当前位置: 仪器信息网 > 行业主题 > >

光纤回损仪

仪器信息网光纤回损仪专题为您提供2024年最新光纤回损仪价格报价、厂家品牌的相关信息, 包括光纤回损仪参数、型号等,不管是国产,还是进口品牌的光纤回损仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光纤回损仪相关的耗材配件、试剂标物,还有光纤回损仪相关的最新资讯、资料,以及光纤回损仪相关的解决方案。

光纤回损仪相关的耗材

  • LTS1500 光损耗测试仪光纤通讯 Loss Test Set-LTS
    LTS1500 光损耗测试仪光纤通讯 Loss Test Set-LTSThe FTE-4000 TTI Hand Held Variable Optical Attenuator is available in two models, with 40 dB attenuation level or 80 dB attenuation level to meet single mode testing requirements. Like the rest of the FTE line, the VOA has an onboard help feature. The FTE-4000 has a built in output power monitor to assist in setting the appropriate attenuation levels and a sweep mode which can scan the attenuation across desired levels. It is rugged with a splash proof housing with a highly protective boot. The FTE-4000 can assist in the testing of system budget compliance, balancing transmitter power and adjusting receiver attenuation settings.Features? Integrated Power Meter? Up to 80 dB Attenuation? Typical Insertion Loss 2dB (40dB Model)? Remotely Program Sweep Settings? Adjustable step sizes? USB PC Interface w/Remote Operation? Absolute/Relative Attenuation Settings? Calibrated at 1310/1550? Sealed Rugged Case? Lowest Cost Hand Held VOA? 4” Color DisplayOrdering InformationFTE-4000-4040 dB Variable Optical AttenuatorFTE-4000-8080 dB Variable Optical AttenuatorFTE-4000 SpecificationsAttenuation RangeFTE-4000-4 2 to 40dBFTE-4000-8 4 to 80dBWavelength Range1310, 1550 nmResolution.01 dBUncertainty+/- 0.5 dBRepeatability+/- 0.1 dBInsertion Loss2 dBReturn Loss50 dBMax Input Power27 dBmGraphical Display4 in Color TFTDimensions7.75 x 4.5 x 2.25 inchesWeight2 lbsBatteryRechargeable NiMH - 6 hours operating timePower100-240 universal US, GB, EU, AU MainsEnvironmental Operation-10°C to + 40°CAccessories IncludedUniversal power supply. FC and SC adaptors,CertSof VI Software, USB Cable and Manual
  • 光纤分束/合束器
    光纤分束器用于将一路光分成两路或多路光纤,入射光经过准直后,然后通过分束器分光再耦合到光纤中形成光纤分束器。另外,还可以提供1XN和2XN分束器。设计灵活,允许不同光纤间的连接。特点:可双向操作,宽工作波长,高消光比,可承受功率高等。适合光纤激光器、光纤传感、相干通讯、偏振测试、回损测量等应用。
  • 多模光纤旋转接头跳线
    多模光纤旋转接头跳线特性铰接式旋转接头可以防止扭转时对光纤的损坏?200微米或400微米纤芯的多模光纤可选SMA905或FC/PC(2.0 mm窄键)接头可定制跳线转动极其平滑SM05螺纹(0.535"-40)旋转接头用于固定安装Thorlabs的多模(MM)光纤旋转接头跳线是任何需要旋转一个光纤接头的实验的整体式解决方案。内置的旋转接头允许连接在旋转节上的光缆自由转动,而保持其它光缆不动,从而降低实验中发生损伤的危险。相比将旋转接头和跳线分离的方案,无透镜设计使插入损耗更低,旋转透射变化更小。这种旋转接头经过精密加工,并带有密封轴承,可以进行极其平滑的转动,具有很长的使用寿命以及在转动时的低信号强度振动特性。该旋转接头具有SM05(0.535英寸-40)安装螺纹,可以兼容我们的?1/2英寸光学元件安装座。使用我们的C059TC夹具,通过卡入式安装这些跳线,可以快速安装连接器?0.59英寸的主体。这些跳线采用FT200EMT型?200 μm纤芯或FT400EMT型?400 μm纤芯、数值孔径0.39的光纤。有一种1米长光纤,它的旋转接头两侧有标准的FT020橙色套管,光纤端是一个FC/PC或SMA接头。每一根旋转接头跳线包括两个保护盖,用于防止灰尘和其它有害物质落入插芯端。额外的用于SMA接头的CAPM橡胶或CAPMM金属盖,以及用在FC/PC接头的CAPF塑料或CAPFM金属盖也可单独购买。相比未端接的光纤,这些跳线的zui大功率因连接而受到限制。光遗传学我们也供应用于光遗传学的旋转接头跳线。它们用在该领域是因为它们对运动样品提供便利。这些跳线不同之处是它们带低剖面金属头的更轻的黑色插芯,在旋转接头的样品一侧插入针头连接。它们为连接光源和移植的光针头提供完整方案,并且兼容Thorlabs所有光源和光遗传学设备。Thorlabs供应用于活体刺激的齐全的光遗传学设备,包括:用于光遗传学的可移植光纤针头、光纤跳线和旋转接头跳线以及LED和激光光源。 旋转接头上的SM05外螺纹兼容我们的SM05螺纹元件安装座,比如这里的LMR05透镜安装座。旋转接头在两个光纤的金属套管紧邻处采用尾部耦合设计减少插入损耗定制旋转接头跳线旋转接头跳线的光纤引线为yong久性连接到旋转接头上,以保证更高的性能,并且提供整体式的光纤光学元件解决方案。为了和更广范围的实验装置,我们还提供定制具有不同纤芯和NA的光纤的旋转接头跳线。我们还可以制造不同接头或者不同长度光纤的跳线。为了能够达到zui佳性能,我们建议纤芯直径为200微米或更大的光纤。In-Stock Multimode Fiber Optic Patch Cable SelectionStep IndexGraded IndexFiber BundlesUncoatedCoatedMid-IROptogeneticsSpecialized ApplicationsSMA FC/PC FC/PC to SMA Square-Core FC/PC and SMAAR-Coated SMA HR-Coated FC/PC Beamsplitter-Coated FC/PCFluoride FC and SMALightweight FC/PC Lightweight SMA Rotary Joint FC/PC and SMAHigh-Power SMA UHV, High-Temp. SMA Armored SMA Solarization-Resistant SMAFC/PC FC/PC to LC/PC规格SpecificationsItem #RJPS2RJPF2RJPS4RJPF4Connector TypeSMA (10230Aa)FC/PC (30230C1b)SMA (10440Aa)FC/PC (30440C1b)Fiber TypeFT200EMTFT400EMTFiber Core Size?200 μm?400 μmFiber NA0.39 ± 0.02Wavelength Range400 - 2200 nmLength1 m on Both Sides of Rotary JointFiber Jacket?2 mm, Orange (FT020)Rotary Joint SpecificationsInsertion Loss Through Rotary Joint 2.0 dB (Transmission 63%)Variation in Insertion Loss During Rotation±0.4 dB (Transmission ±8%)Start-Up Torque 0.01 N?mRPM (Max)c10,000Lifetime Cycle200 - 400 Million RevolutionsOperating Temperature 50 °Ca. 与用于?2 mm套管的190088CP消应力套管连接。b. 与用于?2 mm套管的190066CP消应力套管连接。c. 仅针对旋转接头部分中的轴承所测的数据。光纤规格Item #Fiber TypeNACore / CladdingCore DiameterCladding DiameterCoating DiameterMax Core OffsetBend Radius (Short Term / Long Term)RJPF2 and RJPS2FT200EMT0.39 ± 0.02Pure Silica / TECS Hard Cladding200 ± 5 μm225 ± 5 μm500 ± 30 μm5 μm9 mm / 18 mmRJPF4 and RJPS4FT400EMT400 ± 8 μm425 ± 10 μm730 ± 30 μm7 μm20 mm / 40 mm多模光纤教程在光纤中引导光光纤属于光波导,光波导是一种更为广泛的光学元件,可以利用全内反射(TIR)在固体或液体结构中限制并引导光。光纤通常可以在众多应用中使用;常见的例子包括通信、光谱学、照明和传感器。比较常见的玻璃(石英)纤维使用一种称之为阶跃折射率光纤的结构,如右图所示。这种光纤的纤芯由一种折射率比外面包层高的材料构成。在光纤中以临界角入射时,光会在纤芯/包层界面产生全反射,而不会折射到周围的介质中。为了达到TIR的条件,发射到光纤中入射光的角度必须小于某个角度,即接收角,θacc。根据斯涅耳定律可以计算出这个角:其中,ncore为纤芯的折射率,nclad为光纤包层的折射率,n为外部介质的折射率,θcrit为临界角,θacc为光纤的接收半角。数值孔径(NA)是一个无量纲量,由光纤制造商用来确定光纤的接收角,表示为:对于芯径(多模)较大的阶跃折射率光纤,使用这个等式可以直接计算出NA。NA也可以由实验确定,通过追踪远场光束分布并测量光束中心与光强为zui大光强5%的点之间的角度即可;但是,直接计算NA得出的值更为准确。光纤的全内反射光纤中的模式数量光在光纤中传播的每种可能路径即为光纤的导模。根据纤芯/包层区域的尺寸、折射率和波长,单光纤内可支持从一种到数千种模式。而其中zui常使用两种为单模(支持单导模)和多模(支持多种导模)。在多模光纤中,低阶模倾向于在空间上将光限制在纤芯内;而高阶模倾向于在空间上将光限制在纤芯/包层界面的附近。使用一些简单的计算就可以估算出光纤支持的模(单模或多模)的数量。归一化频率,也就是常说的V值,是一个无量纲的数,与自由空间频率成比例,但被归为光纤的引导属性。V值表示为: 其中V为归一化频率(V值),a为纤芯半径,λ为自由空间波长。多模光纤的V值非常大;例如,芯径为?50 μm、数值孔径为0.39的多模光纤,在波长为1.5 μm时,V值为40.8。对于具有较大V值的多模光纤,可以使用下式近似计算其支持的模式数量:上面例子中,芯径为?50 μm、NA为0.39的多模光纤支持大约832种不同的导模,这些模可以同时穿过光纤。单模光纤V值必须小于截止频率2.405,这表示在这个时候,光只耦合到光纤的基模中。为了满足这个条件,单模光纤的纤芯尺寸和NA要远小于同波长下的多模光纤。例如SMF-28超单模光纤的标称NA为0.14,芯径为?8.2 μm,在波长为1550nm时,V值为2.404。衰减来源光纤损耗,也称之为衰减,是光纤的特性,可以通过量化来预测光纤装置内的总透射功率损耗。这些损耗来源一般与波长相关,因光纤的使用材料或光纤的弯曲等而有所差异。常见衰减来源的详情如下:吸收标准光纤中的光通过固体材料引导,因此,光在光纤中传播会因吸收而产生损耗。标准光纤使用熔融石英制造,经优化可在波长1300 nm-1550 nm的范围内传播。波长更长(2000nm)时,熔融石英内的多声子相互作用造成大量吸收。使用氟化锆、氟化铟等氟氧物玻璃制造中红外光纤,主要是因为它们处于这些波长范围时损耗较低。氟化锆、氟化铟的多声子边分别为~3.6 μm和~4.6 μm。光纤内的污染物也会造成吸收损耗。其中一种污染物就是困在玻璃纤维中的水分子,可以吸收波长在1300 nm和2.94 μm的光。由于通信信号和某些激光器也是在这个区域里工作,光纤中的任意水分子都会明显地衰减信号。玻璃纤维中离子的浓度通常由制造商控制,以便调节光纤的传播/衰减属性。例如,石英中本来就存在羟基(OH-),可以吸收近红外到红外光谱的光。因此,羟基浓度较低的光纤更适合在通信波长下传播。而羟基浓度较高的光纤在紫外波长范围时有助于传播,因此,更适合对荧光或UV-VIS光谱学等应用感兴趣的用户。散射对于大多数光纤应用来说,光散射也是损耗的来源,通常在光遇到介质的折射率发生变化时产生。这些变化可以是由杂质、微粒或气泡引起的外在变化;也可以是由玻璃密度的波动、成分或相位态引起的内在变化。散射与光的波长呈负相关关系,因此,在光谱中的紫外或蓝光区域等波长较短时,散射损耗会比较大。使用恰当的光纤清洁、操作和存储存步骤可以尽可能地减少光纤jian端的杂质,避免产生较大的散射损耗。弯曲损耗因光纤的外部和内部几何发生变化而产生的损耗称之为弯曲损耗。通常包含两大类:宏弯损耗和微弯损耗。宏弯损耗造成的衰减微弯损耗造成的衰减宏弯损耗一般与光纤的物理弯曲相关;例如,将其卷成圈。如右图所示,引导的光在空间上分布在光纤的纤芯和包层区域。以某半径弯曲光纤时,在弯曲外半径的光不能在不超过光速时维持相同的空间模分布。相反,由于辐射能量会损耗到周边环境中。弯曲半径较大时,与弯曲相关的损耗会比较小;但弯曲半径小于光纤的推荐弯曲半径时,弯曲损耗会非常大。光纤可以在弯曲半径较小时进行短时间工作;但如果要长期储存,弯曲半径应该大于推荐值。使用恰当的储存条件(温度和弯曲半径)可以降低对光纤造成yong久性损伤的几率;FSR1光纤缠绕盘设计用来zui大程度地减少高弯曲损耗。微弯损耗由光纤的内部几何,尤其是纤芯和包层发生变化而产生。光纤结构中的这些随机变化(即凸起)会破坏全内反射所需的条件,使得传播的光耦合到非传播模中,造成泄露(详情请看右图)。与由弯曲半径控制的宏弯损耗不同,微弯损耗是由制造光纤时在光纤内造成的yong久性缺陷而产生。包层模虽然多模光纤中的大多数光通过纤芯内的TIR引导,但是由于TIR发生在包层与涂覆层/保护层的界面,在纤芯和包层内引导光的高阶模也可能存在。这样就产生了我们所熟知的包层模。这样的例子可在右边的光束分布测量中看到,其中体现了包层模包层中的光强比纤芯中要高。这些模可以不传播(即它们不满足TIR的条件),也可以在一段很长的光纤中传播。由于包层模一般为高阶模,在光纤弯曲和出现微弯缺陷时,它们就是损耗的来源。通过接头连接两个光纤时包层模会消失,因为它们不能在光纤之间轻松耦合。由于包层模对光束空间轮廓的影响,有些应用(比如发射到自由空间中)中可能不需要包层模。光纤较长时,这些模会自然衰减。对于长度小于10 m的光纤,消除包层模的一种办法就是将光纤缠绕在半径合适的芯轴上,这样能保留需要的传播模式。在FT200EMT多模光纤与M565F1 LED的光束轮廓中,展现了包层而不是纤芯引导的光。入纤方式多模光纤未充满条件对于在NA较大时接收光的多模光纤来说,光耦合到光纤的的条件(光源类型、光束直径、NA)对性能有着极大影响。在耦合界面,光的光束直径和NA小于光纤的芯径和NA时,就出现了未充满的入纤条件。这种情况的常见例子就是将激光光源发射到较大的多模光纤。从下面的图和光束轮廓测量可以看出,未充满时会使光在空间上集中到光纤的中心,优先充满低阶模,而非高阶模。因此,它们对宏弯损耗不太敏感,也没有包层模。这种条件下,所测的插入损耗也会小于典型值,光纤纤芯处有着较高的功率密度。展示未充满条件的图(左边)和使用FT200EMT多模光纤进行的光束轮廓测量(右边)。多模光纤过满条件在耦合界面,光束直径和NA大于光纤的芯径和NA时就出现了过满的情况。实现这种条件的一个方法就是将LED光源的光发射到较小的多模光纤中。过满时会将整个纤芯和部分包层裸露在光中,均匀充满低阶模和高阶模(请看下图),增加耦合到光纤包层模的可能性。高阶模比例的增加意味着过满光纤对弯曲损耗会更为敏感。在这种条件下,所测的插入损耗会大于典型值,与未充满光纤条件相比,会产生较高的总输出功率。展示过满条件的图(左边)和使用FT200EMT多模光纤进行的光束轮廓测量(右边)。多模光纤未充满或过满条件各有优劣,这取决于特定应用的要求。如需测量多模光纤的基准性能,Thorlabs建议使用光束直径为光纤芯径70-80%的入纤条件。过满条件在短距离时输出功率更大;而长距离(10 - 20 m)时,对衰减较为敏感的高阶模会消失。损伤阀值激光诱导的光纤损伤Quick LinksDamage at the Air / Glass InterfaceIntrinsic Damage ThresholdPreparation and Handling of Optical Fibers空气-玻璃界面的损伤空气/玻璃界面有几种潜在的损伤机制。自由空间耦合或使用光学接头匹配两根光纤时,光会入射到这个界面。如果光的强度很高,就会降低功率的适用性,并给光纤造成yong久性损伤。而对于使用环氧树脂将接头与光纤固定的终端光纤而言,高强度的光产生的热量会使环氧树脂熔化,进而在光路中的光纤表面留下残留物。损伤的光纤端面损伤的光纤端面裸纤端面的损伤机制光纤端面的损伤机制可以建模为大光学元件,紫外熔融石英基底的工业标准损伤阈值适用于基于石英的光纤(参考右表)。但是与大光学元件不同,与光纤空气/璃界面相关的表面积和光束直径都非常小,耦合单模(SM)光纤时尤其如此,因此,对于给定的功率密度,入射到光束直径较小的光纤的功率需要比较低。右表列出了两种光功率密度阈值:一种理论损伤阈值,一种"实际安全水平"。一般而言,理论损伤阈值代表在光纤端面和耦合条件非常好的情况下,可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。而"实际安全水平"功率密度代表光纤损伤的zui低风险。超过实际安全水平操作光纤或元件也是有可以的,但用户必须遵守恰当的适用性说明,并在使用前在低功率下验证性能。多模(MM)光纤的有效面积由纤芯直径确定,一般要远大于SM光纤的MFD值。如要获得zui佳耦合效果,Thorlabs建议光束的光斑大小聚焦到纤芯直径的70 - 80%。由于多模光纤的有效面积较大,降低了光纤端面的功率密度,因此,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到多模光纤中。Estimated Optical Power Densities on Air / Glass InterfaceaTypeTheoretical Damage ThresholdbPractical Safe LevelcCW(Average Power)~1 MW/cm2~250 kW/cm210 ns Pulsed(Peak Power)~5 GW/cm2~1 GW/cm2所有值针对无终端(裸露)的石英光纤,适用于自由空间耦合到洁净的光纤端面。这是可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。用户在高功率下工作前,必须验证系统中光纤元件的性能与可靠性,因其与系统有着紧密的关系。这是在大多数工作条件下,入射到光纤端面且不会损伤光纤的安全功率密度估算值。插芯/接头终端相关的损伤机制有终端接头的光纤要考虑更多的功率适用条件。光纤一般通过环氧树脂粘合到陶瓷或不锈钢插芯中。光通过接头耦合到光纤时,没有进入纤芯并在光纤中传播的光会散射到光纤的外层,再进入插芯中,而环氧树脂用来将光纤固定在插芯中。如果光足够强,就可以熔化环氧树脂,使其气化,并在接头表面留下残渣。这样,光纤端面就出现了局部吸收点,造成耦合效率降低,散射增加,进而出现损伤。与环氧树脂相关的损伤取决于波长,出于以下几个原因。一般而言,短波长的光比长波长的光散射更强。由于短波长单模光纤的MFD较小,且产生更多的散射光,则耦合时的偏移也更大。为了zui大程度地减小熔化环氧树脂的风险,可以在光纤端面附近的光纤与插芯之间构建无环氧树脂的气隙光纤接头。我们的高功率多模光纤跳线就使用了这种设计特点的接头。曲线图展现了带终端的单模石英光纤的大概功率适用水平。每条线展示了考虑具体损伤机制估算的功率水平。zui大功率适用性受到所有相关损伤机制的zui低功率水平限制(由实线表示)。确定具有多种损伤机制的功率适用性光纤跳线或组件可能受到多种途径的损伤(比如,光纤跳线),而光纤适用的zui大功率始终受到与该光纤组件相关的zui低损伤阈值的限制。例如,右边曲线图展现了由于光纤端面损伤和光学接头造成的损伤而导致单模光纤跳线功率适用性受到限制的估算值。有终端的光纤在给定波长下适用的总功率受到在任一给定波长下,两种限制之中的较小值限制(由实线表示)。在488 nm左右工作的单模光纤主要受到光纤端面损伤的限制(蓝色实线),而在1550nm下工作的光纤受到接头造成的损伤的限制(红色实线)。对于多模光纤,有效模场由纤芯直径确定,一般要远大于SM光纤的有效模场。因此,其光纤端面上的功率密度更低,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到光纤中(图中未显示)。而插芯/接头终端的损伤限制保持不变,这样,多模光纤的zui大适用功率就会受到插芯和接头终端的限制。请注意,曲线上的值只是在合理的操作和对准步骤几乎不可能造成损伤的情况下粗略估算的功率水平值。值得注意的是,光纤经常在超过上述功率水平的条件下使用。不过,这样的应用一般需要专业用户,并在使用之前以较低的功率进行测试,尽量降低损伤风险。但即使如此,如果在较高的功率水平下使用,则这些光纤元件应该被看作实验室消耗品。光纤内的损伤阈值ConnectorsJacketRJPS2FT200EMT200 ± 5 μm225 ± 5 μm0.399 mm / 18 mm
  • 1550nm保偏全光纤移相器
    全光纤移相器是一种结构紧凑、操作简单、全光纤的宽带操作设备。对引脚施加电压,可以对通过该装置的相移进行可控的修改。移相器提供相位改变量高达50rad。没有在线接口,允许利用光纤的全功率处理能力,并提供几乎为零的额外损耗和PDL。 工作波长1530-1610nm通用参数产品特点:全光纤简单电流控制50rad 的相移量 低插入损耗?低驱动电压产品应用:干涉仪稳定器?干涉传感器?光纤相位控制技术参数参数单位指标 波长范围1nm1300 - 1610插入损耗2dB0.01总相移radians50 150 or on request时间常数(10%至90%)ms800 回波损耗dB70驱动电流mA0 - 65最高电压V0 - 5工作温度范围0C-5 to 70 储存温度-40 to +85光纤类型SMF28, PANDA输入和输出光纤的长度mm 1000规范说明1设备将在全波长范围内运行。也可定制其他波长范围。2损耗不包括连接器
  • PDV光纤探头
    PDV光纤探头为于光子多普勒测速仪和激光干涉测速仪配件。技术参数: 直径1.0mm/1.8mm/2.4mm/3.2mm,金属套管封装;尾纤5m±0.05;FC/APC接头。0.9mm光纤护套;回损大于55db或者30dB,镀增透膜;工作距离大于30mm 接收效率大于90% PDV光纤探头由物科光学专业生产,性能稳定可靠
  • 热膨胀芯(TEC)光纤跳线
    热膨胀芯(TEC)光纤跳线特性热膨胀芯增大了模场直径(MFD),便于耦合不仅更容易进行自由空间耦合,还能保持单模光纤的光学性能工作波长范围:980 - 1250 nm或1420 - 1620 nm光纤的TEC端镀有增透膜,以减少耦合损耗库存的光纤跳线:2.0 mm窄键FC/PC(TEC)到FC/PC接头2.0 mm窄键FC/PC(TEC)到FC/APC接头具有带槽法兰的?2.5 mm插芯到可以剪切的裸纤如需定制配置,请联系技术支持Thorlabs的热膨胀芯(TEC)光纤跳线进行自由空间耦合时,对位置的偏移没有单模光纤那样敏感。利用我们的Vytran® 光纤熔接技术,通过将传统单模光纤的一端加热,使超过2.5 mm长的纤芯膨胀,就可制成这种光纤。在自由空间耦合应用中,光纤经过这样处理的一端可以接受模场直径较大的光束,同时还能保持光纤的单模和光学性能(有关测试信息,请看耦合性能标签)。TEC光纤经常应用于构建基于光纤的光隔离器、可调谐波长的滤光片和可变光学衰减器。我们库存有带TEC端的多种光纤跳线可选。我们提供两种波长范围:980 nm - 1250 nm 和1460 nm - 1620 nm。光纤的TEC端镀有增透膜,在指定波长范围内平均反射率小于0.5%,可以减少进行自由空间耦合时的损耗。光纤的这一端具有热缩包装标签,上面列出了关键的规格。接头选项有2.0 mm窄键FC/PC或FC/APC接头、?2.5 mm插芯且可以剪切熔接的裸光纤。?2.5 mm插芯且可以剪切的光纤跳线具有?900 μm的护套,而FC/PC与FC/APC光纤跳线具有?3 mm的护套(请看右上表,了解可选的组合)。我们也提供定制光纤跳线。更多信息,请联系技术支持。 自由空间耦合到P1-1550TEC-2光纤跳线光纤跳线镀有增透膜的一端适合自由空间应用(比如,耦合),如果与其他接头端接触,会造成损伤。此外,由于镀有增透膜,TEC光纤跳线不适合高功率应用。清洁镀增透膜的接头端且不损坏镀膜的方法有好几种。将压缩空气轻轻喷在接头端是比较理想的做法。其他方法包括使用浸有异丙醇或甲醇的无绒光学擦拭纸或FCC-7020光纤接头清洁器轻轻擦拭。但是请不要使用干的擦拭纸,因为可能会损坏增透膜涂层。Item #PrefixTECEnd(AR Coated)UncoatedEndP1FC/PC (Black Boot)FC/PCP5FC/PC (Black Boot)FC/APCP6?2.5 mm Ferrule with Slotted FlangeScissor CutCoated Patch Cables Selection GuideSingle Mode AR-Coated Patch CablesTEC Single Mode AR-Coated Patch CablesPolarization-Maintaining AR-Coated Patch CablesMultimode AR-Coated Patch CablesHR-Coated Patch CablesStock Single Mode Patch Cables Selection GuideStandard CablesFC/PC to FC/PCFC/APC to FC/APCHybridAR-Coated Patch CablesThermally-Expanded-Core (TEC) Patch CablesHR-Coated Patch CablesBeamsplitter-Coated Patch CablesLow-Insertion-Loss Patch CablesMIR Fluoride Fiber Patch Cables耦合性能由于TEC光纤一端的纤芯直径膨胀,进行自由空间耦合时,它们对位置的偏移没有标准的单模光纤那样敏感。为了进行比较,我们改变x轴和z轴上的偏移,并测量自由空间光束耦合到TEC光纤跳线和标准光纤跳线时的耦合损耗(如右图所示)。使用C151TMD-C非球面透镜,将光耦合到标准光纤和TEC光纤。在980 nm 和1064 nm下,测试使用1060XP光纤的跳线和P1-1060TEC-2光纤跳线,同时,在1550 nm下,测试使用1550BHP光纤的跳线和P1-1550TEC-2光纤跳线。通过MBT616D 3轴位移台,让光纤跳线相对于入射光移动。 下面的曲线图展示了所测光纤跳线的光纤耦合性能。一般而言,对于相同的x轴或z轴偏移,TEC光纤跳线比标准跳线的耦合损耗低。而在x轴或z轴偏移为0 μm 时,标准跳线与TEC跳线的性能相似。总而言之,这些测试结果表明,TEC光纤对光纤位置的偏移远远没有标准光纤那样敏感,同时还能在zui佳光纤位置保持相同的耦合损耗。请注意,这些测量为典型值,由于制造公差的存在,不同批次跳线的性能可能有所差异。测量耦合性能装置的示意图。上图显示了用于测量耦合性能的测试装置。1060XP标准光纤和P1-1060TEC-2热膨胀芯光纤之间的耦合性能比较图。1060XP标准光纤和P1-1060TEC-2热膨胀芯光纤之间的耦合性能比较图。11550BHP标准光纤和P1-1550TEC-2热膨胀芯光纤之间的耦合性能比较图。 损伤阀值激光诱导的光纤损伤以下教程详述了无终端(裸露的)、有终端光纤以及其他基于激光光源的光纤元件的损伤机制,包括空气-玻璃界面(自由空间耦合或使用接头时)的损伤机制和光纤玻璃内的损伤机制。诸如裸纤、光纤跳线或熔接耦合器等光纤元件可能受到多种潜在的损伤(比如,接头、光纤端面和装置本身)。光纤适用的zui大功率始终受到这些损伤机制的zui小值的限制。虽然可以使用比例关系和一般规则估算损伤阈值,但是,光纤的jue对损伤阈值在很大程度上取决于应用和特定用户。用户可以以此教程为指南,估算zui大程度降低损伤风险的安全功率水平。如果遵守了所有恰当的制备和适用性指导,用户应该能够在指定的zui大功率水平以下操作光纤元件;如果有元件并未指定zui大功率,用户应该遵守下面描述的"实际安全水平"该,以安全操作相关元件。可能降低功率适用能力并给光纤元件造成损伤的因素包括,但不限于,光纤耦合时未对准、光纤端面受到污染或光纤本身有瑕疵。关于特定应用中光纤功率适用能力的深入讨论,请联系技术支持。Quick LinksDamage at the Air / Glass InterfaceIntrinsic Damage ThresholdPreparation and Handling of Optical Fibers空气-玻璃界面的损伤空气/玻璃界面有几种潜在的损伤机制。自由空间耦合或使用光学接头匹配两根光纤时,光会入射到这个界面。如果光的强度很高,就会降低功率的适用性,并给光纤造成yong久性损伤。而对于使用环氧树脂将接头与光纤固定的终端光纤而言,高强度的光产生的热量会使环氧树脂熔化,进而在光路中的光纤表面留下残留物。损伤的光纤端面未损伤的光纤端面裸纤端面的损伤机制光纤端面的损伤机制可以建模为大光学元件,紫外熔融石英基底的工业标准损伤阈值适用于基于石英的光纤(参考右表)。但是与大光学元件不同,与光纤空气/璃界面相关的表面积和光束直径都非常小,耦合单模(SM)光纤时尤其如此,因此,对于给定的功率密度,入射到光束直径较小的光纤的功率需要比较低。右表列出了两种光功率密度阈值:一种理论损伤阈值,一种"实际安全水平"。一般而言,理论损伤阈值代表在光纤端面和耦合条件非常好的情况下,可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。而"实际安全水平"功率密度代表光纤损伤的zui低风险。超过实际安全水平操作光纤或元件也是有可以的,但用户必须遵守恰当的适用性说明,并在使用前在低功率下验证性能。计算单模光纤和多模光纤的有效面积单模光纤的有效面积是通过模场直径(MFD)定义的,它是光通过光纤的横截面积,包括纤芯以及部分包层。耦合到单模光纤时,入射光束的直径必须匹配光纤的MFD,才能达到良好的耦合效率。例如,SM400单模光纤在400 nm下工作的模场直径(MFD)大约是?3 μm,而SMF-28 Ultra单模光纤在1550 nm下工作的MFD为?10.5 μm。则两种光纤的有效面积可以根据下面来计算:SM400 Fiber:Area= Pi x (MFD/2)2 = Pi x (1.5μm)2 = 7.07 μm2= 7.07 x 10-8cm2 SMF-28 Ultra Fiber: Area = Pi x (MFD/2)2 = Pi x (5.25 μm)2= 86.6 μm2= 8.66 x 10-7cm2为了估算光纤端面适用的功率水平,将功率密度乘以有效面积。请注意,该计算假设的是光束具有均匀的强度分布,但其实,单模光纤中的大多数激光束都是高斯形状,使得光束中心的密度比边缘处更高,因此,这些计算值将略高于损伤阈值或实际安全水平对应的功率。假设使用连续光源,通过估算的功率密度,就可以确定对应的功率水平:SM400 Fiber: 7.07 x 10-8cm2x 1MW/cm2= 7.1 x10-8MW =71 mW (理论损伤阈值) 7.07 x 10-8cm2x 250 kW/cm2= 1.8 x10-5kW = 18 mW (实际安全水平)SMF-28 UltraFiber: 8.66 x 10-7cm2x 1MW/cm2= 8.7 x10-7MW =870mW (理论损伤阈值)8.66 x 10-7cm2x 250 kW/cm2= 2.1 x10-4kW =210 mW (实际安全水平)多模(MM)光纤的有效面积由纤芯直径确定,一般要远大于SM光纤的MFD值。如要获得zui佳耦合效果,Thorlabs建议光束的光斑大小聚焦到纤芯直径的70 - 80%。由于多模光纤的有效面积较大,降低了光纤端面的功率密度,因此,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到多模光纤中。 Estimated Optical Power Densities on Air / Glass InterfaceaTypeTheoretical Damage ThresholdbPractical Safe LevelcCW(Average Power)~1 MW/cm2~250 kW/cm210 ns Pulsed(Peak Power)~5 GW/cm2~1 GW/cm2a. 所有值针对无终端(裸露)的石英光纤,适用于自由空间耦合到洁净的光纤端面。b. 这是可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。用户在高功率下工作前,必须验证系统中光纤元件的性能与可靠性,因其与系统有着紧密的关系。c. 这是在大多数工作条件下,入射到光纤端面且不会损伤光纤的安全功率密度估算值。插芯/接头终端相关的损伤机制有终端接头的光纤要考虑更多的功率适用条件。光纤一般通过环氧树脂粘合到陶瓷或不锈钢插芯中。光通过接头耦合到光纤时,没有进入纤芯并在光纤中传播的光会散射到光纤的外层,再进入插芯中,而环氧树脂用来将光纤固定在插芯中。如果光足够强,就可以熔化环氧树脂,使其气化,并在接头表面留下残渣。这样,光纤端面就出现了局部吸收点,造成耦合效率降低,散射增加,进而出现损伤。与环氧树脂相关的损伤取决于波长,出于以下几个原因。一般而言,短波长的光比长波长的光散射更强。由于短波长单模光纤的MFD较小,且产生更多的散射光,则耦合时的偏移也更大。为了zui大程度地减小熔化环氧树脂的风险,可以在光纤端面附近的光纤与插芯之间构建无环氧树脂的气隙光纤接头。我们的高功率多模光纤跳线就使用了这种设计特点的接头。曲线图展现了带终端的单模石英光纤的大概功率适用水平。每条线展示了考虑具体损伤机制估算的功率水平。zui大功率适用性受到所有相关损伤机制的zui低功率水平限制(由实线表示)。确定具有多种损伤机制的功率适用性光纤跳线或组件可能受到多种途径的损伤(比如,光纤跳线),而光纤适用的zui大功率始终受到与该光纤组件相关的zui低损伤阈值的限制。例如,右边曲线图展现了由于光纤端面损伤和光学接头造成的损伤而导致单模光纤跳线功率适用性受到限制的估算值。有终端的光纤在给定波长下适用的总功率受到在任一给定波长下,两种限制之中的较小值限制(由实线表示)。在488 nm左右工作的单模光纤主要受到光纤端面损伤的限制(蓝色实线),而在1550 nm下工作的光纤受到接头造成的损伤的限制(红色实线)。对于多模光纤,有效模场由纤芯直径确定,一般要远大于SM光纤的有效模场。因此,其光纤端面上的功率密度更低,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到光纤中(图中未显示)。而插芯/接头终端的损伤限制保持不变,这样,多模光纤的zui大适用功率就会受到插芯和接头终端的限制。请注意,曲线上的值只是在合理的操作和对准步骤几乎不可能造成损伤的情况下粗略估算的功率水平值。值得注意的是,光纤经常在超过上述功率水平的条件下使用。不过,这样的应用一般需要专业用户,并在使用之前以较低的功率进行测试,尽量降低损伤风险。但即使如此,如果在较高的功率水平下使用,则这些光纤元件应该被看作实验室消耗品。光纤内的损伤阈值除了空气玻璃界面的损伤机制外,光纤本身的损伤机制也会限制光纤使用的功率水平。这些限制会影响所有的光纤组件,因为它们存在于光纤本身。光纤内的两种损伤包括弯曲损耗和光暗化损伤。弯曲损耗光在纤芯内传播入射到纤芯包层界面的角度大于临界角会使其无法全反射,光在某个区域就会射出光纤,这时候就会产生弯曲损耗。射出光纤的光一般功率密度较高,会烧坏光纤涂覆层和周围的松套管。有一种叫做双包层的特种光纤,允许光纤包层(第二层)也和纤芯一样用作波导,从而降低弯折损伤的风险。通过使包层/涂覆层界面的临界角高于纤芯/包层界面的临界角,射出纤芯的光就会被限制在包层内。这些光会在几厘米或者几米的距离而不是光纤内的某个局部点漏出,从而zui大限度地降低损伤。Thorlabs生产并销售0.22 NA双包层多模光纤,它们能将适用功率提升百万瓦的范围。光暗化光纤内的第二种损伤机制称为光暗化或负感现象,一般发生在紫外或短波长可见光,尤其是掺锗纤芯的光纤。在这些波长下工作的光纤随着曝光时间增加,衰减也会增加。引起光暗化的原因大部分未可知,但可以采取一些列措施来缓解。例如,研究发现,羟基离子(OH)含量非常低的光纤可以抵抗光暗化,其它掺杂物比如氟,也能减少光暗化。即使采取了上述措施,所有光纤在用于紫外光或短波长光时还是会有光暗化产生,因此用于这些波长下的光纤应该被看成消耗品。制备和处理光纤通用清洁和操作指南建议将这些通用清洁和操作指南用于所有的光纤产品。而对于具体的产品,用户还是应该根据辅助文献或手册中给出的具体指南操作。只有遵守了所有恰当的清洁和操作步骤,损伤阈值的计算才会适用。安装或集成光纤(有终端的光纤或裸纤)前应该关掉所有光源,以避免聚焦的光束入射在接头或光纤的脆弱部分而造成损伤。光纤适用的功率直接与光纤/接头端面的质量相关。将光纤连接到光学系统前,一定要检查光纤的末端。端面应该是干净的,没有污垢和其它可能导致耦合光散射的污染物。另外,如果是裸纤,使用前应该剪切,用户应该检查光纤末端,确保切面质量良好。如果将光纤熔接到光学系统,用户首先应该在低功率下验证熔接的质量良好,然后在高功率下使用。熔接质量差,会增加光在熔接界面的散射,从而成为光纤损伤的来源。对准系统和优化耦合时,用户应该使用低功率;这样可以zui大程度地减少光纤其他部分(非纤芯)的曝光。如果高功率光束聚焦在包层、涂覆层或接头,有可能产生散射光造成的损伤。高功率下使用光纤的注意事项一般而言,光纤和光纤元件应该要在安全功率水平限制之内工作,但在理想的条件下(ji佳的光学对准和非常干净的光纤端面),光纤元件适用的功率可能会增大。用户首先必须在他们的系统内验证光纤的性能和稳定性,然后再提高输入或输出功率,遵守所有所需的安全和操作指导。以下事项是一些有用的建议,有助于考虑在光纤或组件中增大光学功率。要防止光纤损伤光耦合进光纤的对准步骤也是重要的。在对准过程中,在取得zui佳耦合前,光很容易就聚焦到光纤某部位而不是纤芯。如果高功率光束聚焦在包层或光纤其它部位时,会发生散射引起损伤使用光纤熔接机将光纤组件熔接到系统中,可以增大适用的功率,因为它可以zui大程度地减少空气/光纤界面损伤的可能性。用户应该遵守所有恰当的指导来制备,并进行高质量的光纤熔接。熔接质量差可能导致散射,或在熔接界面局部形成高热区域,从而损伤光纤。连接光纤或组件之后,应该在低功率下使用光源测试并对准系统。然后将系统功率缓慢增加到所希望的输出功率,同时周期性地验证所有组件对准良好,耦合效率相对光学耦合功率没有变化。由于剧烈弯曲光纤造成的弯曲损耗可能使光从受到应力的区域漏出。在高功率下工作时,大量的光从很小的区域(受到应力的区域)逃出,从而在局部形成产生高热量,进而损伤光纤。请在操作过程中不要破坏或突然弯曲光纤,以尽可能地减少弯曲损耗。用户应该针对给定的应用选择合适的光纤。例如,大模场光纤可以良好地代替标准的单模光纤在高功率应用中使用,因为前者可以提供更佳的光束质量,更大的MFD,且可以降低空气/光纤界面的功率密度。阶跃折射率石英单模光纤一般不用于紫外光或高峰值功率脉冲应用,因为这些应用与高空间功率密度相关。MFD定义模场直径的定义模场直径(MFD)是对在单模光纤中传播的光的光束尺寸的一种量度。它与波长、纤芯半径以及纤芯和包层的折射率具有函数关系。虽然光纤中的大部分光被限制在纤芯内传播,但仍有极小部分的光在包层中传播。对于高斯功率分布,MFD是指光功率从峰值水平降到1/e2时的直径。MFD的测量通过在远场使用变孔径法来完成MFD的测量。在光纤输出的远场处放置一个通光孔径,然后测量强度。在光路中放置连续变小的通光孔径,测量每个通光孔径下的强度水平;然后以功率和孔径半角(或数值孔径)的正弦为坐标作图得到数据。使用彼得曼第二定义确定MFD,该数学模型没有假设功率分布的特定形状。使用汉克尔变换可以从远场测量值确定近场处的MFD大小TEC光纤跳线,980 nm - 1250 nmItem #Fiber TypeOperating WavelengthMode Field DiameteraAR CoatingbMax AttenuationcNAdCladding/Coating DiameterConnectorsJacketTECStandardTECStandardP1-1060TEC-21060XP980 - 1250 nm12.4 ± 1.0 μm6.2 ± 0.5 μm850 - 1250 nm≤2.1 dB/km @980 nm≤1.5 dB/km @ 1060 nm0.070.14125 ± 0.5 μm /245 ± 10 μmFC/PC (TEC) to FC/PC?3 mmFT030-YP5-1060TEC-2TEC光纤跳线,1460 - 1620 nm,镀增透膜,FC/PC(TEC)到FC/APC,2 mP6-1550TEC-2TEC光纤跳线,1460 - 1620 nm,镀增透膜,?2.5 mm插芯(TEC)到裸纤,2 m
  • 多模光纤跳线,FC/PC或SMA接头至裸纤
    多模光纤跳线,FC/PC或SMA接头至裸纤特性一端为裸纤的多模光纤跳线另一端为FC/PC(2.0 mm窄键)或SM905接头多模光纤纤芯?400 μm,跳线长度为3 m?3 mm橘色松套管光纤镀有?730 ± 30 μm Tefzel® 膜可以定制跳线这些多模光纤跳线由FT400EMT阶跃折射率多模光纤构成,一端为FC/PC或SMA905接头,另一端为经过平切的裸纤。库存标准跳线的长度为3 m。FC/PC或SMA905终端具有长为15 cm的?3 mm松套管。跳线的裸纤端镀有?730 ± 30 μm的蓝色Tefzel膜,且平切角为0°。每根跳线包含一个防尘帽,以防灰尘落入FC/PC或SMA905接头或其他损害。其他用于FC/PC终端的CAPF塑料光纤保护帽和CAPFM金属螺纹光纤保护帽,以及用于SMA终端的CAPM塑料光纤保护帽和CAPMM金属螺纹保护帽都单独出售。跳线的平切端包含一个塑料保护套。请注意,这类跳线还不能熔接。不过,使用Thorlabs的Vytran® 切割机和熔接机可将跳线中的光纤熔接到实验装置中。这些跳线不适合需要光纤传输高光功率的应用,因为过高的功率会使接头中使用的环氧树脂受热过度而造成损害。详细信息请看损伤阈值标签。Thorlabs还提供除无接头光纤之外的其他跳线选项,它们可以兼容高功率。下表中包含了相关链接。如果需要长度较短的光纤,Thorlabs推荐使用适合切割大芯径光纤的S90R红宝石光纤刻划刀,以及T21S31光纤剥除工具。我们也提供光纤终端清洁和修理套件。有关光纤抛光和切割的详细步骤和其他信息,请看我们的光纤终端指南。 跳线的裸纤端In-Stock Multimode Fiber Optic Patch Cable SelectionStep IndexGraded IndexFiber BundlesUncoatedCoatedMid-IROptogeneticsSpecialized ApplicationsSMA FC/PC FC/PC to SMA Square-Core FC/PC and SMAAR-Coated SMA HR-Coated FC/PC Beamsplitter-Coated FC/PCFluoride FC and SMALightweight FC/PC Lightweight SMA Rotary Joint FC/PC and SMAHigh-Power SMA UHV, High-Temp. SMA Armored SMA Solarization-Resistant SMAFC/PC FC/PC to LC/PC多模光纤教程在光纤中引导光光纤属于光波导,光波导是一种更为广泛的光学元件,可以利用全内反射(TIR)在固体或液体结构中限制并引导光。光纤通常可以在众多应用中使用;常见的例子包括通信、光谱学、照明和传感器。比较常见的玻璃(石英)纤维使用一种称之为阶跃折射率光纤的结构,如右图所示。这种光纤的纤芯由一种折射率比外面包层高的材料构成。在光纤中以临界角入射时,光会在纤芯/包层界面产生全反射,而不会折射到周围的介质中。为了达到TIR的条件,发射到光纤中入射光的角度必须小于某个角度,即接收角,θacc。根据斯涅耳定律可以计算出这个角:其中,ncore为纤芯的折射率,nclad为光纤包层的折射率,n为外部介质的折射率,θcrit为临界角,θacc为光纤的接收半角。数值孔径(NA)是一个无量纲量,由光纤制造商用来确定光纤的接收角,表示为:对于芯径(多模)较大的阶跃折射率光纤,使用这个等式可以直接计算出NA。NA也可以由实验确定,通过追踪远场光束分布并测量光束中心与光强为zui大光强5%的点之间的角度即可;但是,直接计算NA得出的值更为准确。光纤的全内反射光纤中的模式数量光在光纤中传播的每种可能路径即为光纤的导模。根据纤芯/包层区域的尺寸、折射率和波长,单光纤内可支持从一种到数千种模式。而其中zui常使用两种为单模(支持单导模)和多模(支持多种导模)。在多模光纤中,低阶模倾向于在空间上将光限制在纤芯内;而高阶模倾向于在空间上将光限制在纤芯/包层界面的附近。使用一些简单的计算就可以估算出光纤支持的模(单模或多模)的数量。归一化频率,也就是常说的V值,是一个无量纲的数,与自由空间频率成比例,但被归为光纤的引导属性。V值表示为:其中V为归一化频率(V值),a为纤芯半径,λ为自由空间波长。多模光纤的V值非常大;例如,芯径为?50 μm、数值孔径为0.39的多模光纤,在波长为1.5 μm时,V值为40.8。对于具有较大V值的多模光纤,可以使用下式近似计算其支持的模式数量:上面例子中,芯径为?50 μm、NA为0.39的多模光纤支持大约832种不同的导模,这些模可以同时穿过光纤。单模光纤V值必须小于截止频率2.405,这表示在这个时候,光只耦合到光纤的基模中。为了满足这个条件,单模光纤的纤芯尺寸和NA要远小于同波长下的多模光纤。例如SMF-28超单模光纤的标称NA为0.14,芯径为?8.2 μm,在波长为1550 nm时,V值为2.404。衰减来源光纤损耗,也称之为衰减,是光纤的特性,可以通过量化来预测光纤装置内的总透射功率损耗。这些损耗来源一般与波长相关,因光纤的使用材料或光纤的弯曲等而有所差异。常见衰减来源的详情如下:吸收标准光纤中的光通过固体材料引导,因此,光在光纤中传播会因吸收而产生损耗。标准光纤使用熔融石英制造,经优化可在波长1300 nm-1550 nm的范围内传播。波长更长(2000nm)时,熔融石英内的多声子相互作用造成大量吸收。使用氟化锆、氟化铟等氟氧物玻璃制造中红外光纤,主要是因为它们处于这些波长范围时损耗较低。氟化锆、氟化铟的多声子边分别为~3.6 μm和~4.6 μm。光纤内的污染物也会造成吸收损耗。其中一种污染物就是困在玻璃纤维中的水分子,可以吸收波长在1300 nm和2.94 μm的光。由于通信信号和某些激光器也是在这个区域里工作,光纤中的任意水分子都会明显地衰减信号。玻璃纤维中离子的浓度通常由制造商控制,以便调节光纤的传播/衰减属性。例如,石英中本来就存在羟基(OH-),可以吸收近红外到红外光谱的光。因此,羟基浓度较低的光纤更适合在通信波长下传播。而羟基浓度较高的光纤在紫外波长范围时有助于传播,因此,更适合对荧光或UV-VIS光谱学等应用感兴趣的用户。散射对于大多数光纤应用来说,光散射也是损耗的来源,通常在光遇到介质的折射率发生变化时产生。这些变化可以是由杂质、微粒或气泡引起的外在变化;也可以是由玻璃密度的波动、成分或相位态引起的内在变化。散射与光的波长呈负相关关系,因此,在光谱中的紫外或蓝光区域等波长较短时,散射损耗会比较大。使用恰当的光纤清洁、操作和存储存步骤可以尽可能地减少光纤jian端的杂质,避免产生较大的散射损耗。弯曲损耗因光纤的外部和内部几何发生变化而产生的损耗称之为弯曲损耗。通常包含两大类:宏弯损耗和微弯损耗宏弯损耗造成的衰减微弯损耗造成的衰减宏弯损耗一般与光纤的物理弯曲相关;例如,将其卷成圈。如右图所示,引导的光在空间上分布在光纤的纤芯和包层区域。以某半径弯曲光纤时,在弯曲外半径的光不能在不超过光速时维持相同的空间模分布。相反,由于辐射能量会损耗到周边环境中。弯曲半径较大时,与弯曲相关的损耗会比较小;但弯曲半径小于光纤的推荐弯曲半径时,弯曲损耗会非常大。光纤可以在弯曲半径较小时进行短时间工作;但如果要长期储存,弯曲半径应该大于推荐值。使用恰当的储存条件(温度和弯曲半径)可以降低对光纤造成yong久性损伤的几率;FSR1光纤缠绕盘设计用来zui大程度地减少高弯曲损耗。微弯损耗由光纤的内部几何,尤其是纤芯和包层发生变化而产生。光纤结构中的这些随机变化(即凸起)会破坏全内反射所需的条件,使得传播的光耦合到非传播模中,造成泄露(详情请看右图)。与由弯曲半径控制的宏弯损耗不同,微弯损耗是由制造光纤时在光纤内造成的yong久性缺陷而产生。包层模虽然多模光纤中的大多数光通过纤芯内的TIR引导,但是由于TIR发生在包层与涂覆层/保护层的界面,在纤芯和包层内引导光的高阶模也可能存在。这样就产生了我们所熟知的包层模。这样的例子可在右边的光束分布测量中看到,其中体现了包层模包层中的光强比纤芯中要高。这些模可以不传播(即它们不满足TIR的条件),也可以在一段很长的光纤中传播。由于包层模一般为高阶模,在光纤弯曲和出现微弯缺陷时,它们就是损耗的来源。通过接头连接两个光纤时包层模会消失,因为它们不能在光纤之间轻松耦合。由于包层模对光束空间轮廓的影响,有些应用(比如发射到自由空间中)中可能不需要包层模。光纤较长时,这些模会自然衰减。对于长度小于10 m的光纤,消除包层模的一种办法就是将光纤缠绕在半径合适的芯轴上,这样能保留需要的传播模式。在FT200EMT多模光纤与M565F1 LED的光束轮廓中,展现了包层而不是纤芯引导的光。入纤方式多模光纤未充满条件对于在NA较大时接收光的多模光纤来说,光耦合到光纤的的条件(光源类型、光束直径、NA)对性能有着极大影响。在耦合界面,光的光束直径和NA小于光纤的芯径和NA时,就出现了未充满的入纤条件。这种情况的常见例子就是将激光光源发射到较大的多模光纤。从下面的图和光束轮廓测量可以看出,未充满时会使光在空间上集中到光纤的中心,优先充满低阶模,而非高阶模。因此,它们对宏弯损耗不太敏感,也没有包层模。这种条件下,所测的插入损耗也会小于典型值,光纤纤芯处有着较高的功率密度。展示未充满条件的图(左边)和使用FT200EMT多模光纤进行的光束轮廓测量(右边)。多模光纤过满条件在耦合界面,光束直径和NA大于光纤的芯径和NA时就出现了过满的情况。实现这种条件的一个方法就是将LED光源的光发射到较小的多模光纤中。过满时会将整个纤芯和部分包层裸露在光中,均匀充满低阶模和高阶模(请看下图),增加耦合到光纤包层模的可能性。高阶模比例的增加意味着过满光纤对弯曲损耗会更为敏感。在这种条件下,所测的插入损耗会大于典型值,与未充满光纤条件相比,会产生较高的总输出功率。 展示过满条件的图(左边)和使用FT200EMT多模光纤进行的光束轮廓测量(右边)。多模光纤未充满或过满条件各有优劣,这取决于特定应用的要求。如需测量多模光纤的基准性能,Thorlabs建议使用光束直径为光纤芯径70-80%的入纤条件。过满条件在短距离时输出功率更大;而长距离(10 - 20 m)时,对衰减较为敏感的高阶模会消失。键槽对准FC/PC和FC/APC跳线键槽对准FC/PC和FC/APC跳线带有2.0 mm窄键或2.2 mm宽键,可以插入匹配元件对应的槽中。键槽对准对于正确对齐所连光纤跳线的纤芯至关重要,能够zui大程度地减少连接的插入损耗。例如,Thorlabs精心设计和制造用于FC/PC和FC/APC终端跳线的匹配套管,以确保正确使用时能够实现良好的对准。为了达到zui佳对准,需将跳线上的对准键插入对应匹配套管上的槽中。Thorlabs提供带有2.2 mm宽键槽或2.0 mm窄键槽的匹配套管。宽键槽匹配套管2.2 mm宽键槽匹配套管兼容宽键和窄键接头。但是,将窄键接头插入宽键槽时,接头可在匹配套管内轻微旋转(如左下方的动画所示)。这种配置对于FC/PC接头的跳线是可以接受的,但对于FC/APC应用,我们还是建议使用窄键槽匹配套管,以实现zui优对准。窄键槽匹配套管2.0 mm窄键槽匹配套管能够实现带角度窄键FC/APC接头的良好对准,如右下方的动画所示。因此,它们不兼容具有2.2 mm宽键的接头。请注意,Thorlabs制造的所有FC/PC和FC/APC跳线都使用窄键接头。宽键匹配套管和接头之间的匹配窄键匹配套管和接头之间的匹配 宽键槽匹配套管和窄键接头窄键接头插入宽键槽匹配套管之后,接头还有旋转空间。对于窄键FC/PC接头而言,这一点可以接受,但对于窄键FC/APC接头而言,这会产生很大的耦合损耗。 损伤阀值激光诱导的光纤损伤以下教程详述了无终端(裸露的)、有终端光纤以及其他基于激光光源的光纤元件的损伤机制,包括空气-玻璃界面(自由空间耦合或使用接头时)的损伤机制和光纤玻璃内的损伤机制。诸如裸纤、光纤跳线或熔接耦合器等光纤元件可能受到多种潜在的损伤(比如,接头、光纤端面和装置本身)。光纤适用的zui大功率始终受到这些损伤机制的zui小值的限制。虽然可以使用比例关系和一般规则估算损伤阈值,但是,光纤的jue对损伤阈值在很大程度上取决于应用和特定用户。用户可以以此教程为指南,估算zui大程度降低损伤风险的安全功率水平。如果遵守了所有恰当的制备和适用性指导,用户应该能够在指定的zui大功率水平以下操作光纤元件;如果有元件并未指定zui大功率,用户应该遵守下面描述的"实际安全水平"该,以安全操作相关元件。可能降低功率适用能力并给光纤元件造成损伤的因素包括,但不限于,光纤耦合时未对准、光纤端面受到污染或光纤本身有瑕疵。Quick LinksDamage at the Air / Glass InterfaceIntrinsic Damage ThresholdPreparation and Handling of Optical Fibers空气-玻璃界面的损伤 空气/玻璃界面有几种潜在的损伤机制。自由空间耦合或使用光学接头匹配两根光纤时,光会入射到这个界面。如果光的强度很高,就会降低功率的适用性,并给光纤造成yong久性损伤。而对于使用环氧树脂将接头与光纤固定的终端光纤而言,高强度的光产生的热量会使环氧树脂熔化,进而在光路中的光纤表面留下残留物。损伤的光纤端面未损伤的光纤端面裸纤端面的损伤机制光纤端面的损伤机制可以建模为大光学元件,紫外熔融石英基底的工业标准损伤阈值适用于基于石英的光纤(参考右表)。但是与大光学元件不同,与光纤空气/璃界面相关的表面积和光束直径都非常小,耦合单模(SM)光纤时尤其如此,因此,对于给定的功率密度,入射到光束直径较小的光纤的功率需要比较低。右表列出了两种光功率密度阈值:一种理论损伤阈值,一种"实际安全水平"。一般而言,理论损伤阈值代表在光纤端面和耦合条件非常好的情况下,可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。而"实际安全水平"功率密度代表光纤损伤的zui低风险。超过实际安全水平操作光纤或元件也是有可以的,但用户必须遵守恰当的适用性说明,并在使用前在低功率下验证性能。计算单模光纤和多模光纤的有效面积单模光纤的有效面积是通过模场直径(MFD)定义的,它是光通过光纤的横截面积,包括纤芯以及部分包层。耦合到单模光纤时,入射光束的直径必须匹配光纤的MFD,才能达到良好的耦合效率。例如,SM400单模光纤在400 nm下工作的模场直径(MFD)大约是?3 μm,而SMF-28 Ultra单模光纤在1550 nm下工作的MFD为?10.5 μm。则两种光纤的有效面积可以根据下面来计算:SM400 Fiber:Area= Pi x (MFD/2)2 = Pi x (1.5μm)2 = 7.07 μm2= 7.07 x 10-8cm2 SMF-28 Ultra Fiber: Area = Pi x (MFD/2)2 = Pi x (5.25 μm)2= 86.6 μm2= 8.66 x 10-7cm2为了估算光纤端面适用的功率水平,将功率密度乘以有效面积。请注意,该计算假设的是光束具有均匀的强度分布,但其实,单模光纤中的大多数激光束都是高斯形状,使得光束中心的密度比边缘处更高,因此,这些计算值将略高于损伤阈值或实际安全水平对应的功率。假设使用连续光源,通过估算的功率密度,就可以确定对应的功率水平:SM400 Fiber: 7.07 x 10-8cm2x 1MW/cm2= 7.1 x10-8MW =71 mW (理论损伤阈值) 7.07 x 10-8cm2x 250 kW/cm2= 1.8 x10-5kW = 18 mW (实际安全水平)SMF-28 Ultra Fiber: 8.66 x 10-7cm2x 1MW/cm2= 8.7 x10-7MW =870mW (理论损伤阈值) 8.66 x 10-7cm2x 250 kW/cm2= 2.1 x10-4kW =210 mW (实际安全水平)多模(MM)光纤的有效面积由纤芯直径确定,一般要远大于SM光纤的MFD值。如要获得zui佳耦合效果,Thorlabs建议光束的光斑大小聚焦到纤芯直径的70 - 80%。由于多模光纤的有效面积较大,降低了光纤端面的功率密度,因此,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到多模光纤中。Estimated Optical Power Densities on Air / Glass InterfaceaTypeTheoretical Damage ThresholdbPractical Safe LevelcCW(Average Power)~1 MW/cm2~250 kW/cm210 ns Pulsed(Peak Power)~5 GW/cm2~1 GW/cm2所有值针对无终端(裸露)的石英光纤,适用于自由空间耦合到洁净的光纤端面。这是可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。用户在高功率下工作前,必须验证系统中光纤元件的性能与可靠性,因其与系统有着紧密的关系。这是在大多数工作条件下,入射到光纤端面且不会损伤光纤的安全功率密度估算值。插芯/接头终端相关的损伤机制有终端接头的光纤要考虑更多的功率适用条件。光纤一般通过环氧树脂粘合到陶瓷或不锈钢插芯中。光通过接头耦合到光纤时,没有进入纤芯并在光纤中传播的光会散射到光纤的外层,再进入插芯中,而环氧树脂用来将光纤固定在插芯中。如果光足够强,就可以熔化环氧树脂,使其气化,并在接头表面留下残渣。这样,光纤端面就出现了局部吸收点,造成耦合效率降低,散射增加,进而出现损伤。与环氧树脂相关的损伤取决于波长,出于以下几个原因。一般而言,短波长的光比长波长的光散射更强。由于短波长单模光纤的MFD较小,且产生更多的散射光,则耦合时的偏移也更大。为了zui大程度地减小熔化环氧树脂的风险,可以在光纤端面附近的光纤与插芯之间构建无环氧树脂的气隙光纤接头。我们的高功率多模光纤跳线就使用了这种设计特点的接头。曲线图展现了带终端的单模石英光纤的大概功率适用水平。每条线展示了考虑具体损伤机制估算的功率水平。zui大功率适用性受到所有相关损伤机制的zui低功率水平限制(由实线表示)。 光纤内的损伤阈值除了空气玻璃界面的损伤机制外,光纤本身的损伤机制也会限制光纤使用的功率水平。这些限制会影响所有的光纤组件,因为它们存在于光纤本身。光纤内的两种损伤包括弯曲损耗和光暗化损伤。弯曲损耗光在纤芯内传播入射到纤芯包层界面的角度大于临界角会使其无法全反射,光在某个区域就会射出光纤,这时候就会产生弯曲损耗。射出光纤的光一般功率密度较高,会烧坏光纤涂覆层和周围的松套管。有一种叫做双包层的特种光纤,允许光纤包层(第二层)也和纤芯一样用作波导,从而降低弯折损伤的风险。通过使包层/涂覆层界面的临界角高于纤芯/包层界面的临界角,射出纤芯的光就会被限制在包层内。这些光会在几厘米或者几米的距离而不是光纤内的某个局部点漏出,从而zui大限度地降低损伤。Thorlabs生产并销售0.22 NA双包层多模光纤,它们能将适用功率提升百万瓦的范围。光暗化光纤内的第二种损伤机制称为光暗化或负感现象,一般发生在紫外或短波长可见光,尤其是掺锗纤芯的光纤。在这些波长下工作的光纤随着曝光时间增加,衰减也会增加。引起光暗化的原因大部分未可知,但可以采取一些列措施来缓解。例如,研究发现,羟基离子(OH)含量非常低的光纤可以抵抗光暗化,其它掺杂物比如氟,也能减少光暗化。即使采取了上述措施,所有光纤在用于紫外光或短波长光时还是会有光暗化产生,因此用于这些波长下的光纤应该被看成消耗品。制备和处理光纤通用清洁和操作指南建议将这些通用清洁和操作指南用于所有的光纤产品。而对于具体的产品,用户还是应该根据辅助文献或手册中给出的具体指南操作。只有遵守了所有恰当的清洁和操作步骤,损伤阈值的计算才会适用。安装或集成光纤(有终端的光纤或裸纤)前应该关掉所有光源,以避免聚焦的光束入射在接头或光纤的脆弱部分而造成损伤。光纤适用的功率直接与光纤/接头端面的质量相关。将光纤连接到光学系统前,一定要检查光纤的末端。端面应该是干净的,没有污垢和其它可能导致耦合光散射的污染物。另外,如果是裸纤,使用前应该剪切,用户应该检查光纤末端,确保切面质量良好。如果将光纤熔接到光学系统,用户首先应该在低功率下验证熔接的质量良好,然后在高功率下使用。熔接质量差,会增加光在熔接界面的散射,从而成为光纤损伤的来源。对准系统和优化耦合时,用户应该使用低功率;这样可以zui大程度地减少光纤其他部分(非纤芯)的曝光。如果高功率光束聚焦在包层、涂覆层或接头,有可能产生散射光造成的损伤。高功率下使用光纤的注意事项一般而言,光纤和光纤元件应该要在安全功率水平限制之内工作,但在理想的条件下(ji佳的光学对准和非常干净的光纤端面),光纤元件适用的功率可能会增大。用户首先必须在他们的系统内验证光纤的性能和稳定性,然后再提高输入或输出功率,遵守所有所需的安全和操作指导。以下事项是一些有用的建议,有助于考虑在光纤或组件中增大光学功率。要防止光纤损伤光耦合进光纤的对准步骤也是重要的。在对准过程中,在取得zui佳耦合前,光很容易就聚焦到光纤某部位而不是纤芯。如果高功率光束聚焦在包层或光纤其它部位时,会发生散射引起损伤使用光纤熔接机将光纤组件熔接到系统中,可以增大适用的功率,因为它可以zui大程度地减少空气/光纤界面损伤的可能性。用户应该遵守所有恰当的指导来制备,并进行高质量的光纤熔接。熔接质量差可能导致散射,或在熔接界面局部形成高热区域,从而损伤光纤。连接光纤或组件之后,应该在低功率下使用光源测试并对准系统。然后将系统功率缓慢增加到所希望的输出功率,同时周期性地验证所有组件对准良好,耦合效率相对光学耦合功率没有变化。由于剧烈弯曲光纤造成的弯曲损耗S90RM119L03FC/PCb toFlat Cleave不锈钢插芯陶瓷插芯产品型号公英制通用M118L03
  • 保偏光纤跳线,FC/APC接头
    保偏光纤跳线,FC/APC接头保偏光纤跳线特性窄插头(2毫米)和慢轴对准典型的60 dB回波损耗陶瓷插芯,角度8° (APC)?3 mm外部保护层提供定制跳线这些保偏光纤跳线的两端都是高质量、窄插销的陶瓷FC/AFC接头。由我们的设备生产,每根跳线都在规格标签中列出的测试波长进行单独测试,保证光纤和光纤连接时的消光比和低背反射(回波损耗)。这些跳线有库存,具有高质量的抛光,可以保证超过60分贝的典型回波损耗。测试数据表格提供了每一根跳线的消光比和插入损耗测试。每条跳线都带有两个罩在终端的保护帽,防止灰尘或它污染物落入插芯端面。我们也单独销售保护FC/PC终端CAPF塑料光纤帽和CAPFM金属螺纹光纤帽。如果在我们的库存跳线中没有找到您合适的产品,Thorlabs还提供可当天发货的定制跳线。FC/APC接头的插芯,角度为8°熊猫保偏光纤横截面PM Fiber Patch Cable Selection GuideFC/PC to FC/PCFC/APC to FC/APCFC/PC to FC/APC HybridAR-Coated FC/PC and HybridHR-Coated FC/PC and FC/APC规格:Item PrefixP3-405BPM-FCP3-488PM-FCP3-630PM-FCP3-780PM-FCP3-980PM-FCTest Wavelength405 nm488 nm630 nm780 nm980 nmOperating Wavelength400 - 680 nm460 - 700 nm620 - 850 nm770 - 1100 nm970 - 1550 nmCutoff Wavelength380 ± 20 nm420 ± 30 nm570 ± 50 nm710 ± 60 nm920 ± 50 nmFiber TypePM-S405-XP(Panda)PM460-HP(Panda)PM630-HP(Panda)PM780-HP(Panda)PM980-XP(Panda)Max Insertion Lossa1.5 dB1.5 dB1.2 dB1.0 dB0.7 dBMin Extinction Ratioa15 dB18 dB20 dB20 dB22 dBMode Field Diameterb3.6 ± 0.5 μm @ 405 nm3.4 μm @ 488 nm4.2 μm @ 630 nm4.9 μm @ 780 nm6.6 ± 0.5 μm @ 980 nmOptical Return Lossa60 dB TypicalConnector TypeFC/APCKey Width2.00 ± 0.02 mmKey Alignment TypeNarrow Key Aligned to Slow AxisFiber Length1.0 +0.075/-0 m for Item Numbers Ending in -12.0 +0.075/-0 m for Item Numbers Ending in -25.0 +0.075/-0 m for Item Numbers Ending in -510.0 +0.075/-0 m for Item Numbers Ending in -10Jacket TypeFT030-BLUEOperating Temperature0 to 70 °CStorage Temperature-45 to 85 °C测试波长测得。 模场直径(MFD)为标准值。近场处功率1/e2位置处的直径。数值孔径(NA)为标准值。Item PrefixP3-1064PM-FCP3-1310PM-FCP3-1550PM-FCP3-2000PM-FCTest Wavelength1064 nm1310 nm1550 nm2000 nmOperating Wavelength970 - 1550 nm1270 - 1625 nm1440 - 1625 nm1850 - 2200 nmCutoff Wavelength920 ± 50 nm1210 ± 60 nm1380 ± 60 nm1720 ± 80 nmFiber TypePM980-XP(Panda)PM1300-XP(Panda)PM1550-XP(Panda)PM2000(Panda)Max Insertion Lossa0.7 dB0.5 dB0.5 dB0.5 dBMin Extinction Ratioa22 dB23 dB23 dB23 dBMode Field Diameterb7.7 μm @ 1064 nm9.3 ± 0.5 μm @ 1300 nm10.1 ± 0.4 μm @ 1550 nm8.6 μm @ 2000 nmOptical Return Lossa60 dB TypicalConnector TypeFC/APCKey Width2.00 mm ± 0.02Key Alignment TypeNarrow Key Aligned to Slow AxisFiber Length1.0 +0.075/-0 m for Item Numbers Ending in -12.0 +0.075/-0 m for Item Numbers Ending in -25.0 +0.075/-0 m for Item Numbers Ending in -510.0 +0.075/-0 m for Item Numbers Ending in -10Jacket TypeFT030-BLUEOperating Temperature0 to 70 °CStorage Temperature-45 to 85 °C测试波长测得。模场直径(MFD)为标准值。近场处功率1/e2位置处的直径。数值孔径(NA)为标准值。键槽对准FC/PC和FC/APC跳线键槽对准FC/PC和FC/APC跳线带有2.0 mm窄键或2.2 mm宽键,可以插入匹配元件对应的槽中。键槽对准对于正确对齐所连光纤跳线的纤芯至关重要,能够zui大程度地减少连接的插入损耗。例如,Thorlabs精心设计和制造用于FC/PC和FC/APC终端跳线的匹配套管,以确保正确使用时能够实现良好的对准。为了达到zui佳对准,需将跳线上的对准键插入对应匹配套管上的槽中。Thorlabs提供带有2.2 mm宽键槽或2.0 mm窄键槽的匹配套管。宽键槽匹配套管2.2 mm宽键槽匹配套管兼容宽键和窄键接头。但是,将窄键接头插入宽键槽时,接头可在匹配套管内轻微旋转(如左下方的动画所示)。这种配置对于FC/PC接头的跳线是可以接受的,但对于FC/APC应用,我们还是建议使用窄键槽匹配套管,以实现zui优对准。窄键槽匹配套管2.0 mm窄键槽匹配套管能够实现带角度窄键FC/APC接头的良好对准,如右下方的动画所示。因此,它们不兼容具有2.2 mm宽键的接头。请注意,Thorlabs制造的所有FC/PC和FC/APC跳线都使用窄键接头。 宽键匹配套管和接头之间的匹配窄键匹配套管和接头之间的匹配 宽键槽匹配套管和窄键接头窄键接头插入宽键槽匹配套管之后,接头还有旋转空间。对于窄键FC/PC接头而言,这一点可以接受,但对于窄键FC/APC接头而言,这会产生很大的耦合损耗。 损伤阀值激光诱导的光纤损伤以下教程详述了无终端(裸露的)、有终端光纤以及其他基于激光光源的光纤元件的损伤机制,包括空气-玻璃界面(自由空间耦合或使用接头时)的损伤机制和光纤玻璃内的损伤机制。诸如裸纤、光纤跳线或熔接耦合器等光纤元件可能受到多种潜在的损伤(比如,接头、光纤端面和装置本身)。光纤适用的zui大功率始终受到这些损伤机制的zui小值的限制。虽然可以使用比例关系和一般规则估算损伤阈值,但是,光纤的jue对损伤阈值在很大程度上取决于应用和特定用户。用户可以以此教程为指南,估算zui大程度降低损伤风险的安全功率水平。如果遵守了所有恰当的制备和适用性指导,用户应该能够在指定的zui大功率水平以下操作光纤元件;如果有元件并未指定zui大功率,用户应该遵守下面描述的"实际安全水平"该,以安全操作相关元件。可能降低功率适用能力并给光纤元件造成损伤的因素包括,但不限于,光纤耦合时未对准、光纤端面受到污染或光纤本身有瑕疵。关于特定应用中光纤功率适用能力的深入讨论,请联系技术支持techsupport-cn@thorlabs.com。Quick LinksDamage at the Air / Glass InterfaceIntrinsic Damage ThresholdPreparation and Handling of Optical Fibers空气-玻璃界面的损伤空气/玻璃界面有几种潜在的损伤机制。自由空间耦合或使用光学接头匹配两根光纤时,光会入射到这个界面。如果光的强度很高,就会降低功率的适用性,并给光纤造成yong久性损伤。而对于使用环氧树脂将接头与光纤固定的终端光纤而言,高强度的光产生的热量会使环氧树脂熔化,进而在光路中的光纤表面留下残留物。 损伤的光纤端面未损伤的光纤端面裸纤端面的损伤机制Estimated Optical Power Densities on Air / Glass InterfaceaTypeTheoretical Damage ThresholdbPractical Safe LevelcCW(Average Power)~1 MW/cm2~250 kW/cm210 ns Pulsed(Peak Power)~5 GW/cm2~1 GW/cm2所有值针对无终端(裸露)的石英光纤,适用于自由空间耦合到洁净的光纤端面。这是可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。用户在高功率下工作前,必须验证系统中光纤元件的性能与可靠性,因其与系统有着紧密的关系。这是在大多数工作条件下,入射到光纤端面且不会损伤光纤的安全功率密度估算值。插芯/接头终端相关的损伤机制有终端接头的光纤要考虑更多的功率适用条件。光纤一般通过环氧树脂粘合到陶瓷或不锈钢插芯中。光通过接头耦合到光纤时,没有进入纤芯并在光纤中传播的光会散射到光纤的外层,再进入插芯中,而环氧树脂用来将光纤固定在插芯中。如果光足够强,就可以熔化环氧树脂,使其气化,并在接头表面留下残渣。这样,光纤端面就出现了局部吸收点,造成耦合效率降低,散射增加,进而出现损伤。与环氧树脂相关的损伤取决于波长,出于以下几个原因。一般而言,短波长的光比长波长的光散射更强。由于短波长单模光纤的MFD较小,且产生更多的散射光,则耦合时的偏移也更大。为了zui大程度地减小熔化环氧树脂的风险,可以在光纤端面附近的光纤与插芯之间构建无环氧树脂的气隙光纤接头。我们的高功率多模光纤跳线就使用了这种设计特点的接头。曲线图展现了带终端的单模石英光纤的大概功率适用水平。每条线展示了考虑具体损伤机制估算的功率水平。zui大功率适用性受到所有相关损伤机制的zui低功率水平限制(由实线表示)。 光纤内的损伤阈值 除了空气玻璃界面的损伤机制外,光纤本身的损伤机制也会限制光纤使用的功率水平。这些限制会影响所有的光纤组件,因为它们存在于光纤本身。光纤内的两种损伤包括弯曲损耗和光暗化损伤。弯曲损耗光在纤芯内传播入射到纤芯包层界面的角度大于临界角会使其无法全反射,光在某个区域就会射出光纤,这时候就会产生弯曲损耗。射出光纤的光一般功率密度较高,会烧坏光纤涂覆层和周围的松套管。有一种叫做双包层的特种光纤,允许光纤包层(第二层)也和纤芯一样用作波导,从而降低弯折损伤的风险。通过使包层/涂覆层界面的临界角高于纤芯/包层界面的临界角,射出纤芯的光就会被限制在包层内。这些光会在几厘米或者几米的距离而不是光纤内的某个局部点漏出,从而zui大限度地降低损伤。Thorlabs生产并销售0.22 NA双包层多模光纤,它们能将适用功率提升百万瓦的范围。光暗化光纤内的第二种损伤机制称为光暗化或负感现象,一般发生在紫外或短波长可见光,尤其是掺锗纤芯的光纤。在这些波长下工作的光纤随着曝光时间增加,衰减也会增加。引起光暗化的原因大部分未可知,但可以采取一些列措施来缓解。例如,研究发现,羟基离子(OH)含量非常低的光纤可以抵抗光暗化,其它掺杂物比如氟,也能减少光暗化。即使采取了上述措施,所有光纤在用于紫外光或短波长光时还是会有光暗化产生,因此用于这些波长下的光纤应该被看成消耗品。制备和处理光纤通用清洁和操作指南建议将这些通用清洁和操作指南用于所有的光纤产品。而对于具体的产品,用户还是应该根据辅助文献或手册中给出的具体指南操作。只有遵守了所有恰当的清洁和操作步骤,损伤阈值的计算才会适用。 安装或集成光纤(有终端的光纤或裸纤)前应该关掉所有光源,以避免聚焦的光束入射在接头或光纤的脆弱部分而造成损伤。光纤适用的功率直接与光纤/接头端面的质量相关。将光纤连接到光学系统前,一定要检查光纤的末端。端面应该是干净的,没有污垢和其它可能导致耦合光散射的污染物。另外,如果是裸纤,使用前应该剪切,用户应该检查光纤末端,确保切面质量良好。如果将光纤熔接到光学系统,用户首先应该在低功率下验证熔接的质量良好,然后在高功率下使用。熔接质量差,会增加光在熔接界面的散射,从而成为光纤损伤的来源。对准系统和优化耦合时,用户应该使用低功率;这样可以zui大程度地减少光纤其他部分(非纤芯)的曝光。如果高功率光束聚焦在包层、涂覆层或接头,有可能产生散射光造成的损伤。高功率下使用光纤的注意事项一般而言,光纤和光纤元件应该要在安全功率水平限制之内工作,但在理想的条件下(ji佳的光学对准和非常干净的光纤端面),光纤元件适用的功率可能会增大。用户首先必须在他们的系统内验证光纤的性能和稳定性,然后再提高输入或输出功率,遵守所有所需的安全和操作指导。以下事项是一些有用的建议,有助于考虑在光纤或组件中增大光学功率。要防止光纤损伤光耦合进光纤的对准步骤也是重要的。在对准过程中,在取得zui佳耦合前,光很容易就聚焦到光纤某部位而不是纤芯。如果高功率光束聚焦在包层或光纤其它部位时,会发生散射引起损伤使用光纤熔接机将光纤组件熔接到系统中,可以增大适用的功率,因为它可以zui大程度地减少空气/光纤界面损伤的可能性。用户应该遵守所有恰当的指导来制备,并进行高质量的光纤熔接。熔接质量差可能导致散射,或在熔接界面局部形成高热区域,从而损伤光纤。连接光纤或组件之后,应该在低功率下使用光源测试并对准系统。然后将系统功率缓慢增加到所希望的输出功率,同时周期性地验证所有组件对准良好,耦合效率相对光学耦合功率没有变化。 WavelengthCutoffWavelengthMin ExtinctionRatioMax InsertionLossMFDaJacket-2000PM-FC-2保偏光纤跳线,FC/APC,2000纳米,熊猫型,2米
  • 保偏光纤跳线,FC/PC接头
    保偏光纤跳线,FC/PC接头特性窄键(2.0 mm)和慢轴对准典型的回波损耗50 分贝(zui低40分贝)陶瓷圆角插芯(UPC)?3 mm外部保护层提供定制跳线(请看上述标签)这些光纤跳线的两端都是高质量、窄插销的陶瓷FC接头。由我们的设备生产,每根跳线都经过单独测试,以在光纤和光纤连接时保证消光比和低背反射(回波损耗)。这些跳线有库存,具有高质量的抛光,可以保证超过50 dB的典型回波损耗。每条跳线都带有两个罩在终端的保护帽,防止灰尘或者其它污染物落入插芯端面。我们也单独销售保护FC/PC终端CAPF塑料光纤帽和CAPFM金属螺纹光纤帽。熊猫保偏光纤横截面PM Fiber Patch Cable Selection GuideFC/PC to FC/PCFC/APC to FC/APCFC/PC to FC/APC HybridAR-Coated FC/PC and HybridHR-Coated FC/PC and FC/APC 规格Item #P1-405BPM-FCP1-488PM-FCP1-630PM-FCP1-780PM-FCP1-980PM-FCTest Wavelength405 nm488 nm630 nm780 nm980 nmOperating Wavelength400-680 nm460-700 nm620-850 nm770-1100 nm970-1550 nmFiber TypePM-S405-XP(Panda)PM460-HP(Panda)PM630-HP(Panda)PM780-HP(Panda)PM980-XP(Panda)Max Insertion Lossb1.5 dB1.5 dB1.2 dB1.0 dB0.7 dBMin Extinction Ratiob15 dB18 dB20 dB20 dB22 dBMode Field Diameterc3.6 ± 0.5 μm @ 405 nm3.4 μm @ 488 nm4.2 μm @ 630 nm4.9 μm @ 780 nm6.6 ± 0.5 μm @ 980 nmNumerical Aperturea0.120.120.120.120.12Optical Return Lossb50 dB TypicalConnector TypeFC/PCKey Width2.00 ± 0.02 mmKey Alignment TypeNarrow Key Aligned to Slow Axis or as SpecifiedCable Length1.0 +0.075/-0 m for Item Numbers Ending in -12.0 +0.075/-0 m for Item Numbers Ending in -25.0 +0.075/-0 m for Item Numbers Ending in -510.0 +0.075/-0 m for Item Numbers Ending in -10Jacket TypeFT030-BLUEOperating Temperature0 to 70 °CStorage Temperature-45 to 85 °C数值孔径(NA)为定值。在测试波长处测得。模场直径(MFD)为定值。它是相邻模场的1/e2功率水平位置的直径。Item #P1-1064PM-FCP1-1310PM-FCP1-1550PM-FCP1-2000PM-FCTest Wavelength1064 nm1310 nm1550 nm2000 nmOperating Wavelength970-1550 nm1270 - 1625 nm1440 - 1625 nm1850 - 2200 nmFiber TypePM980-XP(Panda)PM1300-XP(Panda)PM1550-XP(Panda)PM2000(Panda)Max Insertion Lossb0.7 dB0.5 dB0.5 dB0.5 dBMin Extinction Ratiob22 dB23 dB23 dB23 dBMode Field Diameterc7.7 μm @ 1064 nm9.3± 0.5 μm @ 1300 nm10.1 ± 0.4 μm @ 1550 nm8.6 μm @ 2000 nmNumerical Aperturea0.120.120.1250.20Optical Return Lossb50 dB TypicalConnector TypeFC/PCKey Width2.00 mm ± 0.02Key Alignment TypeNarrow Key Aligned to Slow Axis or as SpecifiedFiber Length2.0 +0.075/-0 m for Item Numbers Ending in -25.0 +0.075/-0 m for Item Numbers Ending in -5Jacket TypeFT030-BLUEOperating Temperature0 to 70 °CStorage Temperature-45 to 85 °C 数值孔径(NA)为定值。在测试波长处测得。模场直径(MFD)为定值。它是相邻模场的1/e2功率水平位置的直径。 键槽对准FC/PC和FC/APC跳线键槽对准FC/PC和FC/APC跳线带有2.0 mm窄键或2.2 mm宽键,可以插入匹配元件对应的槽中。键槽对准对于正确对齐所连光纤跳线的纤芯至关重要,能够zui大程度地减少连接的插入损耗。例如,Thorlabs精心设计和制造用于FC/PC和FC/APC终端跳线的匹配套管,以确保正确使用时能够实现良好的对准。为了达到zui佳对准,需将跳线上的对准键插入对应匹配套管上的槽中。Thorlabs提供带有2.2 mm宽键槽或2.0 mm窄键槽的匹配套管。 宽键槽匹配套管2.2 mm宽键槽匹配套管兼容宽键和窄键接头。但是,将窄键接头插入宽键槽时,接头可在匹配套管内轻微旋转(如左下方的动画所示)。这种配置对于FC/PC接头的跳线是可以接受的,但对于FC/APC应用,我们还是建议使用窄键槽匹配套管,以实现zui优对准。窄键槽匹配套管2.0 mm窄键槽匹配套管能够实现带角度窄键FC/APC接头的良好对准,如右下方的动画所示。因此,它们不兼容具有2.2 mm宽键的接头。请注意,Thorlabs制造的所有FC/PC和FC/APC跳线都使用窄键接头。宽键匹配套管和接头之间的匹配 窄键匹配套管和接头之间的匹配 宽键槽匹配套管和窄键接头窄键接头插入宽键槽匹配套管之后,接头还有旋转空间。对于窄键FC/PC接头而言,这一点可以接受,但对于窄键FC/APC接头而言,这会产生很大的耦合损耗。 损伤阀值激光诱导的光纤损伤以下教程详述了无终端(裸露的)、有终端光纤以及其他基于激光光源的光纤元件的损伤机制,包括空气-玻璃界面(自由空间耦合或使用接头时)的损伤机制和光纤玻璃内的损伤机制。诸如裸纤、光纤跳线或熔接耦合器等光纤元件可能受到多种潜在的损伤(比如,接头、光纤端面和装置本身)。光纤适用的zui大功率始终受到这些损伤机制的zui小值的限制。虽然可以使用比例关系和一般规则估算损伤阈值,但是,光纤的jue对损伤阈值在很大程度上取决于应用和特定用户。用户可以以此教程为指南,估算zui大程度降低损伤风险的安全功率水平。如果遵守了所有恰当的制备和适用性指导,用户应该能够在指定的zui大功率水平以下操作光纤元件;如果有元件并未指定zui大功率,用户应该遵守下面描述的"实际安全水平"该,以安全操作相关元件。可能降低功率适用能力并给光纤元件造成损伤的因素包括,但不限于,光纤耦合时未对准、光纤端面受到污染或光纤本身有瑕疵。关于特定应用中光纤功率适用能力的深入讨论,请联系技术支持。 Quick LinksDamage at the Air / Glass InterfaceIntrinsic Damage ThresholdPreparation and Handling of Optical Fibers空气-玻璃界面的损伤空气/玻璃界面有几种潜在的损伤机制。自由空间耦合或使用光学接头匹配两根光纤时,光会入射到这个界面。如果光的强度很高,就会降低功率的适用性,并给光纤造成yong久性损伤。而对于使用环氧树脂将接头与光纤固定的终端光纤而言,高强度的光产生的热量会使环氧树脂熔化,进而在光路中的光纤表面留下残留物。 损伤的光纤端面未损伤的光纤端面裸纤端面的损伤机制光纤端面的损伤机制可以建模为大光学元件,紫外熔融石英基底的工业标准损伤阈值适用于基于石英的光纤(参考右表)。但是与大光学元件不同,与光纤空气/璃界面相关的表面积和光束直径都非常小,耦合单模(SM)光纤时尤其如此,因此,对于给定的功率密度,入射到光束直径较小的光纤的功率需要比较低。右表列出了两种光功率密度阈值:一种理论损伤阈值,一种"实际安全水平"。一般而言,理论损伤阈值代表在光纤端面和耦合条件非常好的情况下,可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。而"实际安全水平"功率密度代表光纤损伤的zui低风险。超过实际安全水平操作光纤或元件也是有可以的,但用户必须遵守恰当的适用性说明,并在使用前在低功率下验证性能。计算单模光纤和多模光纤的有效面积单模光纤的有效面积是通过模场直径(MFD)定义的,它是光通过光纤的横截面积,包括纤芯以及部分包层。耦合到单模光纤时,入射光束的直径必须匹配光纤的MFD,才能达到良好的耦合效率。例如,SM400单模光纤在400 nm下工作的模场直径(MFD)大约是?3 μm,而SMF-28 Ultra单模光纤在1550 nm下工作的MFD为?10.5 μm。则两种光纤的有效面积可以根据下面来计算:SM400 Fiber:Area= Pi x (MFD/2)2= Pi x (1.5μm)2= 7.07 μm2= 7.07 x 10-8cm2 SMF-28 UltraFiber:Area = Pi x (MFD/2)2= Pi x (5.25 μm)2= 86.6 μm2= 8.66 x 10-7cm2为了估算光纤端面适用的功率水平,将功率密度乘以有效面积。请注意,该计算假设的是光束具有均匀的强度分布,但其实,单模光纤中的大多数激光束都是高斯形状,使得光束中心的密度比边缘处更高,因此,这些计算值将略高于损伤阈值或实际安全水平对应的功率。假设使用连续光源,通过估算的功率密度,就可以确定对应的功率水平:SM400 Fiber:7.07 x 10-8cm2x 1MW/cm2= 7.1 x10-8MW =71 mW (理论损伤阈值) 7.07 x 10-8cm2x 250 kW/cm2= 1.8 x10-5kW = 18 mW (实际安全水平)SMF-28 Ultra Fiber:8.66 x 10-7cm2x 1MW/cm2= 8.7 x10-7MW =870mW (理论损伤阈值)8.66 x 10-7cm2x 250 kW/cm2= 2.1 x10-4kW =210 mW (实际安全水平)多模(MM)光纤的有效面积由纤芯直径确定,一般要远大于SM光纤的MFD值。如要获得zui佳耦合效果,Thorlabs建议光束的光斑大小聚焦到纤芯直径的70 - 80%。由于多模光纤的有效面积较大,降低了光纤端面的功率密度,因此,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到多模光纤中。Estimated Optical Power Densities on Air / Glass InterfaceaTypeTheoretical Damage ThresholdbPractical Safe LevelcCW(Average Power)~1 MW/cm2~250 kW/cm210 ns Pulsed(Peak Power)~5 GW/cm2~1 GW/cm2所有值针对无终端(裸露)的石英光纤,适用于自由空间耦合到洁净的光纤端面。这是可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。用户在高功率下工作前,必须验证系统中光纤元件的性能与可靠性,因其与系统有着紧密的关系。这是在大多数工作条件下,入射到光纤端面且不会损伤光纤的安全功率密度估算值。 插芯/接头终端相关的损伤机制有终端接头的光纤要考虑更多的功率适用条件。光纤一般通过环氧树脂粘合到陶瓷或不锈钢插芯中。光通过接头耦合到光纤时,没有进入纤芯并在光纤中传播的光会散射到光纤的外层,再进入插芯中,而环氧树脂用来将光纤固定在插芯中。如果光足够强,就可以熔化环氧树脂,使其气化,并在接头表面留下残渣。这样,光纤端面就出现了局部吸收点,造成耦合效率降低,散射增加,进而出现损伤。与环氧树脂相关的损伤取决于波长,出于以下几个原因。一般而言,短波长的光比长波长的光散射更强。由于短波长单模光纤的MFD较小,且产生更多的散射光,则耦合时的偏移也更大。为了zui大程度地减小熔化环氧树脂的风险,可以在光纤端面附近的光纤与插芯之间构建无环氧树脂的气隙光纤接头。我们的高功率多模光纤跳线就使用了这种设计特点的接头。曲线图展现了带终端的单模石英光纤的大概功率适用水平。每条线展示了考虑具体损伤机制估算的功率水平。zui大功率适用性受到所有相关损伤机制的zui低功率水平限制(由实线表示)。确定具有多种损伤机制的功率适用性光纤跳线或组件可能受到多种途径的损伤(比如,光纤跳线),而光纤适用的zui大功率始终受到与该光纤组件相关的zui低损伤阈值的限制。例如,右边曲线图展现了由于光纤端面损伤和光学接头造成的损伤而导致单模光纤跳线功率适用性受到限制的估算值。有终端的光纤在给定波长下适用的总功率受到在任一给定波长下,两种限制之中的较小值限制(由实线表示)。在488 nm左右工作的单模光纤主要受到光纤端面损伤的限制(蓝色实线),而在1550 nm下工作的光纤受到接头造成的损伤的限制(红色实线)。对于多模光纤,有效模场由纤芯直径确定,一般要远大于SM光纤的有效模场。因此,其光纤端面上的功率密度更低,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到光纤中(图中未显示)。而插芯/接头终端的损伤限制保持不变,这样,多模光纤的zui大适用功率就会受到插芯和接头终端的限制。请注意,曲线上的值只是在合理的操作和对准步骤几乎不可能造成损伤的情况下粗略估算的功率水平值。值得注意的是,光纤经常在超过上述功率水平的条件下使用。不过,这样的应用一般需要专业用户,并在使用之前以较低的功率进行测试,尽量降低损伤风险。但即使如此,如果在较高的功率水平下使用,则这些光纤元件应该被看作实验室消耗品。光纤内的损伤阈值除了空气玻璃界面的损伤机制外,光纤本身的损伤机制也会限制光纤使用的功率水平。这些限制会影响所有的光纤组件,因为它们存在于光纤本身。光纤内的两种损伤包括弯曲损耗和光暗化损伤。弯曲损耗光在纤芯内传播入射到纤芯包层界面的角度大于临界角会使其无法全反射,光在某个区域就会射出光纤,这时候就会产生弯曲损耗。射出光纤的光一般功率密度较高,会烧坏光纤涂覆层和周围的松套管。有一种叫做双包层的特种光纤,允许光纤包层(第二层)也和纤芯一样用作波导,从而降低弯折损伤的风险。通过使包层/涂覆层界面的临界角高于纤芯/包层界面的临界角,射出纤芯的光就会被限制在包层内。这些光会在几厘米或者几米的距离而不是光纤内的某个局部点漏出,从而zui大限度地降低损伤。Thorlabs生产并销售0.22 NA双包层多模光纤,它们能将适用功率提升百万瓦的范围。光暗化光纤内的第二种损伤机制称为光暗化或负感现象,一般发生在紫外或短波长可见光,尤其是掺锗纤芯的光纤。在这些波长下工作的光纤随着曝光时间增加,衰减也会增加。引起光暗化的原因大部分未可知,但可以采取一些列措施来缓解。例如,研究发现,羟基离子(OH)含量非常低的光纤可以抵抗光暗化,其它掺杂物比如氟,也能减少光暗化。即使采取了上述措施,所有光纤在用于紫外光或短波长光时还是会有光暗化产生,因此用于这些波长下的光纤应该被看成消耗品。405纳米保偏FC/PC光纤跳线:熊猫型Fiber Type
  • ZBLAN光纤
    ZBLAN - Non-doped SMFF(单模氟化物光纤) Non-doped SMFF 损耗谱 Non-doped SMFF 标准参数 定制参数 SMFFZBLAN - RE doped SMFF(单模氟化物光纤)稀土参杂的SMFF光纤拥有更好的吸收效率,可用于光纤激光器、光纤放大器等器件、设备。 定制稀土参杂 SMFF 回波损耗和吸收波长 ZBLAN - Non-doped MMFF(多模氟化物光纤)MMFF(ZMF系列) ,有着非常宽的传输范围(从0.35um到4um),适用于近红外和红外应用。 Non-doped MMFF 损耗谱ZBLAN - DCFF(Double Cladding Fluoride Fiber)双包层ZBLAN光纤可以用于1.3um、1.46um、2.3um、2.8um的高功率光纤激光器和光纤放大器。
  • 混合接头多模光纤跳线
    混合接头多模光纤跳线特性FC/PC(2 mm窄键)转SMA905多模转接电缆提供许多光纤类型/纤芯尺寸(见右表)带?3 mm橘色松套管的1 m和2 m跳线可选可以定制跳线这些多模光纤跳线由阶跃折射率多模光纤构成,一端为FC/PC接头,另一端为SMA905接头。库存可选长度为1 m和2 m。每条跳线都带有两个罩在终端的保护帽,防止灰尘落入或其它损伤。我们也单独出售保护FC/PC终端的CAPF塑料光纤帽和CAPFM金属螺纹光纤保护帽。另外,我们还出售CAPM橡胶光纤保护帽和SMA端口的CAPMM金属螺纹光纤保护帽。由于过高功率会造成接头内的环氧树脂过分加热,这些跳线便不适合需要光纤承载高光学功率的应用。详情请看损伤阈值标签。除了没有接头的光纤,Thorlabs还提供其他可以兼容高功率的跳线选择。下表中包含了一些选项的链接。如果您没有找到适合您应用的现货光纤,请见我们的定制光纤跳线页面,来满足您特殊的需求。Item # PrefixCoreNAWavelength RangeFiber UsedM23L?10μm0.10400 to 550 nm and700 to 1000 nmFG010LDAM39L?25μm0.10400 to 550 nm and700 to 1400 nmFG025LJAM16L?50μm0.22400 to 2400 nm(Low OH)FG050LGAM100L?105μm0.10400 to 2100 nm(Low OH)FG105LVAM18L?105μm0.22400 to 2400 nm(Low OH)FG105LCAM91L?200μm0.22250 to 1200 nm(High OH)FG200UEAM36L?200 μm0.22400 to 2400 nm(Low OH)FG200LEAM75L?200μm0.39400 to 2200 nm(Low OH)FT200EMTM129L?200 μm0.50300 to 1200 nm(High OH)FP200URTM12L?300μm0.39400 to 2200 nm(Low OH)FT300EMTM76L?400μm0.39400 to 2200 nm(Low OH)FT400EMTM131L?400 μm0.50300 to 1200 nm(High OH)FP400URTM47L?550 μm0.22400 to 2200 nm(Low OH)FG550LECIn-Stock Multimode Fiber Optic Patch Cable SelectionStep IndexGraded IndexFiber BundlesUncoatedCoatedMid-IROptogeneticsSpecialized ApplicationsSMA FC/PC FC/PC to SMA Square-Core FC/PC and SMAAR-Coated SMA HR-Coated FC/PC Beamsplitter-Coated FC/PCFluoride FC and SMALightweight FC/PC Lightweight SMA Rotary Joint FC/PC and SMAHigh-Power SMA UHV, High-Temp. SMA Armored SMA Solarization-Resistant SMAFC/PC FC/PC to LC/PC多模(MM)光纤的有效面积由纤芯直径确定,一般要远大于SM光纤的MFD值。如要获得zui佳耦合效果,Thorlabs建议光束的光斑大小聚焦到纤芯直径的70 - 80%。由于多模光纤的有效面积较大,降低了光纤端面的功率密度,因此,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到多模光纤中。Estimated Optical Power Densities on Air / Glass InterfaceaTypeTheoretical Damage ThresholdbPractical Safe LevelcCW(Average Power)~1 MW/cm2~250 kW/cm210 ns Pulsed(Peak Power)~5 GW/cm2~1 GW/cm2 所有值针对无终端(裸露)的石英光纤,适用于自由空间耦合到洁净的光纤端面。这是可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。用户在高功率下工作前,必须验证系统中光纤元件的性能与可靠性,因其与系统有着紧密的关系。这是在大多数工作条件下,入射到光纤端面且不会损伤光纤的安全功率密度估算值。插芯/接头终端相关的损伤机制有终端接头的光纤要考虑更多的功率适用条件。光纤一般通过环氧树脂粘合到陶瓷或不锈钢插芯中。光通过接头耦合到光纤时,没有进入纤芯并在光纤中传播的光会散射到光纤的外层,再进入插芯中,而环氧树脂用来将光纤固定在插芯中。如果光足够强,就可以熔化环氧树脂,使其气化,并在接头表面留下残渣。这样,光纤端面就出现了局部吸收点,造成耦合效率降低,散射增加,进而出现损伤。与环氧树脂相关的损伤取决于波长,出于以下几个原因。一般而言,短波长的光比长波长的光散射更强。由于短波长单模光纤的MFD较小,且产生更多的散射光,则耦合时的偏移也更大。为了zui大程度地减小熔化环氧树脂的风险,可以在光纤端面附近的光纤与插芯之间构建无环氧树脂的气隙光纤接头。我们的高功率多模光纤跳线就使用了这种设计特点的接头。曲线图展现了带终端的单模石英光纤的大概功率适用水平。每条线展示了考虑具体损伤机制估算的功率水平。zui大功率适用性受到所有相关损伤机制的zui低功率水平限制(由实线表示)。确定具有多种损伤机制的功率适用性光纤跳线或组件可能受到多种途径的损伤(比如,光纤跳线),而光纤适用的zui大功率始终受到与该光纤组件相关的zui低损伤阈值的限制。例如,右边曲线图展现了由于光纤端面损伤和光学接头造成的损伤而导致单模光纤跳线功率适用性受到限制的估算值。有终端的光纤在给定波长下适用的总功率受到在任一给定波长下,两种限制之中的较小值限制(由实线表示)。在488 nm左右工作的单模光纤主要受到光纤端面损伤的限制(蓝色实线),而在1550nm下工作的光纤受到接头造成的损伤的限制(红色实线)。对于多模光纤,有效模场由纤芯直径确定,一般要远大于SM光纤的有效模场。因此,其光纤端面上的功率密度更低,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到光纤中(图中未显示)。而插芯/接头终端的损伤限制保持不变,这样,多模光纤的zui大适用功率就会受到插芯和接头终端的限制。请注意,曲线上的值只是在合理的操作和对准步骤几乎不可能造成损伤的情况下粗略估算的功率水平值。值得注意的是,光纤经常在超过上述功率水平的条件下使用。不过,这样的应用一般需要专业用户,并在使用之前以较低的功率进行测试,尽量降低损伤风险。但即使如此,如果在较高的功率水平下使用,则这些光纤元件应该被看作实验室消耗品。光纤内的损伤阈值除了空气玻璃界面的损伤机制外,光纤本身的损伤机制也会限制光纤使用的功率水平。这些限制会影响所有的光纤组件,因为它们存在于光纤本身。光纤内的两种损伤包括弯曲损耗和光暗化损伤。弯曲损耗光在纤芯内传播入射到纤芯包层界面的角度大于临界角会使其无法全反射,光在某个区域就会射出光纤,这时候就会产生弯曲损耗。射出光纤的光一般功率密度较高,会烧坏光纤涂覆层和周围的松套管。有一种叫做双包层的特种光纤,允许光纤包层(第二层)也和纤芯一样用作波导,从而降低弯折损伤的风险。通过使包层/涂覆层界面的临界角高于纤芯/包层界面的临界角,射出纤芯的光就会被限制在包层内。这些光会在几厘米或者几米的距离而不是光纤内的某个局部点漏出,从而zui大限度地降低损伤。Thorlabs生产并销售0.22 NA双包层多模光纤,它们能将适用功率提升百万瓦的范围。光暗化光纤内的第二种损伤机制称为光暗化或负感现象,一般发生在紫外或短波长可见光,尤其是掺锗纤芯的光纤。在这些波长下工作的光纤随着曝光时间增加,衰减也会增加。引起光暗化的原因大部分未可知,但可以采取一些列措施来缓解。例如,研究发现,羟基离子(OH)含量非常低的光纤可以抵抗光暗化,其它掺杂物比如氟,也能减少光暗化。即使采取了上述措施,所有光纤在用于紫外光或短波长光时还是会有光暗化产生,因此用于这些波长下的光纤应该被看成消耗品。制备和处理光纤通用清洁和操作指南建议将这些通用清洁和操作指南用于所有的光纤产品。而对于具体的产品,用户还是应该根据辅助文献或手册中给出的具体指南操作。只有遵守了所有恰当的清洁和操作步骤,损伤阈值的计算才会适用。安装或集成光纤(有终端的光纤或裸纤)前应该关掉所有光源,以避免聚焦的光束入射在接头或光纤的脆弱部分而造成损伤。光纤适用的功率直接与光纤/接头端面的质量相关。将光纤连接到光学系统前,一定要检查光纤的末端。端面应该是干净的,没有污垢和其它可能导致耦合光散射的污染物。另外,如果是裸纤,使用前应该剪切,用户应该检查光纤末端,确保切面质量良好。如果将光纤熔接到光学系统,用户首先应该在低功率下验证熔接的质量良好,然后在高功率下使用。熔接质量差,会增加光在熔接界面的散射,从而成为光纤损伤的来源。对准系统和优化耦合时,用户应该使用低功率;这样可以zui大程度地减少光纤其他部分(非纤芯)的曝光。如果高功率光束聚焦在包层、涂覆层或接头,有可能产生散射光造成的损伤。高功率下使用光纤的注意事项一般而言,光纤和光纤元件应该要在安全功率水平限制之内工作,但在理想的条件下(ji佳的光学对准和非常干净的光纤端面),光纤元件适用的功率可能会增大。用户首先必须在他们的系统内验证光纤的性能和稳定性,然后再提高输入或输出功率,遵守所有所需的安全和操作指导。以下事项是一些有用的建议,有助于考虑在光纤或组件中增大光学功率。要防止光纤损伤光耦合进光纤的对准步骤也是重要的。在对准过程中,在取得zui佳耦合前,光很容易就聚焦到光纤某部位而不是纤芯。如果高功率光束聚焦在包层或光纤其它部位时,会发生散射引起损伤使用光纤熔接机将光纤组件熔接到系统中,可以增大适用的功率,因为它可以zui大程度地减少空气/光纤界面损伤的可能性。用户应该遵守所有恰当的指导来制备,并进行高质量的光纤熔接。熔接质量差可能导致散射,或在熔接界面局部形成高热区域,从而损伤光纤。连接光纤或组件之后,应该在低功率下使用光源测试并对准系统。然后将系统功率缓慢增加到所希望的输出功率,同时周期性地验证所有组件对准良好,耦合效率相对光学耦合功率没有变化。由于剧烈弯曲光纤造成的弯曲损耗可能使光从受到应力的区域漏出。在高功率下工作时,大量的光从很小的区域(受到应力的区域)逃出,从而在局部形成产生高热量,进而损伤光纤。请在操作过程中不要破坏或突然弯曲光纤,以尽可能地减少弯曲损耗。用户应该针对给定的应用选择合适的光纤。例如,大模场光纤可以良好地代替标准的单模光纤在高功率应用中使用,因为前者可以提供更佳的光束质量,更大的MFD,且可以降低空气/光纤界面的功率密度。阶跃折射率石英单模光纤一般不用于紫外光或高峰值功率脉冲应用,因为这些应用与高空间功率密度相关。 FC/PC转SMA光纤跳线,?10 μm,数值孔径0.10FiberCore Diameter Cladding DiameterCoating DiameterNABend Radius (Short Term/Long Term)Wavelength RangeAttenuation PlotFerrule Material JacketFG010LDA10 ± 3 μm125 ± 2 μm245 ± 10 μm0.100 ± 0.01515 mm / 30 mm400 to 550 nm and 700 to 1000 nmFC/PC: Ceramic SMA: Stainless SteelFT030 (?3 mm)产品型号公英制通用M23L01FC/PC至SMA光纤跳线,?10 μm,数值孔径0.10,1 mFC/PC转SMA光纤跳线,?25 μm,数值孔径0.10FiberCore DiameterCladding DiameterCoating DiameterNABend Radius (Short Term/Long Term)Wavelength RangeAttenuation PlotFerrule MaterialJacketFG025LJA25 ± 3 μm125 ± 2 μm245 ± 10 μm0.100 ± 0.01515 mm / 30 mm400 to 550 nm and 700 to 1400 nmFC/PC: Ceramic SMA: Stainless SteelFT030 (?3 mm)产品型号公英制通用M39L01FC/PC转SMA光纤跳线,?25 μm,数值孔径0.10,1 m FC/PC转SMA光纤跳线,?50 μm,数值孔径0.22,低羟基FiberCore DiameterCladding DiameterCoating DiameterNABend Radius (Short Term/Long Term)Wavelength RangeAttenuation PlotFerrule MaterialJacketFG050LGA50 μm ± 2%125 ± 1 μm250 μm ± 10 μm0.22 ± 0.0215 mm / 30 mm400 to 2400 nm (Low OH)FC/PC: Ceramic SMA: Stainless SteelFT030 (?3 mm)产品型号公英制通用M16L01Customer Inspired! FC/PC至SMA光纤跳线,?50 μm,数值孔径0.22,1 mFC/PC转SMA光纤跳线,?105 μm,数值孔径0.10,低羟基FiberCore DiameterCladding DiameterCoating DiameterNABend Radius (Short Term/Long Term)Wavelength RangeAttenuation PlotFerrule MaterialJacketFG105LVA105 ± 3 μm125 ± 2 μm250 ± 10 μm0.100 ± 0.01515 mm / 30 mm400 to 2100 nm (Low OH)FC/PC: Ceramic SMA: Stainless SteelFT030 (?3 mm) Attenuation PlotFerrule MaterialJacketFG105LCA105 μm ± 2%125 ± 1 μm250 ± 10 μm0.22 ± 0.02
  • 啁啾光纤光栅_相移FBG_长周期_耐高温_传感用光纤光栅_FBG pm级_超窄带_筱晓光子
    啁啾光纤光栅啁啾光纤光栅是一种光栅周期沿光纤的纵向改变的特殊光栅。深圳市畅格光电有限公司采用相位掩模板方式写入啁啾光栅。通过调整啁啾光栅的反射强度可以使其作为增益平坦滤波器。同时利用其超宽的反射带宽可以为分布式系统服务。应用:增益平坦滤波器色散补偿光纤到户粗波分复用系统特性:大带宽低的插入损耗高的反射率指标特性 相移光纤光栅相移光纤光栅是在光纤光栅中引入相位不连续点,在光栅反射谱中产生一个极窄的透射窗口,随相移量的不同透射波长不同。相移光纤光栅可作为密集波分复用(DWDM)系统中的解复用器,相移的大小,位置和相移点的多少对该解复用器的技术指标长周期光纤光栅长周期光栅(long period fiber grating,LPFG)是由光纤轴向上产生周期性的折射率调制而形成,其周期一般大100μm。它的耦合机理是:向前传输的纤芯基模被耦合入几个特定波长的向前传输的包层模,包层模很快损失掉,所以LPFG基本上没有后向反射,在其透射谱中有几个特定波长的吸收峰。筱晓光子有限公司能根据客户的不同需要,提供不同的长周期光栅。特性:非反射型低的插入损耗应用:带通滤波器增益平坦滤波器生物化学传感技术指标耐高温光纤光栅筱晓光子技术有限公司能根据客户的要求定制耐高温的光纤光栅,以适用特殊的高温场合。特性高的波长稳定性反射率持续稳定性技术指标传感用光纤光栅由于对外界的温度和应变非常敏感,光纤光栅能够被作为传感器的核心元件。筱晓光子技术有限公司能根据客户的不同要求,提供个性化和批量的产品。特性高的稳定性和可靠性不同的光栅长度优异的切趾技术应用传感监测能量监测技术指标
  • USB4000 微型光纤光谱仪
    USB4000 微型光纤光谱仪产品介绍现在,海洋光学已经销售了130,000台以上的光谱仪,它们被应用于各个领域。凭借丰富的应用经验,海洋光学不断地推出更灵活,通用和性价比更高的微型光纤光谱仪。USB4000 是我们下一代光谱仪中的旗舰产品,它使用了东芝公司的具有3648像素的线阵CCD探测器以获取更高的信噪比,并使用了增强的电子装置来更好地控制光谱仪及其组件。根据不同的应用,我们将光学平台做成可选配置,包括入射狭缝、光栅和阶次滤波器等都可自由选择。 主要特点世界上最受欢迎的光谱仪海洋光学最新推出的USB4000光谱仪是目前世界上最受欢迎的光谱仪!它内置了先进的探测器和强大的高速电路系统.USB4000的特点在于具有16位A/D转换,4种触发模式,根据温度变化的暗噪声校正和22针的连接口(包括8个用户可编程GPIO端口).USB4000可兼容Linux,Mac或Windows等多种操作系统.模块化的USB4000光谱仪可以响应从200到1100nm的光谱范围,通过配合海洋光学生产的各种光学平台组件、光源和采样光纤,可以为上千种吸收、反射和发射测量应用搭建各具特色的系统。先进的电子系统USB4000光谱仪具有强大的电子系统:带有自动清零功能的16位A/D转换器(增强的电子暗电流校正) 采用EEPROM存储校正系数,方便操作 8个可编程GPIO接口用来控制外围设备 以及一个电子快门,可使积分时间最短达到3.8毫秒--有效地避免探测器饱和.(如果需要更快的整合时间,可使用外部硬件触发模式,详情请见USB2000+光谱仪). 而且USB4000的信噪比可以达到300:1,光学分辨率(FWHM)为0.03-8.4nm(依赖于选用的光栅和入射狭缝). 最新的操作软件和热插拔技术USB4000可通过USB2.0接口与电脑连接或通过RS-232系列接口. 每台USB4000光谱仪的特性数据都存储在它的内存中 SpectraSuite光谱学操作软件采用跨平台(Linux,Mac或者Windows)的方式,可以很容易地读取这些数据并且支持热交换.当通过USB与计算机连接时,USB4000将依靠计算机供电,无需外接电源.由于具有紧凑小巧的设计,方便的即插即用,先进的电子系统和功能强大的探测器,USB4000超越了USB2000,成为目前世界上最受欢迎的微型光纤光谱仪。光学平台选件USB4000光学平台的独特之处在于,允许您根据自己的应用来来定制组件。同时,海洋光学的应用工程师会帮助您选择最优化的配置,或者您可以根据下面的指导选择合适的入射狭缝,滤光片,光栅和探测器组件。该平台内没有可移动的部件,不会磨损或者破裂;所有指定的组件都已经在出厂前完全地固定,选择光学平台配置可参照USB4000光学平台可选配置。探测器选件USB4000光谱仪采 东芝TCD1304AP3684元线性CCD阵列探测器.为了使USB4000适合您的应用,您可以参考四种探测器选件 四种选件包含在探测器中只是用不同的镀膜技术和窗片.模块化设计当您购买了USB4000-VIS-NIR光谱仪后,您可以方便的从海洋光学的生产线中寻找您所需要的光学附件.大多数的附件都采用SMA905的接口,您只要简单地旋出连接器就可以更换或添加采样附件,包括USB4000直连附件,和附加光源, 样品池, 滤光片, 流通池, 光纤探头, 传感器, 聚焦镜,衰减器, 漫反射标准, 积分球和光学衍生产品即插即用USB4000光谱仪可通过USB2.0接口或RS-232串口连接到电脑,PLC和嵌入式系统中。当使用串口通讯时,需要5伏供电。每个光谱仪都有自己特有的参数存贮在光谱仪的内存中,通过光谱仪软件可以读出这些数据。串口操作当使用串口通讯时,需要5伏供电。光谱仪软件SpectraSuite并不提供串口的通讯,不过您可以通过串口指令集来编写您自己控制代码。详细参数表
  • USB2000+微型光纤光谱仪
    USB2000+微型光纤光谱仪产品介绍现在,海洋光学已经销售了130,000台以上的光谱仪,它们被应用于各个领域。凭借丰富的应用经验,海洋光学不断地推出更灵活,通用和性价比更高的微型光纤光谱仪。 USB2000+是我们下一代光谱仪中的旗舰产品,它使用了索尼公司的具有2048像素的线阵CCD探测器以获取更高的信噪比,并使用了增强的电子装置来更好地控制光谱仪及其组件。 根据不同的应用,我们将光学平台做成可选配置,包括入射狭缝、光栅和阶次滤波器等都可自由选择。主要特点世界上最受欢迎的光谱仪海洋光学最新推出的USB2000+光谱仪是目前世界上最受欢迎的光谱仪!它内置了先进的探测器和强大的高速电路系统。USB2000+的特点在于具有16位A/D转换,4种触发模式,根据温度变化的暗噪声校正和22针的连接口(包括8个用户可编程GPIO端口)。USB2000+可兼容Linux,Mac或Windows等多种操作系统。模块化的USB2000+光谱仪可以响应从200到1100nm的光谱范围,通过配合海洋光学生产的各种光学平台组件、光源和采样光纤,可以为上千种吸收、反射和发射测量应用搭建各具特色的系统。 1000幅全光谱/秒 可编程控制器 模块化设计 可定制波长范围和分辨率 软件自动读取光谱仪波长系数 USB接口供电 通过RoHS和CE认证先进的电子系统USB2000+光谱仪具有强大的电子系统:带有自动清零功能的16位A/D转换器(增强的电子暗电流校正);采用EEPROM存储校正系数,方便操作;8个可编程GPIO接口用来控制外围设备;积分时间最短达到1毫秒--有效地避免探测器饱和。而且USB2000+的信噪比可以达到250:1,光学分辨率(FWHM)为0.03-8.4nm(依赖于选用的光栅和入射狭缝)。最新的操作软件和热插拔技术USB2000+可通过USB2.0接口与电脑连接。每台USB2000+光谱仪的特性数据都存储在它的内存中;另外,采用跨平台(Linux,Mac或者Windows)的SpectraSuite软件,可以很容易地读取这些数据并且支持热交换。当通过USB与计算机连接时,USB2000+将依靠计算机供电,无需外接电源。由于具有紧凑小巧的设计,方便的即插即用,先进的电子系统和功能强大的探测器,USB2000+超越了USB2000,成为目前世界上最受欢迎的微型光纤光谱仪。光学平台选件USB2000+光学平台的独特之处在于,允许您根据自己的应用来来定制组件。同时,海洋光学的应用工程师会帮助您选择最优化的配置,或者您可以根据下面的指导选择合适的入射狭缝,滤光片,光栅和探测器组件。该平台内没有可移动的部件,不会磨损或者破裂;所有指定的组件都已经在出厂前完全地固定,选择光学平台配置可参照USB2000+光学平台可选配置。探测器选件USB2000+光谱仪采用Sony ILX511 2048元线性CCD阵列探测器。为了使USB2000+适合您的应用,您可以参考四种探测器选件;四种选件包含在探测器中只是用不同的镀膜技术和窗片。模块化设计当您购买了USB2000+光谱仪后,您可以方便的从海洋光学的生产线中寻找您所需要的光学附件。大多数的附件都采用SMA905的接口,您只要简单地旋出连接器就可以更换或添加采样附件,包括光源,样品池,滤光片,流通池,光纤探头,传感器,聚焦镜,衰减器,漫反射标准,积分球和光学衍生产品即插即用USB2000+光谱仪可通过USB2.0接口或RS-232串口连接到电脑,PLC和嵌入式系统中。当使用串口通讯时,需要5伏供电。每个光谱仪都有自己特有的参数存贮在光谱仪的内存中,通过光谱仪软件可以读出这些数据。串口操作当使用串口通讯时,需要5伏供电。光谱仪软件SpectraSuite并不提供串口的通讯,不过您可以通过串口指令集来编写您自己控制代码。
  • Phoenix photonics 全光纤结构可调波片
    全光纤结构可调波片产品介绍: 全光纤结构可调波片:筱晓光子全光纤结构的可调波片是一种小巧的,容易操作的全光纤结构的器件,可以在很宽的波长范围内工作.通过对器件引脚注入电流进行控制和改变器件内部的线性双折射,从而改变输入的偏振态.全光纤结构的可调波片可以在整个邦加球(Poincare Sphere)循环内改变光的输入偏振态.筱晓光子公司针对不同的应用领域提供了两种结构的全光纤可调波片:? 单模光纤输入,单模光纤输出型? 保偏光纤输入,保偏光纤输出型(集成光纤偏振器)产品特点:? 全光纤结构? 简单电流控制? Full cycle of Poincare Sphere? 低插入损耗? 高回波损耗应用领域:? 光纤传感领域? 偏振态扫描? 偏振控制? 器件测试? 光纤偏振仪单模光纤型可调波片这种光纤波片可以提供完整的邦加球(Poincare Sphere)循环,输出光纤产生的偏振态范围和输入偏振态相关. 如下图所示:保偏光纤型可调波片这种结构的光纤波片包含了一个光纤偏振器,偏振器被集成在波片的前端,并且和输入保偏光纤的慢轴对准.该光纤偏振器的作用是用来”净化”输入的线性偏振态,输出为保偏光纤.这种器件使得输出的偏振态能够覆盖整个大邦加球循环(the great circle on the Poincare sphere),输出光纤的偏振态可以被改变为左旋圆偏振(left circular),右旋圆偏振(right circular),和正交线性偏振态(orthogonal linear states). 如下图所示:技术指标的说明:1. 器件可以在整个波长范围内工作,长波长工作时需要较大的电流. 2. 保偏光纤型器件的插入损耗是假定输入偏振态光轴对准的插入损耗,不包括连接器.封装尺寸:所有器件的封转尺寸相同,但是可能有细微差别. 订货信息: 说明: 不是所有类型的器件都可以有下列的所有选择,请您在购买前与我们的销售人员联系以便确保您的需求能够得到满足.
  • 纺织品45度损毁面积及接焰次数测试一体机GBT 14645、ASTM D 1230、NFPA 702、CA TB 117 (2000)
    产品介绍泰思泰克纺织品45度损毁面积及接焰次数测试一体机根据最新版国标GBT14645设计制造;适用于纺织织物在45°状态下燃烧时,测定其损毁面积和损毁长度或测定受热熔至规定长度时接触火焰次数。并且可以根据燃烧方法评估耐火材料对耐火执行标准的符合性,测量以 45 度角安装的试样的余晖和完全燃烧的燃烧特性。45度燃烧测试仪测量完全燃烧的时间和静态烟雾的余晖时间,平面放置的试样接收一些辐射热,并在腔室中产生固定的热量。 标准? ASTM D 1230: 加拿大面料最低燃烧测试标准? NFPA 702: 美国加州医院服装和床上用品面料阻燃标准 ? CA TB 117 (2000):合成材料(Section C)阻燃测试标准GB/T14645-1993《纺织织物燃烧性能45°方向损毁面积和接焰次数测定》 特点:结构共同部分:? 钣金喷漆处理,美观大方,耐腐蚀;? 耐热玻璃门易于观察内部试验状态。? 内部工装均有不锈钢材质制成;? 提供或者切断电源的电源开关? 开始测试的启动开关? 箱顶级箱边均有6个通风孔;? 做不同实验需更换试样夹;? 进口流量调节阀,精确控制火焰高度;? 进口品牌压力表及压力调节阀;损毁面积测试部分:?带针阀转子流量计调节火焰高度;火焰高度:45±2m? 完全燃烧时间:计数器显示余晖的时间,分辨率0.1s? 余晖时间:计数器显示完全燃烧的时间,分辨率0.1s? 火焰蔓延时间:设定试样着火的时间(火焰蔓延时间)? 把计数器设置为“0”的复位开关? 温度显示范围及精度:0~90±1℃? 进口品牌压力表及调压阀,可显示燃气压力? 用于停止余晖时间的完全燃烧停止开关? 用于停止完全燃烧时间的余晖停止开关? 求积仪为选配 ? 气源:工业用丙烷或丁烷及液化石油气;客户自备;气体纯度:≥95%;接焰测试部分:? 箱内试样架45度放置;? 计时器 精度0.1s;自动计时;? 计数器;自动记录接焰次数;? 试样架由0.5mm硬质不锈钢丝绕成内径为10mm的螺线圈;? 气体喷灯无空气进口;可用丁烷或丙烷气体,燃气出口0.2mm,喷火口6.4mm ? 气体流量:0~1000ml/min? 电子点火;计时数显。设备规格:? 设备外形尺寸:长×宽×高(750(W) x 300(D) x 900(H)mm;? 设备重量:50 Kg。 ? 工作电压:AC220V±10V;规格机型TTech-GBT14645-1尺寸750(W) x 300(D) x 900(H)mm电源AC 220V, 50/60Hz, 5A重量30 kg说明书提供焰高标尺一只试样夹两副
  • 红外空芯光纤
    红外空芯光纤,中空光纤,空心光纤由中国领先而专业的进口激光器件和仪器旗舰型服务商-孚光精仪进口销售!精通光学,服务科学,为中科院上海光机所,安徽光机所,西安光机所,中国工程物理研究院,哈尔滨工业大学等单位进口空心光纤。这款美国进口的红外空芯光纤,中空光纤,空心光纤,Hollow Fiber,质量好,发货快。这款红外空芯光纤,中空光纤,空心光纤,Hollow Fiber由中空玻璃管镀银制造而成,具有超高的传输效率。红外空芯光纤,中空光纤,空心光纤配置:单模: 高光束质量≥ 8 μm 多模: 低损耗 ≥ 3 μm光纤束:用于 红外成像/信号采集红外空芯光纤,中空光纤,空心光纤产品特色:优秀的中红外波段透过率( 3 μm-- 8 μm)高斯光束传导方便,高效的光束耦合高损伤阈值坚固耐用无端面反射-减少激光反馈无包层膜-减少系统噪音红外空芯光纤,中空光纤,空心光纤应用:光束耦合,光束准直,光束 聚焦,信号采集,红外成像(光纤束)红外空芯光纤,中空光纤,空心光纤技术参数:PropertySingle-ModeMulti-ModeCommentsBore Diameter300 μm700 μmOther sizes available upon requestStaight Loss / Length1 dB/m0.1 dB/mMeasured at λ = 10.6 μmTypical Bending Loss0.3 dB0.3 dBMeasured for 90 deg bend with radius = 0.25 mSpectral Range6 to 16 μm3 to 16 μmCan be optimized for different rangesNumerical Aperture0.0350.015Value at λ = 9 μmCoupling Efficiency 90 % 90 %Using NA-matched opticsPower Rating30 W100 WHigher power possible with cooling红外空芯光纤,中空光纤,空心光纤技术参数: Property Single-Mode Multi-Mode Comments Bore Diameter 300 µ m 700 µ m Other sizes available upon request Staight Loss / Length 1 dB/m 0.1 dB/m Measured at &lambda = 10.6 µ m Typical Bending Loss 0.3 dB 0.3 dB Measured for 90 deg bend with radius = 0.25 m Spectral Range 6 to 16 µ m 3 to 16 µ m Can be optimized for different ranges Numerical Aperture 0.035 0.015 Value at &lambda = 9 µ m Coupling Efficiency 90 % 90 % Using NA-matched optics Power Rating 30 W 100 W Higher power possible with cooling
  • 微型光谱仪/光纤光谱仪
    筱晓光子供应微型光谱仪,具体结构紧凑、性能可靠、应用广泛的特点,可以加配光源、光纤、探头等附件,搭配成各种测量系统,包括:吸光度测量、反射测量、透射测量、辐射测量、荧光测量、化学发光测量、光致发光测量等。该系列微型光谱仪具有2年质保期,如非人为因素损坏,免费更换全新产品。ScanSpec UV:200-600nm 波长范围(300nm 闪耀波长),2.5nm 分辨率(50um 狭缝),1ms-30s 积分时间。ScanSpec UV-VIS:250-800nm 波长范围(400nm 闪耀波长),2.5nm 分辨率(50um 狭缝),1ms-30s 积分时间。ScanSpec VIS:400-850nm 波长范围(500nm 闪耀波长),2.5nm 分辨率(50um 狭缝),1ms-30s 积分时间。ScanSpec VIS-NIR:500-1000nm 波长范围(750nm 闪耀波长),2.5nm 分辨率(50um 狭缝),1ms-30s 积分时间。相关产品
  • 混合接头单模光纤跳线
    混合接头单模光纤跳线特性混合接头单模光纤跳线,用于305 nm - 2300 nm波段信号传输FC/PC转FC/APC,或FC/PC转SMA接头可选窄键FC/PC和FC/APC接头提供定制跳线Thorlabs的混合接头单模光纤跳线带FC/PC转FC/APC或FC/PC转SMA接头。这些跳线简化了光纤应用中的接头连接。FC/PC和FC/APC接头经过高质量的机械抛光,具有50 dB以上的回波损耗,而SMA接头则是经过手工抛光,保证了zui佳的插芯高度公差(0.3860英寸到0.3863英寸)。所有跳线都带有一个?3 mm的FT030-Y保护套,以及两个保护帽,可防止插芯末端不受灰尘和其它污染物的污染。我们还单独出售用于FC/PC和FC/APC末端的CAPF保护帽以及带金属螺纹的CAPFM保护帽。此外,我们还出售CAPM橡胶光纤保护帽和SMA端口的CAPMM金属螺纹光纤保护帽。我们还提供匹配套管,它可连接FC转FC,SMA转SMA,和FC转SMA的接头。这些匹配套管能将背反射降到zui少,并保证光纤纤芯对准。对于更短波长,Thorlabs还提供低插入损耗的光纤跳线,它们是手挑的单模光纤,更紧致的纤芯,以提供低插入损耗和高透射率。我们还提供镀增透膜单模跳线,在光纤到自由空间的应用中提供更好的性能。如果您不能在我们的库存中找到适合您应用的光纤,Thorlabs还提供定制光纤跳线服务,可以在下单当日发货。Stocked SM Patch Cables Selection GuideStandard CablesFC/PC to FC/PCFC/APC to FC/APCHybridAR-Coated Patch CablesTEC AR-CoatedHR CoatedBeamsplitter CoatedLow Insertion LossMIR Fluoride Fiber规格:Item #P5-305A-PCAPC-1P5-405B-PCAPC-1 P2-405B-PCSMA-1P5-460B-PCAPC-1 P2-460B-PCSMA-1P5-630A-PCAPC-1 P2-630A-PCSMA-1P5-780A-PCAPC-1 P2-780A-PCSMA-1FiberSM300SM400SM450SM600780HPOperatig Wavelength320 - 430 nm405 - 532 nm488 - 633 nma633 - 780 nmb780 - 970 nmCutoff Wavelength≤ 310 nm305 - 400 nm350 - 470 nma500 - 600 nm730 ± 30 nmMode Field Diameter (MFD)c2.0 - 2.4 μm @ 350 nm2.5 - 3.4 μm @ 480 nm2.8 - 4.1 μm @ 488 nm3.6 - 5.3 μm @ 633 nm5.0 ± 0.5 μm @ 850 nmCladding Diameter125 ± 1.0 μm125 ± 1.0 μm125 ± 1.0 μm125 ± 1.0 μm125 ± 1 μmCoating Diameter245 ± 15 μm245 ± 15 μm245 ± 15 μm245 ± 15 μm245 ± 15 μmAttenuation (Max)d≤ 70 dB/km @ 350 nm≤ 50 dB/km @ 430 nm ≤ 30 dB/km @ 532 nm≤ 50 dB/km @ 488 nm≤ 15 dB/km @ 633 nm 3.2 dB/km @ 850nmNA0.12 - 0.140.12 - 0.140.10 - 0.140.10 - 0.140.13Return LosseFC/PC Connectors: 50 dB Typical (40 dB Min) FC/APC Connectors: 60 dB TypicalInsertion Loss (Typ.)(FC/PC and FC/APC Connectors)f3.0 dB Loss (Connector to Connector) @ 375 nm2.5 dB Loss (Connector to Connector) @ 405 nm2.5 dB Loss (Connector to Connector) @ 488 nm2.0 dB Loss (Connector to Connector) @ 633 nm1.5 dB Loss (Connector to Connector) @ 780 nmConnectorsgFC/PC to FC/APC (30126C3 to 30126A3)P5: FC/PC to FC/APC (30126C3 to 30126A3)P2: FC/PC to SMA (30126C3 to 10125A)Length1 mProtective Jacketing?3 mm, Yellow FT030-Y光纤是手选的,以确保更高的截止波长。对于截止波长附近的单模操作,需要考虑发射条件。波长范围是说明性的,且无法保证。MFD是标称的计算值,在工作波长下估算得出。衰减度针对的是裸纤。回波损耗针对无端接头而定义。例如,如果您的光源连接到FC/PC端,您的回波损耗将为FC/APC测量值的60 dB。插入损耗不针对SMA接头,因为它们在光纤和光纤连接中具有空气间隔,这会造成更多背向反射。所有FC/PC和FC/APC接头带一个2.0 mm窄键。Item #P5-305A-PCAPC-1P5-405B-PCAPC-1 P2-405B-PCSMA-1P5-460B-PCAPC-1 P2-460B-PCSMA-1 P5-630A-PCAPC-1 P2-630A-PCSMA-1P5-780A-PCAPC-1 P2-780A-PCSMA-1FiberSM300SM400SM450SM600780HPOperatig Wavelength320 - 430 nm405 - 532 nm488 - 633 nma633 - 780 nmb780 - 970 nmCutoff Wavelength ≤ 310 nm305 - 400 nm350 - 470 nma500 - 600 nm730 ± 30 nmMode Field Diameter (MFD)c2.0 - 2.4 μm @ 350 nm2.5 - 3.4μm @ 480 nm2.8 - 4.1 μm @ 488 nm3.6 - 5.3 μm @ 633 nm5.0 ± 0.5 μm @ 850 nmCladding Diameter125 ± 1.0 μm125 ± 1.0 μm125 ± 1.0 μm125 ± 1.0 μm125 ± 1 μmCoating Diameter245 ± 15 μm245 ± 15 μm245 ± 15 μm245 ± 15 μm245 ± 15μmAttenuation (Max)d≤ 70 dB/km @ 350 nm≤ 50 dB/km @ 430 nm ≤ 30 dB/km @ 532 nm≤ 50 dB/km @ 488 nm≤ 15 dB/km @ 633 nm 3.2 dB/km @ 850nmNA0.12 - 0.140.12 - 0.140.10 - 0.140.10 - 0.140.13Return LosseFC/PC Connectors: 50 dB Typical (40 dB Min) FC/APC Connectors: 60 dB TypicalInsertion Loss (Typ.)(FC/PC and FC/APC Connectors)f3.0 dB Loss (Connector to Connector) @ 375 nm2.5 dB Loss (Connector to Connector) @ 405 nm2.5 dB Loss (Connector to Connector) @ 488 nm2.0 dB Loss (Connector to Connector) @ 633 nm1.5 dB Loss (Connector to Connector) @ 780 nmConnectorsgFC/PC to FC/APC (30126C3 to 30126A3)P5: FC/PC to FC/APC (30126C3 to 30126A3)P2: FC/PC to SMA (30126C3 to 10125A)Length1 mProtective Jacketing?3 mm, Yellow FT030-Y 波长范围是说明性的,且无法保证。MFD是标称的计算值,在工作波长下估算得出。衰减度针对的是裸纤。SM2000光纤的衰减度非常依赖于波长。插入损耗不针对SMA接头,因为它们在光纤和光纤连接中具有空气间隔,这会造成更多背向反射。插入损耗不针对SMA接头,因为它们在光纤和光纤连接中具有空气间隔,这会造成更多背向反射。所有FC/PC和FC/APC接头带一个2.0 mm窄键。键槽对准FC/PC和FC/APC跳线键槽对准FC/PC和FC/APC跳线带有2.0 mm窄键或2.2mm宽键,可以插入匹配元件对应的槽中。键槽对准对于正确对齐所连光纤跳线的纤芯至关重要,能够zui大程度地减少连接的插入损耗。 例如,Thorlabs精心设计和制造用于FC/PC和FC/APC终端跳线的匹配套管,以确保正确使用时能够实现良好的对准。为了达到zui佳对准,需将跳线上的对准键插入对应匹配套管上的槽中。Thorlabs提供带有2.2 mm宽键槽或2.0 mm窄键槽的匹配套管。宽键槽匹配套管2.2 mm宽键槽匹配套管兼容宽键和窄键接头。但是,将窄键接头插入宽键槽时,接头可在匹配套管内轻微旋转(如左下方的动画所示)。这种配置对于FC/PC接头的跳线是可以接受的,但对于FC/APC应用,我们还是建议使用窄键槽匹配套管,以实现zui优对准。窄键槽匹配套管2.0 mm窄键槽匹配套管能够实现带角度窄键FC/APC接头的良好对准,如右下方的动画所示。因此,它们不兼容具有2.2 mm宽键的接头。请注意,Thorlabs制造的所有FC/PC和FC/APC跳线都使用窄键接头。宽键匹配套管和接头之间的匹配窄键匹配套管和接头之间的匹配 宽键槽匹配套管和窄键接头窄键接头插入宽键槽匹配套管之后,接头还有旋转空间。对于窄键FC/PC接头而言,这一点可以接受,但对于窄键FC/APC接头而言,这会产生很大的耦合损耗。 激光诱导的光纤损伤以下教程详述了无终端(裸露的)、有终端光纤以及其他基于激光光源的光纤元件的损伤机制,包括空气-玻璃界面(自由空间耦合或使用接头时)的损伤机制和光纤玻璃内的损伤机制。诸如裸纤、光纤跳线或熔接耦合器等光纤元件可能受到多种潜在的损伤(比如,接头、光纤端面和装置本身)。光纤适用的zui大功率始终受到这些损伤机制的zui小值的限制。虽然可以使用比例关系和一般规则估算损伤阈值,但是,光纤的jue对损伤阈值在很大程度上取决于应用和特定用户。用户可以以此教程为指南,估算zui大程度降低损伤风险的安全功率水平。Quick LinksDamage at the Air / Glass InterfaceIntrinsic Damage ThresholdPreparation and Handling of Optical Fibers空气-玻璃界面的损伤空气/玻璃界面有几种潜在的损伤机制。自由空间耦合或使用光学接头匹配两根光纤时,光会入射到这个界面。如果光的强度很高,就会降低功率的适用性,并给光纤造成yong久性损伤。而对于使用环氧树脂将接头与光纤固定的终端光纤而言,高强度的光产生的热量会使环氧树脂熔化,进而在光路中的光纤表面留下残留物。 损伤的光纤端面未损伤的光纤端面裸纤端面的损伤机制多模(MM)光纤的有效面积由纤芯直径确定,一般要远大于SM光纤的MFD值。如要获得zui佳耦合效果,Thorlabs建议光束的光斑大小聚焦到纤芯直径的70 - 80%。由于多模光纤的有效面积较大,降低了光纤端面的功率密度,因此,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到多模光纤中。 Estimated Optical Power Densities on Air / Glass InterfaceaTypeTheoretical Damage ThresholdbPractical Safe LevelcCW(Average Power)~1 MW/cm2~250 kW/cm210 ns Pulsed(Peak Power)~5 GW/cm2~1 GW/cm2确定具有多种损伤机制的功率适用性曲线图展现了带终端的单模石英光纤的大概功率适用水平。每条线展示了考虑具体损伤机制估算的功率水平。zui大功率适用性受到所有相关损伤机制的zui低功率水平限制(由实线表示)。混合接头单模光纤跳线,320 - 430 nmItem #ConnectorsFiberTypeOperatingWavelengthCutoffWavelengthMode FieldDiameterCladdingDiameterMaxAttenuationaNAJacketP5-305A-PCAPC-1FC/PCtoFC/APCSM300320 - 430 nm≤310 nm2.0- 2.4 μm @ 350 nm125 ± 1.0 μm≤70 dB/km @ 350 nm0.12-0.14FT030-Yzui大衰减度数据针对的是裸纤。产品型号公英制通用P5-305A-PCAPC-1单模光纤跳线,320 - 430 nm,FC/PC转FC/APC,1米长 混合接头单模光纤跳线,405 - 532 nmItem #ConnectorsFiber TypeOperating WavelengthCutoff WavelengthMode Field DiameterCladding DiameterMax AttenuationaNAJacketP5-405B-PCAPC-1FC/PC to FC/APCSM400405 - 532 nm305 - 400 nm2.5 - 3.4 μm @ 480 nm125 ± 1.0 μm≤50 dB/km @ 430 nm ≤30 dB/km @ 532 nm0.12 - 0.14FT030-YJacketP5-630A-PCAPC-1FC/PC to FC/APCSM600633 - 780 nma500 - 600 nm3.6 - 5.3 μm @ 633 nm125 ± 1.0 μm
  • 全光纤麦克尔逊干涉仪MFI
    全光纤迈克逊干涉仪-MFI Michelson Fiber Interferometer产品介绍:量青光电提供的美国Optiphase公司全光纤迈克逊干涉仪(Fiber Michelson Interferometer)不但可以用来作为精密的测试测量仪器,还可以应用在精密的干涉传感系统。光纤干涉仪内部采用PZ1小尺寸光纤拉伸器(参见 PZ1光纤拉伸器产品资料),内置的PZT通过前面板的BNC连接器驱动。全 光纤迈克逊干涉仪标准产品的工作波长从1064nm到1550nm。每个光纤干涉仪都具有“零米”光路偏差的设计,用于方便用户根据不同的测试应用来改变 光路延迟长度。标准产品的延迟光纤长度为50米,我们能够根据用户的实际要求提供各种定制的光纤干涉仪,请联系我们的销售人员.产品参数:参数单位指标产品型号MFI-10-50MFI-13-50MFI-15-50工作波长nm106413101550调制常数rad/V2.52.01.6两臂光路失配长度(无延迟)m0m0m0m两臂光路失陪长度偏差cm+/-10cm+/-10cm+/-10cm调制器接口BNCBNCBNC光纤类型HI-1060(或指定)SMF-28eSMF-28e光路接口FC/APCFC/APC FC/APC最大功率承受能力mW250250250封装尺寸(长x宽x高)mm260x160x90260x160x90260x160x90重量kg~2.7~2.7~2.7可定制的延迟范围m0.5m ~1000m标准产品的延迟长度m50光纤连接器FC/APC产品应用:激光器相位噪声测试激光器频率噪声测试干涉型光纤传感系统模拟科研实验室应用应用列举:1. 激光器相位/频率噪声测试(1)被测试的激光器经过衰减器后输入到光纤干涉仪,干涉仪的光路失配(光路差)可以由用户选择采用或者控制延迟线圈(延迟线圈)来设定。OPD-4000解调输 出电压应用到PZ1光纤拉伸器的BNC接口上,作为PZ1光纤拉伸器的驱动电压。OPD-4000的相位解调输出可以选择数字信号输出或者模拟信号输出, 数字信号输出通过PC进行后续处理,模拟信号通过信号分析仪进行分析。2. 激光器相位/频率噪声测试(2)被测试的激光器经过衰减器后输入到光纤干涉仪,干涉仪的光路失配(光路差)可以由用户选择采用或者控制延迟线圈(延迟线圈)来设定。通过为PZ1型光纤拉伸 器BNC接口提供控制电压保持其处于正交偏置(Quadrature Bias)。输出光信号由光接收机接收处理,输出信号进一步处理。3.光纤干涉仪传感器模拟(3)输入光信号代表干涉型光纤传感器的光源。选择合适的延迟光纤线圈,延迟长度作为需要模拟的传感器的长度。输出光信号通过光接收器件到信号分析仪进行处理分析。订货信息:MFI-10-50: 1064nm光纤迈克逊干涉仪MFI-13-50: 1310nm光纤迈克逊干涉仪MFI-15-50: 1550nm光纤迈克逊干涉仪
  • NanoSpeed 2X2 光纤光开关
    \本系列其它产品型号 共2条 名称货号货期 描述参数1064nm 2x2 纳秒级超快光开关 保偏NSSW-22-1-11-9-3-2-3-D100A80171166工作波长:1064nm; 光纤类型:PM980; 900um松套管; 0.5m尾纤; 接头类型:FC/APC; 驱动重复频率:100kHz;中心波长: 1064nm NanoSpeed 2X2 光纤光开关 1550nm 单模NSSW-22-5-1-1-1-3-1-1 货号无工作波长:1550nm;插入损耗:0.8dB;串扰 :25dB;偏振相关损耗PDL: 0.15dB;回波损耗:50 dB;SMF-28 ;900um Tube;无连接器中心波长: 1550nm 总览NS系列2x2固态光纤光开关通过将传入的光信号重定向到选定的输出光纤中来连接光通道。这是通过使用具有不一样电光设计的**非机械配置实现的,无需机械运动和有机材料。NS光纤交换机旨在满足最苛刻的切换要求,即超高可靠性、快速响应时间和连续切换操作。该开关本质上是双向的,可选择与偏振无关或由光纤类型保持偏振。5V TTL信号通过专门设计的电子驱动器控制NS系列开关,该驱动器具有针对各种重复率优化的性能。上升/下降时间本质上与晶体特性有关,重复率与驱动器有关。由于到设备谐振。NS设备出厂时安装在经过调整的驱动程序上。NS系列开关以从DC到MHz的频率以任意定时响应控制信号。开关通常在装运前安装在调谐驱动器上。电功率消耗与开关操作的重复频率有关。双级配置增加了消光比或串扰值。NanoSpeed 2X2 光纤光开关,NanoSpeed 2X2 光纤光开关产品特点固体高速 超高可靠性低插入损耗 结构紧凑产品应用光阻断可配置检测通用参数参数Min. 值典型值Max. 值单位插入损耗[1]1260-1650nm0.81.2dB960-1260nm1.01.3dB串扰[2]182535dB耐久性1014 cyclesPDL(只限单模)0.150.3dBER(只限保偏)1825dBIL温度相关性0.250.5dB回波损耗455060dB响应时间(上升,下降)300ns光纤类型SMF-28, Panda PM, or equivalent驱动器重复率100kHz驱动DC100kHz300kHz驱动DC300kHz光功率[3]300mW工作温度-570℃储存温度-4085℃注意[1] 在没有连接器的情况下测量。其他波长请联系我们。[2] ±25nm,串扰在100kHz下测量,在高重复率下可能会降级。[3] 在1310nm/1550nm处。警告:这是为系统集成而设计的OEM模块。请勿用手触摸PCB。即使没有电源插头,静电打坏芯片。还可能会受到电击。为了实验室使用,请购买用户友好系统。 典型的速度响应测量典型带宽测量光路运行表格光路TTL信号Port 1 → Port 3, Port 2 → Port 4L ( 0.8V)Port 1 → Port 4, Port 2 → Port 3 H ( 3.5V) 驱动板选择Max. 重复率型号(P/N)100kHzNSSW100ns100kHzD300kHzNSSW100ns300kHzD注意:对于希望自行设计驱动电路的客户,他们需要对光学性能负责。如需了解更多技术信息,请联系我们。 光纤芯对齐请注意,这些设备的Min. 衰减取决于连接器匹配时出色的芯线对芯对准。这对于具有较小纤芯直径的较短波长至关重要,如果纤芯直径没有完全对准,则会增加超过规范的许多分贝的损耗。不同供应商的连接器可能无法很好地相互配合,尤其是对于倾斜APC。光纤清洁度纤芯直径较小(5μm)的光纤必须保持非常清洁,光纤界面的污染,再加上高光功率密度,可能会导致严重的光学损伤。这种类型的损坏通常需要重新抛光或更换连接器。Max. 光输入功率由于其短波长和高光子能量的小纤芯直径,与普通1550nm光纤相比,器件的损伤阈值显著降低。为了避免损坏暴露的光纤端面和内部组件,对于波长较短的650nm,光输入功率不应超过20mW。我们生产了一种特殊的版本,通过扩展光纤端部的芯侧来增加处理能力。 Q & A问:NS 器件会随时间和温度漂移吗?答:NS 设备基于电子光学晶体材料,在一定范围内会受到环境变化的影响。器件的插入损耗只受热膨胀引起的错位影响。为了提高工作温度,我们提供-40 -100 0C 的特殊封装。该器件的消光值或串扰值受许多 EO 材料特性的影响,包括随温度变化的双折射、Vp、温度梯度、光功率、共振点(电子)。然而,设备的设计要满足规格表中规定的Min. 消光/串扰值。重要的是要避免沿着器件长度的温度梯度。Q: 设备上的实际施加电压是多少?A: 100至400V,具体取决于型号。Q: 设备是如何工作的?A: NS器件不是基于马赫-曾德干涉,而是双折射晶体的自然光束位移,在这种位移中,晶体为具有不同偏振方向的光束创建了两条不同的路径。Q:更快运行的限制是什么?A:经测试,NS 器件的光学响应速度约为 300 ps。但是,实际应用限制了响应速度。在部分消光值下运行时,有可能实现更快的响应速度。我们还提供 20MHz 以上的低功耗谐振器件。 操作手册1.将控制信号连接到PCB上的SMA连接器。2.连接附带的电源(通常是墙上可插拔的单元)。3.然后设备应能正常工作。注意:请勿更改设备出厂设置。单模光纤的光功率处理与波长尺寸图300kHz驱动器机械图(mm)订购信息1.有关较短波长,请参阅高级NS交换机注意:PM1550光纤适用于1310nm公司简介筱晓(上海)光子技术有限公司成立于2014年,是一家被上海市评为高新技术企业和拥有上海市专精特新企业称号的专业光学服务公司,业务涵盖设备代理以及项目合作研发,公司位于大虹桥商务板块,拥有接近2000m² 的办公区域,建有500平先进的AOL(Advanced Optical Labs)光学实验室,为国内外客户提供专业技术支持服务。公司主要经营光学元件、激光光学测试设备、以及光学系统集成业务。十年来,依托专业、强大的技术支持,以及良好的商务支持团队,筱晓的业务范围正在逐年增长。目前业务覆盖国内外各著名高校、顶级科研机构及相关领域等诸多企事业单位。筱晓拥有一支核心的管理团队以及专业的研发实验室,奠定了我们在设备的拓展应用及自主研发领域坚实的基础。主要经营激光器/光源半导体激光器(DFB激光器、SLD激光器、量子级联激光器、FP激光器、VCSEL激光器)气体激光器(HENE激光器、氩离子激光器、氦镉激光器)光纤激光器(连续激光器、超短脉冲激光器)光学元件光纤光栅滤波器、光纤放大器、光学晶体、光纤隔离器/环形器、脉冲驱动板、光纤耦合器、气体吸收池、光纤准直器、光接收组件、激光控制驱动器等各种无源器件激光分析设备高精度光谱分析仪、自相关仪、偏振分析仪,激光波长计、红外相机、光束质量分析仪、红外观察镜等光纤处理设备光纤拉锥机、裸光纤研磨机
  • 单模光纤跳线,FC/PC接头
    单模光纤跳线,FC/PC接头特点:?传输波长从320到2300 nm的单模光纤跳线?两端均为FC/PC 2.0 mm窄插销接头?低背向反射(高回损): 50 dB(典型值)?每根光纤都单独测试?库存现货?附带两个防尘帽Thorlabs提供两端均为FC/PC接头的单模光纤跳线。每根跳线都是Thorlabs使用zuixian进的设备自主生产的,并单独测试以确保在光纤对光纤连接具有低背向反射(高回波损耗)。这些库存现货光纤跳线使用?3 mm PVC保护套,内部有凯夫拉纤维,确保在实验室的耐用性。每根跳线都包含两个保护帽,防止灰尘或其它污渍落在插芯端面。我们也单独销售用于FC/PC光纤接头的CAPF塑料防尘帽和CAPFM金属螺纹防尘帽。匹配套管可以连接FC和FC或者FC和SMA接头。这些匹配套管具有极小的背向反射,并且确保光纤端面纤芯的对准。对于更短波长,Thorlabs还提供低插入损耗光纤跳线,这些挑选出来的单模具有更严格的纤芯同心度,所以能提供更低的插入损耗和更高的透射率。我们还提供镀增透膜的单模跳线,其中一个光纤端面镀有增透膜,能在光纤到自由空间的应用中提供更好的性能。如果您没有在我们的库存产品中找到适合您应用的光纤跳线,Thorlabs还提供定制光纤跳线,zui快可以在下单当日发货。Stock Single Mode Patch Cables Selection GuideStandard CablesFC/PC to FC/PCFC/APC to FC/APCHybridAR-Coated Patch CablesThermally-Expanded-Core (TEC) Patch CablesHR-Coated Patch CablesBeamsplitter-Coated Patch CablesLow-Insertion-Loss Patch CablesMIR Fluoride Fiber Patch Cables规格:Item #P1-305A-FCP1-405B-FCP1-460B-FCP1-630A-FCP1-780A-FCFiberSM300SM400 SM450SM600780HPOperating Wavelength320 - 430 nm405 - 532 nm488 - 633 nma633 - 780 nmb780 - 970 nmCutoff Wavelength≤ 310 nm305 - 400 nm350 - 470 nma500 - 600nm730 ± 30 nm Mode Field Diameter(MFD)c2.0 - 2.4 μm @ 350 nm2.5 - 3.4 μm @ 480 nm2.8 - 4.1 μm @ 488 nm3.6 - 5.3 μm @ 633 nm5.0 ± 0.5 μm@ 850 nmCladding Diameter 125 ± 1.0 μm125 ± 1.0 μm125 ± 1.0 μm125 ± 1.0 μm125 ± 1 μmCoating Diameter245 ± 15 μm245 ± 15 μm 245 ± 15 μm245 ± 15 μm245 ± 15 μmAttenuation (Max)d≤ 70 dB/km @ 350 nm≤ 50 dB/km @ 430 nm≤ 30 dB/km @ 532 nm≤ 50 dB/km @ 488 nm ≤ 15 dB/km@ 633 nm 3.5 dB/km@ 780 nmNA0.12 - 0.140.12 - 0.140.10 - 0.140.10 - 0.140.13Insertion Loss(Typical)3.0 dB Loss (Connector to Connector) @ 375 nm2.5 dB Loss (Connector to Connector) @ 405 nm2.5 dB Loss (Connector to Connector) @ 488 nm2.0 dB Loss (Connector to Connector) @ 633 nm1.5 dB Loss (Connector to Connector) @ 780 nmReturn Loss50 dB Typical (40 dB Min)ConnectorsFC/PC Narrow Key (2.0 mm) on Both Ends30126C3Lengthe1 m (for items ending in -1)2 m (for items ending in -2)5 m (for items ending in -5)10 m (for items ending in -10)Protective Jacketing?3 mm, YellowFT030-Ya挑选的光纤确保更高的截止波长。在截止波长附近的单模工作需要考虑耦合条件。b波长范围仅供参考并不能保证。cMFD是在工作波长下的标称计算值。d衰减度是指无接头光纤的规格。e并非所有类型的光纤跳线都可选所有长度,如需定制长度请见定制跳线页面。Item #P1-830A-FCP1-980A-FCP1-SMF28E-FCP1-1550A-FCP1-2000-FC-2FiberSM800-5.6-125SM980-5.8-125SMF-28 Ultra1550BHPSM2000Operating Wavelength 830 - 980 nm980 - 1550 nma1260 - 1625 nm1460 - 1620 nm1700 - 2300 nmCutoff Wavelength660 - 800 nm870 - 970 nm 1260 nm1400 ± 50 nm1700 nmMode Field Diameter(MFD)b4.7 - 6.9 μm @ 830 nm5.3 - 6.4 μm @ 980 nm9.2 ± 0.4 μm @ 1310 nm10.4 ± 0.5 μm @ 1550 nm9.5 ± 0.5 μm@ 1550 nm13 ± 1 μm @ 1996 nmCladding Diameter125 ± 1.0 μm125 ± 1.0 μm125 ± 0.7 μm125 ± 1.0 μm125 ± 1 μmCoating Diameter245 ± 15 μm245 ± 15 μm245 ± 5 μm250 ± 15 μm250 ± 15 μmAttenuation(Max)c5 dB/km@ 830 nm≤ 2.0 dB/km≤0.32 dB/km @ 1310 nm≤0.18 dB/km @ 1550 nm0.5 dB/km @ 1550 nm20 dB/km @ 1900 nmd(Typical)250 dB/km @ 2300 nmd(Typical)NA0.10 - 0.140.13 - 0.150.140.13 0.11Insertion Loss(Typical)1.5 dB Loss (Connector to Connector) @ 830 nm1.0 dB Loss (Connector to Connector) @ 980 nm0.7 dB Loss (Connector to Connector) @ 1064 nm0.3 dB Loss (Connector to Connector) @ 1310 nm0.3 dB Loss (Connector to Connector) @ 1550 nm0.3 dB Loss (Connector to Connector) @ 2000 nmReturn Loss50 dB Typical (40 dB Min)ConnectorsFC/PC Narrow Key (2.0 mm) on Both Ends30126C3Lengthe1 m (for items ending in -1)2 m (for items ending in -2)5 m (for items ending in -5)10 m (for items ending in -10)Protective Jacketing?3 mm, YellowFT030-Ya波长范围仅供参考并不能保证。 bMFD是在工作波长下的标称计算值。c衰减度是指无接头光纤的规格。dSM2000光纤的衰减系数与波长高度相关。e并非所有类型的光纤跳线都可选所有长度,如需定制长度请见定制跳线页面。 键槽对准FC/PC和FC/APC跳线键槽对准FC/PC和FC/APC跳线带有2.0 mm窄键或2.2mm宽键,可以插入匹配元件对应的槽中。键槽对准对于正确对齐所连光纤跳线的纤芯至关重要,能够zui大程度地减少连接的插入损耗。例如,Thorlabs精心设计和制造用于FC/PC和FC/APC终端跳线的匹配套管,以确保正确使用时能够实现良好的对准。为了达到zui佳对准,需将跳线上的对准键插入对应匹配套管上的槽中。Thorlabs提供带有2.2 mm宽键槽或2.0 mm窄键槽的匹配套管。宽键槽匹配套管 2.2 mm宽键槽匹配套管兼容宽键和窄键接头。但是,将窄键接头插入宽键槽时,接头可在匹配套管内轻微旋转(如左下方的动画所示)。这种配置对于FC/PC接头的跳线是可以接受的,但对于FC/APC应用,我们还是建议使用窄键槽匹配套管,以实现zui优对准。窄键槽匹配套管 2.0 mm窄键槽匹配套管能够实现带角度窄键FC/APC接头的良好对准,如右下方的动画所示。因此,它们不兼容具有2.2 mm宽键的接头。请注意,Thorlabs制造的所有FC/PC和FC/APC跳线都使用窄键接头。宽键匹配套管和接头之间的匹配窄键匹配套管和接头之间的匹配 宽键槽匹配套管和窄键接头 窄键接头插入宽键槽匹配套管之后,接头还有旋转空间。对于窄键FC/PC接头而言,这一点可以接受,但对于窄键FC/APC接头而言,这会产生很大的耦合损耗。 激光诱导的光纤损伤以下教程详述了无终端(裸露的)、有终端光纤以及其他基于激光光源的光纤元件的损伤机制,包括空气-玻璃界面(自由空间耦合或使用接头时)的损伤机制和光纤玻璃内的损伤机制。诸如裸纤、光纤跳线或熔接耦合器等光纤元件可能受到多种潜在的损伤(比如,接头、光纤端面和装置本身)。光纤适用的zui大功率始终受到这些损伤机制的zui小值的限制。虽然可以使用比例关系和一般规则估算损伤阈值,但是,光纤的jue对损伤阈值在很大程度上取决于应用和特定用户。用户可以以此教程为指南,估算zui大程度降低损伤风险的安全功率水平。如果遵守了所有恰当的制备和适用性指导,用户应该能够在指定的zui大功率水平以下操作光纤元件;如果有元件并未指定zui大功率,用户应该遵守下面描述的"实际安全水平"该,以安全操作相关元件。可能降低功率适用能力并给光纤元件造成损伤的因素包括,但不限于,光纤耦合时未对准、光纤端面受到污染或光纤本身有瑕疵。Quick Links Damage at the Air / Glass InterfaceIntrinsic Damage ThresholdPreparation and Handling of Optical Fibers空气-玻璃界面的损伤空气/玻璃界面有几种潜在的损伤机制。自由空间耦合或使用光学接头匹配两根光纤时,光会入射到这个界面。如果光的强度很高,就会降低功率的适用性,并给光纤造成yong久性损伤。而对于使用环氧树脂将接头与光纤固定的终端光纤而言,高强度的光产生的热量会使环氧树脂熔化,进而在光路中的光纤表面留下残留物。损伤的光纤端面未损伤的光纤端面裸纤端面的损伤机制Estimated Optical Power Densities on Air / Glass Interfacea TypeTheoretical Damage ThresholdbPractical Safe LevelcCW(Average Power)~1 MW/cm2~250 kW/cm210 ns Pulsed(Peak Power)~5 GW/cm2~1 GW/cm2a所有值针对无终端(裸露)的石英光纤,适用于自由空间耦合到洁净的光纤端面。b这是可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。用户在高功率下工作前,必须验证系统中光纤元件的性能与可靠性,因其与系统有着紧密的关系。c这是在大多数工作条件下,入射到光纤端面且不会损伤光纤的安全功率密度估算值。曲线图展现了带终端的单模石英光纤的大概功率适用水平。每条线展示了考虑具体损伤机制估算的功率水平。zui大功率适用性受到所有相关损伤机制的zui低功率水平限制(由实线表示)。单模光纤跳线,FC/PC,320 - 430 nm?光暗效应可忽略不计?双重丙烯酸酯涂敷层Fiber TypeOperating WavelengthCutoff WavelengthMode Field DiameterCladding DiameterCoating DiameterMaxAttenuationaNAConnectorsJacketSM300320 - 430 nm≤310 nm2.0- 2.4μm @ 350nm125±1.0μm245±15μm≤70 dB/km @ 350 nm0.12-0.14FC/PC, 2.0 mm Narrow Key30126C3?3 mmFT030-Yazui大衰减数据是针对无接头的光纤。产品型号公英制通用P1-305A-FC-1单模光纤跳线,1 m,320 - 450 nm,FC/PCP1-305A-FC-2单模光纤跳线,2 m,320 - 450 nm,FC/PC单模光纤跳线,FC/PC,405 - 532 nmFiber TypeOperatingWavelengthCutoffWavelengthMode FieldDiameterCladdingDiameterCoatingDiameterMaxAttenuationaNAConnectorsJacketSM400405 - 532 nm305 - 400nm2.5 - 3.4 μm @ 480 nm125 ± 1.0 μm245 ± 15μm≤50 dB/km @ 430 nm≤30 dB/km @ 532 nm0.12 - 0.14FC/PC, 2.0 mm Narrow Key30126C3?3 mmFT030-Yazui大衰减数据是针对无接头光纤。产品型号公英制通用P1-405B-FC-1 单模光纤跳线,1 m,488-633 nm,FC/PCP1-405B-FC-2单模光纤跳线,2 m,488-633 nm,FC/PCP1-405B-FC-5单模光纤跳线,5 m,488-633 nm,FC/PC单模光纤跳线,FC/PC,633 - 780 nm
  • 锥形光纤
    锥形光纤的制作方法有2种,一是通过将一段短锥形光纤熔融焊接到较长的光纤上二是通过极为复杂的工艺控制抽拉出连续长度的,一体均匀的锥形光纤。 Fiberguide采用第二种方法,优点是光纤强度较高,对中性较好,可传输更高功率。锥形光纤具有混模效应,使得光能空间分布更加均匀。输入端为大头端时可防止输入端损坏,而小头端的输出有更广泛的光学应用。锥形光纤与普通光纤比较,可作为被动光学元件,改变输入输出的光分布(数值孔径)。在高能激光耦合时锥形光纤会在较大区域上分布光强, 或在光学系统中作为一个器件调节配合误差。为实现最大透射率,进入锥形光纤的数值孔径应该是0.22除以锥形比。例如,入射核芯为400&mu ,出射核芯为200&mu ,锥形比为2,那么进入锥形光纤的数值孔径就是0.22/2,即0.11. 在需要均匀光源输出,高能聚焦时可以选择锥形光纤。
  • 光纤隔离器
    光纤隔离器 筱晓光子为客户提供单模,保偏,高功率的隔离器,最全的波长,特别的定制,较高的隔离度是我们对客户一如既往的承诺。 型号波长最大功率隔离度插入损耗偏振相关损耗消光比*回损光纤类型250-300 mW 偏振无关光纤隔离器IO-H-10641064 +20/-4 nm250 mW≥33 dB?1.4-2.0 dB≤0.20 dB?50 dBHI1060IO-H-13101310 ± 15 nm300 mW30-40 dB0.3-0.7 dB≤0.1 dB?60 dBSMF-28eIO-H-15501550 ± 15 nm300 mW30-40 dB0.3-0.7 dB≤0.1 dB?60 dBSMF-28e300 mW 偏振相关光纤隔离器IO-G-10641064 ± 10 nm300 mW30-38 dB?0.7-1.5 dB?20 dB50 dBPM 980/1064IO-G-13101310 ± 10 nm300 mW39-42 dB0.7-1.2 dB?24-30 dB≤55 dBPM 1300IO-G-15501550 ± 10 nm300 mW39-42 dB0.7-1.2 dB?24-30 dB≤55 dBPM 15502-5 W偏振无关光纤隔离器IO-F-780780 ± 10 nm2 W (CW)30-38 dB1.0-1.8 dB≤0.25 dB?50 dB780HPIO-F-850850 ± 10 nm2 W (CW)30-38 dB1.0-1.8 dB≤0.25 dB?50 dBSM800IO-F-980980 ± 10 nm2 W (CW)33-38 dB0.7-1.2 dB≤0.2 dB?50 dBSM 980/1060IO-F-1064 1064 ± 10 nm3 W (CW)33-38 dB0.7-1.3 dB≤0.20 dB?50 dBHI1060IO-F-13101310 ± 20 nm5 W (CW) 32-38 dB0.4-1.0 dB≤0.15 dB?55 dBSMF-28eIO-F-15501550 ± 20 nm5 W (CW)32-38 dB0.4-1.0 dB≤0.15 dB?55 dBSMF-28e3-5 W偏振相关光纤隔离器IO-J-980980 ± 10 nm3 W (CW)30-38 dB0.8-1.6 dB?20 dB50 dBPM 980/1064IO-J-10641064 ± 10 nm3 W (CW)32-38 dB0.6-1.3 dB?20 dB50 dBPM 980/1064IO-J-13101310 ± 10 nm5 W (CW)32-38 dB0.4-1.0 dB?20 dB55 dBPM 1300IO-J-15501550 ± 10 nm5 W (CW)32-38 dB0.4-1.0 dB?20 dB55 dBPM 150010 W偏振无关光纤隔离器IO-K-10641064 ± 10 nm10 W (CW)30-36 dB0.8-1.5 dB≤0.25 dB?50 dBHI1060IO-K-1064-CO1064 ± 10 nm20 W (CW)27-33 dB0.4-0.6 dB-?50 dBHI1060IO-K-1064-ELY1064 ± 10 nm20 W (CW)30-38 dB0.6 dB-? 50 dBHI1060IO-K-15501550 ± 15 nm10 W (CW)30-38 dB0.8-1.5 dB≤0.25 dB?55 dBSMF-28e
  • VHS700耐高温单模光纤弯曲不敏感
    VHS700系列-单模耐高温光纤/弯曲不敏感量青光电代理的Verrillon系列光纤有多种设计形式,VHS700系列光纤是致力于操作在1550nm极其小的弯曲半径,低到7.5mm,且低弯曲耗损。它的低弯曲损耗性能比一般普通单模光纤优越20倍。VHL700的弯曲损耗超越ITU-T G.657.A2列出的标准弯曲损耗规格。它的超低弯曲损耗使它可以应用于强弯应用(Tight Bend Applications).它也可以应用于EFL限制的布线应用(Cabling Application).VHS700光纤和一般普通的双波长单模光纤相兼容, VHS700 cutoff 1290 nm, MFD和一般普通单模光纤类似,这种兼容性可以使得我们这种光纤更加容易熔接,而且低熔接损耗。 VHS700光纤可以单涂层也可以多种复合涂层。包含:Polyimide, Silicone-PFA,Silicone-MTA,MTA和 Carbon,这些都可以多种复合涂层。碳涂层(Carbon-coated)在井下应用时会提供很好的密封性,抗氢损,抗潮。 VHS700可以提供拉力测试100kpsi和200kpsi的光纤,其他等级的kpsi也可以定制提供。 特征: l 优化的1310/1550nm双波长操作。l 优化的折射率分布去减少弯曲损耗。l 在1550nm上低弯曲损耗性能比一般普通单模光纤优越20倍l MFD与标准SMF光纤相匹配,易于熔接减少熔接损耗。 产品参数:
  • 光子晶体光纤_微结构光纤(PCF)
    光子晶体光纤/微结构光纤(PCF)所属类别: ? 光纤/光纤器件 ? 其他特种光纤/光子晶体光纤 所属品牌: 产品简介 昊量光电提供各种定制型光子晶体光纤(PCF,微结构光纤)! 光子晶体光纤(Photonic Crystal Fibers,PCF)又称为微结构光纤(Micro-Structured Fibers, MSF),这种光线的横截面上有较复杂的折射率分布,通常含有不同排列形式的小孔,这些小孔的尺度与光波波长大致在同一量级且贯穿器件的整个长度,光波可以被限制在低折射率的光纤芯区传播。昊量光电提供各种光子晶体光纤。 关键词:光子晶体光纤,Photonic Crystal Fibers, PCF,微结构光纤,Micro-Structured Fibers, 结构光纤 光子晶体光纤(Photonic Crystal Fibers,PCF)又称为微结构光纤(Micro-Structured Fibers, MSF),这种光线的横截面上有较复杂的折射率分布,通常含有不同排列形式的小孔,这些小孔的尺度与光波波长大致在同一量级且贯穿器件的整个长度,光波可以被限制在低折射率的光纤芯区传播。 光子晶体光纤(微结构光纤)按照其导光机理可以分为两大类:折射率导光型(IG-PCF)和带隙引导型(PCF)。 折射率引导型光子晶体光纤(微结构光纤,PCF)具有无截止单模特性 、大模场尺寸 /小模场尺寸和 色散可调特性等特性。广泛应用于色散控制 (色散平坦,零色散位移可以到800nm),非线性光学 (高非线性,超连续谱产生),多芯光纤 ,有源光纤器件(双包层PCF有效束缚泵浦光)和光纤传感等领域。 空隙带隙型光子晶体光纤(微结构光纤,PCF) 具有易耦合,无菲涅尔反射,低弯曲损耗、低非线性和特殊波导色散等特点被广泛应用于高功率导光,光纤传感和气体光纤等方面。光子晶体光纤的发展为光纤传感 开拓了广阔的空间,尤其是在生物传感和气体传感方面为光纤传感技术带来新的发展。昊量光电提供各种光子晶体光纤及光子晶体光纤的定制化服务, 昊量可以提供的产品及服务:材料:石英或硫化物提供各种定制服务可提供各种套管,接头及相应光线器件各种解决方案设计及模拟 主要产品: 1,基于石英的各种有源及无源光纤: 保偏型光子晶体光纤,定制色散型光子晶体光纤,光子晶体光纤预制棒空气包层、双包层光子晶体光纤,LMA空心光纤,光子带隙光纤掺杂光子晶体光纤多心光子晶体光纤 2,基于硫化物的光子晶体光纤超高非线性光纤(50,000/W*km)中红外光子晶体光纤定制化服务 3,各种解决方案基础研究传感激光器光谱学 主要应用:高功率低损耗近红外激光传输脉冲整形脉冲压缩非线性光学光纤传感超连续激光产生可调谐光纤耦合器多波长激光器光纤耦合 指标参数: 常规产品: 相关产品 覆盖紫外波段超连续激光器(320~1750nm) FROG 超短脉冲测量仪 啁啾布拉格光栅
  • FBG光纤布拉格光栅 光栅
    高功率激光拉曼散射抑制器RSS 在某个特定的功率水平(称为受激拉曼散射(SRS)阈值)之上,激光光子开始被转换为低能光子,并且光子能量的差异转移到晶格振动中。在光谱域中,最终结果是能量从激光器的输出波长转移到更长的波长(所谓的Stokes shift/斯托克斯位移)。由于大多数材料处理应用无法应对降低的激光光谱辐照度,因此通常需要做出许多系统设计折衷来解决此问题。这些折衷常常伴随着更高的系统复杂性和成本。 通过专门消除光链中关键位置的受激拉曼散射(SRS)光子,TeraXion的PowerSpectrum™ 高功率激光拉曼散射抑制器RSS代表了一种新的解决方案。 PowerSpectrum RSS是一种基于光纤FBG的独特带通滤波器,可消除在高功率光纤激光器中传输激光信号时的受激拉曼散射(SRS)。RSS能从源头上消除了SRS并具有抗工件回光反射功能的经济高效的解决方案。 激光材料加工行业要求高产量而不牺牲工艺稳定性,以确保高生产良品率。随着增加输出功率,激光器制造商面临诸如热不稳定性或非线性之类的挑战,这些挑战降低了激光器的整体稳定性和可靠性。幸运的是,他们可以通过使用TeraXion的PowerSpectrum™ RSS(拉曼散射抑制器)减少激光器内部的受激拉曼散射(SRS)效应。这种SRS的降低大大有助于增加激光引擎的输出,同时提高其对回光反射的抵抗力,并提高其可靠性和通用性。 RSS还允许激光制造商使用较小的纤芯光纤来降低热模不稳定性(TMI),从而改善指向稳定性和空间功率分布。 TeraXion专有的FBG制造工艺可实现较宽的反射带宽和低损耗的反射镜,从而减少了非线性效应并产生高效激光。 产品特性:? 高功率:适用于高达3 kW的振荡器和高达5 kW的MOPA? 高效率:高效确保生成的所有光子都用于该过程? 高输出:允许将光纤激光振荡器的可用输出功率提高多达40%? 高可靠性:能够抵抗工件的回光反射参数规格SRS衰减水平≥20 dB波长范围Yb (1 μm)光纤类型芯径 20 - 25 μm包层直径 350 - 600 μm 下图示表示激光振荡器工作在给定输出功率水平的归一化输出光谱,有和没有RSS对比。在相同的输出功率下,当使用RSS时斯托克斯波段的分布显著降低,从而提高了激光光谱辐照度。图1:典型Yb光纤激光器给定输出功率时用RSS抑制SRS的图例说明图2:RSS集成在两种常见光纤激光器配置的例子。A)激光振荡器,B) MOPA。高功率激光拉曼散射抑制器RSS资料:Datasheet: 高功率激光拉曼散射抑制器RSS Application Notes: 使用PowerSpectrum™ RSS抑制kw级光纤激光器中的受激拉曼散射(Raman Scattering Suppressor) 更多TERAXION产品
  • 硫系玻璃光纤
    硫系玻璃硫化物红外光纤产品简介:FlexiRay® 产品系列包含中红外硫化物玻璃光纤(CIR)以硫化砷为基底材料,适用于1.1~6.5μm的光纤传输。CIR弥补了石英光纤(0.2~2.4μm)与银化物光纤(PIR)之间的空隙。CIR光纤有双层聚合物涂层的纤芯/包层结构,能降低光学损耗,提高弹性。所有的标准光纤都包括PEEK-聚合物保护套和SMA连接接口。改进的玻璃净化过程解除了衰减光谱在3μm处受水分子吸收的影响,因此硫化物光纤也可用于Er:YAG激光功率传输。产品应用: 红外光纤探头 / 灵活红外成像系统 / 光纤放大器和光纤激光器 / 远程测温范围200~600K / 适用于Er:YAG激光功率传输产品特点:适用于1.1μm到6.5μm的光传输 /适用于Er:YAG激光功率传输 /2~4μm相关偏振损耗为0.2dB/m /双层聚合物涂层提高弹性 /耐用的保护套管和SMA连接接口 /8~500μm之间的标准光纤直径产品技术参数:常规标准型号型号CIR8/300CIR50/250CIR250/300CIR340/400CIR500/550传输类型阶跃型单模阶跃型少模阶跃型多模阶跃型多模阶跃型多模纤芯直径,μm8±150±3250±10340±10500±10包层直径,μm300±15250±10300±15400±15550±15保护套直径,μm400±20410 ± 20400 ±30510 ± 30700 ± 30数值孔径,NA0.25 ± 0.020.13 ± 0.020.30 ± 0.030.30 ± 0.030.30 ± 0.03最小弯曲半径,mm60506080100参数纤芯/包层 组成As2S3光谱传输范围1.1 - 6.5μm纤芯折射率2.42菲涅尔损失31%传输损耗3-4μm&4.5-5μm0.2 - 0.4 dB/m有效数值孔径 NA见上表玻璃转移温度,Tg185 °C工作温度–273°C to +90°C纤芯/包层 直径(标准)见上表保护套氟聚合物PVC抗拉强度 70 MPa最小弯曲半径(固定)100x [光纤直径]最小弹性弯曲半径200x [光纤直径]
  • 光纤准直器
    光纤准直器Ozoptics可提供插拔或尾纤类型的准直器和聚焦镜,具有低损耗,宽波段,输入光直径范围大,尾纤可选单模、多模,保偏等多种光纤,结构设计紧凑,使用简便。用于光纤耦合,集成光学等领域。
  • VHS300单模耐高温光纤
    VHS300系列-单模耐高温光纤量青光电代理的Verrillon系列光纤有多种设计形式,可以是多模也可以是单模,可以单涂层也可以多种复合涂层。包含:Polyimide, Silicone-PFA,和 Carbon,这些都可以多种复合涂层。我们这种光纤典型应用在井下数据记录,分布式传感,成像应用。 Verrillon 碳涂层(Carbon-coated)光纤相比较一般商业类型光纤具有超高的密封性。Verrillon还可以根据客户的要求提供多支密封光纤加金属套管服务。 特征: l 纯硅芯大大提高了抗氢损能力。l 优化1310/1550nm双波长操作。l MFD与标准SMF光纤相匹配,易于熔接减少熔接损耗。l 碳涂层提供超强的抵御氢和潮湿的入侵。 l 多种涂层可供选择。 产品参数:
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制