当前位置: 仪器信息网 > 行业主题 > >

光纤分析仪

仪器信息网光纤分析仪专题为您提供2024年最新光纤分析仪价格报价、厂家品牌的相关信息, 包括光纤分析仪参数、型号等,不管是国产,还是进口品牌的光纤分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光纤分析仪相关的耗材配件、试剂标物,还有光纤分析仪相关的最新资讯、资料,以及光纤分析仪相关的解决方案。

光纤分析仪相关的资讯

  • 光纤照明系统应用于空间站舱内的分析探讨
    光纤照明系统应用于空间站舱内的分析探讨引言:照明系统是空间站内一个重要的子系统,配套舒适的照明能为航天员的舱内生活、作业提供良好的照明环境,保障航天员的人身安全。同时,照明的功耗控制也对整个航天任务的顺利实施起到重要作用。目前绝大多数空间照明系统的供电来源于太阳能电池阵/蓄电池供电系统。在航天器光照区,通过太阳能电池的光伏效应把太阳能转换为直流电能供给负载,并将部分电能转化为化学能储存于蓄电池组中。当航天器进入地球阴影区时,则由蓄电池通过控制单元中的调节装置向负载供电。太阳能电池主要时基于光电转换实现的,其基本原理是利用电池将收集到的光能根据一定的原理转化成为可以直接使用或者可以储存的电能,目前太阳能电池的转换效率一般在10%-20%之间。当前这种技术的应用范围很广阔,但其局限性是如何提高这种光能向电能转换的效率。近年来,虽然越来越多的飞行器开始采用功率较低、性能更优的LED光源代替传统的荧光灯,但是长时间不间断的照明仍会产生较大的功耗。为了充分利用太阳光以达到节约资源的目的,基于地面上应用的光纤照明系统,提出了一种应用于空间照明的太阳能光纤照明方案,直接利用太阳光进行舱内照明。图1.空间站内的照明系统一、光纤照明可行性分析以位于赤道上空35860 Km的同步轨道为例,卫星绕地球一周的时间为23 h 56 min 4 s,与地球自转周期相同,卫星相对地球来说是静止的,一年中仅在春分和秋分前后45天,而且每天最多只有72 min被地球遮挡,其余时间内,卫星可受到太阳光的连续照射。和地面相比,用同样的面积的太阳能电池板,在同步轨道可获得6-11倍的太阳能。如果卫星处于圆形日心轨道,则不存在地球遮挡时间。如果我们能充分利用这段时间的太阳光直接进行照明,将大大节省飞船的照明用电,因此分析和探讨光纤照明系统在飞船和空间站内的应用是非常有意义的。事实上,早在1995年,美国物理科学公司和道格拉斯宇航公司在NASA的资助下,就曾对太阳光照明系统进行过相关的研究。当时这个系统是作为空间材料处理实验的热源为另一个项目研制的,将其中一部分用于空间植物照明实验。这一系统主要包括了可自主聚光镜、次级聚光镜、光纤、植物照明器和检测仪器,效率约为32%,通过采用高效率部件,系统效率可达到65%,其聚光比为1000-75000。由此可见,太阳光光纤照明系统有望于应用于未来的空间站照明。图2.空间站内的收光系统二、空间光纤照明系统关键技术典型的光纤照明系统主要由聚光装置、光纤束、末端发光装置以及辅助装置等部分组成。其中光纤束及光线跳线作为重要的组成部分,起到了光线传输何承载的重要作用。我们提供各种光纤束,并根据要求为客户定制各种光纤束。可选的标准接口及护套铠甲。40,000小时不间断测试实验表明我们光纤束可以长期保持透过率稳定。 此外,传统的光纤束均采用环氧胶来交合光纤,这一方式使光纤束的传输效率变低,我们PowerLightGuide FUSED-END BUNDLES 抗紫外光纤束(Optran UVNS光纤)则采用输入端熔融工艺从而减小光纤间的空隙,极大的提供光纤束的透过效率。在保持光纤的NA不变的情况下,PowerLightGuide FUSED-END BUNDLES传输效率提高50%。因为不含任何环氧胶,PowerLightGuide FUSED-END BUNDLES在摄氏1500度的情况下依然可以正常工作。PowerLightGuide FUSED-END BUNDLES(光纤束,光纤光导管)相对于传统的液芯光导管(Liquid Light Guide,液芯光纤)有着极大的优势,主要包括以下几点: 1.PowerLightGuide FUSED-END BUNDLES在160~1200nm范围内提供极高的透过率, 2. PowerLightGuide FUSED-END BUNDLES长度不想液芯光纤一样受限制, 3. PowerLightGuide FUSED-END BUNDLES的传导性能不会随时间而退化。 主要应用:工业及科学方面: 替换 UV液芯光纤光谱学 传感器 紫外光刻 激光焊接/锡焊/打标 激光能量传送 核等离子体诊断 分析仪器 激光二极管尾纤 Thomson散射 紫外照明及监测 紫外拉曼光谱 紫外固化 超高温应用医疗方面: 医疗诊断 激光传输 光动力疗法 医学治疗高精度定制型光纤束-昊量光电 (auniontech.com)系统的工作原理:聚光装置将入射的太阳光进行会聚,会聚后的太阳光通过光纤束传输到任何需要照明的场所,再通过合理的配光设计使传输过来的太阳光均匀地散射出去。当无太阳光照射或太阳光不足时,利用辅助照明装置进行补充照明,以保证高质量的照明环境。太阳光光纤照明系统应用于空间照明的关键技术为:聚光装置的设计;聚光装置与光纤的耦合;末端发光装置的设计;辅助照明装置的设计。研究上述应用的技术难点,将对光纤照明系统应用于空间照明并节约照明功耗具有很大作用。同时,对空间站照明的研究,也可以将其技术应用在空间植物的培养方面,未来随着人们对宇宙空间的不停探索,光纤照明将不仅仅 限于空间站的生活照明,同样可以应用在空间站内植物培养照明,为人类能够探索更遥远的宇宙提供可能性。结语:目前,地面上的太阳光光纤照明系统与传统照明技术的有机结合使得太阳能被广泛的应用,大大的节约了照明供电系统的资源和成本,具有较高的学术价值和重要的应用价值。而且,国内外关于太阳光照明与传统照明结合的性能更优的系统和新装置不断被研制出来,各国科研人员对太阳光光纤照明实用系统的开发研究正在进一步深入,各种新方案、新器件不断被运用到系统的设计和制作当中,太阳光光纤照明系统将是未来照明的一个大趋势。关于昊量光电昊量光电 您的光电超市!上海昊量光电设备有限公司致力于引进国外先进性与创新性的光电技术与可靠产品!与来自美国、欧洲、日本等众多知名光电产品制造商建立了紧密的合作关系。代理品牌均处于相关领域的发展前沿,产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,所涉足的领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及前沿的细分市场比如为量子光学、生物显微、物联传感、精密加工、先进激光制造等。我们的技术支持团队可以为国内前沿科研与工业领域提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务,助力中国智造与中国创造! 为客户提供适合的产品和提供完善的服务是我们始终秉承的理念!
  • “微型光纤光谱仪在LED光谱测量中的应用以及常见问题分析”研讨会完美谢幕
    2011年11月29日 10:00-11:00,海洋光学在光电新闻网上成功举办了&ldquo 微型光纤光谱仪在LED光谱测量中的应用以及常见问题分析&rdquo 在线语音研讨会,近200名观众报名和关注,对此次参加的观众,海洋光学致以最诚挚的感谢。10日前我们将公布参加此次研讨会观众的中奖名单,敬请关注。 本次研讨会主要是介绍微型光纤光谱仪在LED照明领域中的应用及测量方法,可以用于LED等光源及其灯具的在线快速光谱测量测试及其品质控制,可以进行光度测量诸如:光通量、照度、光强、亮度;及颜色特征测量诸如:主波长、色度坐标、色纯度、显色指数、色差、色温。希望可以为工业生产及其标准计量规范提供参考与借鉴。 视频回放请点击:http://webinar.ofweek.com/activityDetail.action?activity.id=4391010&user.id=2 12月海洋光学还将以开展分别以太阳能模拟器、拉曼光谱仪、膜厚测量、球\平面光学器件测试系统为主题的在线研讨会,了解最新信息请关注:http://bbs.instrument.com.cn/shtml/20111202/3683816/ 如果您想进一步了解光纤光谱仪及其应用,如果你有更好的建议和意见希望和我们分享,请关注我们的论坛: http://bbs.instrument.com.cn/forum_653.htm
  • 我国首台超高精度光矢量分析仪问世 打破美国垄断
    可在几百米的光纤中测出小至0.1毫米的误差,较国外垄断产品,测量分辨率提高了1600倍,相位精度提高了10倍̷̷记者19日从南京航空航天大学获悉,该校研发的我国首台超高精度光矢量分析仪问世。  超高精度光矢量分析仪就像“火眼金睛”,从家用光纤路由器到航天飞船等大量应用的光学器件领域都需要用到它。它可以对光器件的两个最关键指标——幅度响应和相位响应进行精确测量,从而在研发和应用中掌握其性能。第一代仪器仅能测量幅度响应,第二代仪器可以同时测量幅度响应和相位响应,但目前全球仅有美国纳斯达克上市公司LUNA的OVA5000一款产品,并且其高精度版不对我国销售。  2010年,南京航空航天大学潘时龙教授开始筹建微波光子学实验室。他带领团队在研究中发现,国外光矢量分析仪采用“以光测光”的办法,费时费力而且精度不高,自主研发的光矢量分析仪采用“以电测光”的方法,把光信号转换为微波信号。课题组先后掌握了光频梳通道化技术、平衡光电探测技术和新型电光调制技术,基本攻克了相关的技术难点。该光矢量分析仪的第二代样机先后被中科院半导体所、江苏光扬光电等十余家单位试用 还帮助某海军单位实现了光纤干涉器的自动化测量,测量精度提高10倍,节省成本一半以上。
  • 雷尼绍发布雷尼绍Virsa拉曼分析仪新品
    光纤灵活性和研究级性能兼具使用灵活在实际工作中,有时候不允许或者不方便提取样品并运送到实验室。Virsa拉曼分析仪是原位样品分析的理想工具,无论是在车间现场进行质量控制还是对较大且不可移动的易碎样品进行现场分析。Virsa标配5米长的光纤(可选更长的光纤),具备超高的样品分析灵活性。数据可靠Virsa具有多个激发选项,可避免荧光。只需点击按钮即可切换波长,无需重新放置样品。Virsa拉曼分析仪可满足您对细节的要求。通过共焦拉曼采样进行快速、精确的显微分析,实现小于1 μm的拉曼空间分辨率。Virsa之下毫发毕现。功能强大Virsa拉曼分析仪支持多种探头,您可以自由选择最适合的检测工具:• 块状大样品分析探头 — 快速分析均匀的样品• 高空间分辨率探头 — 分析不均匀样品的精细结构• 可使用可选的摄像头轻松查找和聚焦所关注的区域• 多种精选的第三方探头,包括检测液体样品的浸没式探头、高压和/或温度探头等,使用灵活。详情请访问 www.renishaw.com.cn/virsa创新点:光纤灵活性和研究级性能兼具 1. 使用灵活 在实际工作中,有时候不允许或者不方便提取样品并运送到实验室。Virsa拉曼分析仪是原位样品分析的理想工具,无论是在车间现场进行质量控制还是对较大且不可移动的易碎样品进行现场分析。Virsa标配5米长的光纤(可选更长的光纤),具备超高的样品分析灵活性。 2. 数据可靠 Virsa具有多个激发选项,可避免荧光。只需点击按钮即可切换波长,无需重新放置样品。 Virsa拉曼分析仪可满足您对细节的要求。通过共焦拉曼采样进行快速、精确的显微分析,实现小于1 μ m的拉曼空间分辨率。Virsa之下毫发毕现。 3. 功能强大 Virsa拉曼分析仪支持多种探头,您可以自由选择最适合的检测工具: • 块状大样品分析探头 — 快速分析均匀的样品 • 高空间分辨率探头 — 分析不均匀样品的精细结构 • 可使用可选的摄像头轻松查找和聚焦所关注的区域 • 多种精选的第三方探头,包括检测液体样品的浸没式探头、高压和/或温度探头等,使用灵活。 雷尼绍Virsa拉曼分析仪
  • 发布大气亚酸硝(HONO)分析仪新品
    仪器原理:大气中HONO浓度的测量采用湿化学法。基本原理是使用吸收液,利用气液之间的扩散,将采样气体中的HONO转变为亚硝酸根(NO2-),后续利用双通道长光程吸收光谱法(LOPAP)进行测量。长光程吸收光谱法(LOPAP)是现今无论是实验室研究还是外场观测中应用最广泛的测量气态亚硝酸浓度的湿化学方法。产品特点:a.经典的湿化学法,相对于光学法,检出更低,可达2ppt;b、采用双光纤池和双光谱仪的两路测量原理,一路测HONO和干扰物质的总和,一路测干扰物质,保证测量结果的准确性和稳定性;c、采用中性非腐蚀性溶液吸收:目前大多数LOPAP设备均采用磺胺和盐酸的混合液作为吸收液,PH在0左右,在气液混合的过程中对抽气泵造成较大的损害。除此之外造成废液的酸度高,不易处理,对环境造成影响。 d.自动脱气系统:有效去除管路中的气泡是仪器正常工作的一个重要因素 ,避免了仪器受到气泡的干扰,保证了仪器实时浓度输出的有效性。目前LOPAP一般没有除气泡的装置,会受到气泡的影响。e.实时浓度输出(校准系统的优势):目前市面上的LOPAP基本没有可以直接输出浓度的,一般是输出参比波长与吸收波长强度的比值或log值,没有进一步对数据进行处理。我们采用特定浓度的亚硝酸盐溶液或特定浓度的气态亚硝酸(HONO)气体对仪器定标。根据两点法先得到零点,再得到特定浓度的响应值,再根据Lambert-Beers定律反演出对应的斜率值。在软件中,只需输出零点及对应的斜率值,就可以很方便的实时输出相应的浓度值。 f.触屏控制:利用触屏可以实时对气体流量、蠕动泵转速及光源强度进行设置。通过调节气液流速,可以方便的调整测量浓度范围。 g.液位报警保护系统:增加液位报警系统,防止液体被吸入流量控制器(MFC)、抽气泵等,以免对相应器件造成损害。 h.定时校零:通过触屏,可以设置零点校准的时间及间隔,可以有效的检查仪器的稳定性以及得到的实时浓度是否准确。 技术参数:量程:5 ppt—2 ppm(可拓展)检测限:优于2 ppt;测量间隔:1—5 min(依测量范围不同而定)校准方式:离线校准:使用亚硝酸标准物可轻松校准 在线校准方式:自动产生HONO标准气体,通标气校准创新点:目前国产唯一一款在线测HONO分析仪的仪器,相对进口的有点很多。 a.经典的湿化学法,相对于光学法,检出更低,可达2ppt; b、采用双光纤池和双光谱仪的两路测量原理,一路测HONO和干扰物质的总和,一路测干扰物质,保证测量结果的准确性和稳定性; c、采用中性非腐蚀性溶液吸收:目前大多数LOPAP设备均采用磺胺和盐酸的混合液作为吸收液,PH在0左右,在气液混合的过程中对抽气泵造成较大的损害。除此之外造成废液的酸度高,不易处理,对环境造成影响。 d.自动脱气系统:有效去除管路中的气泡是仪器正常工作的一个重要因素 ,避免了仪器受到气泡的干扰,保证了仪器实时浓度输出的有效性。目前LOPAP一般没有除气泡的装置,会受到气泡的影响。 e.实时浓度输出(校准系统的优势):目前市面上的LOPAP基本没有可以直接输出浓度的,一般是输出参比波长与吸收波长强度的比值或log值,没有进一步对数据进行处理。我们采用特定浓度的亚硝酸盐溶液或特定浓度的气态亚硝酸(HONO)气体对仪器定标。根据两点法先得到零点,再得到特定浓度的响应值,再根据Lambert-Beers定律反演出对应的斜率值。在软件中,只需输出零点及对应的斜率值,就可以很方便的实时输出相应的浓度值。 f.触屏控制:利用触屏可以实时对气体流量、蠕动泵转速及光源强度进行设置。通过调节气液流速,可以方便的调整测量浓度范围。 g.液位报警保护系统:增加液位报警系统,防止液体被吸入流量控制器(MFC)、抽气泵等,以免对相应器件造成损害。 大气亚酸硝(HONO)分析仪
  • 微型光纤光谱仪—交叉C-T型和M型光谱仪对比分析
    摘要:光纤光谱仪自从上个世纪末被发明以来,其应用越来越广泛。交叉式切尼-特纳(czerny-turner,简称c-t)光路和基本型c-t光路(m型光路),是光纤光谱仪中最常见的两种分光光路,本文将详细介绍交叉c-t光路和m型光路的基础原理和各自的优缺点,交叉c-t光路结构紧凑、灵敏度较高,而m型光路分辨率较高、杂散光性能更优。  常见的微型光谱仪一般是基于光栅分光,光谱仪的光学光路系统主要分为反射式和透射式系统,透射式系统光学系统体积较小并且光强较强,但在远红外到远紫外的光谱范围内缺少制造透镜所需要的材料,会导致测得的光谱曲线不准,因此现代微型光谱仪很少采用这种结构 反射式系统适用的光谱范围较广,虽然相比透射式系统光强较弱,但反射镜不产生色差,利于获得平直的谱面,成像镜选用反射镜能够保证探测器系统接收光谱的质量。所以市面上主要以反射式光路的光谱仪为主。  反射式光路中,目前光纤光谱仪市场,比较普遍采用的光路结构形式分为:基本型切尼-特纳(czerny-turner)光路结构(非交叉式)和交叉式切尼-特纳(czerny-turner)光路结构。基本型切尼-特纳(czerny-turner)光路结构因其形状酷似字母“m”,因此也常被称为m型光路结构,这便是m型光路的由来。  图 1基本型切尼-特纳(czerny-turner)光路结构,光路看上去像字母“m”,所以也称为m型光路。m型光路看上去也像阿拉伯数字“3”,因此奥谱天成m型光路光谱仪的名称均带有3(第三位数为3),如atp5030、atp5034、atp3030、atp3034   图 2 交叉式c-t光路结构示意图  光谱仪光路的光学性能,主要受数值孔径、球差、像散、慧差,及各种像差的综合性影响,从而决定了系统的光学灵敏度、杂散光和光学分辨率。  常见光谱仪采用球面反射镜,球差是必然存在的,球面镜无法使系统中各球差项相消,交叉式和m型光路都只能校准到一定的水平,球差是一种累加的方式。m型光谱仪可通过控制相对孔径来使球差小于像差容限,从而满足分辨率的要求,在设计中有选择的缩小m型光路的数值孔径可以比较明显的提高分辨率。如果想更进一步的消除球差影响,那么可以采用抛物面或者自由曲面的方式来进行优化设计,但是成本昂贵,加工难度大,所以目前并没有被市场接受。  交叉式切尼-特纳(czerny-turner)光路结构的慧差相对于m型光路来说有个相对突出的特点是,慧差可以被校准到一个比较理想的数值,并且得到的光谱斑点较为规整。具体体现在对交叉式结构分辨率的提升上。  m型光路在像散优化中具有明显的天然优势,可将像散校正到一个很低的水平。相反的交叉式切尼-特纳(czerny-turner)光路在像散的校准方面比较弱,使得该光路的光谱分辨率较低。  m型光路由于是一种相对对称的光学结构,杂散光会略微好于交叉对称型光路,但这并不会直接体现在两种系统的杂散光最终指标上。杂散光的抑制主要还是通过外部光学陷阱,内部采用吸光材质或者增加粗糙度来提高对漫反射光的吸收,最终达到消除杂散光效果。  交叉式切尼-特纳光路是由m型光路发展而来,我们通常认为交叉式光路是一种折叠式的光路,所谓折叠式就是在整体的结构尺寸和空间利用上有必然的优势,结构更紧凑合理。m型光路则是一种展开式光路,在整体的尺寸和空间利用上不及交叉式切尼-特纳光路。因交叉式光路最为紧凑,所以在微型光谱仪中通常采用的是就是这种交叉式光路。而针对于分辨率要求比较高的场合则更多的采用m型光路。  分辨率是光谱仪最重要的指标之一,从像差优化设计来看,m型光路像差优化效果更好,使得m型光路拥有更佳的分辨率,主要被用于高分辨率光谱仪中。而交叉式切尼-特纳(czerny-turner)光路则用于中低分辨率光谱仪中。表 1 m型光路和交叉式c-t型光路的对比  奥谱天成的光谱仪系列产品齐全,依据m型光路和交叉式切尼-特纳光路各自的光路特点和客户需求,设计了多款相应的仪器,各自均对应不同的应用领域:  l atp2000、atp5020、atp3040、atp5040采用了交叉型ct光路,重点突出结构的紧凑性和高灵敏度   l atp3030、atp5030、atp3034、atp5034采用m型光路,重点突出高分辨率和低杂散光。  狭缝50μm,光谱仪范围200-1000nm两者的分辨率对比。图3可观察到,m型光路整段分辨率表现为中间最好,两边逐渐变差 交叉型光路往长波方向分辨率逐渐变好。这部分的差异主要体现在设计优化中,可从设计中去调整不同的分辨率走势来达到设计的要求。图4中可看出,在520nm处两种不同光路的点列图情况,m型光路的rms半径值为11 μm,交叉型ct光路的rms半径值为98 μm。m型光路实际测试fwhm=1.3nm,交叉型光路实际测试fwhm=2.5nm。m型光谱仪分辨率明显好于交叉型光谱仪。在实际的使用和光谱仪选择中,客户可根据分辨率、杂散光、灵敏度、体积等几个指标有针对性的挑选相应的光谱仪,从而使得仪器与使用需求完美匹配。图 3 奥谱天成生成的atp2000和atp3030图 4 两种光路结构的分辨率rms spot radius对比,200-1000nm波长范围,从图中可以看出,交叉c-t型光路的光斑尺寸为75 μm,而m型光路的光斑尺寸仅为3.5 μm,m型光路的分辨率优于交叉c-t型 (a)交叉型ct光路(该光路应用于atp2000) (b)m型光路(该光路应用于atp3030)  图 5 200-1000nm光谱范围,两种光路结构在520nm处的分辨率对比,交叉c-t型光路为98.9 μm,m型光路为11 μm,可知m型光路的分辨率明显优于交叉c-t型 (a) atp2000交叉型ct光路 (b) atp3030m型光路表 2 奥谱天成采用m型光路的光纤光谱仪和采用交叉c-t光路的光纤光谱仪,型号的第三位数字为3的均为m型光路 型号首位数字为5、6的,探测器具有制冷。  图 6 奥谱天成的光纤光谱仪产品集
  • “高精度光梳相干成像分析仪的应用与工程化开发”项目在宝钢启动
    2月25日,由国家出资、科技部批准,国家重点科学仪器设备开发专项“高精度光梳相干成像分析仪的应用与工程化开发”项目在宝钢正式启动。   该项目由宝钢中央研究院牵头,华东师范大学、上海理工大学、深圳大学、上海朗研科技公司等10多家企业和科研院校参与,针对钢铁检测、精细加工监控等进行研发。钢铁方面,将促进一系列急需的高新技术产业应用,如高精度表面形貌测量、微纳精细加工检测、集成电路制造、太阳能电池精加工等,并开展工程化和产业化示范,实现小批量生产。   启动会上,与会专家们认为,该项目对解决我国科技领域和经济发展、民生改善具有明显支撑和带动作用,仪器将达到钢铁制造行业的质保和质控、生命医学领域的应用要求。仪器开发将摆脱国外对中国高端技术研究的垄断,对钢铁、生物、医学、航天技术开发等具有重大意义。项目有望形成20多项专利,仪器有望于2017年批量生产,实现产业化应用。   新闻链接   “高精度光梳相干成像分析仪的应用与工程化开发”项目是“十二五”国家科技重点项目。该项目主要由高功率光纤飞秒光梳光源和超分辨相干成像分析仪两部分组成。传统光学成像受限于光波衍射极限,空间分辨率只能达到波长量级。基于光纤飞秒光梳,发展高精度相干成像检测和高灵敏度痕量分析新方法,研制高精度光梳相干成像分析仪,旨在充分发挥飞秒光梳优势,提升仪器时间-空间-频谱的分辨本能,在测控精度和灵敏度等方面凸显其明显优势 较常规成像分析仪器具有明显优势,可为突破光学衍射极限超分辨成像研究带来重要技术创新,引领成像分析技术与器件跨越式发展。
  • ACAIC 2023 “分析仪器关键部件创新进展论坛”召开
    仪器信息网讯 2023年11月29-30日,由中国仪器仪表学会分析仪器分会主办,浙江大学生物医学工程与仪器科学学院、中国计量大学计量测试工程学院承办的“第八届中国分析仪器学术大会“(ACAIC 2023)在浙江杭州召开。大会以“分析仪器创新进展、挑战及对策”为主题,邀请科技管理人员、院士、知名学者和青年科技工作者参会并作学术报告。仪器信息网作为大会的支持媒体,全程参与报道。11月30日下午,ACAIC 2023同期举行“分析仪器关键部件创新进展论坛”,该论坛由中国仪器仪表学会分析仪器分会关键部件专家组组织。中国科学院电工研究所刘俊标研究员主持分论坛。会议现场报告人:刘俊标 中国科学院电工研究所研究员报告题目:国产高功率微焦点X射线源的关键技术进展及应用高功率密度微焦点X射线源是X射线显微分析系统中的核心部件,其性能参数决定了仪器系统的大部分核心指标。报告介绍了中国科学院电工研究所团队在自主研制的X射线源关键技术方面的最近进展,如阴极、高压电子枪、电子光学系统、高散热的钨-金刚石材、小型闭管射线源等,并围绕X射线源技术开展了一些应用研究。报告人:陈玉 西安交通大学教授报告题目:光电子谱分析仪关键核心部件研制进展该研究针对宇航/半导体/新能源材料表面电子结构精细表征需求,突破连续可调紫外光电子产额谱-能谱联合分析测试等关键技术,研制高功率真空紫外光源、大动态范围光电子探测器、高分辨真空紫外单色仪等关键部件,开发具有自主知识产权、质量稳定可靠、核心部件国产化的高性能紫外光电子谱分析仪,打破国外垄断,实现产业化及应用示范。报告人:罗浒 上海精测半导体技术有限公司产品经理报告题目:液态镓离子源和微量气体注入系统的国产化研制报告主要介绍聚焦离子束电镜中液态镓离子源和气体注入系统两个核心零部件研制工作,研制成功的液态镓离子源使用寿命1000hr,气体注入系统气量稳定可控,可以满足商用聚焦离子束的使用需求。报告人:李盛红 中国科学院大连化学物理研究所副研究员报告题目:高灵敏小型荧光检测/传感器及应用报告介绍了多种最新研制的高灵敏小型荧光检测/传感器及应用。例如:集成式mFLD,体积45 cm3、功耗0.4W,检测限4ngL荧光素钠,为国际上同类仪器最高灵敏度,作为核心关键部件在非洲猪瘟病毒、新冠病毒抗体和毒品检测中应用;高灵敏小型近红外光纤式mLIF,设计20°夹角光纤探头(减少了探测“盲区”和反射光收集)和二向色镜模块,将检测信噪比提高10倍以上,检测限优于已报道的光纤式等。 报告人:王一轩 北京航空航天大学讲师报告题目:气动元件在科学仪器中的应用微型比例阀及气动测控系统是气相色谱、质谱、光谱等分析仪器吹扫、进样回路中的精密控制流体压力、流量的通用型关键控制元件,其性能直接影响成分分析结果的精准度。报告介绍了具备小迟滞、低功耗、高可靠的微型比例阀及小流量气体流量/压力调节技术,并对相关技术及产品在半导体、医疗、新能源行业的应用进行探讨。 报告人:张海庆 中电科思仪科技股份有限公司正高级工程师报告题目:精密数据采集实现及在仪器中的应用数据采集卡作为仪器中普遍应用的模数转换核心部件,将面对更高的分辨率、更优的精度、更低的噪声等一系列苛刻的挑战。报告重点介绍了多通道精密数据采集的实现,并结合多个应用场景介绍典型工程实践,最后对数据采集分析技术的发展进行了展望。 报告人:张振 北方夜视科技(南京)研究院有限公司报告题目:侧窗型光电倍增管、微通道板组件研制及在光谱分析、质谱分析仪器中的应用研究侧窗型光电倍增管具有阴极灵敏度高、增益高和噪声小等优点,微通道板组件具有响应时间快、暗计数率低等优点,广泛应用于光谱和质谱类分析仪器。北方夜视通过技术攻关,侧窗型光电倍增管积分灵敏度突破300μA/lm,微通道板组件时间分辨达到1.2ns,打破国外技术垄断,实现产品在原子吸收光谱仪、飞行时间质谱仪等仪器上的成功应用。“分析仪器关键部件创新进展论坛”涵盖了离子源、X射线源、荧光检测器/传感器、光电倍增管、微通道板组件、以及精密数据采集等分析仪器中的一些关键核心部件及相关软件等方面的最新技术进展及相关应用情况,内容之丰富、精彩令在场听众意犹未尽。
  • 福斯发布 Infratec 近红外谷物分析仪新品
    p style=" text-align:center " img src=" https://img1.17img.cn/17img/images/201909/pic/54fa8630-de7e-46a6-9878-001805dd5402.jpg!w400x400.jpg" alt=" 福斯 Infratec 近红外谷物分析仪" / /p p strong    /strong 2019年4月,福斯全新一代Infratec近红外谷物分析仪正式上市。该产品支持数字化连接,多台仪器通过互联网络轻松管理,随时掌握生产数据,帮您建立企业自己的大数据;全新触控屏及软件全程引导分析操作,人人都可准确操作 放样即自动启动分析,操作简单到不能再简单 可选的Pin码功能,实现分级管理;工业级硬件,符合防尘防水飞溅IP54标准,保证生产安全。 /p p strong   产品介绍: /strong /p p   采用近红外透射技术,利用全息数字光栅进行全谱扫描,可获得丰富的光谱信息 光纤导光光路设计,保持仪器间高度一致性,保证定标传递的准确度 综合性ANN定标,基于FOSS 谷物行业30年丰富的谷物定标数据库,具有广泛的样品适用性和高精准度。 /p p   快速检测各类谷物、豆类等整粒谷物及面粉等粉状样品,包括小麦、大麦、各类麦子、玉米、大豆、高粱、大米、小米、稻谷、各类油籽等。检测参数包括水分、蛋白质、油分、容重、淀粉、碱消值、各种氨基酸、纤维、灰分、湿面筋、沉降值等。 /p p   适用于粮食收购、面粉、榨油、植物育种、麦芽制造、生物燃料、酿造及焙烤等。 /p p   工业级硬件符合官方标准EN15948,防尘防水飞溅IP54规范要求,保证生产安全。 /p p strong   技术参数: /strong /p p   分析时间:60秒10个子样品,包括容重分析。启动动态子采样后,分析时间缩短至40秒。 /p p   路径长度:可变单元实现6-33mm的自动控制。 /p p   结果报告:默认显示在显示器上,可发送到PC/LIMS和打印机端口。 /p p   回归程序:ANN(人工神经网络) PLS(偏最小二乘法) /p p   子样品数:1~30个字样品(标准为10个子样品) /p p   专利方法:美国专利 US 4,944,589 欧洲专利 EP 0 320 77 B1,8704886-4主要特点: /p p   1.快速检测,结果精准 /p p   2.无需化学试剂,整粒样品直接检测 /p p   3.按质论价,行业公认标准。 /p p strong   技术支持: /strong /p p   福斯中国拥有一支专业的技术团队,为您提供行业技术应用咨询及技术支持。 /p p    a href=" https://www.instrument.com.cn/netshow/C341332.htm" target=" _blank" strong 福斯 Infratec 近红外谷物分析仪 /strong /a /p p br/ /p
  • 分析仪不离传感器 微电子智能化为主
    分析仪器是我国科技、经济和社会持续发展的基础,无论在工业过程控制、设施农业、生物医学、环境控制、食品安全乃至航空航天、国防工程等领域,均迫切需要各类新型传感器作为信息摄取源的小型化、专用化、简用化、家庭化的新一代分析仪器,实现更灵敏、更准确、更快速、更可靠地实时检测,以迅速改变我国分析仪器的落后状况。  传感器作为现代科技的前沿技术,传感器产业也是国内外公认的具有发展前途的高技术产业,它以其技术含量高、经济效益好、渗透能力强、市场前景广等特点为世人瞩目。  几十年来,以微电子技术为基础,促进了传感器技术的发展。多学科、多种高新技术的交叉融合,推动了新一代传感器的诞生与发展。例如:我国重点开发的MEMS、MOMES、智能传感器、生物化学传感器等以及今后将大力开发的网络化传感器、纳米传感器均是多学科、多种学科技术交叉融合的新一代传感器。  微型化是建立在微电子机械系统(MEMS)技术基础上的,目前已成功应用在硅器件上形成硅压力传感器(如上述EJX变送器)。微电子机械加工技术,包括体微机械加工技术、表面微机械加工技术、LIGA技术(X光深层光刻、微电铸和微复制技术)、激光微加工技术和微型封装技术等。  MEMS的发展,把传感器的微型化、智能化、多功能化和可靠性水平提高到了新的高度。传感器的检测仪表,在微电子技术基础上,内置微处理器,或把微传感器和微处理器及相关集成电路(运算放大器、A/D或D/A、存贮器、网络通讯接口电路)等封装在一起完成了数字化、智能化、网络化、系统化。(注:MEMS技术还完成了微电动机或执行器等产品,将另作文介绍)网络化方面,目前主要是指采用多种现场总线和以太网(互联网),这要按各行业的特点,选择其中的一种或多种,近年内最流行的有FF、Profibus、CAN、Lonworks、AS-Interbus、TCP/IP等。  除MEMS外,新型传感器的发展还有赖于新型敏感材料、敏感元件和纳米技术,如新一代光纤传感器、超导传感器、焦平面陈列红外探测器、生物传感器、纳米传感器、新型量子传感器、微型陀螺、网络化传感器、智能传感器、模糊传感器、多功能传感器等。  多传感器数据融合技术正在形成热点,不同于一般信号处理,也不同于单个或多个传感器的监测和测量,而是对基于多个传感器测量结果基础上的更高层次的综合决策过程。有鉴于传感器技术的微型化、智能化程度提高,在信息获取基础上,多种功能进一步集成以致于融合,这是必然的趋势,多传感器数据融合技术也促进了传感器技术的发展。  多传感器数据融合的定义概括:把分布在不同位置的多个同类或不同类传感器所提供的局部数据资源加以综合,采用计算机技术对其进行分析,消除多传感器信息之间可能存在的冗余和矛盾,加以互补,降低其不确实性,获得被测对象的一致性解释与描述,从而提高系统决策、规划、反应的快速性和正确性,使系统获得更充分的信息。其信息融合在不同信息层次上出现,包括数据层(像素层)融合、特征层融合、决策层(证据层)融合。由于它比单一传感器信息有如下优点,即容错性、互补性、实时性、经济性,所以逐步得到推广应用。应用领域除军事外,已适用于自动化技术、机器人、海洋监视、地震观测、建筑、空中交通管制、医学诊断、遥感技术等方面。  近年来,传感器正处于传统型向新型传感器转型的发展阶段。新型传感器的特点是微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造,而且可导致建立新型工业,是21世纪新的经济增长点。
  • 春玉米种植,作物冠层分析仪能够帮助增产增收
    玉米是我国四大主粮之一,分为春玉米和夏玉米,春玉米一般是北方播种的,4-5月播种,7-8月收获,现在已经进入7月,北方各玉米种植区要开始为玉米收割做准备,玉米的产量和品质一直是种植户们最关心的问题,他们为了增产增收不断学习新的种植技术,引起新的品种。冠层结构能够影响玉米产量和品质,因为良好的冠层结构可以提高玉米叶片的光合效率,有利于玉米对能量的积累,促进了玉米的生长发育。关于玉米冠层的分析,小编推荐托普云农的作物冠层分析仪,作物冠层分析仪能够进行冠层光能资源调查,测量植物冠层中光线的拦截,研究作物的生长发育、产量品质与光能利用间的关系。要想玉米增产增收,小编总结了一些方法,如下:  1.保证全苗壮苗。当播种条件较差或种子较差时不宜直播而可用防护育苗方法。   2.适当提高种植密度。当玉米密度普遍偏稀,影响高产。可以使用冠层分析仪来进行冠层光能资源调查,测量植物冠层中光线的拦截。因为拦截光线的主要因素是玉米植株太密,而如何做到合理的密度,这就需要冠层分析仪了。  3.重施攻蒲肥。玉米高产施肥的总要求是适施基肥、早施苗肥、重施攻蒲肥、补施粒肥。攻蒲肥用量要求达总施氮量的50%左右,一般亩产250-300公斤,尿素亩用量应达10公斤左右,在抽天花前10-15天的大喇叭口期施用。磷钾肥一般作基肥施用。   4.防治好蛀心虫。  5.做好抗旱,或通过播期调整的避旱工作。  TOP-3000型号的作物冠层分析仪,也叫冠层分析仪,专业检测分析作物冠层长势,研究分析作物的生长发育、产量品质与光能之间的关系,要知道,作物冠层的大小疏密会影响光照,而光照会影响光合作用,继而影响玉米长势,所以作物冠层分析仪的重要性就不言而喻了。
  • 《通信用光谱分析仪检定规程》征求意见稿重磅发布
    p   基于快速、高通量、无损等特点,光谱分析技术已经成为企业提升产品品质、提高生产效益的最佳选择之一。如今,在环境、食品、医药、化工等领域,光谱仪的“身影”随处可见。未来,在物联网、大数据技术的加持下,光谱技术将实现突破性的进展,应用到更广阔的领域。 /p p   作为测量光信号光谱功率分布的计量器具,光谱分析仪更是被广泛应用于光通信、激光等领域。随着光通信科学及光通信产业的不断创新和发展,各种光谱分析类仪器的应用也越来越广泛,为光功率、光波长等产业关键参数提供准确测量支持,助力产业质量进一步提升。 /p p   需求引导市场,光谱分析仪的检定和测量也备受计量检定人员关注。6月14日,全国光学计量技术委员会发布了《通信用光谱分析仪检定规程》征求意见稿,并面向全国的计量机构、科研院所、企业单位等公开征求意见。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201806/insimg/6f8aab8d-cad8-469f-bfd6-7aa369df77f3.jpg" title=" 微信图片_20180625175124.png" / /p p   公告显示,中国计量科学研究院、国家通信计量站、陕西省计量科学研究院和无锡市计量测试院是检定规程的起草单位。据悉,本规程适用于通信用光谱分析仪的首次检定、后续检定和使用中检验。光谱分析仪的型式评价中对有关计量性能的要求可参照本规程执行。 /p p   为了确保规程的科学、有效、专业性,由JJF 1002《国家计量检定规程编写规则》、JJF 1001《通用计量名词术语》、JJF 1059《测量不确定度评定与表示》共同构成本检定规程修订工作的基础性系列规范。本规程编写还引用的文件有JJG 813-2013 光纤光功率计 IEC 62129-1-2016 Calibrationof wavelength/optical frequency measurement instruments. Part 1: Optical spectrum analyzers。 /p p   另外,本规程对JJG 1035-2008《通信用光谱分析仪检定规程》进行修订。与JJG 1035-2008相比,采用分束法测量波长示值误差,减小光源波长变化引入的测量不确定度 光谱分析仪的光功率示值与非线性检定直接参照JJG 813《光纤光功率计》执行 删除了偏振相关损耗的检定要求等。更多详情查看原文件。 /p p   计量是高质量发展的前提和支撑,计量标准建设是计量发展的关键保障。不久前,湖北省计量院收到了由国家质检总局颁发的通信用光谱分析仪检定装置计量标准考核证书,标志着该院可正式开展通信用光谱分析仪的检定工作。后期,将会有愈来愈多的地区加入规范通信用光谱分析仪的检定工作中。 /p p   客观来看,可见光谱、近红外光谱等技术让光通信和激光领域获益十足。近年来,愈来愈多的企业盯紧通信用光谱仪市场这份“大蛋糕”,在该领域动作颇多,“野心”尽显。为此各品牌光谱分析仪需要提前布局,为品牌发展孕育先机。 /p
  • 现代露点分析仪发展简介
    肇始:1954年,随着马歇尔计划的顺利结束,二战期间饱受重创的欧洲的各个行当开始迎来复兴。像作为英国传统的羊毛生意也再度兴旺起来。但马上,羊毛商人们发现因为二战中壮年劳动力的损失造成了人力成本上涨,在挑选羊毛时不得不引入更先进的检测手段。在影响羊毛质量的各个环境参数中,湿度是一个比较关键的指标,直接关系到羊毛的细度、初始模量、断裂伸长率、弹性回复率和压缩回弹性能等等,所以羊毛商们开始寻找一个能够测量湿度的仪器。一个英国皇家空军退伍的前无线电工程师接下了羊毛商的这一任务,莱纳德肖恩(LEONARD SHAW)先生是个类似于发明电灯的爱迪生那样的,集理论和动手能力于一身的通才,与其他着迷于光学魔术和电磁感应的同行的不同,他的目光落到了最基本的电容上,简单的说,每种材料引起电容改变的介电常数不同,他所需要的就是找出一个最合适的材料,最终选定的是氧化铝,作为湿敏元件,氧化铝的反应非常迅速,当水蒸气浓度从10000微克/升降至10微克/升时,t63(量程的百分之63)?小于5秒钟。剩下就是并且解决设备体积的问题。电容类传感器的传统制作方法是是将铝等金属箔当成电极和塑料薄膜重叠后卷绕在一起,体积不会小,还沉。在花了几年功夫,肖恩先生依靠英国当时世界前茅的材料和理论指导,在氧化铝上面蒸镀上了一层很薄的金属以做为电极,省去了电极箔的厚度,缩小电容器单位容量的体积,不但实现了良好的测量性能还获得了小型化的传感器。 肖恩先生在反复试验后他弄出了一款能够稳定测量-60度以上湿度,重量轻,反应速度快的的分析仪,于是大名鼎鼎的肖氏分析仪在1960年开业了。羊毛商一用起来,发现肖氏的露点分析仪不单反应快,还皮实,马上大范围应用起来,为肖氏赢得了最初的用户和良好的口碑。同时随着苏格兰北海油田的开发,石化等其他行业也纷纷用起肖氏的露点仪,发现这款仪表的便携表尽管扔有些笨重(毛重7.5公交,中国女性长时间拎着够呛),受材料限制,肖氏氧化铝传感器的也有些缺陷,比如测-60°以下很吃力,但抛开这些缺点,肖恩先生发明的这款仪表无疑是划时代的作品,里面一些如干燥腔这样实用设计一直应用到了现在。 典型的肖氏分析仪,1960年到现在没怎么变过 干燥腔,可以提高便携露点分析仪的反应速度,合格便携露点的标配在肖氏崛起的同时,一直在英国剑桥大学的卡文迪许实验室工作的湿度的安德鲁密析尔(Andrew Michell)另辟蹊径,绕开了氧化铝电容法传感器的专利屏障,通过烧制等工艺,研究出了厚薄膜法的陶瓷电容法露点分析仪。 这家伙一下子能够测量到+20到-100度的露点了,而且由于是陶瓷材质,相对来说耐高温性能更好,缺点是比起氧化铝来反应速度是龟速… … 密析尔公司从这个技术起家,后来推出了各种工业露点产品,后来更是被跨国巨头PST收购,和掌握高湿度测量的罗卓尼克等公司成为队友,组成了分析仪表行业的一大阵营。除了这俩英国露点分析的两个代表企业,像希仕代(Systech)、阿尔法(ALPHA)等等一大波公司也都在以氧化铝传感器为主,也有做硅传感器的马纳里可(Manalytical)等以小众传感器为核心的公司。除了英国之外,美国是当时露点分析仪发展蕞快的国家,其中冷镜法露点分析仪是他们的强项。在1965年的时候,有一家EG&E(现在是世界五百强珀金埃尔默PERKINELMER)旗下的小公司,美国的爱迪泰克公司发明了冷镜式露点仪,比起靠间接转换得到数据量的电容法,直接测量得出读数的冷镜法无疑更受欢迎。原理很简单啦,大家见过镜子上的露珠吧,冷镜法就是测镜子上露珠的一种方法。一个镜面,配上使用冷凝器(发明的时候和老式冰箱的压缩机差不多)后,被冷却至被测气体的露点温度。当温度降低到样气露点时,镜面会形成冷凝。一个由光电探测器组成的电光回路检测冷凝的形成。镜面反射光强度减少量,作为仪表控制电路的冷却功率的反馈输入,这样镜面就被控制在平衡状态中。蒸发速度与冷凝速度以相同的速率发生。此时温度计测量的镜面温度就等于被测气体的露点温度。 除了爱迪泰克,美国仪表圈里几个巨头比如热电(Thermo Fisher Scientific赛默飞世尔)、阿美泰克、GE(通用电气)、cosaxentaur也都相继开发了冷镜、电容法的相关产品,并且依托美国的整体工业体系实现了对其他国家的碾压,但是大公司有大公司的问题,下面讲几个例子。以cosaxentaur举例,这家以热值仪为主打产品(客户遍及美国各大天然气和石油公司),在1996年的时候,一批出身NASA、格鲁曼等知名科研单位的工程师(很多都是双硕士学位的人才)带动下,开发了自己的深特(xentaur)牌子的氧化铝露点传感器,比起肖氏来涂层更薄,反应更快。 深特搭配了cosaxentau强大的营销体系,和GE所属的巴纳(panametrics)在20世纪末成为美国市场蕞大的两家露点分析仪表公司。但是正如老对手panametrics被GE收购后就沦为三线品牌,后来更转入GE合并后的贝克休斯(Baker Hughes)之下一样,丧失了自主能力。在21世纪初,风光一时的 cosaxentau也被PSI集团收购,成为这个分析行业巨头底下的子公司,而深特作为一个小众品牌在整个集团体系内相当于囊尾的角色,多一个不多少一个不少,自然就造成包括全球售后资源的分配等等问题,进而导致了公司内部人才的流失。这些从深特出来人才,属于冷战末期美国培育出来的科技精英的一份子(打了这么多年怪怎么说也是一身金装了),手底下自然是有两把刷子的,他们成立的菲美特(phymetrix)公司反而摆脱了之前的限制,在原有传感器基础上推陈出新,造出了目前工业领域实用化阶段能够做到的蕞高精度的氧化铝传感器。他们的秘诀就是四个字,更薄,更密。 传感器优化后,分析仪本身的重量也就下来了,菲美特便携表的重量只有肖氏的三分之一左右(2.85KG),比较适合逐渐老龄化且有大量女性职工的中国工业。 所以说大公司有大公司的好,小公司有小公司的优势,特别是科技主导型企业,小公司往往更有冲劲,像专精冷镜露点的瑞士MBW,还有芬兰的维萨拉都可以说是分析仪器厂家里面的小巨人。冷镜讲过了,就不多讲MBW了,给大家说说芬兰,大家知道芬兰靠近北极芬兰人对温度这些攸关小命的指标可是异常关注,随着二战的结束,维萨拉从无线电探空仪做起,很快就点满了大气温度、湿度测量的科技点,发明创造了很多独门武器,在高湿领域吊打无数巨头,像在湿度分析方面,他们在1973就开发出了世界上第一个高分子聚脂薄膜Humicap。采用高分子薄膜被放置于两个导电电极之中的结构。传感器表面被多孔隙的上电极覆盖以防止被污染,且能暴露在冷凝状态中。下电极典型材料为玻璃和陶瓷。 这种传感器好处是测量-60度以上的露点温度快而且准,也比较皮实,在各行各业都有应用。缺点是-60度以下没法用。至于石英晶体震荡,光腔衰荡,五氧化二磷,光纤等等测量原理相对来说用量和适用性限制比较大,就不专门介绍了,毕竟本篇是简史,大家有个这几样蕞大的毛病是“贵”这个概念就行。 博泰克HYGROPHIL HCDT水烃露点分析仪 总之,到了20世纪头十年,国外工业的露点分析仪最能打大概是以下这几家:冷镜式露点仪:爱迪泰克、MBW、密析尔氧化铝电容法:肖氏、深特、菲美特、巴纳陶瓷电容法:密析尔硅电容法:马纳里可光腔衰荡:泰格(TIGER)、米寇(MECCO)、光能高分子薄膜:维萨拉光纤:博泰克五氧化二磷:DUMAT、CMC激光法:DF 国内露点分析仪发展及问题 上世纪五十年代的“156项重点工矿业基本建设项目”是现代中国工业体的骨架,为了配套这些大项目,国内建立了北分、南分、川仪、成都厂等国企分析仪器厂,并完成了一些简单的露点分析仪器的研制。而随着上世纪70年代,合成氨和大量石化、天然气项目的建成,湿度、露点分析仪器的重要性就逼着国内仪表人寻求国外的资源。 早在1974年。由第一机械工业部技术情报所出版,北京分析仪器研究所等单位牵头的《分析仪表》一文中,对欧美日苏等国的分析行业及顶尖分析仪器公司做了分析,并在文章末尾,用一页篇幅提到了湿度计及水份计。 当时国企能够自产热磁氧、热导分析仪等仪表(现在还靠这些产品吃饭… … ),但一些高精尖的仪表如不分光红外分析仪和激光分析仪等,自产缺乏时间、金钱和人才,只能走进口全套技术的路线(日本在1970年代也是这么做的,日本吸收后二次开发很强,像横河和岛津就是青出于蓝了。),并随之建立了北分-麦哈克等合资企业。 相比其他分析仪器,湿度和露点上的分析仪,国内和其他国家在1970/1980年代差别还不是很大。 1979年出版的《痕量水分仪》上提到的国内电解法水分测定仪:我国生产的电解法水分测定仪型号生产厂家USI-21USI-1WS-1WS-2HS74-1北京分析仪器厂成都分析仪器厂兰州化学工业自动化研究所旅顺元件厂沈阳热工仪表厂在1982年,由兵器工业部和中国计量科学研究院研发的数字型冷镜露点仪SH-81就定型了。指标还挺不错:测量范围:+20°C~-80°C露点温度; 精度:≤±1°C;准确度:±1°C(-30°C~-70°C露点温度);使用环境:0°C~+40°C、相对湿度≤30%;样气流量:400毫升/分(蕞大值不宜超过500毫升/分) 电源:交流220V±20V、50HZ;功耗小孩:WS-1型0WS-1型1露点仪高纯氢-分子筛-液氮冷冻-106.5-104.7——-103.0高纯瓶,氮-62.6-60.7——-63.7高纯瓶,氢-50.8-49.5——-49.0普通瓶,氮-28.2-29.8-29.3液氮冷冻纯氢与普氢混合气-74.4-72.3——-71.5高纯瓶,氢-50.8-49.3——高纯瓶,氩(68大气压)————-64.0——高纯瓶,氩(50大气压)————-68.0-69.2——普通瓶,氢——-36.7——-37.0但正如后来国产分析仪表都面临的问题一样,国内的露点分析仪器厂家面对的不仅仅是国外分析仪表厂家的竞争,而是一个工业体系的全方位碾压。 在低端市场,如-60°C以上领域,中国白城兵器实验中心人员写的《湿度测量体制历史和现状分析及建议》一文中就写到:“实验证明,氯化锂湿度传感器完全可以在低温条件下使用,以替代毛发湿度表。这就形成了新的湿度测量体制,0℃以上用电测通风干湿表,0℃以下用氯化锂湿度传感器。在总参气象局的支持下,长春仪器研究所利用这些电测温湿传感器研制成功了温湿遥测仪和机场自动观测系统并进行了设计定型试验,这2种自动观测的研究成功,使军队首先实现了地面气象观测的自动化和遥测化。后来的发展出人意料,芬兰的湿敏电容传感器逐步进入了中国气象局和军队的自动气象观测系统,原来形成的湿度测量体制被打破。” 国产直接出局,这就是维萨拉进入中国市场后迅速占领市场,80年代仪表市场进口品牌攻城略地的一个缩影。 像在天然气领域,华北石油管理局勘测设计院1986年时发表的文章,就指出:“… … 为确保上述要求,我们除在输气首站的轻油回收装置中严格控制脱水温度外,还在首都与门站设置了天然气水露点分析仪,在线连续检测外输天然气的露点。当天然气露点高于规定值时,仪器可自动报警,提醒操作人员及时调节有关参数。电容式水露点分析仪从英国肖氏公司引进… … ”。 可见1986年北京天然气管道就用肖氏了,从那时起国内能源行业进口仪表就占比巨大、上世纪80年代到90年代,大量的外资气体厂如AP、林德,石化如壳牌、美孚等进入国内,它们的工厂往往都是在国外选型,带来的仪表全部是进口品牌,根本没有国产仪表的空间。 利润丰厚的气体和石化领域做不了,国产做做低端也遇到了问题,问题,蕞突出的有四个:没人才,配不起鞍,良品率过低,简配过度。 很多厂子认为露点传感器没啥难度,道理书上都有,但是后来发现不行。首先国内仪表研发人员从根上就少,其次一个仪表研发人员起码要在行业里待十年左右才能独当一面,放到分析行业要求就更多了,流体、电路、机加、编程、工艺流程都要懂,要求极高。 剩下的少部分继续玩仪表的,也在21世纪中国的环保监测行业崛起后,转向红外分析和激光分析等赚钱的领域,只有屈指可数的院校、军工相关研究所和单位还有露点传感器的研发人才。 而添置设备的巨额资金,也是仪表厂商无法承受的,很少有厂商会购买冷镜露点仪、湿度发生器等设备。核心传感器需要的大量试错实验也打消了很多厂商的自研勇气。 同时自产传感器的良品率比较低,相比之下,国外品牌通过巨大的销售量(维萨拉的传感器是以万计的)抹平了制造中成本,而国内企业最大的几家湿度传感器制造商能有上千个销量已经不容易了。同时国外企业的积累经验多,品控比起国内好很多,起码很少发生货到现场一上电不能用的,售后成本比国内好很多。国内很多湿度传感器生产测试过了,现场一用就出问题,很容易导致口碑崩盘。 最后一个简配问题,实际上是国产仪表技术上落后,导致只有靠降低商业费用和产品质量、人工待遇和进口仪表竞争的通病,只不过露点分析仪器行业特别突出,加上很多用户不想掏钱,造成一直用低配仪表,没有各种补偿,更显得国内仪表不如进口的好了。 这四个问题直接导致了国产露点分析仪无法和进口同类产品竞争,尤其是像维萨拉、密析尔、GE等都在国内设立了露点传感器校准中心,缩短售后流程后就更是严重了。 当然,其实国产的露点分析仪事业也没到满盘皆输的地步。 首先,虽然自我造血能力差,但国内有着巨大市场(像国内气体行业大概是世界气体行业的百分之十几,要配很多很多露点分析仪),自然有懂行的介入,像光腔衰荡分析仪的领军人物,国家千人计划的特聘专家阎文斌博士就回国成立了内蒙古光能科技仪器有限公司,一下子让国内像光腔衰荡分析仪从无到有,直接进入世界*流水平。 第二,国内分析仪表毕竟有不弱的底子,除了欧美日外,基本处于第二梯度,靠必须用国产仪表的军工和航天等产业支持,这些年还是制造出了性能虽然和国外还是有差距,但相当一批可靠的仪表,(主要是冷镜分析仪,比如海军航空工程学院的YH98和约克仪器的DPT-8000)。随着市场的扩大和自身技术的进步,相信原本只见于军工科研单位的这些仪表会进入一般工业市场。 第三,借着国内大力发展环保监测行业的东风,聚光、雪迪龙、先河等公司崛起带动了整个分析仪器行业的人才流动、技术革新和资金积累(。直观体现在湿度和露点分析仪上,就是终于有企业肯砸真金白银弄个CNAS实验室(南京埃森、约克仪器成都分公司)了,起码能够保证自己校准自己的传感器,不像其他国内同行要是传感器坏了一般只能靠经验判断,弄不好就只能弄不明白了。 南京埃森实验室图,转载于南京埃森官网
  • ACAIC 2023|集成电路技术发展与分析仪器创新论坛日程一览
    分析仪器在集成电路技术发展中具有非常重要的地位。它们在材料分析、工艺监控、失效分析和研发支持等方面都发挥着不可或缺的作用,为推动集成电路技术的进步提供了强有力的支持。随着技术的不断发展,分析仪器的种类和性能也在不断提高和完善,为集成电路技术的持续创新提供了有力保障。2023年11月30日,第八届分析仪器学术大会(ACAIC 2023)同期将特别举办“集成电路技术发展与分析仪器创新论坛”,诚挚邀请关心集成电路技术发展与分析仪器创新的业内外人士参会。组织机构中国仪器仪表学会分析仪器分会中国科学院半导体所集成技术中心冠名赞助上海精测半导体技术有限公司报告日程主持人:中国科学院微电子研究所李超波研究员、中国科学院半导体研究所王晓东研究员报告人简介刘慧勇,杭州士兰微电子股份有限公司先进功率系统研究院院长,在芯片行业有22年从业经验,工作内容涉及芯片的设计、制造与封装。王轶滢,上海集成电路材料研究院性能实验室总监,从事光电半导体与集成电路领域技术研发、战略研究与规划工作多年,获得多项发明专利与软件著作权。曾带领团队完成我国首款国产商用皮秒全光纤激光器,以及多款国内领先的超短脉冲光纤激光器的开发。后从事科技战略研究,研究范围包括半导体技术与产业研究、宏观及科技政策分析、科技管理机制创新等等,曾完成多项中科院、上海市及其他单位战略研究课题。现作为科研支撑骨干参与国家重大项目实施,并承担负责上海市及国家集成电路材料重大项目测试平台课题,具体筹划、组建及运营集成电路材料分析公共服务平台,支持各项技术攻关任务实施,推进集成电路材料测试的科学评价体系建设,加速促进国产化替代。郑琦,博士,毕业于江苏大学材料科学与工程学院,主要研究方向为耐热合金成分设计及高温氧化性能研究,主要运用TEM、FIB/TKD和SEM等显微表征技术研究其机制,在《MSEA》、《Rare Metals》等期刊发表论文近10篇。毕业后加入上海精测半导体技术有限公司,目前主要负责公司自研聚焦离子束/电子束双束显微镜产品应用、培训、市场推广和部分研发工作,参与国家基础科研条件与重大科学仪器设备研发项目:聚焦离子束/电子束双束显微镜,对电子显微镜的相关应用有多年的实操经验。闫方亮,中科院半导体所博士,米格实验室创始人,宽禁带半导体技术创新联盟副秘书长,全国科技装备业商会半导体专委会副秘书长、中关村芯学院高级讲师、国际半导体协会SEMI化合物半导体分技术委员会委员。曾参与多项国家973课题,重点研发计划及青年基金项目,2016年毕业后投身至半导体行业,专注半导体行业第三方共享实验室平台的建设。颜伟,来自于中国科学院半导体研究所集成技术与工程研究中心,高级工程师。2007年在南开大学物理学院取得理学学士学位,2013年在中国科学院半导体研究所取得工学博士学位。主要科研方向是:氮化镓基射频及太赫兹器件。博士毕业后在一直半导体所集成中心工作。负责包括电子束曝光系统和时域热反射测试系统在内的近10台套设备和系统的管理、维护、工艺开发和对外加工服务工作。承担国家级项目3项,参与6项。发表论文20余篇,申请专利10项。屈芙蓉,中国科学院微电子研究所高级工程师,毕业于于北京理工大学光电工程系。长期从事微电子工艺和装备研发相关工作,成功研制多台套集成电路装备,如:ICP、RIE、PECVD、ALD、PVD、超高真空系统及桌面式曝光机等。作为项目负责人/课题负责人,主持中科院重大科研仪器研制项目、国家重点研发、基金重大仪器等项目研制,主要从事微纳加工新原理设备与材料制备的研究。先后获得中科院集成电路系列科教融合设备研发及实践教育教学成果特等奖、北京市科技三等奖。关于ACAIC 2023第八届中国分析仪器学术大会(ACAIC 2023)定于2023年11月28-30日在浙江杭州召开。主题为“分析仪器创新进展、挑战及对策”,将邀请科技管理人员、院士、知名学者和青年科技工作者参会并作学术报告。会议包括:大会特邀报告、分会邀请报告、专题报告与讨论、论文墙报展讲、仪器展商/公司交流会等。同期还将举行分析仪器、关键部件展览。会议规模预计超过500人。主办单位:中国仪器仪表学会分析仪器分会承办单位:浙江大学生物医学工程与仪器科学学院中国计量大学计量测试工程学院专题论坛:1、体外诊断仪器创新论坛2、质谱仪器创新论坛3、色谱仪 器创新 论坛 4、热分析与量热仪器创新论坛 5、集成电路技术发展与分析仪器创新论坛6、科研仪器技术创新与标准化论坛7、电子显微镜创新论坛8、生命科学仪器创新论坛 9、生物光学成像技术创新论坛10、科学仪器在临床中的转化应用论坛11、分析仪器关键部件创新进展论坛详细信息请见:第八届中国分析仪器学术大会(ACAIC 2023)通知(第二轮) 报名参会点击或扫描二维码报名参会会议地址杭州太虚湖假日酒店参会赞助联系孙立桐(电话:15801142901,微信同号;邮箱:slt@fxxh.org.cn)
  • 金义博公司红外碳硫分析仪远销海外
    近年,无锡市金义博仪器科技有限公司自主研制生产的红外碳硫分析仪现已全面进入非洲地区市场。2011年5月25日,非洲地区的代理商来司对所购的CS-8820型红外碳硫分析仪进行全面验收,并现场参观了金义博红外碳硫分析仪仪器生产车间、光谱仪生产车间,并给予了好评。 无锡市金义博仪器科技有限公司自主研制生产的红外碳硫分析仪现已出口到多个国家,如越南、莫桑比克、土耳其、伊朗、印度等地区,全球销售网络已形成一定的规模,这也符合我司所制定的第二个五年计划之一的全面打开国际市场的初衷。无锡市金义博仪器科技有限公司在国内与国际市场的运作已全面启动。我司操作员在进行现场测试碳硫数据操作员演示中红外车间一角合影留恋(Remy Demayo先生左二,我司董事长叶反修先生左三)参观我司自主研制生产的光谱仪金义博公司高层领导(叶反修董事长左二)与Remy Demayo先生(中)()()()中合影留念 关于金义博 无锡市金义博仪器科技有限公司,是拥有自主知识产权以高速分析仪器研制、开发、制造、市场营销为一体的现代化高科技公司。公司荟萃了众多高科技人才和行业精英,致力于材料检测的发展和应用。专业制造红外碳硫分析仪、光电直读光谱仪、等离子体发射光谱仪、系列高速分析仪器等产品。产品广泛应用于钢铁、冶金、铸造、机械、建筑、大专院校、石油化工、质量监督及进出口商检等领域。 2010年,在母公司无锡市金义博仪器科技有限公司的支持下,全面依托上海材料研究所及江苏省机械设计院,成立了无锡市金义博检测技术有限公司。无锡市金义博检测技术有限公司以检测技术服务为特色的、以材料检测为主体,下设检测中心、培训中心、贸易结算中心。中心拥有直读光谱仪、ICP光谱仪、红外碳硫分析仪、分光光度计、金相显微镜、硬度计、冲击试验机、**材料试验机等设备,能够覆盖钢铁材料中全项检测项目,同时能够对铜铝及其制品进行检测。中心配备化学分析、力学性能、金相检验等多个专业检测室。长期为流程型工业企业及各类中小型企业的生产运行提供最专业、最权威的检测服务。 (一)企业资质1、全面通过ISO9001质量体系认证 (二)专利项目1、高速自动引燃炉的炉头实用新型专利2、高频感应燃烧炉的排灰装置实用新型专利3、光电直读光谱仪激发光源发明专利4、红外碳硫分析仪的光纤传输装置发明专利5、高频炉的排灰盒发明专利6、卡扣式自动清扫装置发明专利7、直线电机控制入射狭缝系统发明专利8、镀锌铵盐溶济槽液分析仪发明专利 (三)荣誉证书1、碳硫分析仪中国政府采购首先品牌2、中国碳硫分析仪十佳名优品牌3、高新技术产业重点推广产品4、江苏省优质产品5、江苏省计量合格确认单位6、无锡市计量工作先进单位7、CS-8800型高频红外碳硫分析仪获高新技术产品认定证书8、TY-9610型光电直读光谱仪获高新技术产品认定证书 (四)挂牌单位1、中国机械工程学会理化检验学会理事单位2、江苏省机械工程学会理事单位3、辽宁省理化学会理事单位4、黑龙江省理化学会理事单位5、国家质量技术监督行业职业技能鉴定中心无锡鉴定站理化实训基地6、无锡机械工程学会江苏省理化人员培训资格鉴定无锡市鉴委会学员实训基地7、常州机械工程学会江苏省理化人员培训资格鉴定常州市鉴委会学员实训基地8、无锡城市职业技术学院校外实习实训基地9、无锡市计量测试协会化学计量专业委员会常务理事单位 (五)专家团队介绍1、沈乐安——高速分析产品奠基人,大校军衔2、田英炎——西安理工大学,教授3、田孔泉——材料检测,高级工程师4、沈雪明——化学分析,高级工程师5、张和根——直读光谱仪,首席专家6、李 兵——材料检测,高级工程师7、庄明福——材料检测,高级工程师8、钱华新——国家职业技能鉴定中心,高级考评员9、弓振杰——材料检测,高级工程师,10、赵成英——理化检测专家,高级工程师 (六)主要活动1、2002年与台商合作成立无锡金博电子电器有限公司2、2004年收购无锡市荣华电子仪器制造有限公司3、2007年8月公司生产的光谱仪下线4、2008年10月成立无锡市金义博仪器科技有限公司5、2010年5月上海材料研究所副所长焉国祥来厂视察6、2010年5月投资成立无锡市金义博检测技术有限公司 (七)主要著作权1、1999年参与编写《高速分析技术及其应用》一书2、2010年主导编写《碳硫分析专论》一书3、2011年主导编写《光电直读光谱仪技术》一书 (八)高等院校和科研院所合作单位1、上海材料研究所 2、江苏机械设计院 3、江南大学4、中国科技大学 5、苏州科技学院 6、西安理工大学7、上海复旦大学 8、上海大学
  • 智能化成分析仪器与传感器发展方向
    我国分析仪器和传感器产品,已经加大力度朝向智能化、信息化、网络化方向发展,以实现更灵敏、更准确、更快速、更可靠地实时检测。  分析仪器是我国科技、经济和社会持续发展的基础,无论在工业过程控制、设施农业、生物医学、环境控制、食品安全乃至航空航天、国防工程等领域,均迫切需要各类新型传感器作为信息摄取源的小型化、专用化、简用化、家庭化的新一代分析仪器,以迅速改变我国分析仪器的落后状况。  传感器作为现代科技的前沿技术,传感器产业也是国内外公认的具有发展前途的高技术产业,它以其技术含量高、经济效益好、渗透能力强、市场前景广等特点为世人瞩目。  几十年来,以微电子技术为基础,促进了传感器技术的发展。多学科、多种高新技术的交叉融合,推动了新一代传感器的诞生与发展。例如:我国重点开发的MEMS、MOMES、智能传感器、生物化学传感器等以及今后将大力开发的网络化传感器、纳米传感器均是多学科、多种学科技术交叉融合的新一代传感器。  微型化是建立在微电子机械系统(MEMS)技术基础上的,目前已成功应用在硅器件上形成硅压力传感器(如上述EJX变送器)。微电子机械加工技术,包括体微机械加工技术、表面微机械加工技术、LIGA技术(X光深层光刻、微电铸和微复制技术)、激光微加工技术和微型封装技术等。  MEMS的发展,把传感器的微型化、智能化、多功能化和可靠性水平提高到了新的高度。传感器的检测仪表,在微电子技术基础上,内置微处理器,或把微传感器和微处理器及相关集成电路(运算放大器、A/D或D/A、存贮器、网络通讯接口电路)等封装在一起完成了数字化、智能化、网络化、系统化。(注:MEMS技术还完成了微电动机或执行器等产品,将另作文介绍)网络化方面,目前主要是指采用多种现场总线和以太网(互联网),这要按各行业的特点,选择其中的一种或多种,近年内最流行的有FF、Profibus、CAN、Lonworks、AS-Interbus、TCP/IP等。  除MEMS外,新型传感器的发展还有赖于新型敏感材料、敏感元件和纳米技术,如新一代光纤传感器、超导传感器、焦平面陈列红外探测器、生物传感器、纳米传感器、新型量子传感器、微型陀螺、网络化传感器、智能传感器、模糊传感器、多功能传感器等。  多传感器数据融合技术正在形成热点,不同于一般信号处理,也不同于单个或多个传感器的监测和测量,而是对基于多个传感器测量结果基础上的更高层次的综合决策过程。有鉴于传感器技术的微型化、智能化程度提高,在信息获取基础上,多种功能进一步集成以致于融合,这是必然的趋势,多传感器数据融合技术也促进了传感器技术的发展。  多传感器数据融合的定义概括:把分布在不同位置的多个同类或不同类传感器所提供的局部数据资源加以综合,采用计算机技术对其进行分析,消除多传感器信息之间可能存在的冗余和矛盾,加以互补,降低其不确实性,获得被测对象的一致性解释与描述,从而提高系统决策、规划、反应的快速性和正确性,使系统获得更充分的信息。其信息融合在不同信息层次上出现,包括数据层(像素层)融合、特征层融合、决策层(证据层)融合。由于它比单一传感器信息有如下优点,即容错性、互补性、实时性、经济性,所以逐步得到推广应用。应用领域除军事外,已适用于自动化技术、机器人、海洋监视、地震观测、建筑、空中交通管制、医学诊断、遥感技术等方面。  近年来,传感器正处于传统型向新型传感器转型的发展阶段。新型传感器的特点是微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造,而且可导致建立新型工业,是21世纪新的经济增长点。
  • 让操作更简单 赛默飞推出拉曼光谱过程分析仪新品Ramina
    日前,赛默飞宣布发布一款新的拉曼光谱分析仪——Thermo Scientific™ Ramina™ 过程分析仪。该款仪器可以用于生物制药等多个领域的过程监控,其可以提供非破坏性的、连续分析,不需要样品制备,可以在15分钟内快速进行系统设置和部署,几秒钟内生成目标分析物的光谱数据。这个易于使用的系统旨在消除拉曼光谱测量的复杂性,使该技术可用于所有级别的用户体验,同时保持高精度和准确性。其紧凑的系统采用一系列专利探头,最大限度地提高了结果的速度和灵敏度,实现了完全自动化的现场测量,以计算反应容器中的浓度。Ramina 过程分析仪为离线手动或自动湿化学分析提供了一种快速且易于操作的替代方案。相比于传统的拉曼过程监控系统,它的安装和使用更加简单。Ramina 为用户开始收集数据提供了所需的全部设备,包括拉曼光谱仪和光纤探头,以及便携式显示器、鼠标、键盘和激光安全护目镜。工厂校准可确保 Ramina 系统随时能够投入使用,其固态结构确保了长期稳定性。这意味着用户可以进行连续、高精度的测量,而无需频繁校准。同时,大家还可以并联使用多个分析仪来同时监控不同的反应容器,或者在一个反应容器中组合使用多个探头。赛默飞副总裁兼现场和安全仪器总经理Chloe Hansen-Toone表示:“我们很高兴推出Ramina过程分析仪,它提供了一种几乎毫不费力地进行精确现场拉曼测量的方法,使客户能够在需要的时间和地点生成实时数据。这款分析仪小巧便携的设计,以及用户友好的操作,将有助于缩短测量时间,而无需占用太多宝贵的实验室空间。”
  • 分析仪器通用技术、色谱柱等381项标准将在5月份实施
    分析仪器通用技术、液相色谱柱等381项标准将在5月份实施我们通过国家标准信息平台查询到,在2022年5月份将要实施的科学仪器及检测相关的国家标准暴增,共有381项标准将要实施。其中有111项电子电器类标准将要实施位居榜首,机械类标准次之有72项,农林牧渔食品类与化工橡胶塑料类标准旗鼓相当分别有47项和46项标准。5月份将要实施标准类别图除此之外我们还发现有5项仪器仪表类标准,分别如下:GB/T 12519-2021 分析仪器通用技术条件本文件规定了分析仪器的术语和定义、仪器分类与命名、要求、试验方法、检验规则及标志、包装、运输和贮存。本文件适用于各种类型分析仪器。本文件也适用于与仪器配用或形成独立产品的样品处理、制备、信号处理传输和辅助分析的装置等。GB/T 30433-2021 液相色谱仪测试用标准色谱柱本文件规定了液相色谱仪测试用标准色谱柱的术语和定义.标准柱参数、要求、试验方法,检验规则,标志﹑包装、运输和贮存。本文件适用于液相色谱仪测试用标准色谱柱(以下简称“标准柱”)。GB/T 40023-2021 无损检测仪器 超声衍射声时检测仪 技术要求本标准规定了超声衍射声时检测仪的技术要求、检验规则、标志、包装、运输和贮存等内容。本标准适用于超声衍射声时检测仪。GB/T 40658-2021 溴化钾光学元件本文件规定了溴化钾光学元件(以下简称溴化钾)的技术要求、试验方法、检验规则及包装、标志、运输及贮存等要求。本文件适用于溴化钾光学元件的制造与验收。GB 19815-2021 离心机 安全要求(该标准划归为机械)本标准规定了各种具有金属转鼓的工业用离心机(以下简称离心机)在设计、制造、安装和使用中的安全要求,以及使用信息和安全性能的检验、判定方法。本标准适用于一切工业用途的离心机(包括工业脱水机)。其他的标准如下:需要相关标准的,点击链接即可下载收藏↓农林牧渔食品标准(47个)GB/T 40850-2021 饲料中肠杆菌科的检验方法 GB/T 40848-2021 饲料原料 压片玉米 GB/T 40747-2021 饲料瘤胃可发酵有机物(FOM)测定方法 GB/T 21543-2021 饲料添加剂 调味剂 通用要求 GB/T 40830-2021 猪饲料真可消化氨基酸测定技术规程(简单T型瘘管法) GB/T 40837-2021 畜禽饲料安全评价 蛋鸡饲养试验技术规程 GB/T 40835-2021 畜禽饲料安全评价 反刍动物饲料瘤胃降解率测定 牛饲养试验技术规程 GB/T 23884-2021 动物源性饲料中生物胺的测定 高效液相色谱法 GB/T 23801-2021 中间馏分油中脂肪酸甲酯含量的测定 红外光谱法 GB/T 40834-2021 夏玉米苗情长势监测规范 GB/T 40833-2021 甘蔗皮渣中对香豆酸检测方法 高效液相色谱法 GB/T 40832-2021 芒果叶中芒果苷的测定 高效液相色谱法 GB/T 40772-2021 方便面 GB/T 40752-2021 沃柑产业扶贫项目运营管理规范 GB/T 40751-2021 花曲柳窄吉丁检疫鉴定方法 GB/T 40750-2021 农用沼液 GB/T 40749-2021 海水重力式网箱设计技术规范 GB/T 40748-2021 百香果质量分级 GB/T 40746-2021 淡水有核珍珠 GB/T 40745-2021 冷冻水产品包冰规范 GB/T 40744-2021 马铃薯茎叶及其加工制品中茄尼醇的含量测定 高效液相色谱-质谱法 GB/T 40743-2021 猕猴桃质量等级 GB/T 40644-2021 杜仲叶提取物中京尼平苷酸的检测 高效液相色谱法 GB/T 40642-2021 桑叶提取物中1-脱氧野尻霉素的检测 高效液相色谱法 GB/T 40643-2021 山楂叶提取物中金丝桃苷的检测 高效液相色谱法 GB/T 40641-2021 松针聚戊烯醇含量的测定 高效液相色谱法 GB/T 40636-2021 挂面 GB/T 40635-2021 银耳干品包装、标志、运输和贮存 GB/T 40632-2021 竹叶中多糖的检测方法 GB/T 40631-2021 阿月浑子(开心果)坚果质量等级 GB/T 40627-2021 油菜茎基溃疡病菌活性检测方法 GB/T 40626-2021 杨树细菌性溃疡病菌检疫鉴定方法 GB/T 40624-2021 黄瓜绢野螟检疫鉴定方法 GB/T 40622-2021 牡丹籽油 GB/T 29379-2021 马铃薯脱毒种薯贮藏、运输技术规程 GB/T 23347-2021 橄榄油、油橄榄果渣油 GB/T 20452-2021 仁用杏杏仁质量等级 GB/T 20412-2021 钙镁磷肥 GB/T 20398-2021 核桃坚果质量等级 GB/T 19164-2021 饲料原料 鱼粉 GB/T 15628.1-2021 中国动物分类代码 第1部分:脊椎动物 GB/T 1536-2021 菜籽油 GB/T 14467-2021 中国植物分类与代码GB/T 11761-2021 芝麻 GB/T 10457-2021 食品用塑料自粘保鲜膜质量通则 GB/T 10395.21-2021 农林机械 安全 第21部分:旋转式摊晒机和搂草机 GB/T 10395.20-2021 农林机械 安全 第20部分:捡拾打捆机 冶金标准(21个)GB/T 40854-2021 镧铈金属 GB/T 40798-2021 离子型稀土原矿化学分析方法 稀土总量的测定 电感耦合等离子体质谱法 GB/T 40796-2021 金属和合金的腐蚀 腐蚀数据分析应用统计学指南 GB/T 40795.2-2021 镧铈金属及其化合物化学分析方法 第2部分:稀土量的测定 GB/T 40795.1-2021 镧铈金属及其化合物化学分析方法 第1部分:铈量的测定 硫酸亚铁铵滴定法 GB/T 40794-2021 稀土永磁材料高温磁通不可逆损失检测方法 GB/T 40793-2021 烧结钕铁硼表面涂层 GB/T 40792-2021 烧结钕铁硼永磁体失重试验方法 GB/T 40791-2021 钢管无损检测 焊接钢管焊缝缺欠的射线检测 GB/T 40790-2021 烧结铈及富铈永磁材料 GB/T 40566-2021 流化床法颗粒硅 氢含量的测定 脉冲加热惰性气体熔融红外吸收法 GB/T 40561-2021 光伏硅材料 氧含量的测定 脉冲加热惰性气体熔融红外吸收法 GB/T 28504.3-2021 掺稀土光纤 第3部分:双包层铒镱共掺光纤特性 GB/T 28504.2-2021 掺稀土光纤 第2部分:双包层掺铥光纤特性 GB/T 18996-2021 银合金首饰 银含量的测定 氯化钠或氯化钾容量法(电位滴定法) GB/T 17832-2021 银合金首饰 银含量的测定 溴化钾容量法(电位滴定法) GB/T 18115.4-2021 稀土金属及其氧化物中稀土杂质化学分析方法 第4部分:钕中镧、铈、镨、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥和钇量的测定 GB/T 14949.6-2021 锰矿石 铜、铅和锌含量的测定 火焰原子吸收光谱法 GB/T 12690.7-2021 稀土金属及其氧化物中非稀土杂质化学分析方法 第7部分:硅量的测定GB/T 12690.4-2021 稀土金属及其氧化物中非稀土杂质化学分析方法 第4部分:氧、氮量的测定 脉冲-红外吸收法和脉冲-热导法GB/T 11888-2021 首饰 指环尺寸 定义、测量和命名 环境标准(2个)GB/Z 40824-2021 环境管理 生命周期评价在电子电气产品领域应用指南 GB/T 40662-2021 废铅蓄电池再生处理技术规范医疗卫生生物标准(4个)GB/T 40660-2021 信息安全技术 生物特征识别信息保护基本要求 GB/T 40423-2021 健康信息学 健康体检基本内容与格式规范 GB/T 40419-2021 健康信息学 基因组序列变异置标语言(GSVML) GB/T 25915.12-2021 洁净室及相关受控环境 第12部分:监测空气中纳米粒子浓度的技术要求 化工橡胶塑料标准(46个)GB/T 9766.6-2021 轮胎气门嘴试验方法 第6部分: 气门芯试验方法 GB/T 9578-2021 工业参比炭黑4# GB/T 8290-2021 胶乳 取样 GB/T 40872-2021 塑料 聚乙烯泡沫试验方法 GB/T 40871-2021 塑料薄膜热覆合钢板及钢带 GB/T 40870-2021 气体分析 混合气体组成数据的换算 GB/T 40845-2021 化妆品中壬二酸的检测气相色谱法 GB/T 40844-2021 化妆品中人工合成麝香的测定 气相色谱-质谱法 GB/T 40639-2021 化妆品中禁用物质三氯乙酸的测定 GB/T 40797-2021 硫化橡胶或热塑性橡胶 耐磨性能的测定 垂直驱动磨盘法 GB/T 40789-2021 气体分析 一氧化碳含量、二氧化碳含量和氧气含量在线自动测量系统 性能特征的确定 GB/T 40726-2021 橡胶或塑料涂覆织物 汽车内饰材料雾化性能的测定 GB/T 40725-2021 浸胶帘线与橡胶粘合剥离性能试验方法 GB/T 40723-2021 橡胶 总硫、总氮含量的测定 自动分析仪法 GB/T 40722.2-2021 苯乙烯-丁二烯橡胶(SBR) 溶液聚合SBR微观结构的测定 第2部分:红外光谱ATR 法 GB/T 40721-2021 橡胶 摩擦性能的测定 GB/T 40720-2021 硫化橡胶 绝缘电阻的测定 GB/T 40719-2021 硫化橡胶或热塑性橡胶 体积和/或表面电阻率的测定 GB/T 40718-2021 绿色产品评价 轮胎 GB/T 40717-2021 阻燃轮胎 GB/T 40716-2021 汽车轮胎气密性试验方法 GB/T 40640.5-2021 化学品管理信息化 第5部分:化学品数据中心 GB/T 40640.4-2021 化学品管理信息化 第4部分:化学品定位系统通用规范 GB/T 40640.2-2021 化学品管理信息化 第2部分:信息安全 GB/T 40640.1-2021 化学品管理信息化 第1部分:数据交换 GB/T 40006.9-2021 塑料 再生塑料 第9部分:聚对苯二甲酸乙二醇酯(PET)材料 GB/T 40006.8-2021 塑料 再生塑料 第8部分:聚酰胺(PA)材料GB/T 40006.7-2021 塑料 再生塑料 第7部分:聚碳酸酯(PC)材料 GB/T 40006.6-2021 塑料 再生塑料 第6部分:聚苯乙烯(PS)和抗冲击聚苯乙烯(PS-I)材料 GB/T 40006.5-2021 塑料 再生塑料 第5部分:丙烯腈-丁二烯-苯乙烯(ABS)材料 GB/T 3778-2021 橡胶用炭黑 GB/T 30314-2021 橡胶或塑料涂覆织物 耐磨性的测定 泰伯法 GB/T 29614-2021 硫化橡胶 多环芳烃含量的测定 GB/T 26277-2021 轮胎电阻测量方法 GB/T 23938-2021 高纯二氧化碳 GB/T 22930.2-2021 皮革和毛皮 金属含量的化学测定 第2部分:金属总量 GB/T 22930.1-2021 皮革和毛皮 金属含量的化学测定 第1部分:可萃取金属 GB/T 22271.1-2021 塑料 聚甲醛(POM)模塑和挤出材料 第1部分:命名系统和分类基础 GB/T 21537-2021 锥型橡胶护舷 GB/T 21287-2021 电子特气 三氟化氮 GB/T 17874-2021 电子特气 三氯化硼 GB/T 18426-2021 橡胶或塑料涂覆织物 低温弯曲试验 GB/T 18012-2021 胶乳 pH值的测定 GB/T 1687.4-2021 硫化橡胶 在屈挠试验中温升和耐疲劳性能的测定 第4部分:恒应力屈挠试验 GB/T 1232.3-2021 未硫化橡胶 用圆盘剪切黏度计进行测定 第3部分:无填料的充油乳液聚合型苯乙烯-丁二烯橡胶Delta门尼值的测定GB 18382-2021 肥料标识 内容和要求 石油地质矿产标准(16个)GB/T 6683.1-2021 石油及相关产品 测量方法与结果精密度 第1部分:试验方法精密度数据的确定 GB/T 4985-2021 石油蜡针入度测定法 GB/T 4652-2021 地下矿用装岩机和装载机 试验方法 GB/T 40874-2021 原油和石油产品 散装货物输转 管线充满指南 GB/T 40873-2021 大洋富钴结壳资源勘查规程 GB/T 40736-2021 矿用移动式货运索道 安全规范 GB/T 40704-2021 天然气 加臭剂四氢噻吩含量的测定 在线取样气相色谱法 GB/T 40702-2021 油气管道地质灾害防护技术规范 GB/T 40697-2021 第三方煤炭检测管理规范 GB/T 386-2021 柴油十六烷值测定法 GB/T 261-2021 闪点的测定 宾斯基-马丁闭口杯法 GB/T 23799-2021 车用甲醇汽油(M85) GB/T 17144-2021 石油产品 残炭的测定 微量法 GB/T 11060.10-2021 天然气 含硫化合物的测定 第10部分:用气相色谱法测定硫化 合物 GB 40881-2021 煤矿低浓度瓦斯管道输送安全保障系统设计规范 GB 40880-2021 煤矿瓦斯等级鉴定规范 玻璃陶瓷建材标准(11个)GB/Z 2640-2021 模制注射剂瓶 GB/T 5990-2021 耐火材料 导热系数、比热容和热扩散系数试验方法(热线法) GB/T 40724-2021 碳纤维及其复合材料术语 GB/T 40715-2021 装配式混凝土幕墙板技术条件 GB/T 40714-2021 浮法玻璃生产成套装备通用技术要求 GB/T 40713-2021 建筑陶瓷生产成套装备通用技术要求 GB/T 40619-2021 基于雷电定位系统的雷电临近预警技术规范 GB/T 19322.1-2021 小艇 机动游艇空气噪声 第1部分:通过测量程序 GB/T 16399-2021 黏土化学分析方法 GB/T 16277-2021 道路施工与养护机械设备 沥青混凝土摊铺机 GB/T 17808-2021 道路施工与养护机械设备 沥青混合料搅拌设备 轻工标准(29个)GB/T 40971-2021 家具产品及其材料中禁限用物质测定方法 多环芳烃 GB/T 40938-2021 皮革 物理和机械试验 水渗透压测定 GB/T 40936-2021 皮革 物理和机械试验 服装革防水性能的测定GB/T 40927-2021 皮革 物理和机械试验 漆皮耐热性能的测定 GB/T 40920-2021 皮革 色牢度试验 往复式摩擦色牢度
  • 紫外可见光谱分析仪——为化学与生物化学实验带来快速、准确且可靠的数据分析
    SE-3607紫外可见光谱分析仪是博源光电基于自主研发的光谱分析技术为PASCO公司全新打造的重磅产品。它是一款UV-VIS宽波长范围且易于使用的紫外可见光谱仪,可为化学和生物化学在实验教学中提供快速,准确和性能可靠的常规分析。借助USB通讯和跨平台的光谱分析软件,UV-VIS紫外可见光谱仪改善了实验室成员之间的协作方式,使其在平板电脑,iPad和Chromebook上分析从电脑上采集的数据成为了可能。石英光纤等附件可用于扩展光谱仪的功能,从而可用于测量发射光谱,各类光源或激光器。特征• 测量范围:180nm - 1050nm• 直观跨平台的软件操作• 软件内置常规分析工具• 自动切换亮暗,一键式校准• 清晰的标记指示比色皿的正确放置应用• 溶液浓度的测定• 鉴定未知物质• 测量反应速率或衰减速率• 比色法(例如BCA,Bradford,Lowry)• 合成化合物的纯度测试• 平衡常数的确定• 摩尔吸收系数的测定• 品质测试(例如,发酵培养基,食品掺假,品质保证水平)光谱仪经过严格设计,可在快节奏的实验教学中提供最佳性能• 结构紧凑,体积适中• 高灵敏度CMOS检测器可加快分析速度• 内部排水结构设计,减少液体滴落和溢出造成损坏的风险• 隔离式光路结构,可确保随时间变化的精度(±1 nm)• USB连接及跨平台,支持实验室设备和学生自带设备• 兼容常规长度为1厘米的方形和圆形比色皿在可见光,UVA,UVB和UVC区域的提供宽波长范围检测,为常规应用提供了出色的独立解决方案• 吸光度动态变化• 纯化蛋白质分析• 平衡常数的测定• 核酸纯度测试• DNA和RNA的检测• 分析提取或合成的化合物• 核酸浓度的测定• 用于蛋白质定量的比色测定法(例如Bradford,BCA,Lowry)• 分光光度法测定化学和生化化合物光谱仪集成了易于使用的光谱仪软件该免费软件与大多数学生设备兼容,使实验组可以轻松快速地共享和查看其数据。 跨平台光谱分析软件还可以作为免费的功能齐全的应用程序使用,它具有以下功能,从而提高了分析效率:• 易于使用的菜单导航• 自动切换亮暗,一键式校准• 自动显示和存储样品数据• 进行扫描平均和数据平滑• 直观的数据重命名以优化数据跟踪• 光谱图将可见光的波长与颜色相关联• 内置的Beer-Lambert定律与线性拟合用于测定浓度• 可打印光谱和数据图• 将数据导出为.csv文件或.png屏幕截图,以便在Excel,SPARKvue或Capstone软件中进行进一步分析软件包含四种预置的分析模式吸光度分析模式使用“吸光度分析模式”对溶解在乙醇中的合成乙酰水杨酸样品进行分析。样品的吸收光谱表明样品在237nm 和313 nm处有较强的吸收光谱。使用“吸光度分析模式”可获得合成的乙酰水杨酸样品的吸收光谱。 浓度分析模式:浓度与吸光度(Beer-Lambert定律)使用“浓度分析模式”中的Beer-Lambert定律确定纯化蛋白的浓度。在“吸光度分析模式”屏幕中选择目标波长后,分析了五种已知浓度的蛋白质标准品(BSA)。应用线性拟合以创建标准曲线,并且测定未知蛋白质的浓度确定为0.215 mmol / L。使用Beer-Lambert定律在“浓度与吸光度”显示中确定纯化蛋白的浓度。时间分析模式:时间与吸光度(动态分析)使用“时间分析模式”随时间测量酚酞在NaOH中的褪色。对于具有不同浓度的NaOH的样品,随时间测量与酚酞相关的波长的吸光度。 下面提供了包含0.3M NaOH的酚酞样品的结果。使用“时间分析模式”随时间测量酚酞在NaOH中的褪色。光分析模式:波长与光强附加的石英光纤套件用于分析紫外可见光谱中各种光谱源的强度。氦元素光谱在下面使用“光分析模式”显示。可以将采集到的光谱(例如上面的氦光谱)与“光分析模式”屏幕中的预加载参考光谱进行比较。了解更多的产品详情和资讯信息,请登陆博光商城www.brolight.cn
  • Microtrac Inc.新一代纳米/Zeta电位分析仪问世
    美国麦奇克有限公司(Microtrac Inc.)是世界上著名的激光应用技术研究和制造厂商,前身为Leeds & Northrup 研究所,近半个世纪以来,一直领先着激光粒度分析的前沿技术,可靠的产品和强大的应用支持及完善的售后服务,使得其先进的激光粒度分析技术被广泛地应用于石油,石化,水泥,磨料,冶金,制药,陶瓷等领域,并成为众多行业指定的质量检测和控制的分析仪器。 美国麦奇克有限公司(Microtrac Inc.)以其在激光衍射/散射技术和颗粒表征方面的独到见解,经过多年的市场调研和潜心研究,开发出最新一代Zetatrac微电场分析技术,融纳米颗粒粒度分布与Zeta电位测量于一体,无需传统的比色皿,一次进样即可得到准确的粒度分布和Zeta电位分析数据。与传统的Zeta电位分析技术相比,Zetatrac采用先进的&ldquo Y&rdquo 型光纤探针光路设计,配置膜电极产生微电场,操作简单,测量迅速,无需精确定位由于电泳和电滲等效应导致的静止层,无需外加大功率电场,无需更换分别用于测量粒度和Zeta电位的样品池,完全消除由于空间位阻(不同光学元器件间的传输损失,比色皿器壁的折射和污染,比色皿位置的差异,分散介质的影响,颗粒间多重散射等)带来的光学信号的损失,结果准确可靠,重现性好。 以研究开发见长的美国麦奇克有限公司,几经坎坷,在激烈的市场竞争中始终立于不败之地。尤其是在日本市场,凭借其极高的性价比,各行业用户总数高达2,500多台,成为日本粉体工业协会的指定品牌。自2004年底进入中国市场以来,作为专业激光粒度分析仪的领航者,采用最先进的光散射/衍射技术,全自动化的设计带来无与伦比的灵敏度和重复性,在中国的石油石化,环保控制,材料科学,国防军工,航空航天,矿物加工等领域享有很高的声望。
  • 二维微机电(MEMS)阵列为移动光谱分析仪打下基础
    近日,德州仪器 (TI) DLP® 产品部的业务拓展经理 Mike Walker和 Optecks 的首席技术官 Hakki Refai 博士发表文章:二维微机电(MEMS)阵列为移动光谱分析仪打下基础,如下是文章全文。  在近红外 (NIR) 光谱分析领域中,一个将便携性与高性能实验室系统的准确性和功能性组合在一起的系统将极大地改进实时分析。由一块电池供电的小型手持式光谱分析仪的开发可以实现对工业过程、或食品成熟度的评估在现场进行更有效的监控。  大多数色散光谱分析测量在一开始采用的都是同样的方式。被分析的光通过一个小狭缝 这个狭缝与一个光栅组合在一起,共同控制这个仪器的分辨率。这个衍射光栅专门设计用于以已知的角度反射不同波长的光。这个波长的空间分离使得其它系统可以根据波长来测量光强度。  传统光谱测量架构的主要不同之处在于散射光的测量方式。两种常见的方法有(1)与散射光物理扫描组合在一起的单元素(或单点)探测器,以及(2)将散射光在一组探测器上成像。  使用 MEMS 技术的方法  使用具有一个单点探测器、基于光学微机电系统 (MEMS) 阵列技术的全新方法可以克服传统光谱分析方法中的很多限制。在基于单点探测器的系统中,一个固态光学 MEMS 阵列用简单、空间波长滤波器取代了传统的电动光栅。这个方法可以在消除精细控制电动系统中问题的同时,利用单点探测器的性能优势。近些年,此类系统已经投入生产,其中,扫描光栅被取代,并且 MEMS 器件过滤每一个特定波长进入单点探测器。这个方法在实现更加小巧和稳健耐用光谱分析仪的同时,也表现出很高的性能。  相对于线性阵列探测器架构,光学 MEMS 阵列的使用具有数个优势。首先,可以使用更大的单元素探测器,以提高采光量,并极大降低系统成本和复杂度,这对于红外系统更是如此。此外,由于不使用阵列探测器,像素到像素噪声被消除了,而这可以极大地提升信噪比 (SNR) 性能。SNR 性能的提高可以在更短时间内获得更加准确的测量结果。  在一个使用 MEMS 技术的光谱分析系统中,衍射光栅和聚焦元件的功能与之前一样,但来自聚焦元件的光在 MEMS 阵列上成像。要选择一个用于分析的波长,一个特定的光谱响应波段被激活,这样的话,就可以将光引入到单点探测器中进行采集和测量。  如果 MEMS 器件高度可靠,能够生成可预计的滤波器响应,并且在不同的时间和温度下保持恒定,那么这些优势就可以实现。  将一个 DLP® 芯片或数字微镜器件 (DMD) 用作一个空间光调制器,并且在一个光谱分析仪系统架构中将其用作 MEMS 器件的话,可以克服数个难题。首先,使用一组铝制微镜来接通和关闭进入单点探测器的光,这在广泛的波长范围内是光学有效的。其次,数字微镜的打开和关闭状态由机械止动装置和互补金属氧化物半导体 (CMOS) 静止随机访问存储器 (SRAM) 单元的锁存电路控制,从而提供固定的电压镜控制。这个固定电压、静止控制意味着这个系统不需要机械扫描或模拟控制环路,并且能够简化校准。它还使得光谱分析仪设计更能免受温度、老化或振动等错误源的影响。  DMD 的可编程属性具有很多优势。其中某项优势会在进行光谱分析仪架构设计时显现 -- 如果以被用作滤波器的微镜的寻址列为基础。由于 DMD 分辨率通常高于所需的光谱,DMD 区域会出现欠填充的情况,并且会对光谱过采样。这使得波长选择完全可编程,并且在光引擎出现极端机械位移的情况下,将额外微镜用作重新校准列。  此外,DMD 是一个二维可编程阵列,这为用户提供高度的灵活性。通过选择不同的列数量,可以调节分辨率和吞吐量。扫描时间可动态调整,如此一来,用户可对所需波长进行更长时间、更加详细的检查,从而更好地使用仪器时间和功能。此外,相对于固定滤波器器具1,诸如采用的 Hadamard 图形等高级孔径编码技术,可实现高度的灵活性和更高性能。  总之,与目前的光谱分析系统相比,使用 DMD 的光谱分析器件可实现更高分辨率、更高灵活性、更加稳健耐用、更小的外形尺寸和更低的成本,从而使得它们对于广泛的商业和工业应用更有吸引力。  单探测器架构消除噪声  目前基于线性阵列的光谱分析仪主要受到两个因素的限制。首先,探测器的波长选择受到像素孔径的限制。探测器的尺寸决定了采集到的光量,从而影响SNR。诸如Hamamatsu G9203-256的常见磷化砷镓铟 (InGaAs) 256像素线性阵列的尺寸为50微米 x 500微米。相反地,一个数字微镜阵列是一个完全可编程的矩阵,可以针对应用来配置列的数量和扫描技术。这可以将更大的信号呈现给通常与DMD一同使用的更大的1毫米或2毫米的单点探测器。将窄带光过滤到一个线性阵列中 -- 通常是50微米宽像素 -- 也许会出现串扰的问题。像素到像素干扰会成为读取过程中产生噪声的主要原因。这些干扰可通过单探测器架构消除。此外, 通过利用1kHz至4kHz的数字微镜扫描速度,单点探测器可以达到与平行多点采样相类似的驻留时间。对于基于MEMS -- 或基于DMD -- 的紧凑型光谱分析仪引擎,结果显示SNR的范围大于10000:1。  对于超级移动光谱分析仪十分关键的小型、高分辨率2D MEMS阵列  为了尽可能地提高性能,用户需要考虑可被用于将光线反射至探测器的MEMS总面积。然后,将这个面积与可用单点探测器孔径尺寸仔细匹配。  一个采用5.4微米微镜的DMD具有超过40万个可用像素,并且可以针对700纳米至2500纳米的波长进行优化。该款DMD是DLP2010NIR,它采用一个被称为TRP的全新像素架构。如图1中所见,这个像素提供17度的倾斜角。DLP2010NIR在一个评估模块中运行 这个评估模块提供针对光谱分析应用场景的独特光学架构。一个利用17度接通和关闭角度的光学路径可以用一个尽可能减少散射光的小巧引擎实现高性能感测分辨率。  图2中显示了这个针对光谱分析使用情况的独特光学引擎。这个系统优化了整个光路径中光学信号。来自样本的响应在DMD上成像,从而实现对每个波长的空间控制。这个评估模块的目的在于,通过将高效MEMS用作光谱分析中的高速2D滤波器,来获得设计优势。它是一款小巧、结实耐用且高度自适应系统,能够使光谱分析走出实验室,直接应用于现场测量或含光源测量。与传统光谱分析仪相比,同一个器件中的透射和反射测量头互换功能可以实现性能基准测试。  一个利用DLP2010NIR芯片的光谱分析光引擎有数个照明模块,并且每个模块的工作方式稍有不同。在一个传输模块中,光源、比色皿支架、高精度比色皿和和其它安装硬件被用于完成透射样本的吸收量和散射属性的测量。NIR透射测量值可用于液体样本,诸如果汁的水含量或出现的气体特征。这些数据能够提供与果汁原产地有关的很多信息。在固体样本中,NIR透射可以测量塑料管的不透光度,而这是观察气体和液体在传送线路中流动的重要参数。线路内的透射测量也被用于分析黄油在生产过程中的水含量,这样可以及时调整黄油制作工艺,从而节省了时间、尽可能降低成本,并且增加最终产品的质量。  或者,在样本无需与光谱分析仪窗口接触的测量中,反射模块是一个选择。它可以在几厘米的距离之外灵活地执行扫描操作,比如肉品被包装在塑料薄膜后监测肉品质量。诸如血糖预测等健康应用方面,也可以使用皮肤的漫反射来成为NIR区域内特色应用。  最后,在光纤耦合模块中,不论是透射测量,还是反射测量,它们都是通过光纤实现。这样可以在光谱分析仪与样本无法直接接触时实现测量。此类采样示例包括监视工业过程、测量导管中流动的液体、分析鸡肉、牛肉和猪肉中的湿度、脂肪和蛋白质含量。这些模块极大地扩展了应用范围,并且提供更高的测量性能。Optecks具有能够实现所有这些采样方法的照明模块解决方案。  正如之前讨论过的那样,使用DMD的光谱分析器件将功能拓展至对多个物质的分析、测试和测量。它们为实现更加准确的性能、更高分辨率、更大灵活性、更好的稳健耐用性和更小外形尺寸光感侧解决方案提供一个途径。此外,使用DMD的光谱分析仪还带来了更高的测量可靠性,而这在之前使用的传统光谱分析系统中,这也许是无法实现的。不论用户是打算用它测量农田中的庄稼需要的灌溉量,或是想要预测食物中的腐败程度,光谱分析都在不断成为准确、实时分析的强大方法。  参考书目  1 Pruett, E.,“德州仪器 (TI) DLP® 近红外光谱分析仪的最新发展可实现下一代嵌入式小巧、便携式系统”SPIE 9482-13 2015年4月  作者简介  Mike Walker先生是德州仪器 (TI) DLP® 产品部的业务拓展经理,负责这个部门的光谱分析业务。在过去几年中,Walker始终致力于将这项突破性架构引入到IR感测领域。在此之前30年间,Mike领导了TI的多个技术和业务团队。  Hakki Refai博士是Optecks的首席技术官。他在针对基于DLP系统的光学、电子和软件系统的设计和开发方面拥有10几年的经验。Refai博士在先进电子设备的设计、生产和分销方面具有5年多的领导经验。
  • 光纤光谱仪吸光度测量解决方案
    吸光度测量使用设备简单、操作便捷。大部分无机物和有机物都可以直接地或间接地用吸光光度法测量。吸光度测量主要用于液体或气体的定量分析,广泛应用于环境监测、化学分析、检验检测等领域。吸光度定义用单色光照射某一吸光物质或溶液,测量单色光照射前的强度(即入射光强度I0)以及透过吸光物质后的强度(即透射光强度I),定义透光度(transmittance)T 为定义吸光度(absorbance)A为光的吸收定律朗伯-比尔(Lambert-Bear)定律,也称光的吸收定律,是吸光度定量分析的基本关系式。其数学表达式为: ε. 为摩尔吸光系数,与溶液的性质、温度和入射光波长有关 为溶液光程长度,即为比色皿的尺寸,单位为cm 为溶液浓度,单位为mol/L。公式表明当溶液入射光波长和光程长度固定不变时,吸光度与溶液浓度成正比关系。在测试未知样品的浓度的实验中,可以测量数组已知确定样品浓度和吸光度的数据,构建吸光度与样品浓度的正比关系式,通过测量未知样品的吸光度来求解未知样品的浓度。吸光度测量整套仪器搭建方案整套仪器由微型光纤光谱仪(含软件)、光源、比色皿支架和光纤跳线组成,见下图。具体配置清单:产品名称数量微型光纤光谱仪(含免费配套软件)1光源1比色皿支架1光纤跳线2仪器介绍微型光谱仪RGB-ER-CL微型光谱仪 采用交叉非对称C-T光路结构,配置先进的CMOS探测器,是一款结构紧凑、携带方便的通用型微型光纤光谱仪,适用于科研及工业生产的光谱测量应用,具有高灵敏度、高分辨率、高量子效率和高动态范围的特点。RGB-ER-CL微型光谱仪响应范围为200~1000nm,狭缝为25μm,分辨率为1.5nm。RGB-VIS-NIR-CL的波长范围为400~1100nm,狭缝为25μm,分辨率为1.0nm。用户也可以选择不同的光栅配置,得到不同的光学分辨率和光谱响应范围,以满足不同的应用需求。另外针对其它波段如200~900nm/200~1000nm/300~1100nm/700~1100nm等可以提供定制。该款微型光谱仪免费提供配套光谱测量软件KewSpec。软件包含查看、保存、读取光谱图和数据,以及积分时间、Boxcar平滑和信号平均等信号处理等基本功能,还包含光谱测量、吸光度、透过率、反射率等应用测量模式。操作界面简洁明了,易于上手。光源吸光度测量常见于紫外-可见波段,根据待测样品的特征波长范围选择合适的光源。HLS-1卤钨灯光源 波长范围360~2500nm,可直接出光或也可由SMA905端口连接光纤耦合输出。输出光强度可调,光源前端设有支架,可根据需要安装滤光片或衰减片。DLS-1氘-卤钨灯 是一款可提供190~2500nm的紫外-可见-近红外波段连续输出光谱的一体化复合光源。采用SMA905端口连接光纤输出,输出光功率稳定。氘灯和卤钨灯可分别开启,卤钨灯输出光功率可调,用以搭配氘灯输出光强。光源前端设有支架,可根据需要安装滤光片或衰减片。比色皿支架CH-4四向比色皿支架 是常用的光谱测量附件,光程长度1cm,支架的四面均连接一个CL-UV准直透镜。用于吸光度测量时,光纤接在两个相对的准直透镜。光纤跳线KEWLAB提供各种波长范围、光纤芯径和长度的光纤跳线,广泛应用于光谱分析领域。该光纤跳线具有坚实耐用、稳定性高、传输损耗小等特点。连接光源、微型光谱仪,起到传输光谱信号的作用。根据客户的实际应用需求,可选择不同型号的光纤跳线。光纤跳线覆盖光谱范围:190-2200nm光纤芯径可选范围:200、400、600、1000μm等标准长度:0.5m、1m、2m,其它长度可定制外壳材料:金属或塑料实测案例以HLS-1卤钨灯为光源,使用RGB-VIS-NIR-CL微型光谱仪(400-1100nm)搭配整套设备测试不同浓度胭脂红色素的吸光度光谱曲线。
  • 长春光机所全自动小型生化分析仪亮相“十一五”成就展
    仪器信息网讯 2011年3月7日至14日,中国科学院长春光学精密机械与物理研究所的全自动小型生化分析仪亮相国家“十一五”重大科技成就展。 全自动小型生化分析仪   针对社区和农村医院对肝病、肾病、心血管等疾病检测的需求,长春光机所采用MEMS技术制造了具有自主知识产权的微型紫外/可见光纤光谱仪、囊式聚合物试剂杯、高精度加样/混合器等,重点解决了小体积与高性能、多功能、自动化、快速性等方面的难题。其中,研制出的小型、高性能全自动生化分析仪已获得医疗器械注册证。   关于中国科学院长春光学精密机械与物理研究所:   中国科学院长春光学精密机械与物理研究所是由原中科院长春光学精密机械研究所和原中科院长春物理研究所于1999年7月整合组建而成,以知识创新和高技术创新为主线,从事基础研究、应用基础研究、工程技术研究和高新技术产业化的多学科综合性基地型研究所。该所在以王大珩院士、徐叙瑢院士为代表的一批科学家的带领下,在发光学、应用光学、光学工程和精密机械与仪器等领域先后取得了1700多项科研成果,研制出了中国第一台红宝石激光器、第一台大型经纬仪等十多项“中国第一”,向外输出2200多名各类人才,为中国的科技进步、经济发展和国防建设作出了一系列突出贡献,被誉为“中国光学的摇篮”。
  • 俄法将合作研发水星外气层光谱分析仪
    光谱分析仪是将成分复杂的光分解为光谱线的科学仪器,由棱镜或衍射光栅等构成,利用光谱仪可测量物体表面反射的光线。阳光中的七色光是肉眼能分的部分(可见光),但若通过光谱仪将阳光分解,按波长排列,可见光只占光谱中很小的范围,其余都是肉眼无法分辨的光谱,如红外线、微波、紫外线、X射线等等。通过光谱仪对光信息的抓取、以照相底片显影,或电脑化自动显示数值仪器显示和分析,从而测知物品中含有何种元素。这种技术被广泛地应用于空气污染、水污染、食品卫生、金属工业等的检测中。  俄罗斯航天集团和法国国家太空研究中心近日签署合作协议,共同研发水星紫外线光谱分析仪(PHEBUS)部件。该光谱分析仪将安装在“贝皮可伦坡”开发项目欧洲宇航局的水星轨道飞行器上,分析仪采用极紫外光谱真空紫外区55—155纳米和远紫外区145—315纳米的双频分析结构,利用旋转镜进行近轨360° 的观测。  法国国家太空研究中心作为水星轨道飞行探测器的研发方,负责水星外气层光谱分析仪研发的领导、相应地面保障系统的建设,以及设备的系统集成和数据收集、传输和保存的管理。  俄罗斯航天集团承担设备旋转系统的研发、制造和独立检测,向法国方面提供设备并在飞行器上进行安装和测试,俄方参与合作研发的有俄罗斯科学院空间研究所,法方有法国大气、环境和空间观测实验室。  “贝皮可伦坡”开发项目是欧洲航天局(ESA)和日本宇宙航空研究开发机构(JAXA)合作的水星探测计划,以意大利数学家、科学家和工程师朱赛普可伦坡的昵称(贝皮可伦坡)命名。任务是研究水星表层及周围空间物质构成,观测水星地面不可见物质,评判行星的地质演变过程,分析研究水星表层化学成分及内部结构、磁场起源及与太阳风的相互作用,搜寻极地区域是否有冰的存在等。计划包含两颗轨道器水星行星轨道器和水星磁层轨道器。轨道器计划于2018年4月发射,计划一次飞跃地球、两次飞跃金星、五次飞跃水星,最终在2024年到达水星。水星行星轨道器将用以测绘水星地图,水星磁层轨道器则用来研究水星的磁场。
  • PACON 4800在线水质硬度分析仪安装案例-武汉钢铁
    安装地点:武汉钢铁安装时间:2018年6月5日仪表清单:PACON 4800在线水质硬度分析仪 武汉钢铁集团公司是新中国成立后兴建的*个特大型钢铁联合企业,于1955年开始建设,1958年9月13日建成投产,是中央和国资委直管的国有重要骨干企业。锅炉水硬度测量,现场安装了2套PACON 4800在线硬度分析仪。冷却器自动冷却炉水水样温度,比色法硬度测量原理,高精度和高稳定性,为锅炉安全和节能减排保驾护航。 PACON 4800在线硬度分析仪采用滴定比色法原理,是用于水软化系统和反渗透保护的入门级佳选择。测量参数:● 总硬度应用:软化水、反渗透、锅炉水、洗衣房、地下水、冷却塔、制药用水、制程用水、饮料/食品 产品特点: ● 全自动测量根据所选的试剂,全自动测量不同范围的水质总硬度。该分析过程比手工测量更有效,也比其他间接的测量方法(如离子选择电极)更为持续可靠。 ● 智能、准确国标测量方法-滴定比色法,仪器具有校准功能。集成式测量技术和两阶段的分析过程可识别外部的测量影响(如:测量槽的污染、水样的浊度和外部光线)并在测量中消除这些影响。 ● 多种测量模式-连续测量-间隔测量(5-99min)-外部开关信号启动测量 ● 紧凑设计尺寸仅为300x300x200mm,可直接挂墙或安装在支架上。 ● zui少的维护工作量水和检测装置完全隔离,可拆卸式测量槽,不需要额外的工具进行维护,可以很容易地执行。建议每年更换一次备件包(包括:蠕动泵头试剂连接管、搅拌子、密封圈,订货号:50-5000-10) ● 自动清洗每次分析都会自动执行Rinsing(冲洗)和Cleaning(清洗),保证了测量精确性、重复性和降低了现场维护量。 ● 低试剂消耗可以很方便的更换试剂瓶,500ml试剂可测量5000~10000次。试剂有效期2年。 ● LCD背光液晶显示多国语言图形背光液晶显示测量值、试剂剩余量、报警值和继电器状态。 ● 0/4-20mA输出 ● SD卡数据存储2G数据存储卡,可直接导入电脑以excel格式查阅历史数据及系统故障信息等。
  • 智能化炼厂在线分析仪器技术与应用现状(涉及色谱、近红外和核磁)
    针对炼化企业的智能化建设,均涵盖在工业和信息化部提出的“生产管控”、“设备管控”、“能源管理”、“供应链管理”、“安全环保”和“辅助决策”六个主要业务领域,只是各企业现阶段的侧重点有所不同[1]。图1 工信部提出的石化智能工厂6个主要业务领域 [1] “生产管控”主要指通过生产过程智能化的优化控制,提升操作自动化和实时在线优化水平,炼厂作为生产企业,生产管控智能化在很大程度上决定着炼厂的智能化水平。目前,在大量使用DCS 的现代化炼油装置中,基本都具备了先进过程控制(Advanced Process Control,APC)能力,但随着过程工业日益走向大型化、连续化,对过程控制的智能化提出了更高的要求,控制与经济效益的矛盾日趋尖锐,迫切需要一种新的控制策略,实时优化(Real-Time Optimization,RTO)技术便应运而生,其能够显著提高生产过程的效益,已经在过程控制领域获得了广泛的应用,是决定炼厂 “生产管控”智能化的重要技术。同时,RTO技术要想顺利实施,必须及时感知生产中的各类过程数据,即离不开过程分析技术(Process analytical technology,PAT)的帮助。PAT过程分析技术的概念最早是由美国食品和药物管理局在2004年引入制药行业的,旨在支持创新和提高药品开发效率,保证药品质量。此后,该技术逐步推广到各个国家的各种生产制造行业,如炼化、食品、饲料等生产行业,其核心是利用在线分析仪监测所有影响最终产品的关键过程参数和质量属性,在线分析仪就是用来在线检测工业生产过程中的原料、中间产品、产品以及相关辅助原料、副产品等物料性能指标的分析仪器。在线分析仪取样分析方式有两种:一是通过探头直接从工艺管线或设备中取样同时进行分析,二是通过快速回路等方式将样品从主管线或设备中引出后取样分析。前者一般不需要或仅进行简单的样品预处理,而后者均需要配备样品预处理系统。炼厂各类油品往往含有从装置或管线中带出的少量固体颗粒及水等杂质,因此较少直接从工艺管线中直接取样进行在线分析,大部分在线分析都是将样品引出后进行。完整的在线分析系统除在线分析仪本身外,样品预处理系统和分析小屋也是其重要组成部分。预处理系统的目的不外乎调节样品环境、净化样品、保护装置等,但针对不同生产领域的样品,如炼油领域和化工领域,预处理系统也存在一定差异。分析小屋的需求一般取决于分析仪本身。样品预处理系统是分析对象进入在线分析仪的前端环节,就炼厂来说,样品预处理系统的目的就是为在线分析仪提供连续的、有代表性的油样,油样状态满足在线分析仪所需的温度、压力、流量、洁净度等要求,从而确保仪器长期可靠运行,减少仪表故障甚至是安全事故的发生。可见样品预处理系统的重要性丝毫不亚于在线分析仪,并且由于样品预处理系统涉及部件较多,集成性往往不如在线分析仪,因此其使用可靠性也低于分析仪。在实际使用中,样品预处理系统所遇到的问题往往比分析仪多,即使使用正常,其维护量也远远高于分析仪本身[2]。在线分析仪一般安装在工业现场,需要为其提供不同程度的气候和环境防护,以确保仪器的使用性能、寿命并便于维护。对分析仪的保护可以采取加装外壳及箱柜、搭掩体以及分析小屋的方式,简单的在线分析仪如电导仪、密度计等可直接依靠外壳、箱柜或掩体防护,但这些防护措施无法或仅能提供简单的环境防护,对仪器及维护人员提供的保护不足。对于在线色谱、在线近红外等需要经常维护且系统复杂、具有重要用途的大型在线分析仪,分析小屋能为其提供可控的操作和维护环境,并可延长使用寿命,降低维护成本。图2 某装置在线近红外分析小屋外景和预处理箱就油品质量性质分析来说,从干气、液化气、轻质油品到重质油品,油品质量性质成百上千,如液化气组成、汽油馏程、航煤冰点、柴油凝点、渣油粘度等等,对应的在线分析仪也很多,这些仪器构成了炼厂在线分析仪的主力军,概括起来可以分为三大类:以在线色谱为代表的组份分析仪;以在线近红外和在线核磁为代表的光(波)谱分析仪;基于常规方法的油品质量在线分析仪表,如在线硫分析仪、在线馏程分析仪等。在线色谱色谱是一种基于对分析样品强大的分离能力来进行定性和定量分析的仪器,在线色谱仪和实验室色谱仪分析侧重点完全不同,前者功能单一,注重自动化、集成度和持续稳定性,对分析速度和安全性要求很高,需配备取样和预处理系统,固定于装置现场,基本无可拆卸部件。而后者往往具备多种可更换部件和扩展功能,分析对象广、检测限低,但分析时间相对较长,需要丰富的人员操作经验。在线色谱仪在石化领域应用主要集中在组成分析,其另一主要功能即模拟馏程分析的应用较少。按照工艺装置来分,在线色谱仪在炼油行业主要应用场所有:催化裂化、催化重整、气体分离、烷基化、MTBE等;在化工行业的主要应用场所有:乙烯裂解、聚丙烯、聚乙烯、氯乙烯、苯乙烯、丁二烯、醋酸乙烯、乙二醇、芳烃抽提等,总体来说在线色谱在化工行业的应用要多于炼油领域。以重整和芳烃联合装置为例,在线色谱主要用来进行物料组成及含量分析,主要应用点有:检测脱戊烷塔顶馏出物中C6组分含量;C4/C5分馏塔液化石油气产品组成;脱戊烷塔底料(芳烃抽提进料)的芳烃(BTX,苯、甲苯、二甲苯)组成;苯抽提塔顶MCP、苯、非芳含量等等。表1 在线色谱在重整和芳烃联合装置上的应用应用点 物料 被测组分 测量目的 催化重整装置 脱戊烷塔顶 C6 减少C6+组分的损失 C4/C5分馏塔液化石油气 C5 控制C5质量分数 脱戊烷塔底 BTX、苯、甲苯、二甲苯 监测重整生成油中BTX纯度 循环氢 CO、CO2、C1- C5 监测循环氢中碳氢化合物杂质 芳烃抽提装置 脱己烷塔顶或塔底 甲基环戊烷(MCP)、苯 了解芳烃抽提进料质量 苯抽提塔顶 MCP、苯、非芳 了解抽提效果 溶剂回收塔顶 甲苯、二甲苯、非芳 了解抽提效果,减少苯损失 在线近红外和核磁在线近红外和核磁共振分析方法均属于波谱分析方法的在线应用,二者均反映化合物的结构信息;二者利用谱图直接进行化合物结构解析和定量分析的能力均有限,通常结合化学计量学方法如主成分分析(PCA)、偏最小二乘(PLS)等建立定性和定量分析模型,来进行样品判别分析或预测和样品化学结构直接或间接相关的性质,如油品的密度、烃类组成、馏程等等;二者在炼油企业原油调合、汽油调合、常减压、催化裂化、催化重整等很多装置上均有应用,分析对象涉及原油、汽柴油、航煤、蜡油等诸多油品;总的来说二者在炼化企业的应用范围和应用模式均有较高的重叠度。虽然应用重叠度较高,但在线近红外和核磁还是有区别,表2列出了两种技术的特点对比。表2 在线近红外光谱与核磁共振谱的对比在线近红外光谱在线核磁共振氢谱化学信息反映的是分子化学键振动的倍频和组合频信息,由分子偶极矩的变化即非谐性产生,主要是含氢官能团的信息,如C-H、N-H和O-H等;光谱范围12000~4000 cm-1,倍频和组合频的化学信息丰富,但有重叠。反映的是氢核对射频辐射(4~60MHz)的吸收,核磁共振氢谱的化学位移与氢核所处的分子结构密切相关,主要是不同化学环境下的氢核信息;相对高场核磁,在线低场核磁的分辨率较低,信号较弱,化学信息量明显减少。定量原理对于汽、柴油、润滑油和原油等复杂混合物,需要采用多元校正方法(如PLS或ANN)建立校正模型。对于汽、柴油、润滑油和原油等复杂混合物,需要采用多元校正方法(如PLS或ANN)建立校正模型。工业现场在线分析技术可采用低羟值的石英光纤,传输距离大于100m;可同时对多路物料进行测量,不需要样品流路切换和清洗;需要一定的预处理。仅一路进样通道采用阀切换方式进行多路测量,存在交叉污染和阀内漏等风险,分析效率相对较低;需要简单预处理。工业应用成熟度已建立完善的原油光谱数据库和汽、柴油光谱数据库;实验室快速分析和工业在线分析应用广泛,工程化成熟度高。工业在线核磁应用起步相对较晚,受外界环境干扰大,导致核磁信号稳定性相对较差;未建立完善的油品数据库,工业应用成熟度和广度相对较低。从谱图的化学信息来看,在线核磁一般为60M左右的低场核磁,所以其谱图包含的组成信息较少。图3 某相同油品在线近红外和核磁谱图比较从仪器硬件来看,国内外知名品牌的在线近红外光谱仪器已有十余家厂商,仪器性能稳定,测量附件齐全,在国内外炼厂已有二十余年的应用历史,售后服务已经规范化和标准化,近红外硬件技术已很成熟。而目前世界范围内只有两家企业提供商用在线核磁共振仪器,应用案例相对较少。工业现场适应性来看,近红外光可以通过光纤进行传输,通过光源分配与多个检测器结合,一台在线近红外光谱仪可以同时对多路样品进行测量,分析效率高。在线核磁技术为避免磁场干扰,一台检测箱中只能安放一套检测仪,使用一根核磁管,通过程控阀组切换的方式实现多路样品轮流检测。由于不能多路同时测量,该技术测量速度相对较慢,同时,阀组长期高频次切换会产生磨损,造成堵塞、内漏、样品交叉污染等诸多隐患。但在分析深色重质油品如原油时,在线近红外对预处理系统的要求比在线核磁要高。最后,从油品谱图数据库来看,不论近红外还是核磁共振技术,数据库的大小和维护都是这类技术的核心。对于近红外光谱技术,由于在石化行业已有近30年的应用,已经建立较为完善的油品近红外光谱数据库,包括原油、石脑油、汽油、柴油、VGO、润滑油基础油等,分析项目涵盖了所有关键的化学组成和物性数据。对于在线核磁共振技术,由于发展时间较短,在炼油企业的应用成熟度和广度不高,尚未开展系统的数据库建立工作。结语相对于欧美等发达国家,过程分析技术在我国石化行业的普及性和投用率都有一定差距,原因是多方面的,主要原因还是维护困难,对操作人员专业知识水平要求较高,以及缺乏相应的标准,很多场合想用在线分析仪而不能用、不敢用。借助国家大力发展智能化炼厂建设的契机,过程分析技术有望在石化行业进入发展快车道。 参考文献[1] 龚燕, 杨维军, 王如强, 等. 我国智能炼厂技术现状及展望[J]. 石油科技论坛, 2018, 3: 29-33.[2] 王森. 在线分析仪器手册[M]. 1版. 北京: 化学工业出版社, 2008.作者:中国石油化工股份有限公司石油化工科学研究院 陈瀑
  • PAT为分析仪器制造和研发提供新的发展空间
    过程分析与控制技术(PAT)研究及应用研讨会召开   仪器信息网讯 近几年,过程分析仪器在亚太地区的需求越来越高,尤其在中国,近几年其市场保持着高速增长。为给相关开展基础研究及应用开发的业内专家搭建交流平台,2013年5月15日,由中国仪器仪表学会主办的“过程分析与控制技术(PAT)研究及应用研讨会”在北京中国国家会议中心召开。来自过程分析领域的国际知名专家、学者欢聚一堂,共同探讨程分析领域最新技术进展、分享最新研究成果。   围绕“过程分析领域近年的最新研究成果和应用技术”这一主题,国际过程工业自动化用户协会戴小龙、四川大学段忆翔、费里曼技术公司 Nishil Malde、国际过程工业自动化用户协会Wolfgang Albert、石油化工研究院褚小立、北京化工大学袁洪福分别作了精彩的报告。   据了解,过程分析与控制技术(PAT)综合交叉了过程工程、分析化学、控制工程、系统工程、仪器科学、信息科学、应用数学等学科内容,实现了将化学、物理和生物性质等多变量作为直接参量参与过程自动化生产控制的优化技术,对工业的安全生产、产品质量等发挥着重要作用。随着物联网技术的发展,过程分析与控制技术在化学工业、石油及石化、能源、冶金、建材、核能、生物技术、医药以及环境污染治理等工业中将具有越来越广泛的应用前景。   PAT的推广给分析仪器的制造和研发提供了新空间。目前。国际各大仪器制造商都对PAT给予了很高的关注。也是由于PAT的市场需求,使得原先在离线分析中不被重视的分析方法,如近红外和拉曼技术,成为了研究的热点;一些最新技术成果,如激光、光电子、光纤等,在PAT中发挥了很大作用。   当前,我国关于过程分析与控制技术研究的文献不多,系统研究PAT的学者和团队也较少。其主要是各大跨国公司出于技术进步和对中国市场的考虑,在PAT观念介绍和技术推广作了很多工作。但值得欣喜的是,在《国家中长期科学和技术发展规划纲要(2006-2020)》中,我国将“流程工业需要的传感器、智能化检测控制技术”已作为重点领域进行优先发展。(撰稿:萧然) 国际过程工业自动化用户协会戴小龙会上作报告 四川大学段忆翔会上作报告   相关报道:2012中国国际过程分析与控制学术会议成功召开
  • 在线分析仪器在食品药品安全、医疗中的应用——CIOAE 2011报告系列
    仪器信息网讯 2011年11月9-10日,“第四届中国在线分析仪器应用及发展国际论坛暨展览会(CIOAE 2011)”在北京国际会议中心隆重召开。本次论坛吸引了600余名观众参加,50余家在线分析仪器厂商参展。本次论坛设有多个分会场,40余名来自石化、环保、食品等行业的专家学者做了报告。   为让广大网友更有针对性的了解本次论坛报告的内容,仪器信息网根据报告的内容,对报告进行分类,并将报告内容整理成文,以飨读者。以下是本次论坛中众多专家学者针对“在线分析仪器在食品药品安全、医疗中的应用”所作报告的合集。 中国农业科学院、中国仪器仪表学会农业仪器分会 蒋士强教授 报告题目:构建食品安全链中在线分析技术的广阔前景   蒋士强教授介绍了他参加美国食品安全相关会议后的一些关于食品安全质量控制的感受,并强调了在线分析仪器在食品安全质控中的重要作用。   他认为,发达国家食品生产企业规模大,资金实力厚,法治严,自律意识强。都相继根据各自产品特点,进行产品质量安全危害分析,从原料到最终产品,从全过程中确定检测分析的关键控制点,建立关键限值,进行实时、在线检测分析控制。其细致的程度,几乎想把各种分析化学技术、微生物检测技术,甚至在重要加工和包装时,对易产生金属或异物检测的X光和超声技术应用到实时、在线分析检测中。   在线分析技术贯穿于GAP、GMP、SSOP和HCCP的基本概念中。食品安全监控体系中的核心技术是实时、现场、在线分析检测与控制技术。而当今中国确保食品安全的困难不在于基理,而在实现在线分析的工艺、接口、衔接。食品安全保障链的构建相当繁重,但这正是对在线分析技术发展的挑战和推动力之一,也是对我国目前小规模农业生产和46万多个食品生产企业、多而散的状况整合中潜在的需求。 新疆医科大学药学院分析测试中心 艾尔肯依不拉音教授 报告题目:在线光纤传感同步吸收-荧光光谱仪及食品、药品残留量检测的应用   艾尔肯依不拉音教授在报告中介绍了他所设计的一种吸收光谱/荧光光谱同步检测流通池(专利),即利用一种光源,一种光谱仪,一种检测池,利用这个流通池,通过同步同时实时在线检测紫外-可见光吸收光谱与荧光光谱检测方式,实现了紫外-可见吸收光光谱和荧光光谱检测为一体的检测仪器。   该检测系统(仪器)灵敏度高,重复性好,基线稳定,噪音小,精密度高,样品检测限低,经过在线富集最低检测限为0.001ug/ml,可观察200nm~1100nm范围内的光谱图。将此仪器应用到食品和果蔬残留防腐剂的检测,结果表明:该仪器快速、灵敏、准确,能满足痕量检测的要求。 Servomex公司 Lisa Zhang经理 报告题目:Hummingbird 峰鸟传感器技术介绍   Lisa Zhang经理在报告首先简单介绍了仕富梅公司和Hummingbird产品的历史。公司的核心市场主要在工业和医疗方面。峰鸟传感器可以适合多种应用领域,在高要求的医疗器械及高安全的工业过程中都有很好的应用价值。   随后介绍了公司推出的一些新产品和新技术,其中Paracube Micro是最新一代的顺磁氧,取得了RoHS认证,可取代电化学传感器,不含消耗原件,易于集成到主系统。此外该传感器还提供模拟和数字输出选项,测量范围为0-100%,精度可以达到±0.2%O2,线性度±0.2%O2。此外Lisa Zhang经理还介绍了公司推出的Pm1158、Pm1111E、Paracube Sprint、Ir3107等一系列新产品和新技术。
  • 富科思光纤药物溶出度实时测定仪编入《国家药典》
    一个企业,用五年的时间搞研发,在这期间企业没有一分钱的销售收入,却陆续投入了将近一千万元研发资金,最终成为了市场上的赢家,这就是新疆富科思生物技术发展有限公司(简称富科思)创造的神话。   2009年12月29日,记者采访了该公司副总经理吴坚,了解到富科思背后的故事。   联姻:近水楼台先得月   2002年,对于富科思来说是不寻常的一年。   这一年,新疆医科大学专家陈坚、李新霞等科研人员研制出光纤药物溶出度实时测定仪。这个仪器的诞生,成为检验药物的划时代变革。   吴坚介绍,过去检测药物的溶出度和释放度主要依靠手动的检验仪器。质检人员要经过复杂的检测程序,花费大量时间,才能检测出一片药剂的药物溶出度和释放度。   光纤药物溶出度实时测定仪却可以同时测6片药剂,药剂一旦投入检测仪中,检测仪就会自动操作,检测过程中,与测定仪连接计算机会实时显示药物在每一个时段的曲线变化,几秒钟就能打印出数据分析报告。别小看了这份曲线图,药物的工艺是否合格,溶出与释放是否达到要求,质检人员都依靠这份曲线图进行判断。   对于这样好的科研成果,自治区科技厅急于给其找到一个好“婆家”。   自治区科技厅想到了新疆驰达电气发展有限公司(简称驰达),该公司主要致力于电表等仪器制造,它在仪器制造方面颇有实力。   吴坚说,自治区科技厅给光纤药物溶出度实时测定仪找“婆家”时,还有一个小插曲。当时还有上海的一家资质雄厚的企业也看好这个科研成果,也想做这个项目,但是自治区科技厅考虑这是咱们新疆的科研成果,如果在本地生产能促进新疆企业的发展。于是新疆医科大学与驰达结下了“姻缘”。吴坚开玩笑地说,我们占了“近水楼台先得月”的便宜了。   蓄势:资金雄厚保研发   为了专门研制光纤药物溶出度实时测定仪,驰达迅速抽调公司技术和管理骨干,投入资金300万元成立了现在的富科思。同时,企业花费20万元,获得了光纤药物溶出度实时测定仪的专利权。   但有了专利权并不能马上进行工厂化生产,因为它毕竟只是实验室成果,和产业化生产还有很大距离,这也成为专家们的又一新的研究课题。   企业要生存,就必须要见效益。尽管如此,富科思却并不急于冲进市场。吴坚说,“我们头五年没有一分钱的收入,相反,每年公司都投入大量的资金用于研发。”据介绍,五年来该公司相继投入近1000万元,用于光纤药物溶出度实时测定仪的工厂化生产研制。   五年的时间,富科思除了不断投入资金,还承担“十一五”国家科技重点支撑项目、国家科技型中小企业技术创新基金资助项目、自治区科技型中小企业技术创新基金资助项目等多项科技攻关项目。这些项目的实施,不断完善了光纤药物溶出度实时测定仪,将实验成果变成了产品,进一步实现了产业化进程。   吴坚说:“这其中有自治区科技厅、自治区信息产业厅等单位的大力支持,他们的支持是我们的动力。”   五年的日日夜夜,富科思在员工们不断的努力,不断的研发中发展壮大。   现在公司拥有1000余平方米的中试车间,建成年生产能力200台的流水线。   试水:厚积薄发创佳绩   从2007年成功实现产品化到2009年,富科思的销售收入逐年递增。   2007年,该企业生产的光纤药物溶出度实时测定仪销售了20台,实现销售收入424.2万元,利润232.9万元 2008年销售仪器32台,实现销售收入720万元,利润368.2万元。2009年,该公司再次销售30余台仪器。目前,该仪器已被应用于国内多家省市级药品检验所和军队后勤系统药检所。   在销售仪器时,企业动了许多心思。   该企业当年成产了20余台仪器,每台的市场价定在30余万元。昂贵的价格使许多客户望而却步,为了能消除客户的疑虑,富科思总经理刘欢决定,公司生产的20余台仪器提供给北京、江苏、上海、广州等较为发达的省市药检所免费试用,一年后再谈销售。这种销售方式,让90%的客户折服。   吴坚说:“光纤药物溶出度实时测定仪2010年将编入中国《国家药典》,成为药物质量的标准检测仪器,富科思公司生产的产品市场前景更加广阔。全国有上千家制药厂,上百家质检所,这些单位都要有药物检测仪器。有了这样的市场预期,我们注定会成为市场的大赢家。”(新疆科技报) 富科思公司研发的药物溶出度分析仪为国内首创   2006年底,新疆富科思生物技术发展有限公司技术总监陈坚从北京带回好消息:富科思作为西北地区唯一中标“十一五”国家科技支撑计划重大项目课题的单位,获得了科技部210万元资金支持。   2002年,新疆弛达电器发展有限公司同新疆医科大学产学研相结合,成立高科技企业——新疆富科思生物技术发展有限公司。公司成立后,经过技术总监、新疆医科大学博士生导师陈坚教授和科研人员的共同努力,成功研发了具有自主知识产权、光机电一体化的“光纤传感药物溶出度分析仪”。   陈坚告诉记者,“光纤传感药物溶出度分析仪”是一种快速检测药物、食品安全的精密仪器,对含“苏丹红”、“孔雀绿”的问题食品、假冒伪劣药品等都可快速检测。可用于药检、商检、刑侦等机构进行药物制剂的药品标准分析、仲裁检验和现场快速检验,药物品种真伪鉴别,毒物分析等 可用于医药及化学工业,进行药物生产工艺考察,新药研发的生物等小型研究,生产过程中间体、杂质及产品的现场检测,药物稳定性研究等 还可用于药学和临床医学教学和科研机构,进行药物配方筛选和新药研发,化学动力学、光或酶催化动力学等研究。2005年8月15日,国家药典委员会专家检测鉴定认为:该仪器为国内首创,技术性能水平与国际先进同步。专家们惊呼:“没想到新疆能把这样的精密仪器研发出来。”   2006年9月7日,国家药典委员会通过了仪器的国家药检行业准入鉴定,认定为国家药物检测标准仪器。   陈坚教授介绍说,项目实施期内计划产业化生产销售80台,到项目完成的2008年12月,实现销售收入2735万元,利润1084万元,缴税总额656万元。项目完成后2年达到标准生产能力,以每年150台的规模进行生产销售,3年中可累计实现销售收入12991万元,利润5042万元,缴税总额3098万元。经多家单位调研,该仪器国内市场需求近5000台,按市场售价每台40万元、市场占有率50%计算。(中国新闻网)
  • 金坛亿通可吸入颗粒分析仪
    概要: 公司最新研发ED-6C可吸入颗粒分析仪,微电脑触摸屏。该仪器使用符合劳动行业标准《空气中粉尘浓度的光散射测定法》、卫生部标准《公共场所空气中可吸入颗粒物(PM10)测定方法-光散射法》。 结构 检测器外部空气进入吸引口,经迷宫式切割器除去粗大粒子,遮掉外部光线,进入检测器暗室。暗室内的平行光与受光部的视野成直角交叉构成灵敏区(图中斜线部分),粉尘通过灵敏区时,其90℃方向散射光透过狭缝射进光电倍增管转换成光电流,经光电流积分电路转换成与散射光成正比的单位时间内的脉冲数。因此记录单位时间内的脉冲数便可求出粉尘的相对质量浓度。 本仪器相对质量浓度单位使用CPM(Count Per Minute),意为&ldquo 每分钟的脉冲计数&rdquo ,质量浓度单位使用mg/m³ 。 使用场所 ◎劳动卫生呼吸性粉尘 ◎总粉尘浓度的测定 ◎工矿企业生产现场 ◎粉尘浓度连续监测 ◎公共场所可吸入颗料物(PM10)以及环境监测部门大气飘尘的快速测定等方面 主要性能指标 ○检测灵敏度:型 1CPM=0.01 mg/M³ ;(平 均粒径0.3&mu m几何标准偏差1.25的硬脂酸粒 子校正的值) ○测定原理:光散射原理 微电脑触摸屏 ○测定范围:0.01~100 mg/M³ ; ○环境温度:0~40℃ ○测定精度:± 10%(相对校正粒子) ○数据:可以存储200级数据, 操作界面:微电脑 触摸屏,K值和校正系数,任意设置,走读浓度。 ○输 出:与PC机相连,可打印输出 数据可以传入数据。 ○电 源:12V充电电池,可连续使用12小时, 附220V/12V充电器。 ○测定时间:标准时间为1分钟,任意设定。 ○电脑显示屏:数字显示0~100 mg/M³ ,响应速度6秒90%,K值任意设定。 ○ 重 量:3 Kg ○配置:主机(内置PM10切割器) 一台、 铝合金 便携箱 一只 12V充电器 一只、 使用说明和合格证各 一份 和计算机连接软件 一套 江苏金坛市亿通电子有限公司 地 址:金坛市经济开发区华兴路180号 传 真:0519-82613699 电 话:0519-82616576 82616366 邮 编:213200 www.kx17.net.cn www.eltong.com

厂商最新资讯

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制