当前位置: 仪器信息网 > 行业主题 > >

天巡探测器

仪器信息网天巡探测器专题为您提供2024年最新天巡探测器价格报价、厂家品牌的相关信息, 包括天巡探测器参数、型号等,不管是国产,还是进口品牌的天巡探测器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合天巡探测器相关的耗材配件、试剂标物,还有天巡探测器相关的最新资讯、资料,以及天巡探测器相关的解决方案。

天巡探测器相关的资讯

  • 天问一号火星探测器,都配备了哪些科学仪器
    p & nbsp & nbsp & nbsp & nbsp 执行我国首次火星探测任务的天问一号火星探测器由环绕器、着陆巡视器两部分组成,总质量约5吨。 br/ span class=" dplayer-bezel-icon" /span /p div class=" img-para" style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/658bcabc-84a9-4d8f-bce0-087883efbedc.jpg" title=" 5581487952591340.jpg" alt=" 5581487952591340.jpg" / /div p class=" img-desc" 天问一号火星探测器 /p p data-node-type=" Paragraph" span data-node-type=" Text" strong 环绕器携带了7台科学仪器: /strong /span br data-node-type=" Break" / /p p data-node-type=" Paragraph" span data-node-type=" Text" 01 高分辨率相机 /span br data-node-type=" Break" / /p p data-node-type=" Paragraph" span data-node-type=" Text" 它用于拍照火星表面重点区域精细观测图像,研究火星地形地貌和地质构造。 /span br data-node-type=" Break" / /p p data-node-type=" Paragraph" span data-node-type=" Text" 02 中分辨率相机 /span br data-node-type=" Break" / /p p data-node-type=" Paragraph" span data-node-type=" Text" 它用于探测火星地形地貌及其变化,绘制火星全球遥感影像图。 /span br data-node-type=" Break" / /p p data-node-type=" Paragraph" span data-node-type=" Text" 03 火星矿物光谱探测仪 /span br data-node-type=" Break" / /p p data-node-type=" Paragraph" span data-node-type=" Text" 它用于分析研究火星整体化学成分与化学演化历史、火星矿物组成与分布以及析火星资源及其分布区。 /span br data-node-type=" Break" / /p p data-node-type=" Paragraph" span data-node-type=" Text" 04 次表层探测雷达 /span br data-node-type=" Break" / /p p data-node-type=" Paragraph" span data-node-type=" Text" 用于探测研究火星的内部结构、主要成分以及火星表面地形等。 /span br data-node-type=" Break" / /p p data-node-type=" Paragraph" span data-node-type=" Text" 05 火星磁强计 /span br data-node-type=" Break" / /p p data-node-type=" Paragraph" span data-node-type=" Text" 它用于探测研究火星电离层和火星空间磁场环境等。 /span br data-node-type=" Break" / /p p data-node-type=" Paragraph" span data-node-type=" Text" 06 火星能量粒子分析仪 /span br data-node-type=" Break" / /p p data-node-type=" Paragraph" span data-node-type=" Text" 它用于绘制火星全球和地火转移轨道不同种类能量粒子辐射的空间分布图,研究近火星空间环境和地火转移轨道能量粒子的能谱、元素成分和通量的特征及其变化规律。与其它几台仪器等联合起来,还能够用于研究近火星空间能量粒子辐射与大气的关系,太阳风暴能量粒子事件对火星大气逃逸的影响与相互作用的规律,火星粒子加速与输运过程。 /span br data-node-type=" Break" / /p p data-node-type=" Paragraph" span data-node-type=" Text" 07 火星离子与中性粒子分析仪 /span br data-node-type=" Break" / /p p data-node-type=" Paragraph" span data-node-type=" Text" 它用于研究太阳风和火星大气相互作用、火星激波附近中性粒子加速机制,以及火星等离子体中的粒子特性等。 /span br data-node-type=" Break" / /p p data-node-type=" Paragraph" span data-node-type=" Text" /span br data-node-type=" Break" / /p p data-node-type=" Paragraph" span data-node-type=" Text" strong 巡视器 /strong /span span data-node-type=" Text" ,也就是火星车,携带以下6台科学仪器: /span br data-node-type=" Break" / /p p data-node-type=" Paragraph" span data-node-type=" Text" 01 次表层探测雷达 /span br data-node-type=" Break" / /p p data-node-type=" Paragraph" span data-node-type=" Text" 它用于对火星地下一定深度进行探测,从而研究巡视区火星表层、次表层地质分层结构与组成类型。 /span br data-node-type=" Break" / /p p data-node-type=" Paragraph" span data-node-type=" Text" 02 地形相机 /span br data-node-type=" Break" / /p p data-node-type=" Paragraph" span data-node-type=" Text" 它用于研究火星表面形貌和地质构造特征。 /span br data-node-type=" Break" / /p p data-node-type=" Paragraph" span data-node-type=" Text" 03 多光谱相机 /span br data-node-type=" Break" / /p p data-node-type=" Paragraph" span data-node-type=" Text" 它用于研究火星表面形貌特征与物质类型分布。 /span br data-node-type=" Break" / /p p data-node-type=" Paragraph" span data-node-type=" Text" 04 火星气象测量仪 /span br data-node-type=" Break" / /p p data-node-type=" Paragraph" span data-node-type=" Text" 它用于研究火星表面气候特征,监测火星表面声音。 /span br data-node-type=" Break" / /p p data-node-type=" Paragraph" span data-node-type=" Text" 05 火星表面磁场探测仪 /span br data-node-type=" Break" / /p p data-node-type=" Paragraph" span data-node-type=" Text" 它用于探测研究着陆区火星磁场、火星空间磁场和火星内部局部构造。 /span br data-node-type=" Break" / /p p data-node-type=" Paragraph" span data-node-type=" Text" 06 火星表面成分探测仪 /span br data-node-type=" Break" / /p p data-node-type=" Paragraph" span data-node-type=" Text" 它用于识别火星表面矿物分析和岩石,分析火星表面物质的化学元素组成。 /span br data-node-type=" Break" / /p p data-node-type=" Paragraph" span data-node-type=" Text" /span br data-node-type=" Break" / /p p data-node-type=" Paragraph" span data-node-type=" Text" 这些不同分辨率的相机和能探测火星浅层结构的浅层雷达等,未来可以帮助我们进行火星上的水冰分布、物理场和内部结构的研究,进而建立起对火星全面而基础的认识。 /span /p
  • 多国探测器飞抵火星,科学仪器助力火星探测
    近日,中国“天问一号”、美国“毅力号”以及阿联酋“希望号”火星探测器飞抵火星轨道。中国“天问一号”携13台科学仪器踏入环火轨道2月10日,“天问一号”火星探测器顺利实施近火制动,完成火星捕获,正式踏入环火轨道。据了解,天问一号共携带了13个高科技科学仪器,火星磁力仪,火星矿物学光谱仪,火星离子和中性粒子分析仪,火星高能粒子分析仪,火星轨道地下探测雷达,地形摄像机,火星探测器地下探测雷达,火星表面成分检测器,火星气象监测器,火星磁场检测器,光谱摄像机,还有两个先进摄像头。其中,轨道器配备了7个科学仪器,火星巡视车配备了6个科学仪器。火星表明成分探测仪结合了被动短波红外光谱探测和主动激光诱导击穿光谱探测技术,可以探测火星表面物质反射太阳光的辐射信息,同时其可主动对几米内的目标发射激光产生等离子体,测量原子发射光谱可准确获取物质元素的成分和含量。火星矿物光谱分析仪搭载在火星环绕器上。在环绕器对火星开展科学遥感探测期间,该仪器可在近火段800km以下轨道,通过推帚式成像、多元实时动态融合的总体技术,获取火星表面的地貌图像与相应位置的光谱信息,为探测火星表面元素与矿物成分等提供科学数据。小型化、高集成化是深空探测载荷发展的主要趋势。火星离子与中性粒子分析仪采用从传感器到电子学进行最大限度共用的设计思路,在一台仪器中实现对离子和能量中性原子进行能量、方向和成分的探测,大大降低了仪器对卫星平台的资源需求。仪器采取静电分析进行离子的方向和能量测量、采取飞行时间方法进行离子成分的测量。中性原子采用电离板电离成带电离子,后端的能量测量和成分测量与离子相同。鉴定件样机已经完成了初步的测试定标,结果表明其满足设计要求。 阿联酋“希望号”携3组设备抵达火星当地时间2月9日,阿联酋“希望号”火星探测器抵达火星,对火星大气开展科学研究。这是阿联酋首枚火星探测器,由阿联酋和美国合作研制。“希望”号探测器历经半年时间,飞行近5亿公里,阿联酋由此成为第五个到达火星的国家。“希望”号于2020年7月20日从日本鹿儿岛县种子岛宇宙中心发射升空。“希望”号主要任务是研究火星气候和大气的日常和季节变化。由于阿联酋政府明确要求该国项目团队不能直接从别国购买探测器,阿联酋的工程师深度参与了合作研发。“希望”号高约2.9米,其太阳能电池板完全展开时宽约8米,重1.5吨,携带3组研究火星大气层和监测气候变化的设备。“希望”号的主要任务是拍摄火星大气层图片,研究火星大气的日常和季节变化。与人类今年计划发射的另外两个火星探测器不同,“希望”号不会在火星着陆,而是在距火星表面2万至4万公里的轨道上环绕火星运行。“希望”号绕火星运行一周需要大约55小时,它将持续围绕火星运行至少两年。美国“毅力号”漫游者火星车将登录火星美国宇航局的“毅力号(Perseverance)”漫游者火星车目前计划于2021年2月18日着陆。该次着陆顺序大多为自动化。据了解,“毅力号”(Perseverance)火星探测器为NASA公布的新一代火星车,由美国的初一学生亚历山大马瑟命名,用于搜寻火星上过去生命存在的证据。2020年5月18日,NASA公布“毅力号”火星车多项测试视频集锦,由于火星车登陆后无法对其进行维修,团队需确保其能承受极端温度变化及持续辐射的环境。2020年7月30日,美国“毅力”号火星车从佛罗里达州卡纳维拉尔角空军基地升空。毅力号探测器将进行一次近7个月的火星旅行,并于2021年2月18日在火星杰泽罗陨坑(Jezero)内以壮观的“空中起重机”方式安全着陆。“毅力号”是一个2300磅(1043千克)的火星车,是世界最大的行星漫游车。其样品处理臂由一对组件组成:Bit Carousel和Adaptive Caching Assembly(自适应缓存装置),它们将用于收集、保护这些灰尘和岩石样本并将其返回给科学家。Bit Carousel 由9个钻头组成,火星车将使用它们钻入地面,拉动样本并将它们传递到火星车内部,以通过自适应缓存装置进行分析。该系统具有七个电机和总共3000个零件,并负责存储和评估岩石和灰尘样品。毅力号身上总共安装了五款成像工具,首先是桅杆头上的SuperCam(位于大的圆形开口中),其次是两个位于桅杆下方灰框中的Mastcam-Z导航摄像头。激光、光谱仪、SuperCam成像仪将用于检查火星的岩石和土壤,以寻找与这颗红色星球的前世有关的有机化合物。两台高分辨率的Mastcam-Z相机能够与多光谱立体成像仪器一起工作,以增强毅力号火星车的行驶和岩心采样能力。该探测器的10个科学设备中有一个叫做“MOXIE”,它能从火星稀薄、以二氧化碳为主的大气层中制造氧气,这些的设备一旦扩大规模,就可以帮助未来宇航员探索火星,这是美国宇航局将在21世纪30年代实现的重要太空目标。此外,一架被命名为“Ingenuity”的1.8公斤重的小型直升机将悬挂在毅力号腹部位置抵达火星,一旦毅力号找到合适位置,Ingenuity直升机将分离,并进行几次试飞,这将是首次旋翼飞行器在地外星球飞行。美国宇航局官员表示,如果Ingenuity直升机成功飞行,未来火星任务可能经常采用直升机作为探测器或者宇航员的“侦察兵”。旋翼飞行器可以进行大量科学勘测工作,探索难以到达的区域,例如:洞穴和悬崖。同时,Ingenuity直升机配备一个摄像系统,可以拍摄具有重要研究价值的火星表面结构 。美国洞察号执行任务失败,被迫“冬眠”然而,火星探测并非一帆风顺,与此同时,也传来了美国“洞察号”任务失败的消息。“洞察”号火星无人着陆探测器是美国宇航局向火星发射一颗火星地球物理探测器,它的机身设计继承先前的凤凰号探测器,着陆火星之后将在火星表面安装一个火震仪,并使用钻头在火星上钻出迄今最深的孔洞进行火星内部的热状态考察。根据项目首席科学家布鲁斯巴内特(Bruce Banerdt)的说法,这一探测器将是一个国际合作进行的科学项目,并且几乎是先前大获成功的凤凰号探测器的翻版。据了解,洞察号搭载完全不同的3种科学载荷,包括两台由欧洲提供的仪器,专门设计用于探查这颗红色星球的核心深处,从而了解与其形成过程相关的线索。它将探测这里是否存在任何地震现象,火星地表下的地热流值,火星内核的大小,并判断火星的内核究竟处于固态还是液态。巴内特说:“地震仪设备(即SEIS,全称为‘内部结构地震实验’)由法国提供,地热流值探测仪(HP3,即热流和物理属性探测仪)则由德国提供。按照计划,热流探测器需要将探头打入地下5米深的位置。然而,由于热探针始终无法获得挖掘所需的摩擦力,美国NASA官方宣布,用于探索火星的洞察号执行任务失败。与此同时,由于“洞察”号使用太阳能电池板从太阳获取能量,而火星的冬季也是火星距离太阳最远的时候,再加上洞察号火星探测车的太阳能电池板目前被灰尘覆盖,大大减小了它能获取到的太阳能,“洞察”号将被迫进入“冬眠”。火星探测道阻且长。
  • 四川“新型数字平板探测器”填补国内空白
    成都天马微电子有限公司联合高校科研单位,自主研发了新型光电转换材料及相关工艺平台,突破了国外在数字平板探测器技术上的垄断,在器件设计、材料制备、信号链路等核心关键环节均拥有自主知识产权。产品克服了第一代CsI-a-Si间接转换平板探测器的光杂散,图像分辨率低,X射线能量和剂量高的缺点,以及第二代a-Se直接转换型器件的吸收效率低,使用环境要求苛刻及易失效等不足。该公司研发的新型数字平板探测器,采用高性能的碘化铅多晶厚膜光电转换材料,显著降低了X射线能量和剂量需求,提高了器件成像性能和图像质量。产品制造工艺与平台与现有成熟TFT面板生产平台兼容,可确保器件优良性能和产品良率,量产后可显著降低生产成本,对促进数字化X射线影像技术发展具有重要意义。   该产品的研发和产业化,填补了国内在数字平板探测器技术和制造的空白,成为首个将基于碘化铅光电导层的直接转换型数字X射线平板探测器进行产业化的企业,产品和相关技术能够大量出口并替代进口。目前,已授权1项实用新型专利,3项发明专利已进入实质审查阶段。预计2015年将新申请6项技术专利,并获得1项质量体系认证证书 ,2014年预计全年实现产值11亿元。
  • WidePIX光子计数X射线探测器-高探测效率、高分辨率工业相机
    通过开发一系列X射线光子计数型HPC探测器,来自捷克的ADVACAM团队积累了大量科研及工业领域的应用经验。探索的脚步从未停止,通过不断开发新的成像解决方案,ADVACAM探测器的能力得到不断提升。例如,WidePIX系列探测器就很好的展现了团队的创新能力。新一代的widepix探测器可广泛用于各行各业,包括矿物分析、临床前医学测试、安检、食品检测、艺术品检测等。WidePIX F:世界上最快的高分辨率工业相机基于光子计数技术,WidePIX F光谱相机拥有颠覆性的X射线成像技术,是目前处于世界领先级别的高性能工业相机。它进一步优化、提升了快速移动物体的扫描能力,是进行矿物分析,矿石分选到食品检测,临床前医学,安检或任何带有传送带系统应用的理想工具。分辨率:55微米-比目前采矿作业中常规使用的系统高20倍。探测速度:高达5米/秒 -食品检查的标准速度约为20厘米/秒,这意味着在同样的时间内,WidePIX F可以比常规方案多扫描25倍的材料。颜色/材料灵敏度:提高灵敏度对于矿石分选至关重要,请参考以下应用。MinningWidePIX可直接观察到矿石的内部结构并区分有价值的矿石和废石。使用WidePIX高分辨成像探测器,矿石通常呈现出微粒或脉络状的典型结构。由于该探测器具有多光谱高灵敏度的特性,可以通过图像中采集到的不同颜色来区分各类矿石。欧洲X-MINE项目Advacam为欧洲采矿项目X-MINE定制光子计数型X射线探测器WidePIX 1X30的结果表明,WidePIX探测器甚至可以分选铜矿石,这是传统的成像系统无法实现的。MedicineWidePIX L探测器还可用于非侵入式医学成像。例如,我们可以制作活体小老鼠的实时X射线影像,观察心跳,所有行为不会对小动物造成任何伤害。Others超快WidePIX探测器,可以在设备保持高速运行的同时(例如发动机,涡轮机等),对快速移动的物体进行X射线检测。Advacam可提供不同规格尺寸的光子计数型X射线探测器,其产品线包括WidePIX系列、MiniPIX系列及AdvaPIX系列,除标准尺寸外也可根据需求定制。相关产品阅读:最新到货—超高性价比教育版辐射粒子探测器MiniPIX EDU来咯!Advacam新品|Widepix 2(1)x10-MPX3探测器:双读出网口,170帧/sADVACAM再添新成员,MiniPIX TPIX3即将面世!ADVACAM辐射检测相机 -应用于粒子追迹Advacam同NASA(美国航空航天局)及ESA(欧洲航空航天局)保持很好的项目合作关系, 其产品及方案也应用于航空航天领域。目前Advacam已将其探测器应用到了多个项目中。相关应用案例:探寻宇宙奥秘的脚步从未停歇,ADVACAM参与研发项目合辑 关于Advacam公司最新合作项目:搭载Minipix探测器,可搜寻辐射的辐射探测无人机使用Widepix 1x5 MPX3 CdTe探测器进行X射线谱学成像Minipix探测器用于NASA未来项目辐射剂量监测
  • 跨向理想X射线探测器的一小步-高分辨、非晶硒X射线探测器及其应用
    “对于相干衍射成像(CDI),微米级像素的非晶硒CMOS探测器将专门解决大体积晶体材料中纳米级晶格畸变在能量高于50 keV的高分辨率成像。目前可用的像素相对较大的(〜55μm像素),基于medipix3芯片光子计数、像素化、直接探测技术无法轻易支持高能布拉格条纹的分辨率,从而使衍射数据不适用于小晶体的3D重建。” 美国阿贡国家实验室先进物理光子源探测器物理小组负责人Antonino Miceli博士讲到。相干X射线衍射成像作为新兴的高分辨显微成像方法,CDI方法摆脱了由成像元件所带来的对成像分辨率的限制,其成像分辨率理论上仅受限于X射线的波长。利用第三代同步辐射光源或X射线自由电子激光,可实现样品高空间分辨率、高衬度、原位、定量的二维或三维成像,该技术在材料学、生物学及物理学等领域中具有重要的应用前景。作为一种无透镜高分辨、无损成像技术,CDI对探测器提出了较高的要求:需要探测器有单光子灵敏度、高的探测效率和高的动态范围。目前基于软X射线的相干衍射成像研究工作开展得比较多,在这种情况下科研工作者通常选用是的基于全帧芯片的软X射线直接探测相机。将CDI技术拓展到硬X射线领域(50keV)以获得更高成像分辨率是目前很多科研工作者正在尝试的,同时也对探测器和同步辐射光源提出了更好的要求。如上文提到,KAimaging公司开发了一款非晶硒、高分辨X射线探测器(BrillianSe)很好的解决的这一问题。下面我们来重点看一下BrillianSe的几个主要参数1. 高探测效率 如上图,间接探测器需要通过闪烁体将X射线转为可见光, 只有部分可见光会被光电二极管阵列,CCD或CMOS芯片接收,造成了有效信号的丢失。而BrillianSe选用了具有较高原子序数的Se作为传感器材料,可以将大部分入射的X射线直接转为光电子,并被后端电路处理。在硬X射线探测效率远高于间接探测方式。BrillianSe在60KV (2mm filtration)的探测效率为:36% at 10 cycles/mm22% at 45 cycles/mm10% at 64 cycles/mm非晶硒吸收效率(K-edge=12.26 KeV)BrillianSe在60KV with 2 mm Al filtration的探测效率,之前报到15 μm GADOX 9 μm pixel 间接探测器QE 为13%。Larsson et al., Scientific Reports 6, 20162. 高空间分辨BrillianSe的像素尺寸为8 µm x8 µm,在60KeV的点扩散为1.1 倍像素。如下是在美国ANL APS 1-BM光束线测试实验室布局使用JIMA RT RC-05测试卡,在21keV光束下测试3. 高动态范围75dB由于采用了100微米厚的非晶硒作为传感器材料。它具有较大满井为877,000 e-非晶硒材料,不同入射光子能量光子产生一个电子空穴对所需要电离能BrillianSe主要应用:高能(50KeV)布拉格相干衍射成像低密度相衬成像同步辐射微纳CT表型基因组学领域要求X射线显微CT等成像工具具有更好的可视化能力。此外需要更高的空间分辨率,活体成像的关键挑战在于限制受试者接收到的电离辐射,由于诱导的生物学效应,辐射剂量显着地限制了长期研究。可用于X射线吸收成像衬度低的物体,如生物组织的相衬X射线显微断层照相术也存在类似的挑战。此外,增加成像系统的剂量效率将可以使用低亮度X射线源,从而减少了对在同步辐射光源的依赖。在不损害生物系统的情况下,在常规实验室环境中一台低成本、紧凑型的活体成像设备,对于加速生物工程研究至关重要。同时对X射线探测器提出了更高的要求。KAimaging公司基于独家开发的、专利的高空间分辨率非晶硒(a-Se)探测器技术,开发了一套桌面高效率、高分辨的微米CT系统(inCiTe™ )。可以从inCiTe™ 中受益的应用:• 无损检测• 增材制造• 电子工业• 农学• 地质学• 临床医学• 标本射线照相 基于相衬成像技术获得优异的相位衬度相衬成像是吸收对比(常规)X射线成像的补充。 使用常规X射线成像技术,X射线吸收弱的材料自然会导致较低的图像对比度。 在这种情况下,X射线相位变化具有更高的灵敏度。因为 inCiTe™ micro-CT可以将物体引起的相位变化转为为探测器的强度变化,所以它可以直接获取自由空间传播X射线束相位衬度。 同轴法相衬X射线成像可将X射线吸收较弱的特征的可检测性提高几个数量级。 下图展示了相衬可以更好地显示甜椒种子细节特征不含相衬信息 含相衬信息 低密度材料具有更好的成像质量钛植入样品图像显示了整形外科的钛植入物,可用于不同的应用,即检查骨-植入物的界面。 注意,相衬改善了骨骼结构的可视化。不含相衬信息 含相衬信息 生物样品inCiTe™ 显微CT可实现软组织高衬度呈现电子样品凯夫拉Kevlar复合材料样品我们使用探测器在几秒钟内快速获取了凯夫拉复合材料的相衬图像。可以清楚看到单根纤维形态(左图)和纤维分层情况(右图)。凯夫拉尔复合物3维透视图 KA Imaging KA Imaging源自滑铁卢大学,成立于2015年。作为一家专门开发x射线成像技术和系统的公司,KA Imaging以创新为导向,致力于利用其先进的X射线技术为医疗、兽医学和无损检测工业市场提供最佳解决方案。公司拥有独家开发并自有专利的高空间高分辨率非晶硒(a-Se)X射线探测器BrillianSeTM,并基于此推出了商业化X射线桌面相衬微米CT inCiTe™ 。我们有幸在此宣布,经过双方密切的交流与探讨,众星已与KA Imaging落实并达成了合作协议。众星联恒将作为KA Imaging在中国地区的独家代理,全面负责BrillianSe™ 及inCiTe™ 在中国市场的产品售前咨询,销售以及售后业务。KA Imaging将对众星联恒提供全面、深度的技术培训和支持,以便更好地服务于中国客户。众星联恒及我们来自全球高科技领域的合作伙伴们将继续为中国广大科研用户及工业用户带来更多创新技术及前沿资讯!
  • 法国Lynred发布两款多频谱线性阵列红外探测器,面向航天应用
    面向宇航、国防等应用的全球领先红外探测器厂商Lynred公司,于6月初发布两款多频谱线性阵列红外探测器,分别为Pega和Capyork。这两款产品可以集成到卫星成像、追踪、测量等系统,可用于地球表面干旱调查,海洋和陆地温度监视等领域。Pega 多频谱的红外探测器支持从短波红外(SWIR)到甚长波红外(VLWIR)波段的各种应用。这两款产品将用于法国宇航研究中心CENS的高精度自然资源调查热红外成像卫星。CapyorkLynred公司表示,Pega和Capyork的研发填补了红外成像在地球观察领域的空白。在航天应用中,从SWIR到VLWIR,红外成像都有着广泛应用前景。这两款新产品有助于实现更多的标准化产品,缩短产品面世的进度。而且可以支持系统级有源或者无源的制冷方式,为今后更多航天应用奠定基础。Lynred的通用化设计使其可以匹配空间设备需求,支持多种频谱范围、空间精度和制冷需求。Pega在长波红外(LWIR)和VLWIR波段工作,Capyork主要在SWIR波段工作。Pega拥有600像素、30微米像元间距。Capyork 拥有1200像素、15微米像元间距。Lynred公司于6月初在法国巴黎Versailles举办的Optro 2022大会上详细介绍了这两款新产品。
  • 中海油询价公告-噪声仪和VOC气体探测器采购
    项目信息采购项目编号:GKXJ-2021-CT-1744采购项目名称:海油发展-上海区域中心-噪声仪和VOC气体探测器采购-20210407标段包信息公告信息标的物名称:海油发展-上海区域中心-噪声仪和VOC气体探测器采购-20210407数量:5台交货期/工期:2021年4月30日交货地点:江苏省常州市钟楼区玉龙中路2号项目概况:项目所在地:常州资格要求:提供近三年(2018年-报价截止日前)类似产品的业绩信息。 1)申请人须是中华人民共和国境内注册的独立法人单位,具有合法有效的企业法人营业执照、税务登记证及组织机构代码证或证照合一的营业执照,(应附营业执照复印件并加盖单位章); 2)信誉要求:1、申请人不得是最高人民法院在“信用中国”网站(www.creditchina.gov.cn)或各级法院列入失信被执行人名单(应附查询结果复印件并加盖单位章); 3)近三年(2018年-报价截止日前)内申请人或其法定代表人、拟委任的项目负责人不得有行贿犯罪行为(应附查询结果复印件并加盖单位章); 4)申请人不得被工商行政管理机关在全国企业信用信息公示系统(http://www.gsxt.gov.cn)中列入严重违法失信企业名(应附查询结果复印件并加盖单位章); 5)如申请人单位负责人为同一人或者存在控股、管理关系的不同单位,参加同一标段或者未划分标段的同一项目报价,则存在关联关系的申请人报价均视为无效。是否允许联合体投标:否询价文件获取时间:2021年04月07日到2021年04月12日询价文件获取方法:请登录中国海洋石油集团有限公司采办业务管理与交易系统(https://buy.cnooc.com.cn)的采购文件下载页面进行购买。首次登录必须先进行注册(免费),注册成功后,方可购买询价文件。标书费支付成功后,应答人可自行下载询价文件。售后不退。如未在系统中领购询价文件,不可参加投标。应答文件递交截止时间:2021年04月12日应答文件递交地点:所有的应答文件必须在应答文件递交截止时间前在线提交应答文件递交方法:应答人应在截止时间前将应答文件递交至上海。逾期送达的、未送达指定地点的或者不按照询价文件要求密封的应答文件,采购人将予以拒收。开标时间:2021年04月12日开标地点:上海特殊说明:超过投标截止时间送达的应答文件,系统将予以拒收。
  • 华南理工研制新型有机半导体红外光电探测器,性能超越传统近红外探测器
    随着近红外(NIR)和短波红外(SWIR)光谱在人工智能驱动技术(如机器人、自动驾驶汽车、增强现实/虚拟现实以及3D人脸识别)中的广泛应用,市场对高计数、低成本焦平面阵列的需求日益增长。传统短波红外光电二极管主要基于InGaAs或锗(Ge)晶体,其制造工艺复杂、器件暗电流大。有机半导体是一种可行的替代品,其制造工艺更简单且光学特性可调谐。据麦姆斯咨询报道,近日,华南理工大学的研究团队研制出基于有机半导体的新型红外光电探测器。这项技术有望彻底改变成像技术,该有机光电二极管在近紫外到短波红外的宽波段内均优于传统无机探测器。这项研究成果以“Infrared Photodetectors and Image Arrays Made with Organic Semiconductors”为题发表在Chinese Journal of Polymer Science期刊上。研究团队采用窄带隙聚合物半导体制造薄膜光电二极管,该器件探测范围涵盖红外波段。这种新技术的成本仅为传统无机光电探测器的一小部分,但其性能可与传统无机光电探测器(如InGaAs光电探测器)相媲美。研究人员将更大的杂原子、不规则的骨架与侧链上更长的分支位置结合起来,创造出光谱响应范围涵盖近紫外到短波红外波段的聚合物半导体(PPCPD),并制造出基于PPCPD的光电探测器,相关性能结果如图1所示。图1 基于PPCPD的光电探测器性能在特定探测率方面,该器件与基于InGaAs的探测器相比具有竞争力,在1.15 μm波长上的探测率可达5.55 × 10¹² Jones。该有机光电探测器的显著特征是,当其集成到高像素密度图像传感器阵列时,无需在传感层中进行像素级图案化。这种集成制造工艺显著简化了制备流程,大幅降低了成本。图2 短波红外成像系统及成像示例华南理工大学教授、发光材料与器件国家重点实验室副主任黄飞教授表示:“我们开发的有机光电探测器标志着高性价比、高性能的红外成像技术的发展向前迈出了关键的一步。与传统无机光电二极管相比,有机器件具有适应性和可扩展性,其潜在应用范围还包括工业机器人和医疗诊断领域。”该新型有机光电探测器有望对各行各业产生重大影响。它们为监控和安全领域的成像系统提供了更为经济的选择。未来,基于有机技术的医疗成像设备有望更加普及,价格也会更加合理,从而在医疗环境中实现更全面的应用。该器件的适应性和可扩展性还为尖端机器人和人工智能等领域的应用铺平道路。这项研究得到了国家自然科学基金(编号:U21A6002和51933003)和广东省基础与应用基础研究重大项目(编号:2019B030302007)的资助。论文链接:https://doi.org/10.1007/s10118-023-2973-8
  • 嫦娥三号探测器大揭秘:携带多种激光仪器
    承担中国探月工程第二步&ldquo 落月&rdquo 任务的嫦娥三号探测器将于今年12月份择机发射,它将实现中国航天器首次在地外天体的软着陆,从嫦娥三号着陆器中释放的月球车还将完成中国首次在月表的巡视探测。   昨日,探月与航天工程中心启动为中国第一辆月球车全球征名的活动,要求名称体现探月理念和月球车特点。参与者除了要选好名称,还要提交一份不多于300字的创意说明和背景阐述,每人最多允许提交5个方案。从昨日开始到10月25日,参与者可以提交方案,11月上旬,将确定最终入选名称。部分获奖者将有机会免费亲临西昌发射中心现场观摩嫦娥三号发射。   目前,包括月球车,以及嫦娥三号着陆器等组件,都已经被运抵西昌卫星发射基地。嫦娥三号已经进入到了发射前在前方发射场的调试、测试、准备阶段。   一、嫦娥三号探测器揭秘   看着像辆车 实为机器人   正在向全球征名的月球车将跟随年底择机发射的嫦娥三号&ldquo 着陆探测器&rdquo 展开对月球表面的探测。探月工程总设计师吴伟仁说,这不仅是我国第一辆月球车,且全部为中国制造,国产率达到100%。   嫦娥三号探测器   二、长相:身背太阳翼 脚踩&ldquo 风火轮&rdquo   月球车的专用名称叫做&ldquo 月面巡视探测器&rdquo ,设计质量是140公斤,由移动、结构与机构、导航控制、综合电子、电源、热控、测控数传和有效载荷等分系统组成。   在活动现场,记者看到了月球车1:2的模型,从模型上看,它的大脑袋上有一个定向天线和几个太阳敏感器,两侧为太阳翼,尾巴上很多天线,右后侧是导航相机和全景相机。它脚踩六个&ldquo 风火轮&rdquo 似的移动装置。腹部的&ldquo 秘器&rdquo 最多:包括红外成像光谱仪、避障相机、机械臂、激光点阵器等。   中国航天科技集团公司宇航部部长赵小津说,从严格意义上来说,月球车并不是一辆车,而是一个长着轮子,能够适应恶劣空间环境并开展空间科学探测的航天器,是一个小型化、低功耗、高集成、高智能的机器人。   据了解,月球车驶下着陆探测器后,可通过地面遥操作控制和自主规划路径,自主导航等开展长期的科学探测。   三、落月靠"3只眼"   嫦娥三号任务是我国探月工程&ldquo 绕、落、回&rdquo 三步走中的第二步,是承前启后的关键一步。在&ldquo 绕月&rdquo 阶段,中科院上海技术物理所、上海光学精密机械所为嫦娥卫星研制了&ldquo 激光眼&rdquo &mdash &mdash 激光高度计,为我国首幅全月面三维图提供了高程,相当于地球上的海拔高度。即使在无可见光的月面环境下,激光计也能&ldquo 拍摄&rdquo 自如。   但比起距离月面一两百公里外的绕月,零距离接触的落月对激光测距精度和速度提出了极高要求。在我国探月初期,嫦娥卫星对月发射一束激光,在月面形成的&ldquo 激光足印&rdquo 约有120米方圆范围,而嫦娥三号激光测距的&ldquo 足印&rdquo 将小到米级,测量精度进一步提高,可实时监测嫦娥三号着陆器距离月面的高度。   除了这束&ldquo 大激光&rdquo ,&ldquo 嫦娥&rdquo 还有一道灵敏度极高的&ldquo 小激光&rdquo 。当&ldquo 嫦娥&rdquo 向月面释放着陆器,着陆器将在接近月面时,通过激光三维成像,进一步&ldquo 观察地形&rdquo ,获取正下方图像。如下方不适合降落,它就马上换一块地方,确保着陆点相对更为平坦。这种接近&ldquo 现场直播&rdquo 的实时成像需在数秒内完成,为此中科院上海技物所研制的三维成像系统采用了多源激光并扫、实时成像方法,这种实测方式是在着陆月球时首次应用。   两只&ldquo 激光眼&rdquo 之外,&ldquo 嫦娥&rdquo 另有一只&ldquo 红外眼&rdquo &mdash &mdash 红外成像光谱仪。这台仪器置于俗称&ldquo 月球车&rdquo 的月面巡视器上,当巡视器从着陆器中驶出,便开启这一关键探测设备。这只&ldquo 眼睛&rdquo 不但能在可见光范围获得上百个光学波段的图像,还能用来探索可见光之外的&ldquo 光&rdquo ,捕捉月球物质资源放出的红外线光谱。因为每种物质都有其独特的&ldquo 红外图谱&rdquo ,红外成像光谱仪以极高的光谱分辨率&ldquo 拍摄&rdquo 月表物质,并能通过计算机直接将物质分门别类。   对于登月任务以及其后实施的返回任务,卫星发射重量越轻越好,因此&ldquo 嫦娥&rdquo 严格控制体重。相关项目负责人上海技物所研究员王建宇透露,此次星载的红外成像光谱仪只有5公斤多,是&ldquo 嫦娥&rdquo 3只眼中最轻的,而机载的同类光谱仪重量可达百公斤。今后,这种超轻型成像光谱仪器还能用于火星、小行星等更遥远的深空探测任务。   四、性能:耐极限温度 能爬坡越障   月球车以太阳能为能源,能够耐受月球表面真空、强辐射,以及从正150摄氏度到负180摄氏度,温差超过300摄氏度的极限温度和环境。工作时的舱内温度可以控制在零下20摄氏度至零上50摄氏度之间。   月球车凭借六个轮子可实现前进、后退、原地转向、行进间转向、20度爬坡、20厘米越障。   &ldquo 月面松软、崎岖不平、障碍物很多。月球车能够对月面环境和障碍进行感知和识别,然后对巡视的路径进行规划。月球车在月面巡视时采取自主导航和地面遥控的组合模式。&rdquo 探月工程副总指挥、探月与航天工程中心主任李本正说。   五、作息:大干3个月 一觉14天   月球上的一天相当于地球上的27天多,月球昼夜间隔相当于地球上14天。李本正说,月球车具备月球表面环境的生存能力,该休息的时候自动进入休眠状态,然后又能自动唤醒重新工作。据新华视点消息,月球车在月球上是连续工作14天,然后&ldquo 睡&rdquo 14天再重新工作。   在月球表面巡视的3个月中,月球车将依靠各种先进设备对月表进行三维光学成像、红外光谱分析,开展月壤厚度和结构的科学探测,对月表物质主要元素进行现场分析。它传回来的数据,将帮助人们更直接、更准确地了解神秘的月亮。   六、月球车探月过程:   1、动身   今年12月,中国将在西昌卫星中心用长征-3B增强型火箭发射&ldquo 嫦娥三号&rdquo 。   2、着陆   当&ldquo 嫦娥三号&rdquo 完成发射、飞行到达月球时,着陆探测器采取不同制导方式,从距月面15公里处开始动力下降,经过主动减速、调整接近、悬停避障等飞行阶段,实现路径优、燃料省、误差小的安全着陆。   &ldquo 到达月球轨道后,月球车将由着陆器背负,由变推力液体火箭发射器控制,通过各种光学、微波等敏感器测量,在月球表面百米高度上进行悬停和平移,以规避岩石和深坑等障碍,选择最佳着陆点缓慢降落月球表面。&rdquo 中国航天科技集团公司宇航部部长赵小津说。   3、准备   着陆器为月球车充电,对月球车进行初始化 之后月球车与地面建立通信链路,控制连接解锁机构解锁,走上转移机构 着陆探测器将控制转移机构运动到月面,月球车驶离转移机构,开始勘查。   4、勘查   为期3个月,月球车将依靠各种先进设备对月表进行三维光学成像、红外光谱分析 开展月壤厚度和结构的科学探测 对月表物质主要元素进行现场分析。
  • 意大利引力波探测器因故障推迟重启
    不久以后,物理学家将继续对天体物理学“怪物”——黑洞和中子星碰撞产生的引力波进行探测。但是,3个探测器之一、位于意大利的室女座探测器(Virgo)目前却遇到了技术问题,将延迟其重新启动的时间。3年前,所有探测设施为了维护和升级而关闭。而在接下来的几个月里,将只有美国路易斯安那州和华盛顿州激光干涉引力波天文台 (LIGO)的两个探测器接受数据,这使得在太空中精确定位信号源变得更加困难。意大利国家核物理研究所(INFN)物理学家、Virgo的调试协调员Fiodor Sorrentino说,问题似乎不是来自于升级,而是产生噪声的旧部件,这些噪声会淹没许多信号。2015年,LIGO首次探测到两个巨大的黑洞相互旋转合并时产生的涟漪。两年后,LIGO和Virgo在附近发现了两颗中子星的合并。迄今为止,这3个探测器已经记录了90多次黑洞合并和两次中子星合并。每个探测器都是一个巨大的L形光学装置,称为干涉仪。镜子悬挂于干涉仪每条臂的两端,激光在镜子之间反射。整个装置处于真空室中,一个精心设计的悬挂系统支撑着每面镜子。Virgo的问题似乎出现在悬挂系统和镜子上。每面重达40公斤的镜子挂在一对薄玻璃纤维上。2022年11月,支撑一面镜子的纤维断裂。Sorrentino说,虽然镜子下降的距离很小,但震动似乎使附着在镜子上用于固定它的4块磁铁中的一块松动了。磁铁的运动使玻璃产生了振动。此外,另一条臂上的一面镜子在2017年遭遇了类似的情况,现在看来,其内部似乎有一个小裂缝。INFN的物理学家Gianluca Gemme说,这些问题直到最近才变得明显起来。研究人员要打开真空室,从一面镜子上取下松动的磁铁,并更换另一面镜子。 Gemme说,这项工作应该会在7月之前完成。“如果一切顺利,没有额外的隐藏噪声源,Virgo应该能够在秋天加入LIGO。”Gemme说。威斯康星大学密尔沃基分校天体物理学家Patrick Brady说,两个LIGO探测器运行良好,应该为5月24日的重启做好了准备。但Virgo的暂时缺席将限制科学研究的开展。3个探测器可以精确定位天空中的信号源,误差在几十平方度以内。如果是两个,定位会变得不精准。但Brady说,即使只有LIGO,长达18个月的运行也应该产生大量的科学成果。LIGO探测器的灵敏度已经比以前提高了30%,每2至3天就能发现一次黑洞合并。在这样的情况下,科学家应该能确定黑洞质量的分布,并有可能揭示不寻常的合并,比如向不同方向旋转的黑洞之间的合并。这些信息有助于揭示黑洞对是如何形成的。
  • 测温仪背后的故事——红外探测器
    一场突如其来的新冠肺炎疫情,成为了2020开年的头等大事。全民防疫的举措让这场没有硝烟的战争不再猝不及防。飞机场、火车站、公司、小区、超市等入口处都能见到防疫工作者的身影。他们是防疫先锋,是公共健康的卫士,是居民区的守护者。而他们的必备神器之一——手持测温仪,也进入了公众的视野,广为人知。今天,我们就来聊一聊测温仪的那些事。受疫情影响,很多人在家办公,出门不是去超市买菜,就是门口取快递。当然,还有不少人在硬核上班。无论出入小区,还是车站进站,现阶段都要经过体温检测。相信大家都有经历过,防疫工作者手持测温仪,对着额头一扫,立刻就显示你的体温数据,非常方便。有很多人对这测温仪都深感好奇,想知道它是怎么工作的。也有人担心它的准确性,担心把自己体温测高了。那么,我们就从测温仪的原理和精确度控制这两点说起。首先,大家都熟悉传统体温计测温的方法,而这种方法显然不适合用于传染性强的新型冠状病毒的防护工作。在这次防疫战中,小巧便携,无需身体接触的手持测温仪就成了急先锋。扫一扫,一秒之内测出体温的测温神器让人们眼前一亮;更令人印象深刻的,还有车站、机场等带有视频的成像测温仪,后者能在快速行进的人流中,辨别每个人的体温,并用保存视频成像。相信你肯定好奇过它们究竟是怎么做到的。接着,我们来一探究竟其中的科学原理。[1] 地铁站检票口的体温监测站(图片摘自人民网)温度和光我们都知道,水银体温计能够测人体的温度,是水银玻璃泡和人体接触后,经过一段时间的热量传递,最终与人体温度达到一致的原理(热平衡)。而测温仪并没有和人体接触,为何能如此快速采集温度信息呢?[2] 水银温度计(图片摘自百度网)答案其实大家也是耳熟能详,那就是---光!没错,就是我们所熟知的那个光!但是这个光,并不是人眼能看到的可见光,而是与可见光相邻的红外光,这里需要科普一下,我们平时所说的可见光实际上是电磁波的一种,电磁波有连续的波谱分布,红外光的波段在红色光之外,因此得名红外光。再简单提一下,除了可见光和红外光,很多电磁波都与大家的生活息息相关,按波长由短到长,有医院CT的X射线,防晒霜防的紫外线,太阳光,灯光,微波炉的微波,电台的射频信号等等,都属于电磁波。[3] 生活中的电磁波(图片摘自NASA Science)说到这里,肯定有人表示,道理我都懂,但是红外光跟人体温度有什么关联呢?关联是必然的,因为人体发射的光,就是红外光!没说错,人体是发光的,而且是无时无刻的在发光。复杂的原理就不赘述了,大家只要记住,任何温度高于绝对零度(零下273.15摄氏度)的物体都会以电磁波的形式向外辐射能量,至于绝对零度(-273.15℃)的物体嘛,大家放心,那是不存在的!红外光和人体温度的关系那么问题来了,既然每人每时每刻都在发射红外光,仪器凭什么就能辨别出正常温度和高烧呢?还能准确读出每个人的温度?这里,我们请一位大佬帮忙解答,他就是与爱因斯坦并称20世纪最重要的两大物理学家,量子力学奠基人之一的马克斯普朗克,他于1900年提出的普朗克黑体辐射定律,完美诠释了温度与辐射的关系。马克斯普朗克简单来讲就是,不同温度的物体发射的光是不一样的,如下示意图, 四条不同的曲线,代表不同温度下黑体辐射的光谱分布,这里的K是热力学温度,数值等于摄氏度+273.15。大家可以看到,温度越高,黑体辐射光的强度就越大,峰值的位置就越靠近紫外区域。那么,答案就呼之欲出了,如果探测到了人体的辐射强度和波谱分布,就完全可以反推出温度T!这就是测温仪测体温的原理。(人体虽不是黑体,却也遵循普朗克定律)。利用红外光探测人体温度究竟准不准?说完测温仪原理的故事,我们再来说说怎么确保每个测温仪都能测得准。上文中,细心的小伙伴发现,普朗克定律图示并没有想象中那么简单,图中展示差异性的谱图都相差了1000℃,人体怎么可能差上1000℃呢?没错,我们人体的温度平均值也就在36℃到37℃之间了,高过37℃的,抗疫期间怕是要去隔离观察了。那么关键点来了,相差几摄氏度的人体辐射谱图中,辐射强度和波谱的差异是非常小的,如何确保测温仪能把握这细小的差异呢?要知道,人体测温的准确性要求是比较高的,特别是在抗疫期间,正常的体温就是大家的通行证。这点上,咱们国家更是不含糊,对于此类测温装置也出台了相应的国家标准来规定精准度。那么,生产厂家是如何确保每台测温仪的准确性呢?下面就让我们来剖析测温仪,探究这里的科学原理。测温仪的"CPU"是什么?我们先从测温仪的构成说起,可以看到下图中,真正与红外光直接相关的,便是红外探测器,顾名思义,这正是测温仪利用红外测温的核心元件,就好比CPU芯片是手机电脑的核心。而它的质量直接决定了测温的准确性。那么,如何判定红外探测器的质量呢?[4] 额温枪(图片摘自网络)这就需要了解红外探测器测红外的细节。简单来说,红外探测器也是由材料构成,红外探测器上的特殊光感材料可以接收外界的红外辐射,并将其转换为电信号,再进行分析计算,最终给出温度值。因此评价红外探测器的好坏,就是评判其将光转换为电信号的能力。在讲红外探测器的评价之前,我们插一句,火车站,机场中带成像系统的测温仪,采用的是更高端的焦平面阵列红外探测器(FPA技术)。[5] 设置在火车站的带成像系统的测温仪(图片摘自包头新闻网)这类成像测温仪就如同照相机或摄像仪,内部感光平面内,分布了很多像素点,焦平面上每一个像素点就是一个红外探测器,这种技术具有二维空间分辨的能力,具备红外成像功能,可以将发高烧的人从人群中辨别出来。如何评价红外探测器,确保其准确性?一般来说,无论是采用单点红外检测器的耳温枪还是FPA焦平面检测器的红外成像测温仪都不需要极快的反应时间或极高的空间分辨率,甚至无需光谱分辨率。所以这类红外检测器的精确度通常是采用激光功率计或热敏电阻等方法来评定的。但是,类似原理的红外探测器还有很多其他的应用领域,尤其是需要FPA焦平面检测器的红外成像仪已经被广泛的应用于军需夜视或热追踪系统、高速热成像、质检或产品研发(针对散热或热工特性)、医疗热成像及红外显微镜等诸多方面。这些应用领域对红外检测器件本身以及对由这些器件组成的测量仪器的性能都有更严苛的要求,比如,需要微秒甚至纳秒级的超短反应时间,需要光谱信息用于化学成像,需要较高的空间分辨率以表征微小物品,需要较高的光谱分辨率,最佳的灵敏度和信噪比,甚至对FPA检测器中每个像素点的均匀一致性都有要求。为了研制和开发这些高端的红外检测器件,科学家们需要用到一种重要的表征方法---傅立叶红外光谱法。实现该法的核心设备就是在科学研究、监测分析领域常见的傅立叶红外光谱仪(简称FTIR红外光谱仪)。FTIR红外光谱仪——表征红外探测器FTIR红外光谱仪是专门应用于红外光谱研究相关的科学仪器,配有标准的红外光源,所发射的红外光经过干涉仪后,经过照射样品,最终到达红外探测器,解析探测器的电信号,并进行FT转换计算,即可得到包含能量强度和波谱分布的红外谱图。科学家们就是把这种检测技术应用到了评价红外探测器材料好坏的研究中,在对光敏度、稳定性等等复杂的研究分析之后,才研发出适合于各种不同应用领域的红外探测器材料,进而工厂将其研究的材料转化为探测器并且大量生产而成为真正实用的商品(包括红外测温仪及其他更为复杂的尖端仪器),发挥了科学家研究的作用。换言之,红外光谱仪对于探测器的表征研究,就好比是一把精准的卡尺,用它来检验每一根直尺的长度是否达到科学家们想要实现的标准。傅立叶变换红外光谱仪以上就是测温仪背后故事的小科普,相信大家对于最近很亮眼的测温仪会有更进一步的了解,对红外探测器精确度的控制以及红外探测器的诸多应用领域也有了更深层次的认知。通过科学家们的努力,和我们生活息息相关的大型红外成像测温仪的准确度、检测能力、检测距离、检出速度和检测区域内的均匀性(即精准度)都会越来越好。所谓工欲善其事必先利其器,实际上并不是所有的红外光谱仪都能做红外探测器的研究与表征,能作为标尺的设备,当然只有技术过硬,具备特殊技能红外光谱仪才能实现!如果您对检测器表征科研课题感兴趣,可以阅读布鲁克的相关应用信息。如果您对红外整体技术感兴趣,长按下方二维码填写产品需求信息表,与我们取得联系。疫情期间,大家做好防护,注意安全。一起为祖国加油!为武汉加油!点击下载布鲁克应用手册——红外检测器表征如果您对我们的红外技术感兴趣,欢迎与我们取得联系,请拨打400热线电话400-777-2600。
  • 美开发出新型量子点红外探测器
    美国伦斯勒理工学院的研究人员开发出了一种基于纳米技术的新型量子点红外探测器(QDIP)。这种以金为主要材料的新型元件可大幅提高现有红外设备的成像素质,将为下一代高清卫星相机和夜视设备的研发提供可能。相关论文发表在《纳米快报》杂志网站上。   由美国空军科研局资助的这一项目,通过在传统量子点红外探测器元件上增加金纳米薄膜和小孔结构的方式,可将现有量子点红外探测器的灵敏度提高两倍。   研究人员称,红外探测器的灵敏程度从根本上取决于在去除干扰后所能接收到的光线的多寡。目前大多数红外探测器都以碲镉汞技术(MCT)为基础。该元件对红外辐射极为敏感,可获得较强信号,但同时也面临着无法长时间使用的缺憾(信号强度会逐步降低)。   在这项新研究中,研究人员使用了一个厚度为50纳米、具有延展性的金薄膜,在其上设置了大量直径1.6微米、深1微米的小孔,并在孔内填充了具有独特光学性能的半导体材料以形成量子点。纳米尺度上的金薄膜可将光线“挤进”小孔并聚焦到嵌入的量子点上。这种结构强化了探测器捕获光线的能力,同时也提高了量子点的光电转换效率。实验结果表明,在不增加重量和干扰的情况下,通过该设备所获得的信号强度比传统量子点红外探测器增强了两倍。下一步,他们计划通过扩大表面小孔直径和改良量子点透镜方法对设备加以改进。研究人员预计,该设备在灵敏度上至少还有20倍的提升空间。   负责此项研究的伦斯勒理工学院物理学教授林善瑜(音译)称,这一实验为新型量子点红外光电探测器的发展树立了一个新路标。这是近10年来首次在不增加干扰信号的情况下成功使红外探测器的灵敏度得到提升,极有可能推动红外探测技术进入新的发展阶段。   红外传感及探测设备在卫星遥感、气象及环境监测、医学成像以及夜视仪器研发上均有着广泛的应用价值。林善瑜在2008年时曾开发出一种纳米涂层,将其覆盖在太阳能电池板上,可使后者的阳光吸收率提高到96%以上。
  • 食品金属探测器国家标准通过审定
    近日,中国标准化研究院在山东省青岛市组织召开了国家标准审定会,审定通过了李沧区青岛电子仪器厂主持制定的《食品金属探测器》国家标准,并上报国家标准化管理委员会,建议作为推荐性国家标准批准、发布。   审定委员会专家组在对标准送审稿进行认真审查讨论后认为,本标准填补了国内该领域标准的空白,达到国内领先水平 规范了食品金属探测器的性能要求及技术指标,能够有效指导食品金属探测器的设计、制造及检验,为保证食品金属探测器的产品质量,促进食品金属探测器行业的健康发展,提供了有力的技术保证。
  • 可调谐红外双波段光电探测器,助力多光谱探测发展
    红外双波段光电探测器是重要的多光谱探测器件,特别是近红外/短波红外区域,相较于可见光有更强的穿透能力,相较于中波红外可以以较低的损耗识别冷背景的物体,因此广泛应用于民用和军事领域。当前红外双波段探测器主要面临光谱不可调谐,器件结构复杂而不易与读出集成电路相结合的挑战。据麦姆斯咨询报道,近日,合肥工业大学先进半导体器件与光电集成团队在光电子器件领域取得重要进展,研究团队研发了一种光谱可调谐的近红外/短波红外双波段探测器,相关研究成果以“Bias-Selectable Si Nanowires/PbS Nanocrystalline Film n–n Heterojunction for NIR/SWIR Dual-Band Photodetection”为题,发表于《先进功能材料》(Advanced Functional Materials, 2023: 2214996.)。第一作者为许晨镐,通讯作者为罗林保教授,主要从事新型高性能半导体光电子器件及相关光电集成技术方面的研究工作。该研究使用溶液法制备了硅纳米线/硫化铅异质结光电探测器(如图1(a)),工艺简单,成功将硅基探测器的光谱响应拓宽到2000 nm。基于有限元分析法的COMSOL软件分析表明,一方面,有序的硅纳米线阵列具有较大的器件面积,提升了载流子的输运能力,且纳米线阵列具有较好的周期性,入射光可以在纳米线结构之间连续反射,产生典型的陷光效应。另一方面,小尺寸的纳米线阵列可以看作是微型谐振器,可以形成HE₁ₘ谐振模式,增强特定入射光的光吸收。通过调制外加偏压的极性,器件可以实现近红外/短波红外双波段探测、近红外单波段探测、短波红外单波段探测三种探测模式的切换。器件还具有较高的灵敏度,在2000 nm光照下的探测率高达2.4 × 10¹⁰ Jones,高于多数短波红外探测器。图1 双波段红外探测器结构图及相关仿真和实验结果图2 偏压可调的近红外/短波红外双波段探测及探测率随光强的变化曲线此外,该研究还搭建了单像素光电成像系统(如图3(a)),在2000 nm光照下,当施加-0.15 V和0.15 V偏压时,该器件能对一个简单的英文字母实现成像。但是不施加偏压时,缺无法清晰成像。这表明只需要对器件施加一个小的偏置电压时,就可以将成像系统的工作区域从近红外调整到短波红外,具有较高的灵活性。图3 光电成像系统及成像结果这项研究得到了国家自然科学基金、安徽省重点研发计划、中央高校基本科研业务费专项资金等项目的资助。
  • 近红外双模式单光子探测器----单光子探测主力量子通讯
    一. 近红外双模式单光子探测器介绍SPD_NIR为900nm至1700 nm的近红外范围内的单光子检测带来了重大突破。 SPD_NIR建立在冷却的InGaAs / InP盖革模式单光子雪崩光电二极管技术上,是NIR单光子检测器的第一代产品,可同时执行同步“门控”(GM)和异步“自由运行”(FR )检测模式。 用户通过提供的软件界面选择检测模式。冠jun级别的器件具有低至800 cps的超低噪声,高达30%的高校准量子效率,100 ns最小死区,100 MHz外部触发,150 ps的快速成帧分辨率和极低的脉冲 。 当需要光子耦合时,标准等级可提供非常有价值且经济高效的解决方案。基于工业设计,该设备齐全的探测器不需要任何额外的笨重的冷却系统和控制单元。 经过精心设计的紧凑性及其现代接口使SPD_NIR非常易于集成到最苛刻的分析仪器和Quantum系统中。OEM紧凑型 多通道控制器软件界面二. 近红外双模式单光子探测器原理TPS_1550_type_II是基于远程波长自发下变频的双光子源。TPS_1550_type_II采用波导周期性极化铌酸锂(WG-ppln)晶体,用于产生光子对。波导- ppln的转换效率比任何块状晶体都高2到3个数量级,并确保与单模光纤的高效耦合。0型和II型双光子的产生三. 近红外双模式单光子探测器应用特点特点: ▪ 自由模式 & 门模式▪ 集成电子计数▪ 校准后 QE可达 30%▪ TTL和NIM信号兼容▪ 暗记数 ▪ 盖革模式激光雷达▪ 量子密钥分发▪ 高分辨率OTDR▪ 光子源特性▪ FLIM 成像▪ 符合测试▪ 光纤传感四. 近红外双模式单光子探测器技术规格五. Aura 介绍AUREA Technology是法国一家知名的探测器供应商,公司致力于尖端技术的研发,基于先进的单光子雪崩光电二极管,超快激光二极管和快速定时电子设备,设计和制造了新一代高性能,功能齐全的近红外探测器。作为全球技术领导者之一,AUREA技术提供盖革模式单光子计数,皮秒激光源,快速时间关联和光纤传感仪器。此外,AUREA Technology直接或通过其在北美,欧洲和亚洲的专业分销渠道为200多个全球客户提供一流的专业支持。并与客户紧密合作,以应对当今和未来在量子安全,生命科学,纳米技术,汽车,医疗和国防领域的挑战。昊量光电作为法国AUREA公司在中国区域的独家代理商,全权负责法国Aurea公司在中国的销售、售后与技术支持工作。AUREA技术提供了新一代的光学仪器,使科学家和工程师实现卓越的测量结果。奥瑞亚科技与全球的客户和合作伙伴紧密合作,共同应对量子光学、生命科学、纳米技术、化学、生物医学、航空和半导体等行业的当前和未来挑战双光子是展示量子物理原理的关键元素,并实现新的量子应用。例如,双光子使量子密钥分发技术得以发展,以确保数百公里范围内的数据网络安全。在生物成像应用中,双光子光源产生原始的无色散测量。 更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
  • 欧航局选定木星探测器搭载的11套科学仪器
    欧洲航天局21日宣布,该机构计划于2022年发射的木星冰月探测器将搭载11套科学仪器,探索木星卫星上存在生命的可能性。   木星冰月探测任务于去年5月被欧航局列为“2015-2025宇宙愿景”首个大型任务。按计划,该探测器将于2030年抵达木星轨道,对木星及其卫星进行至少3年的观测。   欧航局科学项目委员会当天确定了木星冰月探测器将携带的11套科学仪器,包括照相机、光谱仪、激光测高仪、探冰雷达、磁力仪和粒子监测仪等。这些仪器将由来自15个欧洲国家、美国和日本的科学团队共同研发。   欧航局太阳系任务协调员路易吉・ 科兰杰利表示,这些仪器能够达成木星冰月探测任务的所有科学目标,从现场测量木星磁场,到远距离观测木星卫星表面与内部结构等。   木星拥有多颗卫星,有“小太阳系”之称。此前探索表明,木卫二、木卫三和木卫四上可能存在地下海洋。木星冰月探测器将对这三颗卫星进行探测,探索其上存在生命的可能性。
  • 【新书推荐】宽禁带半导体紫外光电探测器
    基于宽禁带半导体的固态紫外探测技术是继红外、可见光和激光探测技术之后发展起来的新型光电探测技术,是对传统紫外探测技术的创新发展,具有体积小、重量轻、耐高温、功耗低、量子效率高和易于集成等优点,对紫外信息资源的开发和利用起着重大推动作用,在国防技术、信息科技、能源技术、环境监测和公共卫生等领域具有极其广阔的应用前景,成为当前国际研发的热点和各主要国家之间竞争的焦点。我国迫切要求在宽禁带半导体紫外探测技术领域取得新的突破,以适应信息技术发展和国家安全的重大需要。本书是作者团队近几年来的最新研究成果的总结,是一本专门介绍宽禁带紫外光电探测器的科技专著。本书的出版可以对我国宽禁带半导体光电材料和紫外探测器的研发及相关高新技术的发展起到促进作用。本书从材料的基本物性和光电探测器工作原理入手,重点讨论宽禁带半导体紫外探测材料的制备、外延生长的缺陷抑制和掺杂技术、紫外探测器件与成像芯片的结构设计和制备工艺、紫外单光子探测与读出电路技术等;并深入探讨紫外探测器件的漏电机理、光生载流子的倍增和输运规律、能带调控方法、以及不同类型缺陷对器件性能的具体影响等,展望新型结构器件的发展和技术难点;同时,介绍紫外探测器产业化应用和发展,为工程领域提供参考,促进产业的发展。本书作者都是长年工作在宽禁带半导体材料与器件领域第一线、在国内外有影响的著名学者。本书主编南京大学陆海教授是国内紫外光电探测领域的代表性专家,曾研制出多种性能先进的紫外探测芯片;张荣教授多年来一直从事宽禁带半导体材料、器件和物理研究,成果卓著;参与本书编写的陈敦军、单崇新、叶建东教授和周幸叶研究员也均是在宽禁带半导体领域取得丰硕成果的年轻学者。本书所述内容多来自作者及其团队在该领域的长期系统性研究成果总结,并广泛地参照了国际主要相关研究成果和进展。作者团队:中国科学院郑有炓院士撰写推荐语时表示:“本书系统论述了宽禁带半导体紫外探测材料和器件的发展现状和趋势,对面临的关键科学技术问题进行了探讨,对未来发展进行了展望。目前国内尚没有一本专门针对宽禁带半导体紫外探测器的科研参考书,本书的出版填补了这一空白,将会对我国第三代半导体紫外探测技术的研发起到重要的推动作用。”目前市面上还没有专门讲述宽禁带半导体紫外探测器的科研参考书,该书的出版可以填补该领域的空白。本书可为从事宽禁带半导体紫外光电材料和器件研发、生产的科技工作者、企业工程技术人员和研究生提供一本有价值的科研参考书,也可供从事该领域科研和高技术产业管理的政府官员和企业家学习参考。详见本书目录:本书目录:第1章 半导体紫外光电探测器概述1.1 引言1.2 宽禁带半导体紫外光电探测器的技术优势1.3 紫外光电探测器产业发展现状1.4 本书的章节安排参考文献第2章 紫外光电探测器的基础知识2.1 半导体光电效应的基本原理2.2 紫外光电探测器的基本分类和工作原理2.2.1 P-N/P-I-N结型探测器2.2.2 肖特基势垒探测器2.2.3 光电导探测器2.2.4 雪崩光电二极管2.3 紫外光电探测器的主要性能指标2.3.1 光电探测器的性能参数2.3.2 雪崩光电二极管的性能参数参考文献第3章 氮化物半导体紫外光电探测器3.1 引言3.2 氮化物半导体材料的基本特性3.2.1 晶体结构3.2.2 能带结构3.2.3 极化效应3.3 高Al组分AlGaN材料的制备与P型掺杂3.3.1 高Al组分AlGaN材料的制备3.3.2 高Al组分AlGaN材料的P型掺杂3.4 GaN基光电探测器及焦平面阵列成像3.4.1 GaN基半导体的金属接触3.4.2 GaN基光电探测器3.4.3 焦平面阵列成像3.5 日盲紫外雪崩光电二极管的设计与制备3.5.1 P-I-N结GaN基APD3.5.2 SAM结构GaN基APD3.5.3 极化和能带工程在雪崩光电二极管中的应用3.6 InGaN光电探测器的制备及应用3.6.1 材料外延3.6.2 器件制备3.7 波长可调超窄带日盲紫外探测器参考文献第4章 SiC紫外光电探测器4.1 SiC材料的基本物理特性4.1.1 SiC晶型与能带结构4.1.2 SiC外延材料与缺陷4.1.3 SiC的电学特性4.1.4 SiC的光学特性4.2 SiC紫外光电探测器的常用制备工艺4.2.1 清洗工艺4.2.2 台面制备4.2.3 电极制备4.2.4 器件钝化4.2.5 其他工艺4.3 常规类型SiC紫外光电探测器4.3.1 肖特基型紫外光电探测器4.3.2 P-I-N型紫外光电探测器4.4 SiC紫外雪崩光电探测器4.4.1 新型结构SiC紫外雪崩光电探测器4.4.2 SiC APD的高温特性4.4.3 材料缺陷对SiC APD性能的影响4.4.4 SiC APD的雪崩均匀性研究4.4.5 SiC紫外雪崩光电探测器的焦平面成像阵列4.5 SiC紫外光电探测器的产业化应用4.6 SiC紫外光电探测器的发展前景参考文献第5章 氧化镓基紫外光电探测器5.1 引言5.2 超宽禁带氧化镓基半导体5.2.1 超宽禁带氧化镓基半导体材料的制备5.2.2 超宽禁带氧化镓基半导体光电探测器的基本器件工艺5.3 氧化镓基日盲探测器5.3.1 基于氧化镓单晶及外延薄膜的日盲探测器5.3.2 基于氧化镓纳米结构的日盲探测器5.3.3 基于非晶氧化镓的柔性日盲探测器5.3.4 基于氧化镓异质结构的日盲探测器5.3.5 氧化镓基光电导增益物理机制5.3.6 新型结构氧化镓基日盲探测器5.4 辐照效应对宽禁带氧化物半导体性能的影响5.5 氧化镓基紫外光电探测器的发展前景参考文献第6章 ZnO基紫外光电探测器6.1 ZnO材料的性质6.2 ZnO紫外光电探测器6.2.1 光电导型探测器6.2.2 肖特基光电二极管6.2.3 MSM结构探测器6.2.4 同质结探测器6.2.5 异质结探测器6.2.6 压电效应改善ZnO基紫外光电探测器6.3 MgZnO深紫外光电探测器6.3.1 光导型探测器6.3.2 肖特基探测器6.3.3 MSM结构探测器6.3.4 P-N结探测器6.4 ZnO基紫外光电探测器的发展前景参考文献第7章 金刚石紫外光电探测器7.1 引言7.2 金刚石的合成7.3 金刚石光电探测器的类型7.3.1 光电导型光电探测器7.3.2 MSM光电探测器7.3.3 肖特基势垒光电探测器7.3.4 P-I-N和P-N结光电探测器7.3.5 异质结光电探测器7.3.6 光电晶体管7.4 金刚石基光电探测器的应用参考文献第8章 真空紫外光电探测器8.1 真空紫外探测及其应用8.1.1 真空紫外探测的应用8.1.2 真空紫外光的特性8.2 真空紫外光电探测器的类型和工作原理8.2.1 极浅P-N结光电探测器8.2.2 肖特基结构光电探测器8.2.3 MSM结构光电探测器8.3 真空紫外光电探测器的研究进展8.3.1 极浅P-N结光电探测器的研究进展8.3.2 肖特基结构光电探测器的研究进展8.3.3 MSM结构光电探测器的研究进展
  • 2025全球红外探测器市场将达6.83亿美元 LWIR占主导
    p   最新研究报告显示,2010年红外探测器市场预计为4.98亿美元,2025年该市场将增长到6.83亿美元,预测期内,预计年复合增长率为6.5%。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/2b91041c-33ec-403e-8d1c-457ccbbd1166.jpg" title=" ir-detector-market3.jpg" alt=" ir-detector-market3.jpg" / /p p   非工业垂直领域对红外探测器的高度需求,特别是人与运动传感、温度测量、安全和监测应用等方面,是推动红外探测器市场发展的关键因素。另外,红外技术在气体分析和火灾探测方面的不断渗透,以及非制冷红外探测器的高度普及,也是影响红外探测器市场增长的积极因素。 /p p   根据波长,红外探测器市场按可以为分近红外(NIR)、短波红外(SWIR)、中波红外(MWIR)、长波红外(LWIR)。军事和国防垂直领域对LWIR产品的高需求是导致LWIR探测器在市场上占据主导地位的主要因素之一。此外,LWIR探测器也已广泛应用于民用和商用、航空航天、汽车、食品饮料和医疗保健等行业。上述行业对这些探测器的高需求主要是由于它们比大多数MWIR和SWIR探测器的成本更低。 /p p   在预测期内,非工业垂直领域将占据最大的市场份额,并且复合年增长率也最高。军事和国防以及民用和商业是非工业垂直领域的主要部分,对红外探测器的需求最高。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 240px " src=" https://img1.17img.cn/17img/images/202002/uepic/5bfc13f8-1da6-44a6-b66f-c981ceaf5c8c.jpg" title=" ir-detector-market4.jpg" alt=" ir-detector-market4.jpg" width=" 600" height=" 240" border=" 0" vspace=" 0" / /p p   在预测期内,北美预计将占据最大的市场份额。人与运动传感、温度测量、安全与监测是该地区红外探测器的主要应用领域。在上述应用中,军事及安防,以及民用和商用是红外探测器的主要需求来源。几家提供红外探测器的公司在这一地区都有业务,这进一步促进了北美市场的增长。 /p p   红外探测器市场的主要供应商包括:Excelitas Technologies(美国)、Nippon Ceramic (日本)、Hamamatsu Photonics (日本)、Murata Manufacturing (日本)和FLIR Systems (美国)等。 /p p br/ /p
  • 想了解IVD用光电探测器前沿信息?还不赶快...
    据《中国医药健康蓝皮书》数据,2014年我国体外诊断产品市场规模达到了306亿元,预计2019年将达到723亿元,年均复合增长率高至18.7%。市场如火如荼,充满机会,也充满挑战。体外诊断仪器如何达到更高的行业要求?如何应对更广泛的市场需求? 3月7日至9日,诚邀您前来CACLP 2016滨松中国展台(西安曲江国际会议中心,B2馆 321/322)。从核心探测力,这最关键的第一步出发,了解仪器成为“实力派”的更好可能。 本次我们将展示的产品可覆盖生化分析、血液分析、分子诊断、免疫分析等多个方面。模块化产品将进行着重呈现,如光电倍增管模块、闪烁氙灯模块、光学模块,可为仪器开发提供更多的便捷。此外,新型探测器——MPPC(硅光电倍增管)的系列新品,也将于本次将首次出展。各种不同的探测器、光源各有特征,不论从尺寸、性能,还是应用、成本,都可灵活满足众多体外诊断应用需求,欢迎您届时前来现场观览详询。(B2馆 321/322)
  • Advacam公司 Minipix X射线探测器样机免费试用
    MiniPIX是一款来自捷克的掌上型光子计数X射线探测器,内含由欧洲核子研究组织(CERN)研发的Timepix芯片(256 x 256 ,像素大小55 μm)。传感器支持硅厚度300μm/500微米,碲化镉厚度1000μm可选。采用USB2.0的接口读出,速率为45帧/秒。MiniPIX探测器可实现粒子和电离辐射的可视化,内置的能量敏感成像能力为射线成像带来了一个新的维度。紧凑的尺寸使MINIPIX可内置于用于难以成像的管道或受限的空间里。MiniPIX不仅为广大科研工作者提供了更多的选择,也可作为教学工具,为高校课堂的实用教学提供了更多的可能性。产品主要特点:物超所值,与传统X射线探测器相比更高的性价比;体积小巧,形似U盘;通过USB接口连接,笔记本电脑即可运行 (支持Windows, MacOS or Linux);人性化软件操作界面应用方向:能量色散XRD 太空辐射监测 氦离子照相 激光康普顿散射伽玛射线瞄靶 电子背散射衍射北京众星联恒科技有限公司为advacam公司在中国的独家代理,现可提供MiniPIX样机免费试用,如有需要,请联系我司工作人员预约时间。Advacam S.R.O.源至捷克技术大学实验及应用物理研究所,致力在多学科交叉业务领域提供硅传感器制造、微包装、电子产品设计和X射线成像解决方案。Advacam最核心的技术特点是其X射线探测器(应用Timepix芯片)没有缝隙(No Gap),因此在无损检测、生物医学、地质采矿、艺术及中子成像方面有极其突出的表现。Advacam同NASA(美国航空航天局)及ESA(欧洲航空航天局)保持很好的项目合作关系,其产品及方案也应用于航空航天领域。
  • 国内首个室温太赫兹自混频探测器问世
    记者日前从中科院苏州纳米所获悉,该所成功研制出在室温下工作的太赫兹自混频探测器,从而填补了该类探测器的国内空白。   据了解,作为人类尚未大规模使用的一段电磁频谱资源,太赫兹波有着极为丰富的电磁波与物质间的相互作用效应,不仅在基础研究领域,而且在安检成像、雷达、通信、天文、大气观测和生物医学等众多技术领域有着广阔的应用前景。目前,室温微型的固态太赫兹光源和检测器技术尚未成熟,众多太赫兹发射&mdash 探测应用还处于原理演示和研究阶段。室温、高速、高灵敏度的固态太赫兹探测器技术是太赫兹核心器件研究的重要方向之一。   自2009年起,苏州纳米所秦华、张宝顺、吴东岷课题组就致力于太赫兹波&mdash 低维等离子体波相互作用及其调控研究。该团队在2009年年底取得突破性进展,在GaN/AlGaN高电子迁移率晶体管的基础上研制成室温工作的高灵敏度高速太赫兹探测器,首次实现了对1000GHz的太赫兹波的灵敏检测。   经过3年多的技术攻关,研究团队进一步突破了太赫兹天线、场效应混频和器件模型等关键技术,掌握了完整的场效应自混频太赫兹探测器技术。   目前,苏州纳米所研制的太赫兹探测器探测频率达到800~1100GHz,电流响应度大于70mA/W,电压响应度大于3.6kV/W,等效噪声功率小于40pW/Hz0.5,综合指标达到国际上商业化的肖特基二极管检测器指标,并成功演示了太赫兹扫描透视成像和对快速调制太赫兹波的检测。   据介绍,该项技术可进一步发展成大规模的太赫兹焦平面成像阵列和超高灵敏度的外差式太赫兹接收机技术,为发展我国的太赫兹成像、通信等应用技术提供核心器件与部件。
  • 突破!全球最快响应的短波红外量子点探测器
    【背景介绍】短波红外(SWIR,1000 ~ 3000 nm)光由于受空气中颗粒物的散射较弱,使其在恶劣天气或生物组织中也能提供长距离的有效探测,并在成像场景中提供更多物质化学信息,同时对人眼更安全。这使得短波红外在光通信、远程遥感、自动化视觉技术、生物成像、环境监测和光谱技术等领域中发挥着关键作用。然而,目前市场上的短波红外传感器采用异质外延技术,但由于其制备方法繁琐,不适合大规模、低成本的3D成像应用。随着胶体量子点(QDs)的出现,其尺寸可调的光学特性使其成为探测短波红外光的理想选择。虽然近年来短波红外光电二极管结构探测器的响应时间有所缩短,但至今仍未达到纳秒级水平,这成为将胶体量子点应用于短波红外光电探测领域的主要挑战之一。【成果简介】据麦姆斯咨询报道,近日,比利时根特大学的邓玉豪(第一作者兼通讯作者)等人取得了一项突破性进展,成功利用超薄的胶体量子点吸收层,实现了基于胶体量子点的短波红外光电二极管(QDPDs)的纳秒级响应。这一研究成果创造了短波红外领域全球最快响应的胶体量子点光电探测器,相关内容以“Short-Wave Infrared Colloidal QDs Photodetector with Nanosecond Response Times Enabled by Ultrathin Absorber Layers”为题在国际著名期刊《Advanced Materials》上发表,为胶体量子点在超快短波红外探测技术的进一步研究和应用提供了重要参考。【核心创新】1. 作者通过优化超薄结构器件的制备方法,克服了传统方法的不足,得到1600整流比,42%外量子点效率,98%内量子效率的光电二极管器件。2. 作者通过结构优化,实现了超薄结构下量子点层2.5倍的吸收增强,使得超薄层仍然可以获得较高EQE。3. 作者通过厚度与面积优化,平衡了载流子迁移与RC延迟时间,最终得到创纪录的4 ns响应时间。【研究概览】图1 胶体量子点探测器响应时间的数值模拟。计算表明,漂移时间将限制厚度较大的器件的响应,而RC延迟效应将决定较薄器件的响应时间,通过降低器件面积,可以实现纳秒级的响应时间。图2 胶体量子点光电探测器制备流程优化。作者通过浓度梯度的交换法,提高了PN结的质量,得到了整流比1600的器件。图3 胶体量子点光电探测器结构示意图和性能。该器件的胶体量子点层优化为100 nm,器件的EQE达到了42%,利用结构形成法布里-珀罗腔,在超薄结构的基础上将量子点层的吸收增强了2.5倍,器件的内量子效率可以高达98%。图4 不同大小、不同厚度的胶体量子点光电探测器的响应时间。通过降低器件面积、优化器件厚度可以使得器件具有更快的响应,最终实现了4 ns响应时间的世界纪录,也是首次将胶体量子点短波红外探测速度逼近到了纳秒级别。图5 进一步提快胶体量子点光电探测器的响应分析。通过提高胶体量子点层的迁移率,该器件结构还可以继续优化,完全可以实现亚纳秒级的响应时间,这为接下来胶体量子点超快探测器的研究阐明了研究方向。【成果总结】这项研究工作实现了一项重大的突破,首次设计出超薄吸收层的胶体量子点光电探测器,成功在短波红外波段实现了纳秒级的响应时间。通过采用浓度梯度的配体交换方法,制备了具有高质量PN结的薄膜结构器件。该光电探测器在1330 nm处获得了42%的外部量子效率,这得益于在胶体量子点光电二极管内形成的法布里-珀罗腔和高效的光生电荷提取。此外,通过进一步提高载流子迁移率,该器件可以实现亚纳秒级的响应时间。这项研究的成功突破将对短波红外超快光电探测技术的未来发展产生重大的影响。论文链接:https://doi.org/10 .1002/adma.202402002【作者简介】Yu-Hao Deng(邓玉豪)博士,比利时根特大学BOF博士后研究员,主要研究方向为胶体量子点材料与光电器件,以及钙钛矿材料表征与光电器件。邓博士之前已在Nature、Advanced Materials、Matter、Nano Letters、Physical Review Letters、Advanced Science等国际期刊上发表论文数篇。
  • SCD推出世界首款基于事件的短波红外探测器
    据麦姆斯咨询报道,以色列非制冷红外探测器和高功率激光二极管制造商Semi Conductor Devices(SCD),近期推出了一种基于事件(event-based)的新型短波红外(SWIR)探测器Swift-El。据SCD称,Swift-El是世界首款集成基于事件成像功能的短波红外探测器,使其成为国防和工业领域的“革命性”补充。Swift-El是一款尺寸、重量、功耗(SWaP)极低且成本低廉的VGA格式10 μm像素间距短波红外探测器。其先进的焦平面阵列(FPA)探测能力,使战术部队能够探测多个激光源、激光点、敌方火力指示(HFI)等。Swift-El具有的读出集成电路(ROIC)成像器技术,使其可在一个传感器中提供两个并行视频通道:一个标准成像短波红外视频通道和一个极高帧事件成像通道。Swift-El提供支持白天和弱光场景的短波红外成像,可实现全天候态势感知、更好的大气穿透能力,以及为战术级应用提供的低成本短波红外图像。此外,其基于事件的成像通道提供了多种先进的功能,如激光事件点检测、多激光点LST功能和基于事件的短波红外成像等,扩大了目标检测和分类的范围。Swift-El还为生产线分拣机、智慧农业等领域的机器视觉应用开辟了新可能,这些应用需要对先进短波红外图像进行分析以实现自动机器决策。Swift-El能够实现超过1200 Hz的全帧率,这对机器视觉和机器AI算法至关重要。Swift-El探测器的分辨率为640×512、像素间距10μm,由该公司位于以色列的晶圆厂生产,目前主要面向国防和工业应用,计划于2024年量产。SCD业务发展与营销副总裁Shai Fishbeing表示:“我们非常注重规模经济,以提高产能和良率,我们拥有世界上最大的热像仪制造厂。”
  • SCD推出世界首款基于事件的短波红外探测器
    据麦姆斯咨询报道,以色列非制冷红外探测器和高功率激光二极管制造商Semi Conductor Devices(SCD),近期推出了一种基于事件(event-based)的新型短波红外(SWIR)探测器Swift-El。Swift-El是一款尺寸、重量、功耗(SWaP)极低且成本低廉的VGA格式10 μm像素间距短波红外探测器。据SCD称,Swift-El是世界首款集成基于事件成像功能的短波红外探测器,使其成为国防和工业领域的“革命性”补充。其先进的焦平面阵列(FPA)探测能力,使战术部队能够探测多个激光源、激光点、敌方火力指示(HFI)等。Swift-El具有的读出集成电路(ROIC)成像器技术,使其可在一个传感器中提供两个并行视频通道:一个标准成像短波红外视频通道和一个极高帧事件成像通道。Swift-El提供支持白天和弱光场景的短波红外成像,可实现全天候态势感知、更好的大气穿透能力,以及为战术级应用提供的低成本短波红外图像。此外,其基于事件的成像通道提供了多种先进的功能,如激光事件点检测、多激光点LST功能和基于事件的短波红外成像等,扩大了目标检测和分类的范围。Swift-El还为生产线分拣机、智慧农业等领域的机器视觉应用开辟了新可能,这些应用需要对先进短波红外图像进行分析以实现自动机器决策。Swift-El能够实现超过1200 Hz的全帧率,这对机器视觉和机器AI算法至关重要。Swift-El探测器的分辨率为640 x 512、像素间距10μm,由该公司位于以色列的晶圆厂生产,目前主要面向国防和工业应用,计划于2024年量产。SCD业务发展与营销副总裁Shai Fishbeing表示:“我们非常注重规模经济,以提高产能和良率,我们拥有世界上最大的热像仪制造厂。”
  • 二维X射线探测器的研制项目通过验收
    6月7日,中国科学院计划财务局组织专家对高能物理研究所承担的院重大科研装备研制项目“二维X射线探测器的研制”进行了现场验收。   二维X射线探测设备采用200mm×200mm气体电子倍增器膜(GEM)为主要探测部件,项目组经过多年潜心研究,开发了相关探测器的制作工艺,解决了电极结构设计的关键技术问题,研制了多路快读出前端电子学及高速数据获取系统。   该设备的特点是:有效探测面积大、位置分辨好、计数率高,具有同步辐射晶体衍射和二维成像功能,现已在北京同步辐射大分子实验站进行了晶体衍射实验,实现了X射线的高计数率、高分辨率探测,可以满足同步辐射的使用需求,有望在X射线衍射、小角散射和成像等方面开展广泛的应用研究。   验收专家组听取了项目负责人陈元柏的研制工作和使用报告、财务报告及测试专家组的测试报告,现场核查了研制设备的运行情况,审核了相关的文件档案及财务账目。专家组对该项目研制做出了高度评价,认为各项技术指标达到或优于实施方案规定的要求,实现了X射线探测的二维精确定位,填补了国内高计数率X射线气体成像探测器的技术空白 技术档案齐全,经费使用合理,单位自筹资金到位,一致同意通过验收。鉴于该成果具有广阔的应用前景,专家组建议该项目的研究特别是小型化研究要不停顿地进行下去,促进项目成果的应用和推广。 验收会现场 测试现场 二维X射线探测设备
  • 免费试用/国内现货—超高性价比教育版辐射粒子探测器MiniPIX EDU来咯!
    运用了由CERN开发的、NASA在太空中使用过的X射线探测器技术,MiniPIX EDU是一款为以教育为用途而设计和定价的微型USB、光子计数X射线探测器。MiniPIX EDUNASA在太空中使用的是标准版MiniPIX。此前标准版MiniPIX就已经出现在欧洲的学校课堂上了,但通常教师和学生的需求对设备的要求没有那么高,所以ADVACAM开发了教育版的MinIPIX,即MiniPIX EDU。 教育版初始为实验教学而设计,此外也能用于某些工业应用。它把现代的辐射成像技术带进课堂,让学生可以探索我们周围看不见的电离辐射世界。学生将探索不同类型辐射的起源,并了解放射性同位素如何在自然环境和像人类房屋、城市、工业的人造环境中迁移,他们可以了解人们如何从电离辐射和放射性中受益:医学成像方法,工业中的非破坏性测试,用于治疗癌症的核医学方法,安全应用,核电̷̷MiniPIX EDU可记录非常低的放射性强度,这种强度无处不在。学生可以记录到普通材料和物体的放射性强度,如口罩上、花岗岩、灰烬或纸袋上的放射性强度。 MiniPIX在高中实验课堂上测验矿物质发出的的辐射类型及强度参数规格如下:感光材料Si有效输入面积14 mm x 14 mm像素数量256 x 256像素尺寸55 μm分辨率9 lp/mm读出速度55 frames/s阈值分辨率0.1 keV能量分辨率0.8 keV (THL) and 2 keV (ToT)最低能量检测限5 keV for X-rays光子计数率up to 3 x 106 photons/s/pixel读出芯片Timepix操作模式Counting,Time-over-Threshold, Time-of-Arrival接口USB 2.0尺寸89 mm x 21 mm x 10 mm (L x W x H)重量30 g软件Pixet PRO or ask for RadView radiation visualization softwareMiniPIX EDU使用非常简单,只需要将其插入PC的USB端口并启动软件,就能观测到神奇的电离粒子图像。 典型图像:粒子造成的圆形大斑点,宇宙介子引起的长轨迹,电子造成的弯曲、蠕虫形状,伽玛射线或X射线产生的小点有时会观察到更罕见的现象:δ电子,反冲核,两个或多个核跃迁的级联,质子轨道现货供应:MinIPIX EDU光子计数X射线探测器有大量现货供应,如需询购,欢迎新老客户致电众星联恒:010-86467571,或联系我们的销售工程师,我们也可提供试用与演示服务。MiniPIX EDU 相关阅读https://www.instrument.com.cn/netshow/SH102943/news_554493.htmhttps://www.instrument.com.cn/netshow/SH102943/news_553389.htmhttps://www.instrument.com.cn/netshow/SH102943/news_540282.htmhttps://www.instrument.com.cn/netshow/SH102943/news_538177.htmhttps://www.instrument.com.cn/netshow/SH102943/news_515926.htmAdvacam S.R.O.源至捷克技术大学实验及应用物理研究所,致力在多学科交叉业务领域提供硅传感器制造、微电子封装、辐射成像相机和X射线成像解决方案。Advacam最核心的技术特点是其X射线探制器(应用Timepix芯片)、没有拼接缝隙(No Gap),因此在无损检测、生物医学、地质采矿、艺术及中子成像方面有极其突出的表现。Advacam同NASA(美国航空航天局)及ESA(欧洲航空航天局)保持很好的项目合作关系, 其产品及方案也应用于航空航天领域。北京众星联恒科技有限公司作为捷克Advacam公司在中国区的总代理,也在积极探索和推广光子计数X射线探测技术在中国市场的应用,目前已有众多客户将Minipix、Advapix和Widepix成功应用于空间辐射探测、X射线小角散射、X射线光谱学、X射线应力分析和X射线能谱成像等领域。
  • 大科学工程“拉索”首个探测器阵列建成
    新年伊始,大科学工程高海拔宇宙线观测站“拉索”(LHAASO)传来喜讯。5日,记者从中国科学院高能物理研究所获悉,拉索水切伦科夫探测器阵列(WCDA)三号水池注水达到正常工作水位,这标志着WCDA探测器全部建成,全阵列投入科学运行。这是拉索四种类型的探测器阵列中最早完成的一个阵列。WCDA是拉索探测器阵列的重要组成部分之一,探测器总面积为78000平方米,由三个水池组成,内有3120个探测器单元,6240个光敏探头。WCDA水池采用了国内首创的“薄壁混凝土现浇边墙+软基土工膜防渗系统+大跨度轻钢屋面结构”设计,在没有国标可参考的情况下,满足了探测器对避光、防冻、防锈蚀和水位保持等的超高指标要求。“根据国际前沿发展动态,项目组在WCDA建设过程中进行了方案优化,在二号和三号水池中采用了我国自主研发的、具有国际上最大灵敏面积的新一代20寸光电倍增管,降低了探测器阈能,大幅增强了探测器在50-500 GeV能段的伽马射线探测能力。”拉索项目首席科学家、中科院高能物理所研究员曹臻说。曹臻表示,WCDA的有效探测面积是国际上最大同类型实验HAWC的4倍,能够对银河系内外的伽马暴、快速射电暴、引力波电磁对应体等具备瞬变特性的高能辐射信号进行探测,具备5-10年的国际领先优势,预期将获得一系列非常重要的观测与研究成果。拉索是国家重大科技基础设施项目,位于四川省稻城县海子山,由电磁粒子探测器阵列、缪子探测器阵列、水切伦科夫探测器阵列、广角切伦科夫望远镜阵列组成。
  • “完美的探测器设计” :探索正反物质差异有了灵敏探针
    北京正负电子对撞机上的北京谱仪III(BESIII)实验实现了一种全新方法,为研究物质和反物质之间的差异提供了极其灵敏的探针。6月2日,相关研究成果刊发于《自然》杂志。  论文所有匿名评审都对这一成果大加赞赏:“创新的测量方法”“很重要”“很新颖”“吸引人”“非常有前景”… … 到底是什么成果,竟让匿名评审们如此兴奋?  不好好“组CP”的反物质  “正反物质不对称性”是困扰科学界半个多世纪的问题,也是粒子物理学家一直在寻找的现象。他们常会提到一个词——“CP破坏”。  “CP破坏”里的“CP”,和我们平时常说的“组CP”里的“CP”(情侣档)并不是一码事。  130亿年前,宇宙在发生大爆炸之后迅速膨胀、冷却,大量正反粒子彼此结合、湮没。然而,就像闹了别扭的情侣一样,正反粒子在结合湮没的过程中,行为出现了一些不同。每十亿个正反粒子湮没的过程中,就有一个正物质粒子被留了下来,并最终组成了当今宇宙中所有的物质。  科学家将正粒子和反粒子衰变过程不一样的现象,称为“CP破坏”。  “CP破坏”的名字与李政道、杨振宁密切相关。他们提出并获得诺贝尔物理学奖的“宇称不守恒定律”认为,粒子的弱相互作用中存在“镜像”空间反射不对称性。  在此基础上,科学家总结出了“CP破坏”。“CP破坏现象可以用来解释为什么我们的世界中只有正物质,没有反物质。”中国科学院高能物理研究所所长、中国科学院院士王贻芳告诉《中国科学报》。  宇宙原初反物质为何消失?  超子CP破坏有望解谜  自上个世纪60年代以来,国外科学家已经相继在介子系统中发现了CP破坏。可是,正反物质的不对称性并没有因此得到完美解释。  “在构成世界的主要粒子中,介子数量很少,介子衰变时多出来的正物质并不足以形成现在的世界。”王贻芳说。  与数量稀少的介子不同,重子是构成世界的主要粒子。“如果能在重子中找到CP破坏,我们就能够更好地理解宇宙原初反物质消失之谜。”王贻芳说。  遗憾的是,科学家从未在重子衰变中发现过CP破坏,原因在于“弱衰变信号有时会被强相互作用掩盖”。“所以要想看到重子的CP破坏,就需要有足够高灵敏度和创新性的实验方法,把弱相互作用与强相互作用的信号区分开来。”王贻芳说。  超子是重子中的一种,类似于质子,但寿命很短,因此不像质子那样可以存在于我们身边。在超子中,有一个名叫“科西超子”的成员,由两个奇异夸克和一个轻夸克组成,当奇异夸克发生弱衰变时,它便消失了。  超子衰变被科学家视为“寻找CP破坏的一个很有希望的狩猎场”,因为测量CP破坏时需要的一些信息可以通过超子的衰变直接测量。  发现了高精度测量方法  从2009年起,BESIII实验从正负电子对撞出的“碎片”中,收集到了约100亿J/psi粒子。这种名叫“J/psi”的粒子会衰变产生正—反科西超子,之后,正—反科西超子还会继续衰变、消失。  BESIII实验组的科研人员用了100亿粒子事例中的13亿,分析出了正—反科西超子的诞生过程,重建出7万多个正—反科西超子对。如此一来,BESIII就成了一个干净、小巧的科西超子“工厂”。  “干净”是因为本底污染率小于千分之一水平。“小”是因为BESIII实验中,超子产额并不算多。“巧”是因为BESIII实验的敏感度足够高。  “我们的超子产额只有美国费米实验室一个叫HyperCP实验产额的千分之一,但单事例的敏感度是HyperCP单事例的一千倍。”BES III实验发言人、中科院高能物理研究所研究员李海波说。  在分析数据时,BESIII实验组的科研人员发现了一种高精度测量超子CP破坏的方法。  早先,他们发现,刚衰变出来的正科西超子和反科西超子之间存在一种特殊的现象——“量子纠缠”。于是,利用这种独特的量子纠缠效应,再结合科西超子其他数据信息,实验人员不仅从海量数据中同时找出了正科西超子、反科西超子的衰变信号,还以前所未有的精度测量出正—反科西超子的不对称参数。  “新方法解决了30年来不能同时高效地对超子和其反粒子测量的困境,也给出了更丰富的CP破坏测量结果。”李海波说。  “这一成果已经引起国际同行的关注,相关研究人员被2021年国际轻子光子大会邀请作大会专题报告,成为这一领域的新星。”王贻芳说。  暂未发现新物理现象,将分析更多数据  遗憾的是,BESIII实验组此次的测量结果并没有显示出超子的CP破坏迹象。即便如此,新方法的发现依然得到了国际匿名评审的认可。  一位匿名评审点评说:“即使尚未发现CP破坏的新迹象,但研究方法上仍然很有趣。”另一位匿名评审认为:“新方法为将来的实验指明了方向,铺平了道路。”  “这一创新方法为我们未来确认或排除超出标准模型的CP破坏来源带来了希望。”王贻芳说。  抱着这样的希望,实验组正在向更高的测量精度发起挑战。“我们希望在不远的将来,能够用这种测量方法发现超子CP破坏的实验证据。”王贻芳表示,BESIII实验组正在分析100亿粒子衰变数据,测量精度有望再提高3倍左右。  目前,这支由我国主要开展研究的实验团队面临着激烈的国际竞争。  “欧洲核子中心的大型强子对撞机底夸克探测器(LHC-b)也正在大量制造超子。不过,他们的本底污染率比我们高。”李海波告诉《中国科学报》,BESIII实验组在测量上的优势在于BESIII实验“完美的探测器设计”。  BESIII是我国历史上最早的粒子物理大科学装置——北京正负电子对撞机上的探测器。它关注两个科学问题:夸克如何组成物质粒子和宇宙物质—反物质不对称的起源。  王贻芳介绍,从2009年至今,BESIII实验已经发表了400余篇研究成果。该探测器计划运行到2030年。  作为我国自主研发的大型高能实验装置,BESIII实验吸引了来自17个国家80家科研机构的约500个科研人员,是目前国内正在运行的最大国际合作组。此次发表的新成果由中国科学家和国外合作者共同完成。
  • Timepix3 |易于集成的多功能直接探测电子探测器
    混合像素探测器技术最初是为了满足欧洲核子中心-CERN大型强子对撞机LHC的粒子跟踪需求而开发的。来自欧洲核子中心-CERN 和一些外部合作小组的研究人员看到了将混合像素探测器技术转移到高能物理领域以外的应用的机会。于是Medipix1 Collaboration 诞生了。Medipix系列是由Medipix Collaborations 开发的一系列用于粒子成像和检测的像素探测器读出芯片。Timepix系列是从 Medipix系列开发演变而来的。其中Timepix芯片更针对于单个粒子的探测以获得时间、轨迹、能量等信息。 目前基于Timepix和Timepix3的探测器,由于其单电子灵敏、高动态范围及独特的事件驱动模式被广泛地应用于电子背散射(EBSD),4维电子显微(4D SEM)等领域。捷克Advacam公司是一家涵盖传感器制造、微电子封装、混合像素探测器(Timepix,Medipix)及解决方案的全产业链公司,致力于为工业和学术需求开发成像解决方案。ADVAPIX TPX3F与 MINIPIX TPX3F系列是基于Timepix3芯片的多功能探测器,其探测器与读出采用软排线连接,整个设计非常小巧,性价比高,非常适用于电子显微镜厂家将其二次开发并集成到现有系统中,以提升系统性能。▲ MINIPIX TPX3F探测器实物展示▲ ADVAPIX TPX3F探测器实物展示▲ 使用MINIPIX TPX3F探测器鉴别电子、质子,Alpha粒子及μ介子ADVAPIX TPX3F与MINIPIX TPX3F主要规格参数MINIPIX TPX3FADVAPIX TPX3F芯片类型Timepix3像素尺寸55 x 55 μm分辨率256 x 256 pixels传感器100µm,300µm,500µm硅,1mm CdTe 暗噪声无暗噪声接口高速USB 2.0超高速USB 3.0事件驱动模式最大读出速度*2.35 x 10^6 hits/s40 x 10^6 hits / s帧模式速率16fps30fps事件时间分辨能力1.6ns1.6ns*受限于Flex软排线实际长度测量模式类型模式范围描述帧读出模式(曝光后读出所有像素信息)Event+iToT10 bit + 14 bit每次曝光输出两帧数据:1. Events:每个像素中的事件数量2. iToT:每个像素中所有事件的过阈总时间iToT14 bit输出一帧:每个像素中所有事件的过阈总时间ToA18 bit输出一帧:ToA+FToA3 =第一个到达像素事件的到达时间像素/事件驱动模式(在曝光过程中,连续读出被击中像素信息)ToT+ToA10 bit + 18 bit每个像素的每个事件可同时获得: Position, ToT, ToA and FToAToA18 bit每个像素的每个事件可同时获得: Position, ToA and FToA.Only ToT10 bit每个像素的每个事件可同时获得: Position and ToTADVAPIX TPX3F与MINIPIX TPX3F像素/事件驱动模式最大读出速率测试:主要特点单电子灵敏零噪声耐辐射高动态范围无读出死时间主要应用(4D)STEM in SEM/TEMµED(microelectron diffraction)EBSDEELSPtychography应用案例ThermoScientific' s™ Helios™ 5 UX DualBeam采用了Advacam的探测技术ADVACAM
  • 帕克太阳探测器发射升空 开启历时7年的逐日之旅
    p style=" text-align: justify " & nbsp & nbsp 美东时间8月12日凌晨3时31分,帕克太阳探测器由美国联合发射联盟的Delta-4重型火箭于佛罗里达州卡纳维拉尔角空军基地成功发射升空,开启历时7年的逐日之旅。这将是人造航天器首次抵达恒星大气层。 /p p /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/95d0d2d7-10a6-4050-935a-4843bcc1cd83.jpg" title=" 7Jaj-hhqtawx6152749.jpg" / /p p style=" text-align: justify " 帕克太阳探测器将是人类首次抵达恒星大气层,也是目前人类唯一可以接近的恒星。 /p p style=" text-align: justify " & nbsp & nbsp 美国宇航局消息,Delta-4重型火箭载着帕克太阳探测器于当日成功发射升空。美国宇航局的这颗耗资15亿美元的航天器将成为有史以来距离太阳最近、速度最快的太空探测器。美国宇航局科学任务理事会副主任托马斯· 佐伯琴(Thomas Zurbuchen)表示,这一任务标志着人类首次探访太阳系中的大明星。 /p p style=" text-align: justify " & nbsp & nbsp 帕克太阳探测器预计于2018年11月1日第一次抵达近日点,执行首个探日任务。届时它将飞抵距太阳光球层1500万英里处。科学家最快于12月可收到第一批“太阳信息”。探测器的最后一次探日任务预计于2025年6月执行。这是探测器第24次飞抵近日点,也是该任务最接近太阳的一刻,届时与太阳光球层的距离约600万千米。 /p p style=" text-align: justify " & nbsp & nbsp 帕克太阳探测器任务旨在追踪能量和热量如何通过日冕,探索加速太阳风和太阳能粒子的作用。它携带了四组仪器,可测量电场、磁场,探测太阳风的成分,并拍摄日冕图景。 /p p style=" text-align: justify " & nbsp & nbsp 据《纽约时报》报道,帕克太阳探测器将打破人类有史以来飞行速度最快、最耐高温的人造航天器的纪录。 /p p style=" text-align: justify " & nbsp & nbsp 一方面为接近太阳,科学家将航天器的速度提升至最高速度达每小时50万英里,相当于只需不到一分钟的时间可从芝加哥到北京。另一方面,科学家设计出抵挡高温的隔热罩。它是一块直径2.3米,厚度为11.43厘米的碳-碳复合材料隔热罩,表面附有陶瓷涂层,内部充满碳结构,能将大部分太阳光反射回去。它像一块盾牌,保护着背面的探测器免受太阳高温的辐照加热,并将其温度控制在85华氏度。 /p p style=" text-align: justify " & nbsp & nbsp 在太阳日冕层内,温度最高达到2500华氏度。这是钢的熔化温度。60多年来,科学家一直在寻找如何让航天器不受太阳炙烤的答案。今天,随着热工程技术进步,才有可能实现这趟旅程。目前,距离太阳最近的探测器纪录由20世纪70年代发射的德国太阳神2号探测器保持,距太阳约2700英里。 /p p style=" text-align: justify " & nbsp & nbsp 值得一提的是,这是首个以健在的人物命名的太空任务。现代太阳风和磁重联理论的奠基人、美国科学院院士尤金· 帕克(Eugene Parker)于1958年首次预测太阳风的存在。此次任务将证实帕克的预言。当日,91岁的帕克在空军基地现场观看了发射全程。火箭升空后,他在美国宇航局广播中说:“(这趟旅途)终于开始了!” /p p style=" text-align: justify " & nbsp & nbsp 此外,帕克太阳探测器贴上了一块铭牌和一枚芯片。铭牌上写着:献给专注于研究太阳和太阳风的尤金· 帕克博士,他的贡献彻底改变了我们对太阳和太阳风的认识。芯片上存储了超过110万公众的名字,将与探测器一起开启逐日之旅。 /p p br/ /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制