光学干涉仪

仪器信息网光学干涉仪专题为您提供2024年最新光学干涉仪价格报价、厂家品牌的相关信息, 包括光学干涉仪参数、型号等,不管是国产,还是进口品牌的光学干涉仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光学干涉仪相关的耗材配件、试剂标物,还有光学干涉仪相关的最新资讯、资料,以及光学干涉仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

光学干涉仪相关的厂商

  • 天津市拓普仪器有限公司(原天津市光学仪器厂)成立于2002 年,现坐落于天津市津南区双港工业园区丽港园内, 是一家专门从事光谱分析仪器、物理实验科学仪器、建筑玻璃节能检测仪器的研究、开发、生产和销售的高新技术企业。 一直以来,公司以市场为导向,以客户的需求为研发思路,坚持技术创新。拓普仪器拥有专业的研发团队,拥有众多知识产权和专利,多个产品荣获科技进步奖项。拓普仪器拥有完善的管理体系,通过了ISO9001国际质量管理体系认证。2003年10月成功发射的神舟五号和2005年10月成功发射的神舟六号首次载人航天飞船飞行中都有我们的产品,并获得了“中国空间技术研究院”的嘉奖。拓普仪器主要产品有:TJ270-30A红外分光光度计(国家药典型号TJ270-30升级型)、FTIR920傅立叶变换红外光谱仪、TP720紫外可见近红外光谱仪(可实现紫外-可见-近红外全波段连续扫描)、光栅光谱仪及单色仪、迈克尔逊干涉仪、压电陶瓷干涉测量实验仪、偏振光实验装置、 椭圆偏振测厚仪、半导体泵浦激光原理实验装置、光纤信息与光通信实验系统、全息照相实验、光电综合实验、信息光学实验、光学平台及导轨等多项自主研发的产品。拓普仪器产品遍布全国百余所重点及普通高等院校、全国各地药检所及药厂、各个科研机构,产品深受客户的认可和好评。拓普人持诚信为本,我们将以稳定可靠的产品赢得您的信任!
    留言咨询
  • 瀚考克光电科技有限公司是专业从事光电检测设备,光学加工设备的销售服务商。公司主营产品:立式激光干涉仪,中心厚度测量仪,镜片边缘涂墨&检查机,中心偏差测量仪,数控非球面铣磨机,抛光机,单点金刚石车床,离子束加工机,轮廓仪,白光干涉仪,工具测量显微镜,显微硬度计。公司业务范围涵盖国内高校、研究所、以及精密光学加工制造企业。公司为以下欧美公司代理商:德国XONOX公司。
    留言咨询
  • 联合光科技(北京)有限公司创立于2016年, 由国内多家知名光学企业联手创办, 致力于为用户提供优质激光光学元件、工业成像镜头、进口高精度光学检测系统和快捷、专业的解决方案。我们的产品涵盖了大多数光学领域,包括元件类,机械类,光学检测服务,光学冷加工及镀膜,并提供光学产品的定制服务,在高功率激光和特殊镀膜应用尤为突出。总部位于北京,在深圳和香港设有分公司,在济南、上海设有办事处,并且在长春,锦州,昆明和重庆设有工厂。为了将更好的产品提供给用户,我们在北京建立了先进的检测实验室和较完善的检测体系,并且采用国际知名品牌检测仪器。 主要产品:l 光学元件(标准光学镜片、高功率激光窗口镜片、定制光学元件、偏振元件)l 英国ULO CO2红外光学材料、镜片、光学器件l 光机械部件(压电电控平台,光学防震桌,光学调整架,手动位移台,光机组件,光桥系统)l 全系列高品质工业成像镜头(定焦/远心/线扫/变焦变倍/特殊定制镜头)、照明光源l 光学测量仪器? 德国MarOpto- 轮廓仪、干涉仪(倾斜波干涉仪、斐索干涉仪、动态干涉仪、干涉测量软件、断面检测、表面检测)? 德国Dioptic- ARGOS 表面疵病检测仪、光纤端面缺陷检测? 日本壶坂Tsubosaka-镜头/相机鬼影、杂散光测试系统;可调色温、亮度光源;镜头焦点偏差、光圈、闪光灯、快门测量、手机防抖测试系统;太阳灯? 美国 Bristol- 非接触式测厚仪? 美国Optometrics- 衍射光栅、分光器件、线栅偏振片、Minichrom? 单色仪等? 德国Artifex-光功率计、跨阻抗放大器、门控积分放大器、LIV激光二极管和LED特性测试系统、积分球、激光二极管驱动器? 波兰inframet-可见光电视相机测试系统(TVT)、红外热像仪测试系统(DT、LAFT、SAFT)、夜视仪测试系统(NVT、NVS、NVB)、激光测距机测试系统(LT、LTF、LTE)、二代像管像增强器测试系统(ITS-I、ITS-P、ITS-R)、条纹管测试系统(SPT、STT)、多传感器测试系统(JT、MS)、被动式THz成像仪测试系统(THP)、短波成像仪测试系统(ST)、紫外成像仪测试系统(UT)以及红外热像仪计算机模拟器(Simterm)等? 美国Headwall -高光谱成像、拉曼光谱仪、衍射光学元件? 其他-SPF防晒指数测试仪;大气测量辐射计/光度计;Mini-Chrom单色仪;激光二极管测试分析系统;积分球;激光功率探测器;光伏测试太阳模拟器;固态光电倍增管等等
    留言咨询

光学干涉仪相关的仪器

  • Zygo激光干涉仪红外干涉仪适用于高精度红外成像应用的测量方法光学成像的应用广泛,种类繁多。在系统的设计波长下进行测试对开发、最终对准和鉴定至关重要。用于航空航天和国防的夜视、红外和热成像系统、光刻子系统、遥感望远镜和外来材料鉴定对波长有不同的要求,而它们都受益于在红外干涉仪系统在设计波长下的测试。ZYGO长期以来被公认为是世界上干涉测试仪器的先行者,已经设计和制造了许多特殊装备的干涉仪系统,包括NIR、SWIR、MWIR和LWIR波长的系统。ZYGO还设计和制造了一系列用于这些波长的参考光学器件(透射球面镜和透射平面镜)。主要特点工作波长范围广:NIR:1.053μm&1.064μmSWIR:1.55μmMWIR:3.39μmLWIR10.6μm基于工作波长的QFAS十字快速对准视图简化了红外测试系统和组件的设置。ZYGO独有的QPSI™ 采集技术,可在振动较常见的环境中实现可靠的测量,NIR、SWIR和MWIR型号均配有这种技术。可选的DynaPhase™ 瞬时数据采集技术,对振动不敏感,可在最恶劣的环境中进行测量。
    留言咨询
  • 法布里珀罗干涉仪 FPI 法布里珀罗干涉仪(Fabry-Perot Interferometer,FPI 100)是一款共聚焦扫描 FPI,它自带光电探测器单元,设计用于测量和控制连续波激光器的模场分布。其主要特点有: 激光模式分析简单方便可选八种反射镜用于波长范围 300 到 3000 纳米自由光谱范围 1GHz 或 4GHz标准反射镜反射率 99.8%,对应 finesse 大于 400可选配光纤耦合器套件 – 方便使用 FC/APC 光纤接头进行耦合光电二极管更换套件 – 可见光/近红外/红外,通过内置聚焦透镜自动对准用户规定 finesse 值扫描选项 – 集成光电二极管放大器的独立扫描发生器 miniScan 杭州谱镭光电技术有限公司(HangzhouSPL Photonics Co.,Ltd)是一家专业的光电类科研仪器代理商,致力于服务国内科研院所、高等院校实验室、企业研发部门等。我们代理的产品涉及光电子、激光、光通讯、物理、化学、材料、环保、食品、农业和生物等领域,可广泛应用于教学、科研及产品开发。 我们主要代理的产品有:微型光纤光谱仪、中红外光谱仪、积分球及系统、光谱仪附件、飞秒/皮秒光纤激光器、KHz皮秒固体激光器、超窄线宽光纤激光器、超连续宽带激光器、He-Ne激光器、激光器附件及激光测量仪器、光学元器件、精密机械位移调整架、光纤、光学仪器、光源和太赫兹元器件、高性能大口径瞬态(脉冲)激光波前畸变检测干涉仪(用于流场、波前等分析)、高性能光滑表面缺陷分析仪、大口径近红外平行光管、Semrock公司的高品质生物用滤波片以及Meos公司的光学教学仪器等。 拉曼激光器,量子级联激光器,微型光谱仪,光机械,Oceanoptics,Thorlabs 。。。热线电话: / 传真:网址: /邮箱:
    留言咨询
  • 激光干涉仪 400-891-3319
    仪器简介: ML10 Gold 高性能激光干涉仪是机床、三坐标测量机及其它定位装置精度校准 用的高性能仪器。由于采用了独特的专利设计及最新的光电子技术,使ML10 Gold 激光干涉仪比市场上其它型号的激光干涉仪具有更高的性能和更先进的任选功能。 ML10 Gold 激光干涉仪提供有进行机器位置、几何精度测量的全套光学器件。 ML10 Gold 激光测量系统所有功能都设计与Laser 10 软件配合使用。除了测 量和分析诊断功能外,此软件包的标准配置还包括动态测量、旋转轴测量、双轴测 量和电子水平仪及千分表程序接口模块。 该激光干涉仪系统由激光头ML10 Gold、环境监测补偿器EC10,计算机接口卡 PC10* 或PCM20* 及高精度的光学器件组成。全部器件放在一个配小车的提箱内, 一人便可携带全部系统赴异地进行机器精度检定,大大改善了激光干涉仪的便携 性。 该激光干涉仪系统通过接口与IBM 兼容的PC 机(包括笔记本计算机)连接, 在灵活、直观的软件控制下进行自动测量,既节省了测量时间,又避免了人为误 差,并能按国际上通行的标准进行数据分析处理,如ISO230-2、JIS-B6330、 VDI3441、VDI2617、ASME B89等并适用中国国家标准GB17421-2000等,以便于按 不同标准进行机床精度的评定和比较。 技术参数: 1.线性测量分辨率: 0.001&mu m 2.线性测量范围: 40m(或任选80m) 3.线性测量精度: ± 0.7ppm 4.最高测量速度: 60m/min 5.长期稳频精度: ± 0.05ppm 主要特点: ML10 Gold是全球最畅销的用于长度计量的激光干涉仪,其最大的优点是所有测量功能均采用激光干涉原理,性能稳定,使用可靠,功能扩展性强,价格适中.
    留言咨询

光学干涉仪相关的资讯

  • “全息干涉仪”让宇宙探测跨进量子级
    引力波模拟图   据近日美国《基督教科学箴言报》在线版文章称,德国引力波探测器GEO 600的一项奇怪发现,不但可能冲击现有宇宙理论,还引发美国费米国家实验室的科学家们开始建造一个“全息干涉仪”,将探测深入到“普朗克长度”,以便更进一步观察宇宙的时空结构及这一结构中的波动――引力波。   引力波被称为“爱因斯坦广义相对论中最后一个尚未被证明是对的组成部分”,新探测仪器的出现有可能使人们直接观测到时间的不连续性,亦将带领人们发掘宇宙起源最深处的奥秘。   激光干涉追寻时空波纹   引力波其实是爱因斯坦对于万有引力本质的理解。他认为引力场有一种跟电磁波一样的波动,是为引力波。而引力波表现为时空曲率的扰动,以行进波的形式向外传递,其传播速度等于光速。   按道理,引力波存在且无处不在,深空中的突变性事件,如超新星爆发、黑洞形成、大型天体相撞这些过程,都能辐射出较强引力波。但事实上,以往在地球上进行的引力波直接搜寻的所有努力都以失败告终。其原因在于,波动虽能造成地球上各处相对距离的变动,但当它们到达地球的时候已经变得非常弱了,对于地球上最先进的引力波探测器来说,其变动的数量级小于一颗质子直径的千分之一。因而尽管引力波毫不模糊且被公认,却一直只能是广义相对论的预言。   但科学家们可不满足于这一点。于是,基于激光干涉原理的引力波探测器被建造出来。这一类型的探测器通过测量两条激光束相遇时所形成的干涉图像的变化来探测引力波,干涉图像依赖于激光束的传播距离,当引力波穿过时激光束的传播距离会相应变化。   因为目标是非常微弱的信号,引力波探测器的敏感度需达到几乎难以想象的程度。以德国引力波探测器GEO 600来讲,其对距离上极微小的变化都非常敏锐,甚至可探测到日地距离所发生的原子半径级别的变化。不过,这种激光干涉计的探测器灵敏度要与激光传播的距离成比例的话,一般来讲其尺寸都非常可观。   “奇怪波动”挑战现有认知   德国的GEO 600并不是新产物了,其已默默工作有些时日。然而,在近期利用其搜寻引力波的过程中,物理学家偶然发现了令人迷惑的现象――这一高科技设备虽然还没有找到引力波存在的证据,但却发现了大量的噪音。   这就有必要简单描述一下这类探测器的工作过程。以GEO 600为例,其要实现功能,需要发射一束激光穿过600米的隧道,再将激光分裂成两束,经过反射的一束以及未经反射的一束均进入干涉仪。当引力波经过这部分空间的时候,两束激光之间的微小位移将会由干涉仪进行探测。即便这种距离的变化非常之微妙,但如果引力波探测器有结果,那就很可能是引力波通过时引起的。   而今GEO 600的“噪音”让研究人员无从解释,在剔除了所有人为因素的影响之后仍不得要领,他们于是向费米实验室的科学家克雷格・ 霍根寻求帮助,希望他利用量子力学上的专业知识帮助阐明这一不规则的噪音。   霍根反馈的意见让人震撼又迷惑。他说:“看上去GEO 600受到了时空微观量子级别的冲击。”换句话说,GEO 600探测到的并不是来自什么噪音源,而是时空本身发生的量子级别波动。   这一看法的深层意义在于:根据爱因斯坦对宇宙的认知,时空应该是连续平滑的,而照霍根的结论推测时空实际上是不连续的,是由一系列量子点组成。其直指爱因斯坦的理论需要修正。   全新探测器进入量子尺度   量子力学的测不准原理意味着一些基本量度如长度和时间具有测不准性。而测不准的程度由普朗克常数确定,该常数可以定出最小长度量子――“普朗克长度”,比其更短的长度是没有意义的。   现在,要证明“奇怪波动”的来源,研究人员就需要深入到“普朗克长度”――10-35米进行探测,而GEO 600实验中探测到的噪音尺度不到10-15米。因此需要提升引力波探测仪的分辨率,这导致了“全息干涉仪”的产生。   “全息干涉仪”是利用全息照相的方法来进行干涉计量,其与一般光学干涉检测方法很相似,但获得相干光的方式不同。光学干涉检测方法获得相干光的方式如前所述,一般是将同一束光的振幅分为两个部分,但全息干涉计量术则是将同一束光在不同时间的波前来进行干涉,可以看作是一种波前的时间分割法。这就使相干光束由同一光学系统所产生,可以消除系统误差。   霍根认为,GEO 600在其尺度上发现的噪音是由于宇宙“视界”(天文学中黑洞的边界,在此边界以内的光无法逃离)的全息投射造成的。霍根比喻说,这就像一张图片越放大就会越模糊甚至像素化,宇宙“视界”投射其实发生在普朗克尺度中,所以在我们所身处的时空尺度上,这一投射发生了模糊。   而要验证霍根的结论,目前最值得依赖的就是这台“全息干涉仪”。其现正由费米实验室全力打造,它必将比GEO 600探测到更小的尺度,从而进入到量子尺度。如果霍根的看法是正确的,探测器将能探测到时空结构中的量子噪声,给我们现有对宇宙的认知带来巨大的冲击。
  • 3分钟了解激光干涉仪——最精密的尺子
    本文作者:清华大学张书练教授1. 激光干涉仪的发展史做衣量身、体检量高都由尺子完成,这些日常的尺子的刻度是毫米。机械零件加工和检验都要用尺子,在机械制造企业,卡尺、千分尺随处可见,其精确度是0.1 μm,1 μm。1887年迈克尔逊(Michelson)和莫雷(Morley)研究以太[1]是否存在,使用了光。他们以光波长作尺子刻度测量了水平面和垂直面的光速之差,第一次否定了以太的存在。他们利用的是光的干涉现象,这就是光学干涉仪的诞生。注[1]:根据古代和中世纪科学,以太被称为第五元素,是填充地球球体上方宇宙区域的物质。以太的概念在一些理论中被用来解释一些自然现象,例如光和重力的传播。19世纪末,物理学家假设以太渗透到整个空间,以太是光在真空中传播的介质,但是在迈克尔逊-莫利实验中没有发现这种介质存在的证据,这个结果被解释为没有光以太存在。1961年研究人员发明了氦氖激光器,开始用氦氖激光器作为迈克尔逊干涉仪的光源,从而诞生了激光干涉仪。图1是迈克尔逊干涉仪简图。迈克尔逊干涉仪是普通物理的基本实验之一。但今天在科学研究和工业中应用的激光干涉仪出于迈克尔逊,但性能远远胜于迈克尔逊。图1 迈克尔逊干涉仪简图基本上,激光干涉仪都使用氦氖激光器的632.8 nm波长的光,橙红灿烂的光束射向远方,发散角可以小到0.1 mrad,光束截面的光斑均匀。氦氖激光器还可输出绿光、黄光、红外光,但只有632.8 nm波长的光适合作激光干涉仪的光源。其它类型的激光器,如半导体(LD)、固体激光器等的相干等性能都远不及氦氖激光器,研究人员多有尝试,但都没有成功。激光干涉仪有很多应用,但本质都是测量中学课本讲的“位移”,诸多应用都是“位移”的延伸和转化。激光干涉仪有两个主流类型:单频激光干涉仪和双频激光干涉仪。单频干涉仪能做的双频激光干涉仪都能做,但双频干涉仪能做的单频干涉仪不见得能做。由于历史、技术和商业原因,两种干涉仪都有着广泛应用。但在光刻机上,双频激光干涉仪独占市场。单频干涉仪不需要对市场上的氦氖激光器进行改造,直接可用。但双频激光干涉仪用的激光器需要附加技术使其产生双频(两个频率)。历史上,双频激光干涉仪测量位移的速度不及单频激光干涉仪,自发明了双折射-塞曼双频激光器,双频激光干涉仪的测量速度也达到每秒几米,与单频激光器看齐了。按产生双频的方法,双频激光干涉仪分为塞曼双频激光(国外)干涉仪和双折射-塞曼双频激光(国内)干涉仪。现在干涉仪的指标:最小可感知1 nm(十亿分之1 m),可以测量百米长的零件,且测量70 m长的导轨误差仅为几微米。2. 测量位移的干涉仪和测量表面的干涉仪?有几个概念的定义比较混乱(特别是有些研究发展趋势的报告),需要注意。一是“激光测距”和“激光测位移”没有界定,资料往往鹿马不分。二是不少资料所说“激光干涉仪”实际上包含两种不同的仪器,一种是测量面型(元件表面)的激光干涉仪,一种是测量位移(长度)的激光干涉仪。如海关的统计和一些年度报告往往混在一起。激光测距机发出的激光束是一个持续时间纳秒的光脉冲,利用光脉冲达到目标和返回的时间之半乘以光速得到距离,完全和光的干涉无关。尽管激光波面干涉仪和测量位移(长度)的干涉仪都是利用光干涉现象,但仪器的设计、光路结构、探测方式、应用场合几乎没有共同之处。激光波面干涉仪能够测量光学元件表面的形貌,光束直径要覆盖被测零件,在整个零件表面形成系列干涉条纹,根据测量条纹的亮度(也即相位)算出表面的形貌,其光束口径、零件直径可达百毫米;另一种则是测量位移(长度)干涉仪,光干涉发生在直径几毫米光路上,表现为只有光电探测器(眼睛)正对着射来的光线才能“看”到光强度的波动,由波动的整次数和(不足半波长的)小数算出被测件的位移。 3. 双频激光干涉仪的原理和构成当图1的可动反射镜有位移时,光电探测器光敏面会感受到的光强度正弦变化,动镜移动半个波长,光强变化一个周期。光电探测器将光强变化转化为电信号。如探测到电信号变化了一个周期,我们就知道动镜移动了半个波长。计出总周期数测得动镜的位移。 (1)式中:λ为激光波长,N 为电脉冲总数。今天的激光干涉仪使用632.8 nm波长的激光束,半波长即316.4 nm。动镜安装在被测目标上与目标一起位移,如光刻机的机台,机床的动板上。为了提高分辨力,半波长的正弦信号被细分,变成1 nm甚至0.1 nm的电脉冲,可逆计数器计算出总脉冲数,再由计算机计算出位移量S。也常用下式表示动镜的位移, (2)其中∆f为目标运动速度为V时的多普勒频移。式(1)和(2)是等价的,可以互相推导推出来,仅是表方式的不同。图2是今天的双频激光干涉仪框图。它由7个部分构成。图2双频激光干涉仪原理框图(1) 双频氦氖激光器氦氖激光器上有磁体。磁体为筒形,激光器上加的是纵向磁场,称为纵向塞曼双频激光器。四分之一波长(λ/4)片把激光器输出的左旋和右旋光变成偏振态互相垂直的线偏振光。前文所说的双折射-塞曼双频激光器则是在激光器内置入双折射元件(图内未画出),并加图2所示的磁条。双折射元件使激光器形成双频,横向磁场消除两个频率之间的耦合。双折射-塞曼双频激光干涉仪不需使用四分之一波长片。双频激光器是双频激光干涉仪的核心,很大程度上,它的性能决定激光干涉仪的性能,要求波长(频率)精度高,功率大,寿命长,双频间隔(频差)大且稳定,偏振状态稳定,两频率之间不偏振耦合。这一问题的解决是作者较突出的贡献之一。(2) 频率稳定单元它的作用是保证波长(频率)这把尺子的精确性,达到10-8甚至10-9,即4.74×1014的激光频率长期的变化仅1 MHz左右。(3) 扩束准直器实际上是一个倒装的望远镜,防止光束发散。要求激光出射80 m,光束光斑直径仍然在10 mm之内。(4) 测量干涉光路测量干涉光路包括:从分光镜向右直到可动反射镜(实际是个角锥棱镜),向下到光电探测器2。可动反射镜装在被测目标上(如光刻机工作台上的反射镜),目标的移动产生激光束的频移Δf,Δf和目标速度成正比,积分就是目标走过的距离(位移或长度)。积分由信号处理单元完成。(5) 参考光路参考光路由分光镜-偏振片-光电探测器1实现,参考光路中没有任何元件移动,它测得的位移是“假位移”真噪声。噪声来自环境的扰动。信号处理单元从干涉光路的位移中扣除这一噪声。(6) 温度和空气折射率补偿单元干涉仪测量的目标位移可能长达百米,空气折射率(及改变)和长度的乘积成为激光干涉仪的最主要误差来源之一。用传感器测出温度、气压、湿度,信号处理单元计算出空气折射率引入的假位移,并从结果中扣除。(7)信号处理单元光电探测器1和2,分别把信号f1-(f2±∆f)和f1-f2的光束转化为电信号,±∆f是可动反射镜位移时因多普勒效应产生的附加频率,正负号表示位移的方向。电信号经放大器、整形器后进入减法器相减,输出成为仅含有±Δf的电脉冲信号。经可逆计数器计数后,由电子计算机进行当量换算即可得出可动反射镜的位移量。环境温度,气压,湿度引入的折射率变化(假位移)送入计算机计算,扣除他们的影响。最后显示。相当多的应用要求计算机和应用系统通讯,实现对加工过程的闭环控制。4. 激光干涉仪的应用一般说来,激光干涉仪的主要用途是测量目标的运动状态,即目标的线性位移大小、旋转角度(滚转、俯仰和偏摆)、直线度、垂直度、两个目标在运动的平行性(度)、平面度等。无论光刻机的机台,还是数控机床的导轨(包括激光加工机床),不论是飞行物,还是静止物的热膨胀、变形,一旦需要高精度,都要用激光干涉仪测量,得到目标的运动状态。运动状态用由多个参数给出。以光刻机两维运动中的一个方向运动时为例,位移(走过的长度)、机台位移过程中的偏 转( 角 )、俯仰 ( 角 )和滚转(角)都需要测出。很多类型的设备需要测量,如各类机床、三坐标测量机、机器人、3D打印设备、自动化设备、线性位移平台、精密机械设备、精密检测仪器等领域的线性测量。图3(a)(b)(c)(d)(e)是几个应用的例子。美国LIGO激光干涉仪实验室宣称首次直接测量到了引力波(2016),使用的仪器是激光干涉仪,单程臂长4 km。见图4。图3 激光干涉仪几个应用的例子来源:(a)(b)(c)由北京镭测科技有限公司提供,(d)(e)来自深圳市中图仪器股份有限公司网页图4 LIGO激光干涉仪来源:https://www.ligo.caltech.edu/image/ligo20150731c 5. 双频激光干涉仪发展存在的问题(1)国内外单频和双频激光干涉仪的进展及问题多年来,国内外在单频和双频激光干涉仪方面进步不大,特例是双折射-塞曼双频激光器的发明。由于从国外购买的激光器不能产生大间隔的双频光,原有国内双频激光干涉仪的供应商基本停产。以前作为基础研究的双折射-塞曼双频激光器被推到前台。双频激光器是干涉仪的核心技术,走在了世界前端,也解决了国内无源的重大难题。北京镭测科技有限公司的开发、纠错,终于使双折射-塞曼双频激光干涉仪实现产品化,进入先进制造全行业,特别是光刻机。北京镭测科技有限公司双折射-塞曼双频激光器达到指标:频率间隔可在1~ 30 MHz之间选择,功率可达1 mW。 频率差与激光功率之间没有相互影响,没有塞曼效应的双频激光器高功率和大频率差不能兼得的缺点。尽管取得进展,但氦氖激光器的制造工艺等是个系统性技术问题,需要全面改善。特别是,国外双频激光干涉仪的几家企业的激光器都是自产自用,不对外销售,因此,我们必须自己解决问题。(2)业界往往忽略干涉仪的非线性误差很长时期以来,业界认为单频干涉仪没有非线性误差。德国联邦物理技术研究院(PTB) 经严格测试发现,单频干涉仪也存在几纳米的非线性误差,甚至大于10 nm。塞曼效应的双频干涉仪也有非线性误差,也是无法消除。对此干涉仪测量误差,大多使用者是不知情的。到目前,中国计量科学院的测试得出,北京镭测科技生产的双频激光干涉仪的非线性误差在1 nm以下。建议把中国计量科学院的仪器批准为国家标准,并和德国、美国计量院作比对。非线性误差发生在半个波长的位移内,即使量程很小也照样存在。图5 中国计量科学研究院:镭测LH3000双频激光干涉仪在进行测长比对6. 双频激光干涉仪的未来挑战本文作者从事研究双折射-塞曼双频激光器起步到成批生产双折射-塞曼双频激光干涉仪,历经近40年,建议加强以下研究。(1)高测速制造业的发展很快,精密数控机床运动速度已达几m/s,有特殊应用提出达到10 m/s的要求。目前单频激光的测量速度还没有超过5 m/s。双折射-塞曼双频激光干涉仪的测速也处于这一水平,但其频率差的实验已经达到几十MHz,有待信号处理技术的跟进发展,实现10 m/s以上的测量速度。(2)皮米干涉仪市场上的干涉仪基本都标称分辨力1 nm,也有0.1 nm的广告。需要发展皮米分辨力的激光干涉仪以满足对原子、病毒尺度上的观测要求。(3)溯源前文已经提到,小于半波长的位移是把正弦波动信号电子细分得到标称的1 nm,和真实的1 nm相差多少?没有人知道,所以需要建立纳米、皮米的标准。作者曾做过初步努力,达到10 nm的纯光学信号,还需做长期艰苦的研究。(4)提高氦氖激光器寿命在未来很长一段时间,氦氖激光器仍然是激光干涉仪最好的光源,但其漏气的特点导致其使用寿命有限,替换寿命终结的氦氖激光器导致光刻机停机,会带来巨大经济损失。因此,延长氦氖激光器寿命十分有必要。没有测量就没有科学技术,没有精密测量就没有当今的先进制造,为此作者最近出版了题名《不创新我何用,不应用我何为:你所没有见过的激光精密测量仪器》的书籍,书的主标题似是铭志抒怀,而实际内容是一本地道的学术专著,书籍内容为作者的课题组近40年做出的创新成果总结。作者简介张书练,清华大学教授,博导。曾任清华大学精密测试技术及仪器国家重点实验室主任,清华大学光学工程研究所所长,主要研究方向为激光技术与精密测量,致力于激光器特性的研究和把这些特性应用于精密测量,是国内外正交偏振激光精密测量领域的的主要创始人。
  • Zygo 发布全新 Qualifire 激光干涉仪
    阿美特克(纽约证券交易所代码:AME)旗下Zygo公司宣布发布其最新的激光干涉仪Qualifire™。Qualifier加入了一系列高端干涉仪解决方案,该仪器旨在支持半导体、光刻、星载成像系统、尖端消费电子产品、国防等行业中最苛刻的计量应用。Qualifire将于1月30日在加州旧金山的SPIE Photonics West首次亮相。这款干涉仪在不牺牲性能的情况下,将显著的增强功能集成到一个更轻的小型封装中。Zygo 激光干涉仪产品经理 Erin McDonnell 表示:“我们很高兴将 Qualifire 推向市场,其改进的人体工程学设计使其易于使用,并且比 Zygo 的许多其他激光干涉仪更便携。使用激光干涉仪进行的测量往往对噪声、污染物和其他伪影敏感,因为该仪器能够提供纳米级精度;Qualifire上的可选模块飞点可主动减少甚至消除这些伪影,从而提高测量的可靠性和可重复性。飞点结合了Zygo最好的两种伪影减少技术:环纹和相干伪影减少。飞点在需要高精度的应用中尤其有价值,包括科学研究和先进的制造工艺。Qualifire为Zygo的激光干涉仪产品线带来这些功能和改进:Qualire激光干涉仪提供了许多新颖的新功能。智能附件接口——干涉仪可以识别任何安装的“智能附件”,并自动应用系统错误文件并执行横向校准。体积小、重量轻——最小的 Qualifire 型号重约 45 磅(20.4 千克)。 它是真正的便携式,特别是对于干涉仪必须经常移动或调整的复杂和精密应用。移相器(PMR)——PMR 是调制测试部件和参考光学器件之间干涉条纹所必需的,最终可创建定量表面图。其整体设计提供:整体机械稳定性和对准降低损坏或错位的风险确保性能一致,减少重新校准的需要改进的用户体验——方便使用的电源按钮和运动安装支脚使设置更易于使用。大型控制旋钮可实现更精确的调整,这对校准和校准都至关重要。 集成手柄确保安全可靠的操作。更易于维护—— 密封的光学系统和整合的电子元件使更换各种组件变得简单,而不会使光学元件暴露在污染物中。飞点——用于减少伪影的可选模块,包括自动对焦功能。稳定变焦——提供新变焦方法的选项,可在所有放大倍率下实现完美的图像配准和衍射限制图像采样。计量集团副总裁Kurt Redlitz 表示:“Qualifire 保持了 Zygo 在计量方面的高标准,同时提供了最高水平的精度并优化了用户体验。通过改进的人体工程学设计,它可以在不牺牲性能的情况下提高操作效率和部署灵活性。Qualifire 是一款更强大、更可靠、用户友好的仪器,可随时应付最苛刻的应用和环境——精度不容置疑。

光学干涉仪相关的方案

光学干涉仪相关的资料

光学干涉仪相关的论坛

  • 白光干涉仪是什么?有哪些作用?

    白光干涉仪目前在3D检测领域是精度最高的测量仪器之一,在同等系统放大倍率下检测精度和重复精度都高于共聚焦显微镜和聚焦成像显微镜,在一些纳米级和亚纳米级的超精密加工领域,除了[url=http://www.chotest.com/detail.aspx?cid=686][b][color=#333333]白光干涉仪[/color][/b][/url],其它的仪器无法达到其测量精度要求。[align=center][img]http://www.chotest.com/Upload/2018/3/201803076710554.jpg[/img][/align][align=center]中图仪器SuperView W1白光干涉仪[/align]白光干涉仪测量原理:  白光干涉仪是利用光学干涉原理研制开发的超精密表面轮廓测量仪器。照明光束经半反半透分光镜分威两束光,分别投射到样品表面和参考镜表面。从两个表面反射的两束光再次通过分光镜后合成一束光,并由成像系统在CCD相机感光面形成两个叠加的像。由于两束光相互干涉,在CCD相机感光面会观察到明暗相间的干涉条纹。干涉条纹的亮度取决于两束光的光程差,根据白光干涉条纹明暗度以及干涉条纹出现的位置解析出被测样品的相对高度。[align=center][img]http://www.chotest.com/Upload/2019/5/201905302500097.jpg[/img][/align]白光干涉仪的测量应用:  以测量单刻线台阶为倒,在检查仪器的各线路接头都准确插到对应插孔后,开启仪器电源开关,启动计算机,将单刻线台阶工件放置在载物台中间位置,先手动调整载物台大概位置,对准白光干涉仪目镜的下方。  在计算机上打开白光干涉仪测量软件,在软件界面上设置好目镜下行的最低点,再微调镜头与被测单刻线台阶表面的距离,调整到计算机屏幕上可以看到两到三条干涉条纹为佳,此时设置好要扫描的距离。按开始按钮,白光干涉仪可自动进行扫描测量,测量完成后,转件自动生成3D图像,测量人员可以对3D图像进行数据分析,获得被测器件表面线、面粗糙度和轮廓的2D、3D参数。[align=center][img]http://www.chotest.com/Upload/2019/5/201905303281565.png[/img][/align]  白光干涉仪具有测量精度高、操作便捷、功能全面、测量参数涵盖面广的优点,测量单个精密器件的过程用时2分钟以内,确保了高款率检测。白光干涉仪独有的特殊光源模式,可以广泛适用于从光滑到粗糙等各种精密器件表面的测量。

光学干涉仪相关的耗材

  • 全光纤麦克尔逊干涉仪MFI
    全光纤迈克逊干涉仪-MFI Michelson Fiber Interferometer产品介绍:量青光电提供的美国Optiphase公司全光纤迈克逊干涉仪(Fiber Michelson Interferometer)不但可以用来作为精密的测试测量仪器,还可以应用在精密的干涉传感系统。光纤干涉仪内部采用PZ1小尺寸光纤拉伸器(参见 PZ1光纤拉伸器产品资料),内置的PZT通过前面板的BNC连接器驱动。全 光纤迈克逊干涉仪标准产品的工作波长从1064nm到1550nm。每个光纤干涉仪都具有“零米”光路偏差的设计,用于方便用户根据不同的测试应用来改变 光路延迟长度。标准产品的延迟光纤长度为50米,我们能够根据用户的实际要求提供各种定制的光纤干涉仪,请联系我们的销售人员.产品参数:参数单位指标产品型号MFI-10-50MFI-13-50MFI-15-50工作波长nm106413101550调制常数rad/V2.52.01.6两臂光路失配长度(无延迟)m0m0m0m两臂光路失陪长度偏差cm+/-10cm+/-10cm+/-10cm调制器接口BNCBNCBNC光纤类型HI-1060(或指定)SMF-28eSMF-28e光路接口FC/APCFC/APC FC/APC最大功率承受能力mW250250250封装尺寸(长x宽x高)mm260x160x90260x160x90260x160x90重量kg~2.7~2.7~2.7可定制的延迟范围m0.5m ~1000m标准产品的延迟长度m50光纤连接器FC/APC产品应用:激光器相位噪声测试激光器频率噪声测试干涉型光纤传感系统模拟科研实验室应用应用列举:1. 激光器相位/频率噪声测试(1)被测试的激光器经过衰减器后输入到光纤干涉仪,干涉仪的光路失配(光路差)可以由用户选择采用或者控制延迟线圈(延迟线圈)来设定。OPD-4000解调输 出电压应用到PZ1光纤拉伸器的BNC接口上,作为PZ1光纤拉伸器的驱动电压。OPD-4000的相位解调输出可以选择数字信号输出或者模拟信号输出, 数字信号输出通过PC进行后续处理,模拟信号通过信号分析仪进行分析。2. 激光器相位/频率噪声测试(2)被测试的激光器经过衰减器后输入到光纤干涉仪,干涉仪的光路失配(光路差)可以由用户选择采用或者控制延迟线圈(延迟线圈)来设定。通过为PZ1型光纤拉伸 器BNC接口提供控制电压保持其处于正交偏置(Quadrature Bias)。输出光信号由光接收机接收处理,输出信号进一步处理。3.光纤干涉仪传感器模拟(3)输入光信号代表干涉型光纤传感器的光源。选择合适的延迟光纤线圈,延迟长度作为需要模拟的传感器的长度。输出光信号通过光接收器件到信号分析仪进行处理分析。订货信息:MFI-10-50: 1064nm光纤迈克逊干涉仪MFI-13-50: 1310nm光纤迈克逊干涉仪MFI-15-50: 1550nm光纤迈克逊干涉仪
  • 850nm VCSEL激光器_干涉仪激光器
    852±1/ ±10 nm single-mode VCSEL850nmVCSEL激光器适用于干涉仪检测,VSEL激光器拥有价格低廉,线宽很窄以及可调波长范围宽的优势。在各类激光器中出类拔萃深受全球客户的青睐
  • 中红外法布里-珀罗F-P干涉仪( F-P标准具/多光束干涉仪 2.5-14um)
    总览法布里-珀罗干涉仪(英文:Fabry–Pérot interferometer),是一种由两块平行的玻璃板组成的多光束干涉仪。其中两块玻璃板相对的内表面都具有高反射率。当两块玻璃板间用固定长度的空心间隔物来间隔固定时,它也被称作法布里-珀罗标准具或直接简称为标准具。F-P(法布里-珀罗)标准具因为平板反射率高,多光束等倾斜干涉条纹极窄,所以是一种高分辨率的光谱仪器。可用于高分辨光谱学,和研究波长非常靠近的谱线,诸如元素的同位素光谱、光谱的超精细结构、光散射时微小的频移,原子移动引起的谱线多普勒位移,和谱线内部的结构形状;也可用作高分辨光学滤波器、构造精密波长计;在激光系统中它经常用于腔内压窄谱线或使激光系统单模运行,可作为宽带皮秒激光器中带宽控制以及调谐器件,分析、检测激光中的光谱(纵模、横模)成分. 技术参数产品特点 适用于中红外平行度好端面平整度高表面质量好产品应用波长锁定器 波分复用电信网 手持光谱分析仪 光纤光栅传感系统 可调谐滤波器激光器 可调谐滤光片技术参数 技术参数技术指标工作波段近红外1.3-2.0um,中红外2.5-14um直径25.4mm+/-0.05mm通光孔径22.9mm长度100mm+/-0.2mm平行度5-10 arc sec端面平整度中红外 1/4 lambda;近红外 1/10 lambda表面质量中红外80-50;近红外60-40管壳铜 精细度(FSR)0.012cm-1实验测试: 测试步骤:1,安装1532nm激光器,连接电源,USB线2,激光器输出连接到光纤准直器 3,用BNC转BNC线连接信号发生器到激光器驱动的低频调制端口4,用BNC转BNC线连接探测器到示波器的通道2端口5,打开激光器,打开信号发生器(三角波调制,频率1KHZ,电压幅值500mW)6,激光器发出的光通过标准具,打在探测器光敏面上,通过调整标准具的角度,在示波器上查看调制波形测试结果:
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制