当前位置: 仪器信息网 > 行业主题 > >

光学垂准仪

仪器信息网光学垂准仪专题为您提供2024年最新光学垂准仪价格报价、厂家品牌的相关信息, 包括光学垂准仪参数、型号等,不管是国产,还是进口品牌的光学垂准仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光学垂准仪相关的耗材配件、试剂标物,还有光学垂准仪相关的最新资讯、资料,以及光学垂准仪相关的解决方案。

光学垂准仪相关的资讯

  • 144万!淄博市计量技术研究院计划采购光学干涉轮廓仪、弱光照度计、垂直度测量仪等仪器设备
    一、项目基本情况项目编号:SDGP370300000202202000688项目名称:淄博市计量技术研究院2022年专用设备采购项目预算金额:本项目总预算为1448500.00元,共分1个包,其中包1包含光学干涉轮廓仪、弱光照度计、垂直度测量仪升级改造等设备等设备:1448500.00元。采购需求:①采购名称:淄博市计量技术研究院2022年专用设备采购项目;②采购内容:包含光学干涉轮廓仪、弱光照度计、垂直度测量仪升级改造等设备等设备;③质量要求:所有产品的生产、制造等各项技术标准,应当符合国家标准、各项规范要求和使用许可;④质保期:产品质保期自安装调试完毕并经验收合格之日起不少于24个月。合同履行期限:进口设备在合同签订后60日历天内交货并安装调试完毕;国产设备在合同签订后30日历天内交货并安装调试完毕。本项目不接受联合体投标。二、申请人的资格要求1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:无单独资格要求。采购文件落实政府采购政策,包括节能环保产品、小型和微型企业、监狱企业和残疾人福利性单位等政府采购政策。3.本项目的特定资格要求:1、具有加载统一社会信用代码的《营业执照》有效证件;2、未被列入信用中国网(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn) 等渠道信用记录失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单;3、投标人提供“政府采购供应商信用承诺书”的承诺函。三、获取招标文件时间:截止到2022年11月08日14时00分(北京时间)。地点:淄博市公共资源交易网(http://ggzyjy.zibo.gov.cn/)招标文件获取方式: ①已在淄博市公共资源交易平台(http://ggzyjy.zibo.gov.cn/)注册的供应商,需要登录淄博市公共资源交易网网站首页点击“新系统登录入口”(http://ggzyjy.zibo.gov.cn:9181/TPBidder)根据页面提示重新完善信息。完善后在登录新系统免费下载采购文件。②未注册的供应商请到淄博市公共资源交易网(http://ggzyjy.zibo.gov.cn:8082/)在网站首页点击“新系统登录入口”(http://ggzyjy.zibo.gov.cn:9181/TPBidder)根据页面提示进行注册(注册类型:交易乙方)。咨询电话:0533-2270020、2270010、2270050,咨询时间:北京时间8:30-12:00,13:30-17:00(法定公休日、法定节假日除外)。技术咨询电话:400-998-0000。③为满足信息公开和供应商诚信体系建设需要,供应商还需同时在中国山东政府采购网(http://www.ccgp-shandong.gov.cn/)进行注册。未注册的供应商须登录中国山东政府采购网点击首页右侧“系统入口”模块的“供应商注册”进行注册。请各供应商自行查验,务必保证淄博市公共资源交易网与中国山东政府采购网的注册单位名称及统一社会信用代码信息一致。四、提交投标文件截止时间、开标时间和地点截止时间: 2022年11月09日14时00分(北京时间)投标文件递交方式: 将加密的电子投标文件在截止时间前通过淄博市公共资源交易网 “上传投标文件”栏目上传完成。①拟参加本项目的投标人须办理并取得数字证书(电子签章)后,方可加密生成及上传电子投标文件。请各投标人仔细阅读《数字证书办理注意事项及相关资料下载》(淄博公共资源交易网→办事指南→服务指南)并按照须知要求办理。②投标人可到淄博市公共资源交易中心一楼大厅办理数字证书,也可网上办理。山东CA(山东省数字证书认证管理有限公司)证书办理电话为400-607-8966,CFCA(中金金融认证中心有限公司)证书办理电话为0533-3590310。其他具体操作请参考“新点投标文件制作软件(淄博版)操作视频-采购类”(淄博市公共资源交易中心网站→办事指南→服务指南),技术咨询电话:400-998-0000。开标时间: 2022年11月09日14时00分(北京时间)地点:?网上开标大厅。请各供应商在开标前登录网上开标大厅(http://ggzyjy.zibo.gov.cn:9181/BidOpeningHall/bidopeninghallaction/hall/login),在线准时参加开标活动并进行投标文件解密、答疑、澄清等。五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜本项目采用网上开标模式。各投标人无需到达开标现场,请在开标时间截止前登录网上开标大厅,在线准时参加开标活动并进行报价文件解密等。网上开标等详细事宜见招标文件 “网上开标提示”模块。七、对本次招标提出询问,请按以下方式联系1.采购人信息名 称:淄博市计量技术研究院地 址:淄博市张店区共青团西路98号联系人:陈杰联系方式:0533-23159562.采购代理机构信息名 称:山东和鑫盛工程咨询管理有限公司地 址:山东省淄博市张店区新村西路42号铂金商务大厦4层联系方式:0533-23088813.项目联系方式项目联系人:薛皎、吕丽媛电 话:0533-2308881
  • 优化实验流程:全自动水浴氮吹仪提升工作效率
    在实验室中,快速且无损地浓缩样品是实验流程中的关键步骤。常见的浓缩设备如旋转蒸发仪、K-D浓缩器和氮气吹扫装置(氮吹仪),各有其应用场景和局限性。传统方法在处理大批量样品和大量溶剂时往往费时费力,且对操作人员的健康存在风险。全自动水浴氮吹仪的出现,为实验室带来了可靠、安全的解决方案。了解更多全自动水浴氮吹仪产品详情→https://www.instrument.com.cn/show/C546573.html创新浓缩技术:提升效率与安全全自动水浴氮吹仪采用先进的浓缩技术,大幅提升了样品浓缩的速度。其内置的抽气风扇系统,将蒸发产生的废气通过排气管道安全排出,使得设备可直接放置在实验平台上使用。这不仅节约了实验室成本,还减少了对有毒有害溶剂的接触,保障了操作人员的健康安全。自动化与多样品处理:简化操作流程该设备配备了光学传感器,可实时监控多个样品的浓缩状态。当样品达到预设体积时,系统会自动停止氮气吹扫并发出报警提示。这种全自动化的设计减少了对人工看管的需求,大幅提高了工作效率,使实验人员能够专注于其他复杂任务。特别设计:保障样品完整性全自动水浴氮吹仪采用特殊的气流吹扫轨迹及缓冲设计,加速溶剂的蒸发浓缩,同时防止溶剂的喷溅和损失。所有气路及相关部件均使用经过验证的无污染材料,确保样品不受外界污染,保证了实验结果的准确性和可靠性。灵活控制与实时监控:精确操作设备允许用户灵活设置氮吹压力、水浴温度和工作时间等主要参数,并实时显示。这种设计不仅提高了操作的准确性,还确保了不同实验需求下的灵活性。其自动调压装置保持气流压力的稳定性,不受样品数量和通道开启关闭的影响,保证了浓缩过程的一致性。简便易用与全封闭设计:保障操作安全全自动水浴氮吹仪的设计简便易用,操作界面友好,样品的置入和取出过程简便快捷。同时,全封闭设计及强力排风系统有效防止了水浴蒸汽和有机挥发组分对仪器和操作人员的影响,是实验室中理想的样品前处理工具。通过这些创新和精细的设计,全自动水浴氮吹仪为实验室提供了一个可靠、安全的解决方案,优化了实验流程,显著提升了工作效率。
  • 我国自主研发的紫外臭氧垂直探测仪“超期服役”运转正常
    p   设计寿命为3年的中国首台投入运行的紫外臭氧垂直探测仪已在太空过完“她”的5周岁生日。目前,该载荷各项系统均运转正常、工作稳定,“她”将随风云三号B星继续在太空“超期服役”,为中国环境监测、气候预报和全球气候变化研究提供重要数据。 /p p   紫外臭氧垂直探测仪(SBUS)由中国科学院长春光学精密机械与物理研究所研制,于2010年11月5日搭载风云三号气象卫星B星发射升空。2010年11月11日,仪器开机,完成在轨测试后即投入业务运行。 /p p   该探测仪在中国气象卫星上首次获得830km高度处地外太阳/大气紫外光谱数据,经反演获得全球大气臭氧垂直廓线产品,应用于监测全球大气不同高度层的臭氧分布及其变化,为评估人类活动对大气臭氧分布的影响及气候模式计算等提供基础数据,填补了国内空白,产品水平跨入国际先进行列,从根本上改变了中国大气臭氧探测的面貌,使中国航天紫外遥感技术跻身于世界先进行列。如2011年春季,北极地区发生了有史以来最严重的臭氧损耗事件。中国气象局利用SBUS监测了此次臭氧低值事件发生、发展、消亡的具体变化过程。这是中国第一次利用国产卫星监测到的全球大气臭氧重大异常变化。 /p p   截至目前,该载荷已在轨正常运行5年,超过3年设计工作寿命的要求。SBUS在轨超期服役的稳定表现,体现中国在空间精密光谱遥感仪器研制方面的技术水平,对后续研制长寿命、高精度的卫星载荷提供了重要的参考和技术基础。 /p
  • 科众精密仪器-光学接触角测量仪原理
    科众精密-光学接触角测量仪原理 接触角是液体在液固气三态 交接处平衡时所形成的角度,液滴的形状由的表面张力所决定,θ 是固体被液 体湿润的量化指标,但它同时也能用于表面 处理和表面洁净的质量管控,表面张力 液体中的分子受到各个方向 相等的吸引力,但在液体表面的分子受到液体分子的拉力会大于气体分子的拉力,所以 液体就会向内收缩,这种自发性的收缩称之为表面张力 γ。对于清洗性,湿润度,乳化作用和其它表面相关性质而言,γ 是一个相当敏感的指标 悬垂液滴量测法悬垂液滴测量能提供 一个非常简便的方法来量测液体的表面张力 (气液接口) 和两个液体之间的接口张力 (液液接口) ,在悬垂液滴量测法中,表面张力和界面张力值的计算是经由分析悬吊在滴管顶端 的液滴的形状而来,接触角分析可依据液滴的影像做 杨氏议程计算 表面张力和接口张力。这项技巧非常的准确,而且在不同的温度和压力下也可以量测。 前进角与后退角使用在固体基板上的固着液滴可以得到静态的接触角。另外有一种量测方式称之为动态接触角,如果液固气三态接触的边界是处于移动状态,所形成的角度称之为前进角与后退角,这个角度的求取是由液滴形状的来决定。另外,固体样品的表面张力无法被直接量测,要求取这个值,只要两种以上的已知液体, 就可求得固体表面的临界表。以下是通过接触角测量仪测量单位济南大学材料学院设备序号5设备名称接触角测定仪 数量1调研产品(品牌型号)科众KZS-20共性参数1. 接触角测量范围:0~180°,接触角测量分辨率:±0.01°,测量精度±0.1°。2. 表界面张力测量范围和精度:0.01~2000mN/m,分辨率:±0.01mN/m。3. 光学系统:变焦镜头(放大倍率≧4.5倍),前置长焦透镜,通光量可调节。4. 高清晰度高速CCD,拍摄速度可达1220张图像/S,像素最高可达2048 x 1088。5. 光源:软件可调连续光强且无滞后作用的光源。6. 注射体积、速度可以软件进行控制;注射单元精度≤0.1uL;注射液体既可通过软件,亦可通过手动按钮控制液体注射。7. 注射单元调节:注射单元可进行X-、Y-、Z-轴准确调节;8. 整个注射单元支架可以旋转90°调整。9. 滚动角测量:自动倾斜台(整机倾斜),可调节倾斜角度范围≥90°,可测量滚动角。10. 接触角拟合方法:宽高法、椭圆法、切线法、L-Y法11. 动态接触角计算:全自动的动态接触角测量,软件控制注射体积、速率、时间,自动计算前进角和后退角。12. 表面自由能计算:9种可选模型计算固体表面自由能及其分量,分析粘附功曲线、润湿曲线。13. 具有环境控温功能,进行变温测试(0-110 oC), 分辨率0.1K。14. 品牌计算机: i7 4790 /8GB内存/1TB(7200转)硬盘/2G独立显卡/19英寸液晶显示器/DVD刻录光驱。15. 必备易耗品(供应商根据投标产品功能提供)16. 另配附件,要求:进口微量注射器3个,备用不锈钢针6根,一次性针头100根、适合仪器功率的稳压电源(190-250V)1台、配置钢木结构实验台( C型钢架、钢厚≥1.5mm,长2m、宽0.75m,板材采用三聚氰胺板,铝合金拉手,铰链采用国际五金标准,抽屉三阶式静音滑轨、抽屉负重≥25KG,含专用线盒,可安装5孔或6孔插座,优质地脚)。17. 售后服务:自安装调试验收完毕后之日起24个月内免费保修;每年提供至少一次的免费巡检。
  • 东方德菲推出新品---LSA100DARF光学粘滞力测量仪
    LSA100DARF 光学粘滞力测量仪由德国LAUDA Scientific公司研发生产,LSA100DARF不仅具备一般光学接触角测量仪的常规功能, 而且能够直接测量液体和固体材料之间在界面上的相互作用力,是表面分析仪器领域中的一个开拓性创新!LSA100DARF 光学粘滞力测量仪的测量方法:|| 粘附力测量液滴在超疏材料表面上被拉伸过程中产生的垂直方向的粘附力是一个评价材料表面润湿性质的重要指标。 在高精度自动升降台的操控下,材料表面和液滴先相互挤压使得液固两相充分接触,然后缓慢拉伸直到液滴 和材料表面完全分离。软件通过液滴的形变量可以精确的计算出材料表面作用于液滴的垂直方向的粘附力。液体表面张力:72.8 mN/m 液滴体积 v:5 μl 最da粘附力:45.9 μN|| 滞留力测量光学粘滞力测量仪配置速度可控的离心转台时,仪器可以自动对液滴进行离心操控。置于材料表面上的液滴在旋转状态下产生侧向滑动的趋势,当离心驱动力达到最da滞留力数值的时候,液滴沿材料表面发生横向水 平滑动。在这一动态过程中,仪器利用视频同步触发技术通过软件计算能够准确得到材料表面作用于液滴的水平方向的滞留力。技术参数:1.软件计算方法: Laplace-Young (垂直粘附力) Truedrop method(水平滞留力)2.垂直粘附力测量: 样品台升降方式:自动可编程 样品台移动速度:0.04---500 mm/min 位置精度:0.05μm 测量分辨率:0.01μN3.水平滞留力测量 离心样品台控制方式: 自动可编程 zui大离心力(加速度): 40 g 转速范围: 0---750 rpm 控制精度: 2 rpm 旋转加速度: 1---100 rpm/s 测量分辨率: 0.01μN
  • 聚同发布水浴全自动氮吹浓缩仪JTDN-12S新品
    水浴全自动氮吹浓缩仪JTDN-12S氮吹仪的原理加快蒸发有两个方法:加强它周围的空气流动和它的温度。氮气还是一种不活泼的气体,也能起到隔绝氧气的作用,防止氧化。氮吹仪就是通过这些原理达到了浓缩的目的。它将氮气快速、连续、可控地吹到加热样品表面,实现大量样品的快速浓缩。全自动氮吹仪【干式】是我司结合实验室的使用需求,从实验操作的方便、安全、快捷、稳定等多角度升级的新型定容型全自动氮吹仪,具有无人值守、准确定容、大批量浓缩等特点;可多组数据储存功能,实现了全自动化的定量及批量浓缩,浓缩全程,一手掌握,让繁琐的浓缩过程变得灵活、省心、快捷和安全。主要特征:实验室成本,而且减轻了有毒有害溶剂对操作人员的伤害;是实验室常规配套的样品前处理装置。主要特征Principal Character1、 同时浓缩单个或多个样品,毋需人工值守:全自动氮气浓缩仪采用多个光学传感器监控每个样品的浓缩过程,当蒸发浓缩至预设体积时,系统自动停止相应通道的氮气吹扫,并报警提示。整个浓缩过程无需人工看管;2、 7英寸大液晶触摸屏控制,同时可以处理1-12支大容量样品(可达200ml);3、 加热方式采用水浴或者干式加热,达到样品的安全性与准确性,升温速度快且均匀性好; 4、 特别的气流吹扫轨迹及缓冲设计:可加速溶剂蒸发浓缩、防止溶剂喷溅损失;5、 工作参数任意设置、控制和实时显示:主要工作参数:氮吹压力、温度和工作时间,均可按需设置;6、 防止样品污染影响:所有气路及相关器件均采用环保材料,避免样品受到来自仪器的污染;7、 12位独立节流气阀控制,保证了气路的气密性,螺旋式气针(可更换)加快了浓缩速率,大大节约氮气用量;8、 采用液压式双重密封门镜保护系统,采用内置循环风机系统,防止挥发物泄漏;9、 操作简便、安全:灵活的工作参数设定、方便的样品置入/取出过程,易学易用;全封闭设计以及仪器自带的强力排风系统配置,可有效避免蒸汽和有机挥发组份对仪器及操作人员的影响。10、 全自动氮吹仪水浴式具有自动补水功能;干式款模块可以任意更换;技术参数Technical Parameter型号JTDN-12SJTDN-12Y加热方式水浴加热干式铝块加热样品数量同时浓缩处理1-12个样品样品瓶体积50或100ml或150ml可选终点检测可定容的体积分别为1.0mL、0.5mL或近干(~0.1mL,适当延长吹扫时间亦可将溶剂吹干),不同规格的浓缩瓶可以同时交叉使用温度范围室温-100℃(±1℃)定时时间0-999 min气体压力氮吹工作气压,0~0.1MPa(压力间隔变化为0.01MPa)外接氮气压力范围0.2~0.8MPa,外接允许气压:1.0MPa气体消耗量吹扫气压(0.1MPa)下,每通道约500mL/min(约17cfm)定容灵敏度十级可调,保证不同颜色或透光度的溶剂的浓缩定容更为准确控制方式用户可根据实际情况,自行选用手动方式或智能方式控制吹扫终点报警提示仪器在开盖、浓缩完成、氮气压力不足时,均会自动报警提示电源220V/50Hz仪器尺寸及重量620×400×330mm,40KG全自动氮吹仪:具有终点检测功能,通过光学传感器来检测每个样品的体积,当浓缩到预设的体积时会自动停止氮气的吹扫,并进行报警提示,每一路都是单独的气流控制,大大节约氮气的用量,设备采用强力的排风系统,而且样品浓缩的过程是在设备里面进行的,设备有门镜保护系统,可以避免挥发物造成对人体的伤害,建议可放通风柜使用,如果没有没有显著的有害物质也可以不放,所以操作起来是非常方便的。普通水浴氮吹仪:可以满足日常的浓缩要求,因为整个浓缩过程是暴露在外面的,所以使用时需要放置通风柜中使用,操作时需要人员看守,因为没有终点检测和定浓功能,以防样品干烧。创新点:采用多个光学传感器监控每个样品的浓缩过程,定容定量模式,定时模式,定容灵敏 水浴全自动氮吹浓缩仪JTDN-12S
  • SW-CJ-2D垂直流净化工作台的用途及使用方法
    一、用途   垂直流净化工作台用途:广泛适用于医药卫生、生物制药、食品、医学科学实验、光学、电子、无菌室实验、无菌微生物检验、植物组培接种等需要局部洁净无菌工作环境的科研和生产部门。也可连接成装配生产线具有低噪声、可移动性等优点。它是一种提供局部高洁净度工作环境通用性较强的空气净化设备,它的使用对改善工艺条件,提高产品质量和增大成品率均有良好效果。 二、使用方法 垂直流净化工作台的优点是操作方便自如,比较舒适,工作效率 ,预备时间短,开机10分钟以上即可操作,基本上可随时使用。在工厂化生产中,如果工作量很大,需长时间地工作时,超净台是很理想的设备。超净台由三相电机作鼓风动力,功率145~260W左右,将空气通过由特殊的微孔泡沫塑料片层叠合组的“超级滤清器”后吹送出来,形成连续不断的无尘无菌的超净空气层流,即所谓“ 有效的特殊空气”,它除去了大 0.3μm的尘埃等。超净空气的流速为24~30m/min,这已足够防止附近空气可能袭扰而引起的污染,这样的流速也不会妨碍采用酒精灯或本生灯对器械等的灼烧。工作人员就在这样的无菌条件下操作,保持无菌材料在转移接种过程中不受污染。但是万一操作中途遇到停电,暴露在未过滤空气中的材料便难以幸免污染。这时应迅速结束工作,并在瓶上作出记号,内中的材料如处于增殖阶段,则以后不再用作增殖而转入生根培养。如为一般性生产材料, 极其丰富也可弃去。沪净双人单面净化台特征:1、采用了任意定位移门系统2、外壳采用彩钢板一体成型,工作台面为SUS304拉丝不锈钢,耐腐蚀、易清洗3、照明和杀菌系统安全互锁4、数显式液晶控制界面,更具人性化设计5、垂直准闭合式台面,操作室下降流气幕的形成,可有效防止外部气体投入和操作区洁净6、配置有HEPA高效空气过滤器,设有初效过滤器进行初步过滤,可有效延长高效过滤器使用寿命7、符合各项医疗器械设备安全要求
  • 葛老师话说实验室第三十二期-氮吹仪的使用和保养
    大家好,欢迎来到葛老师话说实验室。氮气吹干仪(Termovap Sample Concentrator),又称为氮气吹扫仪,氮吹浓缩仪,简称:氮吹仪、吹氮仪,用于液相、气相及质谱分析中的样品制备。氮吹仪通常将氮气吹入加热样品的表面进行样品浓缩,具有省时、操作方便、容易控制等特点,可很快得到预期的结果。氮吹仪代替传统的旋转蒸发仪对样品进行浓缩已经被越来越多的人认可并接受,广泛应用于农残分析、商检、食品、环境、制药、生物制品等行业。1、氮吹仪的工作原理 氮气是一种不活泼的气体,能起到隔绝氧气的作用,防止物质氧化。而加快液体蒸发有三个方法:加强它周围的空气流动、加大液体的表面积和提升它的温度。氮吹仪利用氮气的快速流动打破液体上空的气液平衡,从而使液体挥发速度加快;并通过干浴、水浴或者沙浴加热方式升高温度(目标物的沸点一般比溶剂的要高一些),从而达到浓缩目的。2、氮吹仪的优点(1)一次可处理多个样品,在多因素、多水平的重复实验中优势更为明显。(2)实验操作简洁、灵活,可以不受约束地随时调节浓缩的进程。(3)实验中不需要操作者长时间的维护,节省人力。(4)氮吹仪在浓缩时准确、灵敏,可避免样品损失。3、氮吹仪的应用领域 氮吹仪主要用于色谱、质谱等分析样品的纯化和制备,广泛应用于水、甲苯、甲醇、丙酮等溶剂的挥发。应用领域有:(1)农残分析:如蔬菜、水果、谷物、植物组织(2)环境分析:如饮用水、地下水和污染水水样(3)制药药检:如中药制药(4)生物分析:如血清、血浆、血液、尿液(5)商品检验:如二噁英、克罗特罗等的检验(6)食品饮料:如牛奶、酒、啤酒、液体饮料4、氮吹仪的使用注意事项(1)氮吹仪不应用于燃点低于100℃的物质。(2)使用氮吹仪时,实验员应保护好手和眼睛。(3)为保证良好通风,氮吹仪应在通风橱中使用。(4)氮吹仪在加热时,请勿移动,以防烫伤。(5)仪器接电时,应采用三线接地电源。(6)不要在氮吹仪通电情况下,打开水浴外壳,以防触电。(7)维修氮吹仪时,应当由专业人员进行,以免元器件替换不当引起氮吹仪损坏或造成安全隐患。(8)高易燃物质,如石油醚等,请勿用于氮吹仪。5、氮吹仪的保养(水浴型举例)(1)加热介质:最好使用蒸馏水和去离子水,可防止在水浴壁上产生水垢。注意不要使用有机溶剂作为加热介质。(2)除藻剂:不加热时,可在水浴中添加除藻剂,防止生物污染。但不应使用酸性除藻剂,且应确保所用除藻剂不会影响待处理样品。(3)换水:建议一周更换次水浴的水,最长不超过一月。(4)酸性环境:当接触或暴露于酸性材料、蒸汽或样品后,应当立刻清洗,用适度的碳酸氢钠溶液或其它相似溶液中和,再用清水冲洗。长时间接触酸性物质,将会损坏仪器。如必须长时间接触酸性物质,则应采取保护措施。(5)针头:每次使用完针后都应清洗,尽量减少针的污染。可使用有机溶剂冲洗、高压消毒和索氏提取等技术。(6)浸没:浴底耐水但不防水。绝不能将水浴浸泡在任何液体中,或放置在可能发生浸泡的地方。 以上就是本期人和科仪《葛老师话说实验室》的全部内容,我们将陆续为您推送各类精彩定评与文章,希望能给您的实验室生活带来些许帮助。 更多详情欢迎来电咨询:400 820 0117 同时欢迎点击我司网站 www.renhe.net 查询更多产品优惠信息 扫描以下二维码或是添加微信号“renhesci”,加入人和科仪的微信平台,即刻成为人和大家庭中的一员。 现在加入更有好礼相送! 上海人和科学仪器有限公司 上海市漕河泾新兴技术开发区虹漕路39号华鑫科技园区B座四楼(200233) 电话:021-6485 0099 传真:021-6485 7990 公司网址: www.renhe.net E-mail:info@renhesci.com 【上海人和科学仪器有限公司数十年来一直致力于提升中国实验室水平,从提供全球一流品质的实验室仪器、设备,到为客户度身定制系统的实验室整体解决方案,通过专业、细致和全面的技术支持服务实现“为客户创造更多价值”的承诺。主要代理品牌:DRAGONLAB、BROOKFIELD、BRUINS、GRABNER、EXAKT、ATAGO、ART、ILMVAC、IKA、MIELE、MEMMERT、KOEHLER、YAMATO、海洋光学、全谱科技等。】
  • 垂直流净化工作台可改善工艺条件,提高产品质量和增大成品率
    ??垂直流净化工作台可广泛适用于医药卫生、生物制药、食品、医学科学实验、光学、电子、无菌室实验、无菌微生物检验、植物组培接种等需要局部洁净无菌工作环境的科研和生产部门。对改善工艺条件,保护操作者的身体健康,提高产品质量和成品率均有良好的效果。也可连接成装配生产线具有低噪声、可移动性等优点。它是一种提供局部高洁净度工作环境通用性较强的空气净化设备。 垂直流净化工作台的优点是操作方便自如,比较舒适,工作效率,预备时间短,开机10分钟以上即可操作,基本上可随时使用。在工厂化生产中,接种工作量很大,需经常地工作时,超净台是很理想的设备。超净台由三相电机作鼓风动力,率145~260W左右,将空气通过由特的微孔泡沫塑料片层叠合组的“超级滤清器”后吹送出来,形连续不断的无尘无菌的超净空气层流,即所谓“效的特殊空气”,它除去了大0.3μm的尘埃、**和**孢子等等。超净空气的流速为24~30m/min,这已足够防止附近空气可能袭扰而引起的污染,这样的流速也不会妨碍采用酒灯或本生灯对器械等的灼烧**。工作人员就在这样的无菌条件下操作,保持无菌材料在转移接种过中不受污染。但是万一操作中途遇到停电,暴露在未过滤空气中的材料便难以幸免污染。这时应迅速结束工作,并在瓶上作出记号,内中的材料如处增殖阶段,则以后不再用作增殖而转入生根培养。如为一般性生产材料,其丰富也可弃去。如处生根过,则可留待以后种植用。
  • 新款塑料薄膜抗摆锤冲击试验仪满足GB/T8809-2015标准
    新款塑料薄膜抗摆锤冲击试验仪满足gb/t8809-2015标准摘要:本文介绍了gb/t8809-2015与老标准差异,介绍了能满足新标准要求的仪器情况.关键词: gb/t8809-2015, 塑料薄膜抗摆锤冲击试验,摆锤冲击仪 标准gb/t8809-2015塑料薄膜抗摆锤冲击试验方法是替代了gb/t8809-1988,新标准解决了老标准中仪器结构及冲击头尺寸不明确之处。接下来济南三泉中石实验仪器有限公司小编来总结以下几点:1.明确冲击头尺寸,老标准此处并未明确规定.a 法球半径12.7mm,冲头直径 25.4mm;b 法球半径12.7mm,冲头直径 19mm; 2.试样夹具尺寸有了明确规定,老标准并未对此进行规定:a 法对应夹具内圈直径 60mm,b法对应夹具内圈直径 89mm,根据不同的试验方法选用不同的冲头和夹具3.增加了气动o型环形夹具,并将气动形式作为仲裁方法,这一点也是较大改变,对于很多质检机构来说非常重要。4.摆锤冲击能量的测试结果明确到0.01j,这一点就代表着,市场上低于0.01j精度的仪器是不能够使用的。塑料薄膜抗摆锤冲击试验仪 ZJM-06 其实以上标准的要求早在美标中有明确规定,济南三泉中石实验仪器有限公司2007年就推出的ZJM-06智能摆锤冲击仪(塑料薄膜抗摆锤冲击试验仪),已经兼顾了国内外测试标准,测试分辨率高达0.001j,加持试样采用4气缸设计,完全满足并高于标准要求。
  • 蓝菲光学VCSEL 光学测试系统推动3D传感器技术智能手机发展
    背景:VCSEL发展趋势,主要应用领域,光学检测存在的问题。图1 VCSEL应用 垂直腔面发射激光器(Vertical Cavity Surface Emitting Laser, VCSEL),以其表面发射,集成度高,成本低,稳定性好等优点,自其出现后,已经广泛被应用在各行各业中。其中,传统的应用主要集中在光纤通讯,激光打印,光传感,原子钟等方面。近年来,随着生产工艺的进步,以及3D传感行业的兴起,VCSEL在激光加工,手机等行业焕发了新的生机。 新市场,新应用对VCSEL的生产和研发都提出了新的要求。相比其他的激光器,VCSEL具有产品功率范围广,调制频率高,人眼接触次数多等特点。这对相关的光学检测也提出了新的挑战。 蓝菲光学(Labsphere Inc.)基于40多年的光学检测系统设计生产经验,提出了一系列针对VCSEL测试的解决方案,测量结果精确,稳定,快速。结果能够溯源至美国国家标准计量研究院(NIST)。是行业内研发测试,质量检查,大规模生产的理想测试方案。具体来说,主要分成以下四大类:蓝菲光学主要VCSEL检测系统:理想的投光板理想的940nm校正光源详情请洽蓝菲光学
  • 长者远行,风范永垂,孟广政教授千古!
    《光谱学与光谱分析》期刊社社长孟广政教授,因病医治无效,于2022年12月22日14时26分在北京逝世,享年86岁。  孟广政1936年7月17日出生于辽宁省本溪市,祖籍山东省宁津县。1962年毕业于吉林大学物理系光学专业,择优被分配到钢铁研究总院化学室工作。1987年加入中国农工民主党,曾任中国农工民主党第十一届、第十二届中央委员、中国农工民主党冶金部直属机关总支主委;北京市钢研冶金新技术开发咨询公司总经理;北京市海淀区第十一届人大代表;中国光学学会光谱专业委员会主任;北京大学出版社特邀正编审;《光谱学与光谱分析》期刊社社长。  多年来,孟广政教授结合对特种材料的需要,开展金属材料的光谱学与光谱分析方面的研究与实验工作。在严济慈、王大珩等老一辈科学家带领下,1981年发起组织并创办了《光谱学与光谱分析》学术期刊。  1974年参加并组织原冶金部、四机部、燃化部下达的“彩色电视阴极基金属材料剖析”联合攻关,取得成功;1980年参加原冶金部42项重点课题之一“镀锡薄钢板钝化膜的研究”;1983年参加肿瘤治疗机中高比重屏蔽材料的研究;“镍基高温合金中有害杂质的光谱分析”;“磁性材料的分析”等许多科研项目。改革开放后,孟广政教授还曾多次到美国、英国、德国、加拿大、日本等国参加国际学术会议,以及中国香港地区访问、考察。  孟广政教授的个人业绩已经入选在英国IBC、中华创业功臣大典、世界文化名人词典、中国人才世纪献辞、中国专家人才库。主要翻译和著作有:《原子吸收光谱分析》(冶金工业出版社出版)、“镀锡薄钢板钝化膜中铬的光谱分析”、“ICP-AES法在钢铁及合金中的应用”、“一种新型动态步进扫描干涉仪”、“共焦扫描激光显微镜”等30多篇科技文章在核心期刊上发表;编辑、编审科技图书:《原子吸收分析方法》选编、《ICP光谱应用技术》、《FTIR技术与应用研讨会文集》、《BCEIA国际学术会议文集》(英文版)等20多种图书由北京大学出版社出版。  孟广政教授为《光谱学与光谱分析》期刊的健康成长与发展壮大倾注了毕生精力,做出了卓越贡献。在他担任社长期间,《光谱学与光谱分析》被SCI、Ei、CA、MEDLINE、Scopus、РЖ等国际著名数据库收录,入选中国自然科学核心期刊、中国精品科技期刊、中国百种杰出学术期刊、北大中文核心期刊要目总览、中国知网(CNKI)“中国最具国际影响力学术期刊”。  孟广政教授与王大珩等老一辈科学家一起,于1982年成立了中国光学学会光谱专业委员会,并积极推动学会的工作,为我国光谱事业的发展做出了杰出的贡献。作为主办方之一,搭建了《全国分子光谱学学术会议》学术交流平台。目前,《全国分子光谱学学术会议》已经成功举办了21届,为相关学科的学术交流发挥了重要作用。  孟广政教授一生爱党爱国,崇尚科学,追求真理,立德树人,崇高的科学精神和独特的人格魅力永远值得我们尊敬、学习和怀念。  长者远行,风范永垂,孟广政教授千古!
  • 蓝菲光学积分球光谱分析仪在植物照明灯中的应用
    近几年来,随着LED技术与全球植物工厂、垂直农场等现代设施农业的发展,植物照明市场迎来了新的发展机遇,成为众多照明厂商走差异化竞争之选。 图1 植物照明由于LED灯具有光效高、发热低、体积小、寿命长灯特点,因此非常受植物照明生产厂商的青睐。不同植物生长过程中对不同光谱的光需求量不同,为此所选的补偿光也有差异。。 图2 LED灯具植物工程可分为种植设备技术和植物工艺技术,其中植物照明光谱技术是种植设备技术和植物工艺技术的关键。好的光谱设计可保证种植工艺所要求的光质能达到高效利用。 图3 光谱制造商设计植物照明系统,通常根据植物所需的光质、光密度,然后对植物照明光源进行选择。植物灯光谱设计需要依据植物种植工艺要求而设计,植物灯光谱分析和设计能力对制造商市场竞争至关重要。而这些都需要精确的光源光谱分析方法和设备。 蓝菲光学40年光学测量生产设备经验,可提供精确的光源光谱分析方法和积分球光谱分析设备,有效的计算PAR/PPF/PPFD值。 图4 蓝菲光学积分球光谱分析仪不同植物或者同一植物不同时期吸收光谱不同,通过确定种植工艺确定植物照明光谱范围和峰值波长,植物照明的光谱和峰值波长均可通过蓝菲光学积分球光谱分析仪获得。蓝菲光学(Labsphere)illumia® Plus2积分球光谱分析仪积分球尺寸 25 cm -3 m可选,具有 2π 和 4π 几何方式。三种光谱仪可选、特定的应用模块在保证生产效率最大化的同时也保证了非常高的精确度、可重复性。图5 蓝菲光学积分球光谱分析仪结构图提高生产力改进后的积分球设计允许待测灯在点亮的情况下放进,保证更高的效 率、缩短测量时间。 新增了兼具功能性与简易性的电控模块,符 合 IES LM-79-19、IES LM-78 等相关标准。图6 蓝菲光学积分球光谱分析仪系统图Integral® 软件驱动设备搭配的 Integral® 软件支持任何平台、任何设备、 任何地点、多种语言。符合 LM-45 标准要求进行稳定,自动执行校准程序。 符合 LM-79-19 和 LM-78 测量方法和行业标准颜色计算。 图7 Integral软件图概念:太阳辐射中对植物光合作用有效的光谱成分称为光合有效辐射(PAR,photosynthetically active radiation),波长范围400~700纳米,与可见光基本重合。标注单位有两种:一是用光合辐照度表示(w/m2),主要用于太阳光的光合作用的广义研究。二是用光合光子通量密度PPFD表示(umol/m2s),主要用于人造光源和太阳光对植物光合作用的研究。采用每秒辐射到植物表面的光子流量的这个方法表示辐射源的辐射能力,称为PPF_PAR法。PPF光合光子通量(Photosynthetic Photon Flux)是指波长在400-700nm波段里,人造光源每秒辐射出光子的微摩尔数量,单位umol/s。PPFD光合光子通量密度(Photosynthetic Photon Flux Density)是每平方米每秒光源辐射出的微摩尔数量,单位umol/m2s。
  • 英斯特朗发布两款数据采集系统,有效提高摆锤和落锤冲击测试的准确性
    英斯特朗,全球领先的材料和构件物性测试试验机制造商,于近日发布了CEAST DAS64K和DAS64K-SC,此两款系统设计用于在材料和构件测试框架内的高速数据采集。 该系统提供了4 MHz的数据采集速率,与之前的模式相比,在时间分辨率方面有效地增加了一倍。此优化功能可使在高速和低温的情况下,更加理想化地测试脆性材料或进行落锤试验。此款新型数据采集卡也可用于在改造现有系统的情况下,不影响该系统的性能特征。 DAS64K-SC系统提供单数据采集通道,而DAS 64K设计了多达4个独立的同步数据采集通道。数据可能来自不同的传感器,包括标准应变片式测量或压电仪器化锤头和落锤。在DAS 64K 系统下,由通用的传感器提供一个确定的电压或电流输出。所有的型号都适用于目前的CEAST 9000系列摆锤冲击试验机和CEAST 9300落锤冲击试验机,同时也支持老型号的仪器化锤头和落锤包括Instron? Dynatup?落锤试验机和非Instron品牌的冲击试验机。 对于高便捷的机器控制,数据采集、存储和全面的数据分析,英斯特朗进一步增强了CEAST VisualIMPACT软件的相关功能。此两款数据采集系统可以对每次测试和每个通道记录和储存高达65,536个数据点。配备有14位模数转换器,他们可以获得高达700kHz的带宽——此取决于采集速率。所有相关参数,例如式样速率,增益,数据点,触发模式和触发程度,包括对主触发数据采集通道的选择,将由一个与之相连的电脑设置。此款强大的VisualIMPACT软件套件设计用于控制CEAST摆锤和落锤系列冲击试验和相关的测试程序,同时通过用户友好界面以更好地支持对新数据采集系统的管理。它节省了加载和被吸收能量的数据,提供可视化的界面,同时通过统计方法获得相关数据并对其进一步分析。 近期CEASTVisualIMPACT软件进一步增强了其为个性化数据采集和分析而定义不同用户配置的功能。在CEAST DAS 64K 和DAS64K-SC数据采集系统中引入了这一额外的增强性能。对于VisualIMPACT第六版,该软件能够更全面的为锤头和落锤定义标定数据进行管理并且处理包括对更多通道的DAS配备。英斯特朗DAS64K数据采集系统关于英斯特朗:英斯特朗(INSTRON )是全球领先的材料和构件物性测试试验机制造商,美国五百强公司ITW集团旗下品牌,其产品被广泛运用于测试各种材料,组件和结构在不同环境下的力学性能和特性。 更多新闻垂询请联系:英斯特朗市场部蒋敏华 Kelly Jiang Tel: +86 21-62158568* 8301E-Mail: jiang_min-hua@instron.com 或者您可访问英斯特朗官方网站: www.instron.com用手机扫一扫,关注英斯特朗微信账号,获取更多英斯特朗的产品信息和测试tips
  • 保护隐私 拒绝偷窥—防窥膜的光学性能评价
    随着科学技术的发展,计算机的便携性,智能手机的大屏性,使得人们在日常生活和工作中使用广泛,据调查,大部分使用者都有在公共场合被人偷窥屏幕的经历,因此,保护隐私成为当务之急。防窥膜可以保证使用者在垂直方向清楚看清屏幕内容,在倾斜方向看到黑屏状态,有效的保护使用者的隐私。防窥膜的这种特点是在于膜对倾斜角度的入射光透过率极低,在垂直角度时透过率高。因此,测定膜在入射光角度不同时的透过率曲线,对防窥膜的光学性能评价至关重要。 日立紫外可见近红外分光光度计UH4150,由于其优良的光学特点,是材料光学性能分析的主要工具,可用于评价防窥屏幕保护膜的光学性能。应用仪器之测量附件 由于从不同角度看电子屏幕,防窥膜呈现的结果不同,因此我们需要选择可以改变入射光角度的测量附件,测定防窥膜在不同角度处对可见光的透过率。此次实验我们使用角度可变透射附件(图1)。当透过光谱的入射角度大于等于12°时,样品的偏振特性显著,则需要安装偏振器测定偏振光的透过率,如S和P的偏振,计算两组分偏振的平均值作为样品的透过率值。 应用仪器之软件包 防窥膜的有效性需要依据人类的视力情况评定,而实际的可见度将随光源的变化而变化,因此,需指定光源。依据日本工业标准JIS R3106,选定D65作为光源,测定可见光区的透过率。基于JIS R3106计算可见光区的透过率,不需要人工进行,将对应软件包嵌入UV solution仪器软件中即可实现自动计算。防窥膜透过率测定实例我们对一种防窥膜进行了不同角度的透射率测定,评定其不同角度的光学性能。通过实验分析,可以发现防窥膜在不同倾斜角度的可见光透过率不同,随着倾斜角度的增加,透过率逐渐降低。倾斜角度为40°时,透过率达到了0.03%T,可以有效防止他人偷窥屏幕信息。隐私泄露已经成为一个社会焦点问题,对隐私的保护不仅是对个人人格独立和自由的维护,还有助于促进社会和谐。日立集团以“高科技解决方案创造价值”这一基本理念,使用自主研发技术,为促进社会稳定和谐做出贡献。具体详细应用数据请见:https://www.instrument.com.cn/netshow/sh102446/s909883.htm日立高新技术公司是日立集团旗下的一家仪器设备子公司。全球雇员超过10000人,在世界上26个国家及地区共有百余处经营网点。企业发展目标是"成为独步全球的高新技术和解决方案提供商",即兼有掌握先进技术水准的开发、设计、制造能力和满足企业不同需求的解决方案提供商身份的综合性高新技术公司。其产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料。其中,生命科学领域产品包括电子显微镜、原子力显微镜和分析仪器(色谱、光谱、热分析)等。
  • 永新光学主导的光学显微镜国际标准取得新进展
    p   由浙江省宁波永新光学股份有限公司主导制订的显微镜国际标准ISO 9345《Microscopes-Interfacing dimensions for imaging components》近日顺利进入DIS询问草案阶段。这标志着该项目已取得重大进展,预计今年进入批准及出版阶段。 /p p   据了解,该项目由ISO/TC172/SC5显微镜和内窥镜国际标准化组织工作代表团主要成员永新光学受全国光学和光子学标准化技术委员会委托负责具体实施。项目开展以来,在项目负责人、永新光学总经理兼技术总监毛磊的带领下,标准制订工作屡屡告捷,此前已分别于2016年进入WD工作草案阶段,2017年进入CD委员会草案阶段。 /p p   2015年9月ISO美国博尔德会议上,会议主席曾提出对几项传统显微镜标准是否作废进行讨论。该项提议如果通过,国内有几十万台显微镜将会成为非标产品,国产光学显微镜在世界市场上将失去一大块阵地。作为中国代表团主要成员的永新光学负责人毛磊总经理及时提出,可由中国来重新制订该项标准。该意见得到了与会各国代表团的一致通过。这意味着在显微光学精密仪器领域,中国将拥有更多的话语权和主导权。 /p p   作为一家光学仪器和各类光学元部件的专业制造企业,永新光学有着二十余年光学仪器产品设计和专业生产经验,是国家重点研发计划重大仪器专项《高分辨荧光显微成像仪研究及产业化》项目的课题承担单位,全国制造业单项冠军培育企业。作为中国显微镜国家标准主要起草和制定单位,目前已累计制修订国家标准项78项、浙江制造团体标准1项。 /p p   此项显微镜国际标准顺利进入DIS询问草案阶段,取得重大进展,展现了我国在显微镜标准制订领域的技术实力,有力促进了中国显微镜行业国际地位的确立和提升。 /p p br/ /p
  • 光学显微镜技术和应用简介
    自然界中一些最基本的过程发生在微观尺度上,远远超出了我们肉眼所能看到的极限,这推动了技术的发展,使我们能够超越这个极限。早在公元4世纪,人们发现了光学透镜的基本概念,并在13世纪,人们已经在使用玻璃镜片,以提高他们的视力和放大植物和昆虫等对象以便更好地了解他们。随着时间的推移,这些简单的放大镜发展成为先进的光学系统,被称为光学显微镜,使我们能够看到和理解超越我们感知极限的微观世界。今天,光学显微镜是许多科学和技术领域的核心技术,包括生命科学、生物学、材料科学、纳米技术、工业检测、法医学等等。在这篇文章中,我们将首先探讨光学显微镜的基本工作原理。在此基础上,我们将讨论当今常用的一些更高级的光学显微镜形式,并比较它们在不同应用中的优缺点。    什么是光学显微镜?  光学显微镜用于通过提供它们如何与可见光相互作用(例如,它们的吸收、反射和散射)的放大图像来使小结构样品可见。这有助于了解样品的外观和组成,但也使我们能够看到微观世界的过程,例如物质如何跨细胞膜扩散。  显微镜的部件以及光学显微镜的工作原理  从根本上说,显微镜包括两个子系统:一个用于照亮样品的照明系统和一个成像系统,该系统产生与样品相互作用的光的放大图像,然后可以通过眼睛或使用相机系统进行观察。  早期的显微镜使用包含阳光的照明系统,阳光通过镜子收集并反射到样品上。今天,大多数显微镜使用人造光源,如灯泡、发光二极管(LED)或激光器来制造更可靠和可控的照明系统,可以根据给定的应用进行定制。在这些系统中,通常使用聚光透镜收集来自光源的光,然后在聚焦到样品上之前对其进行整形和光学过滤。塑造光线对于实现高分辨率和对比度至关重要,通常包括控制被照亮的样品区域和光线照射到它的角度。照明光的光学过滤,使用修改其光谱和偏振的光学过滤器,可用于突出样品的某些特征。图1:复合显微镜的基本构造:来自光源的光使用镜子和聚光镜聚焦到样品(物体)上。来自样品的光被物镜收集,形成中间图像,该图像由目镜再次成像并传递到眼睛,眼睛看到样品的放大图像。  成像系统收集与样品相互作用的照明光,并产生可以查看的放大图像(如上图1)。这是使用两组主要的光学元件来实现的:首先,物镜从样品中收集尽可能多的光,其次,目镜将收集的光中传递到观察者的眼睛或相机系统。成像系统还可包括诸如选择来自样品的光的某些部分的孔和滤光器之类的元件,例如仅看到已从样品散射的光,或仅看到特定颜色或波长的光。与照明系统的情况一样,这种类型的过滤对于挑出某些感兴趣的特征非常有用,这些特征在对来自样本的所有光进行成像时会保持隐藏。  总的来说,照明和成像系统在光学显微镜的性能方面起着关键作用。为了在您的应用中充分利用光学显微镜,必须充分了解基本光学显微镜的工作原理以及当今存在的变化。  简单复合显微镜  单个镜头可以用作放大镜,当它靠近镜头时,它会增加物体的外观尺寸。透过放大镜看物体,我们看到物体的放大和虚像。这种效果用于简单的显微镜,它由单个镜头组成,该镜头对夹在框架中并从下方照明的样品进行成像,如下图2所示。这种类型的显微镜通常可以实现2-6倍的放大倍率,这足以研究相对较大的样本。然而,实现更高的放大倍率和更好的图像质量需要使用更多的光学元件,这导致了复合显微镜的发展(如下图3)。图2:通过创建靠近它的物体的放大虚拟图像,将单个镜头用作放大镜。图3:左:简单显微镜。右:复合显微镜。  在复合显微镜中,从底部照射样品以观察透射光,或从顶部照射样品以观察反射光。来自样品的光由一个由两个主要透镜组组成的光学系统收集:物镜和目镜,它们各自的功率倍增,以实现比简单显微镜更高的放大倍率。物镜收集来自样品的光,通常放大倍数为40-100倍。一些复合显微镜在称为“换镜转盘(nose piece)”的旋转转台上配备多个物镜,允许用户在不同的放大倍数之间进行选择。来自物镜的图像被目镜拾取,它再次放大图像并将其传递给用户的眼睛,典型的目镜放大率为10倍。  可以用标准光学显微镜观察到的最小特征尺寸由所使用的光学波长(λ)和显微镜物镜的分辨率决定,由其孔径数值(NA)定义,最大值为NA =1空中目标。定义可区分的最小特征尺寸(r)的分辨率极限由瑞利准则给出:  r=0.61×(λ/NA)  例如,使用波长为550nm的绿光和典型NA为0.7的物镜,标准光学显微镜可以分辨低至0.61×(550nm)/0.7≈480nm的特征,这足以观察细胞(通常为10µm大小),但不足以观察较小生物的细节,例如病毒(通常为250-400nm)。要对更小的特征成像,可以使用具有更高NA和更短波长的更先进和更昂贵的物镜,但这可能不适用于所有应用。  在标准复合显微镜(如下图4a)中,样品(通常在载玻片上)被固定在一个可以手动或电子移动以获得更高精度的载物台上,照明系统位于显微镜的下部,而成像系统高于样本。然而,显微镜主体通常也可以适应特定用途。例如,立体显微镜(如下图4b)的特点是两个目镜相互成一个小角度,让用户可以看到一个略有立体感的图像。在许多生物学应用中,使用倒置显微镜设计(如下图4c),其中照明系统和成像光学器件都在样品台下方,以便于将细胞培养容器等放置在样品台上。最后,比较显微镜(如下图4d)常用于法医。图4:复合显微镜。a)标准直立显微镜指示(1)目镜,(2)物镜转台、左轮手枪或旋转鼻镜(用于固定多个物镜),(3)物镜、调焦旋钮(用于移动载物台)(4)粗调,(5)微调,(6)载物台(固定样品),(7)光源(灯或镜子),(8)光阑和聚光镜,(9)机械载物台。b)立体显微镜。c)倒置显微镜。  光学显微镜的类型  下面,我们将介绍一些当今可用的不同类型的光学显微镜技术,讨论它们的主要操作原理以及每种技术的优缺点。  亮视野显微镜  亮视野显微镜(Brightfield microscopy,BFM)是最简单的光学显微镜形式,从上方或下方照射样品,收集透射或反射的光以形成可以查看的图像。图像中的对比度和颜色是因为吸收和反射在样品区域内变化而形成的。BFM是第一种开发的光学显微镜,它使用相对简单的光学装置,使早期科学家能够研究传输中的微生物和细胞。今天,它对于相同的目的仍然非常有用,并且还广泛用于研究其他部分透明的样品,例如透射模式下的薄材料(如下图5),或反射模式下的微电子和其他小结构。图5:亮视野显微镜。左图:透射模式-在显微镜下看到的石墨(深灰色)和石墨烯(最浅灰色)薄片。在这里,图像上看到的亮度差异与石墨层的厚度成正比。右图:反射模式-SiO2表面上的石墨烯和石墨薄片,小的表面污染物也是可见的。  暗视野显微镜  暗视野显微镜是一种仅收集被样品散射的光的技术。这是通过添加阻挡照明光直接成像的孔来实现的,这样只能看到被样品散射的照明光。通过这种方式,暗场显微镜突出显示散射光的小结构(如下图6),并且对于揭示BFM中不可见的特征非常有用,而无需以任何方式修改样品。然而,由于在最终图像中看到的唯一光是被散射的光,因此暗场图像可能非常暗并且需要高照明功率,这可能会损坏样品。  图6:亮视野和暗视野成像。a)亮视野照明下的聚合物微结构。b)与a)中结构相同的暗视野图像,突出显示边缘散射和表面污染。c)与a)和b)相似的结构,被直径为100-300nm的纳米晶体覆盖。仅观察到纳米晶体散射的光,而背景光被强烈抑制。  相差显微镜  相差显微技术(Brightfield microscopy,PCM)是一种可视化由样品光路长度变化引起的光学相位变化的技术.这可以对在BFM中产生很少或没有对比度的透明样品进行成像,例如细胞(如下图7)。由于肉眼不易观察到光学相移,因此相差显微镜需要额外的光学组件,将样品引起的相移转换为最终图像中可见的亮度变化。这需要使用孔径和滤光片来操纵照明系统和成像系统。这些形状和选择性地相移来自样品的光(携带感兴趣的相位信息)和照明光,以便它们建设性地干涉眼睛或检测器以创建可见图像。图7:人类胚胎干细胞群落的相差显微图像。  微分干涉显微镜  与PCM类似,微分干涉显微镜(differential interference contrast microscopy,DICM)通过将由于样品光路长度变化引起的光学相位转换为可见对比度,从而使透明样品(例如活的未染色细胞)可视化。然而,与PCM相比,DICM可以实现更高分辨率的图像,并且减少了由PCM所需的光学器件引入的清晰度和图像伪影。在DICM ,照明光束被线性偏振器偏振,其偏振旋转,使其分裂成两个偏振光束,它们具有垂直偏振和小(通常低于1µm)间隔。穿过样品后,两束光束重新组合,从而相互干扰。这将创建一个对比度与图像成正比的图像差在两个偏振光束之间的光相位,因此命名为“差”干涉显微镜。DICM产生的图像出现与采样光束之间的位移方向相关的三维图像,这导致样品边缘具有亮区或暗区,具体取决于两者之间的光学相位差的符号(如下图8)。图8:微分干涉对比显微镜。左:DICM的原理图。右图:通过DICM成像的活体成年秀丽隐杆线虫(C.elegans)。  偏光显微镜  在偏振光显微镜中,样品用偏振光照射,光的检测也对偏振敏感。为了实现这一点,偏振器用于控制照明光偏振并将成像系统检测到的偏振限制为仅一种特定的偏振。通常,照明和检测偏振设置为垂直,以便强烈抑制不与样品相互作用的不需要的背景照明光。这种配置需要一个双折射样品,它引入了照明光偏振角的旋转,以便它可以被成像系统检测到,例如,观察晶体的双折射以及它们的厚度和折射率的变化(如下图9)。图9:偏光显微镜。橄榄石堆积物的显微照片,由具有不同双折射的晶体堆积而成。整个样品的厚度和折射率的变化会导致不同的颜色。  荧光显微镜  荧光显微镜用于对发出荧光的样品进行成像,也就是说,当用较短波长的光照射时,它们会发出长波长的光。示例包括固有荧光或已用荧光标记物标记的生物样品,以及单分子和其他纳米级荧光团。该技术采用了滤光片的组合,可阻挡短波长照明光,但让较长波长的样品荧光通过,因此最终图像仅显示样品的荧光部分(如下图10)。这允许从由许多其他非荧光颗粒组成的样品中挑出和可视化荧光颗粒或已被染料染色的感兴趣细胞的分布。同时,荧光显微镜还可以通过标记小于此限制的粒子来克服传统光学显微镜的分辨率限制。例如,可以用荧光标记标记病毒以显示其位置在生物样品的情况下,可以表达荧光蛋白,例如绿色荧光蛋白。结合各种新颖形式的样品照明,荧光显微镜的这一优势实现了“超分辨率”显微镜技术,打破了传统光学显微镜的分辨率限制。荧光显微镜的主要限制之一是光漂白,其中标记物或颗粒停止发出荧光,因为吸收照明光的过程最终会改变它们的结构,使它们不再发光。图10:荧光显微镜。左:工作原理-照明光由短通激发滤光片过滤,并由二向色镜反射到样品。来自样品的荧光通过二向色镜,并被发射滤光片额外过滤以去除图像中残留的激发光。右图:有机晶体中分子的荧光图像(晶体轮廓显示为黄色虚线)。由于来自其他分子和晶体材料的荧光,背景并不完全黑暗。  免疫荧光显微镜  免疫荧光显微镜是主要用于在微生物的细胞内的生物分子可视化的位置荧光显微镜的具体变化。在这里,用荧光标记物标记或固有荧光的抗体与感兴趣的生物分子结合,揭示它们的位置。(如下图11)图11:免疫荧光显微镜。肌动蛋白丝(紫色)、微管(黄色)和细胞核(绿色)的免疫荧光标记的两个间期细胞。  共聚焦显微镜  共聚焦显微镜是一种显微镜技术,它可以逐点成像来自样品的散射或荧光。不是一次对整个样品进行照明和成像,而是在样品区域上扫描源自点状光源的照明点,敏感检测器仅检测来自该点的光,从而产生2D图像。这种方法允许以高分辨率对弱信号样本进行成像,因为来自采样点之外的不需要的背景信号被有效抑制。在这里,所使用的波长和物镜在所有三个维度上都限制了成像光斑的大小。这允许通过将物镜移动到距样品不同的距离,在样品内的不同深度处制作2D图像。然后可以组合这些2D图像“切片”以创建样本的3D图像,这是所讨论的其他宽视场显微镜技术无法实现的,并且还允许以3D方式测量样品尺寸。这些优势的代价是无法一次性拍摄图像,而是必须逐点构建图像,这可能非常耗时并阻碍样本的实时成像(如下图12)。图12:单分子荧光的共聚焦荧光图像。小点对应于单个分子的荧光,而较大的点对应于分子簇。此处的荧光背景比简单的荧光显微镜图像弱得多,如亮点之间的暗区所见。  双光子显微镜  双光子显微镜(Two-photonmicroscopy,TPM)是荧光显微镜的一种变体,它使用双光子吸收来激发荧光,而不是单光子激发。在这里,通过吸收两个光子的组合来激发荧光,其能量大约是单个光子激发所需能量的一半。例如,在该方案中,通常由单个蓝色光子激发的荧光团可以被两个近红外光子激发。在TPM中,图像是逐点建立的,就像在共聚焦显微镜中一样,也就是说,双光子激发点在样品上扫描,样品荧光由灵敏的检测器检测。与传统荧光显微镜相比,激发和荧光能量的巨大差异导致了多重优势:首先,它允许使用更长的激发波长,在样品内散射较少,因此穿透更深,以允许在其表面下方对样品进行成像并创建3D样品图像。同时,由于激发能量低得多,光漂白大大减少,这对易碎样品很有用。激发点周围的荧光背景也大大减少,因为有效的双光子吸收仅发生在激发光束的焦点处,因此可以观察到来自样品小部分的荧光(如下图13)。  TPM的一个缺点是双光子吸收的概率远低于单光子吸收,因此需要高强度照明,如脉冲激光,才能达到实用的荧光信号强度。图13:双光子显微镜。花粉的薄光学切片,显示荧光主要来自外层。  光片显微镜  光片显微技术是荧光显微术的一种形式,其中样品被垂直于观察方向的薄“片”光照射,从而仅对样品的薄切片(通常为几微米)进行成像。通过在样品在光片中旋转的同时拍摄一系列图像,可以形成3D图像。这要求样品大部分是透明的,这就是为什么这种技术通常用于形成小型透明生物结构的3D图像,例如细胞、胚胎和生物体。(如下图14)图14:光片显微镜。左:工作原理。右:通过荧光成像用光片显微镜拍摄的小鼠大脑的荧光图像。  全内反射荧光显微镜  全内反射荧光(Totalinternal reflectionfluorescence microscopy ,TIRF)是一种荧光显微技术,可通过极薄(约100nm厚)的样品切片制作2D荧光图像。这是通过照明光的渐逝场激发样品的荧光来实现的,当它在两种不同折射率(n)的材料之间的边界处经历全内反射时就会发生这种情况。消逝场具有与照明光相同的波长,但与界面紧密结合。在TIRF显微镜中,激发光通常在载玻片(n=1.52)和样品分散的水介质(n=1.35)之间的界面处发生全内反射。渐逝场的强度随距离呈指数下降来自界面,这样在最终图像中只能观察到靠近界面的荧光团。这也导致来自切片外区域的荧光背景的强烈抑制,这允许拾取微弱的荧光信号,例如在定位单个分子时。这使得TIRF非常适用于观察参与细胞间相互作用的荧光蛋白(如下图15)的微弱信号,但也需要将样品分散在水性介质中,这可能会限制可以测量的样品类型。图15:TIRF图像显示培养的视网膜色素上皮细胞中的蛋白质荧光。每个像素对应67nm。  膨胀显微镜  膨胀显微镜背后的基本概念是增加通常需要高分辨率显微镜的样品尺寸,以便可以使用标准显微镜技术(尤其是荧光显微镜)对其进行成像。这适用于保存的标本,例如生物分子、细胞、细菌和组织切片,可以使用下图16中所示的化学过程在所有维度(各向同性)均匀扩展多达50倍。扩展样本可以隔离感兴趣的个别特征通常是隐藏的,可以使它们透明,从而可以对它们的内部进行成像。图16:膨胀显微镜的样品制备。细胞首先被染色,然后连接到聚合物凝胶基质上。然后细胞结构本身被溶解(消化),使染色的部分随着凝胶各向同性地膨胀,从而使染色的结构更详细地成像。  光学显微镜中的卷积  除了使光学系统适应特定用例之外,现代光学显微镜还利用了数字图像处理,例如图像去卷积。该技术通过补偿光学系统本身固有的模糊,可以提高空间分辨率以及光学显微镜拍摄图像的定位精度。这种模糊可以在校准步骤中测量,然后可以用于对图像进行去卷积,从而减少模糊。通过将高性能光学元件与先进的图像处理相结合,数字显微镜可以突破分辨率的极限,以更深入地观察微观世界。(如下图17)图17:图像解卷积。左:原始荧光图像。右:解卷积后的图像,显示细节增加。  光学显微镜与电子显微镜  光学显微术通常使用可见光谱中的光波长,由于瑞利准则,其空间分辨率固有地限制为所用波长的大约一半(最多约为200nm)。然而,即使使用具有高NA和高级图像处理的物镜,也无法克服这一基本限制。相反,观察较小的结构需要使用较短波长的电磁辐射。这是电子显微镜的基本原理,其中使用电子而不是可见光照亮样品。电子具有比可见光短得多的相关波长,因此可以实现高达10000000倍的放大倍数,甚至可以分辨单个原子。(如下图18)  图18:同心聚合物结构中纳米晶体放大15000倍的扫描电子显微镜图像,即使是细微的细节,例如基材的孔隙,也能分辨出来。  总结与结论  光学显微镜是一种强大的工具,可用于检查各种应用中的小样本。通过调整用于特定用例的照明和成像技术,可以获得高分辨率图像,从而深入了解样品中的微观结构和过程。文中,我们讨论了各种光学显微镜技术的特点、优势和劣势,这些技术在光线照射和收集方式上有所不同。显微镜种类优点技术限制典型应用亮视野显微镜结构相对简单,光学元件很少低对比度、完全透明的物体不能直接成像,可能需要染色对彩色或染色样品和部分透明材料进行成像暗视野显微镜显示小结构和表面粗糙度,允许对未染色样品进行成像所需的高照明功率会损坏样品,只能看到散射图像特征细胞内颗粒成像,表面检测相差显微镜实现透明样品的成像复杂的光学设置,需要的高照明功率会损坏样品,通常图像较暗跟踪细胞运动,成像幼虫微分干涉对比显微镜比PCM更高的分辨率复杂的光学设置,需要的高照明功率会损坏样品,通常图像较暗活的、未染色的细胞和纳米颗粒的高分辨率成像偏光显微镜来自样品非双折射区域的强背景抑制,允许测量样品厚度和双折射需要双折射样品成像胶原蛋白,揭示晶体中的晶界荧光显微镜允许挑出样品中的单个荧光团和特定的感兴趣区域,可以克服分辨率限制需要荧光样品和灵敏的检测器,光漂白会减弱信号成像细胞成分、单分子、蛋白质免疫荧光显微镜使用抗体靶向可视化特定的生物分子大量样品制备,需要荧光样品,光漂白识别和跟踪细胞和蛋白质共聚焦显微镜低背景信号,可以创建3D图像成像速度慢,需要复杂的光学系统3D细胞成像,荧光信号较弱的成像样品,表面分析双光子显微镜样品穿透深度、背景信号低、光漂白少成像速度慢,需要复杂的光学系统和大功率照明神经科学,深层组织成像光片显微镜图像仅样品的极薄切片,可通过旋转样品创建3D图像成像速度慢,需要复杂的光学系统细胞和生物体的3D成像全内反射荧光显微镜强大的背景抑制,极精细的垂直切片成像仅限于样品的薄区域,需要复杂的光学系统,样品需要在水介质中单分子成像,成像分子运输膨胀显微镜提高标准荧光显微镜的有效分辨率需要对样品进行化学处理,不适用于活体样品生物样品的高分辨率成像  参考:  1. Rochow TG, Tucker PA. A Brief History of Microscopy. In: Introduction to Microscopy by Means of Light, Electrons, X Rays, or Acoustics. Springer US 1994:1-21. doi:10.1007/978-1-4899-1513-9_1  2. Smith WJ. Modern Optical Engineering: The Design of Optical Systems.
  • 基于高精度3D打印的垂直U型环太赫兹超材料
    由于能够对太赫兹电磁波产生有效的调制,近年来,太赫兹电磁超材料受到了科研界极大的关注。太赫兹超材料的单个单元的特征尺寸一般为几十微米,传统的加工主要基于MEMS微纳加工工艺流程。然而,这些工艺流程通常都需要昂贵的实验设备并且是多工序且高耗费的。为了克服这些缺点与不足,西交大张留洋老师课题组提出了一种基于微纳3D打印结合磁控溅射沉积镀膜的太赫兹超材料制造工艺:以基于垂直U型环谐振器的三维太赫兹超材料为原型,采用高精度微纳3D打印设备nanoArch S130(BMF摩方精密)对模型进行加工,随后通过磁控溅射沉积镀金属膜赋予该结构功能性。该成果以“3D-printed terahertz metamaterial absorber based on vertical split-ring resonator”为题发表于Journal of Applied Physics期刊。原文链接:https://aip.scitation.org/doi/10.1063/5.0056276 图1 基于垂直U型环的太赫兹超材料制备工艺示意图。采用面投影微立体3D打印工艺(nanoArch S130,摩方精密)在硅片表面制造树脂超材料模型,然后通过磁控溅射在树脂模型表面沉积覆盖金属铜膜。插图为基于垂直U型环的太赫兹超材料的模型剖视图。图1所示为所提出的基于垂直U型环的太赫兹超材料制造工艺流程示意图。首先,通过三维建模软件建立了超材料的数字模型,将该数字模型转化为STL格式就可以输入3D打印设备进行打印制造。打印所采用的树脂材料为一种耐高温的光敏树脂(High-temperature resistance photosensitive resin, HTL)。为了加强所打印的垂直U型环结构和硅片界面处的粘附性,在U型环和硅片表面之间额外打印了一层树脂基底。在树脂模型制造完成之后,采用磁控溅射镀膜工艺在树脂模型的表面沉积铜膜。所使用的3D打印设备(nanoArch S130,摩方精密)的光学精度为2 μm,最小打印层厚为5 μm。所采用的加工工艺主要依赖于3D打印技术,这使得整个制造过程相当的简单和高效。图2 所制造的垂直U型环太赫兹超材料扫描电镜照片与太赫兹时域光谱系统测量所得吸收谱。(a)垂直U型环局部阵列。(b)单个垂直U型环照片。(c)与(d)分别为测量和仿真所得的分别在x极化和y极化入射下超材料的吸收谱。 制造的超材料阵列的总体尺寸为9.6 ×9.6mm,一共包含了30×30个单元结构。从电镜图中可以看出,所选用的3D打印技术(nanoArch S130,摩方精密)可以很好地完成设计的微结构的成型。THz-TDS测量结果表明,在x极化下,超材料在0.8 THz处达到了96%的近一吸收,而在y极化下没有出现吸收峰,这与仿真所得的结果基本一致。图3 高Q值三维太赫兹超材料传感研究。(a)传感分析物的示意。(b)谐振峰频率随传感分析物的厚度而变化。(c)加载不同折射率分析物时的超材料吸收谱 (d)超材料传感折射率灵敏度。(e)加载乳糖与半乳糖粉末时的测量结果。(f)吸收峰频率的偏移。 通过仿真和实验研究了样品的传感特性。分析得出,随着传感物厚度的增大,频移逐渐加大,当厚度大于100μm时得到了最佳的效果。计算得到传感器的灵敏度为S = 0.5 THz/RIU,品质因数为FOM = 95.9。所制造的垂直U型环超材料的高度为75μm,适用于检测具有一定厚度的分析物。因此,该研究选择了典型的乳糖和半乳糖粉末作为分析物来验证垂直U型环传感器的传感能力。如图3 (e)所示,在样品表面加载乳糖和半乳糖粉末后,吸收峰的中心频率分别变为0.5335 THz和0.7603 THz,频移分别为0.2665 THz与0.0397 THz,获得了有效且明显地频移,验证了样品在折射率传感等领域的应用潜力。
  • 基于高精度3D打印的垂直U型环太赫兹超材料
    由于能够对太赫兹电磁波产生有效的调制,近年来,太赫兹电磁超材料受到了科研界极大的关注。太赫兹超材料的单个单元的特征尺寸一般为几十微米,传统的加工主要基于MEMS微纳加工工艺流程。然而,这些工艺流程通常都需要昂贵的实验设备并且是多工序且高耗费的。为了克服这些缺点与不足,西交大张留洋老师课题组提出了一种基于微纳3D打印结合磁控溅射沉积镀膜的太赫兹超材料制造工艺:以基于垂直U型环谐振器的三维太赫兹超材料为原型,采用高精度微纳3D打印设备nanoArch S130(BMF摩方精密)对模型进行加工,随后通过磁控溅射沉积镀金属膜赋予该结构功能性。该成果以“3D-printed terahertz metamaterial absorber based on vertical split-ring resonator”为题发表于Journal of Applied Physics期刊。 图1 基于垂直U型环的太赫兹超材料制备工艺示意图。采用面投影微立体3D打印工艺(nanoArch S130,摩方精密)在硅片表面制造树脂超材料模型,然后通过磁控溅射在树脂模型表面沉积覆盖金属铜膜。插图为基于垂直U型环的太赫兹超材料的模型剖视图。图1所示为所提出的基于垂直U型环的太赫兹超材料制造工艺流程示意图。首先,通过三维建模软件建立了超材料的数字模型,将该数字模型转化为STL格式就可以输入3D打印设备进行打印制造。打印所采用的树脂材料为一种耐高温的光敏树脂(High-temperature resistance photosensitive resin, HTL)。为了加强所打印的垂直U型环结构和硅片界面处的粘附性,在U型环和硅片表面之间额外打印了一层树脂基底。在树脂模型制造完成之后,采用磁控溅射镀膜工艺在树脂模型的表面沉积铜膜。所使用的3D打印设备(nanoArch S130,摩方精密)的光学精度为2 μm,最小打印层厚为5 μm。所采用的加工工艺主要依赖于3D打印技术,这使得整个制造过程相当的简单和高效。图2 所制造的垂直U型环太赫兹超材料扫描电镜照片与太赫兹时域光谱系统测量所得吸收谱。(a)垂直U型环局部阵列。(b)单个垂直U型环照片。(c)与(d)分别为测量和仿真所得的分别在x极化和y极化入射下超材料的吸收谱。 制造的超材料阵列的总体尺寸为9.6 ×9.6mm,一共包含了30×30个单元结构。从电镜图中可以看出,所选用的3D打印技术(nanoArch S130,摩方精密)可以很好地完成设计的微结构的成型。THz-TDS测量结果表明,在x极化下,超材料在0.8 THz处达到了96%的近一吸收,而在y极化下没有出现吸收峰,这与仿真所得的结果基本一致。图3 高Q值三维太赫兹超材料传感研究。(a)传感分析物的示意。(b)谐振峰频率随传感分析物的厚度而变化。(c)加载不同折射率分析物时的超材料吸收谱 (d)超材料传感折射率灵敏度。(e)加载乳糖与半乳糖粉末时的测量结果。(f)吸收峰频率的偏移。 通过仿真和实验研究了样品的传感特性。分析得出,随着传感物厚度的增大,频移逐渐加大,当厚度大于100μm时得到了最佳的效果。计算得到传感器的灵敏度为S = 0.5 THz/RIU,品质因数为FOM = 95.9。所制造的垂直U型环超材料的高度为75μm,适用于检测具有一定厚度的分析物。因此,该研究选择了典型的乳糖和半乳糖粉末作为分析物来验证垂直U型环传感器的传感能力。如图3 (e)所示,在样品表面加载乳糖和半乳糖粉末后,吸收峰的中心频率分别变为0.5335 THz和0.7603 THz,频移分别为0.2665 THz与0.0397 THz,获得了有效且明显地频移,验证了样品在折射率传感等领域的应用潜力。官网:https://www.bmftec.cn/links/10
  • 基于高精度3D打印的垂直U型环太赫兹超材料
    由于能够对太赫兹电磁波产生有效的调制,近年来,太赫兹电磁超材料受到了科研界极大的关注。太赫兹超材料的单个单元的特征尺寸一般为几十微米,传统的加工主要基于MEMS微纳加工工艺流程。然而,这些工艺流程通常都需要昂贵的实验设备并且是多工序且高耗费的。为了克服这些缺点与不足,西交大张留洋老师课题组提出了一种基于微纳3D打印结合磁控溅射沉积镀膜的太赫兹超材料制造工艺:以基于垂直U型环谐振器的三维太赫兹超材料为原型,采用高精度微纳3D打印设备nanoArch S130(BMF摩方精密)对模型进行加工,随后通过磁控溅射沉积镀金属膜赋予该结构功能性。该成果以“3D-printed terahertz metamaterial absorber based on vertical split-ring resonator”为题发表于Journal of Applied Physics期刊。原文链接:https://aip.scitation.org/doi/10.1063/5.0056276 图1 基于垂直U型环的太赫兹超材料制备工艺示意图。采用面投影微立体3D打印工艺(nanoArch S130,摩方精密)在硅片表面制造树脂超材料模型,然后通过磁控溅射在树脂模型表面沉积覆盖金属铜膜。插图为基于垂直U型环的太赫兹超材料的模型剖视图。图1所示为所提出的基于垂直U型环的太赫兹超材料制造工艺流程示意图。首先,通过三维建模软件建立了超材料的数字模型,将该数字模型转化为STL格式就可以输入3D打印设备进行打印制造。打印所采用的树脂材料为一种耐高温的光敏树脂(High-temperature resistance photosensitive resin, HTL)。为了加强所打印的垂直U型环结构和硅片界面处的粘附性,在U型环和硅片表面之间额外打印了一层树脂基底。在树脂模型制造完成之后,采用磁控溅射镀膜工艺在树脂模型的表面沉积铜膜。所使用的3D打印设备(nanoArch S130,摩方精密)的光学精度为2 μm,最小打印层厚为5 μm。所采用的加工工艺主要依赖于3D打印技术,这使得整个制造过程相当的简单和高效。图2 所制造的垂直U型环太赫兹超材料扫描电镜照片与太赫兹时域光谱系统测量所得吸收谱。(a)垂直U型环局部阵列。(b)单个垂直U型环照片。(c)与(d)分别为测量和仿真所得的分别在x极化和y极化入射下超材料的吸收谱。 制造的超材料阵列的总体尺寸为9.6 ×9.6mm,一共包含了30×30个单元结构。从电镜图中可以看出,所选用的3D打印技术(nanoArch S130,摩方精密)可以很好地完成设计的微结构的成型。THz-TDS测量结果表明,在x极化下,超材料在0.8 THz处达到了96%的近一吸收,而在y极化下没有出现吸收峰,这与仿真所得的结果基本一致。图3 高Q值三维太赫兹超材料传感研究。(a)传感分析物的示意。(b)谐振峰频率随传感分析物的厚度而变化。(c)加载不同折射率分析物时的超材料吸收谱 (d)超材料传感折射率灵敏度。(e)加载乳糖与半乳糖粉末时的测量结果。(f)吸收峰频率的偏移。 通过仿真和实验研究了样品的传感特性。分析得出,随着传感物厚度的增大,频移逐渐加大,当厚度大于100μm时得到了最佳的效果。计算得到传感器的灵敏度为S = 0.5 THz/RIU,品质因数为FOM = 95.9。所制造的垂直U型环超材料的高度为75μm,适用于检测具有一定厚度的分析物。因此,该研究选择了典型的乳糖和半乳糖粉末作为分析物来验证垂直U型环传感器的传感能力。如图3 (e)所示,在样品表面加载乳糖和半乳糖粉末后,吸收峰的中心频率分别变为0.5335 THz和0.7603 THz,频移分别为0.2665 THz与0.0397 THz,获得了有效且明显地频移,验证了样品在折射率传感等领域的应用潜力。
  • 安光所环境光学中心携手中科光电助力青岛“上合蓝”
    黄海之滨,青青岛城。2018年6月9日至10日,上海合作组织成员国元首理事会第十八次会议在青岛举行。厚植团结互信的土壤,拓展携手发展的空间,中国国家领导人同上合组织其他7个成员国、4个观察员国领导人以及有关国际组织负责人齐聚一堂,共襄发展大计。  为保障上合峰会青岛会议环境空气质量,生态环境部,中国环境监测总站,山东、河北、辽宁、江苏、河南省环境保护厅,青岛市环境保护局和青岛市环境监测中心站高度重视、精心组织、周密部署。受青岛市环境监测中心站委托,中国科学院安徽光学精密机械研究所(以下简称“安光所环境光学中心”)携手聚光科技(杭州)股份有限公司下属子公司无锡中科光电技术有限公司(以下简称“中科光电”)全程参与美丽青岛环保专项行动保障工作。  为摸清大气臭氧的污染特征及来源成因,确保峰会期间空气质量达到预期效果,安光所环境光学中心、中科光电分别在崂山区、市南区、黄岛区、胶州市布下臭氧雷达监测点,实时监测大气臭氧垂直分布和时空演变特征,为青岛市大气臭氧污染成因、污染过程等提供专业详尽的技术解析,全方位的为环境质量会商保障决策提供重要的数据基础及技术支持。 臭氧雷达反演图臭氧雷达点位分布图  峰会期间,中科光电特派经验丰富的运维人员和资深数据分析人员24小时驻场青岛及周边地区,以“不破楼兰终不还”的信念,推动监测工作落实落细。在日以继夜的工作中,中科光电的小伙伴们亲力亲为,保障设备顺利运行,每天零点之后对前72小时的数据进行整理分析,以确保数据的连续性和有效性。  管控期间,中科光电通过雷达组网监测,根据监测到的臭氧垂直分布和时空演变特征,深入研究、判断分析,及时提供污染过程特征分析报告,为专家的决策提供了有利的数据参考,获得专家组的高度重视。 环境管理与决策参考  实时、准确、快速响应臭氧污染,建立一套从运维到分析再到决策的工作模式,中科光电为青岛市加强污染联防联控提供了有力的数据支撑和科学依据。  在环保人的共同努力下,上合峰会期间青岛市空气质量达到全优,空气质量保障成果喜人。各级政府领导及会商专家对安光所环境光学中心和中科光电的工作给予了充分肯定,青岛市环境监测中心徐站长大力赞扬了安光所环境光学中心和中科光电为空气质量安保所做的努力。 青岛市环境监测站站长徐少才和主任孙萌在会上表彰各企业的安保工作中科光电技术人员与青岛市环境监测中心工作人员合影  安光所环境光学中心联手中科光电组成的青岛上合峰会空气质量安全保障团队,依靠各专业专家的鼎力支持,通过高效、精准的数据分析,为保障“上合之蓝”的添砖加瓦,谱写华丽的篇章。
  • 谈国内外激光粒度仪技术现状及行业亟需解决的问题——珠海真理光学仪器有限公司董事长张福根
    在进入主题之前,我首先要澄清一下,这里的“激光粒度仪”是指基于静态光散射或衍射原理的粒度分析仪器, 测量范围从大约100纳米到几毫米。与之容易混淆的还有另一种也是以激光作为照明光源的粒度分析仪器——动态光散射粒度仪,在国内通常叫作纳米粒度分析仪。本文探讨的产品是指前者。 一提起高端的科学仪器,大多数国人都认为进口的国外仪器比国产仪器先进。但是,对激光粒度仪,我可以很负责任地说,总体上国产仪器与进口仪器水平相当,有些国产品牌甚至领先于世界同行。国外产品的价格确实高,但是技术性能一点都不高。所以,某些国家如果想在激光粒度仪上卡中国的脖子,不仅对中国的粒度仪应用产业丝毫无损,而且还会自行断送国外品牌在中国的市场,对中国的上下游产业发展只有好处,没有坏处。 能不能制造出高水平的科技产品,关键点有三:一是产品的设计,二是供应链(配套原材料),三是制程管理。 就原料供应来说,国内国外的粒度仪厂商都是全球采购的,相互之间没什么差别。具体来说,集成电路和部分电子元件大多是国外生产的,机械零件和光学镜头大多是中国生产的,有些国外品牌甚至连整机都是在中国境内、由中国工人完成组装调试的。某些国产品牌为了宣传自己的粒度仪“高大上”,声称光学镜头是某发达国家生产的,不知真假?但愿是假的;如果是真的,那真要为之惋惜了。其实,国产光学镜头完全能够满足激光粒度仪的使用需求。就连某些著名的进口品牌的镜头都是中国产的,说明国外同行早就认可中国镜头的质量。你又何必花高价到国外采购呢?要说卡脖子,电子元器件真是国产科学仪器“脆弱的要害部位”。激光粒度仪要用到的激光二极管,一些模拟集成电路,单片机等,都需要进口。但这不是我们激光粒度仪的厂商能够解决的。 至于制程管理,需要经验的积累和精益求精的态度。国产品牌或者其主要负责人,进入激光粒度仪行业都已超过20年,而且有些人曾长期在国外同行企业工作,再笨也学会该如何管理了,更何况中国人还是挺聪明的,至少不会在智力上输给西方人。对产品质量的态度,我认为几家主要的国产品牌都是很认真的。或许是激烈竞争的原因,大家都迫切地希望用户使用自己的产品时有良好的体验:精确、稳定、可靠。说到用户体验,我要提一句提外话:目前进口产品在售后服务上给用户的感觉都不太好:不仅服务不及时,态度不友好,而且收费巨贵。在这一点上,国外品牌就大大比不上国产品牌了。 最后一点就是激光粒度仪的设计了,这是硬核技术,也是本文要谈的重点。在供应链和制程管理不相上下的情况下,设计水平的高低决定了激光粒度仪的技术性能的高下。 下面将正式展开对国内外激光粒度仪的认知和设计水平的比较。表述听起来可能比较“学究”,请读者诸君谅解。这是因为不用专业的表达,就无法把其中的要点说清楚,就会显得模棱两可,给人留下质疑的空间。但是我会尽量表达得通俗一点。1. 激光粒度仪的光学模型及简要历史回顾 粒度仪器有多种原理,但大多数都把被测量的颗粒看成一个理想的圆球。尽管实际的颗粒很少是理想圆球,有的甚至远远偏离圆球,但是由于颗粒的数量太大,形状也是千变万化,如果连形状都要考虑进去,是一件无法完成的工作,所以只能把颗粒当作圆球来处理。激光粒度仪也是把颗粒当成理想圆球来处理,全世界的品牌都一样。 1.1 光散射的模型 光是电磁波。在均匀的介质中,光是沿着直线传播的。如果光在传播的途中遇到一个颗粒,光和颗粒就会发生相互作用,光波一部分可能被颗粒吸收,一部分则偏离原来的方向继续传播,后者就称为“光的散射”。这种相互作用遵循电磁波理论,即麦克斯韦方程组。只要颗粒尺寸远大于原子尺度,并且没有原子激发辐射(荧光)现象发生,那么,电磁波理论的正确性是不容置疑的。平面电磁波遇到圆球颗粒后发生的散射现象,可以有严格的数学解,称作“Mie散射理论”。不过这个解在数学形式上非常复杂、计算量庞大,物理意义很抽象。在颗粒直径远大于光波长时,散射现象可以用几何光学近似理论解释,这样物理意义就变得很直观了。 请看图1。在颗粒远大于光波长的情况下,颗粒对光的散射,可以分成两个部分:衍射和几何散射。从无限远(远场)的位置观察,衍射光的偏离角度只跟颗粒在观察面上的投影的大小有关,颗粒越小,衍射角越大,这部分信息可以用来分析颗粒的大小。几何散射光是指光线投射到颗粒表面以后,一部分发生反射,另一部分经过折射进入颗粒内部,又在另一个界面上发生折射(到介质)和反射的现象。散射光场是这两部分光的叠加。图1中只画出了衍射光和一次折射光。从远场看,几何散射光的相对强度分布与颗粒大小无关,只与颗粒的折射率与吸收系数有关。另外,当颗粒很大时,衍射光的分布范围远远小于几何散射光的分布范围,但是由于两种散射光的总能量相同,所以从小角度看,衍射光的强度要远远大于几何散射光的强度。这也是在小角度范围内观察大颗粒的散射光时,可以只考虑衍射光的原因。图1 光散射模型的几何光学近似 激光粒度仪在上世纪70年代初刚出现时,只考虑衍射光,所以颗粒可以看成一个不透光的圆片,见图2。根据光学上著名的巴比涅互补原理,一个不透光的圆片所产生的衍射场与同直径的圆孔所产生的衍射场只在位相上差180°,振幅则完全相同。激光粒度仪直接测量的是光强的分布,它是振幅的模的平方,跟位相没关系,所以一个直径为D的颗粒所产生的衍射光强的分布可以用等直径的圆孔产生的光强分布来代替。图2 从圆球散射到圆孔衍射的简化圆孔的衍射在19世纪末就有解析形式的理论表达。远场的衍射理论称为“夫朗和费衍射理论”。图2还表示出了观察远场衍射的经典装置:在圆孔后放置一个光学透镜,在透镜的焦平面上放置观察屏,这样在屏上看到的图像就是远场衍射光斑。衍射角度为的衍射光落在屏上的位置到屏的中心的距离为( 是透镜的焦距)。顺便科普一个光学名词:如果透镜是对焦平面消像差的,该透镜就称为“傅里叶透镜”。从图2可以看到,远场的衍射光斑由中心亮斑和一系列同心圆环组成,被称为“爱里斑”。理论上可以证明,爱里斑的第一个暗环内包含了大约84%的衍射总光能,所以习惯上把第一个暗环所对应的衍射角称为爱里斑的(角)半径。爱里斑的半径与圆孔直径、也就是颗粒的直径近似成反比,因此屏上的光强分布与颗粒大小之间有一一对应关系。激光粒度仪就是根据这个原理分析颗粒大小的。 1.2 国内外激光粒度仪的发展史 一个10微米的颗粒,如果用0.633微米(红光he-Ne激光波长)的光去照射,那么衍射角就是4.4°;100微米的颗粒,衍射角就是0.44°了。世界上第一台激光粒度仪直到1970年前后(准确的年份有几种说法)才出现,就是因为它首先需要一种单色性、方向性都足够高、强度足够强的光源,这就是激光。所以它只能出现在激光器问世(1961年)之后。另外,探测衍射光场的分布需要硅光电探测器阵列,需要用到集成电路制作工艺;把衍射光的分布转换成粒度分布需要台式计算机,这些条件都是1960年以后才出现的。国内最早开始激光粒度仪研制的是天津大学的张以谟团队,当时是承接了国家科委的六五(1981年到1985年)科技攻关项目。项目于1989年通过了国家科委的技术鉴定。产品名称当时叫做“激光滴谱仪”,设定的应用对象是液体雾滴的粒度测量。比天津大学略晚开展激光粒度仪研制的单位还有上海机械学院(后改名“上海理工大学”)、山东建材学院(后并入济南大学)、四川省轻工业研究院、重庆大学和辽宁(丹东)仪器仪表研究所。从上面的介绍可以看出,国产激光粒度仪的出现时间比世界上最早的同类产品晚了大约20年。早期国产仪器的落后,首先就是因为起步的时间晚。起步晚的原因有这么几个:(1)国外开始研发激光粒度仪的时间正好是中国的文革时期,闭关锁国,国内的科研人员不太了解国外的动态,一直到1970年代末改革开放后,国外的产品卖到中国,以及国内的科研人员到国外进修,才知道有这么一种产品。(2)激光粒度仪的应用对象是从事粉体、浆料、乳液、胶体以及喷雾的科研和生产单位,当时中国在生产和科研两个方面都大幅落后于国外。国内的应用需求对该产品的研发的拉动不强烈。(3)在改革开放前以及改革开放后的很长一段时间,科研由高校和研究机构做,而生产由工厂做。科研单位感受不到应用的需求,而生产单位即使知道有需求,也没有能力设计一款光、机、电和计算机一体化的产品。(4)激光粒度仪作为当时的高精尖产品,需要激光器、电脑、形硅光电池阵列、半导体芯片等元器件和设备的配套,在上世纪六、七十年代,中国很难获得这些东西。目前国内的情况已经完全改观:一是国内需求拉动强烈,二是各种电子元件、计算机软硬件等都能在全球采购,三是国内的研发人员理论基础雄厚,创新意识强,能开展基础理论研究和技术创新。经过30多年的进步,国产激光粒度仪的技术已经能和全球同行并驾齐驱,并有一部分实现了超越。1.3 当前各种品牌对光学模型的应用从1.1节的讨论可以看到,如果只考虑远大于光波长的颗粒,并且只测量小角度的散射光(例如小于5°)的话,用衍射理论基本可以满足粒度测量的要求。衍射理论的优势在于数值计算相对简单,也不需要知道颗粒的光学参数(折射率和吸收系数)。但是如果想把粒度测量下限扩展到接近或小于光的波长,那么就不得不考虑更大角度范围的散射光了。现在的粒度仪测量下限可以达到光波长的1/10左右。图3表示出几种亚微米颗粒的散射光强分布。从图上可以看出,对小颗粒来说,不同粒径散射光强度分布的差别,主要在大角度上,甚至大到180°。这就需要仪器的光学系统能测量0°到180°全角范围的散射光,光学模型也必须用Mie散射理论了。图3 对数极坐标下亚微米颗粒的散射光强分布图中的坐标系是对数极坐标,方位角就是散射角,辐射线的长度是散射光强度的对数。(a)(d)分别表示1µm、0.5µm、0.25µm和0.12 µm的颗粒的散射光强分布。 目前国内国外的厂商,大多数采用复杂但严谨的Mie理论,但也有个别国外厂商还在用衍射理论。从所采用的光学模型来看,国内厂商与国外的主流厂商是同步的。相反,个别国外厂商还在用夫朗和费衍射理论,就显得抱残守缺了。1.4 对光学模型研究的新发现 激光粒度测试技术的研究者和厂商都隐藏着一个困惑:激光粒度仪无法正常测量3微米左右的聚苯乙烯微球。这是为什么? 国内厂商——珠海真理光学仪器有限公司与天津大学的联合团队发现了造成这个困惑的根源:爱里斑的反常变化(ACAD)。通常我们都认为颗粒越小,爱里斑越大,于是颗粒大小与爱里斑大小之间有一一对应关系,所以粒度仪能够根据散射光的分布推算粒度分布。但事实上在有的粒径区间,会出现违反上述规律的情况:颗粒越小,爱里斑也越小。我们把这样的粒径区间叫做“反常区”。图4是根据Mie散射理论用数值计算的方法模拟出的聚苯乙烯微球的爱里斑的变化。图中粒径从3微米到3.5微米的爱里斑尺寸的变化就属于反常变化。对聚苯乙烯微球来说,3微米左右正好是在反常区,所以测量出现异常。研究论文发表于2017年。 图4 爱里斑的反常变化现象 该研究揭示出,任何无吸收或弱吸收的颗粒的光散射都存在反常现象。如果颗粒无吸收,则存在无限多个反常区。对粒度测量有影响的主要是第一反常区,其所处的粒径区间大约在0.5微米到10微米,具体位置跟颗粒与分散介质的折射率以及光波长有关。颗粒折射率越大,反常区中心对应的粒径越小。被测颗粒的粒径落在第一个反常区的话,通常的反演算法就难以根据散射光的分布计算出正确的粒度分布。反常现象对激光粒度测量的影响是普遍存在的,这将在第3节继续讨论。 爱里斑反常变化现象的发现与研究,是国内厂商与研究机构对激光粒度测试技术的创造性贡献,当然是世界范围内独一无二的,是领先于世界的。 2. 各种仪器的散射光接收系统 粒度仪的散射光接收系统决定了仪器能否获得充分的颗粒散射光信息,从而准确计算出被测颗粒的粒度分布。它是激光粒度仪的关键技术之一。 亚微米颗粒的散射光能分布见图5,其中假设了探测器的面积与散射角成正比,照明光是线偏振光,偏振方向垂直于散射面。其中图(a)表示全角范围内完整的散射光能分布。从中可以看出,垂直偏振散射光是分布在0°到180°的全角范围内的,对0.3微米以细的颗粒来说,散射光能的主峰分布处在40°到90°的前向大角度上。由于光能分布的主峰位置(如果有)与粒径之间有最显著的特异性,因此获取40°以上的散射光信息对亚微米颗粒测量至关重要。图5 亚微米颗粒的散射光能分布曲线(a) 全角范围的光能分布,(b) 正入射平板玻璃窗口得到的;(c) 斜置梯形玻璃窗口得到的 图6是当前国内外比较有影响力的几种品牌的激光粒度仪的散射光接收系统的光路图。其中图 (a)称为经典光路,又称正傅里叶变化光路。是激光粒度仪发展的早期就开始采用的光路。其特点是用平行激光束垂直入射到测量窗(池),相同角度的散射光通过傅里叶镜头后被聚焦到探测器的一个点上。其缺点是系统能接收的最大散射角受傅里叶镜头的孔径限制。目前能达到的最大孔径角是45°。如果颗粒分散在水介质中,那么对应的最大散射角是32°。这样的系统能测量的最小粒径约为0.4微米。图6 各种散射光接收系统原理图 图6(b)是一种逆(反)傅里叶变换系统。它用会聚光垂直照射到测量池。在小散射角上也能会聚同角度的散射光。但是大角度的聚焦不良,不过可以在光学模型的数值计算上对此进行补偿,并不影响对散射光分布的测量。它的好处是最大接收角不受透镜孔径限制。空气中的最大接收角可达60°或更大,对应于水介质中的散射角为41°以上。如果前向散射角继续增大,大于49°时,就会受到全反射规律的约束,无法出射到空气中,该以上角度称为“全反射盲区”。盲区内的散射光也就无法被探测器接收。这将丢失0.3微米及以细颗粒的散射光能主峰信息,见图5(b)。这种系统一般还设置后向探测器,能接收大于139°的散射光。对0.1左右的颗粒测量有帮助。 图6(c)是一种是多光束方案,是为突破全反射的限制而专门设计的。它用一束光作为主光束,正入射到测量池,用另外一束或两束光作为辅助光束,斜入射到测量池。如果设置后向探测器,则只需一束辅助光。。通常,为了尽量扩大仪器的测量范围,主光束用红色激光,而辅助光束用蓝色LED光源。假设辅助光的对测量池的入射角为45°,那么在该辅助光的配合下,测量盲区可以减小32°。如果只有主光束时散射角测量上限为41°,那么现在的测量上限可达73°。但是它的缺点是,主光束照明情况下的散射光测量和辅助光照明下的测量(如果两束辅助光,也要分别测量)必须分开进行,两次测量的数据拼接,不是一件容易做好的事情。如果辅助光和主光用不同的波长,还需要同时获取两种波长所对应的折射率。有时要得到一种波长的折射率都有困难,两种更难了。 图6(d)称为偏振光强度差(PIDS)方案(该图取自许人良博士未出版的书稿)。其特征是除了正入射的主光束以及配套的双镜头散射光接收系统外,另外串联了一个测量池,并在照明光行进路径的侧面设置对应不同散射角的探测系统。利用90°散射角周围垂直偏振的散射光与平行偏振的散射光的分布差异,分析亚微米颗粒的大小。存在的问题是: (1)主光束获得的信息与PIDS窗口获得的信息之间如何拼接?(2)PIDS测量利用了多种波长的照明光,要想获得多种波长的折射率是非常困难的。 图6(e)称为“斜置平行窗口”方案或“照明光斜入射”方案。作者最早于2010年提出该方案(专利)。它的优点是用一束照明光就可以突破全反射的限制,却没有多光束方案的数据拼接难题。比如说斜置20,被接收的最大散射角就可以增加到60°。但是要完全消除全反射的影响,必须斜置70°。此时入射光在探测平面上不能良好聚焦,从而影响了大颗粒的测量。这是作者没有在真理光学的产品中采用这种方案的原因,但有其他国产品牌在用这种方案。 图6(f)是真理光学在用的“斜置梯形窗口”光学系统。它只需一束照明光。测量池整体倾斜10°,不影响入射光的聚焦,测量池右侧的玻璃做成梯形,让接近或大于全反射临界角的散射光从梯形的斜面出射。这种方案能让前向最大散射角达到80°,使系统能够接收所有亚微米颗粒的散射光能分布的主峰信息,见图5(c)。这是目前前向散射接收角最大的光学系统,而且还只用了一束照明光,没有数据拼接问题。是一种世界领先的方案。3. 反演算法与粒度测试结果的真实性 反演算法就是把仪器测量得到的被测颗粒的散射光分布,结合事先根据光学模型的数值计算得到的预设的各种粒径颗粒的散射光能分布(组成“散射矩阵”),反向计算出被测颗粒的粒度分布的计算机程序。粒度分布是激光粒度仪输出的最终结果,它能否真实反映被测颗粒的粒度,是激光粒度仪性能的最终体现。3.1 获得真实的粒度测试结果的基本条件 能否获得好的粒度分布数据由以下三点决定: (A)充分的被测颗粒的散射光分布信息,最好含有光能分布的主峰(如果有); (B)利用光学模型计算得到的散射光分布与粒度分布之间存在一一对应关系; (C)合理的算法。 各厂商的算法是技术秘密,外人无从知晓与评价。但是可以确定的是,如果条件(A)和(B)有缺失,一定会影响最终的粒度分布结果。从第2节的叙述我们已经看到,现有的各种散射光的接收方案都不能百分之百获得0到180°的散射光信息,但是有的方案好一些,比如图6(f)的方案;有的则有较大的信息缺口,比如图6(a)和(b)所示的方案。作者在第1节中谈到过,真理光学团队发现的爱里斑的反常变化,将导致在被测颗粒是透明的条件下,对于粒径落在第1反常区内的颗粒,条件(B)不能满足。 相对来说,国产的真理光学做得比较好。对条件(A),前向最大散射角(介质中)的接收能力达到80°,能捕获所有颗粒的光能分布主峰,并且只用一束照明光,避免了不同照明光的数据拼接。对条件(B),基于对爱里斑反常变化的原创发现和规律的深入研究,通过软硬件的结合,基本上解决了爱里斑反常变化对粒度分析的影响。 现在国内外各厂商都宣称自己的仪器能测量小到100纳米以细,大到数千微米,全量程无死角的粒度分布,但是上述条件(A) 和(B)的缺失,从客观上限制了这些仪器的测量能力,使得它们宣称的性能难以实现。3.2 国外某仪器有多种反演计算模式,不同模式会给出不同的粒度分析结果 有些国外仪器有多种反演计算模式。同样的被测样品,选不同的模式就会输出不同的结果。图7 国外某仪器不同反演模式输出不同结果的案例 图7是该仪器的实测案例。图7(a)是标称D50为150纳米的聚苯乙烯微球标样的测量结果。选“通用”模式时,D50为121纳米,与样品标称值相差较远,且分布曲线明显展宽;选”单峰窄分布”模式时,D50为148纳米,与样品标称值相符。图7(b)是标称D50为3微米的标样的测量结果。选“通用”模式时,结果呈现多峰,与样品的单分散特征完全不符;选“单峰窄分布”模式时,与样品形态特征及标称值相符。图7(c) 是一个人工配制的3个峰的SiO2 微球。选“通用”模式时,结果只有1个峰,完全失真;选“多峰窄分布”模式时,曲线呈现2个峰,结果比“通用”模式接近真实,但还是有失真。 从使用经验看,该仪器在测量颗粒标准样品时只能用“单峰窄分布”模式去分析。因为颗粒标准物质就是单峰窄分布的,所以这种做法颇有“量身定做”的意味。如果用 “通用”模式分析标准微球时,则经常出错。人们难免要问:“通用”模式连最容易测量的颗粒标准物质都给不出正确的结果,如何保证一般样品的测量结果是正确的?还有一个疑问是:一种仪器的不同模式给出不同的结果,究竟哪一个是正确的结果? 上述问题如果没有合理的解答,那么从基本的科学逻辑出发,我们就可以得出这样的结论:一种仪器有多种分析模式是仪器性能不完善的表现。国产的真理光学的仪器就完全没有这样的问题。它只有一个统一的反演模式,不论测什么样品,都用同样的算法。图8是上述3个样品用国产真理光学仪器测量的结果:150纳米和3微米标样的D50值和分布形态完全符合预期,实际样品的3个峰也能得到正确的体现。图8 国产真理光学的激光粒度仪对三个样品的测量结果3.3 国内外仪器对爱里斑反常现象的处理 爱里斑的反常变化会导致一种散射光能分布对应多种粒度分布的可能性,从而使粒度仪得不到正确的粒度分布结果。图7(b)所示的3微米标样在某国外仪器“通用”模式下给出的完全失真的结果,就是因为3微米标样的构成材料是聚苯乙烯微球,这个粒径正好处在这种材料颗粒的第1个反常区。该国外仪器没能解决这个问题,所以在“通用”模式下得不到正确结果,而只能选用“单峰窄分布”这种量身定做的模式进行“特殊处理”。如果是普通的待测样品,由于事先无法知道被测颗粒的粒度分布特征,不知如何去“特殊”,就难以给出正确的结果。 目前除了真理光学以外,国内外的激光粒度仪厂家的通行做法是,在计算散射矩阵(光学模型)时,即使被测颗粒是透明的,也要人为加一个吸收系数,最常见的数值是0.1。这样在光学模型中就不会出现反常现象,从而使反演结果稳定,或者看上去比较正常。问题在于实际颗粒是无吸收的,人为加吸收必然使测量结果失真。 图9是一个碳酸钙样品的粒度测量结果。该样品经过沉降法的分离,去除了2微米以细的颗粒(可通过显微镜验证)。碳酸钙的折射率是1.69,无吸收。图9(a)是真理光学仪器的测量结果,2微米以细的颗粒含量几乎为零,与预期的一致。图9(b)是在光学模型中加了0.1的吸收系数后的反演结果:在2微米后拖了一个长长的尾巴。我们知道真实的粒度分布中,这个尾巴是不存在的,这是人为加吸收系数所引起的错误结果。有些国外仪器为了避免假尾巴的出现,人为地在1到3微米之间减去一定比例的颗粒含量。这种人为主观的处理会引起新的不良后果:如果在该粒径区域真实存在颗粒,也会被人为减少其含量甚至清零。图8(c)所示的SiO2样品在1微米到3微米之间有一个小峰,但是用该进口仪器测量的结果如图7(c)所示:无论用什么模式分析,这个真实存在的小峰都消失了。图9 在光学模型中给透明颗粒加吸收系数的后果(a)实际的粒度分布 (b)光学模型中加0.1吸收系数后得到的结果 可见,当透明颗粒的粒度分布处在反常区时,通过人为加吸收系数的方法无论怎么做,都有问题。目前国产的真理光学是世界上唯一解决了爱里斑反常变化困扰的厂家。3.4 国内外激光粒度仪对亚微米颗粒的测量能力的比较 采用图6(b)所示的散射光接收系统的仪器是国外品牌,在中国占有很可观的市场份额。然而这种结构由于丢失了0.3微米以细颗粒的光能分布主峰的信息(见图5(b)),从而注定了难以很好地测量0.3微米以细的实际样品(有别于标样,因此通常都用“通用”模式)。图10 某进口仪器和国产真理光学仪器测量纳米硅碳颗粒样品结果的比较 图10是某进口仪器和国产真理光学仪器测量纳米硅碳颗粒样品结果的比较。图10(a)是国外仪器的结果,图10(b)是真理光学的测量结果。两张图中的上图是粒度分布,下图是拟合光能分布与实测光能分布的对比。比较两种结果,可判断真理光学的结果更加真实、可靠。理由是: (A)真理光学的结果拟合残差只有0.43%,而进口仪器的拟合残差高达5.25%。前者拟合更好。 (B)真理光学给出的粒度分布曲线是单峰的,而进口仪器的结果是多峰的。经验告诉我们,正常制造出来的样品极少出现多峰的情况. (C)从光能拟合曲线看,进口仪器在第40单元后测量值(绿线)和拟合值(红线)之间出现较大的偏离,而国产仪器的两条曲线非常一致。 类似的0.3微米以细颗粒的测量案例还有很多。 4. 激光粒度仪行业的未来发展问题 前面三节从激光粒度仪的光学模型、散射光接收系统和反演算法及实际测量能力等三项硬核技术方面对比了国内外激光粒度仪的技术水平和测试性能,表明国产激光粒度仪不会逊色于国外同类产品。真理光学团队发现的爱里斑反常变化现象及规律、独创的斜置梯形窗口克服前向超大角测量盲区以及统一的反演算法等技术,则领先于世界同行。但是,对于激光粒度仪整个行业来说,还存在需要改进甚至急需改进的地方。我的建议如下:(1)国内外的厂家都应正视粒度测量数据对比困难的问题 目前,全球范围内激光粒度仪测量实际样品时给出的数据经常是不可比的。对同一颗粒样品,不同品牌的仪器的测量结果不可比;同一厂家生产的仪器,不同型号之间的结果不可比;更绝的是同一台仪器不同反演模式给出的结果也不可比。到目前为止,对这三个“不可比”,都没有人拿出令人信服的、符合科学的解释。 作者尝试分析一下原因。从理论上说,大家测量相同的样品,使用相同原理的仪器,应该得到相同的结果(在合理的误差范围内)。两个结果如有不同,那么至少有一个结果是错的,甚至两个结果都是错的。这就说明当前国内外的各种激光粒度仪还存在不完善的地方。这些不完善包括:(A)光散射模型上,有的仪器还在使用夫朗和费衍射理论;(B)光的全反射现象的制约,或者大角与小角散射光数据拼接的困难,导致有的仪器没有获得或者没有准确获得大角散光的信息,影响了0.3微米以细颗粒测量的准确性;(C)爱里斑的反常变化引起粒径与散射光分布之间一一对应关系的破坏,除了真理光学,其他品牌都采用人为地在光学模型中给颗粒添加吸收系数的方法来敷衍性地解决,但是没有真正解决,导致结果失真;(D)一种仪器有多种反演算法,从逻辑上就可断定这样的算法是不完善的,而根据作者分析,这个不完善又和不完善点(B)和(C)有关。(E)仪器厂商为了迎合客户的偏好,对原始的粒度分析结果进行了失实的修饰,比如把多峰分布改为单峰分布,把粒度分布中粗、细方向的展宽改窄等等。 仪器技术上的不完善,需要国内外厂家去正视问题,然后改正原先的不足。(2)国内用户应破除对进口仪器的迷信心理 国内很多用户都认为进口仪器就是比国产仪器好。国内用户要是遇到进口仪器的测量结果与国产仪器数据不一致的情况,第一反应就是国产仪器错了。我在前面分析过,进口仪器不比国产仪器好,请用户客观判断。 另一方面,国内有的仪器厂家也拿自己的仪器结果能和国外的结果相一致,来证明自己的高水平。这是自我矮化行为,当然也表明该厂家对自己制造的仪器没有信心。但是国内厂家的这种行为会助长用户原本就有的认为国产仪器水平低的心理。(3)激光粒度仪测量数据的正确运用问题 激光粒度测试报告的核心内容是体积粒度分布。形式上可以是表格或者曲线。有时为了简洁起见,用特征粒径来表示粒度分布。最常见的是D10、D50和D90三个数。其中D50表示样品颗粒的平均粒径(与之并行的也可用D[4,3])),而D10和D90分别表示粒度分布往小粒径和大粒径方向延伸的宽度。在大多数情况下,一个粉体样品的平均粒径和分布宽度(或者均匀性)确定了,其粒度特征也就基本确定了。激光粒度仪国家标准(GB/T 19077-2016/ISO 13320:2009)中明确规定,不允许用D100的数值。这是因为从概率论分析,D100的数值是不稳定的,另外D100实际上并不代表颗粒样品中的最大粒直径。如果把这个值作为最大粒,可能会引发严重的应用后果。 然而在有些激光粒度仪的应用行业,例如电池的正负极材料行业,其国家标准中就把激光粒度仪的Dmax(即D100)作为控制指标。该行业内上下游间的粒度控制指标中,不仅包含了D100,还包还可了D0和Dn10,这些都是误导性的应用。(4) 激光粒度仪的测量下限和上限被严重夸大的问题 目前激光粒度仪的测量范围动辄下限10纳米,上限5000微米以上。这显然被严重夸大了。这会误导客户,扰乱市场。需要行业自律。国家相关组织也要加强督导的力度。
  • 基于垂直架构的新型二维半导体/铁电多值存储器研究获进展
    二维层状半导体材料得益于原子级薄的厚度,受到静电场屏蔽效应减弱,利用门电压可对其电学性能进行有效调控。利用二维层状半导体材料构建的多端忆阻晶体管(Memtransistor)可以模拟人脑中复杂的突触活动,有望应用于未来非冯架构的神经形态计算等。此外,相比于平面构型,二维纳米功能材料通常具有开放且洁净的界面,使其能够进行任意垂直组装,可实现硅基半导体工艺所不能兼容的多层向上集成范式,从而在单位面积内沿z轴获得更高密度集成。因此,基于垂直架构的二维纳米电子学器件,已成为当前延续摩尔定律的重要研究方向之一。迄今为止,针对铁电二维材料忆阻晶体管的研究仍然匮乏,尤其缺失具有垂直构型的门电压可调的忆阻器件的研究,主要原因在于传统基于隧穿架构的二维忆阻器难以在垂直方向兼具更高性能和有效栅极调控特性。   近日,中国科学院金属研究所沈阳材料科学国家研究中心与国内多家单位合作,设计二维半导体与二维铁电材料的特殊能带对齐方式,将金属氧化物半导体场效应晶体管(MOSFET)与非隧穿型的铁电忆阻器垂直组装,首次构筑了基于垂直架构的门电压可编程的二维铁电存储器。11月17日,相关研究成果以A gate programmable van der Waals metal-ferroelectric-semiconductor vertical heterojunction memory为题,在线发表在《先进材料》(Advanced Materials)上。   科研团队使用二维层状材料CuInP2S6作为铁电绝缘体层,利用二维层状半导体材料MoS2和多层石墨烯分别作为铁电忆阻器的上、下电极层,形成金属/铁电体/半导体(M-FE-S)架构的忆阻器;在顶部半导体层上方通过堆叠多层h-BN作为栅极介电层引入了MOSFET架构。底部M-FE-S忆阻器件开关比超过105,具有长期数据存储能力,且阻变行为与CuInP2S6层的铁电性存在较强耦合(图1)。此外,研究通过制备3×4的阵列结构展示了该型铁电忆阻器件应用于存储交叉阵列【crossbar array,实现随机存取存储器(RAM)的关键结构】的可行性(图2)。进一步,研究在上方MOSFET施加栅极电压,有效调控了二维半导体层MoS2的载流子浓度(或费米能级),从而对下方M-FE-S忆阻器的存储性能进行操控(图3)。基于上述成果,科研人员展示了该型器件的门电压可调多阻态的存储特性(图4)。   本研究展示的门电压可编程的铁电忆阻器有望在未来人工突触等神经形态计算系统中发挥重要作用,并或推动基于二维铁电材料制备多功能器件的开发。此外,该工作提出的MOSFET与忆阻器垂直集成的架构可进一步扩展到其他二维材料体系,从而获得性能更加优异的新型存储器。   研究工作得到国家重点研发计划“青年科学家项目”、国家自然科学基金青年科学基金项目/面上项目/联合基金项目、沈阳材料科学国家研究中心等的支持。图1.器件结构设计及两端铁电忆阻器的存储性能。a、器件结构示意图;b、器件的阻变行为;c、少层CuInP2S6的压电力显微镜相位和幅值图;d、器件在不同温度下的输运行为;e、存储器的数据保持能力测试;f、存储器开关比统计图。图2.铁电忆阻器存储阵列演示。a、二维铁电RAM结构示意图;b、CuInP2S6/MoS2界面的HAADF-STEM照片;c、3×4阵列的SEM图像;d、局部放大图;e、3×4阵列的光学照片;f-g、通过读取3×4阵列中每个交叉点的高阻态和低阻态编码的“I”“M”“R”的简化字母。图3.器件的可编程存储特性。a、器件结构示意图;b、MoS2层的转移特性曲线;c-d、异质结的能带结构图;e-f、通过施加门电压实现了对存储窗口从有到无的调控。图4.门电压可编程存储器的多阻态存储特性。a-d、器件在不同门电压下的存储窗口;e、器件的多阻态存储性能演示;f、栅极调控的耐疲劳特性。
  • BILON科技BILON-ZDC1型全自动控制氮吹浓缩仪全新上市
    在很多常规分析中,样品前处理过程包括有机溶剂萃取、浓缩、分离净化及再浓缩等基本步骤。完成浓缩过程的常用装置包括真空旋转蒸发仪、K- D浓缩器和氮气吹扫(简称氮吹仪)等,其中以氮吹浓缩最为简单,也是上机分析前对样品进行定容的最后步骤。通常情况下,它不需要特别的装置设计,当样品数量不多或溶剂量较小时,采用该法十分方便。然而当样品数量多或溶剂量较大时,则需要有人看管,且浓缩体积不易控制,整个操作过程费时又费力,而且开放式浓缩操作环境亦对操作人员身体健康带来隐患。   为解决上述问题,比朗公司通过整合、优化现有技术优势,成功研发生产了BILON-ZDC1型全自动氮吹浓缩仪。一系列创新性、人性化的设计,使得该款仪器不仅浓缩速率高、操作简单、环境友好,而且还可以置于通风橱外使用,亦极大限度地避免了操作人员对有机毒害溶剂的接触,可作为是常规实验室必备装置。   BILON-ZDC1型全自动氮吹浓缩仪主要特征:   ●同时浓缩单个或多个样品,毋需人工值守:采用多个光学传感器监控每个样品的浓缩过程,当蒸发浓缩至预设体积时,系统自动停止相应通道的氮气吹扫,并报警提示。整个浓缩过程无需人工看管   ●特别的气流吹扫轨迹及缓冲设计:可加速溶剂蒸发浓缩、防止溶剂喷溅损失   ●工作参数任意设置、控制和实时显示:主要工作参数:氮吹压力、水浴温度和工作时间,均可按需设置   ●氮吹气流压力稳定、恒定:仪器自带自动调压装置,气流压力可自动控制并保持恒定,不受工作通道(样品)突然开启、关闭或数量的影响   ●样品无污染影响:所有气路及相关器件均采用经过验证的零污材料,避免样品受到来自仪器的污染   ●操作简便、安全:灵活的工作参数设定、方便的样品置入/取出过程,易学易用 全封闭设计以及仪器自带的强力排风系统配置,可避免水浴蒸汽和有机挥发组份对仪器及操作人员的影响   BILON-ZDC1型全自动氮吹浓缩仪技术参数:   ★样品数量:同时浓缩处理1-12个样品   ★样品瓶体积:50或150mL   ★终点检测:每一个工作通道均配有专门的光学传感器,自动、独立地检测终点   ★终点体积:可定容的体积分别为1.0 mL、0.5mL或近干(~0.1mL,适当延长吹扫时间亦可将溶剂吹干),不同规格的浓缩瓶可以同时交叉使用   ★水浴温度:室温-95℃(± 0.5℃)   ★氮吹时间:0-9999s   ★气体压力:氮吹工作气压,0~0.1MPa(压力间隔变化为0.01MPa) 外接氮气压力范围:0.2~0.8MPa 外接允许最大气压,1.0MPa   ★气体消耗量:最大吹扫气压(0.1MPa)下,每通道约500mL/min(约17cfm)   ★定容灵敏度:十级可调,保证不同颜色或透光度的溶剂的浓缩定容更为准确   ★控制方式:用户可根据实际情况,自行选用手动方式或智能方式控制吹扫终点   ★报警提示:仪器在开盖、浓缩完成、水浴水量或氮气压力不足时,均会自动报警提示   ★电源:220V/60Hz   ★仪器尺寸:650× 450× 308 mm   ★重量:20 Kg  上海比朗生物科技有限公司始终贯彻&ldquo 质量是企业的生命力&rdquo 这一方针,引进国外先进技术,打造一流品牌。公司客户遍布全国,欢迎新来客户莅临订购。   电话TEL:021-52965776   传真FAX:021-52965990   网址Web:http://www.bilonsh.com   地址Add:上海市闵行区北松公路588号7号楼5层   更多相关氮吹仪信息http://www.bilonjsy.com
  • 复享光学发布匹配半导体行业标准的ZURO系列光谱仪
    9月5日,上海复享光学股份有限公司(以下简称“复享光学”)宣布,2022年9月,公司通过与头部客户完成了针对刻蚀应用场景的光谱仪—ZURO系列产品的研发与量产导入,为集成电路产业提供了面向6、8、12寸制程刻蚀工艺的光谱检测解决方案。ZURO系列光谱仪匹配半导体行业标准,满足针对金属刻蚀、单多晶硅刻蚀、化合物刻蚀及高速清洗等多个应用场景需求,具有信号精准、性能长期稳定、Fab生产环境适应等特点。复享光学已完成ZURO系列产品的国产验证与量产准备,能为客户进行差异化的定制开发,解决头部客户的关键光学零部件供应安全问题。复享光学提供芯片制程工艺控制中各类光谱模组及量检测解决方案。据悉,目前,复享光学的多系列光谱模组产品已经获得多家半导体头部客户的验证、生产导入及小批量订单。复享光学于2021年完成超亿元B轮融资,由半导体头部产业基金中芯聚源领投,上海科创集团、中科创星、长江证券、海通证券、泰坦科技跟投。据了解,近期,复享光学将启动C轮融资,资金用于高端人才扩充、生产场地扩容、研发设备升级,以及微纳制造领域前沿技术布局等战略方向。
  • 凤凰光学2024半年报:营收7.88亿元,净利减亏
    近日,凤凰光学披露的2024年半年度。报告显示,公司实现营业收入7.88亿元,较去年同期下降5.78%;归母净利润-1190.53万元,较去年同期减亏797.92万元。其中,单第二季度,公司实现净利润1051.6万元,扭亏为盈。报告期内,面对经济环境不确定性增加、市场竞争日益激烈等严峻考验,公司管理层积极应对挑战,坚持以业绩为导向,以业务为抓手,持续推动创新驱动发展战略,紧盯客户需求,不断提升研发能力和产品技术,加强品牌建设和市场开拓,着力打造核心竞争力并优化业务结构布局,公司经营保持持续向好态势。强大的核心技术支撑是凤凰光学经营持续向好的动力源泉。凤凰光学在光学领域,具备垂直一体化整合能力,即自主生产从光学镜片、镜头模组、到镜头结构件的全制程工艺能力,并在多个领域达到国内领先工艺水平。公司在光学业务领域具有较强的核心技术能力,拥有近60年的光学设计、光学冷加工、机械加工及表面处理的经验及成熟工艺,玻璃非球面模压、镀膜、模具、检测等基础技术能力进一步提升,自主研发完成了非球面精密车削技术,在面型精度、面偏心、表面光洁度等核心技术指标方面达到国内一流水平。具备DLC&HD&AR&IR膜、塑胶镜片低反射率耐高温膜、亲水膜的镀膜能力。自主研发的玻璃非球面模压工艺加工良率稳定在90%以上,达到国内行业领先水平。公司在控制器业务领域持续加强直流无刷电机、大功率永磁同步电机驱动及控制、智能物联控制等关键算法和技术研发,具有直流变频驱动控制、单片机应用、智能风量和智能加水等智能化厨房电器控制、物联网等技术的领先优势,并已经广泛应用于智能家居、工业、新能源等领域。
  • 空天院首创超高分辨率光学森林三维遥感新方法
    近日,中国科学院空天信息创新研究院遥感科学国家重点实验室研究员倪文俭带领的森林遥感团队,在利用超高分辨率光学遥感立体观测数据提取森林三维结构研究方面取得重要进展。现有研究认为,光学多角度立体观测数据在林区不具备穿透能力,故在缺乏林下地形数据时,无法独立进行森林垂直结构参数的直接测量,特别是在浓密山地林区。本研究发现:分辨率优于0.2 米的光学立体观测数据能够对单株树木的冠顶结构进行精细刻画;受树木异速生长方程启发,创建了“生长关系约束的林下地形逼近算法”(AGAR),打破了传统的认知局限,实现了仅利用光学立体观测数据对森林垂直结构的直接测量。相关研究成果发表在Remote Sensing of Environment上。   森林作为重要的陆地生态系统碳库之一,准确估算其碳储量是遥感研究的主要方向,可服务于我国的“双碳”战略和地球系统碳循环过程研究。过去,国内外开展了基于遥感影像光谱或微波散射强度等“二维”特征的森林碳储量估算原理与方法研究,而“地形影响”“遥感信号饱和”仍是难以逾越的两大科学难题。因此,国际学界逐渐转向以卫星测距技术为基础的“三维”遥感,包括以激光测距为基础的激光雷达遥感、以微波测距为基础的合成孔径雷达干涉以及以视觉测距为基础的光学多角度立体观测。美国科学家致力于发展具备冠层穿透能力的星载激光雷达,包括早期搭载在航天飞机上的激光高度计SLA01和SLA02、2003年至2009年运行的ICESat/GLAS卫星、2018年发射的ICESat-2卫星以及2019年放置在国际空间站上的GEDI。欧洲科研人员则积极发展穿透能力较强的L波段Tandem-L和P波段BIOMASS合成孔径雷达干涉卫星,并计划2024年发射。相较于激光雷达和合成孔径雷达干涉,光学多角度立体遥感具有图像直观形象的显著优势但受穿透能力的限制,目前主要用于地表高程的测量,且需要依靠其他数据源提供的林下地形才能对森林垂直结构进行测量,应用价值和场景受限。   近年来,中国在光学多角度立体遥感方面快速发展,先后发射了资源三号、高分七号、天绘系列以及其他商业遥感卫星,同时影像空间分辨率逐步提高。能否利用不断提高的空间分辨率来突破其穿透能力弱的限制,进而最大程度地发挥超高分辨率光学多角度立体遥感数据的应用价值,既是国际前沿科学问题又是中国遥感科研人员亟需回答的问题。   森林遥感团队意识到超高分辨率光学多角度立体观测遥感数据的独特价值,自2014年对无人机立体观测数据在森林结构参数测量中的应用进行了持续研究,并于2018年开展了大兴安岭林区大范围无人机采样观测实验,揭示了观测角度与影像分辨率的耦合规律,证实了森林高度信息对叶面积指数估算的补充作用,研发了针对落叶林区森林高度提取的有叶季和无叶季影像协同解决方案,突破了光谱与三维几何特征协同的散发枯立木识别技术、单木识别与分割技术、以背景识别为基础的高精度森林覆盖度提取技术。在上述数据与技术积累的基础上,该团队创建了“生长关系约束的林下地形逼近算法”(AGAR),实现了复杂地形条件下森林高度的直接提取。该成果证实了无需额外林下地形数据的支持,AGAR算法仅利用超高分辨率光学多角度立体观测数据即可实现森林高度提取。   尽管AGAR算法使用无人机获取的立体观测影像开展研究,且算法的具体技术细节需要进一步测试完善,但随着0.1米卫星光学遥感数据时代的到来,该方法将开启超高分辨光学立体遥感影像森林三维遥感新时代。图1.生长关系约束的林下地形逼近算法(AGAR)的核心思路图2.典型地形条件下森林高度提取的效果。(a)-(c)为光学多角度立体观测数据获取的数字表面模型(DSM);(d)-(f)为光学多角度立体观测数据通过林窗插值提取的森林高度,由于浓密林区林窗较少,导致树高被严重低估或者地形特征去除不彻底;(g)-(i)为利用AGAR提取的森林高度。(a)区域覆盖山脊,(b)区域覆盖山谷;(c)区域覆盖从山脚到山顶的斜坡。
  • 光学显微镜领域 永新光学打破国外垄断承担制定国际标准
    p   最近,由宁波国家高新区(新材料科技城)企业——宁波永新光学股份有限公司主导制订的“显微镜光学关键部件连接尺寸”国际标准通过委员会审查,进入终审阶段,这是光学显微镜领域有史以来首次由中国团队承担制订的国际标准,也预示着在光学精密仪器领域,中国人第一次拥有话语权和主导权。 /p p   永新光学是中国光学显微镜的龙头企业,拥有七十余年光学仪器产品设计和专业生产历史,曾制造过中国第一台生物显微镜、第一台电子显微镜等,被誉为“中国光学显微镜的摇篮”,目前拥有“NOVEL”、“江南”和“INOVO” 等自主品牌。 /p p   为支持优秀企业参与标准制定等工作,高新区质监分局充分发挥职能作用,在帮扶企业在标准化示范、标准化项目研究、标准制修订等领域取得积极进展,大力帮扶企业参与标准化活动,引导企业通过主持、参与标准的制修订占领行业高端,进而提升我区标准化战略水平。同时,与市标准化研究院签订技术合同,通过购买服务,聘请质量管理、标准化工作的专家为重点培育企业开展上门指导标准立项制订和申报工作,提高标准立项的成功率。截至目前我区企业参与国际标准制修订6项,主持国家、行业、团体标准制修订26项,参与国家、行业、团体标准制修订206项。 /p
  • 长春光机所等研制出高灵敏度垂直结构光电探测器
    p style=" text-align: justify text-indent: 2em " 近日,中国科学院长春光学精密机械与物理研究所光子实验室的于伟利与罗切斯特大学郭春雷研究团队合作,针对基于钙钛矿多晶薄膜的光电探测器性能易受晶界和晶粒缺陷的影响问题,采用空间限域反温度结晶方法,合成了具有极低表面缺陷密度的MAPbBr3薄单晶,并将该高质量的薄单晶与高载流子迁移率的单层石墨烯结合,制备出了高效的垂直结构光电探测器。 /p p style=" text-align: justify text-indent: 2em " 近几十年来,光电探测器受到学术界和工业界的广泛关注,并被广泛应用到光通信、环境监测、生物检测、图像传感、空间探测等领域。甲基铵卤化铅钙钛矿(CH3NH3PbX3, X=Cl,Br,I)是近年来兴起的一种钙钛矿材料,因其具有直接带隙、宽光谱响应、高吸收系数、高载流子迁移率、长载流子扩散系数等优点,逐渐成为制备光电探测器的前沿热点材料。目前,基于钙钛矿多晶薄膜的光电探测器性能距预期仍有一定距离,一个主要原因在于载流子在界面的传输易受晶界和晶粒缺陷的影响。许多研究组尝试将钙钛矿多晶薄膜与高迁移率二维材料相结合来提高器件的性能,并取得了一定的效果,但钙钛矿多晶晶界带来的负面影响尚未解决。 /p p style=" text-align: justify text-indent: 2em " 该研究团队利用空间限域反温度结晶方法生长出的MAPbBr3薄单晶具有亚纳米表面粗糙度且没有明显的晶粒界畴,可以结合高质量钙钛矿单晶合成技术和单层石墨烯转移技术制备高性能的垂直结构光探测器。所制备的垂直结构光电探测器在室温下具有较高的光电探测率(~& nbsp 2.02× 1013& nbsp Jones);在532 nm激光照射下,与纯钙钛矿MAPbBr3单晶薄膜的光电探测器相比,钙钛矿-石墨烯复合垂直结构光电探测器的光电性能(光响应度、光探测率和光电导增益)提高了近一个数量级。载流子超快动力学研究证明,该器件性能的提高主要归因于高质量钙钛矿单晶的钙钛矿载流子寿命增长和石墨烯对自由电荷的有效提取及传输。相关结果已发表在Small(DOI: 10.1002/smll.202000733)上。& nbsp   & nbsp & nbsp /p p style=" text-align: justify text-indent: 2em " 该研究将钙钛矿单晶材料和二维材料石墨烯有效结合在一起,利用二者在载流子产生、输运方面的协同优势,实现了器件性能的提升,展现了器件结构及能带设计对器件性能的调控能力,为制备高性能钙钛矿光电探测器提供了新思路。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/48f51961-fad3-4042-8faa-7cbd8255f9d8.jpg" title=" 高灵敏度钙钛矿单晶-石墨烯复合垂直结构光电探测器.jpg" alt=" 高灵敏度钙钛矿单晶-石墨烯复合垂直结构光电探测器.jpg" / /p p style=" text-indent: 0em text-align: center " strong 高灵敏度钙钛矿单晶-石墨烯复合垂直结构光电探测器 /strong /p p br/ /p
  • 基于HfS₂/MoS₂范德华垂直异质结的高性能红外探测器
    由范德华(vdW)异质结内产生的层间激子(interlayer excitons)驱动的红外(IR)探测器,能够克服二维材料光电探测器的诸多问题。过渡金属二硫族化合物(TMDC)的范德华异质结为层间激子的产生提供了先进平台,可用于探测单个TMDC的超截止波长。近日,韩国化学技术研究院(Korea Research Institute of Chemical Technology)、韩国忠南国立大学(Chungnam National University)与韩国国立蔚山科学技术院(Ulsan National Institute of Science and Technology)组成的科研团队在Advanced Functional Materials期刊上发表了以“High-Performance Infrared Photodetectors Driven by Interlayer Exciton in a Van Der Waals Epitaxy Grown HfS2/MoS2 Vertical Heterojunction”为主题的论文。该论文的共同第一作者为Minkyun Son、Hanbyeol Jang和Dong-Bum Seo,通讯作者为Ki-Seok An。这项研究首次提出了一种由层间激子驱动的高性能红外光电探测器,该红外探测器由化学气相沉积(CVD)生长的范德华异质结所制备。这项研究标志着光电器件领域进步的一个重要里程碑。研究人员选择HfS₂与MoS₂的组合来构成范德华异质结平台,从而制备成层间激子驱动的红外探测器。这是由HfS₂的选择性生长以及HfS₂与MoS₂的适当能带偏移(band offset)所激发的。在两步CVD工艺中,HfS₂仅在MoS₂上选择性生长,从而构建了具有较大界面面积的垂直异质结,并为层间激子的产生提供有利的条件。图1a展示了采用两步CVD工艺制备HfS₂/MoS₂范德华垂直异质结的过程。图1 HfS₂/MoS₂范德华垂直异质结的制备及成果研究人员利用拉曼光谱和光致发光(PL)技术,探究了原始MoS₂和HfS₂/MoS₂的结构特征和光学性质,结果如图2a至图2c所示。为了进一步阐明异质结构的化学组成,研究人员利用X射线光电子能谱技术(XPS)对HfS₂/MoS₂进行了化学鉴定,测量结果如图2d至图2f所示。图2 原始MoS₂和HfS₂/MoS₂的光谱探测结果以及HfS₂/MoS₂的XPS测量结果随后,为了直接证实HfS₂与MoS₂之间存在垂直异质结,研究人员针对其获取了高分辨率透射电子显微镜(HRTEM)图像以及相应的快速傅里叶变换(FFT)分析,结果如图3所示。图3 HfS₂/MoS₂垂直异质结HRTEM图像和FFT分析接着,研究人员对基于HfS₂/MoS₂的光电探测器的原理及性能做了详细研究。图4a为基于HfS₂/MoS₂的光电探测器示意图,光电性能测试结果如图4b至4d所示。研究人员同时制备了MoS₂光电探测器,并与基于HfS₂/MoS₂的光电探测器的光电性能进行了比较,结果如图4e至图4h所示。图4 基于HfS₂/MoS₂的光电探测器的性能及其与MoS₂光电探测器的比较最后,研究人员探索了不同红外波长(850 nm、980 nm和1550 nm)下基于HfS₂/MoS₂的光电探测器的光响应情况,结果如图5a至图5d所示。图5e展示了在漏极电压(VDS)=−5 V和5 V时,HfS₂/MoS₂能带对齐(band alignment)中层间激子的光致电子提取过程。图5 基于HfS₂/MoS₂的光电探测器的光响应及其层间激子的驱动原理综上所述,这项研究成功制备了基于CVD生长的HfS₂/MoS₂异质结高性能光电探测器。在两步CVD工艺中,HfS₂仅在MoS₂上生长,从而建立了具有较大界面面积的垂直异质结。这种有利结构能够有效促进层间激子的产生。该基于HfS₂/MoS₂的光电探测器表现出卓越的性能,在470 nm波长处,探测率(D*)=5 × 10¹⁴ Jones,比MoS₂光电探测器提高了36倍。值得注意的是,在1550 nm波长处(该波段已超出HfS₂和MoS₂各自的探测范围),基于HfS₂/MoS₂的光电探测器的性能表现为:光响应度(R)=600 A/W,D*=7 × 10¹³ Jones,快速上升和衰减时间分别为60 µs和71 µs。这项研究首次报道了利用CVD工艺生长的TMDC来制备层间激子驱动的红外探测器,这种方法为大规模开发高性能二维材料红外探测器开辟了道路。这项研究获得了韩国国家研究基金会(NRF,2021M3H4A3A01055854和2021M3H4A3A02099208)的资助和支持。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制