当前位置: 仪器信息网 > 行业主题 > >

光强检测器

仪器信息网光强检测器专题为您提供2024年最新光强检测器价格报价、厂家品牌的相关信息, 包括光强检测器参数、型号等,不管是国产,还是进口品牌的光强检测器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光强检测器相关的耗材配件、试剂标物,还有光强检测器相关的最新资讯、资料,以及光强检测器相关的解决方案。

光强检测器相关的论坛

  • 液相紫外检测器氘灯的能量

    一般情况下,液相紫外检测器的氘灯都是用使用寿命不得大于2000h,指的是足够光强,其中足够光强是光的强度要多大?低于多少强度的时候算低?

  • 农产品检测仪器光强是否自动校准

    [size=16px]农产品检测仪器光强是否自动校准,农产品检测仪器的光强通常可以自动校准。这些仪器通常具有智能恒流稳压和光强自动校准的功能,以确保光源的长期连续工作无温漂现象。这种自动校准功能可以提高检测的准确性和稳定性,减少人为误差。农产品检测仪器的光强自动校准功能通常通过仪器内部的传感器和控制系统实现。当仪器开启时,控制系统会自动检测光源的亮度并进行调整,以确保光强的稳定性和准确性。此外,一些高级的农产品检测仪器还配备了光强自动调节系统,可以根据检测需要自动调整光强,以获得更准确的检测结果。需要注意的是,虽然农产品检测仪器的光强可以自动校准,但在使用前仍需按照仪器说明书的要求进行正确的安装和调试。同时,在检测过程中也需要注意仪器的维护和保养,以确保其长期稳定运行和检测结果的准确性。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/05/202405081032208738_6785_6098850_3.jpg!w690x690.jpg[/img][/size]

  • 液相色谱中关于检测器氘灯的问题

    在液相色谱的使用中,如果检测器的氘灯S-光强值与R-能量值差很远的话对检测过程中会造成什么影响么?比如S-3万左右而R-一万多,那造成这种差距的原因会有哪些呢?

  • 【求助】北京科创海光AFS2100检测砷荧光强度不稳

    各位仪器高手大家好 我们用的是北京科创海光AFS2100原子荧光,我们已经用了半年左右了,之前检测的荧光强度都很正常,浓度为10ng/ml时,荧光强度为1000以上,标准空白为60左右,负高压为270-280V,灯电流40mA,现在浓度为10ng/ml时,荧光强度为不能达到1000以上,负高压为300V,灯电流60mA,而且检测器和灯能量都没问题,有时候还能过1000,有时候还为0.测汞的时候没问题

  • CID检测器与CCD检测器的原理区别学习!

    大家对ICP未来的发展方向大家一定很关心,那就先了解一下检测器吧!继续加深印象!本人只是转载如有不对之处还请大家提出批评意见!转帖神仙姐姐 光电倍增管,CCD,CID检测器的差异下面好像是一家之言,不过可以参考一下下。检测器:用几个厂家的仪器对比进行说明,如下: CID电荷注射器件,天生的抗溢出器件。真正全谱直读,可任意元素的任意谱线读取。无逸出和每个单元独立读取,高低含量可在一次测定中同时获得。5300的SCD分段电荷耦合器件,只6千多个检测单元只能提供235个测量段的信息,谱线信息量仅占6%,对于复杂样品谱线选择性受抑制。2100用小段CCD,只相当于覆盖0.0Xnm, 上端测量参比光, 下端测样品光, 目的是可不断做谱线校正Vista Pro 采用7万多个检测单元的改良的CCD电荷耦合器件, 放三排寄存器, 可较好地防止电子溢出。但高低含量无法同时获得稳定结果。Vista MPX采用通用型的数码相机用CCD,没有抗溢出设计,高含量测定极易溢出,无法获得稳定结果CID检测器特有“无逸出”,“非破坏性读取”,“随机读取”的特点,能自动控制各个测量单元的最佳测量时间,实现样品主量、微量、痕量元素的同时测定。SCD或CCD检测器往往需依靠外围电路来控制爆光时间,防止“逸出”。改良的SCD或CCD成本也不低,而民用型CCD则成本低廉,对高低含量的同时测定是不能为力的。所以,CID是真正的没有溢出,所以对于一次样品中的高、中、低含量都能很好的测定。光电倍增管外光电效应所释放的电子打在物体上能释放出更多的电子的现象称为二次电子倍增。光电倍增管就是根据二次电子倍增现象制造的。它由一个光阴极、多个打拿极和一个阳极所组成,见图,每一个电极保持比前一个电极高得多的电压(如100V)。当入射光照射到光阴极而释放出电子时,电子在高真空中被电场加速,打到第一打拿极上。一个入射电子的能量给予打拿极中的多个电子,从而每一个入射电子平均使打拿极表面发射几个电子。二次发射的电子又被加速打到第二打拿极上,电子数目再度被二次发射过程倍增,如此逐级进一步倍增,直到电子聚集到管子阳极为止。通常光电倍增管约有十二个打拿极,电子放大系数(或称增益)可达108,特别适合于对微弱光强的测量,普遍为光电直读光谱仪所采用。光电倍增管的窗口可分为侧窗式和端窗式两种光电倍增管的基本特性1) 灵敏度和工作光谱区光电倍增管的灵敏度和工作光谱区主要取决于光电倍增管阴极和打拿极的光电发射材料。当入射到阴极表面的光子能量足以使电子脱离该表面时才发生电子的光电发射,即1/2mv2=h(-ф,( h(为光子能量,ф为电子的表面功函数,1/2mv2为电子动能)。当h(ф时,不会有表面光电发射,而当h(=ф时,才有可能发生光电发射,这时所对应的光的波长λ=C/(称为这种材料表面的阈波长。随着入射光子波长的减小,产生光电子发射的效率将增大,但光电倍增管窗材料对光的吸收也随之增大。显然,光电倍增管的短波响应的极限主要取决于窗材料,而长波响应的极限主要取决于阴极和打拿极材料的性能。一般用于可见-红外光谱区的光电倍增管用玻璃窗,而用于紫外光谱区的用石英窗。光阴极一般选用表面功函数低的碱金属材料,如红外谱区选用银-氧-铯阴极,可见光谱区用锑-铯阴极或铋-银-氧-铯阴极,而紫外谱区则采用多碱光电阴极或梯-碲阴极。光电倍增管的灵敏度S是指在1lm的光通量照射下所输出的光电流强度,即S=i/F,单位为μA/lm。显然,灵敏度随入射光的波长而变化,这种灵敏度称为光谱灵敏度,而描述光谱灵敏度随波长而变化的曲线称为光谱响应曲线(见右图),由此可确定光电倍增管的工作光谱区和最灵敏波长。例如我们常用的R427光电倍增管,其曲线偏码为250S,光谱响应范围为160-320nm,峰值波长200nm,光阴极材料Cs-Te,窗口材料为熔炼石英,典型电流放大率3.3×106。2) 暗电流与线性响应范围光电倍增管在全暗条件下工作时,阳极所收集到的电流称为暗电流。对某种波长的入射光,光电倍增管输出的光电流为: i= KIi+i0 ,式中,Ii对应于产生光电流i的入射光强度,k为比例系数,i0为暗电流。由此可见,在一定的范围内,光电流与入射光强度呈线性关系,即为光电倍增管的线性响应范围。当入射光强度过大时,输出的光电流随光强的增大而趋向于饱和(见右图)。线性响应范围的大小与光阴极的材料有关。暗电流的来源主要是由于极间的欧姆漏阻、阴极或其他部件的热电子发射以及残余气体的离子发射、场致发射和玻璃闪烁等引起。当光电倍增管在很低电压下工作时,玻璃芯柱和管座绝缘不良引起的欧姆漏阻是暗电流的主要成分,暗电流随工作电压的升高成正比增加;当工作电压较高时,暗电流主要来源于热电子发射,由于光电阴极和倍增极材料的电子溢出功很低,甚至在室温也可能有热电子发射,这种热电子发射随电压升高暗电流成指数倍增;当工作电压较高时,光电倍增管内的残余气体可被光电离,产生带正电荷的分子离子,当与阴极或打拿极碰撞时可产生二次电子,引起很大的输出噪声脉冲,另外高压时在强电场作用下也可产生场致发射电子引起噪声,另外当电子偏离正常轨迹打到玻壳上会出现闪烁现象引起暗电流脉冲,这一些暗电流均随工作电压升高而急剧增加,使光电倍增管工作不稳定,因此为了减少暗电流,对光电倍增管的最高工作电压均加以限制。3) 噪声和信噪比在入射光强度不变的情况下,暗电流和信号电流两者的统计起伏叫做噪声。这是由光子和电子的量子性质而带来的统计起伏以及负载电阻在光电流经过时其电子的热骚动引起的。输出光电流强度与噪声电流强度之比值,称为信噪比。显然,降低噪声,提高信噪比,将能检测到更微弱的入射光强度,从而大大有利于降低相应元素的检出限。4) 工作电压和工作温度光电倍增管的工作电压对光电流的强度有很大的影响,尤其是光阴极与第一打拿极间的电压差对增益(放大倍数)、噪声的影响更大。因此,要求电压的波动不得超过0.05%,应采用高性能的稳压电源供电,但工作电压不许超过最大值(一般为-900v-1000v),否则会引起自发放电而损坏管子,工作环境要求恒温和低温,以减小噪声。5) 疲劳和老化在入射光强度过大或照射时间过长时,光电倍增管会出现光电流衰减、灵敏度骤降的疲劳现象,这是由于过大的光电流使电极升温而使光电发射材料蒸发过多所引起。在停歇一段时间后还可全部或部分得到恢复。光电倍增管由于疲劳效应而灵敏度逐步下降,称为老化,最后不能工作而损坏。过强的入射光会加速光电倍增管的老化损坏,因此,不能在工作状态下(光电倍增管加上高压时)打开光电直读光谱仪的外罩,在日光照射下,光电倍增管很快便损坏。光电测量原理光电检测的原理一般是通过光电接受元件将待测谱线的光强转换为光电流,而光电流由积分电容累积,其电压与入射光的光强成正比,测量积分电容器上的电压,便获得相应的谱线强度的信息。不同的仪器其检测装置具有不同的类型,但其测量原理是一样的。其光电检测系统主要有以下四个部分组成:1.光电转换装置,2.积分放大电路及其开关逻辑检测,3.A/D转换电路,4.计算机系统。此资料来源实验室社区 天人合一的个人见解!目前较成熟的主要是电荷注入器件Charge-Injection Detector(CID)、电荷耦合器件Charge-Coupled Detector (CCD)。  在这两种装置中,由光子产生的电荷被收集并储存在金属-氧化物-半导体(MOS)电容器中,从而可以准确地进行象素寻址而滞后极微。这两种装置具有随机或准随机象素寻址功能的二维检测器。可以将一个CCD看作是许多个光电检测模拟移位寄存器。在光子产生的电荷被贮存起来之后,它们近水平方向被一行一行地通过一个高速移位寄存器记录到一个前置放大器上。最后得到的信号被贮存在计算机里。  CCD器件的整个工作过程是一种电荷耦合过程,因此这类器件叫电荷耦合器件。对于CCD器件,当一个或多个检测器的象素被某一强光谱线饱和时,便会产生溢流现象。即光子引发的电荷充满该象素,并流入相邻的象素,损坏该过饱和象素及其相邻象素的分析正确性,并且需要较长时间才能便溢流的电荷消失。为了解决溢流问题,应用于原子光谱分析的CCD器件,在设计过程中必须进行改进,例如:进行分段构成分段式电荷耦合器件(SCD),或在象表上加装溢流门,并结合自动积分技术等。  CID是一种电荷注入器件(Charge-Injected Device),其基本结构与CCD相似,也是一种MOS结构,当栅极上加上电压时,表面形成少数载流子(电子)的势阱,入射光子在势阱邻近被吸收时,产生的电子被收集在势阱里,其积分过程与CCD一样。  CID与CCD的主要区别在于读出过程,在CCD中,信号电荷必须经过转移,才能读出,信号一经读取即刻消失。而在CID中,信号电荷不用转移,是直接注入体内形成电流来读出的。即每当积分结束时,去掉栅极上的电压,存贮在势阱中的电荷少数载流子(电子)被注入到体内,从而在外电路中引起信号电流,这种读出方式称为非破坏性读取(Non-Destructive Read Out),简称:NDRO.CID的NDRO特性使它具有优化指定波长处的信噪比(S/N)的功能。同时CID可寻址到任意一个或一组象

  • 【讨论】关于紫外检测器的强度测试

    Agilent 1100今天我们做了紫外检测器的光强度测试结果报告里说最大和平均强度都通过了,最小强度没通过这个结果是什么意思?我们要不要采取什么措施?

  • 【转帖】关于液相色谱仪检测器一

    二极管阵列检测器(diode-array detector, DAD):   以光电二极管阵列(或CCD阵列,硅靶摄像管等)作为检测元件的UV-VIS检测器(图8-15)。它可构成多通道并行工作,同时检测由光栅分光,再入射到阵列式接受器上的全部波长的信号,然后,对二极管阵列快速扫描采集数据,得到的是时间、光强度和波长的三维谱图。与普通UV-VIS检测器不同的是,普通UV-VIS检测器是先用单色器分光,只让特定波长的光进入流动池。而二极管阵列UV-VIS检测器是先让所有波长的光都通过流动池,然后通过一系列分光技术,使所有波长的光在接受器上被检  直接紫外检测: 所使用的流动相为在检测波长下无紫外吸收的溶剂,检测器直接测定被测组分的紫外吸收强度。多数情况下采用直接紫外检测。

  • 液相色谱检测器的分类

    高效液相色谱仪中的检测器是三大关键部件(高压输液泵、色谱柱、检测器)之一,主要用于监测经色谱柱分离后的组分浓度的变化,并由记录仪绘出谱图来进行定性、定量分析。常用的检测器有紫外吸收检测器(UVD)、折光指数检测器(RID)、电导检测器(ECD)和荧光检测器。检测器的分类按检测的对象分类(1)整体性质检测器检测从色谱柱中流出的流动相总体物理性质的变化情况。如折光指数检测器(RID)和电导检测器(CD),它们分别测定柱后流出液总体的折射率和电导率。此类检测器测定灵敏度低,必须用双流路进行补偿测量 易受温度和流量波动的影响,造成较大的漂移和噪声 不适合于痕量分析和梯度洗脱。(2) 溶质性质检测器此类检测器只检测柱后流出液中溶质的某物理或化学性质的变化。例如,紫外吸收检测器(UVD)和荧光检测器(FD),它们分别测量溶质对紫外光的吸收和溶质在紫外光照射下发射的荧光强度。此类检测器灵敏度高,可单流路或双流路补偿测量,对流动相流量和温度变化不敏感。但不能使用对紫外线有吸收的流动相。它们可用于痕量分析和梯度洗脱。按适用性分类(1) 择性检测器它对不同组成的物质响应差别极大,因此只能选择性地检测某些物质,如紫外吸收检测器、荧光检测器和电导检测器。(2) 通用型检测器它对大多数物质的响应相差不大, 几乎适用于所有物质。折光指数检测器属于通用型检测器,但它的灵敏度低,受温度影响波动大,使用时有一定局限性。上面提到的UVD,RID,FD,ECD 4种检测器皆属于非破坏性检测器,样品流出检测器后可进行馏分收集,并可与其它检测器串联使用。对荧光检测器因测定中加入荧光试剂,其对样品会产生玷污,当串联使用时应将它放在最后检测。

  • 液相色谱紫外检测器更换氘灯汇总

    氘灯发出几乎连续的光谱,它主要依靠等离子体放电(是指始终让氘灯处于一个稳定的氘元素(D2或者重氢)电弧状态下产生紫外波长范围(190-400 nm)直到可见光谱范围(400-800 nm)因此,氘灯是高精度吸收测量的理想光源,比如紫外线可见光谱分光计和高压液体色谱分析仪(HPLC)。 氘灯的技术性能指标通常包括氘灯能量、噪音、漂移这三个重要的指标,对于咱们这样的分析用户来说,在工作站上最直观的判断都集中在氘灯能量上了,下面结合等能量和氘灯寿命简单总结一下氘灯的一些特性和日常注意事项。氘灯的使用寿命是有一定时间的,就是指其在提供足够光强的状态下的所使用的小时数。氘灯为易耗件,氘灯的寿命通常以下述两种情况下任一种现象出现时所定义。它的辐射强度跌落到初始值的50%时;氘灯使用是一个很缓慢的减弱过程,可以用以下的指数函数来表示:It = Io x e-ct 式中:It 表示在t时刻的光强值;Io 表示初始光强;C表示一个常数; t表示时间。 氘灯的光强减少的3个因素: 1.此氘灯的内部金属部件以及涂料的蒸发(同时可能导致灯的能否点亮);2.此氘灯的灯丝涂料的材料与石英套发生反应(主要是阻碍穿透); 3.日晒光照会导致石英套吸收200—250nm波长的光。帖子汇总:更换氘灯原创:1、1260换灯记2、【原创】记一次难忘的岛津换灯!3、【分享】关于Agilent 1200LC换灯(图解)4、【第二届网络原创作品大赛】Agilent1100 FLD氙闪灯更换和VWD的氚灯5、【原创】液相色谱更换氘灯记6、【原创】第一次更换日立L-2400紫外检测器氘灯的经历7、闪烁聪明智慧,Waters 486氘灯计时器解析氘灯相关帖子:【讨论液相潜力】仪器篇之检测器灯检测器的灯何时关?WATERS荧光检测器里面的灯寿命有多长?【求助】关于灯测试的问题?液相不开灯,噪声为什么那么大?安捷伦1100DAD检测器灯点不亮。。已用5000+小时,是否已到寿命?紫外灯与氘灯,你知道多少?更换的新氘灯能量低?氘灯何时更换安捷伦DAD检测器新氘灯能量测试未通过说说你经历过的氘灯无法点亮原因

  • 安捷伦1100DAD检测器的光强度和流通池的测试方法

    我用的是安捷伦1100,现在发现样品和对照的峰面积同比例增大了1.2倍,检查过,感觉好像是检测器出了问题,想测试下。除了取下柱子,直接连通检测器,接下来的具体操作方法是什么?测试之前要清洗管路吗?用什么冲洗?测试时要注意哪些问题?

  • 【原创大赛】【仪器零件】检测器狭缝引起的思考

    【原创大赛】【仪器零件】检测器狭缝引起的思考

    狭缝是紫外-可见检测器分光系统中的一个重要分光元件,有固定狭缝 单边可调非对称式狭缝 双边可调对称式狭缝之分,其宽度大小对检测器的灵敏度 检测限 线性范围有着不同程度的影响,其作用原理对参数设定,检测分析有着不可忽视的意义。在此根据自己的理解做一些描述和概括,不可避免的会出现错误和不足,望朋友们批评指正,以便于修改完善,防止误导。 紫外-可见吸收检测器狭缝宽度的大小决定着光的纯度和强度,狭缝越大,光强相对越大,波长范围越宽,灵敏度越高,噪音越低,检测限越小,线性范围越小,分辨率越小,信噪比越大。相反狭缝宽度越小,灵敏度越低,噪音越大,检测限越大,线性范围越宽,分辨率越大,信噪比越小。在考虑到检测限和线性范围的情况下,狭缝的宽度既不能太大,也不能太小,以牺牲线性范围来提高灵敏度是不可取的。http://ng1.17img.cn/bbsfiles/images/2015/08/201508182055_561460_2960432_3.pnghttp://ng1.17img.cn/bbsfiles/images/2015/08/201508211443_561934_2960432_3.png一:检测器的灵敏度 检测器的灵敏度因狭缝的改变而改变,狭缝越大,灵敏度越大,狭缝越小,灵敏度越小。选择的狭缝越窄,则仪器的光学带宽越小,从而越会降低其灵敏度。光学带宽越小,光谱分离度越高。 紫外-可见检测器的灵敏度与物质分子的摩尔吸光系数有关,摩尔吸光系数表明对单色光辐射的吸收作用是物质的特性,吸光系数的大小与吸光物质的结构和波长有关,不同物质的摩尔吸光系数不同,灵敏度和信噪比也不同。这是由于物质分子中生色基和助色基的存在,当物质分子受到光的辐射时,生色基中的电子吸收光能发生能级转变, 同时伴随着振动和转动能的转变,这种能级转变需要的能量很低,在紫外-可见区就有吸收,表现出特征吸收带。助色基本身没有吸收,当与生色基相连时,表现出吸收峰位移和更强的吸收,由于助色基的存在,吸收峰会向更长的波长方向迁移。 紫外-吸收检测器的检测,要选择检测物的最大吸收波长,在检测波长下溶剂应没有吸收,以此来增加检测灵敏度和抗干扰能力,获得更大的信噪比。 狭缝宽度增大,光通量增加,检测器的透过光强增加,透过率也就增加,因此,检测器光电输出信号增加,灵敏度也就自然增加了。 同时,由于狭缝的增宽,也会使检测器入射光的单一性受到影响,使谱带增宽,造成与朗伯-比耳定律的偏离,使检测器的线性范围变差,检测限降低,分辨率同时也会降低,这时的噪音由于分辨率的降低而变小。基线的噪音减小,检测信号增强,信噪比自然也就增大了。http://ng1.17img.cn/bbsfiles/images/2015/08/201508211520_561995_2960432_3.png 在同一检测器上,用相应曲线的斜率表示灵敏度数值时 ,斜率越大,灵敏度越高。检测器的灵敏度与样品性质有关,不同的物质斜率不同, 同时须说明样品及用溶剂的种类。 二:检测器噪音的来源与形成 检测器的噪音受狭缝宽度的变化而改变,狭缝宽度越大,噪音越小,狭缝宽度越小,噪音越大。http://ng1.17img.cn/bbsfiles/images/2015/08/201508211520_561996_2960432_3.png 噪音来源于检测器的光学系统和分离系统,在没有样品通过检测器时,检测信号的大小是与波长有关的光强 光学系统传播效率 光电转换效率的函数。 当光电转换效率很低时,基线的噪音接近于光路元件的自然噪音,这时,可以通过增加光源的光强和谱带宽度得到解决,如果只提高倍数放大器,降低衰减倍数,那么噪音也会增加,信噪比也得不到提高。 检测器的光源氘灯随着使用时间的延长,由于能量在不断降低,光强不断减弱,致使噪音不断增大。 由于静电作用,环境中的尘埃会吸附在光路元件上,提高了折射和散射,降低了光学系统的传播效率,使噪音增加。 检测器光路元件的材料附层,长期处于紫外辐射而降解也会导致光路元件传播效率和转换效率的降低,也是导致噪音增加的一个方面。 流速的变化会产生流速灵敏度的改变,使用恒流泵能改变因流速发生变化而产生的灵敏度的变化。 温度的改变会造成流动相折射率的改变,折射率的改变是分离系统产生噪音的主要来源。当入射光的转播经过不同的介质时,由于不同介质的折射率不同便会产生光的折射与散射,损失光的能量而产生噪音。 温度的改变还会影响流动相的压力,压力的改变波动,使进入流动相的光发生折射与反射形成噪音。 流动相中存在的气泡类似于无数的光镜产生折射与反射,损失光能,影响光的传播形成噪音。三:检测限与线性范围 检测限和线性范围的大小因狭缝宽度的改变而变化,狭缝宽度越大,检测限越小,线性范围也越小;狭缝宽度越小,检测限越大,线性范围也越大。 检测限是被检测样品在给定的检测器和规定的波长下,所能检测出的最小样品浓度或质量。其大小与被检测样品的摩尔吸光系数有关,摩尔吸光系数越大,检测限越小。在一定的稀释倍数和进样量的情况下,其最小检测量也就越小。 检测限与灵敏度有关,灵敏度越高,检测限越低;灵敏度与摩尔吸光系数有关,摩尔吸光系数越大,灵敏度越高。 检测限实质上是信噪比,在考虑噪声影响的基础上,反映检测器所能恰好辨别的信号,因而能更全面地反映检测器的质量,是衡量检测器性能的重要指标。检测限小,说明检测器的检测能力强,性能好,检测时所需要的样品量少。检测器的噪声小,检测限也小;具有一定噪声水平的同一台检测器,灵敏度高的物质检测限小。http://ng1.17img.cn/bbsfiles/images/2015/08/201508182058_561461_2960432_3.png 检测器的线性范围定义为检测信号与被检测物质量呈线性关系的范围,以呈线性响应的样品量上限、下限之比值表示。线性范围的下限规定为噪声的两倍值。当样品量大于某一数值后,直线开始弯曲,检测器输出的信号不再随样品量的增加而呈线性增加。这个转折点为线性范围的上限。检测器限制了最大允许进样量,超过此限,响应信号不再与样品量成线性关系。 在线性范围之内,用输出信号的大小进行定量分析既方便又准确。若在非线性部分,以输出信号大小判断样品含量,将产生偏差。检测器有一定的线性范围,不可能在它的影响范围内完全呈线性,一般希望检测器的线性范围尽可能大些,可以同时测定大量的和痕量的组分。

  • 如何判断液相色谱检测器污染了?

    1.基线变化一般不会很有规律的,如果你是在自动量程下监控基线情况的时候,不可能得到原来仪器理想状况的有规律的基线在高频率上下浮动的变化,而是有时候会得到低频率变化的峰,看上去很像有东西洗脱出来,并且峰宽比较大,还像共洗脱现象似的。至于,基线飘逸并不像你原来那样慢慢的变平,而是一致嘲一个方向,比如向上漂,你平衡一天也可能是一致在漂。2.柱压变化,应该影响很小,除非是你的检测池太脏了,被堵的很严重,会对柱压产生小于1000psi的影响(一般的用到光的检测池也就耐这么高的压力),但是,这种情况不会持续发生,给你排查的时间应该有限,堵的时间长了,就会爆池,压力也就没有影响了。3. 峰面积变化,应该是变小,检测池脏的情况会有两种情形影响你的检测灵敏度,一方面是基线噪声变大,从整体上影响你的信噪比。另一方面,检测池脏了,对于光检测原理的检测器来说(UV,PDA,DAD,FLD,ELSD)首先会减弱通过检测池的光强度,光强度降低了,灵敏度就下降了,就相当与你检测器光源的能量降低一个道理。4.保留时间,这个暂时没有看到有什么变化,除非由于脏了,系统压力增加,然后某个接口地方出现漏液,然后导致RT出现一些变化,不过可能性很小。

  • 【原创】关于二极管阵列检测器波长问题

    我知道:紫外-可见光(UV-VIS)检测器 原理: 基于Lambert-Beer定律,即被测组分对紫外光或可见光具有吸收,且吸收强度与组分浓度成正比。很多有机分子都具紫外或可见光吸收基团,有较强的紫外或可见光吸收能力,因此UV-VIS检测器既有较高的灵敏度,也有很广泛的应用范围。由于UV-VIS对环境温度、流速、流动相组成等的变化不是很敏感,所以还能用于梯度淋洗。一般的液相色谱仪都配置有UV-VIS检测器。用UV-VIS检测时,为了得到高的灵敏度,常选择被测物质能产生最大吸收的波长作检测波长,但为了选择性或其它目的也可适当牺牲灵敏度而选择吸收稍弱的波长,另外,应尽可能选择在检测波长下没有背景吸收的流动相。  二极管阵列检测器(diode-array detector, DAD): 以光电二极管阵列(或CCD阵列,硅靶摄像管等)作为检测元件的UV-VIS检测器.它可构成多通道并行工作,同时检测由光栅分光,再入射到阵列式接受器上的全部波长的信号,然后,对二极管阵列快速扫描采集数据,得到的是时间、光强度和波长的三维谱图。与普通UV-VIS检测器不同的是,普通UV-VIS检测器是先用单色器分光,只让特定波长的光进入流动池。而二极管阵列UV-VIS检测器是先让所有波长的光都通过流动池,然后通过一系列分光技术,使所有波长的光在接受器上被检测。二极管阵列检测器可以获得全波长的样品信息,而且可以根据吸收光谱辅助定性。但相对来说,专门的紫外检测器灵敏度能高一些。二极管阵列检测器是检测的全波长,但是我做的产品需要打印特定波长下的谱图。现在我只会一个一个在离线下改波长。但我听说lc solution是可以在一开始做样前改方法的,不知道怎么弄,希望前辈能指点!谢谢!

  • 有了解CCD检测器直读光谱像素校准的么?

    仪器使用前或做标准化前要做一个像素校准,这样才能保证仪器工作状态。校准的是什么呢? 是 该基体主要元素的光强? 还是不同波长元素所产生的强度被检测器接收的多少?哪位有相关资料http://simg.instrument.com.cn/bbs/images/brow/em0817.gif

  • 【赛前预热】+紫外检测器如何可以延长寿命

    【赛前预热】+紫外检测器如何可以延长寿命

    http://ng1.17img.cn/bbsfiles/images/2017/10/2015060911095159_01_2328678_3.jpg俺的老哥们Agilent hplc1100 紫外检测器近期毛病不断,与大家共学习:一般做法:坚持在分析工作结束后冲洗液流管路,去除气泡和污垢。日常进行性能检测记录和比较,能及时发现问题和故障,便于维修。性能检测主要内容:波长精确度、样品池与参照池光强度、噪声和基线漂移。检测可定期或不定期在分析工作前进行。色谱仪液流管路,从泵、进样器、色谱柱及检测器流通池,在分析完成后,均应充分冲洗。特别是用过含盐缓冲液做流动相,更应用水、甲醇-水充分冲洗,防止在液流管路及流通池内出现污垢和气泡。不过现在必须学会更换保险丝学会清洗流通池,还必须学会更换氘灯了!命苦啊

  • 【资料】-火焰光度检测器(FPD)

    [b]火焰光度检测器[/b][i]节选自《[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测方法》(第二版)作者:吴烈钧[/i]第一节 引言 火焰光度检测器(flame photometric detector,FPD)是利用富氢火焰使含硫,磷杂原子的有机物分解,形成激发态分子,当它们回到基态时,发射出一定波长的光。此光强度与被侧组分量成正比。所以它是以物质与光的相互关系为机理的检侧方法,属光度法。因它是分子激发后发射光,故它是光度法中的分子发射检测器。 1966年Brody和Chancy首次提出[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]FPD,称通用型FPD。它有易灭火等缺点。以后在气体的流路形式方面又作了改进。这些均属单火焰FPD(single flame photometric detector,简称SFPD)。为了克服SFPD的缺点,出现了双火焰光度检侧器(dual-flame photometric detector;简称DFPD)。近年又出现了脉冲火焰光度检侧器(pulsed-flame photometric detector;PFPD),使灵敏度和选择性均较SFPD, DFPD有很大提高,还扩大了检侧元素的范圈。 FPD是一种高灵敏度和高选择性的检测器,其主要特征是对硫为非线性响应,它是六个最常用的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器之一、主要用于含硫、磷化合物,特别是硫化物的痕量检测。近年也用于有机金属化合物或其他杂原子化合物的痕量检测。[img]http://ng1.17img.cn/bbsfiles/images/2006/11/200611082030_31777_1613333_3.gif[/img]

  • 【讨论】PE固体检测器有何优势?

    PE固体检测器有何优势?从根本上讲,检测器就是把光变成电信号,因此要看它的量子化效率、暗电流、噪声、线性范围等参数。光电倍增管的类型很多,不同类型之间性能相差很大;固态检测器也有很多种,不同厂家、不同型号、不同种类之间的差别也是很大的。因此很难一概而论。就[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]而言,最常用的光电倍增管是滨淞公司的R928,它的量子化效率大约是20~25%,暗电流大约是几十nA左右,噪声会随加的电压和光强而变化(估计在μA水平),线性范围一般能跨6个数量级以上。固态检测器,以较好的CCD为例,量子化效率大约是40~80%,暗电流大约是几个电子每秒每像素,噪声大约是几到几十个电子每秒每像素,线性范围大约在6个数量级左右。以上都是200~400nm区的数据,在这个区域以外,两者的性能都会下降,但光电倍增管下降的幅度更大一些。另外,光电倍增管只有一个感光点,只能检测一个信号;固态检测器一般都有多个感光点(像素),可以同时检测多个信号,这是固态检测器最大的优势。传统的[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原吸[/color][/url]都是采用光电倍增管做检测器的。我想原因大概有:1,每次只需检测一个信号,就算是双光束,也是先检测参比光然后再检测样品光。2,样品的浓度越低吸光值越低,也就是说透过原子化器、到达检测器的光越多;样品的吸光度值一般都小于2A,也就是说到达检测器的光都大于1%T。因此对量子化效率、暗电流、噪声、线性范围的要求都不是很高。3,光电倍增管比较便宜,成本低。目前大概只有PE和JENA的ContraAA是采用固态检测器的。我个人认为其最大的原因是为了同时检测多个信号:PE是为了同时检测样品光和参比光,ContraAA是为了同时检测背景和谱线的信号值并且做到快速切换谱线。其次才是看中固态检测器的低噪声。在ICP光谱仪上,因为是测发射光谱,样品浓度越低,到达检测器的光就越少,因此对量子化效率、暗电流、噪声的要求都比较高,而且要求多元素同时分析,所以固态检测器已经几乎完全取代光电倍增管。从长远来看,[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原吸[/color][/url]如果想要取得更大的发展,也应该要结合固态检测器的优势。

  • 【第三届原创大赛】ELSD检测器选择注意事项分享(11月)

    维权声明:本文为luxw原创作品,本作者与仪器信息网是该作品合法使用者,该作品暂不对外授权转载。其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现均属侵权违法行为,我们将追究法律责任。 ELSD检测器选择注意事项分享前言:我们先来了解一下蒸发光检测器是个什么东东?蒸发光检测器即ELSD检测器,是一种通用检测器,在辅助气体一般是氮气或者是经过净化的压缩空气的作用下,将流动相雾化,形成的液雾(雾珠)通过加热而蒸发,此时溶解在流动相中不易挥发的样品即形成颗粒物,这些颗粒物由辅助气体推动进入光束通道,造成光束散射。通过测定散射光的强度即可预测样品颗粒的数量,从而测定样品浓度。 正文:选择一个适合自己的配件不是一个容易的事情,采购是一个方面、使用也是一个方面,因此在考虑采购的同时,也要先了解其操作,只有明白了原理、操作,才能在采购中做到游刃有余。先来谈谈ELSD的特点:ELSD是一种通用型的检测器,可检测挥发性低于流动相的任何样品,而不需要样品含有发色基团。蒸发光散射检测器灵敏度比示差折光检测器高,对温度变化不敏感,基线稳定,适合与梯度洗脱液相色谱联用。它的优势就在于可检测挥发性低于流动相的任何样品;检测不含发色团的化合物,如:碳水化合物、脂类、聚合物、未衍生脂肪酸和氨基酸、表面活性剂、药物,并在没有标准品和化合物结构参数未知的情况下检测未知化合物。流动相低温雾化和蒸发,对热不稳定和挥发性化合物亦有较高灵敏度;广泛的梯度和溶剂兼容性,无溶剂峰干扰。辅助载气提高了检测灵敏度,保持检测池内的清洁,避免污染。高精度雾化和蒸发温度控制,保证高精度检测。可与任何HPLC系统连接。而与其他检测器区别则在于ELSD的通用检测方法消除了常见于传统HPLC检测方法中的难点,不同于紫外和荧光检测器,ELSD的响应不依赖与样品的光学特性,任何挥发性低于流动相的样品均能被检测,不受其官能团的影响。ELSD的响应值与样品的质量成正比,因而能用于测定样品的纯度或者检测未知物。紫外、荧光、电化学和示差折光检测器的响应值与待测液的浓度在一定范围内呈线性关系,但蒸发光散射检测器响应值与待测溶液的浓度通常并不呈线性关系,必要时需对响应值进行数学转换后进行计算。如果简单描述一下其检测步骤的话,大体为雾化:在雾化器中,洗脱液通过1个针孔与氮气(也可以用空气)混合,形成均匀的雾状液滴;流动相蒸发:液滴通过加热的漂移管时,流动相被蒸发,样品组分形成气溶胶,进人检测室;检测:在检测室内,用激光来照射气溶胶,产生散射,测定散射光强,记录散射光强度随时间的变化关系,就得到了色谱图。其计算过程为:气溶胶受固定光强的激光照射后,待测组分的质量(m)和散射光强度(I)有以下的关系:I=Kmb lgI=blgm+lgK 式中K和b为与蒸发室温度和流动相性质有关的常数。上式说明散射光的对数响应值与组分的质量的对数成线性关系。熟悉了其特点,再来谈谈安装时需要注意的问题。由于其自身的特点,其和液相连接需要信号转换,如:和安捷伦液相相配时就需要一个数模转换器(35900E),因此要考虑到额外配件的采购,不要预算下来,检测器买回来了,还不能使用。当然除了此办法外,也可以用安装额外工作站来完成和液相的链接。这就需要和厂家的安装工程师沟通好,在采购时一定要购买齐全。再就是废气的处理,由于其检测过程中会产生有毒的废气,需要一根通向室外的管线,这一点一定要考虑周全。尤其是液相室比较靠内的,一定要考虑好管线的走向,并保持管线一直到室外都是向上延伸的。而对于其中使用的氮气或空气也应该提前准备好,如果是气体发生器的话,还要考虑压力的问题,这也要和仪器配套。以上问题考虑好了就是采购方面的问题了。这个方面我们以前也讨论过很多,这里就不再详谈了。尽管只是一个检测器,但由于价格不菲,因此还是需要讨价还价的,而对于安装和培训的具体事项也应该在采购时谈好,以免日后扯皮。对于其品牌,有奥泰、沃特斯2420、沃特斯2424等,大家可以作为参考。这就是我自己的一点经验,希望对大家有所帮助!http://simg.instrument.com.cn/bbs/images/brow/em09511.gif

  • 双道原子荧光afs 920检测器是怎么同时检测两种元素的呢?

    如题,网上查资料说检测器用的是日盲光电倍增管,按照我个人的理解,光电倍增管是不能区分出荧光波长的啊,应该只是说在100多到3百多的波长能发生光电转换,同时进入两道波长不同但在范围内的荧光应该只相当于单种荧光强度变大而已啊。如果各位老师觉得幼稚也不要笑,谢谢啦~~

  • 使用紫外检测器时应该考虑溶剂的截止波长

    使用紫外检测器时应该考虑溶剂的截止波长 紫外截止波长的定义为“以空气作为参照物,在1cm吸收池内溶剂测得与参照物相等吸收的吸收波长”。一般定义只要到达检测器时的透射光强度被削弱到10%的入射光强时,对应的波长就是紫外截止波长。当检测波长为220nm时,只能选用小于此截止波长的溶剂,如正戊烷、水、甲醇乙腈等溶剂,而不能选用截止波长大于220nm的溶剂,如二氯甲烷、氯仿等。今天80%以上的液相色谱分离分析都用到反相色谱。我认为反相色谱优于正相色谱有两个方面的优势。第一、正相色谱所用的氯仿等溶剂属于剧毒溶剂,就安全性而言不如甲醇乙腈。第二,甲醇、乙腈等的截止波长较低,能够覆盖200到400nm紫外区域,属于广谱的溶剂。

  • 高效液相色谱仪的检测器分类

    1.紫外可见吸收检测器 2。荧光检测器是一种高灵敏度、有选择性的检测器,可检测能产生荧光的化合物。某些不发荧光的物质可通过化学衍生化生成荧光衍生物,再进行荧光检测。其最小检测浓度可达0.1ng/ml,适用于痕量分析;一般情况下荧光检测器的灵敏度比紫外检测器约高2个数量级,但其线性范围不如紫外检测器宽。近年来,采用激光作为荧光检测器的光源而产生的激光诱导荧光检测器极大地增强了荧光检测的信噪比,因而具有很高的灵敏度,在痕量和超痕量分析中得到广泛应用。 3. 示差折光检测器是一种浓度型通用检测器,对所有溶质都有响应,某些不能用选择性检测器检测的组分,如高分子化合物、糖类、脂肪烷烃等,可用示差检测器检测。示差检测器是基于连续测定样品流路和参比流路之间折射率的变化来测定样品含量的。光从一种介质进入另一种介质时,由于两种物质的折射率不同就会产生折射。只要样品组分与流动相的折光指数不同,就可被检测,二者相差愈大,灵敏度愈高,在一定浓度范围内检测器的输出与溶质浓度成正比。 4. 电化学检测器主要有安培、极谱、库仑、电位、电导等检测器,属选择性检测器,可检测具有电活性的化合物。目前它已在各种无机和有机阴阳离子、生物组织和体液的代谢物、食品添加剂、环境污染物、生化制品、农药及医药等的测定中获得了广泛的应用。其中,电导检测器在离子色谱中应用最多。 电化学检测器的优点是: ①灵敏度高,最小检测量~般为ng级,有目可达pg级; ②选择性好,可测定大量非电活性物质中极痕量的电活性物质; ③线性范围宽,一般为4~5个数量级; ④设备简单,成本较低; ⑤易于自动操作。 5. 化学发光检测器是近年来发展起来的一种快速、灵敏的新型检测器,因其设备简单、价廉、线性范围宽等优点。其原理是基于某些物质在常温下进行化学反应,生成处于激发态势反应中间体或反应产物,当它们从激发态返回基态时,就发射出光子。由于物质激发态的能量是来自化学反应,故叫作化学发光。当分离组分从色谱柱中洗脱出来后,立即与适当的化学发光试剂混合,引起化学反应,导致发光物质产生辐射,其光强度与该物质的浓度成正比。

  • 伍丰液相的检测器问题-反映的售后问题

    最近买了一台伍丰的LC-100,还是高压梯度,用了才几个月检测器出了点问题,提示 光强1S 2R.老是出现,而且影响了生产,然后就找到了厂家,看能不能过来给我调一下,但是说起来就有些憋气,电话打过去021-52695700是个负责河北的女的,给我们说什么费用问题,还把我们训了一顿,真是第一次看到这样的厂家,买了仪器还得受气,这是什么一个生产厂家啊!真纳闷了,我们是用户,仪器还在保修期内出了问题,售后服务怎么这么差!!!!!!!!!!!!!!!!!!!!!!!!!!!发帖子并不是攻击厂家,只是做为用户没有受到过这样的服务,我们现在没有别的意思,就是希望厂家把我们的问题赶紧解决.

  • 【资料】紫外-可见光(UV-VIS)检测器

    原理: 基于Lambert-Beer定律,即被测组分对紫外光或可见光具有吸收,且吸收强度与组分浓度成正比。很多有机分子都具紫外或可见光吸收基团,有较强的紫外或可见光吸收能力,因此UV-VIS检测器既有较高的灵敏度,也有很广泛的应用范围。由于UV-VIS对环境温度、流速、流动相组成等的变化不是很敏感,所以还能用于梯度淋洗。一般的液相色谱仪都配置有UV-VIS检测器。用UV-VIS检测时,为了得到高的灵敏度,常选择被测物质能产生最大吸收的波长作检测波长,但为了选择性或其它目的也可适当牺牲灵敏度而选择吸收稍弱的波长,另外,应尽可能选择在检测波长下没有背景吸收的流动相。  二极管阵列检测器(diode-array detector, DAD): 以光电二极管阵列(或CCD阵列,硅靶摄像管等)作为检测元件的UV-VIS检测器(图8-15)。它可构成多通道并行工作,同时检测由光栅分光,再入射到阵列式接受器上的全部波长的信号,然后,对二极管阵列快速扫描采集数据,得到的是时间、光强度和波长的三维谱图。与普通UV-VIS检测器不同的是,普通UV-VIS检测器是先用单色器分光,只让特定波长的光进入流动池。而二极管阵列UV-VIS检测器是先让所有波长的光都通过流动池,然后通过一系列分光技术,使所有波长的光在接受器上被检直接紫外检测: 所使用的流动相为在检测波长下无紫外吸收的溶剂,检测器直接测定被测组分的紫外吸收强度。多数情况下采用直接紫外检测。  间接紫外检测: 使用具有紫外吸收的溶液作流动相,间接检测无紫外吸收的组分。在[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]中使用较多,如以具有紫外吸收的邻苯二甲酸氢钾溶液作阴离子分离的流动相,当无紫外吸收的无机阴离子被洗脱到流动相中时,会使流动相的紫外吸收减小。  柱后衍生化光度检测: 对于那些可以与显色剂反应生成有色配合物的组分(过渡金属离子、氨基酸等),可以在组分从色谱柱中洗脱出来之后与合适的显色剂反应,在可见光区检测生成的有色配合物。

  • 解读液相色谱紫外检测器误区——补充钨灯更新

    前几天,有个销售朋友提了一个问题,让我很无语,但是仔细想想,可能也有其道理,所以觉得想和大家聊聊。问题是这样的:朋友:液相色谱的宣传资料上有的家写的200-400nm,有的加写的190-400nm,还有的写190-360nm;写200nm的,是不是技术有问题,做不到190nm,仪器不如190nm的?我:。。。。。。不说,是因为觉得这个问题很无语,太低级。但是想想,可能是不是很多人都这么认为呢?个人理解如下:1、从硬件角度考虑a、氘灯其实液相的紫外检测器,主要是氘灯或者氘灯+钨灯构成;氘灯本身的能量,或者说光强,是有一定范围的,主要的光强度,集中在200-360nm这个范围,低于或者高于这个范围,不是说不能检测,而是能量/光强度弱了,检测效果不好。b、信号接收 氘灯穿过样品,出来的光会进过信号接收的装置或者说硬件,转变成数据;而这个信号接收,大部分也有个范围,不过大多数厂家都是可以做大的,对于波长范围影响不大;关键的问题是如果是二极管阵列的,大多要考虑氘灯在点亮过程中产生的臭氧,对二极管上镀膜的伤害,也可以说是氧化。时间长了,容易造成氧化,而影响光信号的接受强度。但是该问题主要是使用后期,不影响前期。2、软件 其实软件构不成影响,做软件的采集,是可以随便设置的,嘻嘻~~~~3、使用 从使用的角度而言,200nm以下很多溶剂是无法使用的,会有吸收,造成漂移,从而影响检测。大家可以查下溶剂的吸收波长就知道了,像低波长下,甲醇都是不可用的,水里面也是很多酸、碱、盐都是不能加的~乙腈供应厂家足够好的话,可以用;很多小厂家的乙腈,低波长下也有吸收物质,没法用~所以如果是该物质确实是200nm以下吸收波长的,作分析,考虑换个检测器吧,比如蒸发光检测器(ELSD)、示差检测器(RI)等总结:也就是说,无论厂家写的190-400nm、还是200-400nm、或者是190-360nm,本质上没啥区别~今天要下班回家赶公交,明天再接着聊钨灯方面的。。。。。————————————————————————————————————————————————————————————————————————————————————嘻嘻,最近比较懒也比较忙,所以迟了很久才和大家说钨灯,没让大家等的不耐烦吧??咱们来说说钨灯吧,也就是200-800nm。上面说了,很多厂家其实氘灯+钨灯,波长范围也标示的不一样的,好些是到800nm,有些是到700nm,都不一样。有什么区别呢,下面我们来看看~其实这就是一个光谱范围的问题,检测器本身没有区别的:在760~800之间,因为多级滤光片的问题,性能不是很好,加上下面要说的二级衍射,所以从本质上而言,无论厂家写的700nm、760nm还是800nm,都没有太大关系的;从应用角度而言,700nm以上也基本不用,就像紫外200nm以下不用是一个意思。另外从使用的角度上讲,一般液相都是单波长,所以没有这个问题,制备液相而言,有双波长或者更多,不知道大家有没有注意,所谓的双波长,也是有范围的:这么说吧,比如厂家说的双波长,告诉你200-800nm双波长,是这个意思:200-400范围内可以设置任意两个波长,400-800nm范围内可以设置任意两个波长,但是不能是200-400nm设置一个波长,400-800nm设置另一个波长,为什么呢?http://simg.instrument.com.cn/bbs/images/default/emyc1010.gif原因1:因为200~800nm的时候用的是氘+钨灯,氘灯在656.1nm的时候有特征波长,能量比较高,要是不经过处理的话,加上钨灯的能量,检测器能量马上就饱和了。所以要么用紫外用氘灯,可见用钨灯,不能同时用。原因2:用光栅分光的时候,800nm的时候有400nm的二级衍射,以此类推,600nm的时候有300nm的二级衍射

  • 液相色谱紫外检测器氘灯使用注意2

    氘灯的正常使用寿命一个氘灯的使用寿命是指其在提供足够光强的状态下的所使用的小时数。很明显的,一个用来做痕量分析的氘灯的寿命要比做HPLC一类的检测相对简单实验的氘灯寿命要来的短。经验法则告诉我们,当在指定波长下光强不足初始值的50%时,你就可以换氘灯了。氘灯正常使用时的发射光强是一个很缓慢的减弱过程,可以用以下的指数函数来表示:It = Io x e-ct式中:It 表示在t时刻的光强值;Io 表示初始光强;C表示一个常数;t表示时间。氘灯的光强减少量主要取决于以下3个因素:1.此氘灯的内部金属部件以及涂料的蒸发(同时可能导致灯的能否点亮);2.此氘灯的灯丝涂料的材料与石英套发生反应(主要是阻碍穿透);3.日晒光照会导致石英套吸收200—250nm波长的光。当氘灯使用寿命快到时,它发出的光强衰减的会很快一直到它不能点亮为止。如果一直出现点灯失败,那就是氘灯有问题的信号。导致氘灯使用寿命缩短甚至于早期失效的主要原因是什么?氘灯的开关频率氘灯的开关次数与其正常使用时间成反比。以每日工作8小时来说,如果在期间不关灯的话,那你的氘灯寿命会下降三成。每日在休息等时间将氘灯频繁开关也将对氘灯寿命造成损害,同时可能对生产效率产生影响,因为氘灯点亮后须要30分钟左右的稳定时间。氘灯的外套受到玷污。不要用手直接接触氘灯。手上含有的油脂类物质会在石英外套上残留下一个污点,这会阻碍氘灯的光源的发射光。如果不小心用手直接接触到了氘灯,那在氘灯安装之前请用异丙醇将氘灯清洗干净。物理冲撞当氘灯或者检测器受到物理冲撞时,如灯是亮着的话,很可能将灯丝弄坏甚至是弄断。(因为当氘灯点亮时其温度有2700K度,此时灯丝几乎是液态的。)重要提示:在氘灯刚关闭时要等其冷却之后才能再次开启。因为氘灯如果在未冷却状态时被打开,很可能造成灯丝整体结构的破坏。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制