当前位置: 仪器信息网 > 行业主题 > >

铁精粉分析

仪器信息网铁精粉分析专题为您提供2024年最新铁精粉分析价格报价、厂家品牌的相关信息, 包括铁精粉分析参数、型号等,不管是国产,还是进口品牌的铁精粉分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合铁精粉分析相关的耗材配件、试剂标物,还有铁精粉分析相关的最新资讯、资料,以及铁精粉分析相关的解决方案。

铁精粉分析相关的资讯

  • 前沿科技 | OIA全自动铁矿相分析系统在炼铁原材料中的应用
    背景介绍多数情况下,为进行全面的矿产资源评价,了解铁矿石在下游加工作业中的行为或预测矿石品质对下游工艺的影响并优化处理工艺,需要获取大量关于矿石的原始信息。这些信息包括矿相组成、孔隙度、连生关系、粒度分布、解离度、组织结构、矿石颗粒结构分类和计算出的矿物密度和矿物成分等等。现在,所有这些重要信息都可以在OIA全自动铁矿相分析系统的帮助下准确获得。该系统实现在光学显微镜上自动采集图像,并可自动识别不同铁矿石、烧结矿、球团矿和冶金焦炭中的各矿相和孔隙。图像的获取和矿物颗粒的综合表征全部自动化完成,包括结构分类、解离分析、矿物连生关系和计算后的矿物成分、密度、尺寸等。本系统允许用户建立属于自己的特定结构分类方案,宽泛的放大倍数适用于铁矿粉至块矿,所有计算结果均以图、表的形式导出到Excle或Word文档,加之友好的用户界面,使之成为研究铁矿石、烧结和球团矿不可或缺的强力助手 。 图1 OIA全自动铁矿相分析系统工作原理OIA系统的工作原理有两个:基于反射色的多门槛值识别;基于矿物组织结构的识别。应用范围原生铁矿石、铁精粉、烧结矿、球团矿及冶金焦炭等炼铁原材料。应用案例1-铁矿石OIA在铁矿石信息表征中的应用主要包括获取样品矿物种类(磁铁矿、赤铁矿、水赤铁矿、褐铁矿、石英、孔隙等)及其含量(表1)、颗粒尺寸(表2)、连生关系(表3)及解离度(图3)等[1]。同时,可以提供包含丰富信息的彩色矿物分析图像(图2)。7图2 铁矿石光学图像(a)与矿物分析图像(b)表1 铁矿石样品中的矿物组成与含量表2 铁矿石样品中的矿物颗粒尺寸表3 铁矿石样品中各矿物间的连生关系图3 样品中按矿相计算的解离关系应用案例2-烧结矿OIA在烧结矿信息表征中的应用主要在于识别样品中的不同的赤铁矿相--原生赤铁矿(未反应相)和次生赤铁矿(烧结熔体中分异相)和不同类型的SFCA相(复合铁酸钙)[2],并提供包含丰富信息的彩色图像(图4),包括大面积拼图(图5)与微观分析图像(图6)。 图4 烧结矿光学图像(a)与矿相分析图像(b)图5 烧结矿样品的大面积光学图像拼图(a)与矿相分析图(b)备注:该图像由525帧200×的图像拼接而成,覆盖区域面积12mm×13mm,样品由鞍钢集团钢铁研究院提供图6 上述烧结矿样品的微观分析图像应用案例3-球团矿OIA在球团矿中的应用主要在于表征样品中的Fe3O4相、Fe2O3相和孔隙的分布特征。这里以加热到800℃的磁铁矿球团为例简作说明(图7),详细信息可参阅相关资料[3]。图7 球团矿样品的微观信息表征备注:该球团矿直径为12.7mm。图a为21×21帧2×2Mosaix图像拼接而成的光学图像;图b为系统分析后的矿相图像(粉色-Fe3O4相、蓝色-Fe2O3相、黄色-孔隙);图c-图e为各相的空间分布特征应用案例4-冶金焦炭OIA在冶金焦炭中的应用主要在于表征样品中的IMDC相(惰性组分)、RMDC相(活性组分)及两者边界和孔隙的分布特征(图8)。详细应用信息可参阅相关资料[4]。图8 焦炭样品的微观信息表征(品红色-IMDC、浅蓝色-RMDC、黄色-孔隙)OIA与MLA分析方法对比—铁矿石图9 MLA(图a、b)与OIA(图c、d)分析方法在原生铁矿石信息表征中的对比(粉色-磁铁矿、蓝色-赤铁矿、绿色-褐铁矿、黄色-孔隙、黑色-未识别)由于天然主要铁矿物(磁铁矿与假象赤铁矿,赤铁矿与水赤铁矿等)的含铁量往往相差不大,因此在扫描电镜下其灰度相近(图9a),MLA等电镜矿物分析软件易产生较大的识别误差(图9b);但各铁矿物相在光学显微镜下的特征更加明显(反射色各异,图9c),因此,搭载于光镜上的OIA全自动铁矿相分析系统对铁矿物的识别更加精确,同时,对孔隙特别是微孔隙的捕捉更加灵敏(图9d)。OIA与MLA分析方法对比—烧结矿图10 MLA(图a、b)与OIA(图c、d)分析方法在烧结矿信息表征中的对比MLA在烧结矿的应用中产生的问题与铁矿石分析中遇到的问题相同,样品中不同矿相在电镜下的灰度差异不足以使软件清晰的分割划分,所得分析结果与真实分布情况出入很大(图10a,b);而OIA在烧结矿中的表征,无论是矿相的识别,还是细节的捕捉,都远远优于MLA。OIA关键技术优势• 自动化分析,效率性大幅提升(比人工计点法快高效准确)手动计数往往低估了作为包体存在的小相;由于玻璃的反射率与环氧树脂的反射率非常接近,使得人眼无法对两者做出可靠的区分,因此也容易低估玻璃相;手动计数往往低估了孔隙率,因为忽略了微孔隙的存在。• 准确性(比扫描电镜分析方法更精确)• 信息丰富性(包含丰富的矿物信息)• 形貌表征(包括不同矿相和孔隙的组织结构和空间分布特征)
  • 新品MXF-N3 Plus - 钢铁应用篇
    钢铁生产过程中元素分析几乎贯穿整个流程,其中使用X射线荧光光谱法分析元素的包括:全新的MXF-N3 Plus可满足以上各个环节的元素检测,快速、稳定、高精度、无污染。以下摘选部分分析案例供参考。 Plus铁矿石 • 可分析铁矿石中TFe由30%到70%的铁矿石样品;• 矿石种类包括:铁矿石原矿、烧结矿、球团矿、铁精粉、澳矿、南非矿、巴西矿、印度矿等;• 按铁矿结构分类可包括:磁铁矿、赤铁矿、菱铁矿、褐铁矿等以及相关铁矿的铁精粉;• 制样方法:熔片(可消除矿物结构和颗粒度效应,推荐)或压片;• 相对标准偏差(RSD,n=10)在0.23%~3.3%之间。 Plus烧结矿• 制样方法:压片或熔片(炉前实验室操作繁琐时间长,不推荐)• 准确度验证:Plus高炉渣• 制样方法:压片或熔片• 部分曲线示例: Plus生铁• 制样方法:磨样机打磨• 部分测试结果示例:* 参照GB/T223系列标准★注:篇幅所限,仅列举部分分析实例,如您需要其他案例应用报告,请致电岛津。 ★涉及相关标准(部分)★ 1) GBT6730.62-2005 铁矿石 钙、硅、镁、钛、磷、锰、铝和钡含量的测定 波长色散X射线荧光光谱法2) SNT 0832-1999进出口铁矿中铁、硅、钙、 锰、铝、钛、镁和磷的测定 波长色散X射线荧光光谱法3) ISO 9516:1992 铁矿石—硅、钙、锰、铝、钛、镁、磷、硫和钾含量的测定X射线荧光光谱法4) GB/T 10332.1 铁矿石 取样和制样方法5) GB/T 6730.1 铁矿石化学分析方法6) GBT 21114-2007 耐火材料 X射线荧光光谱化学分析 - 熔铸玻璃片法
  • 赛恩思仪器与西部矿业达成合作
    近日,四川赛恩思仪器又一台高频红外碳硫仪在客户现场安装调试完毕,此次用户为全国五百强企业-西部矿业股份有限公司。西部矿业股份有限公司由青海大柴旦锡铁山矿务局改制成立,总部位于青海省西宁市。在11个市区拥有30 余家控股公司,业务范围涵盖矿山采选、有色冶炼、金融贸易等领域公司主要从事铜、铅、锌、镍、钒、钼、铁等基本金属的采选、冶炼、贸易等业务,主要产品有铅精矿、锌精矿、铜精矿、铁精粉等,是全国第二大铜精矿生产商、第二大铅精矿生产商、第二大锌精矿生产商。 四川赛恩思仪器HCS-801型高频红外碳硫分析仪将进入西部矿业的质检中心实验室,对用户单位的来料和成品进行把关。HCS-801型高频红外碳硫仪为国内主流型仪器,分析样品品种包含黑色金属、有色金属、合金材料、铁合金、岩矿、矿石土壤、钛白粉、新能源材料及其它非金属材料。公司可根据客户需求任意选配高碳高硫低碳低硫四个物理检测池,以满足不同客户的具体需求。 我公司售后工程师对仪器进行了安装调试以及人员培训,测试样品铁矿石,铅锌矿,铜精矿等,实验数据获得客户认可。四川赛恩思仪器有限公司现有HCS-800、HCS-801、HCS-806以及HCS-808型高频红外碳硫仪,客户可根据自身需求选择仪器型号。公司始终坚持“客户至上”的服务理念,依托专业的技术优势与丰富的行业资源,已成为全国知名的分析仪器制造商,并被授予“高新技术企业”。四川赛恩思仪器诚邀全国各地经销商和使用方来函、洽谈咨询;欢迎有识之士加入四川赛恩思仪器有限公司!
  • 矿物油分析最新进展-德国奶粉事件分析方法解读
    10月25日,中国中央电视台CCTV 13“新闻直播间”报道了“德机构称部分婴幼儿奶粉检出矿物油残留”的食品安全新闻。中国安捷伦科技与仪真分析多年前就关注矿物油食品安全问题,并与欧洲保持同步,将欧洲最新的矿物油分析解决方案提供到国内。目前,国内已经有多家用户在使用此分析系统。导读中央电视台所称的德机构,实际上是德国著名的公益检测机构foodwatch。他们最近在德国、法国和荷兰随机抽样了16种罐装婴儿配方奶粉和婴儿奶制品,分析是否含有矿物油残留。并在2019年10月24日,公布了其检测方法和结果。以下是该报告中使用的分析方法的解读。1分析方法参照欧盟JRC(联合研究中心)方法:在线LC-GC-FID二维色谱联用法定量,检测限0.5 mg/kg;使用GC*GC-TOF联用法定性。2参与分析的实验室3家经过认可的实验室。3实验前处理用氧化铝除去MOSH干扰物、环氧化去除MOAH测量干扰。4实验结果4.116种受试产品中,有15种产品的MOSH/POSH含量高于0.5mg/kg的定量限,在5 mg/kg以上至8.4 mg/kg的范围内有4个样品。4.216份样本中,有8份(50%)检测到MOAH阳性,含量范围为0.5mg/kg至3.0mg/kg。阳性产品中MOAH含量表明它们受到了未完全纯化的矿物油的污染。4.3使用GC*GC-TOF分析技术对MOAH阳性物质中相应的标记物质和物质组的阳性结果进行分析验证,证明了污染物来自矿物或化石来源。4.4矿物油污染来源不能完全确定,可能来自生产链,也可能来自包装材料。虽然此次抽检的产品是从德国市场取样,但是这些奶粉工厂生产的产品是否也销售至需求量庞大的中国市场,是一个值得探究的问题。虽然中国目前奶粉的各项检测指标中,并没有关于芳香烃类矿物油(MOAH)的抽检。但作为事件的扩展,这些企业的中国方面也正对国内配供的婴幼儿配方奶粉做出安全的保证。矿物油矿物油(MOH)是以石油、煤或天然气为原料,经过加工提炼,获得的一类碳原子个数不同的烃类混合物,常见的碳数在C10-C50之间。外观类似日常的油脂,但又不来自于动物或植物。为了和动植物油脂有所区别,故称矿物油。常见的矿物油种类繁多,可能是燃料油、润滑油、白油、蜡油和除尘剂等等。随着产品的大量使用,矿物油逐渐渗入到我们的食物链中。矿物油的毒性和法规根据毒理程度,矿物油目前被分成两类,一类是由直链、支链或环烷烃组成的饱和烃类矿物油(MOSH),另一类是含有苯环的芳烃类矿物油(MOAH)。研究表明,碳数在C16-C35之间的饱和烃类矿物油(MOSH)在体内不易被代谢,在组织中出现蓄积现象,长期食用会在淋巴结、肾脏和肝脏等组织内蓄积。芳香烃类矿物油(MOAH),常含有一个至多个苯环,含有多于三个苯环的MOAH被认为可能具有致突变和致癌性。德国联邦风险评估研究所(BfR)明确要求用于食品包装的接触材料 MOSH 迁移量小于 2mg/kg, MOAH 小于 0.5mg/kg。2017 年,欧盟发布了关于“监测食品以及食品接触材料和物品中矿物油烃类”的建议性指导文件,指出矿物油可以通过环境污染、收获和食品生产等残留在食品中。矿物油分析解决方案(Chronec LC-GC-FID)矿物油检测长期以来一直是非常有挑战的难点,首先要将样品中矿物油与复杂的介质分离,再通过气相色谱检测。由于矿物油无处不在,获得干净的仪器很重要。为了达到足够的灵敏度,需要大体积进样技术。由于矿物油中MOSH和MOAH的毒性不同,欧盟要求必须分开定量。矿物油在2011年被报道发现以来,欧洲的分析化学家经过多年努力,终于实现了矿物油可靠分析方法(在线LC-GC-FID)。方法初始,分析仪器由科学家自行搭建而成。仪器可靠性和耐用性方面一般。欧洲著名的仪器方法集成公司德国Axel Semrau公司,在5个博士组成的硬件和软件攻关团队集体努力下,实现了可靠性和耐用性非常高的分析系统。系统组成和特点如下:系统清洁和改装技术,去除背景使用液相色谱和硅胶柱将矿物油从介质(油脂等)中分离;部分溶剂蒸发技术保证450ul的样品在气相色谱中的分析,满足超低量分析;双通道双FID技术对MOSH和MOAH同时定量检测(它们分别是成千上万的混合物),节省分析时间;全自动氧化铝和全自动环氧化技术,进一步提高样品分析灵敏度与准确度;具有馏分收集功能,可以由GC*GC-QTOF对MOAH定性分析,确定来源;可使用LC-GC*GC-TOF 联用直接对矿物油各成分进行定性分析;软件Chronect可以兼容市场上所有主要品牌的LC和GC,无缝对接。Chronect 矿物油分析系统用户Chronect矿物油分析系统在欧美已经成功拥有了超过70家用户,包括BfR (德国联邦风险评估研究所),Eurofins(欧陆科技),德国SGS,德国IFP实验室, 费列罗(Ferrero)等著名欧洲食品检测实验室。本次foodwatch使用的3家独立实验室均使用Axel Semrau的分析系统:在线LC-GC-FID定量和GC*GC*TOF 定性。或许有被模仿,但AS在矿物油分析的专业性从未被超过,AS公司技术的矿物油分析方案的检测限为0.5 mg/kg。仪真分析和安捷伦中国仪真分析历来密切关注食品卫生安全的动态,为消费者提供咨询、建议及检测决方案。德国Axel Semrau公司选择了仪真分析作为大中国区的合作伙伴,授权并传授了其矿物油分析系统的设立,改装和分析技术。仪真是中国安捷伦科技的合作伙伴(VAR),首先共同推出安捷伦液相和气相色谱平台上的构建的Online-LC/GC-双通道FID+MS全自动矿物油检测方案,完全符合欧盟标准方法,并被国标或行标,如粮油系统行标-矿物油在油脂中的检测(草案),以及矿物油在大米中的检测(草案)作为推荐方案,被多位中国用户成功使用,食品企业未雨绸缪,已经建立内部监控计划,以可靠的数据应对突发事件。德中合作的矿物油分析实验室(仪真分析和北京理化分析测试中心共享实验室)已经于2019年8月正式揭牌,成为国内科研检测人员研究矿物油分析方法的平台。揭牌过程由仪器信息网全程跟踪报道(https://www.instrument.com.cn/netshow/SH101203/news_492242.htm)。欢迎光临2019.10.30-31的北京CIFSQ仪真分析展台或者2019.11.5-8 布拉格RAFA2019的Axel Semrau展位,有矿物油全自动分析系统及其它食品分析热点仪器展出。 请联系仪真分析或安捷伦科技,获取更多产品信息。
  • 3D打印行业金属粉末的氧氮氢分析 | 原料粉末vs再生粉末
    3D打印行业金属粉末的氧氮氢分析 | 原料粉末vs再生粉末越来越多的金属零件是通过3D打印来生产的。这个新技术为具有复杂结构零件的生产提供了可能性,特别是一些无法使用常规方法生产的零件。此外,模型可以通过技术图纸实现,而无需使用定制的工具。三维打印零件的质量很大程度上受到原材料的质量影响。为了降低生产成本,金属粉末需要经常被回收。经过多次使用,氧、氮和氢的含量和相关的力学性能可能改变。因此,分析金属粉末中氧、氮和氢的含量,可以确保3D打印产品的质量。各种应用于3D打印行业的金属粉末都可以使用inductar® ONH cube进行分析。仪器:inductar® ONH cube 氧氮氢分析仪技术细节:载气:氦气样品质量:100-1000mg金属粉末原料的钛和不锈钢粉末以及再生的钛和不锈钢粉末的测试结果参照下表。再生粉末与原料的氧、氮和氢含量相比,变化很大,尤指是氧的含量,由于颗粒的粒度极小同时具有非常大的比表面积,颗粒很容易被氧化。甚至ppm级别的含量变化都可以改变3D打印粉末的性能。因此,分析需要使用精度高,检测限低的检测方法。采用inductar ONH cube进行元素分析是十分好的分析选择。inductar ONH cube 氧氮氢分析仪应用领域:黑色系金属合金,有色金属,有色金属,碳化物及陶瓷材料,地质矿物,氧氮氢分析。特点:无需配备石墨电极清扫刷进行清扫,提高做样效率可编程气体分流,通过睡眠模式进入省气模式无需配备动力气以及外置水冷机,可单坩埚完成测试,节省成本专利的球夹连接,实现免工具维护
  • 直链淀粉分析仪|简化人工,高效检测【恒美新品】
    点击了解更多→直链淀粉分析仪|简化人工,高效检测【恒美新品】 直链淀粉分析仪在农业生产中具有重要的作用。它主要用于测定粮食作物中的直链淀粉含量,帮助农民和农业专家更好地了解作物的品质、生长状况和营养价值。 直链淀粉是粮食作物中的重要成分,其含量直接影响着作物的口感、加工性能和营养价值。通过使用直链淀粉分析仪,可以快速准确地测定作物中的直链淀粉含量,帮助我们了解作物的品质状况。 直链淀粉含量与作物的产量有一定的相关性。通过测定作物的直链淀粉含量,可以对作物产量进行预测,为农民制定合理的收获计划提供依据。 在作物育种过程中,直链淀粉含量的测定可以帮助育种专家筛选具有优良性状的品种。通过比较不同品种作物的直链淀粉含量,选择适应当地环境、抗病抗逆性强且产量高的品种进行推广种植。
  • 快速粘度分析仪在淀粉领域的崭新应用
    波通仪器公司和澳大利亚核能科学与技术研究组织(ANSTO)首次共同合作的项目&mdash &mdash 通过中子散射方法帮助阐述淀粉在蒸煮过程中分子水平级结构发生的变化。 波通公司的快速粘度分析仪(RVA)经特殊的改造在标准的淀粉糊化实验中,采用ANSTO' S的小角度中子散射设备-&ldquo Quokka&rdquo ,将一束中子照射通过淀粉。 淀粉在很多食品产品和造纸、粘合剂、纺织品和生物燃料工业产品中被广泛使用, 通过这项研究更好的理解淀粉在蒸煮过程中结构和功能之间的联系,了解淀粉类产品的形成机理, 以求最大化提高产品质量和加工过程。 快速粘度分析仪是一款带有灵活的加热冷却功能和可调的剪切率的旋转粘度计,广泛应用于淀粉和食品行业,评价原料和成品的糊化特性。 考虑到这项工作的重要性,澳大利亚联邦科学部长参议员写到:&ldquo 这项重大发现意味着生产者可以用较低的能量输出生产更高效的产品,还可以帮助生产出性能稳定的健康的淀粉类食品。&rdquo Elliot Gilbert博士是ANSTO&rsquo S食品科学项目的带头人与波通澳大利亚公司的James Doutch博士共同合作研究这个项目里使用的&ldquo nRVA&rdquo ,这款仪器目前正用于第三方的研究 。 更详细的内容请与波通澳大利亚公司的t Mark Bason联系,他的邮箱是:mbason@perten.com 登陆ANSTO' s 网站查看更多关于此项目的信息»
  • 3D打印粉体材料粒度粒形分析的“黄金CP”
    3D打印技术对多数普通人来说还属于“只闻其声未见其人”的技术。它是一项不同于以往的新型制造技术。3D打印是一种主要用于构建复杂结构三维物体的增材制造技术。主要优势在于制造复杂结构、个性化定制产品。目前在汽车工业、航天航空、医疗领域里的一些复杂结构体,均有望通过3D打印轻松实现。3D打印技术期望在制造业普及程度提高,核心要素之一是新兴材料的发展。3D打印材料的技术水平和产品多样性支撑着整个产业的发展。目前,市场上使用比较普及的3D打印材料主要包括:塑料(ABS、PLA、尼龙、光聚合物等),金属(钢、银、金、钛、铝等单质或者合金)两大类,其形态一般有粉末状、丝状、层片状、液体状等。就目前的市场来看,塑料类材料在消费级产品制造中是主流。其生产材料主要是ABS、PLA、尼龙和光聚合物这四种。但如果从市场需求和大工业、高科技产业角度来看,金属类材料3D打印制作的产品更具有广阔前景。尤其是在航空航天、军工、汽车、医疗等行业的运用上具备很大的发展空间。目前全球3D 打印耗材市场的年增长率超过了20%,其中金属粉末的需求量的增长速率远高于塑料材料。尽管目前塑料3D 打印材料扔占据整个市场接近50%的份额,但是以钛合金粉末为代表的金属粉末,将在未来几年里全面赶超塑料3D 打印耗材。1、金属3D打印技术基本原理:首先在计算机中用CAD设计软件创建出三维模型并导出STL文件,然后将模型横向分割成多层。3D打印机使用生成的数字三维数据,控制高能激光束或电子束逐层熔化金属粉末,形成立体复杂工件。根据加工过程金属粉末材料的使用工艺差异,金属3D打印技术常见的有以下几类:1)激光选区熔化(SLM)技术。采用高能激光束照射熔融预先铺展好的金属粉末原料,逐层“打印”出工件。2)激光近净成型(LENS)技术。其原理是在用高能激光按预先编制的打印轨迹熔化同步供给的金属粉末适用于不锈钢、钛及钛合金、Co-Cr-Mo合金等金属粉末的3D打印制造。3)电子束选区熔化(EBSM)是采用电子束照射预先铺展好的金属粉末原料,形式上跟SLM技术相似。4)纳米颗粒喷射金属成型(NPJ)。这种技术采用的是高温液态“铁水”(内含纳米合金颗粒)。这些金属以液体的状态进入3D打印机,打印机用含有金属纳米颗粒的“铁水”喷射成型。2、3D打印金属粉体材料金属粉体材料是金属3D打印工艺的原材料,其基本性能对成型的制品品质有着很大的关系。金属3D打印对于粉体的要求主要在于化学成分、颗粒形貌、粒度分布、流动性等方面。当前主流的3D 打印金属粉末制备方法包括:气雾化法(GA)、等离子旋转电极法(PREP)、等离子雾化法(PA),以及射频等离子球化法(PS)等等。气雾化法是利用惰性气体在高速状态下对液态金属进行喷射,使其雾化、冷凝后形成球形粉。采用气雾化法所得粉末粒度分布宽,平均粒径小,杂质易于控制。但生产出的粉末由于工艺特性导致颗粒内部易产生气泡,粉末形状不均匀以及出现行星球等问题。 左图:粉体理想状态 ;右图:A卫星球 B不规则、内部气泡(缺陷)等离子旋转电极雾化法(PREP)是生产高纯球形钛粉较常用的离心雾化技术,其基本原理是该技术不使用高速惰性气体雾化金属液流,避免了“伞效应”引起的空心粉和卫星粉颗粒的形成,制备的粉末球形度可达99.5%以上。但是这种工艺制造的粉末粒径分布较窄,主要介于50~150μm,存在平均粒径偏大的问题。射频等离子球化工艺是利用射频电磁场作用对各种气体(多为惰性气体)进行感应加热,产生射频等离子。例用等离子区的极高温度熔化非球状粉末。随后粉末经过一个极大的温度梯度,迅速冷凝成球状小液滴,从而获得球形粉末。该工艺得到的粉末粒度范围可以达到20~50μm。国内一些知名企业有成熟的工艺应用。应用该工艺生产的AlSi9Cu3打印粉具有较好的耐高温、耐腐蚀性能。经验证的打印力学性能(SLM工艺,打印态)抗拉强度可达480MPa,屈服强度可达300MPa。综上所述,3D打印金属粉末的性能跟粉末的粒度分布、颗粒形貌息息相关。同时,现有的各种生产工艺生产的粉体都存在粒形、粒径相关问题。这使得粒型、粒度分布检测和生产工艺过程控制成为3D打印技术中的重要环节。引入先进的粒度、形貌检测设备,为工艺改进、生产控制、产品质检提供科学数据是势在必行的。3、金属粉体粒度分析仪器原理及特点在粒度分析领域,存在多种不同测量原理、集多门现代科学技术为一体的粒度测量仪器。例如:激光粒度分析仪、库尔特计数器、颗粒图像处理仪、离心沉降仪等等。激光粒度分析仪是现今广为流行的粒度测试仪器,它具有量程大、测量动态范围宽等诸多优点,被广泛的运用到粉体的生产、科研领域。3.1 激光粒度仪原理激光粒度仪3D结构图激光粒度仪光学原理简图(GB/T 19077-2016)光是一种电磁波。它在传播过程中遇到颗粒时,将与之相互作用,其中的一部分将偏离原来的行进方向,这种物理现象称之为光的散射(衍射)。一束平行光在传播过程中遇到障碍物颗粒,光波发生偏转,偏转的角度跟颗粒的大小相关。颗粒粒径越大,光波偏转的角度越小;颗粒粒径越小,光波偏转角度越大。激光粒度分析仪就是根据这种光波的物理特性进行粒度分析的。TOPSIZER参数:量程:0.01-2000μm ,红、蓝激光双光源技术激光粒度分析仪是目前使用领域较广的粒度分析仪,这是由于激光粒度分析仪的内在技术优势决定的。激光粒度分析仪测试量程大,通常可以达到0.1μm到750μm以上。而且不需要任何形式的软件、硬件换挡操作即可实现全量程范围内的样品测试(这种特性通常被称为仪器的动态测量范围)。仪器动态测量范围大,则使用的局限性小,测试宽分布样品的能力强。激光粒度分析仪测试重复性精度高、测试速度很快,一个样品的测试过程一般只需2~3分钟,测试标准粒子重复性精度可达到0.5%以内。3.2 颗粒图像处理仪原理颗粒图像处理仪将电子图像捕捉分析技术与光学成像设备相结合,用数字摄像机拍摄经过光学设备放大、成像的颗粒图像,由计算机自动的对颗粒的形貌特征和粒度进行分析和计算。PIP9.1 量程0.5-3000μm颗粒图像处理仪适用于粉末颗粒的粒度测量、形貌观察和圆度分析,能给出不同等效原理(如等面积圆、等效短径等)的粒度分布,能直接观察颗粒分散、形貌状况。PIP9.1颗粒图像处理使用生物显微镜加工业级高清数码摄像机的硬件组合,有效满足了5-1000μm范围内的粉体颗粒形貌分析需求。该形貌分析范围覆盖了大多数3D金属打印粉体的粒径分布区间。这样的硬件组合在满足技术需求的前提下,具有高性价比。3.3 图像法粒度分析仪、激光粒度分析仪的优缺点一图简述优缺点可以说,激光粒度仪加颗粒图像处理仪是3D打印粉体材料粒度粒形分析的黄金搭档检测设备。通过这两种仪器,能够有效分析粉末耗材的粒度分布及颗粒形貌是否到达理想状态。为进一步优化粉末生产工艺,提供科学数据支持。同时,仪器还能够作为生产企业的粉体产品物性参数检测仪器,为产品质量提供保障。参考资料:1.中国粉体网,曲选辉,《金属3D打印对粉末有何要求,有哪些新工艺,听听专家怎么说》2.材料导报,程玉婉、关航健、李博、肖志瑜,《金属3D打印技术及其专用粉末特征与应用》
  • 拉曼毒品分析仪:神奇的白色小粉末居然有泡沫
    朋友跟我讲了个公司老宋的故事,说是中国版绝命毒师。 老宋是厂子特聘的化学专家,年薪二十几万,却开一辆临近报废的破桑塔纳。我问他为什么,他笑着打哈哈,答非所问,直到和他交往久了,我才明白其中的原因。老宋缺钱,很缺钱。后来我们这才知道,老宋的两个儿子都不成器。 有一天他带来一袋白色粉末,让我猜是什么东西。“这是……毒品?”我开玩笑。老宋一愣,随即哈哈大笑:“扯咧,洗衣粉!”老宋向水盆里倒了些粉末,晃了晃,果然漾起很多泡沫。我对他故作神秘的样子表达不满,他咧着嘴笑,露出满嘴黄牙。“你可真看得起你哥我,那玩意儿是一般人能造的?”一般人当然造不了,但老宋可不是一般人。 几个月之后老宋被捕,全厂轰动。 那天好几辆警车开进公司,从上面下来十几个全副武装的警察,过了片刻老宋被从实验室押了出来。我们挤在楼道上,看见老宋双手带着手铐,面色苍白。他走路踉踉跄跄,要不是身边有人搀扶,估计得瘫倒在地上。老宋被押进车间,然后有很多人向外搬东西。远远能看见是些反应罐、搅拌机、脱水机、磅秤、天平、制冷机之类,还有一些瓶瓶罐罐,拉了满满两车。老宋的罪名是制毒,这些就是他的作案设备。 老宋被捕后,关于他制毒的一些传闻渐渐流传开来。老宋制毒的动机当然是为了钱。他小儿子开车撞了人,事故很严重,要赔对方68万。老宋虽然年薪高,但是手头一时也拿不出那么多现金来,老宋实在走投无路,开始走上了一条不归路。至于如何制毒,对于老宋这种化学专家而言就是小儿科,就算是从普通药店就可以买到的常见感冒类、止咳类药物,经过老宋的手,也可以变成能让人欲罢不能的冰毒。就以市面上常见的某感冒药为例,从这类药物中提取一种名叫麻黄素的物质,经过加工制作成麻黄素混合液,然后将液体放入蒸馏烧瓶中,进行高温蒸馏,就可以得到甲基苯丙胺,这就是冰毒的主要成分,接下来的工作就是反复蒸馏,提高纯度。说到这里我觉得老宋仍保有一定的良知,因为他制作的冰毒纯度都不是很高。 回想起他之前制造的白色洗衣粉,我还开玩笑说是毒品。每每想起那一幕我就脊背发麻,感觉世事无常。 由于大部分毒品是白色粉末,犯罪分子经常用食盐、洗衣粉、白糖等白色粉末状物质来伪装和掩护毒品,给海关和公安办案人员带来困扰。同时毒品中淀粉、葡萄糖等添加成分,分子量大、极性强、不易气化,对其采用气相色谱法检验具有一定的难度。拉曼光谱属于分子振动光谱,具有所需检材量小、不破坏检材、不需要对样品进行前处理、操作简便、分析速度快等优点。拉曼光谱技术能够比较直观地观察到晶体或粉末的微观情况,对于晶体结构不同或晶体-粉末的混合物,能够直接断定是否有添加成分的存在,对微量杂质或掺杂物的分析具有独特的优越性。我们针对包括可卡因海洛因在内的七种毒品进行拉曼光谱检测。由图可知,七种常见毒品均有相当丰富的拉曼特征位移峰,且每个峰的信噪比较高。同时七种常见毒品的特征峰峰位相互间均有较大差异,通过其特征拉曼峰峰位的不同区分不同成分的毒品。 我们还鉴定了包括奶粉、洗衣粉在内的四种白色粉末状物质,洗衣粉是混合物,且不同厂家的洗衣粉有不同的配方,所以会产生不同的拉曼谱图,不同厂家奶粉的拉曼谱图也有所差异。也就是说由于洗衣粉和奶粉不具有固定的分子结构,也就不具有固定的拉曼谱图,本次鉴定的只是一种奶粉和一种洗衣粉的拉曼谱图,而不是标样谱图。 拉曼光谱分析技术实现了对毒品及其常见添加成分的快速分析。由于拉曼光谱具有微区分析功能,即使毒品和其它白色粉末状物质混和在一起,也可以通过显微分析技术对其进行识别,得到毒品和其它白色粉末分别的拉曼光谱图。拉曼光谱法是检验常见毒品及其添加成分的快速有效的方法。现已成熟运用于刑侦、安检、缉毒等领域。
  • 德国元素 | 钼粉及其合金中的碳硫分析解决方案
    钼是一种相当稀有的金属,主要作为钢中的掺杂材料。然而,对于非常具有极端温度挑战性的应用,相关部件的生产会使用钼及其合金,例如在航空航天工业或冶金行业。此外,钼可在石油工业中用作催化剂,主要负责去除油中的硫。因此,分析钼催化剂中的硫可以快速提供有关油的纯度以及其它信息。对于上述由钼制成的材料,碳和硫含量的测量至关重要,因为这两个元素含量会影响各种应用。这里采用了德国元素elementar的inductar CS cube红外碳硫仪对于钼粉末进行分析。实验部分实验样品:钼粉末实验方案:500毫克纯钼粉或130毫克钼合金与EXACC一起称量到ELCUP CS陶瓷坩埚中,加入WS钨/锡助熔剂(2勺/2克)和EXACC FE铁助熔剂(1勺/0.5克)。使用inductar® CS cube进行碳分析和硫分析。每种材料测定三次。实验结果:inductar CS cube高频红外碳硫分析仪不仅简化了操作流程,还实现了高精度结果,完全满足钼的碳硫检测要求。实验仪器:inductar CS cube 红外碳硫仪应用领域:黑色系金属合金,有色金属,有色金属,碳化物及陶瓷材料,地质矿物,电极材料的碳硫分析。特点:创新性坩埚设计,无需动力气清洁型燃烧(低灰尘和尘屑),无需外接吸尘器加热的除尘过滤器,配备了高效的风冷水冷装置可自由程序变化输出功率的感应炉 可自由程序变化的注氧流速燃烧过程可由光学摄像系统观察专利球夹设计,实现免工具维护 以浓厚兴趣与责任为经,以奉献与专一为纬,120多年坚持做一件事 - 元素分析,德国元素Elementar正把他对科技的热诚汇入中国火热的经济发展大潮,为中国的未来,为中国的环境、材料、农业、食品医药等领域的研究发展,贡献自己的力量。
  • 红外/近红外光谱分析技术在乳粉生产中的应用
    p span style=" color: rgb(255, 0, 0) " strong   一、引言 /strong /span /p p   乳制品含有的蛋白质、脂肪、乳糖和其他固形物等具有较高的营养价值,是促进人体生长发育及维持健康水平的必需营养成分。目前市售的奶粉品种众多,质量参差不齐,在巨大的经济利益驱动下,出现了“阜阳奶粉事件”、“还原奶事件”、“光明牛奶回奶事件”、“雀巢奶粉事件”以及“三聚氰胺事件”,这些都说明了牛奶质量控制的重要性和紧迫性。那么如何为牛奶生产厂家确保原料奶的质量,并准确、快速地对流水线生产中的各个关键点进行控制? /p p   传统的奶制品质量检测用化学分析方法,主要有气相色谱、液相色谱、电泳、PCR和免疫ELISA等,取样化验过程复杂,实时性较差,大大影响了生产效率,而且往往涉及专用仪器与分析方法、耗费时间较长、分析过程繁琐、分析费用高,增加了现场检测及在线质量控制的难度。国家也出台了一系列相应的国家标准检测方法,如原料乳与乳制品中三聚氰胺检测方法(GB/T22388-2008)和原料乳中三聚氰胺快速检测液相色谱法(GB/T22400-2008)等。面对目前日益增长的市场需求,传统化学分析方法的效率已经明显滞后,开发快捷灵敏、无损易行的现代分析技术,对乳品生产的质量监控具有重要的意义。 /p p   分子光谱技术(包括近红外,中红外等)是20世纪80年代后期迅速发展起来的一项测试技术,在欧美等国,它已成为乳制品成分分析的重要手段,并为乳品权威分析机构,如国际乳品联合会 (IDF)以及美国分析化学家学会(AOAC)等权威机构所认可。随着我国乳品行业的发展,采用快速、准确、可靠的乳品分析技术以适应WTO的要求已成为当前乳品企业发展的关键所在。目前,国内外许多乳制品厂家,如蒙牛、伊利、雀巢,光明、君乐宝等已经将FOSS公司的分析解决方案(包括中红外和近红外光谱分析仪)用于原奶收购和生产过程的质量监控。 /p p strong    span style=" color: rgb(255, 0, 0) " 二、红外/近红外分析技术在乳品行业的使用现状 /span /strong /p p   随着社会对乳制品质量安全的不断重视,目前乳品企业对奶粉的质量把控越来越严格,奶粉的理化指标,如脂肪、酸度、乳糖、蛋白、蔗糖、水分和灰分等通常决定了奶粉的类别和质量,只有在生产过程中严格检测和把控这些指标才能生产出合格的奶粉。目前传统的奶粉检测方法对于这些理化指标的检测耗时长且繁琐,而奶粉的生产过程是一个连续的过程,长时间的分析检测无法满足奶粉生产过程中的有效控制。红外/近红外光谱分析技术以其快速、多组分和无损分析的特点在农牧业食品石油化工等行业中被广泛应用,同样在奶粉的检测中潜力巨大。 /p p   目前国内奶粉的生产工艺一般包括原料乳验收→预处理与标准化→浓缩→喷雾干燥→冷却储存→包装→成品,在整个过程中有多个关键控制点需要检测多个指标,而这些点非常适合使用红外/近红外光谱分析技术进行快速分析。据了解,国内目前约有90%以上的规模化生产的乳粉企业都在采用红外/近红外光谱技术对其从原料奶、中间配料以及最终的奶粉实现全程化的监控和控制。目前国内几家大的乳粉企业,如伊利、蒙牛、雀巢、君乐宝、飞鹤等均已将这些红外/近红外的快速检测技术应用于如下几个环节的监控中,取得了不错的效果,既保证了产品质量的一致性,又最大程度的节约了生产成本。 /p p strong   1. 原料乳验收 /strong /p p   原料奶位于乳业产业链的最上游, 其质量安全将直接影响到乳品的质量与安全, 从这个意义上讲, 能否从源头上紧抓原料奶的质量控制, 将直接关系到整个乳业的质量安全。通常在牛场仅对牛乳的质量做一般的评价,在到达乳品厂后需要通过若干检验对其成分和卫生质量进行测定。乳品企业一般实行“以质论价,优质优价”的政策或办法,可以鼓励奶农自觉改善饲养管理,提高原料乳质量,同时有利于企业对原料乳的分级处理。 /p p   我国部颁标准规定原料乳验收时的理化指标包括脂肪、蛋白质、酸度、密度、抗生素等等。为了防止牛奶兑水,通常会检测液体乳的冰点,因为兑水后的牛奶冰点会升高。目前,对于液体原料乳中脂肪、蛋白、酸度等的检测,大多数乳企使用基于傅里叶变换的中红外光谱分析技术 ( a href=" https://www.instrument.com.cn/netshow/C193216.htm" target=" _blank" style=" text-decoration: underline " span style=" color: rgb(0, 112, 192) " 如FOSS的MilkoScan FT1乳品分析仪 /span /a ),这种检测方案不仅仅用于原料乳的按质论价,同时也应用于液体乳制品生产过程以及成品控制。同时,中红外光谱技术还可以通过与天然鲜奶拥有的特定光谱进行比对,迅速发现可疑的鲜奶样品,对提高乳制品的质量和保护消费者的利益具有重要的意义。 /p p    strong 2. 预处理及标准化 /strong /p p   在全脂奶粉的生产中,标准化主要是通过对原料乳的脂肪含量调整,使之达到成品的标准要求(即原料乳中的脂肪含量与无脂干物质含量的比值达到乳粉的标准化值)。 /p p   在配方奶粉生产中,通常需要根据目标人群进行配方设计,调整宏观成分含量,并在对液体乳进行预处理后,加入一定的添加剂,如婴幼儿配方粉需要尽量调整乳品中各组分的含量模拟母乳。在这个过程中,营养组分的调整,添加剂量的控制都会影响最后生产的乳粉是否合格。而检测不合格的产品通常会要返工处理,提高了生产成本和时间成本。在这个处理过程中,有效的监督检测手段必不可少,目前全球有超过85%的大中型乳品企业(如Arla Food,Nestle, Fonterra,以及国内的伊利、君乐宝等)已经使用了Milkoscan FT1乳成分分析仪进行旁线分析,实现标准化过程中快速分析反应,有效的减少了产品的波动,即时调整配方配比,提高了生产效率,产品稳定性也大大提升。 /p p   strong  3. 真空浓缩与喷雾干燥 /strong /p p   从液态奶变成固体奶粉,需要进行干燥工艺,首先对液态乳进行真空浓缩,真空浓缩能够节省能量,对奶粉颗粒的物理性状有显著影响。液态乳经过浓缩后,喷雾干燥时,粉粒较粗大,具有良好的分散性和冲调性,能迅速复水溶解,可以改善乳粉的保藏性等。所以在真空浓缩时原料乳浓缩的程度直接影响乳粉的质量,特别是溶解度。在真空浓缩时,通常要求浓缩程度越高越好,因为一般真空浓缩的时间要比喷雾干燥节省至少10倍,但是浓缩至太高的浓度对于后续的喷雾干燥又存在不利影响,因此对真空浓缩水分的实时控制能够节约生产成本,提高生产效率。 /p p   浓缩后的乳打入保温罐内,立即进行喷雾干燥。喷雾干燥直接影响乳粉的溶解度、水分、杂质度、色泽和风味,对产品质量影响很大。喷雾干燥过程中对乳品水分的控制非常重要,奶粉要求水分为2.0~5.0%,若为4.0~6.0%,也就是水分提高到3.5%以上,就会造成奶粉结块,则商品价值就低,同时,水分提高后奶粉易变色,贮藏期降低 当乳粉水分含量提高至6.5~7.0%时,储存一小段时间后,其中的蛋白质就有可能完全不溶解,产生陈腐味,同时产生褐变。此外,奶粉的水分含量过高,还可能导致营养素损失、微生物滋长、奶粉结块变质等问题。但乳粉的水分含量也不宜过低,否则易引起乳粉变质而产生氧化臭味,一般喷雾干燥生产的乳粉水分含量低于1.88%时就易引起这个缺陷。 /p p   常规的水分检测方法测量速度和准确度一直存在一定的矛盾,而水分对于乳粉生产非常重要。为了解决这个问题,目前乳品企业常使用近红外光谱分析技术( a href=" https://www.instrument.com.cn/netshow/C132525.htm" target=" _blank" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 如FOSS的近红外分析方案NIRS DS 2500 /span /a ) 进行干燥过程的控制。 /p p   与传统方法相比,近红外光谱分析技术具有测量速度快、操作方便、不破坏样品、不用前处理试剂等特点,目前,乳企使用近红外光谱仪做旁线检测,检测一个样品时间小于1分钟,检测速度频率大幅提高,控制基本实现实时性 而且近红外仪器稳定,具有IP65防水防尘级别,能适应车间环境 现场操作非常简单,样品直接装入样品杯中,装样简单不易出错,多组分结果直接显示,不需要专业的人员对数据结果进行分析,生产线普通工人都能进行分析操作。大大提高了生产效率,节约了生产成本,提高了产品质量。 /p p   除了旁线分析外,现在逐渐流行的在线检测能够实现生产过程真正的实时质量监控,能做到有问题即时发现,如果与生产控制系统直接对接,能实时调整喷雾干燥生产工艺,对奶制品质量控制有着重大的意义。目前国内已有乳粉生产企业(如君乐宝,飞鹤乳业)引入 a href=" https://www.instrument.com.cn/netshow/SH100345/C335078.htm" target=" _blank" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " FOSS的Profoss /span /a 近红外在线检测解决方案,在乳粉生产中进行高频率、高分辨率的生产过程控制,控制水分的含量,获得稳定的水分、脂肪和蛋白含量,使生产更接近于目标规格,提高了产量,获得了最佳的物质平衡。而且,减少了返工、开工波动,以及不必要的重复劳动,生产效率得到极大的提高,基本上在一年左右能收回投资。 /p p    strong 4. 成品质量控制 /strong /p p   在喷雾干燥冷却后乳粉便要进行包装出厂,包装出厂的乳粉必须经过检测分析合格后才能出厂销售。如婴幼儿配方奶粉,通常需要检测蛋白质、脂肪、水分、乳糖、酸度和灰分等等理化指标,这些理化指标使用常规检测方式进行全部检测需要几天的时间,费时费力,而且受化验室人员化验水平影响较大。目前乳品企业使用近红外光谱仪,进行成品分析,可以快速测定婴幼儿配方奶粉中的水分、蛋白、脂肪、酸度、灰分、乳糖等指标,单个样品测量耗时在1分钟内,以上所有指标同时测出,快速高效,同时也避免了由于人员操作误差导致的检测一致性差的问题。 /p p   综上所述,在奶粉的整个生产工艺中各个关键控制点,几乎都可以使用红外/近红外光谱技术进行分析检测,通过使用红外/近红外分析技术对奶粉生产过程的监控能有效提高产品的合格率,在企业的成本控制,以及为消费者提供安全合格乳制品方面具有非常好的实际效果。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 305px " src=" https://img1.17img.cn/17img/images/201908/uepic/3663ffed-3880-4cfd-bc5a-2087797f79f1.jpg" title=" 微信图片_20190812103309.png" alt=" 微信图片_20190812103309.png" width=" 600" height=" 305" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 红外/近红外技术用于乳粉生产过程中的检测控制点 /strong /p p   红外/近红外技术以其快速,操作简单为乳企的整个生产链条提供了巨大的便利,但在实际使用红外/近红外技术进行从原料奶到成品奶粉的检测过程中,采用的检测模块或者模型的准确性显得尤为重要。一个预测性能良好的模型一定是基于前期大量数据库的积累而来的,建模数据的指标范围,建模数据对应的样品量,以及采用的建模方法等均决定了后期模型的准确程度,所以在目前的红外/近红外推广和使用过程中,提供硬件性能可靠的红外/近红外检测方案的同时,配备的检测模块或者模型的预测性能显得尤为重要。以 a href=" https://www.instrument.com.cn/news/20190812/490937.shtml" target=" _blank" DS 2500 /a 近红外检测分析仪在奶粉检测中所配备的数据库情况为例, 从目前主要客户的使用效果来看,预测效果好,数据准确性高,能够帮助客户很好的指导生产。 /p p   目前 a href=" https://www.instrument.com.cn/news/20190812/490937.shtml" target=" _blank" DS 2500 /a 近红外分析仪配备的配方奶粉、脱脂奶粉、乳清粉等奶粉模型预测性能如下: /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 551" align=" center" tbody tr class=" firstRow" td width=" 93" rowspan=" 8" p style=" text-align:center " 全脂奶粉及婴幼儿配方奶粉 /p /td td width=" 66" p style=" text-align:center " 成分 /p /td td width=" 102" p style=" text-align:center " 定标范围 /p /td td width=" 75" p style=" text-align:center " 定标误差(SECV) /p /td td width=" 124" p style=" text-align:center " 定标样品数量 /p /td td width=" 91" p style=" text-align:center " 相关系数 /p /td /tr tr td width=" 66" p style=" text-align:center " 水分 /p /td td width=" 102" p style=" text-align:center " 1.54-4.50 /p /td td width=" 75" p style=" text-align:center " 0.17 /p /td td width=" 124" p style=" text-align:center " 4640 /p /td td width=" 91" p style=" text-align:center " 0.90 /p /td /tr tr td width=" 66" p style=" text-align:center " 蛋白 /p /td td width=" 102" p style=" text-align:center " 9.50-31.02 /p /td td width=" 75" p style=" text-align:center " 0.35 /p /td td width=" 124" p style=" text-align:center " 4468 /p /td td width=" 91" p style=" text-align:center " 0.99 /p /td /tr tr td width=" 66" p style=" text-align:center " 脂肪 /p /td td width=" 102" p style=" text-align:center " 5.09-39.31 /p /td td width=" 75" p style=" text-align:center " 0.40 /p /td td width=" 124" p style=" text-align:center " 4313 /p /td td width=" 91" p style=" text-align:center " 0.99 /p /td /tr tr td width=" 66" p style=" text-align:center " 酸度 /p /td td width=" 102" p style=" text-align:center " 4.91-14.91 /p /td td width=" 75" p style=" text-align:center " 0.89 /p /td td width=" 124" p style=" text-align:center " 3785 /p /td td width=" 91" p style=" text-align:center " 0.75 /p /td /tr tr td width=" 66" p style=" text-align:center " 灰分 /p /td td width=" 102" p style=" text-align:center " 2.55-6.10 /p /td td width=" 75" p style=" text-align:center " 0.07 /p /td td width=" 124" p style=" text-align:center " 1373 /p /td td width=" 91" p style=" text-align:center " 0.99 /p /td /tr tr td width=" 66" p style=" text-align:center " 乳糖 /p /td td width=" 102" p style=" text-align:center " 33.44-58.22 /p /td td width=" 75" p style=" text-align:center " 0.54 /p /td td width=" 124" p style=" text-align:center " 1151 /p /td td width=" 91" p style=" text-align:center " 0.98 /p /td /tr tr td width=" 66" p style=" text-align:center " 蔗糖 /p /td td width=" 102" p style=" text-align:center " 0- 18.81 /p /td td width=" 75" p style=" text-align:center " 0.42 /p /td td width=" 124" p style=" text-align:center " 1267 /p /td td width=" 91" p style=" text-align:center " 0.98 /p /td /tr tr td width=" 93" rowspan=" 3" p style=" text-align:center " 脱脂奶粉 /p /td td width=" 66" p style=" text-align:center " 水分 /p /td td width=" 102" p style=" text-align:center " 2.67-4.34 /p /td td width=" 75" p style=" text-align:center " 0.11 /p /td td width=" 124" p style=" text-align:center " 1425 /p /td td width=" 91" p style=" text-align:center " 0.85 /p /td /tr tr td width=" 66" p style=" text-align:center " 蛋白 /p /td td width=" 102" p style=" text-align:center " 31.23-38.59 /p /td td width=" 75" p style=" text-align:center " 0.22 /p /td td width=" 124" p style=" text-align:center " 898 /p /td td width=" 91" p style=" text-align:center " 0.97 /p /td /tr tr td width=" 66" p style=" text-align:center " 脂肪 /p /td td width=" 102" p style=" text-align:center " 0.37-1.13 /p /td td width=" 75" p style=" text-align:center " 0.02 /p /td td width=" 124" p style=" text-align:center " 558 /p /td td width=" 91" p style=" text-align:center " 0.97 /p /td /tr tr td width=" 93" rowspan=" 5" p style=" text-align:center " 乳清粉 /p /td td width=" 66" p style=" text-align:center " 水分 /p /td td width=" 102" p style=" text-align:center " 2.43-6.69 /p /td td width=" 75" p style=" text-align:center " 0.46 /p /td td width=" 124" p style=" text-align:center " 494 /p /td td width=" 91" p style=" text-align:center " 0.80 /p /td /tr tr td width=" 66" p style=" text-align:center " 蛋白 /p /td td width=" 102" p style=" text-align:center " 60.02-90.26 /p /td td width=" 75" p style=" text-align:center " 0.92 /p /td td width=" 124" p style=" text-align:center " 596 /p /td td width=" 91" p style=" text-align:center " 0.97 /p /td /tr tr td width=" 66" p style=" text-align:center " 脂肪 /p /td td width=" 102" p style=" text-align:center " 3.44-9.88 /p /td td width=" 75" p style=" text-align:center " 0.13 /p /td td width=" 124" p style=" text-align:center " 379 /p /td td width=" 91" p style=" text-align:center " 0.99 /p /td /tr tr td width=" 66" p style=" text-align:center " 灰分 /p /td td width=" 102" p style=" text-align:center " 2.09-5.44 /p /td td width=" 75" p style=" text-align:center " 0.03 /p /td td width=" 124" p style=" text-align:center " 362 /p /td td width=" 91" p style=" text-align:center " 0.99 /p /td /tr tr td width=" 66" p style=" text-align:center " pH /p /td td width=" 102" p style=" text-align:center " 6.4-6.95 /p /td td width=" 75" p style=" text-align:center " 0.02 /p /td td width=" 124" p style=" text-align:center " 486 /p /td td width=" 91" p style=" text-align:center " 0.96 /p /td /tr /tbody /table p strong   三、红外/近红外分析技术在国内乳品行业的应用前景 /strong /p p   前已述及,红外/近红外分析技术不需要样品的准备过程,是一种无损化的分析技术,同时该项技术具有快速准确的特点,能够满足实时、快速分析的要求。只要提供稳定可靠的定标,就可以对待分析样品给出准确的分析结果。随着我国乳品行业的发展,红外/近红外光谱分析技术必将逐步取代目前在国内占主流的传统化学分析方法,在乳制品及其相关行业发挥越来越大的作用。另外,随着乳品行业有关红外/近红外相关标准的逐步引入,未来红外/近红外技术在乳品行业也必将像饲料、粮油和纺织等其他行业有章可依、有据可鉴。 /p p   基于近几年乳品行业发展的特点,个人认为未来国内红外/近红外技术在乳品行业的应用有以下两方面需求: /p p   其一,目前在国内,红外/近红外技术在乳品行业的应用以液态奶和乳粉的快速检测为主,主要因为国内目前乳品行业的消费产品类型(只包括液奶和乳粉)相对比较单一。在欧美诸多国家,红外/近红外技术在奶酪、黄油、稀奶油、浓缩乳清等类型样品的检测中已经发挥着很大的作用,可以预期随着国家由“喝奶”向“吃奶”的消费导向的普及,国内消费者对于奶酪,黄油等的消费需求会有所上升。后期,红外/近红外技术应用于奶酪、黄油以及浓缩乳清等样品的检测也必将逐渐深入。 /p p   其二,国外的液体乳主要以保鲜的巴氏奶为主,这与其完善的冷链系统及经济水平有关。近几年我国的液体奶市场增长迅速,但主要以保质期较长的UHT奶为主。随着我国乳品工业的发展和人们对液体乳新鲜度的要求,近几年,国家大力推广“优质乳工程”,倡导企业生产新鲜度更高,营养更丰富的优质乳。 /p p   加入国家“优质乳工程”的企业对奶源有了更高的要求,如更低的体细胞和细菌数,更高的蛋白和合理的脂肪含量,同时,对一些功能性指标(如乳铁蛋白,糠氨酸等)的检测也提出了要求。由此可见,随着国家“优质乳工程”的实施,企业自身的检测需求必将促使红外/近红外快速检测技术朝着准确度要高,检测指标更全面等方向进行改进和提高。可以预期,未来的红外/近红外检测技术不仅要准确地检测脂肪、蛋白、总固等常规指标,而且也需要具有检测一些功能性新指标,如巴氏奶和鲜奶中的乳铁蛋白,以及UHT奶中的糠氨酸等方面的检测能力。 /p p style=" text-align: right " span style=" font-family: 楷体, 楷体_GB2312, SimKai " strong (供稿:FOSS 罗海峰) /strong /span /p
  • 硅微粉中碳硫分析 | 德国元素Elementar
    硅微粉是一种无毒、无味、无污染的无机非金属材料。在业内人们将具有相应纯度的石英矿研磨所得的超细粉或通过化学所得的二氧化硅(如白炭黑)细粉都称为硅微粉。由于它具备耐温性好、耐酸碱腐蚀、导热系数高、高绝缘、低膨胀、化学性能稳定、硬度大等优良的性能,被广泛用于油漆,涂料,胶黏剂,电气绝缘,蜂窝陶瓷和电子电器等领域。随着高技术领域的迅猛发展,硅微粉亦将步入新的历史发展时期。硅微粉是由天然石英(SiO2)或熔融石英(天然石英经高温熔融、冷却后的非晶态SiO2)经过多道工艺加工而成的微粉。其生产工艺主要包括干法研磨和湿法研磨两种。干法研磨是将硅微粉原料放入磨粉机中研磨,而湿法研磨则是在球磨机中加入适量的水进行研磨。而在相关行业当中,厂家往往需要依赖高频红外碳硫仪对于硅微粉中的改性材料进行监控,其中碳的含量范围在500ppm至1%之间,硫的含量应低于5ppm。实验仪器德国元素Elementarinductar CS cube 红外碳硫仪实验方案与结果称量200-300mg的样品直接转移至德国元素Elementar独特的陶瓷坩埚中,加入1.9g W/Sn助熔剂和500mg纯铁助熔剂。然后将坩埚置于自动进样器上,仪器自动进样分析。这里选择的标样为钢铁标样,样品具体所含元素信息请参考下表:德国元素Elementarinductar 系列inductar CS cube 红外碳硫仪应用材料:黑色系金属合金,有色金属,难熔合金,电极材料,光伏材料,陶瓷材料,无机储氢材料,地质矿物等分析元素:碳、硫元素
  • 分析仪器制造商纷纷“转战”诊断市场
    新闻专题:   美国时间2012年5月17日,安捷伦科技宣布以22亿美元现金从瑞典私募股权集团EQT手中收购癌症诊断公司Dako。此前在诊断市场,安捷伦“只是脚趾浸入到水中”,但是缺乏一个巨大的推动力。如今,安捷伦收购Dako给了安捷伦进入到诊断市场的一个重要推动力。   笔者发现,近两年来,越来越多的分析仪器制造商开始“转战”及布局诊断市场。在2011年全球仪器公司TOP25排行榜中排名前10的公司中有5家都涉及诊断业务,而安捷伦、赛默飞世尔、丹纳赫及PerkinElmer新近通过收购都大大地扩展了诊断业务的规模。   此前,安捷伦一直在低调地布局其进军诊断市场的计划。早在2007年,安捷伦收购Stratagene公司,这项交易给安捷伦带来了PCR和分子诊断相关的试剂和技术。而从2011年开始,安捷伦进军诊断市场的计划似乎更加密集:2011年6月,安捷伦位于德州Cedar Creek的80000平方英尺的试剂工厂在美国食品和药品监督管理局注册成为医疗器械生产基地 2012年1月,安捷伦公司1200 Infinity系列液相色谱系统和 6000 系列液质联用系统获得美国食品和药品管理局(FDA)的一类医疗器械认证 同月,安捷伦和Integrated Diagnostics宣布成为战略合作伙伴,共同开发人类主要疾病的早期检测技术 2012年5月,安捷伦22亿美元收购癌症诊断公司Dako……安捷伦以其历史上最大的收购交易表明了开拓诊断市场的决心与能力。   对于诊断市场,TOP25中排名第1及2的丹纳赫、赛默飞世尔同样觊觎。2011年,丹纳赫集团以68亿美元收购了贝克曼库尔特,进一步扩大了其生命科学与诊断业务的规模。目前,丹纳赫生命科学与诊断业务旗下拥有贝克曼库尔特、徕卡、AB SCIEX、RADIOMETER、Molecular Devices 5家子公司,2011年年销售额达64亿美元。   2011年5月,赛默飞世尔以35亿美元的价格从私募股权投资公司Cinven手中收购瑞典血检系统供应商Phadia, 扩大公司“过敏症及自身免疫病测试”的产品组合。“随着收购Phadia之后,赛默飞的专业诊断业务已具有相当规模的 (收入超过20亿美元),”2011年10月,赛默飞在其财报中新增“专业诊断”部分。   此外,TOP25中排名第8的PerkinElmer在2011年也通过收购扩大了其诊断业务。PerkinElmer的诊断业务隶属于其人类健康部门下,其产前诊断和新生儿筛查相关产品和业务近几年都保持着很高的增长率,特别是在中国。2011年9月,PerkinElmer以6亿美元收购了Caliper Life Sciences 公司,Caliper的加入,使PerkinElmer的产品组合中增加了创新的分子成像和检测技术,拓宽PerkinElmer在分子成像和基因检测技术领域的涉猎范围。   为何分析仪器制造商纷纷“转战”诊断市场?究其原因,生命科学乃至诊断市场规模巨大,庞大的市场吸引着更多的公司加入竞争。据安捷伦总裁兼首席执行官Bill Sullivan先生估计,生命科学市场规模在210亿美元左右,年增长率为4-6%,而安捷伦目前在此领域的收入是18亿美元。此外,解剖病理学市场规模122亿美元,年增产率8-10% 分子诊断市场规模45亿美元,年增长率10-15%。   另一方面,对于分析仪器制造商而言,特别是排名前列的分析仪器制造商,在已有的市场竞争日益激烈并且增长放缓的情况下,他们需要寻找新的机会及新的增长点,而诊断市场正好符合这样的诉求。同时,欧美经济低迷为各分析仪器制造商进入诊断市场提供了机会,并购成为各大公司进入诊断市场或扩大诊断市场份额的重要途径。可以预见,未来也许会有更多的分析仪器制造商进入诊断市场! 撰稿编辑:杨娟
  • 山东金普分析仪器有限公司与明一奶粉达成合作
    近期,山东气相色谱仪厂家金普分析仪器有限公司与明一国际集团达成合作,提供两台GC-2011气相色谱仪供其生产分析使用。明一国际是一家国际型企业,有国际领先核心科技力,有十大国际领先核心科技、权威科研机构和育婴专家,集研发、生产、营销及服务的团队。全球母婴营养健康事业领跑者。此次明一国际选择我们山东金普分析仪器的设备,正是看重了我们企业对于质量和品质的不懈追求,对于技术精益求精的态度。我们的一贯努力得到了以明一为代表的国际大厂的认可。正是由于我们的产品将给客户带来可靠稳定的检测结果,为生产决策的顺利进行打下坚实的基础,才使我们赢得了众多客户的交口称赞。在决定选择我们企业的产品之前,明一集团已经考核过多家企业,其考核要求极其严格,很多企业都由于各种问题被淘汰掉。我们山东金普分析仪器有限公司正是靠着卓越的品质,和实惠的价格才能够在众多的备选厂家脱颖而出。此次采购计划不仅提升了明一的生产分析能力,更说明了我们的产品质量过硬,得到了生产标准更加严格的母婴奶粉企业的青睐。我们企业会继续专注于产品质量的提升和完善,为了能够满足用户多样化的需求而不懈努力。
  • 大咖云集、精彩纷呈!2023分析测试高峰论坛暨《分析测试学报》编委换届会议顺利举行
    2023年11月26-28日,由《分析测试学报》、广东省科学院测试分析研究所(中国广州分析测试中心)(以下简称“中广测”)、中国分析测试协会、广东省分析测试协会联合主办,广东省科学技术期刊编辑学会等协办的“2023分析测试高峰论坛暨《分析测试学报》编委换届会议”在广东广州盛大开幕。来自全国各地高校、科研院所、第三方检测机构、企事业单位及公司代表近1000位代表参加了本次论坛,单日参会人数近300人。本次高峰论坛主题为“创新驱动,引领分析测试高质量发展”,旨在加强国内国际学术交流,促进分析测试领域的创新和发展。论坛邀请了相关领域的院士、杰出学者、企业嘉宾,聚焦新型污染物检测、生命分析与健康、科学仪器研制、智能化设备与智慧实验室管理、食品快速检测技术及近红外光谱技术的应用等前沿和热点领域,分享分析测试技术的最新研究成果。参会人员共同探讨和交流分析测试新技术新方法及其应用,促进了分析测试产学研用的交流与合作。大会报告中广测主任陈江韩担任高峰论坛大会报告主持人。中国科学院院士、中国分析测试协会理事长、《分析测试学报》主编江桂斌研究员和广东省科学院周舟宇副院长先后发表了热情洋溢的致辞。他们强调了分析测试对于科学研究和国民经济发展的重要作用,并对分析测试学科的创新发展寄予了期望。江桂斌院士周舟宇副院长陈江韩主任江桂斌院士和中国科学院精密测量科学与技术创新研究院刘买利院士分别作了题为《分析仪器的发展与社会需求》和《原位细胞分子功能分析In-cell NMR》的报告。江桂斌院士指出,作为基础研究的重要部分,高水平分析仪器是现代文明的重要标志,并用详实的数据对全球科学仪器市场分布进行了分析,强调在线、原位、在场、实时、成像、快速、高能量、低成本是仪器行业的发展方向,希望仪器行业充分利用好国产科学仪器发展的国家利好政策,共同推动仪器行业高质量快速发展。刘买利院士分享了其带领的研究团队关于原位细胞分子功能磁共振波谱分析的最新研究成果,对原子分辨的三维结构及功能测定包括样品制备、数据收集、结构重建,相互作用等,以及构建细胞中硫醇的多维识别码,蛋白质功能的细胞微环境效应等应用进行了分享和介绍。江桂斌院士刘买利院士高端对话-分析测试的发展与未来中国分析测试协会副理事长、清华大学张新荣教授主持了高端对话。江桂斌院士、刘买利院士、深圳大学副校长张学记教授及广州禾信仪器股份有限公司董事长周振教授围绕“分析测试的发展与未来”分别从分析测试与环境、分析测试与学科交叉、分析测试与智能化、分析测试与仪器等前沿主题展开了深入的对话与交流,分享了其深耕细作多年的深邃见解与看法。颁奖典礼中广测党委书记李宏荣主持了颁奖环节,为备受瞩目的2023分析测试青年创新大赛一等奖、二等奖、三等奖及优秀奖颁奖,并为《分析测试学报》2023年度优秀论文和优秀审稿专家代表颁奖。 (从左至右、从上至下依次为2023分析测试青年创新大赛一等奖、二等奖、三等奖、优秀奖)(优秀论文奖)(优秀审稿专家奖)2023分析测试高峰论坛专场1-326日下午,2023分析测试高峰论坛各专场拉开序幕。论坛共设7个专场。专场1“新型污染物检测”,由中山大学化学工程与技术学院欧阳钢锋教授、中广测郭鹏然研究员、深圳市疾病预防控制中心科主任张建清主任医师担任召集人及主持嘉宾,来自中国科学院广州地球化学研究所副所长于志强研究员、欧阳钢锋教授、中国科学院生态环境研究中心史亚利研究员、艾吉析科技(上海)有限公司的技术支持赵鹏经理、华南师范大学的陈长二教授、广东省科学院测试分析研究所的刘舒芹副研究员分别做了题为“新型持久性有机污染物的筛查与人体暴露研究”、“固相微萃取环境分析技术研究”、“全/多氟化合物的识别、定量分析及环境行为”、“PFAS及氯化石蜡检测方法概览及标准物质介绍”、“新污染物环境被动采样技术”、“新污染物活体分析与环境效应研究”的报告;专场2“生命分析与健康”由中山大学化学工程与技术学院牛利教授及中山大学生物医学工程学院戴宗教授担任召集人和主持嘉宾,来自南京大学、生命分析化学国家重点实验室主任鞠熀先教授、厦门大学杨朝勇教授、北京化工大学汪乐余教授、香港理工大学姚钟平教授、北京航空航天大学常凌乾教授、武汉纺织大学沈爱国教授分别带来了题为“纳米生物传感助推生命分析化学发展”、“单细胞时空组学测序”、“含氟纳米探针构筑及活体成像分析”、“氢氘交换质谱揭示β-内酰胺酶与抑制剂相互作用的动态构象”、“单细胞诊疗生物芯片”、“高特异的SERS生物分析进展”的报告;专场3“科学 仪 器研制专场” 由广州禾信仪器股份有限公司首席科学家周振教授、暨南大学质谱仪器与大气环境研究所黄正旭副研究员、中山大学生物医学工程学院周建华教授担任召集人及主持嘉宾,来自华南师范大学的胡勇军教授、北京理工大学的徐伟教授、宁波大学的丁力研究员、广东省科学院测试分析研究所张冠文教授级高工、深圳大学的张会生教授、中国农业科学院农业质量标准与检测技术研究所的毛雪飞研究员分别做了题为“基于真空紫外单光子后电离的质谱分子成像新技术”、“小型化’板砖’质谱仪研发与应用”、“超高分辨质谱仪的研发动向”、“仪器设备可靠性方法及精密仪器中试验证平台介绍”、“基于分析仪器原理的体外诊断仪器的开发和应用”、“重金属及形态快速检测技术与装备研发”的报告。(点击段落开头蓝字即可查看专场3报告简介)2023分析测试高峰论坛专场4-728日上午9点的专场4“智能化设备与智慧实验室管理”由广州海关技术中心的郑建国研究员、宋武元研究员担任召集人及主持嘉宾,来自北京三维天地科技股份有限公司吴长征副总裁、安捷伦科技(中国)有限公司的霍茵高级工程师、赛默飞世尔科技(中国)有限公司的余婉松高级工程师、深圳海关食品检验检疫技术中心的熊贝贝副主任、国际标准化组织实验室设计技术委员会的黄建宇秘书长、广州海关技术中心质量技术部的张彦彬高级工程师、中山大学计算机学院的胡建芳副教授分别带来了题为“实验室智能化设备与智能大脑”、“安捷伦自动化解决方案智慧赋能实验室升级转型”、“快检技术在智慧通关中的应用”、“人工智能时代智慧实验室设计与建设展望”、“智慧实验室发展”、“智慧实验室建设中的难点与亮点”、“视觉智能计算研究进展及其在证照语义分析中应用”的报告;专场5“食品快速检测技术”由华南农业大学徐振林教授、广东省科学院微生物研究所陈谋通研究员担任召集人及主持嘉宾,来自大连工业大学的陈翊平教授、暨南大学丁郁教授的研究团队成员尚玉婷博士、华南师范大学王丽教授、东南大学王进教授、南昌大学黄小林研究员、山东英盛生物技术有限公司王洋博士、肇庆学院的陈子键博士分别作了题为“基于微球计数的电-光快速检测技术研发及配套装备研制”、“食源性致病菌新型检测技术研究”、“食品新鲜度检测与抑菌保鲜”、“纳米生物传感器在食品过敏原检测领域的应用及未来发展趋势”、“探针设计与免疫层析”、“液质联用技术在食品安全领域的应用”、“杀螟硫磷纳米抗体识别机制及免疫检测新方法”的报告;专场6“近红外光谱技术的应用”由广东省科学院测试分析研究所的闻环正高级工程师和广东药科大学肖雪副研究员担任召集人及主持嘉宾,来自北京化工大学的袁洪福教授、中国矿业大学邹亮副教授的研究团队成员雷萌副教授、肖雪副研究员、广州能源检测研究院质检一部副部长秦平高级工程师、济南弗莱德科技有限公司仇士磊总经理、广东省惠州市石油产品质量监督检验中心刘慧琴高级工程师、广州众鸿科学仪器有限公司徐文加技术经理分别带来了“新型红外光谱技术应用”、“基于机器学习的煤质近红外光谱分析方法研究”、“近红外光谱技术在现代药品生产过程中的应用进展”、“T/GERS 0031-2023《成品油快速筛查工作指南》标准宣贯”、“中国成品油快检的发展现状”、“成品油近红外光谱快检技术”、“PAC油品质量快速监测解决方案”的报告。专场7“青年专场”由中国农业科学院农产品质量标准与检测技术研究所金芬研究员、中广测赵昕副研究员担任主持嘉宾,来自浙江大学的龚行楚教授、天津工业大学的卞希慧教授、安徽农业大学的翟小婷副教授、西南大学的宋尔群教授、中山大学生物医学工程学院的柳思扬副教授分别作了题为“基于质量源于设计理念研发中药分析方法”、“复杂样品分析中的化学计量学方法研究”、“焙火茶特征烘焙香物质及其形成机理”、“微环境激活核磁共振调谐响应的活体成像分析”、“MOF功能化纸基疾病快检装置”的报告。来自全国科研院所、高校、知名企业的44名学术造诣高、实践经验丰富的专家围绕相关主题分享分析测试领域的最新成果及技术进展,探讨新兴分析方法、测试技术及其应用,为参会人员提供了更加深入交流与了解的机会。 系列活动26日上午,召开了《分析测试学报》编委换届会议。江桂斌院士任第七届编委会主编,刘买利院士、吴惠勤研究员、许国旺教授、刘虎威教授、汪海林教授、杨朝勇教授、张新荣教授、郑建国研究员、黄承志教授、欧阳钢锋教授任副主编,马强研究员等119名专家任编委。27日下午,由于汝佳等69名青年专家组成的第三届青年编委会成立。在第七届编委会和第三届青年编委会第一次会议上,大家纷纷建言献策,共商《分析测试学报》的未来发展与方向。《分析测试学报》第七届编委会合影《分析测试学报》第三届青年编委会合影25日下午,举办了“筑梦未来2023分析测试青年创新大赛”决赛,来自全国各地的15名入围选手角逐一等奖、二等奖、三等奖,来自山东省分析测试中心的孙成龙博士获得大赛一等奖。2023分析测试青年创新大赛决赛合影为期3天的2023分析测试高峰论坛暨《分析测试学报》编委换届会议,专家大咖云集、内容精彩纷呈,不仅为分析测试领域的科研人员分享了最前沿的研究成果和技术进展,也提供了一个深入交流的平台。与会代表纷纷表示,论坛举办圆满成功,将有助于推动分析测试相关领域的科研和应用取得更大突破,为我国科技自立自强和产业创新发展贡献力量。
  • 东西分析推出液相色谱检测淀粉中顺丁烯二酸检测方法
    针对近日媒体爆出的台湾毒淀粉事件,东西分析推出&ldquo LC5510 测定淀粉中的顺丁烯二酸&rdquo 的解决方案,可登陆仪器信息网下载资料,下载地址:http://www.instrument.com.cn/netshow/SH100293/down_241900.htm 关于我们:北京东西分析仪器有限公司成立于2002年(其前身是成立于1988年的北京东西电子研究所),到现在已拥有二十多年的分析仪器研发、制造、服务的历史,系北京市高新技术企业,中国分析仪器制造行业著名企业。在行业内率先通过ISO9001国际质量体系认证,ISO14001环境管理体系认证,多个产品取得欧盟CE认证,系中华预防医学会卫检专用委员会产品信得过单位。公司以雄厚的科研技术实力为后盾,以严格的质量管理为保证,以完善的售后服务为支撑,为用户提供高品质的产品。在食品安全、农产品安全、饲料分析检测方面公司有专门的研发中心和分析应用中心,多年的配套解决经验,可为客户提供全套的解决方案和符合国标的分析方法验证,具有广泛的客户群。
  • 重磅:分子诊断行业分析
    p    span style=" color: rgb(192, 0, 0) " strong 一、分子诊断行业基本情况 /strong /span /p p    strong 1、分子诊断行业上下游关系 /strong /p p   分子诊断行业的上游行业为检验仪器、诊断试剂、耗材等原材料提供商,包括检验仪器、诊断试剂的生产制造商和代理商等,下游行业是为患者提供医疗服务的机构,包括医院、科研机构、同行业企业等。 /p p   分子诊断行业的产业链关系图如下所示: /p p style=" text-align: center " img width=" 450" height=" 417" title=" 1.png" style=" width: 450px height: 417px " src=" http://img1.17img.cn/17img/images/201601/noimg/60c8ed48-2174-4b45-9370-9d5693415ad6.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p    strong 2、上游行业发展对本行业发展的影响 /strong /p p   分子诊断服务行业的基础是拥有专业的检验仪器,其先进性、稳定性、精确性对本行业服务质量及效率有直接的影响,本行业对其有一定的依赖。由于检验仪器科技含量较高,国内的检验仪器生产厂商在研发、制造等方面,与国外厂商相比,还存在一定的差距,因此目前国内医疗卫生机构的中高端检验仪器还尚需依赖进口。 /p p   体外诊断试剂生产行业与本行业之间具有较强的关联性,主要体现在体外诊断试剂等产品的技术更新和升级,使分子诊断服务项目的精度、种类及数量增加。通过近几年的技术引进和消化吸收,国内体外诊断试剂生产行业已经形成了一批具备一定规模的生产厂家,能够满足本行业的部分需求,但在先进性、稳定性上与发达国家相关诊断试剂相比,尚存在差距,要满足高精尖诊断项目的需求,目前国内医疗卫生机构主要还是使用进口诊断试剂。 /p p   未来随着我国计算机技术、精密机械技术、放射技术、生物医学工程技术、信息技术等高新技术的进一步发展,以及国内市场竞争日益加剧,国内诊断产品行业将得到快速发展,这将有利于本行业企业降低固定资产投资成本,促进本行业迅速发展。此外,病理诊断、分子诊断等领域不断有新的诊断技术产生,而这些项目通常属于“三高一新”项目(高投入、高成本、高风险、新技术),很多医疗卫生机构出于成本及风险的考虑,不愿涉足这些业务,从而为独立医学实验室开展特色诊断项目提供了良好的业务机会。 /p p    strong 3、下游行业发展对本行业发展的影响 /strong /p p   分子诊断服务行业面向各级医院、科研机构、学校、个人患者等,覆盖面较广,其中医院的需求对本行业的发展起着至关重要的牵引和拉动作用。受益于我国诊疗人次的提高、医疗水平的发展以及诊断费用占比的不断上升,目前市场处于一个供小于求、迅速发展的时期。 /p p   随着国家完善基层医疗卫生服务的相关政策出台,新医改政策的逐步落实,以及医疗机构对新型管理理念和运营模式的接受能力越来越强,分子诊断服务外包更容易得到认可与接受,整个产业链将继续保持快速发展的节奏。 /p p    strong 4、 进入行业的主要壁垒 /strong /p p   (1)行业准入壁垒 /p p   我国的卫生行政主管部门对医疗卫生资源配置有着总体性和区域性的规划,新办独立医学实验室的设置审批都需要按照规划进行,以免卫生资源的重复配置 同时,为了确保诊疗质量,卫生行政主管部门对医疗机构设置了一定的设立标准。因此新设独立医学实验室在市场准入方面存在较高的门槛。 /p p   此外,我国对体外诊断产品生产和经营企业实行备案许可管理制度,生产经营企业应当取得备案或许可、同时产品取得备案或注册证后才能生产或经营。对于行业新进入者来说,经营体外诊断产品,需要较长时间和财力投入才能达到监管机构对场所、人员和设施的要求。 /p p   所以,行业准入壁垒是行业新进入者最重要的障碍。 /p p   (2)质量控制壁垒 /p p   诊断结果的准确性和及时性直接关系到患者的生命健康。为保证诊断结果的质量,控制诊断质量风险,独立医学实验室要严格执行《医疗机构临床实验室管理办法》,建立起包括试剂、仪器、人员、检验环境等方面的质量控制制度,并将质量控制制度贯彻于分析前、分析中、分析后三个阶段,以确保体系的有效运作。此外,对于连锁化的独立医学实验室而言,质量控制体系的标准化复制能力是确保独立医学实验室诊断结果准确性、稳定性和可比性的关键。因此,新进入者无法在短期内搭建起全面的质量管理体系,存在一定的质量控制壁垒。 /p p   (3)技术壁垒 /p p   分子诊断服务行业属于技术密集型行业,集成了分子生物学、生物化学、遗传学、免疫学、病理学、信息学等多学科技术领域的复合型技术,具有较高的技术门槛。业内大多数企业都拥有自己的技术专利,并经过多年行业实践,建立了技术研发的持续创新机制,在行业中建立了自己的竞争优势。行业新进入者即便需要拥有强大的研发团队、技术基础和资金支持,而且很难在短期内取得技术竞争优势并对现有竞争格局产生冲击。 /p p   (4)专业人才壁垒 /p p   除先进的检验仪器外,专业人才也是分子诊断服务业比较核心、关键的资源。当前,我国优秀的医学检验技术人才本身就不多,且规模较小的医疗机构又难以吸引和留住高素质的医学检验技术人才。此外,分子诊断服务行业在我国还属于新兴行业,国内尚没有充足的物流管理、信息管理、营销管理等方面的人才储备,普通人员必须在具备一定分子诊断知识的基础上,并经过相当长时间的实践才能形成一定的经验积累,才能完成向专业管理人才的转化。因此,分子诊断服务行业具备较高的人才壁垒,新进入者难以在短时间内搭建这样的发展平台。 /p p    strong 5、影响行业发展的有利因素 /strong /p p   (1)产业政策支持 /p p   随着我国人口老龄化的加速,以及健康诉求提高导致医疗消费的升级,人们对于医疗资源的需求将日益增长,政府对于分子诊断与服务行业的扶持力度日益加大。已经发布的多个国家“十二五”规划中均明确指出,在未来的五年要大力发展分子诊断技术,鼓励分子诊断服务行业的发展。 /p p   2010年10月,《中共中央关于制定国民经济和社会发展第十二个五年规划的建议》中明确提出:鼓励社会资本以多种形式举办医疗机构,促进有序竞争,加强监管,提高服务质量和效率,满足群众多样化医疗卫生需求。2011年发布的《医学科技发展“十二五”规划》中指出,未来重点开展分子诊断、免疫诊断、影像诊断、生物治疗、微创治疗、介入治疗、物理治疗等新型诊疗技术研究,创新临床诊疗技术方法,提高临床诊疗技术水平。 /p p   2012年6月国务院办公厅印发关于《县级公立医院综合改革试点意见》的通知,首次提出“鼓励资源集约化,探索成立检查检验中心,推行检查检验结果医疗机构互认,以及后勤服务外包等”。这也是中央最高层首次正面认可诊断服务外包模式。 /p p   此外,生物技术及其产业化的发展,包括分子诊断在内的生物产业将长期获得政府全方位的政策扶持。一系列鼓励行业发展、促进行业需求的国家政策,为本行业的发展提供了良好的契机。 /p p   (2)人口老龄化加剧 /p p   我国正逐渐步入老龄化社会,根据全国老龄工作委员会办公室发布的《中国人口老龄化发展趋势研究报告》,21世纪的中国将是一个不可逆转的老龄社会。从2001年到2020年是快速老龄化阶段。这一阶段,中国将平均每年增加596万老年人口,平均增长速度达到3.28%,大大超过人口平均0.66%的增长速度,人口老龄化进程明显加快。到2020年。老年人口将达到2.48亿,老龄化水平将达到17.17%,其中80岁以上老年人口将达到3067万人,占老年人口的12.37%。 /p p   老年人身体弱、患病率高,是肿瘤、心脑血管病、慢性气管炎、糖尿病等慢性病的高发人群,医学检验服务需求较高,且用药需求量大。目前的医学检验主要通过生物化学、免疫学及分子生物学等体外诊断方法测定患者的血液、体液、细胞或肿瘤标志物,以判断患者病情,再通过药物进行治疗。因此,老龄人口的迅速增长为医疗市场提供了较大的消费人群,将进一步促进分子诊断服务行业的发展。 /p p   (3)居民健康意识提升 /p p   随着居民健康意识的提升,国内对预防诊断和健康管理的需求也在逐渐增加。据统计,2014年我国健康体检市场规模达到749亿元,同比增长26.9%。快速发展的体检消费市场将有力推动分子诊断服务行业的持续增长。 /p p style=" text-align: center "    strong 图:我国体检市场规模增长情况 /strong /p p style=" text-align: center " strong img width=" 500" height=" 294" title=" 2.png" style=" width: 500px height: 294px " src=" http://img1.17img.cn/17img/images/201601/noimg/dfe55448-3a86-4bf3-bae9-e072c78dacbc.jpg" border=" 0" vspace=" 0" hspace=" 0" / /strong /p p style=" text-align: center "   数据来源:易观智库、西南证券。 /p p   (4)二三级城市、社区、农村医疗诊断市场的不断扩大 /p p   我国目前的医疗资源主要集中在二级以上的医院,一级医院和农村医疗服务机构的诊断和治疗水平还比较薄弱。为建立中国特色医药卫生体制,逐步实现人人享有基本医疗卫生服务的目标,提高全民健康水平,中共中央国务院于2009年3月17日提出了《关于深化医药卫生体制改革的意见》。根据该《意见》,未来国家将以农村为重点,建设覆盖城乡居民的基本医疗卫生制度,使人人享有基本医疗卫生服务为根本出发点和落脚点 建立健全疾病预防控制、健康教育、妇幼保健、精神卫生、应急救治、采供血、卫生监督和计划生育等专业公共卫生服务网络,完善以基层医疗卫生服务网络为基础的医疗服务体系的公共卫生服务功能 大力发展农村医疗卫生服务体系,进一步健全以县级医院为龙头、乡镇卫生院和村卫生室为基础的农村医疗卫生服务网络。 /p p   随着国家完善基层医疗卫生服务的相关政策出台,二三级城市的医疗诊断产品市场将被启动,分子诊断服务行业将面临重大发展机遇。 /p p   (5)新技术、新模式和新目标打开行业成长新空间 /p p   基因测序属于分子诊断的一个分支,二代高通量基因测序技术的出现使基因检测成本大幅下降,奠定了商业化应用基础。从产前无创筛选到肿瘤的个性化话用药,二代测序的应用范围正逐步拓宽,市场空间也持续扩容。2018年全球市场预计可达117亿美元,而我国基因测序行业2012-2017年期间的年复合增速将达20%-25%。 /p p   精准医疗又称个性化医疗,是为患者量身定制最佳治疗方案以实现治疗效果最大化和副作用最小化的医疗模式。预计2015年全球精准医疗市场规模将达到600亿美元,复合增速达到12%2。 /p p   此外,互联网+、大数据和健康管理等新兴医疗新模式将为分子诊断服务行业开辟新天地,进一步提升行业发展空间。 /p p    strong 6、影响行业发展的不利因素 /strong /p p   (1)行业缺乏高素质人才 /p p   近年来,检验仪器逐步实现了自动化、半自动化或微机化,先进的诊断技术与仪器在国内逐步普及,不仅提高了诊断结果的精确性和准确性,还扩大了诊断的范围和深度,分子诊断已成为临床医学和预防医学中不可缺少的一个组成部分,独立医学实验室不单是一种新的临床检验模式,还要求检验人员整体水平的提高,因此现代检验医学的理念已经突破了过去检验人员只对标本负责的局限,还要结合临床提供有价值的诊断信息。目前,具备上述素质的检验人员相对比较缺乏,一定程度上制约了分子诊断服务行业的快速发展。 /p p   (2)市场整体认知度有待加强 /p p   虽然独立医学实验室的客户数量、业务总量近年来不断增长,促进了分子诊断服务外包市场的发展,但是目前国内分子诊断服务外包的整体应用比例还比较低,这是由于:首先,医疗卫生机构对于分子诊断服务外包的认知度还有待加强 其次,不少基层医疗机构的医师受检验仪器及水平所限,对临床检验质量的重视程度不够,还停留在仅凭经验诊断的技术层次 再次,大型医院对独立医学实验室的诊断项目质量与服务能力缺乏足够的认同感。 /p p    span style=" color: rgb(192, 0, 0) " strong 二、所处行业市场规模 /strong /span /p p    strong 1、分子诊断服务行业发展现状 /strong /p p   近年来,随着国家经济的持续健康发展、人民生活水平的不断提高,以及人们医疗保健意识的提升,我国医疗服务行业持续增长。2013年我国卫生总费用支出突破3万亿大关,达到31,668.95亿元,同比增长12.62%,占当年GDP比重为5.57%,2013年个人费用支出为2,327.37元,同比增长12.07%。 /p p style=" text-align: center "    strong 图:我国卫生费用支出情况 /strong /p p style=" text-align: center " strong img width=" 500" height=" 296" title=" 3.jpg" style=" width: 500px height: 296px " src=" http://img1.17img.cn/17img/images/201601/noimg/4078876d-8b79-45db-a08b-6db43e30d428.jpg" border=" 0" vspace=" 0" hspace=" 0" / /strong /p p style=" text-align: center "   数据来源:国家统计局 /p p   分子诊断服务是医疗服务的重要组成部分,分子诊断服务能够为临床医生提供详尽客观的实验室数据,有助于医生制定准确的、个性化的诊疗方案,更有利于患者病情的诊治。目前,提供分子诊断服务的医疗机构主要分为两类:医疗机构下属的检验科和病理科等,以及独立医学实验室,其中独立医学实验室作为独立于医院的第三方机构,其所从事的行业为第三方分子诊断行业,在我国存在的历史不长,但发展速度却很快。 /p p   我国大力发展独立医学实验室,具有以下现实意义:①独立医学实验室通过集中检验的方式,可以促进医疗卫生资源的优化配置,真正实现资源共享,有效提升诊断资源的利用效率,缩短诊断周期,节约医疗费用,同时也可以提高诊断结果的准确性与可比性 ②中小型医院无须建立“大而全”的分子诊断系统,它们可以将标本量有限的诊断项目,或者需要大量资源投入而效益并不高的诊断项目外包给独立医学实验室,而不必配置利用率不高、价格昂贵的检验仪器,节约了运营成本 ③独立医学实验室是发展基层医疗服务体系的保证,为基层医疗机构发展和实现社区首诊制提供诊断技术保障,使基层医疗机构获得先进的诊断服务,方便居民就近看病,同时也是通过社会力量办医,帮助公立基层医疗机构提升诊断技术水平的一种方式,实现各级医疗卫生机构、患者及社会共赢的目标 ④具有一定规模的独立医学实验室具有专业性和全面性的特点,其全部资源与精力均集中投入至分子诊断领域,有助于国内外高新诊断技术的及时引进,使独立医学实验室成为我国分子诊断领域的技术高地和研发平台之一,从而促进我国分子诊断技术水平和诊断科研水平的提升,有效缓解检验医学发展滞后于临床医学的矛盾 ⑤近年来,政府大力提倡和普及一些有助于提高居民健康水平及身体素质的检验项目,如妇女的两癌筛查、先天性疾病的产前诊断、新生儿遗传性疾病筛查和体检普查等,由于这些项目的技术要求较高,检验量较大,而规模较大的独立医学实验室恰好具有承接该类项目的能力,且符合国家鼓励政府买单项目选择符合条件的非公立医疗机构的相关政策,其带来的社会价值远远大于经济利益。 /p p   独立医学实验室在国内还处于起步阶段,市场规模仅有10亿元,仅占国内分子诊断市场规模的2-3%,而且规模最大的独立医学实验室,也只能开展1,000多项诊断项目,各地区发展也很不平衡。虽然我国公立大医院占主导的特殊性,但相比较于国外30%多的市场份额,国内独立医学实验室还有很大的发展空间。 /p p style=" text-align: center "    strong 图:国内分子诊断市场分布情况 /strong /p p style=" text-align: center " strong img width=" 500" height=" 236" title=" 4.png" style=" width: 500px height: 236px " src=" http://img1.17img.cn/17img/images/201601/noimg/fef44f4b-e6af-44c7-9640-d5330d4a8674.jpg" border=" 0" vspace=" 0" hspace=" 0" / /strong /p p style=" text-align: center "   数据来源:长江证券研究部 /p p   分子诊断是应用分子生物学方法检测患者体内遗传物质的结构或表达水平的变化而做出诊断的技术,其核心是基因诊断技术。分子诊断因其量化特征,在精度上较传统生化与免疫诊断高,是诊断市场的高新技术。 /p p style=" text-align: center "    strong 图:分子诊断、体外诊断市场的前沿技术 /strong /p p style=" text-align: center " strong img width=" 500" height=" 294" title=" 5.png" style=" width: 500px height: 294px " src=" http://img1.17img.cn/17img/images/201601/noimg/4276821d-58e8-4ea6-94b5-1cf11e882da6.jpg" border=" 0" vspace=" 0" hspace=" 0" / /strong /p p style=" text-align: center "   数据来源:公开资料,长江证券研究部 /p p   分子诊断主要分为核酸扩增技术(PCR)、原位杂交技术(ISH)、基因芯片以及最新的二代高通量基因测序四大类。目前临床应用最常见的为PCR,其次是原位杂交和基因芯片技术,新兴的二代测序技术正在高速发展。 /p p   目前中国分子诊断行业仍处于发展初期,随着人口老龄化,医疗模式的转变,市场对分子诊断的需求将不断增加。根据《医疗机构临床检验目录》,2007年分子诊断项目仅为28项,2013年项目增加到148项。2014年我国分子诊断市场规模预计将达18.3亿元,同比增长22.13%。随着国家政策的扶持和需求的增长,未来几年市场年平均增速估计依然高达20%以上。 /p p style=" text-align: center "    strong 图:2010—2014年我国分子诊断试剂市场规模分析 /strong /p p strong img width=" 600" height=" 199" title=" 6.png" style=" width: 600px height: 199px " src=" http://img1.17img.cn/17img/images/201601/noimg/9e9830bc-d14c-4844-816e-56d12e20e767.jpg" border=" 0" vspace=" 0" hspace=" 0" / /strong /p p style=" text-align: center "   数据来源:中讯咨询,中信证券研究部整理 /p p   分子诊断产品应用在临床疾病如肿瘤、感染、遗传等诊断占到70%以上,其次是体检中心、技术服务中心、第三方检测机构及微生物快速检测市场等方面。利用分子诊断技术了解肿瘤患者基因突变的种类与状态从而选择最适合的抗癌药物和制定个体化治疗方案,能够避免药物的误用和滥用,起到提高疗效,改善患者的生活质量的效果等。 /p p style=" text-align: center "    strong 图:我国分子诊断市场细分市场应用格局 /strong /p p style=" text-align: center " strong img width=" 450" height=" 246" title=" 7.png" style=" width: 450px height: 246px " src=" http://img1.17img.cn/17img/images/201601/noimg/68181173-361c-49e6-9cb2-974378a0a717.jpg" border=" 0" vspace=" 0" hspace=" 0" / /strong /p p style=" text-align: center "   数据来源:中讯咨询,中信证券研究部整理。 /p p    span style=" color: rgb(192, 0, 0) " strong 三、所处行业的风险 /strong /span /p p    strong 1、政策风险 /strong /p p   我国医疗服务业未来将保持持续增长的趋势,随着医疗服务业的转型,其产业地位、社会需求、产业格局和组织方式等都将发生较大变化,行业需要引进大量优秀人才、转变管理思路、购进先进设备和建立信息化系统等,这在资金需求和业务持续性方面,都将对实力较小的企业带来一定冲击。目前针对医疗行业从业机构的政策法规数量繁多且非常严格,个体化医疗检测的业务开展涉及到多种资质审批和后续监管政策。因此,相关政策的变动成为行业发展的不确定因素。 /p p    strong 2、市场竞争加剧风险 /strong /p p   由于国内居民生活水平的提高、居民保健意识的增强、城镇化水平的提高、人口老龄化、医保覆盖面的扩大等因素,我国医疗服务市场的需求将快速增长。未来在可观的业务收入及利润空间的吸引下,不排除国外大型医药科技公司、资本技术雄厚的竞争对手,甚至是公立医院等进入该市场争夺市场份额,届时分子诊断服务行业的市场格局可能发生重大变化。 /p p    strong 3、由技术改革导致的供求风险 /strong /p p   分子诊断服务行业具有技术水平高、知识密集型、多学科交叉综合的特点。过去的20年,医学检验方法学先后经历了生化检验、酶联免疫检验、化学发光免疫检验和基因诊断等四次技术革命,不仅灵敏度、特异性有了极大地提高,而且应用范围迅速扩大。目前电化学发光检验技术、流式细胞检验技术、基因芯片技术等已经应用于临床诊断的最新开发中。提供分子诊断服务的企业如果不具备相应的技术研发实力跟上技术变革的步伐,很可能在下一次技术变革中丧失优势,导致优质客户大量流失,逐渐被市场所淘汰掉。 /p
  • 准确、高效、快速,德国奶粉事件背后的分析利器——访上海仪真分析仪器有限公司产品经理张鸿
    p    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 10月24日,德国公益组织“食品观察”在其官网上发布一份针对在德国销售的16款奶粉(德国4款,法国8款,荷兰4款)的抽检调查报告。报告显示其中6个品牌的8款产品检出芳香烃矿物油物质,包括雀巢、诺优能、悠蓝等在中国也有较高知名度的母婴奶粉品牌。此次报告食品观察依据了三家独立实验室的检测结果,而三家实验室在矿物油成份检测中都采用了Axel Semrau公司的全自动在线LC-GC二维色谱联用矿物油分析系统。为此,仪器信息网(以下简称Instrument)特别采访了Axel Semrau大中华区独家代理上海仪真分析仪器有限公司(以下简称仪真分析)产品经理张鸿先生,就此次事件中涉及的矿物油及相关检测技术进行了交流。 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/0a469c41-4884-4707-8111-fed50f94ad95.jpg" title=" 仪真 张鸿_ 450psi.jpg" alt=" 仪真 张鸿_ 450psi.jpg" / /p p style=" text-align: center " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " 仪真分析产品经理 张鸿 /span /strong /p p    span style=" color: rgb(192, 0, 0) " strong Instrument:张经理,您好。此次德国奶粉事件中检出的矿物油物质在食品中常见吗?矿物油对人体的危害有哪些呢? /strong /span /p p    span style=" color: rgb(31, 73, 125) " strong 张鸿 /strong /span :矿物油(MOH)是以石油、煤或天然气为原料,经加工提炼获得的一类碳原子个数不同的烃类混合物(C10-C50)。外观类似日常的油脂,但并不来自于动物或植物,故称矿物油。常见的燃料油、润滑油、白油和蜡油都属于矿物油产品。包装油墨和除尘剂中都含有矿物油。由于此类产品广泛使用,矿物油逐渐渗入到我们食物链中。早在上世纪90年代初,欧洲科学家就在食品中发现有矿物油残留。2008年欧盟食品和饲料快速预警机构发现来自乌克兰的葵花籽油中含有高含量矿物油,引发社会的广泛关注。随后,有相关机构陆续在巧克力等食品中发现矿物油残留。如今越来越多的调查显示,许多食品都或多或少含有矿物油残留,这可能来自原料污染、加工污染或包装上的油墨迁移。 /p p   矿物油毒理特性目前还不是非常明确。根据已掌握的科学数据,一般将矿物油分成两类:一类是直链、支链或环烷烃组成的饱和烃类矿物油(MOSH),另一类是含有苯环的芳烃类矿物油(MOAH)。碳数在C16-C35之间的饱和烃类矿物油(MOSH)在体内不易被代谢,会在淋巴结、肾脏和肝脏等组织内蓄积,会出现炎症等不良情况。芳香烃类矿物油(MOAH)含有一个至多个苯环,目前虽还未有相关研究证实芳香烃类矿物油对人体的健康影响程度,但根据已有多环芳烃的毒理特性数据,含有苯环物质,具有潜在的致突变和致癌性。 /p p    span style=" color: rgb(192, 0, 0) " strong Instrument:目前食品中矿物油残留物的检测技术有哪些?此次事件中的三家独立实验室均采用了Axel Semrau公司的二维色谱系统,这套系统有什么特色和优势? /strong /span /p p    strong span style=" color: rgb(31, 73, 125) " 张鸿 /span /strong :食品中的矿物油分析,长期以来一直是一个难点。由于食品基质和周围环境的干扰,要满足检测限低(mg/kg水平),并且数据可靠稳定,非常不容易。欧盟还要求将矿物油再细分成含苯环的(MOAH)和不含苯环的(MOSH),需要分别定量,更加大了分析的难度。目前,食品矿物油分析方法主要有皂化法、气相色谱法、微柱层析法、薄层色谱法、离线固相萃取法和液相色谱-气相色谱(LC-GC)联用法等。其中皂化法、气相色谱法、微柱层析法和薄层色谱法常用于定性实验。离线固相萃取法可以进行定量检测,但样品前处理比较复杂,在操作性和实用性方面略有不足,现有获得欧盟标准号的方法还只能分析MOSH部分。 /p p   所以,本次报告中采用了LC-GC二维色谱联用法。这套系统将液相色谱和气相色谱串联使用,利用液相色谱本身的梯度洗脱和分离功能,将干扰基质和目标物分离,再无损失,不需要浓缩氮吹等步骤,将目标物全部转移到气相色谱中进行定量。相比其他检测方法,这种方法检测限低(0.5mg/kg),并能对MOSH和MOAH分别定量。很荣幸,本次参与检测的实验室使用的都是德国Alex Semrau公司产品。 /p p    span style=" color: rgb(192, 0, 0) " strong Instrument:目前我国对于食品中矿物油残留有没有要求或规定?国际上对食品中矿物油残留有哪些要求? /strong /span /p p    span style=" color: rgb(31, 73, 125) " strong 张鸿 /strong /span :近年来,我国对食品安全十分重视,但目前国家对食品中矿物油残留还没有具体要求。只是在《食品中可能违法添加的非食用物质名单》中有明确规定——不能在大米中添加矿物油,用于改善大米的外观。 /p p   国际上,特别是欧盟对食品中矿物油残留,是非常关注的。2009年,乌克兰葵花籽油矿物油污染事件出现后,欧盟曾规定食用油中的矿物油含量不能超过50mg/kg;2014年,德国规定采用回收包装材料的食品,包装材料的矿物油迁移限量,饱和烃类和芳烃类矿物油的迁移限量分别是2mg/kg和0.5mg/kg;2017年,欧盟发布了关于“监测食品以及食品接触材料和物品中矿物油烃类”的建议性指导文件,督促各国监测不同食品中的矿物油含量。不同食品行业协会组织,纷纷开展食品中矿物油的来源调查,并为企业提供帮助和方案。通过近十年的关注,欧洲企业改进了自己的生产工艺或包装材料,近期的数据表明,和前期相比,矿物油残留背景含量已大幅降低。 /p p   虽然国内目前还未对矿物油等指标纳入检测体系,但一些知名国际品牌都已关注食品中矿物油残留,并购买了我们的仪器设备开展矿物油残留物相关研究分析,以保障民众食品安全。 /p p    span style=" color: rgb(192, 0, 0) " strong Instrument:我国食品中矿物油检测科研现状如何?仪真分析在矿物油检测研究领域取得了哪些成果? /strong /span /p p    strong span style=" color: rgb(31, 73, 125) " 张鸿 /span /strong :现阶段国内进行食品中矿物油残留研究的科研机构还比较有限。北京理化分析测试中心武彦文老师的团队从2015年起开展矿物油分析方法的研究,目前其开发的方法及测试水平均已步入国际前列。今年8月,北京市理化分析测试中心与德国Axel Semrau公司的德中合作的矿物油分析实验室(仪真分析和北京理化分析测试中心共享实验室)正式揭牌,仪真分析与Axel Semrau公司合作,应用Axel Semrau的软件平台,合作开发适合中国应用的包含软件与硬件的解决方案。现实验室已成为国内科研检测人员研究矿物油分析方法的平台。 /p
  • 药物分析新技术系列约稿|气体吸附技术在医药粉体表征中的应用
    药物粉体是大部分药物制剂的主体,其疗效不仅取决于药物的种类,而且很大程度上还取决于组成药物制剂的粉体性能。大量的研究表明,药物粉体的比表面积、孔径分布和真密度等物性参数关系到粉末颗粒的粒径、吸湿性、溶解度、溶出度和压实度等性能,在药品的净化、加工、混合、制片和包装能力中扮演着重要角色。尤其是对于原料药和药用辅料,其比表面积等参数是其性能的重要指标。原料药,作为药物的活性成分,其比表面积会影响其溶出度、颗粒粒径和溶解度等性质。在一定条件下,同等重量原料药的比表面积越大颗粒粒径则越小,溶解和溶出速度也相应加快。通过对原料药比表面积的控制,还可使其达到很好的均匀度和流动性,保证药物含量分布均匀。药用辅料,作为生产药品和调配处方时使用的赋形剂和附加剂,比表面积正是其重要功能性指标之一,它对于稀释剂,粘合剂,崩解剂,助流剂,尤其是润滑剂具有重要意义。例如,对于润滑剂而言,比表面积显著影响其润滑效果,因为润滑剂要起到润滑效果的前提,就是要能均匀地分散在颗粒的表面;一般来说,粒径越小,比表面积越大,越容易在混合过程中均匀分布。由此可见,精准、快速、有效的测试医药粉体的比表面积和真密度等物性参数,一直都是医药研究中不可缺少的关键环节。因此,在美国药典USP和USP,欧洲药典Ph. Eur. 2.9.26和Ph. Eur. 2.2.42以及《中国药典》2020年版四部通则第二批增修订的理化分析内容0991和0992中,都明确规定了药物粉体比表面积的测定方法和固体密度的测定方法。一、气体吸附技术及其应用气体吸附技术是材料表面物性表征的重要方法之一,基于吸附分析能够对原料药、药用辅料和药物制剂的比表面积、孔容及孔径分布、真密度等参数进行精准的分析。进而对药品的有效期、溶解速率与药效等性能做一些基础性的分析,助力医药行业的快速高质量发展。比表面积:主要对于药品有效期、溶解速率和药效有着重要影响。一般来说,比表面积大,其溶解和溶出速度也相应加快,进而保证了药物含量分布均匀;但比表面积过大:会使药物吸附更多的水分,不利于药物的保存和药效的稳定。孔容及孔径分布:对药物崩解、释放和生物利用度有着关键的影响。较大的孔容可在孔道内负载各种药物, 并可对药物起到缓释作用, 提高药效的持久性;此外,一定范围内孔径增大,药物的释放速率也会相应加快。真密度:对粉体药物的流动性,均匀性,压缩性以及离析度、结晶度等有着重要的影响。真密度的大小可作为判断材料的结晶状态以及二元混合物中固体含量百分比;此外,对于优化辊压速度、辊压压力等工艺参数具有一定的指导作用。2、 比表面积和孔径分布表征中的实际应用案例1、 原料药蒙脱石散的比表面积表征蒙脱石,是由膨润土提纯加工而得,因其特殊的层状晶体结构使其具有良好的吸附能力、阳离子交换能力和吸水膨胀能力,在药学上具有独特的优势。其作用机制与其较大的比表面积息息相关。由于其较大的比表面积,因而可对毒害物质具有较强的吸附作用;此外,与消化道黏液蛋白静电结合,对消化道黏膜起保护和修复作用[1]。以下是使用国仪量子V-Sorb X800系列比表面及孔径分析仪对蒙脱石散粉体材料的表征案例,据中国药典2020版四部规定,采用氮气作为吸附质,样品待测面积至少>1m2 ,我们建议不少于0.1g,在105℃下真空加热脱气2小时后进行测试。从图1可以看出,不同种类的蒙脱石散其表面积差距较大,分别为 76.57 m2/g,47.67 m2/g和29.32 m2/g,研究者可以通过比表面积的测试结果来进行基础药性的判断,进而根据药品的实际作用需求来选择相应类型的原料。图1 不同种类的蒙脱石散比表面积测试结果2、 药用辅料硬脂酸镁的比表面积表征硬脂酸镁,呈片状晶体形状,主要用作片剂和胶囊的润滑剂或抗粘剂;由于其不确定的化学组成导致硬脂酸镁具有不同的物理性质,从而影响其润滑功能,其比表面积对硬脂酸镁润滑功能起到关键作用[2]。比表面积越大,其极性越强,附着力越大,可以在颗粒表面形成一层较薄但均匀的硬脂酸镁层,相应的合成物的润滑性就越好;而比表面积较低的硬脂酸镁,容易在颗粒表面富集。润滑性能就会较差。以下是使用国仪量子V-Sorb X800系列比表面及孔径分析仪对硬脂酸镁的表征案例,据中国药典2020版四部规定,采用氮气作为吸附质,样品待测面积至少>1m2 ,我们建议待测面积>5m2,根据美国药典要求,其BET方程的P/P0选点在0.05~0.15之间,其线性拟合度要大于0.9975。从图2可以看出,在经过40℃、80℃和100℃预处理之后,其比表面积测试结果分别为 6.14 m2/g,5.78 m2/g和3.10 m2/g,可以发现不同预处理温度对其表面积测试结果有较大影响,且随着脱气温度升高,其比表面积数值越小,经过分析主要是硬脂酸镁的成分复杂,且熔点较低,较高的脱气温度会造成硬脂酸镁烧结或熔化。图2 不同预处理温度下硬脂酸镁比表面积测试结果3、 纳米氧化锆材料的比表面积和孔径分布表征纳米氧化锆材料是一种白色结晶氧化物,在过去的十年中由于其表面光滑、质地致密,高强耐磨,良好的生物相容性和化学稳定性,因而在医疗硬组织修复领域中很受欢迎。以下是使用国仪量子V-Sorb X800系列比表面及孔径分析仪对纳米氧化锆的表征案例。从图3可以看出,粒径为2.0-2.5 μm(左)和粒径为1.0-1.5 μm(右),其比表面积测试结果分别为18.64 m2/g和19.91 m2/g,可以发现随着粒径的降低其比表面积数值在增加。此外,也对粒径为1.0-1.5 μm的纳米氧化锆材料进行了孔径分布的表征,从图4的N2吸附-脱附等温线可以看出,主要为Ⅱ类等温线,在高点时吸附量陡增,可能存在少量的大孔结构;从BJH介孔孔径分布图来看,样品基本没有介孔结构,但在100 nm-200 nm处存在相对集中的孔径分布,可能含有部分大孔结构,可结合扫描电镜进一步观察确认。从SF-微孔孔径分布图以及N2吸附-脱附等温线图来看,样品存在较为少量的微孔结构,集中分布在0.75 nm,即最可几孔径为0.75 nm。图3 不同颗粒尺寸的纳米氧化锆比表面积测试结果(左:2.0-2.5 μm,右:1.0-1.5 μm)图4 N2吸附-脱附等温线(左)、BJH-孔径分布(中)、SF-孔径分布(右)三、真密度表征中的实际应用案例在医药领域,气相二氧化硅的亲水性可用来消除水肿和降低伤口发炎产生的分泌物;帮助腹泻病人固定和结合水分;在皮肤病学中广泛用作干燥剂,其高吸附性可用来吸附微生物和微小病毒。气相二氧化硅还可作为乳浊液的稳定剂、药物载体,延长药效和促进药物吸收。以下是使用国仪量子G-DenPyc X900系列真密度测定仪对气相二氧化硅材料的表征案例。从图5可以看出,经过不同改性后的气相二氧化硅其真密度数值具有较大的差异,分别为0.154 g/ml,0.299 g/ml和0.382 g/ml,研究者可以在保证药效的前提下,选择相应较轻的二氧化硅进行生产加工。图5 不同改性后的气相二氧化硅的真密度测试结果国仪量子比表面及孔径分析仪国仪量子V-Sorb X800系列产品可以提供超低比表面积和微孔、介孔孔径及其分布的稳定测试,是满足中国药典测试方法的高通量快速经济型仪器;实现来料、出厂成品比表面积快速测试,孔径分布分析,进而进行质量把控,调整工艺参数,预估药品性能等。产品具有测试高效、结果准确、性价比高、自动化操作简单易学等诸多优势。全自动比表面及孔径分析仪V-Sorb X800系列参考文献[1] 次旦卓嘎. 蒙脱石治疗小儿腹泻的临床效果分析[J]. 世界最新医学信息文摘, 2019(79):2.[2] 郭仁庭, 覃忠富,傅长明, 等. 硬脂酸镁的性质、应用及市场前景综述[J]. 企业科技与发展: 上半月, 2011, 000(004):P.15-17.
  • 药物热分析讲座 第四部分:全自动软件流程 – 热分析数据分析的有力助手
    药物热分析讲座第四部分:全自动软件流程 – 热分析数据分析的有力助手率耐驰热分析学苑 No.16课程描述分析仪器的应用过程中,软件的作用越来越重要。对于分析软件,基本的要求是直观、操作简便、分析结果可靠。在热分析行业,耐驰公司提供的AutoEvaluation 和Identify毫无疑问是里程碑式的软件工具。它们提供的自动分析、自动识别和检索功能是业界绝无仅有的。对于DSC和TGA用户来说,这些工具不但节省时间,而且极大地减少了人为因素的干扰,使分析结果更为可靠。AutoEvaluation是业界第一个自动分析软件。它可以自动检测并分析热效应,无需人工干涉。例如可以使用此功能分析包含多个吸热、放热峰的DSC曲线。Identify是一个图谱检索和数据库系统。使用者通过几次鼠标点击就可以完成数据库检索。目前系统标配的数据库中包含了1200多条参考曲线,其中也包括了药物和有机物的数据。而且,Identify也可用于质量控制。本次课程将介绍如何使用这些软件工具,或者说NETZSCH的软件系统如何能帮助使用者提高日常测量的效率及可靠性。课程安排时间 2018年12月13日,星期四,10:00-11:00 上午,北京时间授课语言 中文设备软件 台式机、笔记本:在初次点击链接进入会议室时,链接会自动引导安装Go to Webinar软 件,并加入会议; 手机、平板电脑:需事先下载安装Go to Webinar客户端软件,后输入会议ID加入。
  • 以氮吸附分析为抓手 推动纳米粉体材料检测技术进步
    p style=" text-align: justify text-indent: 2em " 氮吸附比表面孔径分析仪自上世纪60-70年进入中国市场,以欧美品牌为主,在石油石化行业应用,随着国内工业的不断进步,于上世纪70-80年代,我国出现了第一代动态氮吸附仪,但是由于技术上不是很成熟,未能普遍推广应用。2000年,由北京理工大学材料学院钟家湘教授带领团队对早期产品进行了全面的改造,推出了新一代动态直接对比法比表面仪,并于2003年进入市场,应用在纳米材料的研究领域,这也得益于钟教授是中国最早一批投身纳米材料研究的科学家,对纳米材料的比表面表征测试需求非常熟悉,这也正式开启了我国氮吸附仪的新里程。 /p p style=" text-align: justify text-indent: 2em " 钟教授于2004年正式成立北京精微高博科学技术有限公司,专门研究氮吸附仪,在这个专业领域奋斗至今已经15个年头,被誉为“中国氮吸附仪的开拓者”。由于直接对比法没有体现多层吸附的理论,在应用上有一定的局限性,精微高博公司在2004年研制成功动态BET比表面仪,实现了与国外的接轨,是我国氮吸附比表面测试技术走向成功的重要标志。2005年精微高博又研制成功动态常压单气路孔径分析仪,完善了JW-D系列动态法比表面测试仪。至此,精微高博生产的氮吸附仪逐渐被国人认可,国内用户逐年增长。 /p p style=" text-align: justify text-indent: 2em " 随着技术原理的深入探究,对国际先进技术的学习,可以看到国际学术界被认可的测试原理是静态容量法比表面和孔径分析仪,动态色谱法在孔径分析上有缺陷,虽然比表面分析非常可靠,为了赶上国际先进水平,2006年精微高博开始研究静态容量法氮吸附仪,并取得成功。在短短的几年中,我国在做纳米材料表面特性测试仪器方面取得了飞速的发展,2008年精微高博静态容量法比表面孔径分析仪被清华大学采购使用,得到良好的用户反馈,JW-BK静态容量法比表面孔径分析仪器系列在高校科研领域占有一席之地。2010年对精微高博动态比表面测试仪、静态容量法比表面孔径分析仪做了全面的科学技术鉴定,从用户角度出发,给出来了客观的高度评价。中国分析测试学会、中国仪器仪表协会授予精微高博钟教授“研发特殊贡献奖”。随着纳米材料在各行业的广泛应用,对检测设备也提出了更多新的需求,2012年精微高博又推出了一款新品,JW-M100真密度测试仪,从另外一个角度度纳米粉体材料进行物性表证。 /p p style=" text-align: justify text-indent: 2em " 精微高博看准锂电行业发展趋势,针对正负极材料小比表面的测试特点,于2015年推出JW-DX吸附峰测试比表面仪器,该款仪器一推出市场,立刻得到良好反馈,纠正了长期被脱附峰所误导的现状,解决了脱附峰不能克服的顽疾,如脱附不完全、不能准确测量小比表面样品等。此款产品在锂电行业得到了广泛的应用,不仅测试速度快,测试重复性好,精微高博还采用气路分离技术避免了没个通道样品间的相互影响。为此2016年国家科技部授予精微高博新型吸附峰比表面测试仪JW-DX型科技进步奖。2017年精微高博参与制定了【气体吸附BET法测定固态物质比表面积国家标准& nbsp GB/T19587-2017/ISO 9277:2010】,将技术要求上升到国家标准,为行业的发展贡献一份力量,也说明精微高博的技术能力被更广泛的认可。 /p p style=" text-align: justify text-indent: 2em " 2017年底精微高博融资改组后迎来2018年的创业元年,新鲜血液的注入,科学管理方式的执行,不仅加快了精微的研发步伐,也为精微的销售开辟了新的模式,2018年精微高博推出ZQ蒸汽吸附系列产品,2019年精微高博引进mixSorb竞争性气体吸附仪,此款设备不仅可以对多组分气体的穿透曲线进行测试分析,还能利用模拟软件分析不同组分气体的吸附动力学。mixSorb竞争性吸附仪器的引进,拓展了精微的产品线,同时为分离提纯的科研工作者提供了有效的检测手段。精微高博始终坚持自主创新的道路,以成就客户为宗旨。 /p p style=" text-align: justify text-indent: 2em " 精微高博被誉为中国氮吸附仪开拓者,致力于打造中国国产仪器良好品牌, 树立品牌的要素,第一,产品的核心技术。品牌的形成在于产品技术是否过硬。第二,与同类产品的差异化。北京精微高博在钟家湘教授的带领下,潜心研究,在研发的过程当中,我们并没有刻意的去照搬国外的一些技术,精高博有自己的科研队员,有自已的创新技术,将更好的技术注入到仪器当中。在JW-BK静态容量法比表面空进分析仪中,我们采用“阶梯式”自控、可调、多通道并联抽真空系统,内置式防抽飞单元,可有效避免仪器受到污染。JW-BK系列中的二级吸附泵也是精微的发明专利,采用这种二级吸附泵不仅使真空度显著提高,为微孔测量提供给必要的测试条件,而且节约了客户成本。精微高博在新能源领域深耕多年,凭借其强大的技术支撑及翘楚的售后服务,深受广大用户的欢迎与推崇,在用户名单中,不乏有新能源领域的大牌及新星如比亚迪、贝特瑞、杉杉等, JW-DX动态法比表面测试仪正式满足了客户快速准确测试的需求,尤其是针对比表面积在0.1-0.5m2/g的小比表面样品,动态氮吸附法相对于脱附法更具有优势。采用吸附峰,避免脱附不完全带来的误差,从根本上消除了传统仪器存在的缺陷。 /p p style=" text-align: justify text-indent: 2em " 新材料是各行业未来发展的基础,目前科研已经研究到微纳米级别,新型的催化剂、MOF材料、碳纳米材料,新型的金属氧化物在特种陶瓷上的应用,新型的纳米微球在精准医疗上的应用,更多新材料的研究需要更好更精确的表征手段,比表面和孔径的分析将越来越普遍被应用,市场每年以10%以上双位数增长,作为国内比表面及孔径分析的领航者之一,精微高博的愿景是:创中国知名品牌,争世界一流产品。以成就客户为使命,向全球客户提供高质量、高易用性、高性价比的产品和服务解决方案。以振兴民族产业为己任,让中国创造享誉全球,将精微高博发展成为源于中国卓越的国际品牌。为此,在技术和管理上持续投入和创新,打造精诚团结的人才队伍,在产品和服务质量上不断提高,立足中国,走向世界,为广大客户创造价值。 /p p style=" text-align: right text-indent: 2em " strong 作者:精微高博 /strong /p p style=" text-align: left text-indent: 2em " (本文由精微高博供稿,不代表仪器信息网本网观点) /p
  • “分子互作分析技术”主题约稿函
    生物分子的活性功能是通过分子之间的相互作用来实现的,研究生物分子间的相互作用,可以从分子水平上了解生命现象,从而阐明生命活动的机理,发现生命的本质。分子互作分析仪是指利用物理、物理化学或光学等手段检测分子之间的动力学、亲和力和热稳定性等人们肉眼无法捕捉的参数,帮助人们对分子进行定量或定性的分析,在生命科学、临床医学、环境检测和药物筛选等研究中发挥了巨大作用。当前,分子互作分析技术多元,涉及的仪器品类繁多,根据原理划分主要包括表面等离子共振技术(SPR)、生物膜干涉技术(BLI)、光栅耦合干涉技术(GCI)、微量热泳动技术(MST)及等温滴定量热技术(ITC)等等。近年来,随着科学技术进步以及新药研发市场的迅猛发展,基于上述技术原理衍生出一系列新技术,市场上也涌现出越来越多新的仪器产品。为帮助广大科研工作者了解前沿分子互作分析技术、增强业界相关人员之间的信息交流,同时为用户提供丰富分子互作产品与技术解决方案,仪器信息网广泛向业内技术专家、仪器厂商约稿。相关稿件将收录至【分子互作分析技术】专题,并在仪器信息网平台全渠道推送,后续还将把干货整理成册,以供更多人士阅读。欢迎各位行业协会/学会、高校/科研院所的专家老师,以及领域内仪器厂商们投稿。一、主办单位:仪器信息网二、专家约稿主题聚焦分子互作分析仪器或技术,可选择以下主题(但不限于)其中之一:1.仪器专家(1)分子互作分析仪器或技术的研究进展(包括国内外研究现状、技术路线点评、关键问题、发展趋势、应用前景等);(2)分子互作分析仪的最新研究成果(包括项目概述、结构和功能、取得成果等);(3)分子互作分析仪器或技术的相关标准/法规概况及解读;(4)分子互作分析仪的操作技术要点、数据分析技巧;(5)分子互作分析仪国产与进口的差别、亟待解决的问题、未来发展的建议;2.应用专家(1)基于分子互作分析仪取得的最新研究成果(研究背景、研究过程、取得成果等) (2)其它相关经验之谈。三、厂商约稿提纲(1)贵司在分子互作分析领域主推的仪器产品是什么?请您谈谈该产品的核心竞争力。(2)请介绍贵公司分子互作分析技术路线的发展历史。(3)贵公司分子互作分析仪主要应用哪些领域的哪些实验环节?(4)您如何看待当前分子互作分析仪市场及前景?未来看好哪些细分领域?此外,厂商还可聚焦【面向分子互作分析仪用户在日常操作中需要注意的技术要点,以及相关数据分析技巧】主题,撰写成文。参考样文及链接:NanoTemper:“不可成药”靶点研究将成为分子互作 仪热点 需求市场 四、回稿要求:您可以根据上述问题进行稿件撰写,也可以由此展开相关话题。1.稿件字符数不少于1200字,欢迎多提供图片,图片像素应不低于300DPI 2.稿件无抄袭、署名排序无争议,文责自负,请勿一稿多投 3.投稿须为Word文档,本网编辑有权对文稿进行修改,如不同意请注明。4.请在稿件末尾注明供稿者姓名、单位、个人简介。五、投稿邮箱:zhaoyw@instrument.com.cn 六、活动时间:2022年9月-10月
  • 解决方案 | ICP-OES法分析玻璃粉及高纯石英粉末中多种元素
    玻璃粉主要组成为PbO 、 SiO2 、 TiO2及其他杂质元素,是一种重要的半导体材料,主要应用于制造电子浆料和其它电子元器件行业。其中组成的变化会影响元器件的性能,因此对玻璃粉中各组分含量的分析具有重要的意义。高纯石英主要矿物成分是SiO2,因具有耐高温、耐腐蚀、低热膨胀性、高度绝缘性和透光性等优异物理化学特性,广泛应用于LED照明、光伏和半导体等高新技术产业。《矿产资源工业要求手册》中,根据石英中SiO2、Fe2O3及污染元素(Al、Ti、Na、K、Li、Ca、Fe、P、B)的含量,划分为不同纯度等级。因此对石英粉末中各组分含量的分析对实现不同纯度石英砂的级别划分具有重要的意义。技术难点玻璃粉及高纯石英中多元素分析存在以下技术难点:种类多待测元素种类多,需实现多元素同时检测,常规分析方法(如容量法、比色法)不能满足其检测需求。差异大待测元素含量差异大,需满足高低浓度元素同时检测的需求,对仪器检测准确度、线性范围提出了更大挑战。含量低高纯石英粉末中杂质元素含量低,要求仪器具有高灵敏度和低检出限。谱育优势谱育科技 EXPEC 6000 R型 电感耦合等离子体发射光谱仪(ICP-OES)具备高灵敏度、低检出限、宽线性范围、多元素同时测定的特点,可解决上述困难,实现玻璃粉、高纯石英中Al、Na、K、Li、Cr、Fe、Mg、Ba、Ti、Ca、Mn、Mi、Cu、Mo 14种元素的分析。EXPEC 6000 R型电感耦合等离子体发射光谱仪EXPEC 790s超级微波化学工作站多元素同时分析全谱直读数据采集,实现多元素同时性分析。宽线性范围测定谱线的线性动态范围:≥105,实现高低浓度同时检测。高灵敏度百万像素科研级防溢出面阵CCD检测器,实现低含量元素的高灵敏响应。应用案例仪器与试剂仪器:EXPEC 6000 R型、EXPEC 790s主要试剂:氢氟酸 ;盐酸;去离子水测定参数分析结果玻璃粉使用 EXPEC 790s 对样品进行微波消解,应用 EXPEC 6000 R型 测定玻璃粉末标准品中Al2O3、CaO、Fe2O3、K2O、MgO、Na2O 6种金属氧化物含量,结果表明:该方法测定方法精密度均小于3%,其测量结果与该样品的的标准值比对其偏差在6%以内,说明了 EXPEC 6000 R型 测定结果的准确性。玻璃粉标准品中样品测试结果高纯石英使用 EXPEC 790s 对样品进行微波消解,应用 EXPEC 6000 R型 测定4种高纯石英粉末中Al、Na、K、Li、Cr、Fe、Mg、Ba、Ti、Ca、Mn、Mi、Cu、Mo 14种元素的含量,目标元素均有良好的线性,空白低,样品中常量及微量元素均能满足低浓度的检出。使用 ICP-OES 法测定石英样品中的微量元素的测试方法基体效应小,精密度高,检出限较低,较传统方法效率较高,结果可信度高,可满足石英样品中多元素快速、精确检测的要求。高纯石英粉末中样品测试结果
  • 图像分析法在3D打印金属粉末粒度及形状表征领域的应用
    2021年6月1日,《增材制造 金属粉末性能表征方法》(GB/T 39251-2020)[6]正式实施, 该标准中明确要求按照《粒度分析 图像分析法 第2部分:动态图像分析法》(GB/T 21649.2- 2017)[3]来检测并计算金属粉末颗粒投影的球形度值。早在2018年,德国最大的学术组织德 国工程师协会(Verein Deutscher Ingenieure,VDI)在《Additive manufacturing processes, rapid manufacturing Beam melting of metallic parts Characterisation of powder feedstock》(VDI 3405 Part 2.3)[13]中已将动态图像分析法列为增材制造金属粉末粒度及粒形分析的首选方法;美国材料试验协会(American Society of Testing Materials,ASTM)在《Additive manufacturing — Feedstock materials — Methods to characterize metal powders》(ASTM 52907:2019)[12]中, 也将动态图像分析法列为金属粉末粒度分析的方法之一。此次GB/T 39251的实施,代表着我国在金属粉末表征领域与国际同步。 自1999年动态图像法被发明至今已有22年的发展历程,技术层面已经十分成熟,得益于其“所见即所得”的直接测量方法,如今在亚微米-毫米尺度内正被越来越多的用户推崇, 用于颗粒粒度与粒形表征。本文使用图像分析法,激光衍射法和筛分法分别测量了金属粉末的粒度与形状,从形状分析灵敏度、与传统方法对比以及对大颗粒的检测灵敏度等方面对测量结果进行了对比分析,论证了图像分析法在该领域的应用优势。 1. 动态图像法分析原理说明:1 分散态的颗粒;2 颗粒运动控制装置;3 测量区域;4 光源;5 光学系统;6 景深;7 图像采集 设备;8 图像分析设备;9 显示 图1 动态图像法流程图 动态图像分析流程:粉末样品在(2)颗粒运动控制装置的控制下,均匀分散地进入(3) 测量区域,(4)光源发射的可见光经(5)光学系统转变为平行光,平行光照射到粉末颗粒 后形成的颗粒投影被(6)图像采集设备拍摄捕捉,颗粒图像传输至(8)图像分析设备,统 计分析得到最终结果(9)。图2 基于双摄像头成像技术的Microtrac MRB动态图像分析仪Camsizer X2,分析范围0.8μm-8mm 2 . 动态图像法在增材制造领域的应用优势 增材制造金属粉末粒度一般在20μm-80μm之间并且分布尽可能窄,同时卫星颗粒、非球形颗粒、超大颗粒或熔结颗粒的含量应尽可能低,以提高粉末烧结性能并且避免成型缺陷。 另外,3D打印过程中仅有少部分粉末用于部件成型,另有大部分粉末需要回收利用,回收粉末是否仍然满足打印质量要求是金属粉末质量检测的重要课题。传统方法一般使用筛分法或 气流分级法分级金属粉末得到所需粒度段,使用激光衍射法和筛分法测定金属粉末粒度分布,使用扫描电镜观察金属粉末球形度。 2.1 快速准确定量分析颗粒形状 利用气雾法在不同生产条件下得到原始粉末,并使用筛分法筛选出<60μm的1#与2#合 金粉末,使用SEM扫描电镜观察1#与2#合金粉末,得到图3样品图片,使用动态图像分析仪 Camsizer X2检测1#与2#合金粉末,得到图4的粒度分布与粒形分布曲线。图3 1#、2#合金粉末的扫描电镜图像图4 1#与2#合金粉末的粒度频率分布曲线(左)与球形度曲线(右)分析仪器:Microtrac MRB德国麦奇克莱驰 Camsizer X2 如图4所示,1#与2#样品粒度分布几乎完全重叠,但其球形度SHPT分布曲线呈现明显差 异,其中1#样品SHPT曲线整体更靠近右侧,表明1#样品的颗粒形貌更加规则。 表1 具有相同粒度分布的两个金属粉末样品的动态图像分析结果从表1中可知,1#与2#样品的D10、D50、D90值偏差仅有1μm左右,使用激光粒度仪根 本无法检测出两个样品的差异;使用SEM观察颗粒形状,如图3所示,虽然直观感觉1#样品 的形貌比2#样品更加规则,但SEM无法量化表征粒形数值,只能作为参考展示和定性分析; 使用动态图像法检测两个样品,球形度SPHT平均值分别为0.9166和0.8596,如果把球形度值 0.9作为球形颗粒认定标准的话,1#与2#样品SPHT>0.9的球形颗粒占比分别为65.88%和 38.02%。动态图像分析仪仅用时4-5分钟,就统计了超过1000万颗颗粒信息,得到极佳的具 有统计代表性的结果。 2.2 粒度粒形同步分析 Microtrac MRB动态图像分析仪Camsizer X2采用两个420万像素的高分辨率摄像头,每 秒钟可拍摄超过300张图像,软件统计每一张图像中的每一颗颗粒粒度及形状数据。 使用Camsizer X2检测金属粉末得到颗粒投影原始灰度图像,如图5所示,使用图像分析 功能提取出两颗颗粒的粒度与粒形数据如表2所示。图5 动态图像法单颗粒投影原始图像 表2 单个颗粒粒度与粒形数据动态图像法拍摄统计每一颗颗粒的粒度及粒形数据,基于真实的颗粒测量,所见即所得, 不受样品折射率、遮光率的影响,不受筛网变形影响,检测结果比激光粒度仪和筛分仪更加 可靠。但是在新颁布的国家标准中,粒度分布测定方法仅列出了激光衍射法与筛分法,笔者 分析是在标准制定过程中,考虑到目前图像法分析仪的市场占有率远远低于激光粒度仪,出 于方法普遍性而做出的选择。在德国VDI和美国ASTM标准中,均将图像法列为粒度和粒形 分析方法之一,在后续的标准修订中我们应该改进。 2.3 与传统方法的对比 根据样品不同、检测方法不同、应用方向不同,颗粒粒径有多种不同定义,如图6所示。 图 6 常用的颗粒粒径定义 Xc min:颗粒弦长,从 64 个不同方向测量颗粒在该方向上的最大弦长 Xc,取 64 个弦长值中最小的一 个作为颗粒弦长 Xc min,Xc min常用于和筛分法结果对比。 Xarea:等效球径,与颗粒投影面积相等的圆形的直径,Xarea 常用于和激光衍射法结果对比。 XFe max:颗粒长度,从 64 个不同方向测量颗粒在该方向上的费雷特直径 XFe,取 64 个费雷特直径中最大的一个作为颗粒长度 XFe max,即颗粒的最大卡规径。 动态图像法根据颗粒投影所占据的像素数量与位置,一次进样可以检测图 6 中 3 种不 同的粒径定义。 2.3.1 动态图像法与激光衍射法的对比 激光粒度仪一般基于米氏理论或弗朗霍夫理论,利用颗粒对光的散射现象,根据散射光 能的分布计算被测颗粒的粒度分布:当样品颗粒的散射光分布与某一大小的球形颗粒的分布 一致时,即认为样品颗粒大小等于该球形颗粒的直径。即激光粒度仪所测粒径为图6中的等 效球径Xarea,对于大部分非规则的颗粒样品,激光粒度仪测量结果存在系统性偏差。 分别使用动态图像分析仪与激光粒度仪测量4种不同形状的金属粉末,得到图7的粒度累积分布曲线。图7 激光粒度仪与动态图像分析仪粒度累积分布曲线对比 动态图像分析仪器:Camsizer X2(Microtrac MRB) 激光粒度分析仪器:Sync(Microtrac MRB) 红色曲线:Xc min 颗粒弦长;绿色曲线:Xarea 等效球径;蓝色曲线:XFe max 颗粒长度;黑色曲线:激光粒度 使用动态图像分析仪可以同时得到颗粒弦长Xc min、等效球径Xarea与颗粒长度XFe max三条 曲线,如果样品是球形颗粒,如图7中Sample1与Sample2所示,3条曲线差距很小;如果样品 中含有非球形颗粒,如图7中Sample3与Sample4所示,3条曲线就会呈现明显差异,并且样品 越不规则,3条曲线差异越明显。激光粒度仪无法区分颗粒宽度与长度,其检测结果一般位 于动态图像分析仪的颗粒弦长与颗粒长度之间。Sample2为通过53μm孔径筛网的金属粉末,所有颗粒的弦长均应小于53μm,只有部分 颗粒的长度可能大于53μm。如图7所示,Sample2的红色曲线Xc min上限D100<53μm,只有 蓝色曲线XFe max检测到少量>53μm的颗粒,而黑色曲线激光粒度数据显示有超过5%的颗粒 >53μm,与实际存在误差。这表明,激光粒度仪对颗粒粒度上限的检测精度不够准确,图像分析仪可以准确检测粒度上限D100,更接近真实结果。 2.3.2 动态图像法与筛分法的对比 筛分法作为一种经典的颗粒分级与粒度分布测量方法,被广泛应用于金属粉末的质量控制,此次实施的国家标准中,建议>45μm的金属粉末可以采用筛分法来测定粒度及粒度分布。筛分法的优点是检测范围宽、重复性好、设备成本低,缺点是检测效率低,人为误差大, 受筛网变形影响大。目前所用的筛网一般是金属丝编织筛网,网孔大小指方形网孔编织丝线 间的垂直距离。理论上标准球形颗粒通过筛网的最小孔径等于其颗粒直径,非球形颗粒通过 筛网的最小孔径约等于其颗粒弦长,如图4所示。 分别使用筛分法和动态图像法测量某粒度区间位于100μm-5mm的宽分布塑料颗粒,得到图8所示曲线。图8 宽分布塑料颗粒动态图像法与筛分法一致性曲线,横坐标为筛网目数 动态图像法分析仪器:Camsizer P4(Microtrac MRB) 筛分法分析仪器:AS200C(Retsch GmbH) 如图8所示,即使是粒度分布非常宽的样品,动态图像分析仪Camsizer也能够准确检测, 检测结果Xc min与筛分法结果高度一致,可以直接替代筛分法用于金属粉末的粒度和粒度分布测定。 实际筛分过程中,由于筛网的产地不同、标准不同、质量不同等多方面因素,再加上筛分过程中的人为误差,常常会产生非常大的筛分误差。为减小筛分误差,首先应选用经过计量认证的不易变形的标准筛网,其次,应使用振动筛分仪器在标准程序下进行筛分。 2.4 超大颗粒的检测灵敏度 增材制造金属粉末中少量大颗粒的存在会很大程度上影响粉体流动性和铺粉效率,从而影响成型件的结构强度,容易形成空隙和划痕,所以需要对金属粉末的粒度分布,尤其是超大颗粒的含量进行严格的控制。传统的激光粒度仪由于分析原理限制,对于超大颗粒的检测灵敏度仅为 2%左右。德国麦奇克莱驰 Microtrac MRB 的动态图像分析仪 Camsizer X2 采用 双摄像头技术,拍摄区域宽,分析精度高,对超标颗粒检测灵敏度可达 0.01%。 在约5克<80微米的金属粉末样品(图9 上左)中加入约0.005克(0.1%)的超过200μm 的大颗粒(图9 上中),使用Camsizer X2检测该混合样品得到图9下粒度分布曲线。‍图9 动态图像分析仪Camsizer X2对超大颗粒的检测灵敏度 如图9下所示,Camsizer X2准确检测到0.1%的超大颗粒。继续添加不同组分的超大颗粒, 验证Camsizer X2对大颗粒含量的识别精度,得到如表3结果: 表3 Camsizer X2对不同组分大颗粒的检测精度即使低至0.005%含量的超大颗粒,Camsizer X2也能够准确识别,依靠其双摄像头成像 技术,Camsizer X2超宽的检测范围不会漏拍任何颗粒。 3. 静态图像分析法在增材制造领域的应用 此次实施的标准中,显微镜法也是测量粉末球形度的方法之一。显微镜配备测量软件, 即为一台静态图像分析仪器,方法依据《粒度分析 图像分析法 第1部分:静态图像分析法》 (GB/T 21649.1 2008)[4]。图10 德国麦奇克莱驰Microtrac MRB静态图像分析仪Camsizer M1 静态图像分析仪Camsizer M1配备最多6个不同倍数的放大镜头,可以清晰拍摄细至0.5 微米的颗粒,检测上限可达1.5毫米,完全覆盖金属粉末的粒度范围。 与动态图像法一样,静态图像法同时检测颗粒的多项粒度与粒形参数,如图13所示。分 别使用动态图像分析仪Camsizer X2与静态图像分析仪Camsizer M1检测粒度区间位于38-53 μm和90-106μm的颗粒样品,对比两种方法的优劣,得到图11所示粒度频率分布曲线与表 4检测数据。‍图11 动态图像分析与静态图像分析结果 动态图像分析仪:Camsizer X2 (Microtrac MRB) 静态图像分析仪:Camsizer M1 (Microtrac MRB) 表4 动态图像分析与静态图像分析检测结果静态图像分析仪样品统计量少,容易产生取样误差,适合窄分布的样品。由于颗粒统计量少,所以大颗粒对静态图像分析仪检测结果影响较大,如图11所示,90-106μm样品的静 态图像分析曲线连续性较差,为了增加颗粒统计数量提高统计代表性,静态图像分析仪检测 时间一般在10分钟以上。 由表4可知,窄分布细颗粒样品的动态图像与静态图像检测结果一致性较好,宽分布粗颗粒样品一致性较差;动态图像比静态图像分析时间短,颗粒统计量大。 同时,静态图像分析要求颗粒应以合适浓度均匀分散在载玻片上。Camsizer M1配备专门的粉末分散装置M-jet,使用10-70kPa的负压均匀分散粉末,避免由于分散不均造成的颗粒 堆叠、黏连现象,分散效果如图12所示。图12 采用M-jet分散的金属粉末总览图 Camsizer M1采用透射光与入射光两种光源,能够从多角度拍摄分析金属粉末,在软件中分别读取入射光颗粒图像与透射光颗粒图像,见图13。图13 Camsizer M1入射光(左)与透射光(右)拍摄的金属粉末原始图像 由于颗粒处于静止状态,并且光学系统性能更加优秀,静态图像分析仪的成像质量一般远远优于动态图像分析仪。Camsizer M1的入射光图像(图13 左)能够拍摄颗粒表面细节, 观察卫星颗粒、熔结颗粒以及异形颗粒的状态,有助于更深层次了解金属粉末。 总结 图像分析法在亚微米-毫米尺度内正被广泛应用于粉体粒度分布与颗粒形貌的分析,完美适用于增材制造金属粉末。 图像分析法分为动态图像分析与静态图像分析两种,动态图像法的优势是统计代表性好、 检测时间短,检测结果可以与激光衍射法和筛分法对比,适用于金属粉末的快速准确质检; 静态图像法的优势是图像清晰度高,可以观察更多金属粉末的表面细节,适用于研发,但静态图像法检测时间长、统计代表性有待提高,取样量少容易产生取样误差,摄像头的聚焦范围窄,不适用于宽分布样品的检测分析。参考文献 1. Microtrac MRB. 066 Metal Powders with Lazer Diffraction and Image Analysis Sync X2 EN 2. 郭瑶庆, 严加松, 舒春溪,等. 催化裂化催化剂形貌分析方法的建立[J]. 工业催化, 2020(3):73-77. 3. GB/T 21649.2-2017,粒度分析 图像分析法 第2部分:动态图像分析法[S]. 4. GB/T 21649.1-2008,粒度分析 图像分析法 第1部分:静态图像分析法[S]. 5. GB/T 15445.6-2014,粒度分析结果的表述 第6部分:颗粒形状和形态的定性及定量表述[S]. 6. GB/T 39251-2020,增材制造 金属粉末性能表征方法 7. 罗章, 蔡斌, 陈沈良. 动态图像法应用于海滩沉积物粒度粒形测试及其与筛析法的比较 [J]. 沉积学报, 2016, 34(005):881-891. 8. 涂新斌, 王思敬. 图像分析的颗粒形状参数描述[J]. 岩土工程学报, 2004, 26(5):659-662. 9. 杨启云, 吴玉道, 沙菲,等. 选区激光熔化用Inconel625合金粉末的特性[J]. 中国粉体技术, 2016(3):27-32. 10. [1]刘鹏宇. 典型选区激光熔化粉末的特性及其成型件组织结构的研究[D]. 兰州理工大 学. 11. Nan D , Zz A , Jl B , et al. W–Cu composites with homogenous Cu–network structure prepared by spark plasma sintering using core–shell powders - ScienceDirect[J]. International Journal of Refractory Metals and Hard Materials, 2019, 82:310-316. 12. EN ISO/ASTM 52907-2019,Additive manufacturing - Feedstock materials - Methods to characterize metal powders[S]. 13. VDI 3405 Blatt 2.3:2018-07 Additive manufacturing processes, rapid manufacturing - Beam melting of metallic parts - Characterisation of powder feedstock[S].作者:王瑞青 德国麦奇克莱驰 Microtrac MRB
  • 2024分析测试高峰论坛征文通知
    2024分析测试高峰论坛征文通知为全方位展示我国分析测试领域新理论、新方法、新技术、新应用,加强优秀科研成果的推广与应用,促进国内外学术交流,进一步推动分析测试学科繁荣发展,《分析测试学报》启动“2024分析测试高峰论坛征文”。现将有关论坛征文事宜通知如下:一、征文要求体裁:与分析测试有关的述评、研究类学术论文。内容:围绕分析测试新理论、新方法、新技术的研究进展,及其在环境监测、生命分析、生物技术、医药分析、临床应用、食品安全、核检测、新能源分析、仪器研制等领域及相关交叉领域中的新应用进行系统报道和评述。论文应对分析测试行业发展能起到引领和推动的积极作用。注意文章的先进性、实用性、系统性、严密性、权威性、评论性及前瞻性。中英文均可,字数以8000字左右为宜。具体要求请参照《分析测试学报》官网“投稿须知”,所投论文视为《分析测试学报》投稿,本活动谢绝一稿两投。征文审核程序:经过初审、网络盲审、会评,大会拟审核出一定数量的卓越论文和优秀论文。其中,卓越论文5篇,给予每篇奖金人民币5000元。卓越论文和优秀论文将于《分析测试学报》正刊以“分析测试高峰论坛”专栏形式发表。获奖作者将受邀参加2024分析测试高峰论坛,并进行交流汇报。二、投稿方式 投稿方式:请登录本刊网站(http://www.fxcsxb.com)使用自助投稿系统进行投稿。投稿时请选择“2024分析测试高峰论坛征文”投稿栏目。三、注意事项 本次活动官方渠道为《分析测试学报》网站、微信公众号,网上将及时刊登本次活动的通知和信息。 征文截止时间:2024年7月30日。逾期申报的论文一律不予受理。四、联系方式联系人:崔文轩电话:020-87684776邮箱:fxcsxb@fenxi.com.cn,fxcsxb@china.com地址:广东省广州市越秀区先烈中路100号邮编:510070
  • 如何看清3D 打印合金粉的真实“面貌”?这项分析技术一招搞定
    3D 打印技术是一种新型的快速成形(rapid prototyping)打印技术,其突出优点在于无需机械加工或 任何模具,运用粉末状金属或塑料等可粘合材料,通过逐层堆叠累积的方式来构造物体(即“增材制造技 术”),直接从计算机图形数据中生成任何形状的零件,从而极大地缩短产品的研制周期,提高生产率和降 低生产成本,因此成为先进制造技术。 金属 3D 打印技术近年来发展迅速。然而,对于工业级金属 3D 打印领域,粉末耗材仍是制约该技术规 模化应用的重要因素之一。金属粉体材料是金属 3D 打印的原材料,与传统的减材制造方式相比,3D 打印几 乎不会造成金属材料浪费,而且这种“增材制造”直接成形的特点使得产品在生产过程中的设备问题大大 减少。2021 年 6 月 1 日,8 项有关 3D 打印的国家标准正式实施,其中包括金属粉末性能的表征方法(GB/T 39251-2020)。金属 3D 打印对于粉体的要求主要在化学成分、颗粒形状、粒度及粒度分布、流动性、循环 使用性等几个方面。除了化学成分以外,粒度和粒形及其分布是产品质量控制的关键,它将影响粉末的流 动性、密度等其它性能。 一、对 3D 打印金属粉的粒度粒形要求【1】: 1、金属粉体的粒度要求: 由于粉体是通过直接吸收激光或电子束扫描时的能量而熔化烧结的,所以  颗粒越小则比表面积越大,直接吸收能量多,更易升温,更有利于烧结;  粉体粒度小,颗粒之间的间隙就小,松装密度高,成形后零件致密度高。因此,有利于提高产品 的强度和表面质量;  但粉体粒度过小时,粉体易发生粘附团聚,导致粉体流动性下降,影响粉料运输及铺粉均匀。 所以,细粉、粗粉应该以一定配比混合,选择恰当的粒度与粒度分布以达到预期的成形效果。 2、对金属粉体颗粒形状的要求: 常见的颗粒的形状有球形、近球形、片状、针状及其他不规则形状等。  不规则的颗粒具有更大的比表面积,有利于增加烧结驱动;  球形度高的粉体颗粒流动性好,送粉、铺粉均匀,有利于提升产品的致密度及均匀度;图 1 理想的 3D 打印金属粉(左)和卫星化粉末(右) 理想的 3D 打印金属粉应该是接近于球形,但由于表面能的缘故,大颗粒与小颗粒往往吸附在一起 形成卫星粉(图 1),从而对粉体的许多性质都产生重要影响。合金的粉末制备主要是雾化法,减 少“雾化球型金属粉末”的卫星化【2】, 提高颗粒的球形度,降低表面粗糙度是一个重要研究课题。 因此,3D 打印金属粉体颗粒一般要求是球形或者近球形。二、当前对 3D 打印金属粉的粒度和粒形参数的主要测定方法及存在的问题:1. 粒度及其分布的测定: 3D 打印金属粉末平均粒度小于 50μm,但一般工艺过程是将细粉与粗粉配比使用,通过细粉填充到粗粉 的空隙中,提高熔融/烧结密度,改善打印质量,这就要求粒度测定仪器能够对宽分布的颗粒能够区分不同 的粒群。最新实施的 GB/T 39251-2020,采用目前最流行的激光衍射法粒度分析仪对粒度分布进行检测【3】, 通过等效体积直径的 D50,D10和 D90进行质量控制。然而,对于约为一个数量级的粒度分布宽度,由于基于瑞 利散射的激光衍射法的光散射强度会相差一百万倍,小颗粒的散射光极容易被大颗粒掩盖,且对离散的大 颗粒也不敏感【4】。即使对于具有窄分布的标准颗粒,将两种不同粒径的颗粒混合后,按照常规样品的测定 方法也只能得到单分布曲线和两种颗粒的平均粒度值。除非采用特殊的多峰模型,否则无法区分粒群(图 2)。图 2 用激光衍射法粒度分析仪测定 0.5μm 和 1μm NIST 标准颗粒混合物的粒度分布图 上图:按常规测量方法,在通用模型下测定得到的粒度分布图,为一个单峰; 下图:按厂家指定的只用于标准颗粒的多峰模型进行计算,可以分辨两种颗粒, 但残差增大了一倍,与实验得到光散射曲线吻合程度比通用模型差。自 2000 年以来,随着计算机技术的进步和视觉技术的迅猛发展,图像法对颗粒的粒度和形貌分析正在 成为趋势。它没有理论假设,不需要折射率和吸收率等参数,因此,能够准确地反映样品的真实粒度及其 分布,并且能对颗粒形貌进行定量分析,给出各种形貌分布图【7】。最新一代图像法粒度分析仪能够识别 0.2 μm 以下的小颗粒,在几分钟内完成数万颗粒的图像采集、统计处理,从而快速提供准确的粒径和粒形信息。 它是在获得每一个被成像颗粒的粒度或形状参数后,累加得到的粒度或粒形分布,因此其结果更加可靠, 更加接近真实,分辨率也更高(图 3)【4】。图 3 同一 3D 打印金属粉的激光衍射法(上)和图像法(中、下)粒度分析结果的比较 激光衍射法分析仪器:Mastersizer 2000;图像法分析仪器:Occhio 500nano XY 结果显示,大于 50%数量的颗粒小于 10μm(下图),但在上图中没有任何体现。2. 颗粒形状的测定: 对于金属粉末颗粒的形貌,目前一般通过扫描电子显微镜(SEM)定性分析(图 1)。但是 SEM 视野小 和检测的颗粒数有限的不足,而且制样繁琐,对粉体颗粒形貌的定量统计能力弱,对颗粒的球形度不能做出定量的评价。 最新实施的 GB/T 39251-2020 国家标准采用颗粒图像分析法分析颗粒形状【3】 ,这是一个极大的进步。 但是该标准的题目采用的是“动态颗粒图像分析法”,内容却是基于显微镜的静态图像法,产生了谬误。 显然,该标准的制定人员中缺少颗粒表征专业人士,并且标准的制定者也没有认真阅读他们所引述的“动 态图像法”国家标准。动态图像法由于颗粒的运动,对 10μm 以下的颗粒分辨率极低,造成大量颗粒漏检, 因此不适用于 3D 打印金属粉的粒度和形状分析,确实应该采用静态图像法进行分析。 一般而言,球形度佳,粉末颗粒的流动性也比较好,在金属 3D 打印时铺粉及送粉时更容易进行控制, 更易获得更高打印质量的零部件。GB/T 39251-2020 中有关颗粒球形度的定义,实际是 ISO9276-6 中的圆形 度(circularity)【5】。早已证明【6,9,11】,这个与周长有关的介观粒形参数是一个极其不灵敏的参数,其“优 点”是对 3D 金属打印粉的制造者来说可以获得很高的产品合格率,其缺点在于对于金属粉的使用者来说, 很难发现影响 3D 打印工件质量的真正原因。 根据 ISO9276-6,球形度的定量评价应分为宏观、介观和微观三个层级【5,6】。图 4 欧奇奥(Occhio)500nano XY 静态图像法粒度分析仪(左)及其内部结构(右) 用于干法分析的真空分散器可以很好地分散金属粉末【8】三、图像法技术分析粒度和形貌及其可靠性验证 基于图像的粒度测量技术是从计算机视觉领域中发展起来的新型非接触测量技术,它是把图像当作检 测和传递信息的手段而加以利用的测量方法。通过提取图像的特征,最终从图像中获取被测对象的实际信 息。图像法测量技术在精度、速度和智能化等方面具有很强的适应性,并且具有精度高、稳定性好、可计 数、可重复测量、唯一可准确体现 100%粒度(Dmax,D100)等特点。实验证明,由图像法得到的等效体积分布 (图 3)或等效面积分布(图 6)都比激光衍射法具有更加准确的粒度分布及分辨率,而且欧奇奥(Occhio) 微观粒形参数钝度(bluntness)和赘生物指数(outgrow)对于 3D 金属粉体的球形度和卫星化程度的定量 评价具有独特优势【2,6,11-13】。但是,与周长相关粒度参数(等效周长直径)和粒形参数(圆形度)却存在着 无法忽视的问题。 1、颗粒轮廓周长的确定及其对粒度和粒形结果的影响: 最新一代 Occhio 500nano XY 图像法粒度分析仪(图 4)的计算机视觉系统具有通过二维图像认知三维 环境信息的能力,可以更准确地表达颗粒大小。图像是由像素组成的,但像素的轮廓并不等同于颗粒的轮 廓。传统的图像法仪器提取颗粒的轮廓采取的 4C 或 8C 法,这种方法在低像素密度时计算得到的圆周长偏 低,在高像素密度时则偏高(图 5 左),因此,由周长得到的等效周长直径就会产生极大的偏差,并且对 圆形度(circularity)的评估也存在很大偏差(图 5 右);而 500nano XY 采用 Crofton 算法则能在颗粒 像素数大于 200 时,准确评估颗粒周长、粒度和形状(图 5)【9】。Occhio 500nano XY 不是以传统显微镜为基础的静态图像分析仪器,采用的是蓝色脉冲光源,因此具有 更加低和灵敏的检测下限,可以达到 200nm 以下。对同一进口的优质 3D 打印金属粉进行分析比较,500nano XY 得到了双峰粒度分布图,峰值分别为 13μm 和 50μm,并且可以看到团聚的离散颗粒分布。因采用三维 双曲几何的克罗夫顿模型能更准确地确定每个颗粒的边界、曲率和周长,反映出了颗粒大小分布的细节(图 6)。而其它著名进口品牌的图像法粒度仪分析该样品,只能得到一个峰值 38μm 的粒度分布图,即使转化 成数量分布也看不到10μm 左右的小颗粒群(图 6 右)。因此,用 500nano XY 评价 3D 打印粉更加灵敏、 更加准确、更加符合预期。实验表明,3D 打印金属粉的粒度分布可能是一个离散的分布(图 6 上),如果 为了获得感官愉悦的连续粒度分布而进行数据过滤,往往使粒度数据失真或丢失(如图 6 下,采用 11 点平 均法对曲线进行了平滑处理)。图 5 对半径 100 的圆盘进行一系列平移和旋转,在不同像素密度(从像素数 20 到 20000)时的图像用两种 方法进行粒度(左图)和粒形(右图)的评价【9】 左图:圆盘周长计算(真值=628)。其中 8C 内轮廓法在低像素密度时计算得到的圆周长偏低,在高像素密度 时则偏高;Crofton 方法平均值始终在 628 左右,并且随像素密度升高,标准偏差减小。 右图:不同像素密度与圆形度的关系(Circularity 真值=1)。使用 Crofton 方法时随像素密度升高,圆形度趋近 于 1,而 8C 内轮廓法得到结果则是介于 1.5 到 0.9 之间。2、圆形度(circularity)参数的灵敏性及其用于判断球形度的问题:圆形度因为与周长有关,所以也曾被称作周长球形度【6】 。它在 GB/T 39251-2020 成为判断球形度的唯 一粒形参数。然而,这个参数极其不灵敏,即使颗粒呈正方形,其圆形度还有 0.886(88.6%),甚至三角 形也有 77.7%的高值(图 7a)。图 7b 显示,圆形度值基本无法区分 2:1 的椭圆和圆之间的形状区别。Pirad比较了被普遍当作球形度使用的介观参数圆形度和微观参数钝度,用它们分别表征 Krumbein 从等级 1(10%) 到 9(90%)的标准形状颗粒(图 7d)。可以看出(图 7c),圆形度无法区分从 0.6 到 0.9 的颗粒形状,甚至 与 0.4 和 0.5 也差别不大;而钝度与标准形状分级基本呈线性关系,比圆形度要灵敏得多【11】 。圆形度是椭圆度和粗糙度的函数【14】 ,但在周长轮廓数字化过程中因分辨率低,误差大【9】,粗糙度被忽略,造成了圆形 度参数的不灵敏。因此,对于涉及周长的粒度和粒形参数的使用要特别小心。因为灵敏度差,若以圆形度 (Circularity)作为球形度质量指标,则总能显示出很高的合格率,根本无法代表工业上真正关心的颗粒球 形度【6,11】。图 6 对某进口优质 3D 合金打印粉进行粒度分布测定(等效面积分布)。左:基于体积;右:基于数量 上图:500nano XY 的测定结果,得到双峰粒度分布图,峰值分别为 13μm 和 50μm,并可看到离散颗粒分布。 下图:某一进口著名品牌的测定结果,只能得到一个峰值 38μm 的粒度分布图。数据进行了 11 点平均过滤。四、用于 3D 打印金属粉的典型粒度和形状分析参数 形状描述中的常见问题是如何判断形状描述方法的质量。不是所有的方法都适用于各种形状和应用。 国际标准中给出了形状描述方法的评估标准【10】: ——可达性(Accessibility):用来描述根据计算机存储要求和运算时间计算形状描述参数的容易程度; ——能力范围(Scope):指可通过该方法描述的形状类别; ——唯一性(Uniqueness):描述形状和形状描述符之间是否存在一对一的映射关系; ——稳定性和灵敏度(stability and sensitivity):形状描述参数对形状“微小”变化的敏感程度。 球形度是颗粒的重要特性,但它不是一个参数,而是至少应该包括宏观、介观和微观描述的一组参数【6】。 根据实践,我们推荐的球形度分析参数如下:参数分类推荐的球形度评价参数归一化粒度参数(等效直径)等效体积直径,等效面积直径宏观形状几何描述参数(直径)内径,最小外接圆直径,费雷特直径宏观形状比例描述参数椭圆度、长宽比、无规度介观形状描述参数圆形度、Wadell 圆润度、坚固度微观形状描述参数钝度,赘生物指数图 7 圆形度(circularity)的灵敏性及其和其它粒形参数的关系 a. 圆形度的定义及规则几何形状的评价值。 b. 不同长宽比的一系列椭圆及其圆形度评价值【11】。 用圆形度和钝度曲线(c)分别表征克鲁宾(Kunbbein)从 10%到 90%的颗粒形状图表(d)【11】微观形状参数钝度(bluntness),由于其在图形计算机数字化过程中的鲁棒性,在每个颗粒只有 5000 个体积像素的分辨率下,也可以清楚地测量出明显的差异【12】,具有极为出色的分辨力,并且灵敏度高,可 靠性强。这是与 circularity 参数(圆形度)的最大区别【11】。因此,钝度参数在二维颗粒图像处理中成为目前 颗粒球形度表征的最佳参数【9】,并且已经成功地应用于 3D 打印金属粉的表征【13】。 图 8 是某国产 3D 打印金属粉(样品 A)的钝度分布图。该样品具有极宽的钝度分布,峰值钝度为 67%, D50(P50)只有 62.38%。通过与相应钝度的颗粒形状图片对比可知,只有不到 50%的颗粒球形度较好或属 于类球形颗粒,但还有一半体积的颗粒棱角较多或已经卫星化(卫星粉)。图 8 某国产 3D 打印金属粉的钝度分布图及对应的颗粒形状。右上角为原始成像图片之一。图 9 广西产钨粉赘生物指数分布图 表示方法:0:没有 50%: 有一个;66%:有两个;75%:有三个3D 打印金属粉末分为单质金属粉末和合金粉末。单质金属粉末的制备有还原法和电解法。合金的粉末 制备主要是雾化法。雾化法得到的球形颗粒的主要缺陷是容易卫星化,即颗粒与颗粒的粘连,大颗粒与小 颗粒粘连以及颗粒表面存在未成形的不规则浆料残渣。欧奇奥赘生物指数(Outgrowth)就是定量评价球形 粉末卫星化程度的非常简单和实用的方法,可以清晰地给出球形颗粒和卫星化颗粒(有赘生物)比例及其严重程度(即赘生物比例或数量,图 9)。 用 5oonano XY 对 4 微米以下的细粉进行专门分析。分析表明,即使这么小的颗粒,也存在卫星化现象。 将样品 A 的卫星化颗粒全部过滤,其粒度变化如图 10 左中蓝色线条所示呈离散分布,颗粒数量减少了 3/4, 但圆形度极大地提高(图 10 右)。图 10 3D 打印合金粉过滤掉卫星粉前后的粒度分布变化图和圆形度变化分布图 图左:过滤前后的等效面积直径分布图;图右:过滤前后的圆形度分布图及过滤后保留的颗粒形状。红色:滤前;蓝色:滤后五、 总结 3D 打印合金粉的粒度分布是进行质量控制和评价的重要参数,优质的打印粉应该细粉和粗粉以一定配 比混合,但是因其原理限制,激光衍射法粒度分析仪不能正确给出两个粒群的分布。欧奇奥 500nano 系列 代表图像法粒度粒形分析的最高水平,全自动变焦,无需镜头拼接, 给出最真实的分析结果,干法分析范 围覆盖 0.2μm - 3000μm,使我们对 0.2 至 4 微米的 3D 打印合金细粉有了全新认识。 球形度是颗粒的重要特性,但它不是一个参数,而是至少应该包括宏观、介观和微观描述的一组参数。 微观粒形参数包含了宏观和介观参数的信息,能正确反映颗粒轮廓形状的光滑或粗糙程度。钝度是颗粒球 形度表征的高阶粒形参数,它包含了类球度和圆润度两个参数的特征,钝度高表明颗粒既圆又光滑;赘生 物指数则可以反映球体颗粒的卫星化程度,定量给出分散的球体和粘连球体的各自比例,以及粘连球体附 着微粒的数量及所占比例,可直接用于 3D 打印粉的工艺评估和质量控制。因此,钝度及赘生物指数是 3D 打印合金粉颗粒形貌评价中不可或缺的微观形状定量参数。其它粒形参数如椭圆度,也可以和粉体的流动 性和堆积密度建立起函数关系【14】。参考文献: 1、 吴晟霖. 3D 打印金属原料粉体的要求. 中国模具网. 2017-12-13 2、 杨正红. 卫星化粉末(颗粒)及其微观形态表征参数. 第九届全国颗粒测试学术会议暨现代颗粒测试技术发展与应用研讨 会论文集, 2013( 贵阳). 43-46 3、 GB/T 39251-2020. 增材制造 金属粉末性能表征方法, 5.3 & 5.4. 2021 年 6 月 1 日实施 4、 徐喜庆,杨正红. 激光衍射法粒度分析的准确性及其与图像法分析结果的比较. 仪器仪表与分析监测. 2020,4:26-32 5、 ISO 9277-6:2008(E). Representation of results of particle size analysis —Part 6: Descriptive and quantitative representation of particle shape and morphology.2008. 6、 李叶, 殷喜平, 杨正红. 颗粒球形度的表征、分级及其应用. 现代科学仪器. 2020, 3:61-69 7、 杨正红,孙志昂,高岩, 王莘泉. 静态图像粒度粒形分析方法对氧化铝颗粒的测定研究. 现代科学仪器. 2019 (5) 51-55+66 8、 杨正红 , 欧阳亚非 . 静态图像粒度分析中真空分散器原理和分散效果解析 . 现代科学仪器 .2019,1:65-68 9、 Pirard E , Dislaire G . Robustness of Planar Shape Descriptors of Particles. Proc. Int. Assoc. Math. Geol. Conf. Toronto, CA,PUB_2005_01 10、ISO 9277-6:2008(E). Representation of results of particle size analysis —Part 6: Descriptive and quantitative representation of particle shape and morphology.2008. 11、Pirard. E. and Dislaire G. Sensitivity of particle size and shape parameters with respect to digitization. Procedings 13 Int. Congress for Stereology. Beijing 2011 12、Pirard, E.et al, Shape processing and analysis using the calypter. Journal of Microscopy. 1994. 175(3):214 – 221. 13、GAO, Chao-feng. Et al. Characterization of spherical AlSi10Mg powder produced by double-nozzle gas atomization using different parameters. Transactions of Nonferrous Metals Society of China. 2019, 29(2), 374-384. 14、杨正红. 欧奇奥粒度和形貌分析在化肥质量控制中的应用. 化肥工业, 2019(2), 6-11作者:杨正红仪思奇(北京)科技发展有限公司总经理(注:本文由杨正红老师供稿,不代表仪器信息网本网观点)
  • 喜报!Perten RVA系列快速粘度分析仪助力淀粉粘度新标准实施
    近日,备受瞩目的GB/T 22427.7-2023《淀粉黏度测定》标准正式实施,标志着淀粉行业在粘度快速测试领域迈出了重要一步。此次标准的发布,不仅为淀粉粘度的快速准确测定提供了科学、规范的方法,更凸显了快速粘度仪(RVA)法在提升检测效率和准确性方面的关键作用。在这场技术革新中,Perten RVA系列快速粘度分析仪以其卓越的性能和稳定的表现,发挥了重要的作用。淀粉,这一广泛存在于自然界的多糖类物质,在食品、医药、化工等诸多领域均扮演着不可或缺的角色。粘度作为淀粉的关键物理性质,直接反映了其在特定条件下的流动性和内摩擦力,是评估淀粉品质的重要指标。通过精确测定不同来源、不同品种淀粉的粘度,我们可以深入了解其纯度、结晶度、颗粒大小及结构特性,从而指导淀粉的选择和应用,提升产品质量和生产效率。Perten作为RVA技术的研发者和生产者,近40年来一直致力于为淀粉粘度测定技术的发展贡献力量。在GB/T 22427.7-2023《淀粉黏度测定》标准的制定过程中,Perten积极参与了数据验证工作,通过大量的实验验证和数据分析,确保了RVA法在标准中的准确性和适用性。这一成果的取得,不仅彰显了Perten在粘度分析领域的专业实力,也为行业的标准化和规范化发展做出了重要贡献。值得一提的是,新标准特别增加了快速粘度仪(RVA)法,进一步提高了淀粉粘度测定的效率。Perten RVA系列快速粘度分析仪凭借其独特的设计和先进的技术,能够在短时间内快速、准确地测定淀粉的粘度和糊化特性,为行业内的粘度控制与交流提供了有力支持。同时,该系列分析仪还具有高度的稳定性和可靠性,确保了测试结果的准确性和可重复性。随着GB/T 22427.7-2023《淀粉黏度测定》标准的正式实施和Perten RVA系列快速粘度分析仪的广泛应用,相信淀粉行业的粘度测定将迎来更加精准、高效的发展。这不仅有助于行业内淀粉粘度的准确控制,还将为食品、医药等行业的生产提供更加坚实的基础。 RVA系列快速粘度分析仪 RVA系列快速粘度分析仪是一款具有控温程序的旋转型粘度测定仪,仪器带有程序控温和可变的剪切力,以最佳条件检测淀粉、谷物、面粉和食品的粘度特性。RVA具有快速、精准、灵活和自动化的特点,特别适合产品的研发、 质量加工控制以及产品质量保证检验。仪器采用国际标准方法/国标或用户自定义的检测方法,检测样品量只需要 2-3g。仪器特点●检测速度快:搅拌值测定只需3分钟,淀粉糊化特性只需13 分钟 ●使用简单:自动分析糊化温度、峰值粘度、回生值、崩解 值、保持粘度、搅拌值 ●样品用量少:只需2-3g●坚实耐用:适用于实验室以及工厂的操作环境 ●可追溯性:采用标准化的校准方法,满足ISO9000质量体系要求●精准性:准确的搅拌速度和快速的加热冷却速度,确保结果重复性的稳定 ●符合ER/ES:满足电子注册与电子签名标准,生成可追溯的检测结果应用适合于生产、研发、质量控制、原材料检测和加工监控等 ●淀粉:标准的13分钟检测天然及变性淀粉的淀粉糊化特性 ●面粉加工和烘焙:检测淀粉质量、面筋质量、酶活性、气候损伤谷物 ●块茎类:检测小麦、玉米、稻米、高粱、马铃薯、木薯、甘薯等样品的淀粉质量 ●酿造:麦芽制造、大麦储藏、干麦芽、酿造辅料 ●膨化食品和饲料:快餐、早餐谷类、动物和水产饲料 ●蛋白质品质:小麦面筋、脱脂奶粉、乳清蛋白浓缩物和大豆蛋白 胶体:水解胶体和制剂的凝胶化与增厚过程 ●乳制品:奶酪、乳制品甜点和酸乳酪的质量控制
  • Granutools发布粉体剪切性能分析仪 Granudrum新品
    说明GranuDrum是一种基于转鼓原理的粉体流动性自动测量方法。实验时,粉体样品将带有透明侧壁的水平圆筒的一半填满。圆筒绕轴旋转的角速度从每分钟2转到每分钟60转。运动到每一个角速度时,CCD相机都会拍很多快照。然后,对于每个转速,从平均界面位置计算出流动角度(一些文献中也称为“静止的动态角度”),从界面波动量计算出动态内聚指数。流动角值越低,则流动性越好。原理流动角度受一系列参数的影响:颗粒间的摩擦、颗粒的形状、颗粒间的内聚力(范德瓦尔斯力、静电力和毛细管力)。动态粘聚指数只与颗粒间的粘聚力有关。粘性粉体趋向于间歇流动,而非粘性粉体则为规则流动。因此,接近于零的动态粘性指数对应于非粘性粉体。当粉体的粘结性增大时,粘结指数也随之增大。因此,粘结指数也可以量化粉体的展布性。优势测量简单、快速、直观、易于解释。圆筒的填充和清洗简单快捷。在安全转移到仪器之前,圆筒可以放在手套箱、防尘罩或封闭的环境中进行操作。通过软件的直观性,平均和方差结果都很容易获得,并允许结果的比较。自动收集和存储所有的图片和数据,以便后期处理。数据传输和自动生成报告也非常方便。标准操作程序是可记录,增加了测量的重复性。圆筒具有化学涂层,可以处理各种规格的粉粉体。独特性测量范围广:低速和高速(1至70转/分,即4至290毫米/秒)下的动态静止角。简单明了的数据解释和物理原理。使用波动量来量化粉体的粘结力。在实验过程中,粉体的粘结力可能会发生变化,这种被称为“粉体触变性”的特性可以通过GranuDrum来表达。高测量重复性(例如不锈钢等高密度材料= 1.8%,或其他低密度材料= 4.2%)。理想的设计保证了稳定性和长使用寿命。圆筒可以通过手套箱在特定的环境(惰性气体、湿度和温度)下调节。应用在具有广泛的应用,需要对粉体流动性进行分析。适用于高剪切、低压力的工况下,如增材制造、铺展性、制药行业涉及的气力输送等。在增材制造的铺粉过程中,可用于量化粉体铺展能力和优化铺粉速度 (由于其原有的粘性指数分析)。气力输送过程中粉体流动特性的预测。可选附件额外的测量圆筒,满足小样品量测量 (10、20、30和40ml),特别适用于制药和贵金属。适用于高温工况的测量圆筒,可使用高达200℃校准套件。离线分析软件授权许可:一台计算机运行测量,同时可使用另一台计算机分析数据,从而提高实验和数据分析效率。GRANUDRUM 参数图 1: 增材制造中的粉体铺展性研究图 2: 气动传输工艺优化创新点:1.测量范围广:低速和高速(1至70转/分,即4至290毫米/秒)下的动态静止角。 2.简单明了的数据解释和物理原理。 3.使用波动量来量化粉体的粘结力。 4.在实验过程中,粉体的粘结力可能会发生变化,这种被称为“粉体触变性”的特性可以通过GranuDrum来表达。 5.高测量重复性(例如不锈钢等高密度材料= 1.8%,或其他低密度材料= 4.2%)。 6.理想的设计保证了稳定性和长使用寿命。 7.圆筒可以通过手套箱在特定的环境(惰性气体、湿度和温度)下调节。 粉体剪切性能分析仪 Granudrum
  • 德国RETSCH(莱驰)6月11日在上海举办粉体分析技术交流会
    德国Retsch(莱驰)公司是基于分析样品前处理以及为固体颗粒粒径分析提供解决方案的世界级仪器制造商,集团总部及生产基地在德国,产品主要有颚式破碎仪、行星式球磨仪、切割粉碎仪、冷冻研磨仪、筛分仪、干燥仪、分样仪等,在钢铁、农业、地质、生物医药、烟草、冶金、化工、食品、科研院校、电子电器、质检、商检、能源等各个领域内拥有广泛的客户基础,是全球最大的生产研磨筛分设备的专业厂家! 德国Retsch(莱驰) Camsizer 多功能粒径及形态分析仪是全球唯一一台用干法测量颗粒大小和形态的粒度分析仪,一次进样,可同时获悉粒径大小、粒径分布、颗粒个数、球形度、纵横比、透明度、表面积、密度、对称性、凹凸度等颗粒的综合信息,可广泛使用在石化行业、聚合物的生产工艺、玻璃珠检测、标准物质的鉴定、催化剂研究、磁性材料的分析、药物筛选和评定及烟草、食品、材料等方面的应用。为了能让您更详细的了解多功能粒径及形态分析仪的功能和使用方法,德国Retsch举办《最新粉体分析技术交流会》,诚邀您参加!届时,Retsch将提供多台样机(粉碎仪、筛分仪、粒度仪)展示及免费测样活动,会上将抽取精美礼品,所有参会者更有机会参加“赢奔驰,在莱驰”的全球客户回报活动! 讲座主要内容包括:  德国Retsch公司介绍  粉碎是一门艺术―――Retsch研磨仪的主要应用  粒度粒形分析的综合解决方案  样机操作演示及测样 时间:2008年6月11日 星期三下午1:00 ~~下午4:30 地点:上海花园饭店32楼天龙厅(上海市卢湾区茂名南路58号) 请您务必在2008年6月10日前以传真、电话、电邮等方式确认您的出席! 联系人:苏 璇 电话:021-61506046-8008 传 真:021-61506047 Email: x.su@retsch.cn
  • 生命科学 | 单分子免疫分析技术的前世今生
    引言医学检验是疾病诊断的重要依据,而针对蛋白标志物进行检测的免疫分析技术,则是医学检验中常用的一种手段。举个例子,我们平时有感冒发烧的症状去看医生,通常都会开一个血液化验单,如果你仔细观察这个单子,会发现其中一项指标叫做“C反应蛋白(CRP)”,这个指标能够判断我们是细菌感染还是病毒感染,从而采取不同的治疗手段。这个“C反应蛋白”的检测,使用的就是免疫分析的技术。免疫分析的历史免疫分析作为一种重要的医学检验方法,其技术经历了不断地发展和迭代。从最初的放射免疫到酶联免疫再到现在的化学发光,检测的性能指标都有了长足的进步。但是所有这些方法在定量原理上都是采用“模拟定量”的原理,即先拉标准曲线,然后检测值对应标曲进行换算。技术的进步难以突破原理的桎梏,当前的化学发光已经达到pg/ml的灵敏度水平,但是似乎再难向下推进了。然而这个灵敏度水平,却只能检测血液中含量较高的蛋白标志物(估计占比不到20%),犹如冰山一角。图1 传统免疫检测和单分子免疫检测的原理要实现新的突破,则需要原理上的创新,即从“模拟定量”走向“数字化定量”。通过对单个蛋白分子进行逐个的检测分析,然后使用泊松分布将其换算成浓度,能够实现极-致的灵敏度,达到fg/ml的级别,超过传统方法1000倍(图1)。当前已经有先驱的企业在积极从事这种创新的方法。比方说美国科学院院士、哈佛大学医学院教授David Walt所创办的Quanterix,其开发的SIMOA检测方法就在去年获得了美国FDA“突破性医疗器械”的认定,引起行业内的广泛关注。而在国内,以聚光科技的控股子公司聚拓生物为代表的数家企业,也在积极布局这一前沿的创新技术领域。免疫分析的价值检测的如此灵敏,究竟能给人们带来什么样的价值呢?当前,该技术前景最明朗的临床应用在于老年痴呆症的筛查和诊断。据估计,全国的老年痴呆症患者有1600万左右,并且未来预计随着人口老龄化程度的加重而进一步增加,这些患者造成了沉重的社会和经济负担。同时,老年痴呆症一直缺乏特别有效的药物,即便有一些新近获批的创新药物,也只能延缓病程的发展,而难以逆转病程。因此,早期发现、早期干预,对于老年痴呆症患者来说至关重要。由于人体血脑屏障的存在,老年痴呆症的标志物在外周血中含量极低,传统方法束手无策,而单分子免疫技术则凭借其极-限的灵敏度而能够很好的检测出来。这样,通过早期发现、早期干预,能够及早改善患者的状况,提高生活质量。除了老年痴呆症的检测以外,单分子免疫技术还能够发现和检验诸如细胞因子、感染、肿瘤等其他多种低丰度的蛋白标志物,挖掘“冰山下”的潜力(图2)。图2 单分子免疫诊断技术的应用前景FPI作为一项前沿的免疫分析技术,单分子免疫分析的其他应用还有待开拓,相信随着科学研究的发展,该项技术将给人类的生活带来更多的帮助
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制