当前位置: 仪器信息网 > 行业主题 > >

调谐滤波器

仪器信息网调谐滤波器专题为您提供2024年最新调谐滤波器价格报价、厂家品牌的相关信息, 包括调谐滤波器参数、型号等,不管是国产,还是进口品牌的调谐滤波器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合调谐滤波器相关的耗材配件、试剂标物,还有调谐滤波器相关的最新资讯、资料,以及调谐滤波器相关的解决方案。

调谐滤波器相关的资讯

  • 【新品发布】Moku:Go 仪器套件新增数字滤波器、FIR滤波器生成器、锁相放大器功能
    【新品发布】Moku:Go 仪器套件新增数字滤波器、FIR滤波器生成器、锁相放大器功能Moku:Go提供全面的便携式实验室解决方案,不仅集成了工程实验教学所需的仪器套件,还可满足工程师和学生测试设计、研发等项目。Liquid Instruments最新发布Moku:Go应用程序,新增数字滤波器、FIR滤波器生成器、锁相放大器三个仪器功能。用户现在可以使用数字滤波器来创建IIR滤波器,使用FIR滤波器生成器来设计FIR滤波器,使用锁相放大器从噪声环境中提取已知频率的信号。这一更新使Moku:Go上集成的仪器总数达到了11种,将面向信号与系统等方向提供更完善的实验教学方案,不仅使电子信息工程、电气工程、自动化控制等学科教学进一步受益,并扩展到物理学、计算机科学等领域。数字滤波器数字滤波器作为设计和创建无限冲激响应(IIR)滤波器的常用工具,用户能够创建参数可调的高达8阶的低通、高通、带通和带阻IIR滤波器。这对噪声过滤、信号选择性放大等很有用。此外,Moku:Go的数字滤波器还集成示波器和数据记录器,有助于解整个信号处理链的参数变化,并轻松采集记录这些信号随时间的变化。 FIR滤波器生成器利用Moku:Go的FIR滤波器生成器,用户可以创建和部署有限冲激响应(FIR)滤波器。使用直观的用户界面,在时域和频域上微调您的滤波器的响应。锁相放大器作为第yi个在教育平台上提供的全功能锁相放大器设备,Moku:Go的锁相放大器满足更高级实验教学,如激光频率稳定和软件定义的无线电(Software Defined Radio,SDR)等。作为Liquid Instruments的Moku:Lab和Moku:Pro的旗舰仪器,Moku:Go增加了锁相放大器,使学生在其职业生涯中与Moku产品一起成长。其他更新和即将推出功能在此次更新中,Moku:Go也新增了对LabVIEW应用接口的支持,确保用户易于集成到更复杂的现有实验装置中。今年,Liquid Instruments计划进一步扩大软件定义的测试平台。届时,Moku:Go将在现有的逻辑分析仪仪器上增加协议分析,还将提供“多仪器并行模式”和“Moku云编译(Cloud Compile)”。多仪器模式允许同时部署多个仪器,以建立更复杂的测试配置,而Moku云编译使用户能够直接在Moku:Go的FPGA上开发和部署自定义数字信号处理。这些更新预计将在今年6月推出,将推动Moku:Go成为整个STEM教育课程的主测试和测量套件。目前Moku:Go的用户已经可以通过更新他们的Moku桌面应用程序来访问数字滤波器、FIR滤波器生成器和锁相放大器仪器功能。您也可以联系我们免费下载Moku桌面应用程序体验Moku:Go仪器演示模式。Liquid Instruments基于FPGA的平台的优势,将Moku:Lab和Moku:Pro上的仪器快速向下部署到Moku:Go上,并以可接受的成本提供一致的用户体验。如果您对Moku:Go 在数字信号处理、信号与系统、控制系统等教学方案感兴趣,请联系昊量光电进一步讨论您的应用需求。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。
  • 德州仪器推出独立式有源EMI滤波器IC 支持高密度电源设计
    2023年3月28日,德州仪器 (TI)(纳斯达克股票代码:TXN)宣布推出业内先进的独立式有源电磁干扰 (EMI) 滤波器集成电路 (IC),能够帮助工程师实施更小、更轻量的 EMI 滤波器,从而以更低的系统成本增强系统功能,同时满足 EMI 监管标准。随着电气系统变得愈发密集,以及互连程度的提高,缓解 EMI 成为工程师的一项关键系统设计考虑因素。得益于德州仪器研发实验室 Kilby Labs 针对新概念和突破性想法的创新开发,新的独立式有源 EMI 滤波器 IC 产品系列可以在单相和三相交流电源系统中检测和消除高达 30dB 的共模 EMI(频率范围为 100kHz 至 3MHz)。与纯无源滤波器解决方案相比,该功能使设计人员能够将扼流圈的尺寸减小 50%,并满足严苛的 EMI 要求。更多有关德州仪器新的电源滤波器 IC 产品组合的信息,请参阅TI.com/AEF。   德州仪器开关稳压器业务部总经理 Carsten Oppitz 表示:"为了满足客户对更高性能和更低成本系统的需求,德州仪器持续推动电源创新,从而以具有成本效益的方式应对 EMI 设计挑战。我们相信,新的独立式有源 EMI 滤波器 IC 产品组合将进一步助力工程师解决他们所面临的设计挑战,并大幅提高汽车、企业、航空航天和工业应用中的性能和功率密度。"   显著缩减系统尺寸、重量和成本,并提高可靠性   如何实施紧凑和高效的 EMI 输入滤波器设计是设计高密度开关稳压器时的主要挑战之一。通过电容放大,这些新的有源 EMI 滤波器 IC使工程师能够将共模扼流圈的电感值降低多达 80%,这将有助于以具有成本效益的方式提高机械可靠性和功率密度。   新的有源 EMI 滤波器 IC 系列包括针对单相和三相商业应用的 TPSF12C1 和 TPSF12C3,以及面向汽车应用的 TPSF12C1-Q1 和 TPSF12C3-Q1。这些器件可有效降低电源 EMI 滤波器中产生的热量,从而延长滤波电容器的使用寿命并提高系统可靠性。   新的有源 EMI 滤波器 IC 包括传感、滤波、增益、注入阶段。该 IC 采用 SOT-23 14 引脚封装,并集成了补偿和保护电路,从而进一步降低实施的复杂性并减少外部组件的数量。   减轻共模发射以满足严格的EMI标准   国际无线电干扰特别委员会 (CISPR) 标准是限制电气和电子设备中 EMI 的全球基准。TPSF12C1、TPSF12C3、TPSF12C1-Q1 和 TPSF12C3-Q1 有助于检测、处理和降低各种交流/直流电源、车载充电器、服务器、UPS 和其他以共模噪声为主的类似系统中的 EMI。工程师将能够应对 EMI 设计挑战,并满足 CISPR 11、CISPR 32 和 CISPR 25 EMI 要求。   德州仪器的有源 EMI 滤波器 IC 满足 IEC 61000-4-5 浪涌抗扰度要求,从而大幅减少了对瞬态电压抑制 (TVS) 二极管等外部保护元件的需求。借助 PSpice® for TI 仿真模型和快速入门计算器等支持工具,设计人员可以轻松地为其系统选择和实施合适的元件。   德州仪器始终致力于通过持续的突破性成果进一步推动电源发展,例如,低 EMI 电源创新可帮助工程师缩减滤波器尺寸和成本,同时显著提高设计的性能、可靠性和功率密度。   封装及供货情况   车规级TPSF12C1-Q1 和 TPSF12C3-Q1 现已预量产,仅可从 TI.com.cn 购买,采用 4.2mm x 2mm SOT-23 14 引脚封装。2023 年 3 月底,商用级 TPSF12C1 和 TPSF12C3 的预量产产品将可通过 TI.com.cn 购买。TPSF12C1QEVM 和 TPSF12C3QEVM 评估模块可在 TI.com.cn 上订购。TI.com.cn 提供多种付款方式和配送选项。德州仪器预计各器件将于 2023 年第二季度实现量产,并计划在 2023 年晚些时候发布另外的独立式有源 EMI 滤波器 IC。
  • 5G时代到来,岛津助力基站陶瓷滤波器及导电银浆工艺研究和生产
    背景简介5G技术是第五代移动通信技术的简称,相较于4G技术,具有高传输速率、低时延、超大网络容量等特点。2019年是中国5G商用元年,先期5G架构的搭建会集中在基站建设。而5G信号频段高,穿透能力差,传输距离短,覆盖能力弱,因此5G基站数量将远大于4G。在国家“新基建”推动下,三大通信运营商计划2020年在国内建设5G基站50万个。5G时代,基站天线设计集成化,用于信号处理的射频部件有了较大改变,其中的每个天线滤波器所需数量倍数增加,因而重量轻、体积小的陶瓷介质滤波器将成首选,逐步替代现有金属腔体滤波器。 陶瓷介质滤波器生产工艺?行业面临的技术难点及要求 岛津助力研究生产测试方案岛津具备多种表征及测试设备,能帮助企业研究陶瓷滤波器生产工艺提供必要手段。 岛津特色应用 金属化步骤中导电银浆生产及工艺研究测试方案其中金属化步骤中所需导电银浆,为了保证其均匀性、流平性,银浆的配方、制备工艺及生产也需得到研究及控制。银浆生产企业需要特别关注。 更多详细信息,请联系岛津。
  • 上海微系统所实现集成3D打印编码滤波器的超导单光子光谱仪
    近日,中科院上海微系统所尤立星、李浩团队,陶虎团队以及上海交通大学王增琦团队合作,结合超导纳米线单光子探测技术、双光子3D打印编码滤波技术、计算重构技术等实现单光子计数型光谱分析仪。相关成果以“Superconducting Single-Photon Spectrometer with 3D-Printed Photonic-Crystal Filters”为题于2022年9月27日在线发表在中科院一区学术期刊ACS Photonics上,并被选为当期副封面论文。 图1 集成3D-打印滤波器的超导单光子光谱仪概念图   光谱作为物质的指纹,是人类认知世界的有效手段,在科学研究、生物医药等领域已经有了较为普遍的应用。目前,在单光子源表征、荧光探测、分子动力学、电子精细结构等领域的光谱测量,已经达到了量子水平,例如,在生物、化学和纳米材料领域需要对单个原子、分子、杂质等微弱光谱进行探测分析,这些光谱覆盖范围广,强度弱,因此,对宽谱、高灵敏度、高分辨率的光谱探测器存在迫切需求。   传统的半导体探测器如光电倍增管(PMT)、雪崩二极管(SPAD)等虽然实现了单光子灵敏度的探测,但是存在近红外探测效率低,噪声大,探测谱宽有限等问题。近年来快速发展起来的超导纳米线单光子探测器(SNSPD)因其高效率(90%)、低暗计数(0.1cps)、低抖动(~3ps )、宽谱(可见~红外)的优异性能,在众多领域都得到了应用。将SNSPD集成到光谱分析仪中,不仅能够实现极弱光的光谱测量,还具备非常宽的工作范围,在量子信息技术、天文光谱、分子光谱等领域具有重要的应用价值。该工作中,合作团队利用超导单光子探测器的高效、宽谱等性能优势,首先设计制备4*4阵列型偏振不敏感超导单光子探测器,然后借助双光子3D打印技术的灵活性在每个探测器像元上制备光子晶体编码滤波器,最后通过分析探测像元光谱响应特性等建立了计算光谱重构问题的数学模型,最终实现光子计数型光谱分析仪。   文中该光谱分析仪工作范围覆盖 1200~1700nm,灵敏度达到-108.2dBm,分辨率~5nm。相比当前商业光谱仪的灵敏度(一般灵敏度在-60~90dBm),具有两个数量级以上的提升,为单光子源表征、前沿天文光谱学、荧光成像、遥感、波分复用量子通信等微弱光谱分析领域的研究提供了有效的解决方案。论文第一作者为上海微系统所博士研究生肖游,第二作者为上海微系统所博士研究生维帅,第三作者为上海交通大学徐佳佳。通讯作者为上海微系统所陶虎研究员、李浩研究员、尤立星研究员。该研究得到了国家自然科学基金(61971408 、61827823), 重点研发计划 (2017YFA0304000), 上海市量子重大专项 (2019SHZDZX01), 上海市启明星(20QA1410900)以及中科院青促会 (2020241、2021230)等项目的支持。论文致谢清华大学张巍教授、郑敬元博士的讨论。
  • 高功率高重频可调谐长波飞秒中红外光源
    波长调谐范围覆盖6-20μm的高重复频率(10 MHz)、高平均功率(10 mW)飞秒激光源具有重要的应用,由于大量分子在这个波段具有振动跃迁,因此有望用于痕量气体检测以及对由气体、液体或固体组成的复合系统进行与物理、化学或生物学相关的非侵入性诊断。但由于增益介质的缺乏,这些中红外源通常利用高功率近红外飞秒激光器驱动光学差频产生(DFG)来实现:近红外激光脉冲的一部分用作泵浦脉冲,另一部分采用非线性波长转换产生波长可调的信号脉冲,泵浦脉冲和信号脉冲之间的DFG产生可调谐的中红外脉冲。利用传统非线性光学手段产生的信号光脉冲能量较低,限制了中红外光源的功率,导致长波中红外飞秒光源无法广泛应用。针对该难点,中国科学院物理研究所/北京凝聚态物理国家研究中心L07组在长期开展基于超快激光脉冲产生及波长转换的基础上,利用自相位调制的光谱旁瓣滤波(SPM-enabled spectral selection,SESS)技术,基于高功率掺铒光纤激光器在高非线性光纤中得到了波长范围覆盖1.6-1.94μm、功率高达300mW(~10nJ)的信号脉冲,再与1.55μm的泵浦脉冲在GaSe晶体中差频得到了波长覆盖7.7-17.3μm的中红外激光脉冲,最大平均功率可达58.3mW。图1. 实验装置图实验装置如图1所示,前端为自制的高功率掺铒光纤激光器系统,重复频率为32MHz,经过啁啾脉冲放大后得到平均功率为4W、脉冲能量为125nJ、宽度为 290fs的脉冲。将激光脉冲分成两份,一份作为泵浦脉冲,另一份耦合到SESS光纤中进行光谱展宽。光纤输出处的展宽光谱由二向色镜分离,长通滤波器(图中的LPF1)将最右边的光谱旁瓣过滤出来作为信号脉冲。泵浦脉冲经过时间延迟线与信号脉冲在时间上重合后聚焦到GaSe晶体上,光斑大小约为50μm。再通过另一个截止波长为4.5μm的长通滤波器,生成的中红外光束经焦距为75mm的90°离轴抛物面镜准直。利用校准的热敏功率计测量中红外脉冲的平均功率,傅里叶变换红外(FTIR)光谱仪来测量输出光谱。图2(a)为1mm-GaSe后输出光谱和功率,光谱范围为7.7-17.3μm,最大平均功率为30.4 mW。为了进一步提高输出功率,我们采用2mm厚的GaSe晶体,结果如图2(b)所示,整个光谱调谐范围内脉冲功率均大于10mW,最大平均功率达58.3mW。相比于以往基于掺镱光纤的中红外光源,本研究成果将DFG平均功率提高了一个数量级,并首次实验上观测到了工作在光参量放大机制下的高重频DFG过程。该高功率长波中红外光源基于结构紧凑的光纤激光器,可以用于实现中红外双光梳,从而推动中红外光梳在精密光谱学中的前沿应用。相关结果发表在最近的Optics Letters上(https://doi.org/10.1364/OL.482461),被选为Editor's Pick并成为当天下载量最多的5篇论文之一。图2. 在不同厚度GaSe后测量到的中红外光谱和功率:(a) 1mm-GaSe(b)2mm-GaSe。该工作得到了国家自然科学基金(批准号:No.62227822和62175255)、中国科学院国际交流项目(批准号:No. GJHZ1826)和国家重点研发计划(批准号:No. 2021YFB3602602)的支持。论文第一作者为物理所博士生刘洋,常国庆特聘研究员为通讯作者,赵继民、魏志义研究员也参与了该工作的设计和讨论。
  • 我国高温超导滤波系统实现规模商业应用
    记者10月22日从在清华大学召开的高温超导滤波技术成果鉴定会上获悉,我国自主研制、拥有完全自主知识产权的高温超导滤波系统首批产品订货已完成生产并交付用户使用,在全国16个省市区的通信装备上投入长期实际应用。这是我国高温超导应用研究的重大突破,标志着我国高温超导在通信领域已进入规模商业应用和产业化阶段。鉴定会专家对项目成果给予高度评价,鉴定意见指出,项目总体技术达到国际先进水平,为采用高温超导技术提高通信装备的抗带外干扰性能和电磁兼容性奠定了坚实的技术基础,为我国通信现代化作出了重大贡献。   据该项目负责人、清华大学物理系教授曹必松介绍,自1986年高温超导材料发现至今,26年来我国投入大量人力物力进行应用研究和技术攻关,其最终目的就是要实现高温超导材料的大规模商业应用。“这次高温超导滤波系统由最终用户采购,在全国16个省市区批量供货投入运行,与一般的研究或以试验为目的的应用完全不同,标志着经过长期不懈的研究,我国高温超导研究已经从实验室研究阶段发展到了面向最终用户的大规模商业应用。高温超导真正的实际应用已经成为现实。”   据了解,在微波频段,高温超导材料的电阻比普通金属低2—3个数量级,用超导薄膜材料制备的滤波器带内损耗小、带边陡峭、带外抑制好,具有常规滤波器无法比拟的、近于理想的滤波性能。“但是高温超导材料必须在其转变温度Tc以下才能实现其超导零电阻特性,所以高温超导滤波系统的研发难度非常大。我们和综艺超导科技有限公司共同研发的超导滤波系统是由超导滤波器、在零下200摄氏度工作的低噪声放大器和小型制冷机等部件组成的,具有极低的噪声和极好的频率选择性,可应用于各种无线通信装备,同时大幅提高灵敏度和选择性、提高抗干扰能力和探测距离等。”曹必松说。   2005年,在国家科研经费支持下,该项目组在北京建成了超导滤波系统移动通信应用示范基地,实现了小批量长期应用。为实现超导滤波系统在我国的规模化商业应用,在国家相关部门和各级领导支持下,清华大学和综艺超导科技有限公司的研究团队十余年如一日,艰苦奋斗,攻克了高性能超导滤波器和低温低噪声放大器设计制备技术、多通道超导滤波器性能一致性研制技术、满足装备苛刻使用要求的环境适应性技术和超导滤波系统集成技术等一系列技术难题,获得超导滤波技术授权发明专利10多项,于2009年12月完成了超导滤波系统产品样机的研制。   2010年1月至11月,在国家主管部门的组织下,由7个专业测试单位对超导滤波系统产品进行了全面性能测试,包括电性能测试,满足通信装备高低温、冲击、振动、低气压、盐雾、霉菌、湿热等苛刻使用要求的环境适应性试验,通信装备加装超导滤波系统前后的性能对比试验和用户长期试用等。   试验结果表明,超导滤波系统的全部性能都达到或超过了通信装备实际应用的技术要求。在通信装备上加装超导滤波系统前后的性能对比试验表明,超导滤波系统使重度干扰下原本无法工作的通信装备恢复了正常工作,使中度干扰下装备最大作用距离比原装备平均增加了56%。自2010年10月起,超导滤波系统在该型通信装备上投入长期运行,至今已连续无故障运行2年以上。   2011年1月19日,超导滤波系统通过了国家主管部门组织的技术鉴定,获得了在我国通信装备实际应用的许可。同年8月,综艺超导公司获得了首批5种型号超导滤波系统产品的订货合同,在全国10多个省市区推广应用。其他型号超导滤波系统产品也将在未来几年内陆续投入市场。   据介绍,综艺超导科技有限公司由江苏综艺股份有限公司等股东投资、在2006年成立的高新技术企业,公司设在北京中关村科技园区。目前,综艺超导已建成一流水平的超导滤波系统生产基地,并且已经顺利完成首批高温超导滤波系统批量生产和用户交付。   曹必松说,高温超导滤波技术在移动通信、重大科学工程和国防领域具有广阔的应用前景。为进一步推广超导滤波技术的应用,还需要攻克适应于各种不同通信装备应用要求的高难度的超导滤波系统设计、制备技术、适应于各种应用环境的环境适应性技术等研究难题。   与会专家认为,经过未来几年的努力,该技术将在更多无线通信领域获得大规模应用,并带动超导薄膜、制冷机、专用微波元器件等相关产业链的形成和发展,在我国形成一个全新的高温超导高技术产业,为我国通信技术的升级换代提供一种全新的、性能优异的解决方案。
  • 应用案例 | 参数调谐随机共振作为增强波长调制光谱学的工具,使用密集重叠斑点模式多程吸收池
    近日,来自安徽大学、安庆师范大学、复旦大学、皖西学院的联合研究团队发表了《参数调谐随机共振作为增强波长调制光谱学的工具,使用密集重叠斑点模式多程吸收池》论文。Recently, the joint research team from Anhui Key Laboratory of Mine Intelligent Equipment and Technology, School of Electronic Engineering and Intelligent Manufacturing, Department of Atmospheric and Oceanic Sciences, School of Electrical and Photoelectronic Engineering, West Anhui University published an academic papers Parameter-tuning stochastic resonance asa tool to enhance wavelength modulation spectroscopy using a dense overlapped spot pattern multi-pass cell.背景 激光吸收光谱技术已在许多应用中得到证明,如空气质量监测、工业过程控制和医学诊断。测量的精度对这些应用非常重要。尽管激光吸收光谱在敏感检测方面具有许多优点,但仍需要很长的光学路径长度和特殊的测量技术来检测极微量的物质,以实现高检测灵敏度。为了实现这些目的,通常采用具有长光学路径的多程吸收池来增强吸收信号。然而,在吸收信号中经常出现意想不到的干扰光束、热噪声、射频噪声、电噪声和白噪声,严重影响了检测的精度。当使用密集重叠斑点模式的多程吸收池时,这些问题在激光吸收光谱中很常见。因此,从强噪声背景中有效提取弱光电吸收信号具有重要意义。已提出了几种方法来消除噪声的负面影响。传统的弱周期信号处理方法主要包括时间平均法、滤波法和相关分析法。① 时间平均法可以获得信噪比(SNR)较高的信号,因此可以降低噪声的标准差并提高信号质量。然而,这种方法无法完全消除强噪声背景。② 基于硬件和软件的信号滤波广泛用于降噪,其特点是带宽较窄。在实际应用中,期望的信号和噪声通常具有连续的功率谱和宽带宽,但制造与信号带宽相匹配以去除噪声的滤波器相对较困难。如果滤波器的带宽非常小,噪声将大幅衰减。然而,这可能会破坏期望的信号。③ 相关检测方法是通过周期信号的自相关来去除噪声的。其本质是建立一个非常窄的带宽滤波器,以滤除与信号频率不同的噪声。与上述其他弱周期信号检测方法相比,参数调谐随机共振(SR)方法的优势显而易见。即使噪声和信号具有相同的频率,只要它们达到最佳的共振匹配,SR方法就可以将部分噪声能量转化为信号能量,以抑制噪声并增强信号。在这项工作中,我们将SR方法应用于波长调制光谱学(WMS),并使用密集重叠斑点模式的多程吸收池。首先,将进行数值计算以找到合适的参数并评估最佳SR系统的性能,然后通过实验验证SR方法可以有效增强WMS信号。IntroductionThe laser absorption spectroscopy technology has been demonstrated in many applications, such as air quality monitoring, industrial process control, and medical diagnostic. The precision of the measurement is important to those applications. Although laser absorption spectroscopy has many advantages in sensitive detection, it still needs a long optical path length and special measurement technology for detecting a very trace substance, with a high detection sensitivity . For those purposes, a multi-pass cell with a long optical path is usually applied to enhance the absorption signal. However, the unexpected interference fringe, thermal noise, shot noise, electrical noise and white noise, often occur in absorption signals and seriously spoil the detection precision. Those problems are common for laser absorption spectroscopy when using dense overlapped spot pattern multi-pass cell. Therefore, it is of great significance to effectively extract weak photoelectric absorption signals from a strong noise background.Several methods are proposed to eliminate the negative influence of the noise. The traditional weak periodic signal processing methods mainly include time average method, filtering method,and correlation analysis method. ①The signal with a high signal-to-noise ratio (SNR) can be obtained by time average method, so the standard deviation of noise can be reduced and the signal quality can be improved. Nevertheless, the strong noise background cannot be fully eliminated by this method.②The signal filters based on hardware and software are widely used for noise reduction, the characteristic of which is narrow bandwidth. In practical application, the desired signal and noise usually have a continuous power spectrum and wide bandwidth, but it is relatively difficult to manufacture a filter that matches the bandwidth of the signal to remove the noise. If the bandwidth of the filter is very small, the noise will be greatly attenuated. However, this may destroy the desired signal.③The correlation detection method is used to remove the noise by the autocorrelation of the periodic signal. Its essence is to establish a very narrow bandwidth filter to filter out the noise, the frequency of which is different from that of the signal. Compared with other weak periodic signal detection methods mentioned above, the advantage of the parameter-tuning stochastic resonance (SR) method is apparent. Even if the noise and signal have the same frequency, as long as they reach the optimal resonance matching, the SR method can convert part of the noise energy into the signal energy to suppress the noise and enhance the signal.In this work, the SR method is applied to the wavelength modulation spectroscopy (WMS) by using the dense overlapped spot pattern multi-pass cell. first, the numerical calculation will be implemented to find the suitable parameters and evaluate the performance of the optimal SR system, and then it is verified that the SR method can effectively enhance the WMS signal by the experiments.实验装置的示意图如图1所示。海尔欣光电科技有限公司为此研究提供了锁相放大器(Healthy Photon,HPLIA),用于解调来自光电探测器的吸收信号,解调频率为第二谐波信号2f的频率(其中f = 6千赫兹是正弦波的调制频率)。锁相放大器的时间常数设置为1毫秒。解调后的信号随后由一个数据采集卡数字化,并显示在计算机上。A schematic diagram of the experimental setup is shown in Fig. 1. HealthyPhoton Technology Co., Ltd. provides a lock-in amplifier (HPLIA), which is used for demodulation of absorption signal from the photodetector at the frequency of second harmonic signal 2f (where f =6 KHz is the modulation frequency of the sine wave). The time constant of the lock-in amplifier is set to 1 ms. The demodulated signal is subsequently digitalized by a DAQ card and displayed on a computer. Fig. 1. Schematic diagram of experimental device of measurement.Healthy Photon,lock-in amplifier HPLIAFig. 2. 2f SR signal and 2f time average signal.结论参数调谐随机共振(SR)方法可以将部分噪声能量转化为信号能量,以抑制噪声并放大信号,与传统的弱周期信号检测方法(例如,时间平均法、滤波法和相关分析法)相比。本研究进行了数值计算,以找到将SR方法应用于波长调制光谱学(WMS)的最佳共振参数。在随机共振状态下,2f信号的峰值(CH4浓度恒定在约20 ppm)有效放大到约0.0863 V,比4000次时间平均信号的峰值(约0.0231 V)高3.8倍。尽管标准差也从约0.0015 V(1σ)增加到约0.003 V(1σ),但信噪比相应提高了1.83倍(从约25.9提高到约15.8)。获得了SR 2f信号峰值与原始2f信号峰值的线性光谱响应。这表明在强噪声背景下,SR方法对增强光电信号是有效的。Conclusion The parameter-tuning stochastic resonance (SR) method can convert part of the noise energy into the signal energy to suppress the noise and amplify the signal, comparing with traditional weak periodic signal detection methods (e.g., time average method, filtering method, and correlation analysis method). In this work, the numerical calculation is conducted to find the optimal resonance parameters for applying the SR method to the wavelength modulation spectroscopy (WMS). Under the stochastic resonance state, the peak value of 2f signal (a constant concentration of CH4&sim 20 ppm) is effectively amplified to &sim 0.0863 V, which is 3.8 times as much as the peak value of 4000-time average signal (&sim 0.0231 V). Although the standard deviation also increases from &sim 0.0015 V(1σ) to &sim 0.003 V(1σ), the SNR can be improved by 1.83 times (from &sim 25.9 to &sim 15.8) correspondingly. A linear spectral response of SR 2f signal peak value to raw 2f signal peak value is obtained. It suggests that the SR method is effective for enhancing photoelectric signal under strong noise background.参考:Reference: Parameter-tuning stochastic resonance as a tool to enhance wavelength modulation spectroscopy using a dense overlapped spot pattern multi-pass cell, Optics Express 32010https://doi.org/10.1364/OE.465629
  • 应用案例 |吸收光谱优化基于深度学习网络的自适应Savitzky Golay滤波算法
    Recently, a collaborative research team from Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, and Shandong Normal University published a research paper titled Optimized adaptive Savitzky-Golay filtering algorithm based on deeplearning network for absorption spectroscopy.近日,来自安徽大学、山东师范大学联合研究团队发表了一篇题为Optimized adaptive Savitzky-Golay filtering algorithm based on deeplearning network for absorption spectroscopy的研究论文。研究背景 Research BackgroundNitrogen oxide (NO2) is a major pollutant in the atmosphere,resulting from natural lighting, exhaust, and industrial emissions. Short- and long-term exposure to NO2 is linked with an increased risk of respiratory problems. Secondary pollutants produced by NO2 in the atmosphere can cause photochemical smog and acid rain. Laser spectroscopy such as absorption spectroscopy, fluorescence spectrum, and Raman spectrum play progressively essential roles in physics, chemistry, biology, and material science. It offers a powerful platform for tracing gas analysis with extremely high sensitivity, selectivity, and fast response. Laser absorption spectroscopy has been used for quantitative analysis of NO2. However, the measured gas absorption spectra data are usually contaminated by various noise, such as random and coherent noises, which can warp the valid absorption spectrum and affect the detection sensitivity.氮氧化物(NO2)是大气中的主要污染物,源自自然光照、排放和工业排放。长时间暴露于NO2与呼吸问题的风险增加有关。NO2在大气中产生的二次污染物可能导致光化学烟雾和酸雨。激光光谱学,如吸收光谱、荧光光谱和拉曼光谱,在物理学、化学、生物学和材料科学中发挥着日益重要的作用。它为追踪具有极高灵敏度、选择性和快速响应的气体分析提供了强大的平台。激光吸收光谱已被用于NO2的定量分析。然而,测得的气体吸收光谱数据通常受到各种噪声的污染,如随机和相干噪声,这可能扭曲有效吸收光谱并影响检测灵敏度。The Savitzky–Golay (S–G) filtering algorithm has recently attracted attention for spectral filtering because it has fewer parameters, faster operating speed, and preserves the height and shape of spectra. Moreover, the derivatives and smoothed spectra can be calculated in a simple step. Rivolo and Nagel developed an adaptive S–G smoothing algorithm that point wise selects the best filter parameters. With simple multivariate thresholding methods, the S–G filter can remove all types of noises in continuous glucose monitoring (CGM) signal and further process for detecting hypo/hyperglycemic events. The S–G smoothing filter is widely used to smooth the spectrum of the Fourier transform infrared spectrum that can eliminate random seismic noise, remote sensing image merging, and process pulse wave.最近,Savitzky-Golay(S-G)滤波算法因其参数较少、操作速度较快且保留了光谱的高度和形状而受到关注。此外,可以在一个简单的步骤中计算导数和平滑的光谱。Rivolo和Nagel开发了一种自适应S-G平滑算法,逐点选择最佳滤波参数。通过简单的多变量阈值方法,S-G滤波器可以去除连续葡萄糖监测(CGM)信号中的所有类型噪声,并进一步用于检测低血糖/高血糖事件。S-G平滑滤波器广泛用于平滑傅立叶变换红外光谱的光谱,可消除随机地震噪声、遥感图像融合和脉动波的处理。The performance of S–G smoothing filter depends on the proper compromise of the polynomial order and window size. However,the noise sources and absorption spectra are unknown in a real application. Obtaining the optimal filtering effect with fixed window size and polynomial degree is difficult. To address this issue,we proposed an optimized adaptive S–G algorithm that combined the deep learning (DL) network with traditional S–G filtering to improve the measurement system performance. S–G 平滑滤波器的性能取决于多项式阶数和窗口大小的适当折中。然而,在实际应用中,噪声源和吸收光谱是未知的。在固定的窗口大小和多项式阶数下获得最佳的滤波效果是困难的。为解决这个问题,我们提出了一种优化的自适应S-G算法,将深度学习(DL)网络与传统的S-G滤波结合起来,以提高测量系统的性能。实验设置Experimental setupFig. 1 presents the experimental setup, which consists of anoptical source, a multi-pass cell with a gas pressure controller, a series of mirrors, a detector, and a computer. The laser source is a thermoelectrically cooled continuous-wave room-temperature quantum cascade laser (QC-Qube&trade , HealthyPhoton Co., Ltd.),which works with a maximum peak output power of 30 mW controlled by temperature controllers and operates at ~6.2 mm driven by current controllers. The radiation of QCL passes through theCaF2 mirror is co-aligned with the trace laser (visible red light at632.8 nm) using a zinc selenide (ZnSe) beam splitter. The beams go into the multipass cell with an effective optical path length of2 m, the pressure in multipass cell is controlled using the flow controller (Alicat Scientific, Inc, KM3100) and diaphragm pump (Pfeiffer Vacuum, MVP 010–3 DC) in the inlet and outlet of gas cell,respectively. A triangular wave at a typical frequency of 100 Hzis used as a scanning signal. The wave number is tuned from1630.1 to 1630.42 cm 1 at a temperature of 296 K. The signal is detected using a thermoelectric cooled mercury cadmium telluride detector (Vigo, VI-4TE-5), which uses a 75-mm focal-length planoconvex lens. A DAQ card detector (National Instruments, USB-6259) is placed next to detector to transmit the data to the computer, and the data is analyzed by the LabVIEW program in real time.图1展示了实验设置,包括光源、带有气体压力控制器的多通道吸收池、一系列镜子、探测器和计算机。Fig. 1. Experimental device diagram.宁波海尔欣光电科技有限公司为此项目提供了量子级联激光器(型号:QC-Qube&trade 全功能迷你量子级联激光发射头)。激光器由温度控制器控制,最大峰值输出功率为30 mW,由电流控制器控制,工作在~6.2 mm,通过钙氟化物(CaF2)镜子的辐射与追踪激光(可见红光,波长632.8 nm)共线,使用氧化锌硒(ZnSe)分束器。光束进入具有2 m有效光程的多通道池,通过流量控制器和气体池入口和出口的隔膜泵控制池中的压力。典型频率为100 Hz的三角波用作扫描信号。在296 K的温度下,波数从1630.1调至1630.42 cm-1。使用热电冷却的汞镉镓探测器进行信号检测,该探测器使用75 mm焦距的平凸透镜。DAQ卡探测器放置在探测器旁边,将数据传输到计算机,数据由LabVIEW程序进行实时分析。QC-Qube&trade , HealthyPhoton Co., Ltd.Fig. 2. Simulation of the NO2 gas absorption spectra of the ASGF and MAF algorithms (under the background of Gaussian noise), and the filtered results and the SNRs of different filtering methods.Fig. 3. Simulation of the NO2 gas absorption spectra of the two filtering algorithms (under the background of Non-Gaussian noise), and the filtered results of different filtering methods.结论ConclusionAn improved Savitzky–Golay (S–G) filtering algorithm was developed to denoise the absorption spectroscopy of nitrogen oxide (NO2). A deep learning (DL) network was introduced to the traditional S–G filtering algorithm to adjust the window size and polynomial order in real time. The self-adjusting and follow-up actions of DL network can effectively solve the blindness of selecting the input filter parameters in digital signal processing. The developed adaptive S–G filter algorithm is compared with the multisignal averaging filtering (MAF) algorithm to demonstrate its performance. The optimized S–G filtering algorithm is used to detect NO2 in a mid-quantum-cascade-laser (QCL) based gas sensor system. A sensitivity enhancement factor of 5 is obtained, indicating that the newly developed algorithm can generate a high-quality gas absorption spectrum for applications such as atmospheric environmental monitoring and exhaled breath detection.在这项研究中,我们开发了一种改进的Savitzky-Golay(S-G)滤波算法,用于去噪氮氧化物(NO2)的吸收光谱。我们引入了深度学习(DL)网络到传统的S-G滤波算法中,以实时调整窗口大小和多项式阶数。DL网络的自适应和跟踪反馈能够有效解决数字信号处理中选择输入滤波器参数的盲目性。我们将优化后的自适应S-G滤波算法与多信号平均滤波(MAF)算法进行比较,以展示其性能。优化后的S-G滤波算法被用于检测氮氧化物在基于中量子级联激光器(QCL)的气体传感器系统中的应用。实验结果表明,该算法获得了5倍的灵敏度增强,表明新开发的算法可以生成高质量的气体吸收光谱,适用于大气环境监测和呼吸气检测等应用。reference参考来源:Optimized adaptive Savitzky-Golay filtering algorithm based on deeplearning network for absorption spectroscopy,Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 263 (2021) 120187
  • 可用于医疗诊断或药效检测的新技术“波长诱导频率滤波”
    美国麻省理工学院工程师开发出一种用于激发任何荧光传感器的新型光子技术,其能够显著改善荧光信号。通过这种方法,研究人员可在组织中植入深达5.5厘米的传感器,并且仍然获得强烈的信号。科学家使用许多不同类型的荧光传感器,包括量子点、碳纳米管和荧光蛋白质,来标记细胞内的分子。这些传感器的荧光可以通过向它们照射激光来观察。然而,这在厚而致密的组织或组织深处不起作用,因为组织本身也会发出一些荧光。这种“自发荧光”淹没了来自传感器的信号。为了克服这一限制,研究团队开发了一种被称为“波长诱导频率滤波(WIFF)”的新技术,使用三个激光来产生具有振荡波长的激光束。当这种振荡光束照射到传感器上时,它会使传感器发出的荧光频率增加一倍。这使得研究人员很容易将荧光信号与自发荧光区分开来。使用该系统,研究人员能够将传感器的信噪比提高50倍以上。这种传感器的一种可能应用是监测化疗药物的有效性。为了证明这一潜力,研究人员将重点放在胶质母细胞瘤上。这种癌症的患者通常选择接受手术,尽可能多地切除肿瘤,然后接受化疗药物替莫唑胺,以消除任何剩余的癌细胞。但这种药物可能有严重的副作用,且并非对所有患者都有效,所以研究人员正在研究制造小型传感器,这样就可以植入肿瘤附近,从体外验证药物在实际肿瘤环境中的疗效。当替莫唑胺进入人体后,它会分解成更小的化合物,其中包括一种被称为AIC的化合物。研究团队设计了可以检测AIC的传感器,并表明他们可以将其植入动物大脑中5.5厘米深的地方,甚至能够通过动物的头骨读取传感器发出的信号。这种传感器还可以用于检测肿瘤细胞死亡的分子特征。除了检测替莫唑胺的活性外,研究人员还证明可以使用WIFF来增强来自各种其他传感器的信号,包括此前开发的用于检测过氧化氢、核黄素和抗坏血酸的基于碳纳米管的传感器。研究人员说,新技术将使荧光传感器可跟踪大脑或身体深处其他组织中的特定分子,用于医疗诊断或监测药物效果。相关研究论文近日发表在《自然纳米技术》上。
  • 可调谐红外双波段光电探测器,助力多光谱探测发展
    红外双波段光电探测器是重要的多光谱探测器件,特别是近红外/短波红外区域,相较于可见光有更强的穿透能力,相较于中波红外可以以较低的损耗识别冷背景的物体,因此广泛应用于民用和军事领域。当前红外双波段探测器主要面临光谱不可调谐,器件结构复杂而不易与读出集成电路相结合的挑战。据麦姆斯咨询报道,近日,合肥工业大学先进半导体器件与光电集成团队在光电子器件领域取得重要进展,研究团队研发了一种光谱可调谐的近红外/短波红外双波段探测器,相关研究成果以“Bias-Selectable Si Nanowires/PbS Nanocrystalline Film n–n Heterojunction for NIR/SWIR Dual-Band Photodetection”为题,发表于《先进功能材料》(Advanced Functional Materials, 2023: 2214996.)。第一作者为许晨镐,通讯作者为罗林保教授,主要从事新型高性能半导体光电子器件及相关光电集成技术方面的研究工作。该研究使用溶液法制备了硅纳米线/硫化铅异质结光电探测器(如图1(a)),工艺简单,成功将硅基探测器的光谱响应拓宽到2000 nm。基于有限元分析法的COMSOL软件分析表明,一方面,有序的硅纳米线阵列具有较大的器件面积,提升了载流子的输运能力,且纳米线阵列具有较好的周期性,入射光可以在纳米线结构之间连续反射,产生典型的陷光效应。另一方面,小尺寸的纳米线阵列可以看作是微型谐振器,可以形成HE₁ₘ谐振模式,增强特定入射光的光吸收。通过调制外加偏压的极性,器件可以实现近红外/短波红外双波段探测、近红外单波段探测、短波红外单波段探测三种探测模式的切换。器件还具有较高的灵敏度,在2000 nm光照下的探测率高达2.4 × 10¹⁰ Jones,高于多数短波红外探测器。图1 双波段红外探测器结构图及相关仿真和实验结果图2 偏压可调的近红外/短波红外双波段探测及探测率随光强的变化曲线此外,该研究还搭建了单像素光电成像系统(如图3(a)),在2000 nm光照下,当施加-0.15 V和0.15 V偏压时,该器件能对一个简单的英文字母实现成像。但是不施加偏压时,缺无法清晰成像。这表明只需要对器件施加一个小的偏置电压时,就可以将成像系统的工作区域从近红外调整到短波红外,具有较高的灵活性。图3 光电成像系统及成像结果这项研究得到了国家自然科学基金、安徽省重点研发计划、中央高校基本科研业务费专项资金等项目的资助。
  • 三星开发CMOS超光谱图像传感器,有望成为光谱成像的新平台
    光谱仪在材料分析、天文学、食品化学以及医学诊断等许多领域都有应用。市场需求正在迅速增长,但光谱仪的尺寸阻碍了其在更广泛领域的普及。因此,市场急需高性能的紧凑型光谱仪,不断缩小光谱传感器尺寸已成为当前的研究热点。为了使光谱仪小型化,已经进行了各种尝试,例如传统的色散方法、傅里叶变换干涉技术(FTI),以及使用带有随机滤波器阵列和窄带通滤波器的探测器等。与色散和傅里叶变换干涉系统相比,滤波器阵列与探测器的集成,由于无需长光路和光学元件的精确对准来获得高分辨率而具有优势。此外,将滤波器阵列与电荷耦合器件(CCD)或CMOS图像传感器(CIS)等探测器集成,可以通过单次捕捉二维图像实现高光谱成像。特别是,与随机滤波器方案相比,窄带通滤波器阵列的集成无需进行后处理分析。然而,为了获得高分辨率需要大量的信道,意味着更复杂的制造工艺,例如蚀刻和沉积,因为每个信道都需要不同厚度的薄膜。为了解决这个问题,有研究使用组合蚀刻技术来制造多信道。业界对光谱仪中使用的窄带通滤波器的谐振结构进行了研究,但大多数研究仅限于改变电介质多层膜的厚度,以形成不同波长和品质因数的光学腔。这对于器件的大规模生产很麻烦,因为它需要过多的电介质沉积、蚀刻和光刻步骤,尤其是在像素尺寸级别的制造工艺。据麦姆斯咨询介绍,三星高级技术研究所光子器件实验室的Jaesoong Lee及其同事通过将被称为超表面的亚波长纳米结构集成到直接位于CMOS图像传感器顶部的带通滤波器阵列中,开发出了一种紧凑型超光谱(meta-spectral)图像传感器。由于窄带通滤波是通过亚波长光栅结构而不是通过改变层的厚度来调谐的,因此所有信道都可以通过一步光刻工艺制造。这种方案简化了制造,并且与CMOS工艺完全兼容。这种紧凑型超光谱图像传感器具有窄带高效率、与相邻信道的低串扰和高光谱分辨率。利用该器件,研究人员从波长混合图像中获得了高光谱图像。超光谱图像传感器示意图超光谱图像传感器制造研究人员在CMOS图像传感器晶圆(三星S5K4E8)上采用标准的洁净室工艺(包括PECVD和干法蚀刻)制作了超表面带通滤波器阵列。首先,研究人员为底部介质反射器沉积了多层硅和二氧化硅;然后利用电子束光刻定义纳米柱阵列;再使用电感耦合等离子体反应离子刻蚀(ICP-RIE)形成纳米柱阵列,并再次沉积二氧化硅以填充纳米柱之间的间隙;然后进行化学机械抛光(CMP)工艺,以平整二氧化硅顶面;最后,为顶部反射器沉积了一层由硅和二氧化硅制成的多层膜。超光谱图像传感器制造过程示意图高光谱成像为了验证演示其高光谱成像性能,研究人员拍摄了由3 x 5颗多波长LED组成的LED面板的光谱图像。每颗LED可以发射多个波长的组合,这些波长被选择以显示以下大写字母:770 nm显示“S”,810 nm显示“I”,850 nm显示“A”,950 nm显示“T”,如下图(a)底部所示。超光谱成像仪的高光谱成像演示作为概念证明,研究人员拍摄了一张所有LED都打开的面板照片,如上图(b)顶部所示。图像中的所有字母都无法区分,因为面板上的所有LED都已打开。通过将这个组合图像分成20个信道,如上图(b)底部所示,研究人员发现了隐藏的“SAIT”字母。在对应829.1 nm的信道11处,由于810 nm和850 nm LED的宽带发射,“I”和“A”被结合在一起。对于更长的波长(信道12和信道13),研究人员观察到字母“I”变得更模糊,而字母“A”变得更清晰。通过实验结果,研究人员证实了这款超光谱图像传感器具有良好的光谱成像性能。
  • 空天院实现超快波长切换的宽调谐范围长波固体激光光源
    近日,在中国科学院科研仪器设备研制项目的支持下,中科院空天信息创新研究院激光工程技术研究中心基于声光偏转器(AOD)调谐技术和光参量振荡技术(OPO)实现了8.0-8.7μm长波激光的可调谐超快波长切换,波长切换时间优于100μs,波长个数≥70个,单个波长谱宽≤30nm。该激光器能够在长波波段快速扫频且具有极高的峰值功率,将为我国复杂环境中的毒性气体遥测、光电对抗等提供优质的激光光源。光参量振荡技术(OPO)是非线性光学频率变换技术。随着非线性红外晶体制备技术的提升,基于OPO产生高峰值功率高重复频率长波激光成为目前激光技术研究领域的热点。然而,OPO技术通常基于温度、晶体转动、泵浦源波长调节等方式实现激光波长的调谐。项目团队提出基于声光偏转器调节参量光角度和相位匹配条件,进而实现输出波长的快速调节。历时3年,该团队先后突破了2μm激光源、红外晶体及谐振腔镜损伤特性表征、行波腔调谐补偿等关键技术,完成了超快波长切换的宽调谐范围长波固体激光光源的技术验证。后续,项目团队将按照中科院科研仪器设备研制项目的既定目标,开展工程样机研制和应用示范工作。AOD驱动频率与输出的长波激光波长
  • 科学家刷新纳米线激光器波长调谐纪录
    在国家自然科学基金纳米科技重大研究计划的重点项目等支持下,湖南大学教授邹炳锁领导的纳米光子学小组与美国亚利桑那州立大学教授宁存政领导的纳米光子学小组合作,成功演示了调谐范围从500到700纳米范围调谐的半导体激光芯片,创下了一个新的纳米线激光器调谐范围的世界纪录。相关文章发表在最近一期的《美国化学会杂志》上。   宽调谐的半导体激光器拥有许多从光谱技术、光通讯,到芯片原位的生物或分子检测的用途。但实现这样的激光器一直很困难,主要是外延生长的半导体微结构的晶格失配有限,不能大幅度成分调节,因而对半导体带边影响有限,而发光受制于半导体的带边,因此无法实现大范围调谐。邹炳锁领导的纳米光子学小组成员潘安练采用一维纳米结构生长技术,可以将晶格失配大部分驰豫掉或全部消除,这样,可能得到大范围成分调节的半导体纳米线或带。   纳米线沿一个方向布满整个基片,成分均匀变化,可以看到一个连续颜色可变的激光发射带。除了激射外,这样的合金半导体还可能在光伏太阳能电池、分子和生物检测等方面得到很大应用。   邹炳锁领导的团队近年一直致力于一维半导体纳米结构光子学研究,并在国内率先开展纳米线光波导和纳米激光器等方面的研究,处于国内领先和国际先进水平,在多功能半导体纳米结构光子学的研究上取得了多项重要的研究成果。如潘安练、邹炳锁等教授首次合成发光颜色可以在可见光波段可调的半导体合金纳米带和纳米线,率先实现光在纳米线内长程(百微米量级)光波导,实现了硫化镉纳米线常温下的受激发射现象等。小组成员陈克求教授、王玲玲教授等对一维波导理论的研究也取得了重要成果。该小组已有多篇论文在国际著名学术期刊上发表。
  • 中国科大利用磁光力混合系统实现可调谐微波-光波转换
    中国科学技术大学郭光灿院士团队在磁光力混合系统研究方面取得新进展。该团队的董春华教授研究组将光力微腔与磁振子微腔直接接触,证明该混合系统支持磁子-声子-光子的相干耦合,进而实现了可调谐的微波-光波转换。该研究成果于2022年12月9日发表在国际学术期刊《Physics Review Letters》。   不同的量子系统适合不同的量子操作,包括原子和固态系统,如稀土掺杂晶体、超导电路、钇铁石榴石(YIG)或金刚石中的自旋。通过将声子作为中间媒介,可以实现对不同量子系统的耦合调控,最终构建能发挥不同量子系统优势的混合量子网络。目前,光辐射压力、静电力、磁致伸缩效应、压电效应已被广发用于机械振子与光学光子、微波光子或磁子的耦合。这些相互作用机制促进了光机械领域和磁机械领域的快速发展。在前期工作中,研究组利用YIG微腔中的磁振子具有良好的可调谐特性,结合磁光效应实现了可调谐的单边带微波-光波转换(Photonics Research 10, 820 (2022))。但是由于目前磁光晶体微腔的模式体积大、品质因子难以进一步突破,从而限制了磁光相互作用强度,导致微波-光波转换效率较低。相比之下,腔光力系统虽已实现高效的微波-光波转换,但由于缺乏可调谐性,在实际应用中会受到限制。 图注:a-b.磁光力混合系统示意图,支持磁子-声子-光子相干耦合;c.微波-光波转换。   该工作中,研究组开发了一种由光力微腔和磁振子微腔组成的混合系统。系统中可以通过磁致伸缩效应对声子进行电学操控,也可以通过光辐射压力对声子进行光学操控,而且不同微腔内的声子可以通过微腔的直接接触实现相干耦合。基于高品质光学模式对机械状态的灵敏测量,课题组实现了调谐范围高达3GHz的微波-光学转换,转换效率远高于以往的磁光单一系统。此外,研究组观测了机械运动的干涉效应,其中光学驱动的机械运动可以被微波驱动的相干机械运动抵消。总体而言,该磁光力系统提供了一种有效进行操控光、声、电、磁的混合实验平台,有望在构建混合量子网络中发挥重要作用。   沈镇、徐冠庭、张劢为该论文的共同第一作者,董春华为该论文的通讯作者。上述研究得到了科技部重点研发计划、中国科学院、国家自然科学基金委、量子信息与量子科技前沿协同创新中心等单位的支持。
  • 波长调制光谱(WMS)技术简介
    可调谐半导体激光吸收光谱(Tunable Diode Laser Absorption Spectroscopy, 即TDLAS)是一种红外吸收光谱分析技术,利用分子“选频”吸收形成吸收光谱的原理,实现高分辨率的分子浓度定量分析技术。TDLAS能够进行原位非接触式测量,并且具有高精度、高选择性等特性,结合波长调制光谱(WMS)和锁相放大等抑制噪声的技术,可以实现ppm甚至ppb量级的痕量气体分子浓度测量。 之前我们已经介绍过锁相放大的工作原理和其在TDLAS中的应用,今天小编就跟大家聊聊WMS背后的科学还有实际的应用方式吧! TDLAS基本原理及Beer-Lambert定律 了解WMS技术之前,我们先简单复习一下TDLAS的原理:基本方法是通过调谐特定的半导体激光器波长,扫过被测气体分子的特定吸收光谱线,被气体吸收后的透射光由光电探测器接收,经锁相放大模块提取透射光谱的谐波分量,反演出待测气体浓度信息。 为了确定与于目标分子浓度相关的吸收,必须将透射光强度I与入射光强度I0进行比较。这个定量分析的依据来自Beer-Lambert定律: 其中L为光程,α(v) 是由入射光波长和样品中目标分子浓度同时决定的吸收系数。TDLAS技术通过使用Beer-Lambert定律分析吸收光谱的数据,便可以获得分子浓度信息。 图一 TDLAS技术示意图 直接吸收光谱(DAS) 接着,我们来看一下直观的直接吸收光谱(Direct Absorption Spectroscopy, DAS)技术。顾名思义,DAS技术通过检测入射光和透射光强度直接获得光吸收量(如图二),并根据两个信号的比例直接推断出气体特性,典型的DAS方法得到的信号如图三。 图二 DAS示意图:调谐激光器波长扫过被测气体分子的特定吸收光谱线,在吸收峰可以直接看到的投射光强度衰减 图三 直接吸收光谱(DAS)技术的典型透射光强度信号 图三也显示了DAS的潜在问题,其相对简易直接的性质使得DAS对许多噪声源敏感。各种高强度的噪声可能源于激光强度波动、激光波长波动(如果激光波长在吸收曲线内波动,也会导致透射光的强度波动)、探测器噪声、散粒噪声(光子噪声)和其他技术噪声。如果吸收谱线足够强,即吸收物质的浓度足够高、提供足够的信噪比 (SNR),则可以使用DAS进行准确测量。然而,检测低浓度的气体分子需要进一步减少吸收接收信号中的噪声,WMS就是一种在TDLAS技术中广为应用来抑制噪声的方法。 波长调制光谱(WMS) WMS能够改善DAS在信噪比较差的环境中的局限性。将入射激光的波长用一个相对较高频率的载波(通常约为10 kHz)进行调制(如图四),并且将吸收光谱信号以调制频率或该频率的谐波进行解调评估分析,获取特异但有规律可循的谐波波形,从而获取分子浓度信息。由于噪声的影响主要存在于低频,例如二极管的1/f噪声或机械噪声,WMS技术将吸收光谱的检测转移到到了信噪比较优的高频,以此达到抑制噪声的目的。 图四 WMS示意图:调制入射激光的波长至较高频率,将接收端信号以调制频率的谐波进行解调分析 WMS的实现是通过调制可调谐半导体激光器的注入电流,以达到对激光输出的波长和强度的高频调制,并将吸收信号移到了更高的频率。其中,TDLAS系统的线性响应(激光器的线性强度调谐)以调制频率的一次谐波为中心,系统的非线性响应(例如吸收和非线性强度调谐)则反应在调制频率的二次及更高次谐波,因此可以透过对高次谐波信号的分析来提取光谱吸收信息。一般来说,二次谐波分析足以满足大多数的气体分析要求。 要提取并分析在已知载波频率的高频信号,锁相放大器是一个十分强大的工具。利用锁相放大器可以用来创建指定频率的带通滤波器,如果带宽足够窄,便能抑制宽带噪声,所以用于调制的频率必须避开主要的噪声频率。(点击这里了解锁相放大器在TDLAS系统中的功用) 除此之外,WMS技术还提供了另外一种选择,能够通过频分复用的方法同时发射传播多个不同波长的激光。多个激光以不同的频率调制并收集在单个探测器上,谨慎选择的调制频率能够尽量避免谐波重叠或拍频干扰,最终每个激光信号都可以由独立的锁相放大通道器提取。利用昕虹光电数字电路实现的双通道锁相放大器,使得实现这样的一个多组分分子一体化探测系统变得经济而简单,实现对多个目标分子(如多种温室气体N2O,CH4,CO2等)同时进行测量。 参考文献:1. “Absorption spectroscopy”, http://www.atomic.physics.lu.se/fileadmin/atomfysik/Education/Elective_courses/FAF080_AtomoMolekylSpektr/Lab_absorption_spectroscopy_2017.pdf2. Christopher Lyle Strand, 2014, ‘Scanned Wavelength-Modulation Absorption Spectroscopy with Application to Hypersonic Impulse Flow Facilities’, PhD thesis, Standford University, USA.
  • 滨松发布滨松波长可调谐量子级联激光器(QCL)模块L14890-09新品
    滨松波长可调谐量子级联激光器(QCL)模块L14890-09是一种利用外腔结构实现宽波长扫描的脉冲量子级联激光器。相比较于传统的FT-IR方法,该产品充分利用激光的特性,可实现中红外光谱的远程、非接触式、高通量测量。本产品不可以销往美国。如果该产品在美国地区,跟客户的设备出现任何不适配的问题,滨松不承担任何责任。详细参数产品型号L14890-09脉冲输出功率(最大值)900 mW光脉冲重复频率(典型值)180 kHz准直透镜Included尺寸(W × H × D)82 mm × 88 mm × 112 mm重量1.2 kg中心波数(典型值)1075 cm-1波数扫描宽度(典型值)200 cm-1产品特点● 内置MEMS光栅● 实现宽波长范围高速扫描● 内置准直透镜● DAU结构基础上的宽带QCL外形尺寸(单位:mm)创新点:滨松波长可调谐量子级联激光器(QCL)模块L14890-09是一种利用外腔结构实现宽波长扫描的脉冲量子级联激光器。相比较于传统的FT-IR方法,该产品充分利用激光的特性,可实现中红外光谱的远程、非接触式、高通量测量。波长调谐范围在7.84um~11.14um,峰值功率为600mW(typ.),往返频扫(全范围调谐)频率达1.8KHz。QCL模块L14890-09也获得了2018日本文部科学省纳米技术平台事业部授予的“最佳成果奖”。 利用了滨松独特的量子结构设计技术,这个QCL小模块内的QCL芯片采用了一种反交叉双重高能态结构(AnticrossDAUTM)。而在QCL芯片的发射截面上,则制成了多层增透膜,它可以保证从截面发出的激光,在到达光栅前零损耗。芯片产生的宽带光再通过MEMS衍射光栅的倾斜来选频,实现了特定波长的完全反射和谐振。模块在工作的时候,电控MEMS衍射光栅可高速摆动以改变其倾角,进而周期性地改变衍射角度、即改变谐振光的波长,最终使模块实现中红外激光的波长扫描。相对于已有的利用电机使镜面机械式运动来改变波长的QCL模块,电控MEMS衍射光栅可以达到更快的波长调谐,且衍射器件的微型化也使得模块更加的紧凑(8.2× 8.8× 11.2 cm),易于装配。 滨松波长可调谐量子级联激光器(QCL)模块L14890-09
  • 昊量光电正式成为美国Meadowlark Optics公司所有产品线的独家代理商
    基于长期友好的合作伙伴关系与相互信任,近日昊量光电与美国Meadowlark Optics公司正式签订独家代理协议。昊量光电正式成为美国Meadowlark Optics公司所有产品线的独家代理商。我们相信,双方这次全面深入的合作将帮助美国Meadowlark Optics公司加快在中国的业务增长,提升为中国客户的服务品质。 作为美国Meadowlark Optics公司在中国地区的独家代理商,昊量光电将全面负责美国Meadowlark公司在中国的市场拓展与客户服务。昊量光电将一如既往地为中国地区的客户提供优质的产品与服务! 美国Meadowlark Optics公司(Meadowlark Optics, Inc.)于1979年由美国国家大气研究中心的科学家Tom Baur先生创立。如今Meadowlark Optics公司已经成为全球顶级的偏振光学元器件制造商。Meadowlark Optics公司产品包括超高精度偏振片、液晶相位延迟器等。 2014年7月,美国BNS (Boulder Nonlinear System)公司商业产品部与美国Meadowlark Optics公司合并之后,美国Meadowlark Optics公司在液晶空间光调制器方面的技术实力进一步增强。 2015年3月,美国Meadowlark Optics公司正式收购CRi公司液晶空间光调制器产品线 ,Meadowlark公司在液晶空间光调制器的产品种类得到了进一步拓宽,其在液晶空间光调制器的世界领导者地位得以进一步巩固! 作为一家专业的光电产品代理商,上海昊量光电设备有限公司专注于光电领域的技术服务与产品经销,致力于引进国外顶级光电产品制造商的技术与产品,为国内客户提供优质的产品与服务。昊量光电成立于2008年。目前,昊量光电已经与国外多家知名光电产品制造商建立了良好的合作关系。其代理品牌包括美国Meadowlark公司、法国Photline/iXFiber公司、英国Gooch&Housego公司、美国ConOptics公司、法国Oxxius公司、英国Qioptiq公司、法国Cristal Laser公司、德国Cinogy公司等,其产品包括空间光调制器、声光调制器、电光调制器、半导体激光器、半导体泵浦激光器、光纤激光器、激光晶体、光束测量设备等,所涉及的领域也涵盖了材料加工、光通讯、生物医疗、科学研究与国防等。 昊量光电秉承“诚信、高效、创新、共赢”的核心价值观,我们为客户提供优质的产品与服务,为实现各方共赢而不懈努力! 调制器 空间光调制器CRi液晶空间光调制器超高速液晶空间光调制器透射式液晶空间光调制器液晶相位延迟器/液晶光阀超快液晶可变延迟器/液晶可变波片OEM液晶可变延迟器/相位延迟器紫外液晶可变延迟器/波片中红外液晶可变延迟器/相位延迟器(3.6um-5.7um)可调谐滤波器可调谐液晶滤波器(半高宽可选)三色液晶可调谐滤波器
  • 兰光发布铝箔针孔检测仪 药用铝箔针孔度检查台新品
    铝箔针孔检测仪 药用铝箔针孔度检查台SBG-80T针孔检测台,由D6500高显色性超级光管与精密制造的投光机构组成。各项技术指标充分满足CIE国际照明委员会及CY3-91标准有关色评价与配色比色照明条件的规定。可全天候应用于铝箔针孔度的测试。SBG-80T针孔检测台专业技术:进口CIE D65 光源配置光谱稳定、显色准确符合标准的钢化玻璃,照度规范、光照均匀、可靠安全配置光源寿命自动计时器,方便用户及时了解仪器的运行情况测试原理:在规定的环境及灯箱光源下,利用铝箔针孔的透光性,观察铝箔针孔数量,并测量针孔的尺寸。测试标准:该仪器参照多项国家和国际标准:GB/T 3198、GB/T 22638.2、YBB 00152002-2015测试应用:基础应用:药用铝箔——适用于药品包装用铝箔针孔度测试工业铝箔——适用于工业用铝箔针孔度测试SBG-80T针孔检测台技术指标:观察尺寸:400×250mm色温:6500 K玻璃透射光照度:1000Lux左右使用环境光照度:20Lux-50Lux放大倍数:100倍最小刻度值:0.01mm电源:220VAC 50Hz/ 120VAC 60Hz外形尺寸:800mm(L) × 600mm(W) × 230mm(H)净重:10 kg产品配置:标准配置:主机、显微镜创新点:1、推出的新产品,用于铝箔材料针孔检测 2、实验效率高,坚固耐用,外形美观 铝箔针孔检测仪 药用铝箔针孔度检查台
  • 新型“光学分子”片上光谱仪
    光谱仪用于分解和测量电磁波的谱信息,广泛应用于材料分析、天文观测以及生物医学成像等领域。传统台式光谱仪基于棱镜或光栅等空间色散元件,导致其结构尺寸较大,并对机械振动敏感,通常只能用于实验室环境。新型片上光谱仪有望克服这些缺陷。这类光谱仪基于集成光子回路,其中各类光学器件均由固态平面波导构成,因此可以实现芯片尺度的密集集成,并可以消除环境扰动的影响。片上光谱仪在智慧医疗、地质勘探以及片上实验室(Lab-on-a-chip)等领域具有应用价值,特别对于实现小型化、便携式,甚至可穿戴的智能传感设备具有重要使能意义。然而,目前已报道的片上光谱仪大多存在分辨率-带宽限制这一共性缺陷。具体来说,对于片上光谱仪,实现较高的分辨率需要较长的波导光程,而这往往会降低输出响应的自由光谱范围,进而影响工作带宽。虽然可以通过采用光子晶体微腔等特殊结构,在一定程度上扩展自由光谱范围,但是这类结构加工较为困难,并且调谐效率较低。目前尚无突破这一限制的通用解决方案。近日,香港中文大学电子工程学系曾汉奇研究小组,通过采用一种新颖的“光学分子”结构,结合计算重建方法,实现了一种同时具有高分辨率与大带宽的新型片上光谱仪。该成果以“Breaking the resolution-bandwidth limit of chip-scale spectrometry by harnessing a dispersion-engineered photonic molecule”为题发表于Light:Science & Applications.这一结构的基本组成是一对相同的可调谐微环谐振腔(图1a)。在热光调谐过程中,输入光谱被滤波采样,进而在输出端口生成包含谱信息的信号,最终通过计算重建方法将输入光谱还原(图1b)。此过程中,需要解决的核心问题是,如何分辨相隔自由光谱范围整数倍的波长通道。对于单谐振腔而言,各个自由光谱范围之内仅包含一个谐振模式,因此无法实现宽带谱重建。当一对谐振腔发生强耦合,各个谐振模式将劈裂为一个对称模式与一个反对称模式(图1c)。这一现象类似于双原子分子中存在的能级劈裂。值得注意的是,谐振模式的劈裂强度正比于谐振腔之间的耦合强度。因此,可以通过增强耦合强度的色散,使得“光学分子”谱线的劈裂强度随波长变化,并基于这一特征,识别位于不同自由光谱范围的波长通道。具体来说,当热光调谐经过一个自由光谱范围,各个波长通道对应的输出信号均包含一对尖峰;此时,即便对于相隔自由光谱范围整数倍的波长通道,其尖峰之间的间距仍然不同,因此不同波长通道得以去相关(图1d)。图1.“光学分子”片上光谱仪的工作原理。在该工作中,作者实验证实了40pm的谱线分辨率与100nm的工作带宽。同时利用单片集成滤波器生成测试光谱,实验验证了各类特征光谱的高精度重建。该工作的创新与亮点可以总结为:1.作者提出了一种完全区别于传统方案的片上光谱仪。不同于可调谐滤波器方案,这一设计不受自由光谱范围限制,因此得以保持高分辨率的同时,极大地扩展工作带宽。不同于计算“光斑”光谱仪,这一设计不依赖于复杂拓扑结构,具有结构简单、尺寸紧凑等优势。2.设计思路具有可扩展性。在满足特定条件情况下,可以进一步增加待分辨的自由光谱范围数目,进一步扩展工作带宽与通道容量,同时保证较低的功耗。3.该工作涉及的概念源于高品质微腔中一种极为常见的现象——模式劈裂。同时,结构完全基于集成光子回路中极为常见的单元器件——微环谐振腔。这使得这一方案具有加工简便、通用性强等优势。这一工作为新型片上光谱仪的研发提供了一种全新思路,同时对计算光谱学等研究方向具有启发意义,并可能用于单片集成的光谱传感系统。
  • Moku:Go轻松助力校园无线电接收实验的教学
    Moku:Go轻松助力校园无线电接收实验的教学Moku:Go将10几种实验室仪器结合在一个高性能设备中,具有2个模拟输入、2个模拟输出、16个数字I/O和可选的集成电源。 一. 介绍本实验的目的是介绍调幅无线电接收器的基本原理,并演示使用锁相放大器的基本原理。你将使用Moku:Go的锁定放大器、数字滤波器、频谱分析仪和集成电源来设计和优化AM无线电接收器。调幅(AM)无线电,虽然在很大程度上被调频(FM)无线电所取代,但它仍然是通过无线电波传输信息中非常有用的一种方法。本实验设计并实现一个调幅无线电接收器。可以学习到如何找到本地AM无线电频率,并使用锁定放大器实现无线电接收器。图1显示了使用频谱分析仪在澳大利亚堪培拉接收到的AM无线电信号。图1 堪培拉地区频谱分析仪的例子 扫码查看产品详情二. 背景2.1 调幅广播在调幅收音机中,信号的振幅是经过调制的;与调幅收音机相比,调频收音机的信号频率是经过调制的。这种差异可以从图2中看出,在调幅调制波形中,波的振幅明显变化,而在调频调制波形中,正弦波的频率随时间变化。两种类型的无线电传输都有优点和缺点。商业调幅广播电台工作在535kHz至1605kHz的范围内,因此与调频广播相比,其覆盖范围通常更大在88-108 MHz范围,但它更容易受到噪声的影响,与基于音乐的广播节目相比,更适合谈话广播。图2 使用Moku:Go上的波形发生器的调幅波形和调频波形示例。 AM收音机通过使用正弦载波工作,该载波由消息信号(音频信号)调制;正在发送的信息就是这个音频。在这种类型的调制中,载波的振幅被信息信号被改变(因此称为AM)。特定无线电台的调制信号在频域中可以清楚地被视为尖峰(例如图1),尽管在时域中通常很难看到。Moku:Go的FIR滤波器生成器可以帮助我们在无线电台周围设置一个窄带通滤波器,去除电台以外的几乎所有信号。图3给出了一个例子,FIR滤波器生成器挑选出一个大约600 kHz的AM无线电台。蓝色轨迹中可以清楚地看到用语音信号调制的AM载波。红色的轨迹(天线输入)表明,如果没有窄带通,就不可能接收这个或任何其他电台;事实上,该信号完全由截图所在办公室的可调光LED照明的~25 kHz开关控制。 图3 FIR滤波器生成器将AM广播电台(蓝色轨迹)与背景信号(红色)隔离开来。 为了接收和收听消息信号,无线电接收器需要接收特定的AM无线电频率并对其进行解调,以从消息信号中分离出载波信号。简单AM无线电接收器的框图如图4所示。图4 调幅无线电接收器框图接收器通过使用无线电天线检测无线电波来工作;然而,这种信号通常相对较弱,因此需要一个RF放大器来增强信号,以便进一步处理。由于天线将捕捉所有可能的频率,因此需要一个调谐器来找到所需的特定频率。 图5 LC电路原理图示例 2.2 模拟解调模拟解调调谐器通常由一个LC(电感电容)电路组成,如图5所示。根据所用的电感和电容,电路将在特定频率下谐振。高于和低于该谐振频率的所有其他频率将被阻挡。消息信号可以被整流为仅给出DC信号,并通过二极管和旁路电容器从载波中解调。该信息信号然后可以被放大并发送到扬声器、耳机等。2.3 锁定放大器锁定放大器是一种功能强大的器件,可以从噪声背景中分离出调制信号,在我们的情况下,是从一系列信号中分离出特定的AM信号。这意味着锁定放大器可以作为无线电接收器,因为它包含无线电接收器的几个关键部件。Moku:Go的锁定放大器能够通过使用相敏检波器(PSD)解调调制信号,例如无线电波。它使用与载波信号频率相同的正弦参考信号。它可以跟踪参考信号的任何变化,因此能够跟踪频率漂移。PSD将两个信号相乘或“混合”在一起,产生两个信号的和项和差项。所需频率和参考信号由相同的频率组成,因此频率之间的差异为零。因此,所需的无线电波信号被设置为DC。混合信号然后通过低通滤波器发送,该低通滤波器去除调制信号的交流分量。这仅留下与信号幅度成比例的DC信号,在这里,信号然后可以使用直流放大器放大。输出幅度可以从通过混频器和低通滤波器发送的信号中找到。这些可以在直角坐标或极坐标中找到。振幅R可以通过坐标之间的转换得到,其中 。对于AM信号,只需要振幅或R(在极坐标中);信号的相位可以忽略。三. 实验前练习找到并详细列出你所在地区的AM电台列表。你觉得什么信号会最强?为什么?实验装置成分:○ Moku:Go [2x]○ 天线○ 扬声器○ 低噪声放大器(可选)1○ 鳄鱼夹○ 实验室程序3.1 第一部分确保您拥有最新版本的在地址:Moku: desktop app2将磁性电源适配器插入每个Moku:去等待前面的LED变成绿色。这些最初的步骤将解决Moku:Go #1的配置问题。将天线连接到Moku:Go的输入1,如图6和图7所示。图6 第一部分照片Moku:去设置 1、常用的30分贝LNA。如需完整的物料清单,请联系我们。2、Moku:Go可以通过三种不同的方式连接到笔记本电脑:以太网、USB-C和Wi-Fi。请参考Moku:Go Quick StartGuide 如何连接你的Moku:去你的电脑。一旦连接,Moku:Go将出现在Windows或MacOS应用程序的设备选择屏幕上。图7 Moku:go:设置第1部分 双击频谱分析仪。找到调幅范围,并随意平均频谱,以改善图表。找到最主要的调幅无线电信号频率,你可以通过添加一个跟踪光标来完成。信号应在小于2 MHz的范围内。频谱分析仪和设置配置的示例如图8所示。 图8 如何配置频谱分析仪 ○ 将您的扬声器连接到Moku:Go #1的输出1。○ 返回仪器选择屏幕,双击锁定放大器。打开示波器部分,确保可以看到A和b。○ 将探针A添加到输入1(天线)○ 将探头B添加到输出1(扬声器)在图9中可以看到锁定放大器仪器页面的一个例子。 图9 锁定放大器解调AM广播电台的示例。上面(红色)的轨迹是天线信号,下面(蓝色)的轨迹是音频。 改变本地振荡器到你最主要的调幅信号的频率。首先将低通滤波器设置为12kHz。根据需要改变极性和增益。您可能需要改变低通滤波器和增益,以改善信号并产生尽可能清晰的声音。小心不要让信号饱和。图10给出了堪培拉地区各种变量的设置示例。 图10 堪培拉地区锁定放大器设置示例。 3.2 第二部分在第2部分中,我们将使用第二个Moku:Go作为数字滤波器来进一步增强接收到的无线电信号。将扬声器连接电缆移至Moku:Go #2的输出2。将一根电缆从Moku:Go #1的输出1连接到Moku:Go #2的输入2。这种设置可以在图11和图12中看到。 图11 Moku的照片:去设置第2部分 图12 Moku:go:设置第2部分 返回主屏幕,双击Moku:Go #2的图标。双击数字滤波器框。数字滤波器盒界面如图13所示。 图13 数字滤波器盒用户界面 将探针A添加到输入2,将探针B添加到输出2。首先,将滤波器改为贝塞尔带通滤波器,并根据需要改变增益。改变频率,仅隔离信息信号,即音乐或声音,从而尝试去除低频噪音。试着瞄准音乐和声音产生的频率。图14给出了堪培拉地区的数字滤波器盒变量。 图14 堪培拉地区的数字滤波器盒示例 3.2 第3部分将低噪声放大器连接在天线和Moku:Go #1的输入1之间。为低噪声放大器供电,将鳄鱼夹连接到电源连接和Moku:Go #1的背面。设置如图15所示。图15 Moku的框图:设置第3部分 确保它连接到PPSU2或类似的12 V电源。单击 打开电源,并将电压设置为12 V。电源弹出窗口可能如图16所示。 图16 PPSU的例子 根据需要改变数字滤波器盒和锁定放大器的变量,以产生尽可能清晰的信号。尝试改变你所在区域的其他AM信号,你能通过改变锁定放大器和数字滤波器盒中的变量来优化你的音质吗?3.3.1 摘要本实验探索在Moku:Go上使用锁定放大器作为AM无线电接收器。锁定放大器是一个强大的工具,帮助学生了解如何从嘈杂的背景中解调信号。此外,学生还能够学习如何利用许多其他工具进一步提高信号清晰度。在Moku: App中,通过截屏或文件共享可以轻松发布和报告结果。您可以通过点击屏幕顶部的云图标来完成此操作。Moku的好处:Go面向教育工作者和实验室助理有效利用实验室空间和时间易于实现一致的仪器配置专注于电子设备而非仪器设置最大限度地利用实验室助教的时间个人实验室,个人学习通过屏幕截图简化评估和评级对于学生来说各个实验室按照自己的节奏加强理解和保留便携式,选择实验室工作的速度、地点和时间,无论是在家里、在校园实验室,甚至是在熟悉的Windows或macOS笔记本电脑环境中进行远程协作,同时使用专业级仪器。3.3.2 Moku:Go演示模式您可以在Liquid Instruments网站下载适用于macOS和Windows的Moku:Go应用程序。演示模式操作不需要任何硬件,并提供了使用Moku:Go的一个很好的概述。关于昊量光电:上海昊量光电设备有限公司是目前国内知名光电产品专业代理商,也是近年来发展迅速的光电产品代理企业。除了拥有一批专业技术销售工程师之外,还有拥有一支强大技术支持队伍。我们的技术支持团队可以为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等工作。秉承诚信、高效、创新、共赢的核心价值观,昊量光电坚持以诚信为基石,凭借高效的运营机制和勇于创新的探索精神为我们的客户与与合作伙伴不断创造价值,实现各方共赢!
  • 近红外光谱的柔性生命力——Norris导数滤波浅说
    p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   导读:近红外(NIR)光谱分析是融合样本、变量和模型三个多维空间的建模体系。它具有直接快速的分析优势,同时,也对方法学提出了挑战。光谱预处理是一项基本技能,在信息提取、去噪,模型维护及传递中扮演重要角色。由于对象、条件和测量方式的多样化,预处理模式通常需要个性化优选。Norris导数滤波(NDF)包含导数阶数、平滑点数和差分间隔三个可变参数,是多模式的算法群。功能各异的参数融合,可提升近红外光谱的柔性生命力,满足多样性光谱预处理的个性化需求。本文以近红外玉米粗蛋白分析为例,分享对Norris导数滤波的理解。在材料制作前期,惊闻Karl H. Norris博士病逝!谨以此文悼念Dr. Karl H. Norris! /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai " /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 300px height: 319px " src=" https://img1.17img.cn/17img/images/201908/uepic/dd11b712-09f6-4b18-87b6-a00f0bd3234f.jpg" title=" 微信图片_20190819100830.jpg" alt=" 微信图片_20190819100830.jpg" width=" 300" height=" 319" border=" 0" vspace=" 0" / /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai " /span br/ /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " strong 暨南大学光电工程系 潘涛教授 /strong /span /p p span style=" color: rgb(0, 176, 80) " strong   引 言 /strong /span /p p   众所周知,近红外(NIR)光谱是典型的多维信息数据。近红外光谱分析是融合样本、变量和模型三个多维空间的建模体系,化学计量学是核心技术。相对于其他分析手段,近红外光谱具有快速简便的优势,它可以不进行化学或物理的前处理,直接进行测量。例如,采用漫反射法直接测量固体样品(如粉末,颗粒,纤维等)、透射法直接测量多种组分的复杂液体样品(如血液,牛奶,酒类等)。同时,它也对方法学提出了挑战。例如,需要处理光谱基线漂移和倾斜等光谱扰动。光谱预处理是非常必要的,但由于样品和测量方法的多样性,预处理模式通常需要个性化优选。 /p p span style=" color: rgb(0, 176, 80) " strong   1. 几类常见光谱预处理方法 /strong /span /p p    span style=" color: rgb(0, 176, 80) " strong 标准正态变量变换 /strong /span (standard normal variate transformation, SNV)是常用的光谱预处理方法。它在每一条光谱内进行横向标准化处理,提升光谱之间的差异度,提高模型稳健性和预测能力 sup [1, 2] /sup 。用于消除固体颗粒大小、表面散射以及光程变化对NIR漫反射光谱的影响 sup [3] /sup 。最近,我们将SNV方法应用于水稻种子鉴别、种子纯度定量的近红外分析 sup [4, 5] /sup 。 /p p    span style=" color: rgb(0, 176, 80) " strong 多元散射校正 /strong /span (multiplicative scatter correction, MSC)是另一种常用的光谱预处理方法 sup [6~9] /sup 。它与SNV基本相同,主要是消除颗粒分布不均匀及颗粒大小产生的散射影响,在固体漫反射和浆状物透(反)射光谱中应用较为广泛 sup [3] /sup 。MSC假设样品光谱与平均光谱整体线性相关,并以全谱区为窗口来校正所有波长的吸光度。然而,在宽谱段的情形,难以对局部相关性差的波长实现满意的校正效果,这会影响光谱的整体预测能力。 /p p   文献[10]提出的 span style=" color: rgb(0, 176, 80) " strong 分段多元散射校正 /strong /span (piecewise multiplicative scatter correction, PMSC)是一种分段线性校正方法。PMSC方法允许可变的校正窗口(p+1+q),从算法上覆盖MSC。校正窗口参数的优化是必须的 sup [11] /sup ,然而,受限于当时的计算机水平,相应的参数优化平台尚未建立,影响了PMSC方法的应用。最近,本团队提出移动窗口相关系数谱,用于描述光谱之间的局部相关性,构建了基于PLS回归的PMSC参数优化平台,取得了显著优于MSC的预测效果,应用于水稻种子纯度、土壤有机质的近红外分析 sup [12] /sup 。 /p p   上述基础性的光谱预处理方法,通常需要和平滑、求导法进行联用。平滑用于消除弱噪声而保留光谱轮廓,一阶导数用于校正光谱的基线漂移(additive baseline),二阶导数用于校正光谱的线性基线漂移(linear baseline)等噪声 sup [11] /sup 。 /p p    span style=" color: rgb(0, 176, 80) " strong Savitzky-Golay平滑 /strong /span (SG smoothing)是一种十分优雅的产生导数光谱的预处理方法 sup [13] /sup 。它采用平滑窗口波长数(2m + 1)、多项式次数(n)和导数阶数(s)作为参数。在平滑窗口内,对中心波长的光谱数据进行多项式校正,再通过移动窗口方式实现全谱的校正。不同的参数组合对应不同的平滑模式,计算公式也各不相同。功能各异的参数的融合,提升了近红外光谱的柔性生命力,可满足多样性光谱预处理的个性化需求。本团队构建了三维参数(m,n,s)遍历的偏最小二乘(PLS)算法平台,实现了SG平滑模式的大范围参数优化,应用于近红外光谱的血糖分析 sup [14] /sup 、土壤检测 sup [15,16] /sup 、转基因甘蔗育种筛查 sup [17] /sup 、糖化血红蛋白分析 sup [18] /sup 、地中海贫血筛查 sup [19,20] /sup 、血粘度测定 sup [21,22] /sup 等方面。 /p p    span style=" color: rgb(0, 112, 192) " Norris导数滤波(Norris derivative filter, NDF)是另一个著名的光谱预处理方法。它由被誉为“近红外光谱之父”的Karl H. Norris博士等人提出 sup [23, 24] /sup 。但是,Norris当时只简单的描述了算法的框架,后面的应用文献中也未看到详细描述。我们在褚小立的专著 sup [3] /sup 中找到了稍微具体的公式,但是严格的方法体系,特别是多参数融合方法仍需完善。在从事近红外光谱的长期工作中,我们深感到Norris导数滤波的柔性生命力。 /span /p p span style=" color: rgb(0, 112, 192) "   最近,仪器信息网和中国仪器仪表学会近红外光谱分会计划开设的《近红外光谱新技术/应用进展》网络专题,并向我约稿。由此,萌发了写一篇小文介绍Norris导数滤波的想法。 /span /p p span style=" color: rgb(0, 176, 80) " strong   2. Norris导数滤波(NDF) /strong /span /p p   NDF是一个基于多个可变参数的多模式光谱预处理算法群,在近红外分析中有广泛应用。它包括移动平均平滑和差分求导两个环节,使用三个参数:平滑点数(s),导数阶数(d)和差分间隔(g)。功能各异的参数组合,提供了多样性的光谱预处理方式,可以满足不同对象的近红外分析的个性化需求。 /p p   最近,我们构建了三维NDF参数(d,s,g)遍历的PLS算法平台,实现了NDF模式的大范围参数优化,应用于玉米粗蛋白分析和血清尿素氮分析 sup [25, 26] /sup 。 /p p span style=" color: rgb(0, 176, 80) " strong   【移动平均平滑】 /strong /span /p p   移动平均平滑法选择一个具有奇数个波长的平滑窗口(s),用窗口内的全体测量值的平均值代替中心波长的测量值,自左至右移动窗口,完成对所有点的平滑(左右半宽带的波长除外)。设全谱段的波长总数为N sub 0 /sub ,s是一个可变的奇数,s = 1, 3, & #8230 ,S。理论上,S可以取不超过N sub 0 /sub 的最大奇数。由于关联性低,采用太宽的平滑窗口是不合理的,本文设平滑点数上限S=99。特别地,s=1代表不进行移动平均平滑,即,原光谱。 /p p   设光谱的第k个波长的吸光度为x sub k /sub ,在以k为中心,宽度为s的对称波长窗口内,对中心波长吸光度进行平滑,如下: /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 124px " src=" https://img1.17img.cn/17img/images/201908/uepic/60849de6-dced-4490-8f63-649d3cee9496.jpg" title=" 01.png" alt=" 01.png" width=" 600" height=" 124" border=" 0" vspace=" 0" / /p p   值得注意的是,对于最左边或最右边的 img src=" https://img1.17img.cn/17img/images/201908/uepic/b8cea792-9064-4cd0-862c-f9fafaf26e44.jpg" title=" 微信图片_20190826114304.png" alt=" 微信图片_20190826114304.png" style=" text-align: center max-width: 100% max-height: 100% " / 个波长,由于该点左边或者右边的点数小于& nbsp img src=" https://img1.17img.cn/17img/images/201908/uepic/d295318f-2ca9-492e-859f-c3beef9935bd.jpg" title=" 微信图片_20190826114304.png" alt=" 微信图片_20190826114304.png" style=" text-align: center max-width: 100% max-height: 100% " / ,不能进行对称平滑。考虑到数据的连续性,对于最左边的 img src=" https://img1.17img.cn/17img/images/201908/uepic/fe38ef55-a973-4f74-93fc-0302a031f2e2.jpg" title=" 微信图片_20190826114304.png" alt=" 微信图片_20190826114304.png" style=" text-align: center max-width: 100% max-height: 100% " / span style=" text-align: center " 个波长,我们提出近似平滑,如下: /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 122px " src=" https://img1.17img.cn/17img/images/201908/uepic/0fc41379-50ef-4a45-bdb2-ab12d1f348c4.jpg" title=" 02.png" alt=" 02.png" width=" 600" height=" 122" border=" 0" vspace=" 0" / /p p   对于最右边的波长,吸光度的平滑方法类似于公式(2),如下: /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/98199654-339d-4808-ac8b-b9678b723566.jpg" title=" 03.png" alt=" 03.png" / /p p   上述处理,使得光谱边界数据自然过渡,更为合理。 /p p span style=" color: rgb(0, 176, 80) " strong   【差分求导】 /strong /span /p p   为了避免差分求导产生传递误差,通常需要经过移动平均平滑光谱后,再进行中心差分法求导。由于近红外光谱比较平坦,不同对象的光谱分辨率不尽相同。光谱采集的数据间隔不一定适用于差分间隔。Norris导数采用一个可变的波长间隔数作为导数的差分间隔(g),g = 1, 2, & #8230 ,G。由于关联性低,太大的差分间隔是不合理的,本文设差分间隔的上限G=50。 /p p   对于第k个波长的吸光度x sub k /sub ,采用基于差分间隔g的中心差分,计算吸光度的一阶导数,自左至右移动,得到所有点的导数值(左右半宽带的波长除外)。如下: /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/f4858970-26bd-4911-84b4-a7eec9998e8d.jpg" title=" 04.png" alt=" 04.png" / /p p   值得注意的是,对于最左边或最右边的g个波长,由于该点左边或者右边的点数小于g,不能执行中心差分法求导。考虑到数据的连续性,对于最左边的g个波长,我们提出前向差分法计算一阶导数,如下: /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/88f4e45a-9f52-40cb-889c-3b57efab9059.jpg" title=" 05.png" alt=" 05.png" / /p p   对于最右边的g波长,则可通过后向差分法计算一阶导数,如下: /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/01dbdd54-82d4-49fc-bafa-7dc511a8f3bd.jpg" title=" 06.png" alt=" 06.png" / /p p   二阶导数,可由上面的一阶导数再求导获得,编程实现简单,不再赘述。 strong 考虑到3阶以上的高阶导数的绝对量值小,光谱信息含量低,一般不建议采用3阶以上的导数。 /strong 本文设导数阶数为d = 0, 1, 2。特别地,d=0代表不进行差分求导,即,只进行移动平均平滑。 /p p span style=" color: rgb(0, 176, 80) " strong   【参数联合优化】 /strong /span /p p   对于任意一个参数组合(d, s, g),都对应一个Norris导数模式。对于d = 0, 1, 2;s = 1, 3, & #8230 , 99;g = 1, 2, & #8230 , 50,共有50+2× 50× 50=5050个模式。三个功能各异的参数的变化,使得Norris导数谱比原谱更为灵活、柔性、多样化,适用性宽。下面,提出一种基于PLS的Norris参数的联合优选方法。为提高参数选择合理性,采用基于随机性、相似性、稳定性的定标-预测-检验的多划分建模设计 sup [27, 28] /sup 。 /p p   建立所有Norris导数谱的PLS模型,称为Norris-PLS模型。计算每一组样品划分的预测均方根误差(SEP)和预测相关系数(R sub P /sub )。进一步,计算所有划分的平均值(SEP sub Ave /sub ,R sub P,Ave /sub )和标准偏差(SEP sub SD /sub ,R sub P,SD /sub )。并基于综合预测效果: /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 41px " src=" https://img1.17img.cn/17img/images/201908/uepic/10c59c4b-f073-4ce9-a25a-09c90ec33c1a.jpg" title=" 7.png" alt=" 7.png" width=" 600" height=" 41" border=" 0" vspace=" 0" / /p p   优选具有稳定性的全局最优Norris参数,如下: /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 62px " src=" https://img1.17img.cn/17img/images/201908/uepic/4e15c028-35d0-4198-b122-f5bc4e751221.jpg" title=" 8.png" alt=" 8.png" width=" 600" height=" 62" border=" 0" vspace=" 0" / /p p   此外,对应导数阶数d=0, 1, 2,可以计算两类单参数局部最优解,如下: /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 95px " src=" https://img1.17img.cn/17img/images/201908/uepic/fb7412b2-80aa-4b3b-871d-21148c32e7e3.jpg" title=" 9.png" alt=" 9.png" width=" 600" height=" 95" border=" 0" vspace=" 0" / /p p   可得到,关于平滑点数s的三条建模效果曲线SEP sup + /sup (0, s),SEP sup + /sup (1, s),SEP sup + /sup (2, s)和关于差分间隔数g的两条建模效果曲线SEP sup + /sup (1, g),SEP sup + /sup (2, g)。通过它们可以分析Norris参数的适应性。 /p p span style=" color: rgb(0, 176, 80) " strong   3. 实例—近红外玉米粗蛋白分析 /strong /span /p p span style=" color: rgb(0, 176, 80) " strong   【材料】 /strong /span /p p   玉米颗粒样品156份,研磨并过筛(1.0mm)为粉末样品(未干燥),采用凯氏定氮法测量样品粗蛋白。最小值、最大值、平均值、标准差分别为7.31、12.1、9.46、0.92(%)。 /p p span style=" color: rgb(0, 176, 80) "   strong  【近红外光谱仪器】 /strong /span /p p   Nexus sup TM /sup 870 FT-NIR光谱仪(Thermo Nicolet Corporation,MA,USA);漫反射附件;波数范围:9997~3996 cm sup -1 /sup ;分辨率:32 cm sup -1 /sup 。 /p p    strong span style=" color: rgb(0, 176, 80) " 【定标-预测-检验的多划分建模】 /span /strong /p p   从156个样品随机选取56个为检验集,余下100个为建模集;进一步将建模集随机划分为定标集(50个)和预测集(50个),共10次。对所有划分建立PLS模型,确定平均预测效果(SEP sub Ave /sub ,R sub P,Ave /sub ,SEP sub SD /sub ,R sub P,SD /sub ,SEP sup + /sup )。 /p p span style=" color: rgb(0, 176, 80) "    strong 【分析】 /strong /span /p p    strong 先来观察玉米粉末样品的近红外光谱及其Norris导数谱的特征。 /strong /p p   以一个玉米粉末样品为例,采用不同平滑点数(s = 1~49,奇数),首先计算移动平均平滑谱,如图1所示。其中,s = 1为原光谱。观察到:随着平滑点数增大,主吸收峰右移,且渐趋平坦。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/1dd5ef51-7b05-4b16-be80-4c924cd44302.jpg" title=" 图1.png" alt=" 图1.png" / /p p style=" text-align: center " strong 图1 玉米粉末样品的移动平均平滑谱随平滑点数的演变图 /strong /p p   在移动平均平滑谱(s = 13)的基础上,采用不同差分间隔数(g = 1~30),进一步计算Norris导数谱(一、二阶导数),如图2所示。观察到:主吸收峰翻转为波谷,同时出现新的特征峰。随着差分间隔增大,波谱幅度逐渐减小。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 232px " src=" https://img1.17img.cn/17img/images/201908/uepic/edc64a8e-9c8f-4b57-b4f2-d76bbd2da356.jpg" title=" 图2.png" alt=" 图2.png" width=" 600" height=" 232" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图2 玉米粉末样品的Norris导数谱随差分间隔的演变图: (a)一阶导数 (b)二阶导数 /strong /p p   strong  再展示相关的建模效果。 /strong /p p   首先,未经预处理的直接PLS模型的平均建模效果,汇总在表1中。 /p p   在所有5050个Norris-PLS模型中,全局最优模型的参数(NDF模式)为d =2,g =3和s=13,相应的建模效果,也汇总在表1中。观察到:所有预测效果的指标均有显著的改善。 /p p style=" text-align: center " strong 表1 玉米粗蛋白分析的建模预测效果(%) /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 104px " src=" https://img1.17img.cn/17img/images/201908/uepic/9539dcc6-2f95-46ae-8caa-c25937062f19.jpg" title=" 表1.png" alt=" 表1.png" width=" 600" height=" 104" border=" 0" vspace=" 0" / /p p    strong 进一步观察Norris参数的适应性。 /strong 采用单参数局部最优解,分析建模效果曲线。其中,SEP sup + /sup (2, s)、SEP sup + /sup (2, g),参见图3。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 208px " src=" https://img1.17img.cn/17img/images/201908/uepic/26a55fc2-210b-4561-8367-75081383a9db.jpg" title=" 图3.png" alt=" 图3.png" width=" 600" height=" 208" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图3 单参数局部最优Norris-PLS模型的建模效果:(a)平滑点数,(b)差分间隔数 /strong /p p   在所有二阶的Norris导数谱中(d=2),不同平滑点数对应于局部最优模型的SEP sup + /sup ,如图4(a)所示;不同差分间隔数对应于局部最优模型的SEP sup + /sup ,如图4(b)所示。观察到:不同参数的建模效果差异颇大。 /p p   结果表明:(1)不同的Norris参数,建模预测效果明显不同;(2)参数的设置,不能凭经验设定,针对具体情况进行全局优化是必要的。 /p p strong   后 语 /strong /p p   Norris导数滤波是一种执行良好的光谱预处理算法群。功能各异的参数融合,可提升近红外光谱的柔性生命力,满足多样性光谱预处理的个性化需求。Norris模式的优化选择是必要的。 /p p span style=" color: rgb(0, 112, 192) "   这里分享的,可能是近红外的一个小话题。但,近红外光谱分析就是由多个这样的小话题组成的。从2006年第一届全国近红外光谱会议召开,到近红外分会成立十周年的现在,我们见证了我国近红外事业的发展壮大。祝福它!这里的内容可能有点艰涩,但我们相信它是有趣的。谢谢大家的阅读,恳请提出宝贵意见! /span /p p span style=" font-family: " times=" " new=" " strong   参考文献 /strong /span /p p   [1] R.J. Barnes, M.S. Dhanoa, Susan J. Lister., Appl Spectrosc, 1989, 43(5): 772–777 /p p   [2] M.S. Dhanoa, S.J. Lister, R. Sanderson, R.J. Barnes, J Near Infrared Spec, 1994, 2(1): 43-47. /p p   [3] 褚小立,化学计量学方法与分子光谱分析技术,北京:化学工业出版社,2011 /p p   [4] J.M. Chen, M.L. Li, T. Pan, L.W. Pang, L.J. Yao, J. Zhang, Spectrochim Acta A, 2019, 219: 179-185 /p p   [5] J. Zhang, M.L. Li, T. Pan, L.J. Yao, J.M. Chen, Comput Electron Agr, 2019, 164: 104882 /p p   [6] P. Geladi, D. MacDougall, H. Martens, Appl Spectrosc, 1985, 39:491-500. /p p   [7] T. Isaksson, T. Næ s, Appl Spectrosc, 1988, 42:1273-1284 /p p   [8] K.E. Kramer, R.E. Morris, S.L. Rose-Pehrsson, Chemometr Intell Lab, 2008, 92:33-43. /p p   [9]& nbsp A Rinnan, F. van den Berg, S.B. Engelsen, Trends Anal Chem, 2009, 28:1201-1222. /p p   [10] T. Isaksson, B. Kowalski, Appl Spectrosc, 1993, 47:702-709. /p p   [11] T. Næ s, T. Isaksson, T. Feaern, T. Davies, A User Friendly Guide to Multivariate Calibration and Classification, Chichester, UK: NIR Publications, 2002 /p p   [12] F.F. Lei, Y.H. Yang, J. Zhang, J. Zhong, L.J. Yao, J.M. Chen, T. Pan, Chemometr Intell Lab, 2019, 191(15):158-167 /p p   [13] A. Savitzky, M.J.E. Golay, Anal Chem, 1964, 36(8): 1627-1639 /p p   [14] 谢军,潘涛,陈洁梅,陈华舟,任小焕,分析化学,2010,38(3): 342-346 /p p   [15] H.Z. Chen, T. Pan, J.M. Chen, Q.P. Lu, Chemometr Intell Lab, 2011, 107: 139-146 /p p   [16] 潘涛,吴振涛,陈华舟,分析化学,2012,40(6): 920-924 /p p   [17] H.S. Guo, J.M. Chen, T. Pan, J.H. Wang, G. Cao, Anal Methods, 2014, 6: 8810-8816 /p p   [18] Y. Han, J.M. Chen, T. Pan, G.S. Liu, Chemometr Intell Lab, 2015, 145: 84-92 /p p   [19] J.M. Chen, L.J. Peng, Y. Han, L.J. Yao, J. Zhang, T. Pan, Spectrochim Acta A, 2018, 193: 499-506 /p p   [20] L.J. Yao, W.Q. Xu, T. Pan, J.M. Chen, J Innov Opt Heal Sci, 2018, 11(2): 1850005 /p p   [21] J.M. Chen, Z.W. Yin, Y. Tang, T. Pan, Anal Bioanal Chem, 2017, 409(10): 2737-2745 /p p   [22] J. Zhang, F.F. Lei, M.L. Li, T. Pan, L.J. Yao, J.M. Chen, Spectrochim Acta A, 2019, 219:427–435 /p p   [23] K.H. Norris, P.C. Williams, Cereal Chem, 1984, 61(2): 158-165 /p p   [24] P.C. Williams, K.H. Norris, Near-infrared Technology in the Agricultural and Food Industries, American Association of Cereal Chemists, Inc., St. Paul, Minnesota, USA, 1987 /p p   [25] J. Zhang, L.J. Yao, Y.H. Yang, J.M. Chen, Tao Pan, 19th International Council for NIR Spectroscopy Meting (NIR2019), 2019, Gold Coast, Australia /p p   [26] Y.H. Yang, F.F. Lei, J. Zhang, L.J. Yao, J.M. Chen, T. Pan, J Innov Opt Heal Sci, 2019, 1950018 /p p   [27] T. Pan, J.M. Liu, J.M. Chen, G.P. Zhang, Y. Zhao, Anal Methods, 2013, 5: 4355-4362 /p p   [28] T. Pan, M.M. Li, J.M. Chen, Appl Spectrosc, 2014, 68(3): 263-271 /p p style=" text-align: right "   strong span style=" font-family: 楷体, 楷体_GB2312, SimKai "  (暨南大学光电工程系 潘涛,张静,施小文 供稿) /span /strong /p
  • 国拨经费2.66亿!重大科学仪器设备研发重点专项2024项目申报指南发布
    根据《国家重点研发计划管理暂行办法》(国科发资〔2024〕28号)相关要求,工业和信息化部作为主责单位的国家重点研发计划“基础科研条件与重大科学仪器设备研发”重点专项2024年度项目申报指南已发布。该重点专项申报指南聚焦科学仪器、科研试剂、实验动物和科学数据四个方向,围绕高端通用科学仪器工程化及应用开发、核心关键部件开发与应用、高端化学试剂研制、应用于重大疾病诊断的生物医学试剂创制与应用、实验动物资源创制与评价、实验动物应用保障体系建设、科学数据分析挖掘技术与集成平台等进行布局,拟支持38个项目,安排国拨经费概算2.66亿元。拟支持项目如下:(一)科学仪器1. 高端通用科学仪器工程化及应用开发1.1 高通量核酸质谱分析仪(共性关键技术)1.2 高分子量生物质谱分析仪(共性关键技术)1.3 高可靠高灵敏在线离子色谱分析仪(共性关键技术,青岛市部市联动)1.4 多模态纳米分辨率显微镜(共性关键技术)1.5 线扫描共焦拉曼光谱显微镜(共性关键技术)1.6 超快门控单光子光学相机(共性关键技术)1.7 高能激光微光斑动态特性测量仪(共性关键技术)1.8 环境多参数剖面激光相干测量仪(共性关键技术,青岛市部市联动)1.9 光纤参数综合测量仪(共性关键技术)1.10 惯性主轴空间位姿超精密测量仪(共性关键技术)1.11 扫描式高灵敏度微弱磁学特性检测仪(共性关键技术)1.12 高性能5G核心网仿真测试仪(共性关键技术)1.13 半导体功率器件多参数综合测试仪(共性关键技术)1.14 浅海复杂环境水下多微弱物理量测试仪(共性关键技术)1.15 低温强磁场扫描探针显微镜(共性关键技术)2. 核心关键部件开发与应用2.1 细聚焦氩离子源(共性关键技术)2.2 光纤耦合间接电子探测器(共性关键技术)2.3 伽马射线飞行时间阵列探测器(共性关键技术)2.4 新型3He替代中子探测器(共性关键技术)2.5 耐高压水中溶解气体探测器(共性关键技术)2.6 超低噪声光谱探测器(共性关键技术)2.7 分光干涉型厚度测量模块(共性关键技术)2.8 超高灵敏动态磁扭矩探测器(共性关键技术)2.9 光学数字微镜器件(共性关键技术)2.10 高精度可调谐光学滤波器(共性关键技术)2.11 电化学流体通道电极(共性关键技术)2.12 生物全组织三维成像前处理装置(共性关键技术)2.13 固体样品直接进样器(共性关键技术)2.14 超光滑特种发射元件(共性关键技术)(二)科研试剂3. 高端化学试剂研制3.1 先进高分子材料研发用关键单体试剂(共性关键技术)4. 应用于重大疾病诊断的生物医学试剂创制与应用4.1 X射线/荧光医学CT造影剂标准化研究(共性关键技术)(三)实验动物5. 实验动物资源创制与评价5.1 肠道菌群与疾病相关性研究的实验动物模型创建与应用研究(共性关键技术)5.2 药物非临床安全性评价用实验动物模型创建与标准化研究(共性关键技术)6. 实验动物应用保障体系建设6.1 实验动物质量科学监管与评价技术研究(共性关键技术)(四)科学数据7. 科学数据分析挖掘技术与集成平台7.1 材料腐蚀大数据的智能分析与利用(共性关键技术)7.2 数据驱动的林草科学数据智能分析关键技术与应用(共性关键技术)7.3 高寒区数据深度分析智能软件平台研制与应用(共性关键技术)7.4 面向基因解析和动态生命过程的多模态智能大模型系统研究与应用(共性关键技术)
  • 华东师大实现超高速大视场的中红外高光谱成像
    近日,华东师范大学精密光谱科学与技术国家重点实验室曾和平教授与黄坤研究员团队在中红外光谱成像方面取得进展,结合非线性上转换成像与可调谐声光滤波技术,有效提升了空间-波长三维图谱信息的采集速度,实现了超灵敏、大视场、高帧率的中红外高光谱视频成像,可为化学瞬态过程分析、生物原位成像检测、医学实时光谱影像及燃烧场快速诊断等应用提供有力支撑。相关研究成果以“Wide-field mid-infrared hyperspectral imaging beyond video rate”为题发表于Nature Communications期刊。华东师范大学为论文的第一完成单位,博士生方迦南为论文第一作者,曾和平教授和黄坤研究员为共同通讯作者。图1 曾和平教授与黄坤研究员团队在Nature Communications 刊发研究成果高光谱成像是将成像技术与光谱技术相结合的多维信息获取手段,可在百个甚至更多谱段对目标进行非侵入式成像,生成包含空间和光谱信息的图谱数据立方。因此,高光谱图像具有“图谱合一”的重要特征,每个像素都对应一组光谱信息,所含的丰富信息能够对样品的化学成分、含量与分布进行测定与表征。特别地,中红外波段位于分子的指纹光谱区,包含许多官能团的吸收峰,实现该波段的高光谱成像能够对待测目标进行无标记精确识别。因此,中红外高光谱成像技术已被广泛应用于痕量分析、环境监测、生物医药、材料科学等领域。图2 中红外高速高光谱成像原理概念图然而,兼具多谱段与大画幅的红外高光谱成像系统长期以来局限于观测静态样品或低速运动场景,难以用于快速目标测量或动态过程捕捉。一方面,高光谱成像所生成的图谱数据提供了丰富的目标信息,有助于准确分析与识别样品;另一方面,庞大的数据采集量极大限制了高光谱成像速率。例如,传统摆扫式和推扫式高光谱成像系统主要借助光栅、棱镜等器件实现信号色散分光,在空间信息获取上往往需要依赖点扫描或线扫描来实现二维图像覆盖。为了克服冗长的机械扫描,全幅式光谱成像技术应运而生,其采用可调谐窄带光源(如光参量振荡器、量子级联激光器)或波长可调滤波器(如声光、液晶滤波器)进行光谱扫描,有效提升了多像素图像的采集效率。即便如此,中红外高光谱成像速度仍很大程度上受限于该波段焦平面探测阵列的工作帧频(尤其对于大面阵多像素相机),单色光谱图像采集帧率的典型值为50 Hz @ 512×512像素。相应地,采集百个波长通道以上的高光谱成像往往需要数秒甚至更长时间,距离可实时观测的视频帧率还有量级上的差距。当前,实现大视场、多波段、高帧频的中红外高光谱成像仍颇具挑战,需要同时实现高速光谱扫描与高速图像采集。图3 中红外高速高光谱成像装置图为此,研究团队创新结合非线性广角成像技术与高速声光滤波技术,能够同时提升红外图像采集速率与红外光谱切换速率,克服了传统方案在图谱信息获取上的短板,实现了高达百赫兹的三维图谱刷新率,在同等谱段数与像素规模下,比此前记录提升了至少两个数量级。具体地,研究人员采用特殊设计的啁啾极化铌酸锂晶体,实现宽波段非线性光学和频,将超连续谱中红外信号一次性转换至可见光波段。该过程具有大视场空间映射和高保真度光谱转换的特点,可在空间和光谱维度上保留完整的目标图谱信息。为了实现高速率、高精度的波长调控,研究人员采用声光可调滤波技术,获得了微秒级的波长切换速度与纳米级的窄带滤波带宽。滤波后的单色图像由高性能硅基相机捕获,规避了现有红外焦平面探测阵列在灵敏度、像素数、帧率等方面的不足,从而实现大视场、多像素、高帧频的红外图像采集。图4 高帧频中红外高光谱视频成像(A)实验测定的苯与乙醇红外吸收光谱。(B)每个高光谱数据立方包含100个精细谱段,单色图像拍摄时间仅需100 μs。(C-D) 选取不同的光谱通道,可以方便区分显示不同物质成分。(E)对两种液体吸收峰对应的单色图进行RGB色彩合成,可以清晰展示不同介质扩散与融合的动态过程。实验中,所搭建的高光谱成像系统工作波长为2.4-4.1 μm,涵盖多种CH/OH化学键的红外伸缩与振动吸收谱线,是有机物材料鉴别的重要谱段。为了展示高光谱成像在物质鉴别与动态场景中的应用,研究人员选用了乙醇和苯两种化学样品,他们在肉眼下观察均为无色透明,而通过高光谱成像可测量得到迥异红外特征光谱(图4A),利用独特的分子选择性即可实现样品成分的有效甄别。在高光谱三维数据采集中,单波长大视场成像(近百万像素画幅)的积分时间仅为100 μs,获取100个谱段的图谱立方数据则仅需10 ms(图4B),从而实现100 Hz水平的大视场高光谱影像。与传统机械式波长调谐方式不同,声光可调滤波器不受机械惯性限制,可对光谱进行快速动态调控,实现连续不间断的循环波长扫描,为实时光谱视频成像提供了可能。如图4C-4E所示,可根据样品吸收光谱特征,选取多幅单色灰度图像进行RGB填色合成,实现对样品化学差异与浓度分布更直观的可视化。值得一提的是,所发展的上转换光谱成像技术得益于非线性光学混频过程中所需的相位匹配条件,使得不同波长的单色上转换图像具有不同的空间缩放因子,从而形成波长-空间耦合的独特成像效果,结合特定信息编码和计算成像算法,可以从单幅灰度图像恢复出三维图谱信息,进而发展出单发快照式红外高光谱成像,为实现超高速光谱摄影提供了有效途径。此外,该技术可以扩展到长波红外或太赫兹波段,以满足该谱段对于高速光谱成像的迫切需求,可为材料、化学、生物、医学等领域提供具有吸引力的光谱影像分析手段。近年来,曾和平教授与黄坤研究员课题组在中红外多维成像领域开展了系列创新研究,先后发展了中红外非线性广角成像 [Nature Comm. 13, 1077 (2022)]、中红外单光子单像素成像[Nature Comm. 14, 1073 (2023)]、以及中红外单光子三维成像 [Light Sci. Appl. 12, 144 (2023)]等。相关工作得到了科技部、基金委、上海市、重庆市与华东师大的资助。论文链接:https://doi.org/10 . 1038/s41467-024-46274-z
  • NASA和MIT致力于小体积量子点光谱仪研究
    如果基于量子点波长“滤波器”的原型机能够研制成功,将大大减小空间应用中使用的光谱仪的体积。  目前,美国宇航局(NASA)和麻省理工学院(MIT)正在展开相关合作研究,计划将在立方星CubeSat上首次启用这套系统。  小型化  光谱仪作为探测设备,几乎搭载在所有的航天器上来完成空间任务。NASA希望采用量子点技术来改变现有光谱仪的构建以及集成方式,同时实现成本的大幅降低。  此项目由NASA戈达德太空飞行中心Mahmooda Sultana以及麻省理工学院化学教授Moungi Bawendi领导的研究小组共同合作,由支持高风险技术研发的美国航天局创新中心基金资助。  Bawendi教授的研究团队从20世纪90年代初便率先开始了量子点技术的研究,并开发了光伏、生物以及微流体方面的应用。同时,量子点技术也开始对消费电子产业产生重大影响,许多电视机厂商正着手采用新技术以提高LCD的显示质量。首席研究员Mahmooda Sultana  Sultana教授表示,该方法能够实现天基及其他类型光谱仪的小型化和革命性的发展,尤其是那些应用于无人飞行器和小型卫星上的光谱仪。在给NASA的一份报告中,她表示“量子点技术确实可以简化仪器的集成。”  最初,它可以以吸收光谱的形式工作,代替光学部件的传统结合方式。传统的光谱仪利用光栅、棱镜或干涉滤光片将光分成不同的波长,然后探测产生光谱,而量子点本身就可以实现对光的有效滤波。  量子点对光的吸收或发射取决于它们的直径大小——尺寸越小,量子点吸收的光的波长也将越小——因此原理上,不同尺寸的量子点阵列可以实现相似光学装置的作用。虽然集成光学以及光电子器件的发展使得传统光谱仪已实现小型化,但它们仍然过大。  Sultana解释说:“采用光栅或棱镜等传统光谱仪,光谱分辨率的增加会让分光仪器的光路相应变长,仪器的体积通常会较大。但在量子点光谱仪中,由于量子点可以根据尺寸和形状的不同像滤波片一样来吸收不同波长的光,仪器可以变得超紧凑。换句话说,量子点可以取代传统光谱仪中的光栅、棱镜以及干涉滤光片等光学元件的使用。”  可调谐波长滤波器  理论上,量子点光谱仪可以基于无限数量的不同尺寸的量子点来实现高分辨率。  Sultana表示:“这样就可以产生一个持续可调的、独立的一组吸收滤波器,其中每个像素都是由特定尺寸、形状或成分的量子点组成。我们可以精确控制每个量子点的吸收,或者定制仪器,用高光谱分辨率来观察不同波段。”  目前,Sultana正在开发论证一个对可见光敏感的20×20量子点阵列,用于对太阳光和极光进行成像。原理上,该技术可以扩展到更广的波长范围,从紫外光到中红外光,实现在地球科学、太阳物理学和行星科学等许多空间领域的潜在应用。  NASA报告称,Sultana教授正在为立方体卫星应用开发一个概念仪器,同时麻省理工学院的博士生JasonYoo正在研究一项技术,合成不同前体化学品来创建量子点,并将它们打印到合适的承印物上。Sultana表示:“我们希望最终能将量子点直接打印到探测器像素上。”  虽然该技术目前还处于开发的早期阶段,NASA研究人员也补充表示他们将努力尽快提高技术水平。Sultana表示,将会有几个太空科学任务从这项技术中受益。
  • 4260万!河南省科学院中原量子谷仪器共享中心六期建设项目
    一、项目基本情况1、项目编号:豫财招标采购-2024-4112、项目名称:河南省科学院中原量子谷仪器共享中心六期建设项目3、采购方式:公开招标4、预算金额:42,603,000.00元最高限价:42603000元序号包号包名称包预算(元)包最高限价(元)1豫政采(2)20240454-1包1682700068270002豫政采(2)20240454-2包2393000039300003豫政采(2)20240454-3包3476000047600004豫政采(2)20240454-4包4913100091310005豫政采(2)20240454-5包5993000099300006豫政采(2)20240454-6包6802500080250005、采购需求(包括但不限于标的的名称、数量、简要技术需求或服务要求等)5.1采购货物名称及数量:包1:空间光调制器3套、三维扫描仪1套、3D轮廓测量仪1套、超景深数码显微系统1套、图像尺寸测量仪1套、多光束激光干涉仪系统1套;包2:紧凑型DPSS激光器加工系统1套、精密运动控制器2套、高速数据采集分析系统2套、高精度电子测试系统1套;包3:宽带调谐钛宝石飞秒激光器1套、纳秒脉冲激光器1套、声光可编程色散滤波器1套、激光光束测量分析系统1套、高精度波长测量仪1套、脉宽相位测量仪1套、三阶自相关仪1套、检漏仪1套、真空校正仪1套;包4:三轴立式大行程铣削加工中心1套、三轴立式小行程铣削加工中心1套、精密电火花机床1套、机器人视觉与运动控制综合实验平台1套、三坐标测量仪1套;包5:五轴水导激光精密加工机床1套、五轴联动立式加工中心1套、走心自动车床1套;包6:飞秒红外激光精密加工系统1套、刀具预调仪1套、超精密单点金刚石车床1套。5.2标包划分:本项目共划分6个标包;5.3采购货物技术性能指标:具体参数详见招标文件第五章“采购需求”5.4核心产品:包1:多光束激光干涉仪系统包2:紧凑型DPSS激光器加工系统包3:宽带调谐钛宝石飞秒激光器包4:三轴立式小行程铣削加工中心包5:五轴水导激光精密加工机床包6:超精密单点金刚石车床5.5采购范围:货物的供货、运输、保险、装卸、安装、检测、调试、试运行、验收交付、培训、技术支持、售后保修及相关伴随服务;5.6资金来源:财政资金,已落实;5.7交货期:详见招标文件要求;5.8交货地点:采购人指定地点;5.9质量要求:符合国家现行验收规范和标准,满足采购人的相关要求;6、合同履行期限:自合同签订至质保期结束;7、本项目是否接受联合体投标:否8、是否接受进口产品:是9、是否专门面向中小企业:否二、获取招标文件1.时间:2024年05月13日 至 2024年05月17日,每天上午00:00至12:00,下午12:00至23:59(北京时间,法定节假日除外。)2.地点:河南省公共资源交易中心网站3.方式:登录《河南省公共资源交易中心-市场主体》凭CA数字证书下载投标项目所含全部资料4.售价:0元三、凡对本次招标提出询问,请按照以下方式联系1. 采购人信息名称:河南省科学院地址:郑州市郑东新区崇实里228号联系人:江浩庆联系方式:0371-657200102.采购代理机构信息(如有)名称:信人建设管理有限公司地址:郑州市文化路9号永和国际17层1702室联系人:赵琳杰 郭朋飞联系方式:0371-63899156 186958695933.项目联系方式项目联系人:赵琳杰 郭朋飞联系方式:0371-63899156 18695869593
  • 4260万!河南省科学院中原量子谷仪器共享中心六期建设项目
    一、项目基本情况1、项目编号:豫财招标采购-2024-4262、项目名称:河南省科学院中原量子谷仪器共享中心六期建设项目3、采购方式:公开招标4、预算金额:42,600,000.00元最高限价:47600000元序号 包号 包名称 包预算(元) 包最高限价(元) 1 豫政采(2)20240485-3 包3 47600000 47600000 5、采购需求(包括但不限于标的的名称、数量、简要技术需求或服务要求等)5.1采购货物名称及数量:宽带调谐钛宝石飞秒激光器1套、纳秒脉冲激光器1套、声光可编程色散滤波器1套、激光光束测量分析系统1套、高精度波长测量仪1套、脉宽相位测量仪1套、三阶自相关仪1套、检漏仪1套、真空校正仪1套;5.2标包划分:共划分1个标包;5.3采购货物技术性能指标:具体参数详见招标文件第五章“采购需求”5.4核心产品:宽带调谐钛宝石飞秒激光器5.5采购范围:货物的供货、运输、保险、装卸、安装、检测、调试、试运行、验收交付、培训、技术支持、售后保修及相关伴随服务;5.6资金来源:财政资金,已落实;5.7交货期:详见招标文件要求;5.8交货地点:采购人指定地点;5.9质量要求:符合国家现行验收规范和标准,满足采购人的相关要求;6、合同履行期限:自合同签订至质保期结束7、本项目是否接受联合体投标:否8、是否接受进口产品:是9、是否专门面向中小企业:否二、获取招标文件1.时间:2024年07月31日 至 2024年08月06日,每天上午00:00至12:00,下午12:00至23:59(北京时间,法定节假日除外。)2.地点:河南省公共资源交易中心网站3.方式:登录《河南省公共资源交易中心-市场主体》凭CA数字证书下载投标项目所含全部资料4.售价:0元三、凡对本次招标提出询问,请按照以下方式联系1. 采购人信息名称:河南省科学院地址:郑州市郑东新区崇实里228号联系人:江浩庆联系方式:0371-657200102.采购代理机构信息(如有)名称:信人建设管理有限公司地址:郑州市文化路9号永和国际17层1702室联系人:赵琳杰 郭朋飞联系方式:0371-63899156 186958695933.项目联系方式项目联系人:赵琳杰 郭朋飞联系方式:0371-63899156 18695869593
  • 德力仪器推出国产高性能可调谐激光源
    ICC讯 随着科技的飞速发展,高性能无源器件、相干激光技术、OFDR研发与装置、计量与校准技术以及高等级实验室在科研中扮演着越来越重要的角色。  近日,国内权威科研机构与德力光电科技(天津)有限公司合作,首推一款超高性能的仪器设备——高性能可调谐激光源 TLS1056,具有160nm精准扫描范围、15dBm超高峰值功率、200nm/s高扫速、百万次连续扫描维稳机制、全波段波长调谐精度小于3pm的超高性能。经权威机构使用验证,实现了对国外产品的原位替代。高性能可调谐激光源TLS1056的上市,标志着国产高端仪器领域取得了重大进展。  稳  160nm扫描范围无跳模。得益于其先进的扫描算法和精密的控制系统,在大范围扫描的同时,避免了跳模现象的发生,保证了扫描的稳定性和准确性。  准  波长精度对于光谱分析等实验至关重要,从而保证实验结果的精确性和可靠性。TLS1056在全波段范围内,波长调谐精度小于3pm。其高精度调谐能力在国内尚属首次出现,达到了国际领先水平。  快  具有超过15 dBm的峰值功率,可在短时间内进行高强度的扫描实验,提高了工作效率 同时,200nm/s的高扫速使得该仪器在短时间内完成大量的数据采集,极大地缩短了实验时间。  绝  TLS1056在连续百万次扫描后,仍然保持高稳定的调谐精度。使此设备兼备了可靠的实验结果和超长的使用寿命。完美性价比,解决了科研经费不足等问题。  德力光电高性能可调谐激光源TLS1056的推出,满足了不同领域(如:物理、化学、生物医学等)的同时,也带动了国内相关上下游产业的发展,填补了国内高端仪器市场的空白,并打破了国外产品的垄断地位。  综上,TLS1056可调谐激光源实现了自主研发、中国制造,对国外同类产品实现了国内市场的原位替代,标志着中国在高端仪器设备制造领域取得又一重大突破,为广大科研人员提供了更加可靠的实验设备,为推动中国科技的不断进步和国际竞争力的持续提升助力!
  • 首个气流调谐液滴激光器出现
    荷叶沾水珠而不湿,日本科学家借助这一“荷叶效应”,利用简单的方法,制造出了一种新型离子液滴,这种微滴可用作灵活、持久而可调谐的激光器。与现有不能在大气中工作的“液滴激光器”不同,最新进展有望使激光器在日常环境中使用,从而催生出更便宜的光纤通信设备。相关研究刊发于最近的《激光与光子学评论》杂志。荷叶具有显著的自洁特性,在荷叶表面,水滴不会变平,而是会形成近乎完美的球体并滚落,带走灰尘。这种“荷叶效应”由叶片内的微小突起造成。在最新研究中,筑波大学科学家利用人工“荷叶效应”,创造出了可以像激光一样工作的液滴,而且,这种液滴激光器可在长达一个月的时间里保持稳定,而目前的“液滴激光器”不能在开放环境条件下使用,只能将其封闭在容器内,否则它们会蒸发。在新研究中,科学家将名为“1-乙基-3-甲基咪唑四氟硼酸盐”(EMIBF4)的离子液体与一种染料混合,使其成为激光介质。之所以选择这种液体,是因为它蒸发得非常缓慢,并且具有相对较大的表面张力。然后研究团队在石英衬底上涂上微小的氟化二氧化硅纳米颗粒,使其表面排斥液体。当EMIBF4沉积其上时,液滴几乎能完美地保持球形,持续时间长达30天。研究人员表示,数学计算显示,即使暴露在气流中,这种新液滴的理想形态和光学性质也会保持不变。据目前所知,这是第一个可通过气流调谐的液体激光振荡器。此外,研究人员利用3D打印方法,打印出了这种液滴激光器,且打印出来的液滴阵列无需进一步处理即可工作。研究团队指出,这种产品具有高度的可扩展性和易用性,很容易用于制造廉价的传感器或光通信设备,有望催生更灵敏的气流探测器或更便宜的光纤通信设备。
  • 重庆研究院在势垒可光调谐的新型肖特基红外探测器研究中获进展
    近日,中国科学院重庆绿色智能技术研究院微纳制造与系统集成研究中心在《创新》(The Innovation)上发表了题为“Schottky Infrared Detectors with Optically Tunable Barriers Beyond the Internal Photoemission Limit”的研究论文,报道了突破内光发射限制的势垒可光调谐肖特基红外探测器。内光发射效应作为光电效应的重要分支,阐明了光照射至金属-半导体界面时热载流子如何被激发并跨越肖特基势垒,最终进入半导体以完成光电转换的物理过程。1967年以来,研究人员致力于基于内光发射效应的肖特基光电探测器研究,并在拓展响应光谱范围以及开发与硅工艺兼容的红外探测器方面取得了进展。然而,相关探测器的性能受制于截止波长与暗电流之间的矛盾,且通常需要在低温条件下运行。该团队提出了势垒可光调谐的新型肖特基红外探测器(SPBD),有效解耦了光子能量与肖特基势垒之间的关联,使得SPBD能够在保持高肖特基势垒以抑制暗电流的同时,还能够探测到低于肖特基势垒能量的红外光。在室温背景下,SPBD实现了对黑体辐射的探测,并获得了达7.2×109Jones的比探测率。该研究制备的原型器件展现出低暗电流、宽波段响应以及对黑体辐射敏感的性能。制备流程与硅基CMOS工艺具有良好的兼容性,为低成本、低功耗、高灵敏硅基红外探测器的研制提供了新方案。研究工作得到国家重点研发计划等的支持。论文链接 传统肖特基探测器和势垒可光调谐的肖特基红外探测器的对比
  • 1450万!中国科学院光电技术研究所计划采购Ф800mm波长调谐相移平面干涉仪
    一、项目基本情况项目编号:0747-2261SCCSC322项目名称:Ф800mm波长调谐相移平面干涉仪项目预算金额:1450.0000000 万元(人民币)最高限价(如有):1400.0000000 万元(人民币)采购需求:本项目共1个包。序号产品名称计量单位数量技术要求交货时间交货地点采购标的对应的中小企业划分标准所属行业1Ф800mm波长调谐相移平面干涉仪套1详见招标文件第五章合同签订后18个月内到货并完成安装买方指定地点工业 是否允许进口产品:不允许进口产品。技术要求:具体详见招标文件第五章。本项目需要落实的政府采购政策:《政府采购促进中小企业发展管理办法》、《财政部、司法部关于政府采购支持监狱企业发展有关问题的通知》、《财政部民政部中国残疾人联合会关于促进残疾人就业政府采购政策的通知》、《节能产品政府采购实施意见》、《关于环境标志产品政府采购实施的意见》、《无线局域网产品政府采购实施意见》、扶持不发达地区和少数民族地区。合同履行期限:合同签订后18个月内到货并完成安装。本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:无。3.本项目的特定资格要求:(1)截止至投标截止时间,投标人不得为“信用中国(www.creditchina.gov.cn)”网站中列入失信被执行人和重大税收违法案件当事人名单的供应商,不得为中国政府采购网(www.ccgp.gov.cn)政府采购严重违法失信行为记录名单中被财政部门禁止参加政府采购活动的供应商(处罚决定规定的时间和地域范围内);(2)本项目参加政府采购活动的投标人在前3年内不得具有行贿犯罪记录;(3)法律法规强制性要求的其他许可或认证资格。三、获取招标文件时间:2022年08月22日 至 2022年08月26日,每天上午9:00至12:00,下午12:00至17:00。(北京时间,法定节假日除外)地点:中化商务电子招投标平台(e.sinochemitc.com)方式:(网上获取地址)登录中化商务电子招投标平台(e.sinochemitc.com)通过网上报名登记方式领取本项目招标文件。潜在投标人需先进行网上注册(免费),注册登录后在平台的”购买文件”一栏中查找本项目即可报名登记参与本项目。招标文件在网上报名登记成功后1个工作日内发送至注册登记邮箱。售价:¥0.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年09月13日 14点00分(北京时间)开标时间:2022年09月13日 14点00分(北京时间)地点:成都市人民南路四段27号商鼎国际1-1-2109本项目开标室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜本项目在中国政府采购网(http://www.ccgp.gov.cn/)上以公告形式发布。以任何形式对本招标公告进行的篡改、转载或发布一律无效,中化商务有限公司不承担任何责任。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国科学院光电技术研究所     地址:成都双流西航港光电大道1号        联系方式:孙老师 028-85100541      2.采购代理机构信息名 称:中化商务有限公司            地 址:北京复兴门外大街A2号中化大厦(邮编:100045)(总部)/成都市人民南路四段27号商鼎国际1-1-2106-2109(四川分公司)            联系方式:夏婷、陈微、杨雪玲、毛雪 028-87690920            3.项目联系方式项目联系人:夏婷、陈微、杨雪玲、毛雪电 话:  028-87690920
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制