出了金黄色葡萄球菌 而根据现行的国家标准规定,速冻水饺“不得检出”该菌种。这批水饺也立即被下架召回。思念方面在接受记者采访时则表示,查出细菌的原因主要是天气较热,在物流环节出了问题导致这一批次产品不合格,并对此表示道歉,上海方面家乐福等超市第一时间对问题批次产品予以下架。   想不到,该事件余波未了,三全水饺日前也被广州市工商局查出含有金黄色葡萄球菌,这两款问题产品分别是“三全灌汤水饺(猪肉玉米蔬菜)”、“三全灌汤水饺(三鲜)”。同时,被查出细菌超标的还有“海霸王经典包心鱼丸”。消息一出,三全食品方面回应称,问题产品系今年8月工商局一次例行超市抽检的样品,三全食品获悉抽检结果的当天就将该批次产品全部下架、封存,随即启动产品回溯机制,并将同批次全部产品统一追回并销毁。对方在表达歉意的同时,也强调公司自从8月开始就进一步加强了质量管控力度,尤其在原料采购、制作工序等重要环节大幅增加抽检频次和抽样数量。   虽然三全方面表示已经及时追溯召回这些问题产品,但沪上部分超市采购人员表示并未接到相关的通知。前次对思念问题水饺第一时间采取下架措施的上海家乐福昨天告诉记者,三全的相关召回通知是否送达收悉还需进一步确认。不过,根据此次监测结果,家乐福方面已于第一时间发布全国撤架通知,要求所有相关门店将涉及品牌的问题批次下架,包括三全,海霸王等产品。   这么多知名品牌连续被曝所生产的食品含有金黄色葡萄球菌,无疑让消费者担心不已。对此,有关专家指出,无需对“金黄色葡萄球菌”过度恐慌,只要在70℃以上温度的水里煮熟,即可将其杀死,所以对于生制的速冻食品,买回后应按照包装上的说明进行保存和蒸煮,因此市民不必过度担心。
  • atp细菌检测仪的检测标准是多少
    atp细菌检测仪的检测标准是多少,ATP细菌检测仪(或称为ATP检测仪)的检测标准涉及多个方面,以下是主要的标准和参考数值:  准确性与精确性:ATP检测仪的检测结果应当与传统微生物培养方法或其他准确的微生物检测方法具有一致性。同时,检测仪在不同条件下的重复性应足够高,即在多次测试同一样本时,结果应具有较小的变异。  灵敏度与特异性:ATP检测仪应能够在低微生物含量下进行可靠的检测,适用于各种场景。此外,检测仪的检测结果应主要受到ATP的影响,而不受其他物质的干扰。在具体检测标准方面,以下是一些常见的ATP荧光检测仪的检测标准:  对于物体表面的检测,如刀具、菜板、餐具等,清洁后ATP荧光检测仪的读数应低于30RLU,30RLU至100RLU之间为警告范围,高于100RLU则为不合格。  对于使用中的物体表面,如台面、托盘等,其检测结果在低于30RLU为合格,100RLU至300RLU之间为警告范围,高于300RLU则为不合格。  对于直接接触食品和添加剂的手部卫生,单手检测结果应低于30RLU为合格,双手检测结果应低于60RLU为合格。  对于食品表面的卫生情况,如膨化食品、方便面、熟肉制品等,其检测结果应分别低于10RLU、50RLU和30RLU为合格。对于饮用水、饮料等,其检测结果应低于10RLU为合格。此外,ATP检测还可以参考一些国家标准,如《GB/T 4789.2-2022 食品微生物学检验 菌落总数测定》、《GB 15979-2002 一次性使用卫生用品卫生标准》、《GB/T 18204.4-2013 公共场所卫生检验方法 第4部分:公共用品用具微生物》等。这些标准规定了食品、卫生用品以及公共场所用品中微生物的检测方法,其中可能包括使用ATP检测仪的方法。  请注意,以上标准仅供参考,实际检测时应根据具体情况进行调整和判断。如果您需要更详细的信息,建议咨询相关领域的专家或参考相关的专业文献。
  • “十三五”我国将新建120家细菌耐药性监测站
    农业部近日印发《全国遏制动物源细菌耐药行动计划(2017—2020年)(征求意见稿)》,拟在“十三五”期间分区域建立5-8家专业化区域实验室,在全国范围内建立100-120家细菌耐药性监测站(点),布局合理的动物源细菌耐药监测网。以省级以上兽药监察(检验)机构为主体,建立健全市县级兽用抗菌药物监测机构,完成31种兽用抗菌药物272项限量指标以及63项抗菌药物残留检测方法标准制定。  计划意见稿还指出,凭借龙头企业技术优势,创立全国兽用抗菌药物科技创新联盟,围绕动物专用抗菌药物、动物源细菌耐药性检测仪器设备和以中兽药、低聚糖、微生态制剂、噬菌体等为代表的抗生素替代品和养殖领域新型耐药性控制技术与产品等领域,开展关键技术创新集成。鼓励耐药菌高通量检测仪器设备、监测网络设备以及基层兽医实验室微生物检测仪器设备的研发。鼓励开展细菌耐药分子流行病学和致病性研究,为制订耐药控制策略与研究开发新药物新技术提供科学依据。  通知原文如下:全国遏制动物源细菌耐药性行动计划(2017—2020年)(征求意见稿)  为加强兽用抗菌药物管理,综合治理兽药残留问题,有效遏制动物源细菌耐药,保障养殖业生产安全、动物源性食品安全、公共卫生安全和生态环境安全,维护人民群众身体健康,促进经济社会持续健康发展,根据《遏制细菌耐药国家行动计划(2016-2020年)》《“十三五”国家食品安全规划》和《“十三五”国家农产品质量安全提升规划》,制定本行动计划。  一、前言  我国是畜禽、水产养殖大国,也是兽用抗菌药物生产和使用大国。兽用抗菌药物在防治动物疾病、提高养殖效益、保障畜禽水产品有效供给中发挥了重要作用。当前,兽用抗菌药物市场秩序不规范、养殖环节使用不合理、科学安全用药意识不强等问题较为突出,动物源细菌耐药性风险评估和防控体系薄弱,细菌耐药形势严峻。动物源细菌耐药率上升,致使兽用抗菌药物疗效降低,迫使养殖用药增加,从而造成兽用抗菌药物毒副作用加剧、兽药残留超标风险提高,严重威胁畜禽水产品质量安全和公共卫生安全,给人类和动物健康带来很大隐患。综合治理兽用抗菌药物,遏制动物源细菌耐药性,是推动养殖业供给侧结构性改革,保障畜禽水产品质量安全的关键环节。当前亟需建立和加强动物源细菌耐药性和抗菌药物残留监测治理体系,提高风险管控能力。  二、工作目标  动物源细菌耐药性和抗菌药物残留监测防控能力、养殖环节规范用药水平、畜禽水产品质量安全水平和人民群众满意度明显提高。到2020年,实现以下目标:  (一)建立健全兽用抗菌药物应用和细菌耐药性监测技术标准和考核体系,形成覆盖全国、布局合理、运行顺畅的动物源细菌耐药性监测实验室网络。  (二)兽用抗菌药物凭兽医处方销售的比例达到50% 逐步推进兽用抗菌药物减量化使用。  (三)人兽共用抗菌药物或易产生交叉耐药性的抗菌药物作为动物促生长剂逐步退出 研发和推广低毒、低残留新兽药产品100种,淘汰高风险兽药产品100种。  (四)结合大专院校专业教育、新型农民培训和现代农业产业体系、对养殖一线兽医和养殖从业人员开展相关法律、技能宣传培训,掌握兽用抗菌药物科学使用知识。  (五)促生长兽用抗菌药物使用量降低,动物源主要细菌耐药率增长趋势得到有效控制。畜禽水产品兽用抗菌药物残留合格率保持在97%以上。  三、重点任务  为实现上述目标任务,重点围绕促生长兽用抗菌药物逐步退出、抗菌药物临床应用监管、兽用抗菌药物耐药性监测和兽药残留控制网络规划布局、兽用抗菌药使用减量化示范创建和从业人员宣传培训等方面,实施“六项工程”:  (一)实施促生长兽用抗菌药物逐步退出工程  加强重要兽用抗菌药物风险评估和预警提示,加大安全风险评估力度,明确评估时间表和技术路线图,加快淘汰风险隐患品种。逐步推进风险评估工作:  1.开展促生长人兽共用抗菌药物风险评估工作,如金霉素预混剂等产品,参照WHO、FAO、CAC、OIE等国际组织有关标准,结合我国实际,计划到2020年前完成清理退出工作。  2.开展促生长动物专用抗菌药物风险评估工作,如黄霉素预混剂等产品,收集、分析和评价相关技术资料,有针对性地开展残留和耐药监测工作,到2020年形成保留或退出的政策建议。  3.开展喹噁啉类抗菌药物风险评估工作,如乙酰甲喹、喹乙醇、喹烯酮等品种,收集监测数据,分析评价技术资料,到2020年形成逐步退出方案。  (二)实施兽用抗菌药物临床应用监管工程  1.完善兽用抗菌药物注册制度。加快兽用抗菌药物审评审批制度改革,推进人用、兽用抗菌药物分类管理,鼓励研制新型动物专用抗菌药物。人用重要抗菌药物、长期添加用于促生长作用、易蓄积残留超标、易产生交叉耐药性的抗菌药物不予批准。依据政策加快审批用于防治耐药菌感染相关创新药物以及疫苗。依据抗菌药物的重要性、交叉耐药和临床应用品种等情况确定应用级别,研究制定兽用抗菌药物分级管理办法和分级目录。逐步实施兽用抗菌药物环境危害性评估工作。  2.规范养殖环节兽用抗菌药使用。制定发布《兽用抗菌药物兽医临床使用指导原则》,进一步规范兽医临床使用行为。推进养殖环节社会化兽医服务体系建设,推动实施兽用处方药管理、休药期等兽药安全使用制度。开展兽药使用质量管理规范研究工作,建立养殖主体兽药采购、储存、使用等各环节管理要求和操作规程,系统规范兽药使用行为。开展饲料药物添加剂规范、禁用兽药清单、休药期规定等修订工作,完善技术规范。  3.加强饲料生产环节兽药使用监管。加快推动饲料生产环节使用兽药的监测和预警分析工作,实施饲料中兽药监测计划,持续完善相关检测标准和判定标准,重拳打击非法添加药物等违法行为,形成监管长效机制。  4.建立兽用抗菌药物应用监测网。设立全国兽用抗菌药物应用监测中心和区域分中心,依托兽用抗菌药物生产企业、诊疗机构、重点养殖企业、畜禽养殖大县等形成监测网络。通过兽用抗菌药物“二维码”追溯系统实时监测兽用抗菌药物临床应用种类、数量、流向和变化规律,分析抗菌药物临床应用与耐药性和残留的相关性。  (三)实施兽用抗菌药物耐药性监测工程  1.完善动物源细菌耐药监测网。建设国家动物源细菌耐药性监测中心,制订养殖领域抗菌药物使用与耐药性监测标准和监测方案。分区域建立5-8家专业化区域实验室,在全国范围内建立100-120家细菌耐药性监测站(点)。构建以国家实验室、区域实验室为主体,以大专院校、科研院所等实验室为补充,分工明确、布局合理的动物源细菌耐药监测网。  2.加强动物源细菌耐药监测。开展普遍监测、主动监测和目标监测工作。覆盖不同领域、不同养殖方式、不同品种的养殖场(户)和有代表性的畜禽水产品流通市场。通过国家和省市动物源细菌耐药性监测网,逐级上传药敏试验结果以及MIC频率分布 抗菌药物和饲料药物添加剂以种类和剂量分布频率逐级上传。获得动物源细菌耐药流行病学数据,支持耐药菌感染诊断、治疗与控制。  3.加强医疗与养殖领域合作。建立医疗与养殖领域抗菌药物合理应用和细菌耐药监测网络及其数据分析和发布的联通机制,实现两个领域的监测结果相互借鉴参考。  (四)实施兽用抗菌药物残留控制工程  1.加强畜禽水产品的抗菌药物残留监测工作。以省级以上兽药监察(检验)机构为主体,建立健全市县级兽用抗菌药物监测机构,吸收第三方检测力量,持续实施抗菌药物残留监控计划,严格实施官方抽样、盲样检测、阳性追溯等制度,依法严肃查处问题产品。完成31种兽用抗菌药物272项限量指标以及63项抗菌药物残留检测方法标准制定。  2.加强抗菌药物和耐药菌的环境污染防治。新、改、扩建兽药企业、养殖企业必须严格执行环境影响评价制度。加强养殖粪污抗菌药物残留检测,建立养殖废弃物抗菌药物残留状况动态监测控体系,推广先进的环境控制技术、粪污处理技术,促进生态养殖发展。  (五)实施兽用抗菌药物使用减量化示范创建工程  在奶牛养殖大县、生猪养殖大县和全国绿色养殖示范县选择生猪、家禽和奶牛等优势品种,遴选中兽药、微生态制剂等低毒、低残留兽用抗菌药物产品中可推广使用的品种名录,研制流行菌株的细菌疫苗,研究推广相关补贴制度 先行试点、总结模式、逐步推广,开展兽用抗菌药物使用减量化示范创建工程,从源头减少兽用抗菌药物使用量。  (六)实施从业人员培训和公众宣传教育工程  加强养殖业与兽医从业人员教育。将兽用抗菌药物使用规范纳入新型职业农民培育项目课程体系和执业兽医资格考试内容。鼓励有条件的大专院校开设抗菌药物合理使用相关课程。加强兽医和养殖业从业人员抗菌药物合理使用培训考核。充分利用广播、电视等传统媒体和互联网、微博、微信等新媒体,广泛宣传抗菌药物合理使用知识,提高公众对细菌耐药性危机的认知度。与世界卫生组织同步开展兽用抗菌药物合理应用宣传周活动。  四、能力建设  (一)提升信息化能力。完善兽用抗菌药物生产企业、兽用抗菌药物产品批准文号等基础信息数据库,推动省市县三级配备必要的软硬件设施设备,实现与国家兽用抗菌药物追溯系统对接,深入推进兽药“二维码”追溯系统建设,提高兽用抗菌药物生产、经营、使用环节等信息采集、传输、汇总、分析和评估能力。  (二)提升标准化能力。建立适合我国国情的动物源细菌耐药性检测监测标准体系,开展实验室能力比对,为监测工作提供有力支撑。制定统一的耐药性检测监测相关标准,认证相应的检测仪器、试剂,制定各级监测网的管理规则和数据库标准,分区域建立耐药性监测参比实验室,指导建立菌种库、标本库。  (三)提升科技支撑能力。发挥科研院所、龙头企业技术优势,创立全国兽用抗菌药物科技创新联盟,围绕动物专用抗菌药物、动物源细菌耐药性检测仪器设备和以中兽药、低聚糖、微生态制剂、噬菌体等为代表的抗生素替代品和养殖领域新型耐药性控制技术与产品等领域,开展关键技术创新集成。鼓励耐药菌高通量检测仪器设备、监测网络设备以及基层兽医实验室微生物检测仪器设备的研发。鼓励开展细菌耐药分子流行病学和致病性研究,为制订耐药控制策略与研究开发新药物新技术提供科学依据。  (四)提升国际合作能力。主动参与WHO、OIE、FAO等相关国际组织开展的耐药性防控策略与CLSI、EUCAST标准制修订等相关工作,与其他国家和地区开展动物源细菌耐药性监测协作,控制耐药菌跨地区跨国界传播。加强与发达国家抗菌药物残留控制机构及重要国际组织合作,参与国际规则和标准制定,主动应对国际畜禽水产品抗菌药物残留问题突发事件。  五、保障措施  (一)加强组织领导。各地、各有关部门要深刻认识做好动物源细菌耐药防控工作的极端重要性,强化组织领导。要根据本计划确定的发展目标和主要任务,认真履行日常监管、监督抽检责任。要强化责任落实,明确养殖和屠宰者的主体责任,各级监管部门的监管责任,层层传导责任压力,切实将各项工作任务落到实处。  (二)加大政策支持。积极争取发改、财政、科技等部门支持,加大动物源细菌耐药性防控体系建设、监测评估、监督抽查、中兽药补贴和抗菌药物减量化示范创建等工作的支持力度 逐步建立多元化投入机制,鼓励和引导企业和社会资金投入。  (三)发挥专家力量。改组成立全国兽药残留和兽用抗菌药物控制专家委员会,为动物源细菌耐药监测、监管体系建设与完善提供专业指导 承担兽用抗菌药物耐药性风险评估任务,提供风险管理和政策建议。在相关国家现代农业产业技术体系中增设抗菌药物替代研发、细菌耐药机制研究、耐药检测方法与标准研究等岗位,鼓励各地建设兽用抗菌药创新团队。  (四)落实目标考核。推动各地将兽用抗菌药物使用监管及动物源细菌耐药控制纳入地方政府考核范围,对动物源细菌耐药性监管体系、耐药率、兽药残留超标率、条件保障和经费预算等指标进行量化考核。农业部制定考核评价标准,按年度、区域、进度进行量化、细化,各地要根据工作要求,将工作目标和任务措施分解到具体部门和养殖企业,确保行动计划有效落实。
  • 细菌内毒素检测技术应用及光度法细菌内毒素定量检测实操培训班的通知
    各有关单位: 为了进一步帮助药品检验检测机构和相关制药生产企业提升细菌内毒素检测能力,海南省药师协会联合科德角国际生物医学科技(北京)有限公司定于2023年11月14日-15日在海口举办“细菌内毒素检测技术应用及光度法细菌内毒素定量检测实操培训班”。现将有关事项通知如下:一、培训组织主办单位:海南省药师协会协办单位:科德角国际生物医学科技(北京)有限公司二、培训对象药品生产企业、医疗器械生产企业、药检所以及医疗机构从事细菌内毒素检查工作的质检人员。三、培训时间、地点及费用(一)培训时间:11月14日-15日,培训为期1.5天;(二)培训地点:海南省海口市龙华区金盘南侧建设一横路1号吉兴雅苑1栋一楼109会议室。(三)培训费500元/人(含资料费、中餐费、证书费等)。四、培训讲师尹雪雁 科德角国际资深技术主管秦焕甲 科德角国际高级应用工程师五、培训内容(一)细菌内毒素基础知识及2025版中国药典细菌内毒素检查法趋势介绍1、内毒素、鲎试剂和内毒素检测概述2、鲎反应干扰因素及方法选择3、细菌内毒素检查法法规介绍(二)细菌内毒素光度法检测开发实例分享1、细菌内毒素光度检测开发实例2、基因重组鲎试剂方法介绍(三)细菌内毒素定量检测系统的应用指导1、计算机要求2、数据库3、Pyros® eXpress 软件安装和注册4、通用设置的介绍5、库的介绍6、检测模板介绍7、软件扩展(四)细菌内毒素定量检测系统的现场实操培训六、报名(一)参训人员用微信扫以下二维码报名,报名截止时间为:2023年11月10日18:00,有特殊情况请与李老师联系联系方式:400-860-5168转5075 七、其他事项联系电话:400-860-5168转5075办公地址:海口市龙华区金盘建设一横路1号吉兴雅苑西门1栋一楼102室。
  • BLT小课堂|细菌发光原理及其在动物活体成像中的应用
    夏季的夜晚,走到山间草丛,可以看到一种昆虫提着一盏灯在飞行,这就是萤火虫在发光。萤火虫体内的荧光素酶催化底物荧光素,发生化学反应,产生光子。这也是大家比较熟悉的,在动物活体生物发光成像当中运用到的反应原理。通过利用该原理,配合上转基因技术及动物活体成像系统,我们可以非侵入性和纵向研究小动物的基因表达、蛋白质-蛋白质相互作用、肿瘤学机制和抗肿瘤药物药效及动力学和疾病机制等;相比于传统研究手段,这种方法通过在动物整体水平上进行研究,能提供更多有用的信息,同时大幅减少实验研究所需的动物数量和降低个体间的差异。萤火虫荧光素酶反应的示意图(a)、荧光素酶以报告基因的形式进入细胞核,并翻译成功能性酶。该酶将底物荧光素、氧(O2)和三磷酸腺苷(ATP)转化为氧荧光素、二氧化碳(CO2)和二磷酸腺苷(ADP),同时发光。(b)、萤火虫底物D-荧光素及其产物氧合荧光素的化学结构。 那么问题来了,自然界会发光的生物除了有萤火虫,还有鱼类、藻类、植物和细菌等,这些生物的发光原理是否也和萤火虫一样呢?这些发光原理能否运用到动物活体成像研究中呢?今天,小编就为大家介绍另外一种生物发光原理—细菌发光及其在动物活体成像中的应用。细菌荧光素酶对于细菌的生物发光现象,早在1875年就被发现了,研究人员Boyle首先揭示了细菌发光对氧气的依赖。而随着研究的深入,研究人员发现细菌发光涉及到的酶有荧光素酶、脂肪酸还原酶和黄素还原酶,以及底物还原性黄素单核苷酸和长链脂肪醛。在发光细菌中发现的一种操纵子,基因顺序为luxCDABEG,其中luxA和luxB基因分别编码细菌荧光素酶α和β亚基,luxC、luxD和luxE基因分别编码合成和回收荧光素酶醛底物的脂肪酸还原酶复合物的r、s和t多肽,luxG编码黄素还原酶。到目前为止所知的所有发光细菌,都是基于细菌荧光素酶介导的酶反应来产生光。这是一种大约80kDa的异二聚体蛋白,与长链烷烃单加氧酶具有同源性。该酶通过以下反应介导O2氧化还原的黄素单核苷酸(FMNH2)和长链脂肪族(脂肪)醛(RCHO),以产生蓝绿光。细菌荧光素酶介导的酶反应1细菌发光明场图2细菌发光发光图细菌发光反应过程在发光反应中,FMNH2与酶结合,然后与O2相互作用,形成黄素-4A-过氧化氢。这种复合物与醛结合形成一种高度稳定的中间体,其缓慢的衰变导致FMNH2和醛底物的氧化和发光,反应的量子产率估计为0.1-0.2个光子。该反应对FMNH2具有高度特异性,体内的醛底物可能是十四醛。FMNH2是由NADH:FMN氧化还原酶(黄素还原酶)提供,该酶从细胞代谢(如糖酵解和柠檬酸循环)中产生的NADH中提取还原剂,还原剂通过自由扩散从FMNH2向荧光素酶的转移。长链醛的合成是由脂肪酸还原酶复合物催化。与细菌荧光素酶一样,底物FMNH2和长链脂肪醛也是细菌发光反应的特异性底物;真核生物生物发光使用不同的化学物质和荧光素酶,它们在蛋白质或基因序列水平上与细菌荧光素酶不同。细菌中的荧光素酶反应过程细菌发光原理在动物活体成像中的应用目前,细菌发光原理在动物活体成像研究中的应用有:传染病研究、菌种抗药性测试及细菌介导的肿瘤治疗等。通过将luxCDABE操纵子稳定地整合到不同的细菌基因结构中,不需要任何其他外源底物(除了氧)来产生生物发光,再通过一套超灵敏的动物活体成像系统(AniView 100),为监测细菌物种感染负担、致病机理研究和肿瘤药物靶向治疗等提供了一种快速便捷的研究检测方法。AniView 100检测减毒鼠伤寒沙门氏菌体内靶向性肿瘤情况(箭头指向为肿瘤)应用说明如以细菌介导的肿瘤治疗为例,传统的癌症治疗方法是手术切除,治疗转移性癌症还需要与其他疗法(如放疗或化疗)相结合。这些疗法存在局限性,如放疗的疗效主要取决于组织氧水平,肿瘤内坏死区和缺氧区低氧浓度是治疗失败的常见原因;而化疗的疗效主要取决于药物的分布,肿瘤内坏死区和缺氧区的血管不规则会影响药物的输送,限制药物的疗效。与传统方法相比,使用细菌进行癌症治疗有以下优势:首先,细菌会在肿瘤中选择性积累,肿瘤中的细菌聚集量大约是正常器官的1000倍,肿瘤特有的坏死区和缺氧区一般不会在大多数器官中形成。其次,细菌的增殖能力使得它们可以进行持续治疗;最后,许多细菌的全基因组测序已经完成,能够通过基因组操作提高它们在人类使用中的安全性,并增强其杀瘤效果。目前,细菌介导的肿瘤治疗广泛应用于DNA或siRNA的传递、运送经工程改造的毒素或前药物和触发机体免疫反应,进而达到抑制或杀灭肿瘤细胞、起到抗击肿瘤的作用。应用案例 静脉注射3天后,表达lux的鼠伤寒沙门氏菌在各种肿瘤中积聚。CT26:小鼠结肠癌,4T1:小鼠乳腺癌,MC38:小鼠结直肠腺癌,TC-1:小鼠肺癌,Hep3B:人肝细胞癌,ARO:人甲状腺癌,ASPC1:人胰腺癌应用案例 携带受L-阿拉伯糖诱导启动子pBAD表达系统控制的细胞毒蛋白(溶细胞素A)、表达lux报告基因的减毒鼠伤寒沙门氏菌,用于肿瘤治疗。总结利用生物发光原理进行动物活体成像,目前主要有两种方式。一种是使用萤火虫荧光素酶,最适合在哺乳动物细胞中表达;另外一种是细菌荧光素酶,广泛应用于原核生物。细菌Lux操纵子由于编码生物发光所需的所有蛋白质,包括荧光素酶、底物和底物生成酶,不需要外源底物,成像更加的方便,不需要像萤火虫荧光素酶一样,考虑ATP的可用性、底物分子的渗透、药代动力学和生物分布等对成像的影响。但是,细菌荧光素酶的发射波长较短(490nm),组织吸收较大,这会影响成像数据的量化;而且,对于某些真核微生物(包括真菌和寄生虫)和真核细胞,仍然需要使用萤火虫荧光素酶标记,原因在于lux报告基因没有得到足够的优化,还不能在真核细胞中稳定表达。不过由于细菌荧光素酶和萤火虫荧光素酶的发射波长不同,从而可以进行多光谱成像,用于同时定量评估小动物的不同生物过程,进一步扩展生物发光原理在动物活体成像中的应用。TipsAniView 100多模式动物活体成像系统 AniView 100多模式动物活体成像系统作为广州博鹭腾生物科技有限公司推出的高灵敏度动物活体成像系统,其采用全密闭抗干扰暗箱,避免外界光源及宇宙射线对拍照影响的同时,配合零缺陷、科研级高灵敏背部薄化、背部感应型冷CCD相机,极大地提高成像的灵敏度。AniView 100可以检测到100个luciferase标记细胞,对于动物活体细菌荧光素酶的生物发光信号,无论是在皮下或器官,均可以轻易检测到。快来关注我们,申请免费试用!
  • 气候变暖使致命细菌感染增加
    气候持续变暖影响的不只是动植物,还有肉眼难见的细菌。不过对后者来说,气候变暖带来的不是毁灭而是生长的温床。近日,一项发表于《科学报告》的研究发现,气候变暖导致美国部分海岸创伤弧菌引发的致命感染和传播增加。30年来,美国东海岸创伤弧菌感染人数从每年10人上升到了每年80人,成为此类感染的全球热点区域。该研究利用美国疾病控制和预防中心1988年~2018年的创伤弧菌感染数据,首次模拟绘制了创伤弧菌病例在美国东海岸线的位置变化。这是第一项探索气候变化如何影响未来疾病传播的研究。创伤弧菌生活在温暖的浅海岸。当人们的伤口、昆虫叮咬的部位接触海水时,就可能被创伤弧菌感染。这种感染通常在夏天达到高峰,传播迅速,对人体造成严重损害,因此创伤弧菌又有“食肉细菌”之称,感染死亡概率为1/5,许多幸存下来的人也都不得不截肢。该研究发现,创伤弧菌感染在美国正向北蔓延。20世纪80年代末,墨西哥湾和大西洋南部海岸发现了创伤弧菌感染病例,而乔治亚北部这种感染还很少见。但是现在,就连更北部的费城也出现了这种细菌感染。研究人员预测,2041年~2060年,创伤弧菌感染可能会蔓延到纽约周围的人口中心区域,加之越来越多的老年人易被感染,每年病例数可能会翻一番。而到2081年~2100年,在中高排放和全球变暖背景下,美国东部都可能出现这种感染。“预计感染人数的增加凸显了在受影响地区提高个人和公共卫生意识的必要性。这一点至关重要,因为在出现症状时及时采取行动是防止重大健康威胁发生的必要条件。”该研究主要作者、英国东英吉利大学(UEA)环境科学学院的Elizabeth Archer说。Archer指出,气候变化对世界海岸线的影响可能特别大,因为海岸线是自然生态系统和人类之间的主要边界之一,也是人类疾病的重要来源。“我们的研究表明,到21世纪末,创伤弧菌感染将进一步向北延伸,其延伸程度则取决于变暖程度,也取决于未来温室气体的排放情况。”研究小组建议,可以通过海洋或特定弧菌预警系统,实时报告个人和卫生当局危险环境条件,加强高危群体对感染的认识,并在感染高峰期的热点沿海区域设立警告标识。研究合著者、UEA 教授Iain Lake表示:“观察到创伤弧菌病例沿美国东海岸向北扩展,表明气候变化已经对人类健康和海岸线产生了影响。了解未来可能发生的病例将有助于卫生部门早做打算。”
  • 广西已具"超级细菌"检测能力
    中国疾病预防控制中心通报,我国发现3例超级细菌携带者。10月27日,记者从自治区疾控中心了解到,目前广西尚未发现此种细菌,同时,广西已具备检测超级细菌的能力,疾控部门将立即开展搜集病人样本、实验室检测等一系列工作。卫生部门也要求全区医疗机构切实遵守无菌操作规程,减少院内感染。   疾控部门:试剂、人员均已到位   自治区疾控中心副主任林玫介绍,超级细菌具有超强抗药性,源于它带有一个强悍的基因,检测耐药菌是否带有这种特殊的基因,就能识别出它的“超级”身份。   近日,自治区疾控中心已从国家疾控中心领回了检测所需的试剂,人员技术也已到位,将马上开展相关的监测工作。医疗机构将保留临床诊疗中发现的耐多药病人标本,交由疾控部门做进一步检测。疾控部门也将对既往收集保存的样本进行筛查。   据介绍,超级细菌对青霉素类、头孢菌素类和碳青霉烯类的抗菌药物已经广泛耐药。易感人群包括疾病危重、入住重症监护室、长期使用抗菌药物、插管、机械通气等患者。   医疗机构:严格落实无菌操作   记者从自治区卫生厅医政处了解到,卫生部印发的超级细菌诊疗指南——《产NDM-1泛耐药肠杆菌科细菌感染诊疗指南(试行版)》,已经发放到全区的医疗机构,并要求各医疗机构做好可能出现的感染患者的诊疗工作。   根据卫生部的指导,广西的医疗机构将根据临床微生物检测结果合理选择抗菌药物,扩大抗菌药物敏感性测定范围,减少对患者的侵袭性操作,积极治疗原发疾病,根据临床特征进行中医辨证治疗。   由于超级细菌主要侵犯的是住院病人,因此,自治区卫生厅要求各级医疗机构加强医务人员手卫生、严格实施隔离措施、切实遵守无菌操作规程、加强医院环境卫生管理,减少院内感染发生几率。   药学专家:多数感冒无需抗生素   超级细菌是如何产生的?公众滥用抗生素的坏毛病难辞其咎。自治区人民医院药剂科主任药师危华玲说,其实在超级细菌出现以前,医院就碰到过不少泛耐药的病例。   泛耐药是指细菌对大多数抗生素都耐药,这给临床治疗带来了很大的困难。随着细菌的耐药性像滚雪球一样越滚越大,最终就出现了超级细菌。危华玲说,当老的抗生素不起作用时,要对付这些难缠的细菌,就越来越依靠新研制出来的抗生素。可是,新药研制的速度远远比不上细菌耐药的速度,新药也就变得越来越“短命”。   如何远离超级细菌的威胁?危华玲给公众提了四点建议:   1.使用抗生素必须诊断明确,只有细菌感染的情况才适宜使用   2.不要一感冒就用抗生素。感冒初期多数是病毒感染,只有合并细菌感染的时候,如咽喉发炎等,才应考虑用抗生素。服用抗生素来预防感冒更不可取,因为抗生素根本起不到预防作用   3.抗生素必须在医生的指导下服用,尤其是新生儿、老人、孕产妇等特殊人群,切忌不要自行服药。   4.如果必须吃抗生素,一定要遵医嘱按时按量服用,不要自己随便停药,这样很容易使身体产生耐药性。
  • 新技术确定了细菌进化中的里程碑
    p style=" text-indent: 2em text-align: justify " 细菌已经进化出生活在地球上的适应性。但与可以保存为化石的植物和动物不同,细菌几乎没有遗传进化的物理证据,这使得科学家很难准确确定不同细菌群体的进化时间。 /p p style=" text-indent: 2em text-align: justify " 麻省理工学院的科学家们已经设计出一种可靠的方法来确定某些细菌群何时出现在进化历史中。该技术可用于识别细菌进化过程中何时发生重大变化,并揭示导致这些变化的原始环境的细节。 /p p style=" text-indent: 2em text-align: justify " 1月28日在BMC进化生物学杂志上的一篇论文提到,研究人员报告使用该技术确定了,在古生代时期,大约3.5亿至4.5亿年前,几种主要的土壤细菌群从真菌中获得了一种特定的基因。这使得它们能够分解几丁质,并利用其产品生长。几丁质是一种在真菌的细胞壁和节肢动物的外骨骼中发现的纤维物质。 /p p style=" text-indent: 2em text-align: justify " 这种细菌的进化适应可能是由环境的重大转变所驱动的。大约在同一时间,早期蜘蛛,昆虫和蜈蚣等节肢动物正从海洋移动到陆地上。随着这些陆生节肢动物的传播和多样化,它们留下几丁质,创造了更加丰富的土壤环境,并为细菌提供了新的机会,特别是那些获得几丁质酶基因的细菌。 /p p style=" text-indent: 2em text-align: justify " 麻省理工学院地球,大气和行星科学系的Cecil和IdaGreen地球生物学助理教授GregoryFournier说:“在此之前,地球上应该有土壤,但它可能看起来像南极洲的干燥山谷。动物生活在土壤中之后,为微生物提供了利用优势和多样化的新机会。” /p p style=" text-indent: 2em text-align: justify " Fournier说,通过追踪细菌中的几丁质酶等某些基因,科学家们可以对动物的早期历史及其生活环境有所了解。 /p p style=" text-indent: 2em text-align: justify " “微生物在他们的基因组中包含动物生命的未知历史,我们可以用它来填补我们不仅对微生物,乃至对动物早期历史认知的空白,”Fournier说。 /p p style=" text-indent: 2em text-align: justify " 该论文的作者包括主要作者DanielleGruen博士,现在是美国国立卫生研究院的博士后,以及前博士后JoannaWolfe,现在是哈佛大学的研究科学家。 /p p style=" text-indent: 2em text-align: justify " 缺少化石 /p p style=" text-indent: 2em text-align: justify " 在没有化石记录的情况下,科学家们利用其他技术来研究细菌的“生命之树”,遗传关系图,显示出许多分支和分裂,因为细菌随着时间的推移已经演变成数十万种。科学家通过分析和比较现有细菌的基因序列建立了这个遗传关系图。 /p p style=" text-indent: 2em text-align: justify " 使用“分子钟”方法,他们可以估计某些基因突变可能发生的速率,并计算两个物种可能发生分化的时间。 /p p style=" text-indent: 2em text-align: justify " “但这只能告诉你相对时间,因为这些估计值存在很大的不确定性,”Fournier说。“我们必须以某种方式将这棵树锚定在地质记录上,是绝对时间。” /p p style=" text-indent: 2em text-align: justify " 该团队发现他们可以使用来自完全不同的生物体的化石来锚定某些细菌群进化的时间。虽然在绝大多数情况下,基因通过世代传承,从父母到后代。但每隔一段时间,一个基因就可以通过病毒或通过环境从一个生物体跳到另一个生物体,这个过程称为水平基因转移。因此,相同的基因序列可以出现在两种生物中,否则它们将具有完全不同的遗传历史。 /p p style=" text-indent: 2em text-align: justify " Fournier和他的同事推断,如果他们能够识别细菌和完全不同的生物之间的共同基因,比如一个具有明确化石记录的生物,他们可能能够将细菌的进化固定到这个基因从化石的有机体转移到细菌的时间。 /p p style=" text-indent: 2em text-align: justify " 分裂的树木 /p p style=" text-indent: 2em text-align: justify " 他们查看了数千种生物的基因组序列,并鉴定了一种基因,几丁质酶,它出现在几个主要细菌群体以及大多数真菌种类中,这些真菌具有完善的化石记录。 /p p style=" text-indent: 2em text-align: justify " 紧接着,他们利用几丁质酶基因产生所有不同物种的遗传关系图,推算出显示基于该基因组突变的物种之间的关系。接下来,他们采用分子钟方法确定每种含有几丁质酶的细菌从其各自祖先分支的相对时间。他们对真菌重复了同样的过程。 /p p style=" text-indent: 2em text-align: justify " 研究人员将真菌中的几丁质酶追踪到它最初出现在细菌中时与该基因最相似的点,并推断当真菌将基因转移到细菌时就会如此。然后,他们使用真菌的化石记录来确定转移可能发生的时间。 /p p style=" text-indent: 2em text-align: justify " 他们发现,真菌将该基因转移到几组细菌中,含有几丁质酶基因的三大类土壤细菌在34.5亿至4.5亿年前就已经多样化了。微生物多样性的快速爆发可能是对陆地动物的类似多样化的反应,特别是产生几丁质的节肢动物。这种情况发生的时期,也正如化石记录显示的那样。 /p p style=" text-indent: 2em text-align: justify " “这个结果支持上面提出的想法,一旦进入新的环境微生物群体就会尽快获得能在该环境下的基因,”Fournier指出。“原则上,这种方法可以用于更多的微生物群体,转移其他物种使用其他资源的基因。” /p p style=" text-indent: 2em text-align: justify " Fournier现在正在开发一种自动化管道,用于从大量基因数据中检测细菌和其他生物之间有用的基因转移。例如,他正在研究负责分解胶原蛋白的微生物基因,胶原蛋白是一种仅在动物身上产生的化合物,存在于柔软的身体组织中。 /p p style=" text-indent: 2em text-align: justify " “如果我们找到微生物中摄取软体组织的群体,那么我们就可以重建软体组织早期的未知历史,这在化石记录中所缺失的一部分,”Fournier说。 /p p style=" text-indent: 2em text-align: justify " 这项研究部分得到了美国国家科学基金会和西蒙斯基金会的支持。 /p p br style=" text-indent: 2em text-align: left " / /p
  • 北京市将建监测网严防“超级细菌”
    日前,一种“超级细菌”现身印度等国,引起广泛关注,耐药患者之所以频现,与抗生素滥用有关。昨天,北京市医疗机构药事管理专家委员会成立,本市将在年内建立细菌耐药监测网,及时发现耐药致病菌。初期包括所有三级医院和部分二级医院,未来将覆盖包括社区医院在内的所有医疗机构。   据悉,药事专家委员会的抗菌药物与细菌耐药监测组将承担抗菌药物的临床应用监测,收集数据并进行汇总、分析、上报和提出改进意见。   “超级细菌”对几乎所有抗菌药物均耐药,加强抗菌药物合理应用是降低细菌耐药的有效措施之一。北京大学临床药理研究所常务副所长吕媛表示,目前,我国超级耐药细菌监控网络还未监测到俗称“超级细菌”的多重耐药菌,但随着国际交往的日益紧密,极有可能在我国“现身”。   吕媛称,耐药性的出现主要是因为抗生素的不合理使用所致,本市即将建立的耐药监测网是要对各医疗机构的细菌耐药情况进行监测。届时,将从临床病人处分离致病菌,研究其对哪些抗菌类药物耐药,并根据全市汇总情况对医院用药进行指导。例如,目前发现肺炎链球菌对红霉素的耐药率比较高,就不建议医院使用。同时,也将对临床医生开展抗生素使用的培训。目前计划监测网内的医疗机构每3个月报一次监测结果,将来希望实现实时上报。   专家表示,被媒体广泛关注的多重耐药菌(即“超级细菌”)并非首个耐药菌,只是其耐药特点与其他耐药菌不同而已,如铜绿假单胞菌、鲍曼不动杆菌等都是目前临床较为关注的耐药菌。   应对措施:二三级医院处方每月点评   昨天,药事专家委员会表示,将在每个月从二、三级医院抽取100张处方,对抗生素是否过量等进行评估,提高药品使用的合理性和安全性。   药事专家委员会共分为药事管理组、抗菌药物与细菌耐药监测组、合理用药与药品不良反应监测组、处方点评组、学科建设与药学研究组、临床药学组、药品质量管理组和中药组等8个小组。其中,处方点评组将对本市医疗机构的用药情况和趋势进行监测,这也是本市首次建立合理用药的预警监测机制。   北京大学人民医院药剂科主任李玉珍表示,处方点评组将在每个月随机收集全市二、三级医院的100张处方,对门诊处方中的注射剂、抗菌素、每张处方金额及开药例数等多项内容进行评估。   李玉珍表示,届时,将对目前本市医疗机构用药的前十种进行排名,那些“安全无效”的辅助性药品、中药、注射剂等都不能在前十名之内。   马上就访:合理用药将缓解医疗费增长过快   北京市卫生局副局长郭晋和表示,目前用药不合理的现象仍然存在。他透露,如果在今后的处方点评中,不合格处方达到一定数量,将根据卫生部相关处方点评管理办法对医院进行处罚。   郭晋和表示,处方点评措施就是用合理用药来遏制医疗费的增长过快,规范医院用药,不要为了经济效益过度用药
  • 新技术显著缩短食品细菌检测时间
    日本大阪市立大学的研究人员最近开发出一种新技术,可使用水溶性四唑盐,通过电化学快速准确地确定食品中的活细菌数量。研究结果发表在最新一期《分析化学》杂志上。  快速检测技术一直是食品安全研究领域追求的目标之一。确保食品不受污染的一项最重要的评估指标就是活细菌的数量。然而,传统测量方法需要长达2天时间才能得出结果,而且这些结果只有在食品从工厂发货后才能获得,这可能会导致致命的后果,如果未检测出活细菌,则食品安全问题堪忧。因此,必须有一种检测方法来加快发货前识别细菌污染的过程。  现在,研究人员已经成功地将检查时间从2天大幅减少到大约1小时。使用这种方法,他们可以快速测量活细菌的数量,能在食品出厂前确认它们的安全性,并防止食物中毒。这种方法不需要复杂的操作或昂贵的设备。  下一步,研究人员将继续优化测量条件,并期待将这项技术与便携式传感器相结合以扩大应用。
  • 高清:揭开超级细菌实验室神秘面纱
    济南市中心医院是卫生部确定的全国19个超级细菌监测哨点医院之一。其病原微生物学实验室肩负着监测超级细菌的重任。检测超级细菌需要经过四道程序:工作人员首先将从临床患者感染部位提取的样本放在培养基上接种,然后再送入二氧化碳培养柜中进行18-24个小时的培养。培养出细菌后,进行细菌鉴定和药物敏感性试验,如果发现疑似耐药性反应,就会将其送到“临床基因扩增检验实验室”做基因分析,最快两三天就可以确认是否是超级细菌。 济南市中心医院病原微生物学实验室培养皿中的细菌(10月29日摄)。 工作人员在生物安全柜中对细菌进行接种 工作人员在进行细菌鉴定和药物敏感性试验 工作人员正在进行细菌鉴定和药物敏感性试验 工作人员在传送从临床患者感染部位提取的样本 工作人员在生物安全柜中对细菌进行接种
  • 88%的空调散热片细菌总数超标
    新京报讯 炎热的夏天,最舒服的事情,莫过于躲在家中,开启空调纳凉。然而,有多少人在享受空调时,想到要定期对它进行清洗消毒?否则,空调将吹出看不见的细菌、真菌,甚至可以在72小时内,吹霉一碗白米饭。   日前,中国疾控中心、上海市疾控中心、复旦大学公共卫生学院等机构对上海、北京、深圳进行实地家用空调入户调研发现:88%的空调散热片细菌总数超标,84%的空调散热片霉菌总数超标 空调散热片中检出细菌超标最高可达1000倍以上。   中华预防医学会消毒分会主任委员张流波介绍,空调除了吸附大量的灰尘外,还有螨虫、细菌、真菌等致病菌。运转时,空调内部,特别是散热片的细菌、真菌随出风口喷出,随呼吸道进入人体,容易导致人体出现头晕乏力,甚至患上感冒、鼻炎、哮喘等呼吸道疾病。因此,很多空调病不只是冷热交替造成的,空调里的污染也是祸源。   家用空调里究竟暗藏多少污染源?日前,记者随中华预防医学会消毒分会专家和家安实验室工作人员,一起走进普通住户家,现场观测、取样,并送入实验室培养,实验结果令人瞠目。   【实验1】   空调72小时吹霉一碗米饭   实验目的:测试空调是否会产生污染。   实验过程:取两碗等量的白米饭,置于壁挂式空调下的桌子上,其中一碗盖好。关闭门窗,打开空调。72小时后,盖好的米饭只是略有变色,但敞露于空调下的那碗米饭,已经长毛,出现大片霉斑。   市民疑问:6月份开空调前,刚把过滤网用洗洁精和水刷干净了,为什么还会这样?   专家释疑:中华预防医学会消毒分会主任委员张流波介绍,空调使用一段时间后,外罩、过滤网表面就有沉积的灰尘和污垢,很容易清洗。但空调细菌最多聚集的部位——散热片却常常被忽视。   作为空调冷热交换的核心部件,散热片除积聚污垢灰尘外,还会在冷凝水作用下滋生大量病菌。加上开空调时,通常会紧闭门窗,空气不流通,特别是夏天闷热潮湿,病菌更易滋生。   【实验2】   空调散热片藏匿大量细菌   实验目的:通过肉眼,观察空调散热片上藏着多少污垢。   实验过程:选一台使用了3年多,今年尚未清洗过的家用壁挂式空调。打开空调盖,露出的过滤网上,可看到一层厚厚的灰尘,用棉签和纸巾取样。卸下过滤网,可看到青黑色的空调散热片,乍看起来灰尘不多,但用棉签在散热片上清刮,可刮出黑灰色的絮泥状物。用白色纸巾取样,可看到散热片上附着大量污垢。   市民疑问:黑色絮泥状的污垢有没有致病菌?   专家释疑:张流波介绍,专业卫生机构检测发现,家用空调散热片上藏匿着大量细菌和真菌,平均的菌落总数每平方厘米高达4765个。其中致病菌主要包括霉菌、军团菌、金黄色葡萄球菌等大量病菌。空调运转时,散热片上的致病菌随出风口喷出,进入人体,易致头晕乏力,甚至患上感冒、肺炎等呼吸道疾病。   【实验3】   散热片污染远高于过滤网   实验目的:比较空调散热片和过滤网的污染程度。   实验过程:将实验2中收集好的样本放入培养皿,带入实验室,对样本进行细菌培养并计数。72小时后,实验结果出来了。空调过滤网上的霉菌总数为每平方厘米650个,细菌总数为每平方厘米270个 散热片上的霉菌总数每平方厘米为1110个,细菌总数为3100个。   市民疑问:清洗空调,不能只洗过滤网吗?   专家释疑:家安家居环境研究中心高级工程师张世新介绍,空调污染尤其是空调散热片污染——作为夏季室内最重要的污染源的认知仍存在很大的缺口,正成为影响家人健康的隐形杀手。调查显示,绝大多数人误以为只要把空调的过滤网罩清洗一下,就算空调清洁了。实际上,空调散热片上藏匿的污染远高于过滤网。   【实验4】   清洗剂喷洒可有效杀菌   实验目的:对比空调清洗前后的污染程度。   实验过程:关闭电源,卸下过滤网,用清水洗净 对散热片表面污垢取样。从超市购买专用的空调清洗剂,均匀喷洒在散热片上。静置10至15分钟,安装好空调,打开电源。此时,可以看到排污管排出黑色污水。40分钟后,关闭空调,重新对散热片取样。   72小时后,可看到散热片清洗前的样本,霉菌培养皿中已经长出大片霉斑,霉菌含量每平方厘米2163.04个 细菌培养皿中,可看到底部呈浆糊状,其中布满淡黄色细小颗粒,细菌含量每平方厘米2599个。清洗后的霉菌和细菌培养皿基本是透明的,霉菌含量每平方厘米为9个,细菌含量每平方厘米40个。   专家释疑:张流波介绍,因为散热片无法拆下来清洗,而且由于散热片结构的特殊性,简单擦拭也无法真正清洁。建议使用空调消毒清洗剂进行清洁消毒。   ■ 建议   夏季空调应一月一清洗   张流波表示,在关闭电源、通风的环境下,对准散热片均匀喷洒,就可以解决散热片污染问题。清洗后需要静置一段时间,是为了让消毒剂充分发挥作用。   为确保消毒产品的安全性和有效性,建议空调清洗消毒剂使用具备卫生许可批件的“卫消字×××××号”产品。清洗剂的味道经过通风,很快可以散去,正规消毒产品的味道对人体无害。   至于空调散热片清洗的频度,张流波说,春夏换季时,需要开启空调前,应该彻底清洗消毒一次 夏季,空调使用频繁,建议有条件的家庭,每月清洗一次空调,可避免空调污染。   此外,张流波介绍,室外有的污染都会进入室内。家中尘埃,散热片上面都会有污染物,一般的空调不会去除PM2.5,除了定期清洁空调,关键还要靠居室良好的通风。
  • 研究称“毒奶粉”的毒性与肠道细菌有关
    原标题:“毒奶粉”的毒性与肠道细菌有关   上海交通大学和美国北卡来罗纳大学格林波洛分校的研究人员对近年来毒奶粉事件中的主角——“三聚氰胺”在哺乳动物体内的毒性进行了系统研究,成果近日发表于《科学》杂志的子刊《科学—转化医学》。美国北卡罗来纳大学的贾伟(Wei Jia)教授(贾伟科学网博客)和上海交通大学的赵爱华(Aihua Zhao)副教授为这篇论文的共同通讯作者。   三聚氰胺是一种用于制造塑料、涂料、化肥等化工产品的工业原料。由于其含氮量高达66.6%,近年来该化合物被一些不法厂家添加进牛奶用以增加食品的蛋白质测试含量。2007年美国发生猫、狗等动物中毒死亡的事件,经查这些中毒的动物曾经食用了被添加三聚氰胺的宠物食品。在2008年中国“毒奶粉”事件中,中国多个省份数万名婴儿因食用被添加了三聚氰胺的奶粉后出现肾结石和肾功能衰竭。   由于三聚氰胺被认为在人体中不吸收,难以单独形成结石,迄今其临床毒性机制一直不甚明了。这项研究工作首次发现了2008年中国毒奶粉中的三聚氰胺引发的婴幼儿肾衰竭是和肠道细菌的代谢有着密切关系。一些肠道细菌,尤其是Klebisella属的细菌,具有代谢含氮化合物的活性,能够在肠道中代谢三聚氰胺,转化为三聚氰酸并逐步将其降解。三聚氰胺和三聚氰酸本身毒性极低,但极易互相结合形成晶体,这两类物质进入血液循环后,在肾小管中与尿酸结合形成大分子复合物类的结石,堵塞肾小管,导致肾毒性。   研究人员在前期研究中发现,由三聚氰胺单一化合物导致的肾毒性大鼠模型的肾脏中有结石形成,同时肠道细菌的代谢产物也发生显著的变化。因此,他们提出了三聚氰胺的毒性和肠道细菌代谢存在相关性的假说,并在实验中发现三聚氰胺的肾毒性在大鼠肠道细菌通过广谱抗生素抑制时出现显著的下降。体外实验进一步证实三聚氰胺可以被实验动物的粪便中培养出的肠道细菌所降解,这些肠道菌利用三聚氰胺作为氮源进行生物降解,通过连续脱氨基作用逐步形成三聚氰酸二酰胺、三聚氰酸一酰胺、三聚氰酸。研究者在种类繁多的肠道细菌中发现Klebsiella属的细菌并验证了其对三聚氰胺转化能力,他们将Klebsiella属细菌定植于大鼠的肠道中,发现三聚氰胺的毒性显著增加,肾脏中的结石数目增多。由此明确肠道细菌尤其是Klebsiella属能转化三聚氰胺生成三聚氰酸,进而产生结晶而具有肾毒性。研究者最后通过肾脏中三聚氰胺、三聚氰酸、尿酸的比例,以及体外重结晶实验,推断出三聚氰胺在肾脏中形成结石的动态过程,即三聚氰胺和三聚氰酸首先结合形成晶核,继而形成三聚氰胺-三聚氰酸-尿酸的共结晶,结石堵塞肾小管导致肾脏中毒。   人们在日常生活中对饮食、药物的代谢能力和生物反应存在着显著的个体差异,而这些代谢和毒性反应上的个体差异很大程度上可能来自于肠道微生物的差异。相关研究发现,不到1%的婴幼儿在食用含三聚氰胺奶粉后出现三聚氰胺所致的肾毒性和泌尿系统疾病,这样的结果提示这一部分婴幼儿之所以发生中毒现象,是由于他们的肠道含有较高丰度的能够代谢三聚氰胺的细菌如Klebsiella菌的缘故。
  • 什么是细菌内毒素检测的微流控自动化?
    Q什么是细菌内毒素检测的微流控自动化?微流控自动化是让细菌内毒素检测变得快速、高效的明确答案。A众所周知,细菌内毒素检测是一个乏味、低效的过程,耗时耗力,容易出现人为错误和代价高昂的重复检测。相比之下,Sievers® Eclipse细菌内毒素检测仪采用微流控自动化技术,使内毒素检测更快、更高效、更可持续,无需复杂的机器人技术,也不会牺牲准确度或合规性。但究竟什么是微流控自动化,它又是如何工作的呢?细菌内毒素检测手工检测设置设置一个标准96孔板需要数百个移液步骤每次检测可能需要一个小时或更长时间使技术人员面临重复性劳动伤害的风险由于大量移液和操作员与操作员之间的差异,容易出错,导致昂贵的重新检测费用使用更多的鲎试剂,成本高昂,对自然资源的需求更大使用Sievers Eclipse实现细菌内毒素检测的微流控自动化。Sievers Eclipse的与众不同之处?微流控自动化是通过一个紧凑的微孔板实现的,该微孔板通过一个台式可孵育吸光度分析仪进行分析,该吸光度分析仪的尺寸和功能与用于传统鲎试剂检测的吸光度微孔板读取器相似。Sievers Eclipse平台使用嵌入式内毒素标准品和PPC,结合一致的微流控液体处理,在不影响合规性的情况下实现动态显色法和动态浊度法测定的自动化。最终用户只需将鲎试剂水和样品装入平板,无需额外的预处理工作。然后加入1 mL鲎试剂,即可开始检测。与传统的检测方法相比,它能精确地操作更小的反应体积,从而减少试剂和样品的消耗、成本和设置时间。小型台式分析仪只需不到30个移液步骤就能完成21个样品的检测,设置时间最短仅需9分钟。这意味着您一天可以进行四次21个样品的检测,比传统检测节省数小时的宝贵时间。微孔板中含有嵌入式内毒素,每个样本至少可重复绘制3点标准曲线。21个样品仅需1 mL鲎试剂,鲎试剂用量最多可减少90%。这减少了对宝贵自然资源的需求,并提供了一种完全符合细菌内毒素检测标准的检测方法,可以继续保持全球鲎的数量。使用Eclipse微孔板进行液体处理分析仪启动后,微流控自动化系统将处理所有繁琐的工作:测量、与鲎试剂混合,并在整个检测过程中提供连续读数。微孔板旋转,向心微流控自动化系统将建立和释放压力,使液体均匀地通过微孔板中的通道分散。液体测量、流动和混合自动化,为分析做好准备。连续运动可确保保持样品和试剂的均匀混合。结果:准确的检测结果和安全的数据管理培训简单,手动设置步骤少,这意味着人为错误或不一致的机会更少,用户可以更快地开始检测。降低试剂使用成本和因错误导致的重新检测成本。Sievers Eclipse完全符合所有药典要求,包括USP 、EP 2.6.14、中国药典ChP四部1143和JP 4.01等等。企业级软件解决方案符合21 CFR PART 11和ALCOA+数据可靠性准则。完全合规的细菌内毒素检测标准曲线 预嵌入源自USP的RSE从50-0.005 EU/mL开始的3点、4点或5点标准曲线选项,一式三份PPC 一式两份鲎试剂 使用FDA许可的鲎试剂,每21个样品仅需1 mL至少一式三份的鲎试剂确效样品 一式两份,每个微孔板最多21个样品扫二维码查看并订阅《Eclipse内毒素检测仪应用合集》与《Eclipse内毒素检测仪视频合集》。◆ ◆ ◆联系我们,了解更多!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制