当前位置: 仪器信息网 > 行业主题 > >

荼明光学仪

仪器信息网荼明光学仪专题为您提供2024年最新荼明光学仪价格报价、厂家品牌的相关信息, 包括荼明光学仪参数、型号等,不管是国产,还是进口品牌的荼明光学仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合荼明光学仪相关的耗材配件、试剂标物,还有荼明光学仪相关的最新资讯、资料,以及荼明光学仪相关的解决方案。

荼明光学仪相关的论坛

  • 【求助】有关光学显微镜的照明光源问题

    常用的光学显微镜的照明光源有什么要求?如测量显微镜、金相显微镜、体式显微镜等,分别选用什么照明,看到有LED、卤素灯、疝气灯等另外,照明光源的功率多少合适?

  • 帮忙下载一篇文献“科勒照明光路系统的研究与应用”

    [b][font='Microsoft YaHei', 宋体, sans-serif]【序号】:1[/font]【作者】:[font=&][size=13px][color=#0066cc]周菲菲[/color][/size][/font][b][b][/b][/b][/b][font=&]【题名】:[/font][b][b][url=http://www.eope.net/EN/abstract/abstract17664.shtml][b][b]科勒照明光路系统的研究与应用[/b][/b][/url][/b][/b][font=&]【期刊】:[/font][font=Arial][size=12px]CNKI[/size][/font][b]【链接】:[url=https://xueshu.baidu.com/usercenter/paper/show?paperid=44d548ceda7647026248a7152eb966fc&site=xueshu_se&hitarticle=1][font=&][size=13px][color=#0066cc]周菲菲[/color][/size][/font]科勒照明光路系统的研究与应用 - 百度学术 (baidu.com)[/url][/b][font=&][size=13px][color=#0066cc]周菲菲[/color][/size][/font]

  • 【分享】光学显微镜的使用

    一、显微镜的光学系统 显微镜的光学系统主要包括物镜、目镜、反光镜和聚光器四个部件。广义的说也包括照明光源、滤光器、盖玻片和载玻片等。 (一)、物镜 物镜是决定显微镜性能的最重要部件,安装在物镜转换器上,接近被观察的物体,故叫做物镜或接物镜。 1、物镜的分类 物镜根据使用条件的不同可分为干燥物镜和浸液物镜;其中浸液物镜又可分为水浸物镜和油浸物镜(常用放大倍数为90—100倍)。 根据放大倍数的不同可分为 低倍物镜(10倍以下)、中倍物镜(20倍左右)高倍物镜(40—65倍)。 根据像差矫正情况,分为消色差物镜(常用,能矫正光谱中两种色光的色差的物镜)和复色差物镜(能矫正光谱中三种色光的色差的物镜,价格贵,使用少)。 2、物镜的主要参数: 物镜主要参数包括:放大倍数、数值孔径和工作距离。 ①、放大倍数是指眼睛看到像的大小与对应标本大小的比值。它指的是长度的比值而不是面积的比值。例:放大倍数为100×,指的是长度是1μm的标本,放大后像的长度是100μm,要是以面积计算,则放大了10,000倍。 显微镜的总放大倍数等于物镜和目镜放大倍数的乘积。 ②、数值孔径也叫镜口率,简写N• A 或A,是物镜和聚光器的主要参数,与显微镜的分辨力成正比。干燥物镜的数值孔径为0.05-0.95,油浸物镜(香柏油)的数值孔径为1.25。 ③、工作距离是指当所观察的标本最清楚时物镜的前端透镜下面到标本的盖玻片上面的距离。物镜的工作距离与物镜的焦距有关,物镜的焦距越长,放大倍数越低,其工作距离越长。例:10倍物镜上标有10/0.25和160/0.17,其中10为物镜的放大倍数;0.25为数值孔径;160为镜筒长度(单位mm);0.17为盖玻片的标准厚度(单位 mm)。10倍物镜有效工作距离为6.5mm,40倍物镜有效工作距离为0.48mm 。 3、物镜的作用是将标本作第一次放大,它是决定显微镜性能的最重要的部件——分辨力的高低。 分辨力也叫分辨率或分辨本领。分辨力的大小是用分辨距离(所能分辨开的两个物点间的最小距离)的数值来表示的。在明视距离(25cm)之处,正常人眼所能看清相距0.073mm的两个物点,这个0.073mm的数值,即为正常人眼的分辨距离。显微镜的分辨距离越小,即表示它的分辨力越高,也就是表示它的性能越好。 显微镜的分辨力的大小由物镜的分辨力来决定的,而物镜的分辨力又是由它的数值孔径和照明光线的波长决定的。 当用普通的中央照明法(使光线均匀地透过标本的明视照明法)时,显微镜的分辨距离为d=0.61λ/N• A 式中d——物镜的分辨距离,单位 nm。 λ——照明光线波长,单位 nm。 N• A ——物镜的数值孔径 例如油浸物镜的数值孔径为1.25,可见光波长范围为400—700nm ,取其平均波长550 nm,则d=270 nm,约等于照明光线波长一半。一般地,用可见光照明的显微镜分辨力的极限是0.2μm。

  • 浅析中图仪器白光干涉仪在光学行业中的应用

    引言:  光学,一门古老又现代的学科,伽利略借助光学望远镜,研究了天体运动;生物学家借助光学显微镜,观察到了细胞结构;人类借助相机镜头,留住了无数难忘的瞬间。光,无可触摸,却又无处不在,借助光学,我们能直接感受和探索未知的世界,而作为光的载体,各种光学器件在其中承担着重要的角色,借助中图仪器[url=http://www.chotest.com/detail.aspx?cid=686][color=#0000ff][b]白光干涉仪[/b][/color][/url],我们可以对光学器件进行严格的表面质量检测。  光学器件,例如各种光学镜片和玻璃,属于超精密加工的产物,因此其表面质量等级都非常高,会划伤表面的接触式轮廓仪出师未捷身先死,由于其高透明度,一般的非接触式光学影像方法也束手无策,而中图仪器利用光学干涉原理研制而成的SuperView W1光学3D表面轮廓仪,能完美解决这两个难题,为光学镜片和玻璃的表面质量检测提供了标准解决方案。[align=center][img]http://www.chotest.com/Upload/2018/3/201803076710554.jpg[/img][/align][img=说明: C:\Users\ztyf007\Desktop\电脑显示图 拷贝副本 拷贝.png]file:///C:/Users/ztxs006/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png[/img][b]光学透镜检测:[/b]  在可见光领域,球面透镜是一种基础的光学器件,其表面粗糙度和曲率半径都关系着光的传播效果,光学3D表面轮廓仪可以一次完成这两项参数的检测;[align=center][img]http://www.chotest.com/Upload/2018/3/201803073907984.jpg[/img][/align][align=center]剖面轮廓曲线[/align][align=center][img]http://www.chotest.com/Upload/2018/3/201803076094888.jpg[/img][/align][align=center][img]http://www.chotest.com/Upload/2018/3/201803077344152.jpg[/img][/align][align=center] [/align]  上图为某型号双胶合透镜,取透镜上表面进行检测,得其粗糙度小于1nm,曲率半径为61.2mm左右,与理论值61.5mm仅差0.3mm左右,考虑到光学透镜的加工容许误差为2%,因此所测值与理论相符。[b]蓝宝石玻璃检测:[/b]  蓝宝石俗称刚玉,主要成分是氧化铝(Al₂ O₃ ),由于其优良的物理和化学特性,常用于制成各种光学元件,如摄像头保护玻璃、表镜、窗口片、棱镜等。一般加工出来的蓝宝石玻璃分为单面抛光和双面抛光两种,抛光程度——也就是表面粗糙度直接决定了其表面质量等级,下图为一片单面抛光蓝宝石玻璃的光面和糙面的粗糙度检测图像及数据。 [align=center][img]http://www.chotest.com/Upload/2018/3/201803078750797.jpg[/img][/align][align=center][img]http://www.chotest.com/Upload/2018/3/201803070000051.jpg[/img][/align][align=center][img]http://www.chotest.com/Upload/2018/3/201803071250325.jpg[/img][/align][align=center][img]http://www.chotest.com/Upload/2018/3/201803072344327.jpg[/img][/align][img]file:///C:/Users/ztxs006/AppData/Local/Temp/msohtmlclip1/01/clip_image025.png[/img][img]file:///C:/Users/ztxs006/AppData/Local/Temp/msohtmlclip1/01/clip_image027.jpg[/img][img=说明: C:\Users\ztyf007\AppData\Local\Temp\376d7fe4-3704-4c79-a481-0253bd1b2a1f.tmp]file:///C:/Users/ztxs006/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png[/img]  如上图所示,光面的粗糙度曲线显示,光面上分布的凸点只有1nm左右的高度起伏,其表面粗糙度为0.1nm左右,而糙面的高度起伏则达到了3.2um,表面粗糙度则为500nm左右。[b]玻璃屏检测:[/b]  玻璃屏常见于我们日常所用的智能产品中,例如智能手机、智能手表,还有平板电脑等,为了获得更好的触屏体验,需要对玻璃屏的表面粗糙度和微观轮廓进行检测。以手机玻璃屏为例,说明光学3D表面轮廓仪在其中的应用: [img]file:///C:/Users/ztxs006/AppData/Local/Temp/msohtmlclip1/01/clip_image034.png[/img][img=说明: C:\Users\ztyfdell014\Desktop\2.png]file:///C:/Users/ztxs006/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png[/img][align=center][img]http://www.chotest.com/Upload/2018/3/201803073750962.jpg[/img][/align][align=center][img]http://www.chotest.com/Upload/2018/3/201803075469804.jpg[/img][/align][align=center][img]http://www.chotest.com/Upload/2018/3/201803072576961.jpg[/img][/align][img]file:///C:/Users/ztxs006/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png[/img]  如上图,选取的测量区域发现了一条宽6um,深6nm的肉眼无法观测到的划痕,玻璃屏表面的粗糙度在1nm附近。[b]玻璃表面台阶检测:[/b]  下图为透明玻璃表面镀的一层金属膜,需要测膜层的厚度,由于其非透明的特性,薄膜测厚仪无法进行测量,而由于其膜层厚度精度在纳米级别,接触式的台阶仪和其它的非接触式光学仪器也存在测量误差较大的风险,而以光学干涉原理为基础研制成的中图仪器光学3D表面轮廓仪,以其亚纳米级别的测量精度,则可对该膜层厚度进行精确测量。[align=center][img]http://www.chotest.com/Upload/2018/3/201803074919227.jpg[/img][/align][align=center][img]http://www.chotest.com/Upload/2018/3/201803077263920.jpg[/img][/align][img]file:///C:/Users/ztxs006/AppData/Local/Temp/msohtmlclip1/01/clip_image040.png[/img][img=说明: C:\Users\ztyf007\AppData\Local\Temp\b55608cc-0007-44df-8519-7bd0a757c12f.tmp]file:///C:/Users/ztxs006/AppData/Local/Temp/msohtmlclip1/01/clip_image042.png[/img][img=说明: C:\Users\ztyf007\Desktop\IMG20180301085257 拷贝.png]file:///C:/Users/ztxs006/AppData/Local/Temp/msohtmlclip1/01/clip_image044.png[/img]  上图是利用软件的自动面台阶高检测功能对重建的3D图像两台阶高进行检测,从数值可知,两台阶面平均高度差为82nm,而最大高度差90nm,最小高度差为78nm。  投之以桃,报之以李,中图仪器光学3D表面轮廓仪作为一款光学检测仪器,受益于光学行业的进步与发展,也必将为光学行业的进一步提升贡献自己的力量。

  • 【基础知识】光学显微镜的历史及基础知识

    光学显微镜 optical microscope 利用光学原理把人眼所不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。 简史 早在公元前 1世纪,人们就已发现通过球形透明物体去观察微小物体时可以使其放大成像。后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。1610年前后,意大利的伽利略和德国的J.开普勒在研究望远镜的同时,改变物镜和目镜之间的距离,得出合理的显微镜光路结构,当时的光学工匠遂纷纷从事显微镜的制造、推广和改进。17世纪中叶,英国的R.胡克和荷兰的 A.van列文胡克都对显微镜的发展作出了卓越的贡献。1665年前后,胡克在显微镜中加入粗动和微动调焦机构、照明系统和承载标本片的工作台。这些部件经过不断改进,成为现代显微镜的基本组成部分。1673~1677年期间,列文胡克制成单组元放大镜式的高倍显微镜,其中9台保存至今。胡克和列文胡克利用自制的显微镜在动、植物机体微观结构的研究方面取得了杰出的成就。19世纪,高质量消色差浸液物镜的出现使显微镜观察微细结构的能力大为提高。1827年G.B.阿米奇第一个采用浸液物镜。19世纪70年代,德国人E.阿贝奠定了显微镜成像的古典理论基础。这些都促进了显微镜制造和显微观察技术的迅速发展,并为19世纪后半叶包括R.科赫、L.巴斯德等在内的生物学家和医学家发现细菌和微生物提供了有力的工具。 在显微镜本身结构发展的同时,显微观察技术也在不断创新:1850年出现了偏光显微术,1893年出现了干涉显微术,1935年荷兰物理学家F.泽尔尼克创造了相衬显微术,他为此在1953年被授予诺贝尔物理学奖金。 古典的光学显微镜只是光学元件和精密机械元件的组合,它以人眼作为接收器来观察放大的像。后来在显微镜中加入了摄影装置,以感光胶片作为可以记录和存储的接收器。现代又普遍采用光电元件、电视摄象管和电荷耦合器等作为显微镜的接收器,配以微型电子计算机后构成完整的图象信息采集和处理系统。 工作原理 表面为曲面的玻璃或其他透明材料制成的光学透镜可以使物体放大成像。光学显微镜就是利用这一原理把微小物体放大到人眼足以观察的尺寸。近代的光学显微镜通常采用两级放大,分别由物镜和目镜完成。被观察物体AB位于物镜的前方,被物镜作第一级放大后成一倒立的实象A1B1。然后此实像再被目镜作第二级放大,成一虚象A2B2,人眼看到的就是虚像A2B2。 显微镜的总放大倍率为 显微镜总放大倍率=物镜放大倍率×目镜放大倍率 放大倍率是指直线尺寸的放大比而不是面积比。在用人眼直接观察的显微镜中,可以在实像面A1B1处放置一块薄型平板玻璃片,其上刻有某种图案的线条,例如十字线。当实像A1B1和这些刻线叠合在一起时,利用这些刻线就能对物体进行瞄准定位或尺寸测量。这种放置在实像面处的薄型平板玻璃片通称分划板。在新型的以光电元件作为接收器的光学显微镜中,电视摄象管的靶面或其他光电元件的接收面就设置在实像面上。 组成 光学显微镜由载物台、聚光照明系统、物镜、目镜和调焦机构组成。 载物台 用于承放被观察的物体。利用调焦旋钮可以驱动调焦机构使载物台作粗调和微调的升降运动,使被观察物体调焦清晰成象。它的上层可以在水平面内沿、方向作精密移动和在水平面内转动,把被观察的部位调放到视场中心。 聚光照明系统 由灯源和聚光镜构成。当被观察物体本身不发光时,由外界光源给以照明。照明灯的光谱特性必须与显微镜的接收器的工作波段相适应。聚光镜的功能是使更多的光能集中到被观察的部位。 物镜 位于被观察物体附近实现第一级放大的镜头。在物镜转换器上同时装着几个不同放大倍率的物镜。转动转换器可让不同倍率的物镜进入工作光路。物镜放大倍率通常为5~100倍。物方视场直径(即通过显微镜能看到的图像范围)约为 11-20毫米。物镜放大倍率越高则视场越小。 物镜是显微镜中对成象质量优劣起决定性作用的光学元件。常用的有:①能对两种颜色的光线校正色差的消色差物镜;②质量更高的能对三种色光校正色差的复消色差物镜;③能保证物镜的整个像面为平面以提高视场边缘成像质量的平像场物镜。为了提高显微观察的分辨率,在高倍物镜中采用浸液物镜,即在物镜的下表面和标本片的上表面之间填充折射率为1.5左右的液体。 目镜 位于人眼附近实现第二级放大的镜头。目镜放大倍率通常为5~20倍,按能否放置分划板,可分成两类:①不宜放置分划板的,如惠更斯型目镜。这是现代显微镜中常用的型式,优点是结构简单、价格低廉;缺点是由于成像质量的原因,不宜放置供瞄准定位或尺寸测量用的分划板。②能放置分划板的,如凯尔纳型和对称型目镜,它们能克服上述目镜的缺点。按照能看到的视场大小,目镜又分为视场较小的普通目镜和视场较大的大视场目镜(或称广角目镜)两类。 调焦机构 载物台和物镜两者必须能沿物镜光轴方向作相对运动以实现调焦,获得清晰的图像。用高倍物镜工作时,容许的调焦范围往往小于微米,所以显微镜必须具备极为精密的微动调焦机构。 显微镜放大倍率的极限 显微镜放大倍率的极限即有效放大倍率。仪器的分辨率是指仪器提供被测对像微细结构信息的能力。分辨率越高则提供的信息越细致。显微镜的分辨率是指能被显微镜清晰区分的两个物点的最小间距。根据衍射理论,显微物镜的分辨率为 sigma=0.61lamda/N.sinU ~1式中lamda为所用光波的波长;N 为物体所在空间的折射率,物体在空气中时N=1;U为孔径角,即从物点发出能进入物镜成像的光线锥的锥顶角的半角 NsinU 称为数值孔径。 当波长λ一定时, 分辨率取决于数值孔径的大小。数值孔径越大则能分辨的结构越细,即分辨率越高。数值孔径是显微物镜的一个重要性能指标,通常与放大倍率一起标注在物镜镜筒外壳上,例如40×0.65表示物镜的放大倍率为40倍,数值孔径为0.65。 分辨率和放大倍率是两个不同的但又互有联系的概念。当选用的物镜数值孔径不够大,即分辨率不够高时,显微镜不能分清物体的微细结构,此时即使过度地增大放大倍率,得到的也只能是一个轮廓虽大但细节不清的图像。这种过度的放大倍率称为无效放大倍率。反之如果分辨率已满足要求而放大倍率不足,则显微镜虽已具备分辨的潜在能力,但因图像太小而仍然不能被人眼清晰视见。为了充分发挥显微镜的分辨能力,应使数值孔径与显微镜总放大倍率合理匹配,以满足下列条件: 500NsinU<显微镜总放大倍率<1000NsinU ~2 在此范围内的放大倍率称为有效放大倍率。由于sinU永远小于1,物方空间折射率N最高约为1.5,NsinU不可能大于1.5,故光学显微镜的分辨率受(1)式限制,具有一定的极限。有效放大倍率受上式限制,一般不超过1500倍。显微镜使用者应由所需分辨的最小尺寸按(1)式确定所需的数值孔径,选定物镜,然后按(2)式选定总放大倍率和目镜放大倍率。 提高分辨率的途径是:采用较短波长的光波或增大孔径角U值,或是提高物体所在空间的折射率N,例如在物体所在空间填充折射率为 1.5的液体。以这种方式工作的物镜称为浸液物镜。而电子显微镜正是利用波长极短的特性,在提高分辨率方面取得重大突破的。 聚光照明系统对显微观察的影响 聚光照明系统是对显微镜成像性能有较大影响但又易于被使用者忽视的环节。它的功能是提供亮度足够且均匀的物面照明。聚光镜发来的光束应能保证充满物镜孔径角,否则就不能充分利用物镜所能达到的最高分辨率。为此目的,在聚光镜中设有类似照相物镜中的可以调节开孔大小的可变孔径光阑,用来调节照明光束孔径,以与物镜孔径角匹配。观察高反差物体时,宜使照明光束充满物镜的全孔径;对于低反差物体,宜使照明光束充满物镜的2/3孔径。在较完善的柯勒照明系统中,除可变孔径光阑外,还装有控制被照明视场大小的可变视场光阑,以保证被照明的物面范围与物镜所需的视场匹配。物面被照明的范围太小固然不行,过大则不仅多余,甚至有害,因为有效视场以外的多余的光线会在光学零件表面和镜筒内壁多次反射,最后作为杂散光到达像面,使图像的反差下降。

  • 【转帖】光学显微镜

    光学显微镜是利用光学原理,把人眼所不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。  早在公元前一世纪,人们就已发现通过球形透明物体去观察微小物体时,可以使其放大成像。后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。  1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。1610年前后,意大利的伽利略和德国的开普勒在研究望远镜的同时,改变物镜和目镜之间的距离,得出合理的显微镜光路结构,当时的光学工匠遂纷纷从事显微镜的制造、推广和改进。  17世纪中叶,英国的胡克和荷兰的列文胡克,都对显微镜的发展作出了卓越的贡献。1665年前后,胡克在显微镜中加入粗动和微动调焦机构、照明系统和承载标本片的工作台。这些部 件经过不断改进,成为现代显微镜的基本组成部分。  1673~1677年期间,列文胡克制成单组元放大镜式的高倍显微镜,其中九台保存至今。胡克和列文胡克利用自制的显微镜,在动、植物机体微观结构的研究方面取得了杰出的成就。  19世纪,高质量消色差浸液物镜的出现,使显微镜观察微细结构的能力大为提高。1827年阿米奇第一个采用了浸液物镜。19世纪70年代,德国人阿贝奠定了显微镜成像的古典理论基础。这些都促进了显微镜制造和显微观察技术的迅速发展,并为19世纪后半叶包括科赫、巴斯德等在内的生物学家和医学家发现细菌和微生物提供了有力的工具。  在显微镜本身结构发展的同时,显微观察技术也在不断创新:1850年出现了偏光显微术;1893年出现了干涉显微术;1935年荷兰物理学家泽尔尼克创造了相衬显微术,他为此在1953年获得了诺贝尔物理学奖。  古典的光学显微镜只是光学元件和精密机械元件的组合,它以人眼作为接收器来观察放大的像。后来在显微镜中加入了摄影装置,以感光胶片作为可以记录和存储的接收器。现代又普遍采用光电元件、电视摄象管和电荷耦合器等作为显微镜的接收器,配以微型电子计算机后构成完整的图象信息采集和处理系统。  表面为曲面的玻璃或其他透明材料制成的光学透镜可以使物体放大成像,光学显微镜就是利用这一原理把微小物体放大到人眼足以观察的尺寸。近代的光学显微镜通常采用两级放大,分别由物镜和目镜完成。被观察物体位于物镜的前方,被物镜作第一级放大后成一倒立的实象,然后此实像再被目镜作第二级放大,成一虚象,人眼看到的就是虚像。而显微镜的总放大倍率就是物镜放大倍率和目镜放大倍率的乘积。放大倍率是指直线尺寸的放大比,而不是面积比。  光学显微镜的组成结构  光学显微镜一般由载物台、聚光照明系统、物镜,目镜和调焦机构组成。载物台用于承放被观察的物体。利用调焦旋钮可以驱动调焦机构,使载物台作粗调和微调的升降运动,使被观察物体调焦清晰成象。它的上层可以在水平面内沿作精密移动和转动,一般都把被观察的部位调放到视场中心。  聚光照明系统由灯源和聚光镜构成,聚光镜的功能是使更多的光能集中到被观察的部位。照明灯的光谱特性必须与显微镜的接收器的工作波段相适应。  物镜位于被观察物体附近,是实现第一级放大的镜头。在物镜转换器上同时装着几个不同放大倍率的物镜,转动转换器就可让不同倍率的物镜进入工作光路,物镜的放大倍率通常为5~100倍。  物镜是显微镜中对成象质量优劣起决定性作用的光学元件。常用的有能对两种颜色的光线校正色差的消色差物镜;质量更高的还有能对三种色光校正色差的复消色差物镜;能保证物镜的整个像面为平面,以提高视场边缘成像质量的平像场物镜。高倍物镜中多采用浸液物镜,即在物镜的下表面和标本片的上表面之间填充折射率为1.5左右的液体,它能显著的提高显微观察的分辨率。  目镜是位于人眼附近实现第二级放大的镜头,镜放大倍率通常为5~20倍。按照所能看到的视场大小,目镜可分为视场较小的普通目镜,和视场较大的大视场目镜(或称广角目镜)两类。  载物台和物镜两者必须能沿物镜光轴方向作相对运动以实现调焦,获得清晰的图像。用高倍物镜工作时,容许的调焦范围往往小于微米,所以显微镜必须具备极为精密的微动调焦机构。  显微镜放大倍率的极限即有效放大倍率,显微镜的分辨率是指能被显微镜清晰区分的两个物点的最小间距。分辨率和放大倍率是两个不同的但又互有联系的概念。  当选用的物镜数值孔径不够大,即分辨率不够高时,显微镜不能分清物体的微细结构,此时即使过度地增大放大倍率,得到的也只能是一个轮廓虽大但细节不清的图像,称为无效放大倍率。反之如果分辨率已满足要求而放大倍率不足,则显微镜虽已具备分辨的能力,但因图像太小而仍然不能被人眼清晰视见。所以为了充分发挥显微镜的分辨能力,应使数值孔径与显微镜总放大倍率合理匹配。  聚光照明系统是对显微镜成像性能有较大影响,但又是易于被使用者忽视的环节。它的功能是提供亮度足够且均匀的物面照明。聚光镜发来的光束应能保证充满物镜孔径角,否则就不能充分利用物镜所能达到的最高分辨率。为此目的,在聚光镜中设有类似照相物镜中的,可以调节开孔大小的可变孔径光阑,用来调节照明光束孔径,以与物镜孔径角匹配。  改变照明方式,可以获得亮背景上的暗物点(称亮视场照明)或暗背景上的亮物点(称暗视场照明)等不同的观察方式,以便在不同情况下更好地发现和观察微细结构。  光学显微镜的分类  光学显微镜有多种分类方法:按使用目镜的数目可分为双目和单目显微镜;按图像是否有立体  感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光,相衬和微差干涉对比显微镜等;按光源类型可分为普通光、荧光、红外光和激光显微镜等;按接收器类型可分为目视、摄影和电视显微镜等。常用的显微镜有双目体视显微镜、金相显微镜、偏光显微镜、紫外荧光显微镜等。  双目体视显微镜是利用双通道光路,为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。双目体视显微镜在生物、医学领域广泛用于切片操作和显微外 科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。  金相显微镜是专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。这种反射照明方式也广泛用于集成电路硅片的检测工作。  紫外荧光显微镜是用紫外光激发荧光来进行观察的显微镜。某些标本在可见光中觉察不到结构细节,但经过染色处理,以紫外光照射时可因荧光作用而发射可见光,形成可见的图像。这类显微镜常用于生物学和医学中。  电视显微镜和电荷耦合器显微镜是以电视摄像靶或电荷耦合器作为接收元件的显微镜。在显微镜的实像面处装入电视摄像靶或电荷耦合器取代人眼作为接收器,通过这些光电器件把光学图像转换成电信号的图像,然后对之进行尺寸检测、颗粒计数等工作。这类显微镜的可以与计算机联用,这便于实现检测和信息处理的自动化,多应用于需要进行大量繁琐检测工作的场合。  扫描显微镜是成像光束能相对于物面作扫描运动的显微镜 。在扫描显微镜中依靠缩小视场来保证物镜达到最高的分辨率,同时用光学或机械扫描的方法,使成像光束相对于物面在较大视场范围内进行扫描,并用信息处理技术来获得合成的大面积图像信息。这类显微镜适用于需要高分辨率的大视场图像的观测。

  • 【讨论】光学控温失效~有图有真相!

    【讨论】光学控温失效~有图有真相!

    [img]http://ng1.17img.cn/bbsfiles/images/2010/05/201005141918_218446_1981699_3.jpg[/img]光学控温失效!!!!!本来我们实验室一直都是用光控的,所有的条件都摸好了,但突然来了个这个东西!!!!!!!!!我已经清洁过光控探头,通光孔也没有堵塞!救救我吧~谢谢~~~~

  • 帮忙下载一个“光学制图模板”

    [b][font='Microsoft YaHei', 宋体, sans-serif]【序号】:1[/font]【作者】:[/b][font=&][size=15px][font=微软雅黑, Arial]光学社区[/font][/size][/font][b][/b][font=&]【书名】:solidworks2018光学制图模板[b][/b][/font][font=&]【出版社】:光学技术社区[/font][font=&][color=#333333][b][/b][/color][/font][font=Arial][size=12px][/size][/font][b]【链接】:http://www.optzmx.com/forum.php?mod=viewthread&tid=10932&highlight=%B9%E2%D1%A7%D6%C6%CD%BC[/b]

  • 【新闻】德科学家突破光学显微镜分辨率极限

    2006年度德国“未来奖”于23日揭晓,凭借发明突破200纳米“阿贝极限”的光学显微镜,德国马克斯-普朗克学会生物物理化学研究所所长施特芬黑尔获得了这一荣誉。 一年一度的“未来奖”是德国最重要的科学奖。黑尔在接过德国总统克勒颁发的奖杯时表示,将把所获得的25万欧元奖金作为一个科技公司的启动资金,为将来研究更好的显微镜奠定基础。18世纪70年代,德国物理学家恩斯特阿贝发现,可见光由于其波动特性会发生衍射,因而光束不能无限聚焦。根据这个阿贝定律,可见光能聚焦的最小直径是光波波长的三分之一,也就是200纳米。一个多世纪以来,200纳米的“阿贝极限”一直被认为是光学显微镜理论上的分辨率极限,小于这个尺寸的物体必须借助电子显微镜或隧道扫描显微镜才能观察。但黑尔等科学家却巧妙地借助脉冲激光的作用,突破了“阿贝极限”。他们发明的新型的光学显微镜能够观察20纳米左右的微小生物。据悉,这种新型光学显微镜将于明年投放市场,预计价格在80万欧元左右。

  • 光学仪器的研究内容是哪些

    代光学检测技术和仪器的集成化、自动化、智能化为目标的光机电算一体化的现代光学仪器[url=http://www.gxoptics.com/]滤光片[/url]技术。主要研究内容有:以光学MEMS技术为基础的微光学、微机构以及二元光学技术的研究;混合光学系统的设计与制备技术的研究;围绕关键光纤传感元件技术,开展光机电算集成系统技术的研究,开拓现代光学仪器系统的信号获取、传感、检测与处理的集成化、自动化的新途径;开展光机电集成成像工程技术以及以微纳米技术为基础的纳米测试计量技术、纳米操作技术的研究;探索纳米尺寸光电精密检测与计量的新方法。还有要补充的吗?http://www.gxoptics.com/2384.html

  • 光学显微镜的分类

    以下内容摘自中国分析仪器网,供有兴趣的版友参考。一、显微镜的分类 (一)、按使用目镜的数目可分为单目、双目和三目显微镜。 单目价格比较便宜,可以作为初学爱好者的选择,双目稍贵点,观察的时候两眼可以同时观察,观察得舒适些,三目又多了一目,它的作用主要是连接数码相机或电脑用,比较适合长时间工作的人员选用。 (二)、根据其用途以及应用范围分为生物显微镜、金相显微镜、体视显微镜等。 1、生物显微镜是最常见的一种显微镜,在很多实验室中都可以见到,主要是用来观察生物切片、生物细胞、细菌以及活体组织培养、流质沉淀等的观察和研究,同时可以观察其他透明或者半透明物体以及粉末、细小颗粒等物体。生物显微镜供医疗卫生单位、高等院校、研究所用于微生物、细胞、细菌、组织培养、悬浮体、沉淀物等的观察,可连续观察细胞、细菌等在培养液中繁殖分裂的过程等。在细胞学、寄生虫学、肿瘤学、免疫学、遗传工程学、工业微生物学、植物学等领域中应用广泛。 2、体视显微镜又称为实体显微镜、立体显微镜,是一种具有正像立体感的目视仪器,广泛的应用于生物学、医学、农林等。它具有两个完整的光路,所以观察时物体呈现立体感。主要用途有:①作为动物学、植物学、昆虫学、组织学、考古学等的研究和解剖工具。②做纺织工业中原料及棉毛织物的检验。③在电子工业,做晶体等装配工具。④对各种材料气孔形状腐蚀情况等表面现象的检查。⑤对文书纸币的真假判断。⑥透镜、棱镜或其它透明物质的表面质量,以及精密刻度的质量检查等。 3、金相显微镜主要是用来鉴定和分析金属内部结构组织,是金属学研究金相的重要仪器,是工业部门鉴定产品质量的关键设备,专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。不仅可以鉴别和分析各种金属、合金材料、非金属物质的组织结构及集成电路、微颗粒、线材、纤维、表面喷涂等的一些表面状况,金相显微镜还可以广泛地应用于电子、化工和仪器仪表行业观察不透明的物质和透明的物质。如金属、陶瓷、集成电路、电子芯片、印刷电路板、液晶板、薄膜、粉末、碳粉、线材、纤维、镀涂层以及其它非金属材在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。所以用金相显微镜来检验分析金属内部的组织结构在工业生产中是十分重要的。体视显微镜在工业生产中也可以用到,但是它只是用来观察金属表面划伤、划痕等,放大倍数一般在10X-50X之间,金相的放大倍数一般在40X-400X,有些可以达到800X。 (三)、按光学原理可分为偏光、相衬和微差干涉对比显微镜等。 1、偏光显微是鉴定物质细微结构光学性质的一种显微镜。凡具有双折射性的物质,在偏光显微镜下就能分辨的清楚,当然这些物质也可用染色法来进行观察,但有些则不可能,而必须利用偏光显微镜。主要用于研究透明与不透明各向异性材料。一般具有双折射的物质都可以用这种显微镜进行观察。双折射性是晶体的基本特征。因此,偏光显微镜被广泛地应用在矿物、化学等领域,如在植物学方面,如鉴别纤维、染色体、纺锤丝、淀粉粒、细胞壁以及细胞质与组织中是否含有晶体等。在植物病理上,病菌的入侵,常引起组织内化学性质的改变,可以偏光显微术进行鉴别。在人体及动物学方面,常利用偏光显微术来鉴别骨骷、牙齿、胆固醇、神经纤维、肿瘤细胞、横纹肌和毛发等。 2、相衬显微镜又称为相差显微镜,最大的特点就是可以观察未经染色的标本和活细胞。这些样品在一般的显微镜下是观察不到的,而相差显微镜则利用物体不同结构成分之间的折射率和厚度的差别,把通过物体不同部分的光程差变为振幅差,经过带有环状光阑的聚光镜和带有相位片的相差物镜来实现观测,简单的说它利用的是样品密度差别产生的反差来进行观察的,所以即使样品不染色也可以进行,这大大便利了活体细胞的观察,因此相衬镜检法广泛应用于倒置显微镜中。有相板的物镜称”相衬物镜”,外壳上常有”Ph”字样。相衬法是一种光学信息处理方法,而且是最早的信息处理的成果之一,因此在光学的发展史上具有重要意义。 3、微分干涉对比镜检术出现于60年代,它不仅能观察无色透明的物体,而且图像呈现出浮雕壮的立体感,并具有相衬镜检术所不能达到的某些优点,观察效果更为逼真。 (四)、按光源类型可分为普通光、荧光和激光显微镜等。 1、普通光显微镜采用的就是普通光源,是最常用的。 2、荧光显微镜是以紫外线为光源,通常是照射被检物体(落射式),使之发出荧光,然后在显微镜下观察物体的形状及其所在位置。荧光显微镜用于研究细胞内物质的吸收、运输、化学物质的分布及定位等。 3、激光共聚焦扫描显微镜,采用激光做为扫描光源,逐点、逐行、逐面快速扫描成像。因为激光束的波长较短,光束很细,所以共焦激光扫描显微镜有较高的分辨力,大约是普通光学显微镜的3倍。 (五).按显微镜物镜的位置分正置和倒置显微镜 1、倒置显微镜是为了适应生物学、医学等领域中的组织培养、细胞离体培养、浮游生物、环境保护、食品检验等显微观察。由于上述样品特点的限制,被检物体均放置在培养皿(或培养瓶)中,这样就要求倒置显微镜的物镜和聚光镜的工作距离很长,能直接对培养皿中的被检物体进行显微观察和研究。因此,物镜、聚光镜和光源的位置都颠倒过来,故称为”倒置显微镜”。倒置显微镜多用于无色透明的活体观察。如果用户有特殊需要,也可以选配其它附件,用来完成微分干涉、荧光及简易偏光等观察。倒置显微镜由于制作更加严密,价格也是比较贵的。目见倒置显微镜广泛应用于patch-clamp(膜片钳),transgeneICSI等领域。 (六).数码显微镜 1、数码显微镜又叫视频显微镜,它是将显微镜看到的实物图像通过数模转换,使其成像在计算机上。数码显微镜是将精锐的光学显微镜技术、先进的光电转换技术、普通的电视机完美地结合在一起而开发研制成功的一项高科技产品。从而,我们可以对微观领域的研究从传统的普通的双眼观察到通过显示器上再现,从而提高了工作效率。数码显微镜在观察物体时能产生正立的三维空间影像。立体感强,成像清晰和宽阔,又具有长工作距离,并是适用范围非常广泛的常规显微镜。它操作方便、直观、检定效率高,适用于电子工业生产线的检验、印刷线路板的检定、印刷电路组件中出现的焊接缺陷(印刷错位、塌边等)的检定、单板PC的检定、真空荧光显示屏VFD的检定等等,它将实物的图像放大后显示在计算机的屏幕上,可以将图片保存,放大,打印。

  • 光学仪器的保养和维护

    1 必需正视仪器设备的治理和使用仪器设备的高负荷使用,往往轻易发生意外故障,特别是光学仪器若因维护和使用不当而起雾,就不能施展仪器的正常作用,而带来工作上的障碍。所以高效的维护治理仪器设备已成为当今企事业单位有效降低本钱,进步劳动出产率的有效手段。目前海内企业设备维护治理一般还停留在被动的抢修功课模式,即当仪器设备发生故障,无法继承使用时,维修职员才在最短时间内将故障排除,而当没有发生故障时,维修职员只是空闲,所以这样的治理模式是谈不上效率的,因此,仪器设备的治理也应做好计划,同样设备维护治理也需要把非计划性的工作转化为计划性的工作。假如我们按期的检查保养来减低故障的发生,特别是做好仪器的"三防"工作,避免抢修工作,保证仪器随时能投入正常的作用,这就是一种主动的方式。2 留意测绘仪器的防雾测绘仪器在使用和贮放中,除了有生霉现象外,往往还有光学零件的起雾,影响仪器的正常使用,故可针对光学信器起雾的主要因素,采取防止措施。2.1 光学仪器起雾的原因及其危害雾是指光学零件的抛光面上,呈现出"露水"似的物质,这些物质有的是油质点子构成的,称为油性雾,有的是由水珠或水与玻璃起化学反应形成堆积物构成的,称为水性雾:有的光学零件上,两种雾都有,叫做水油混合雾,一般的都以"露水"状或干的堆积物存在于玻璃表面上。油性雾通常分布在元形光学零件的边沿,并向中心伸延,有的则沿擦拭痕迹分布,油性雾的形成主要是油脂污染了玻璃表面,或是因为油脂的扩散,挥发在玻璃表面凝聚而造成的,好比擦拭光学零件所用的辅料含脂量高,或者所用的工具带有油脂,用手指直接拿取和触及光学零件等,都会引起油性雾,或者是光学仪器上所用油脂的化学不乱性不好,产生扩散或使用方法不当涂油过多,油脂扩散到光学零件上而引起油性雾,或者是因为仪表油脂挥发性很大,会产生油质蒸气而形成油性雾,还有的是用汽油清洗金工零件时,没有让汽油充分施展干净,就涂油装配。还有的用汽油稀开释尘脂涂在镜身内,跟着时间的增长和温度的变化,这些汽油及所含的其它成份,逐渐挥发至光学零件上而形成油性雾。水性雾是因为湿润空气在温度变化下而形成,主要分布在零件的全面积上,产生原因主要是湿润气体所致,但与仪器密封机能、光学玻璃的化学不乱性,以及玻璃表面的清洁程度有关,在较高的相对湿度下,霉菌易生长,有些霉菌生长状大后,便在菌丝体附近产生分泌物,这些分泌物有的是液状的,在液状分泌物外围便形成水性雾。无论何种原因形成的雾,因为雾滴以曲率半径极小的球形分布于光学零件表面上、使入射光线产生散射现象,除了降低仪器的有效透光率外,并使成象质量差影响观测。有的光学零件因长期起雾,被侵蚀的玻璃表面形成良多微孔,严峻的会使玻璃零件报废。光学仪器起雾不仅在我国东南地区严峻存在,就是较干燥的地区,因为温差变化,也会起雾,它比光学仪器生霉的影响范围更大,而且更难防止。2.2 使用防雾材料防止仪器生雾光学仪器的防雾材料,要求具有良好的防雾效果,又要不影响玻璃的光学机能,使用如下的憎水膜材料,可以起到很好的防雾作用。2.2.1 使用防雾剂采用乙基含氢二氯硅烷处理镀化学双透膜和不镀膜的光学玻璃零件,可以形成较牢固的膜层,具有憎水机能,有较好的防水雾机能,成膜轻易,同时涂在光学零件表面,能改善玻璃的机械机能,在一定程度上保护玻璃表面不易擦伤,进步了光学玻璃表面的化学不乱性,利用它来清洁玻璃,去污能力较强,很轻易去掉手指印,口水圈,进步了工效,这是一种很好的防雾剂。使用利便,而且不需要增加设备。但要留意乙基含氢二氯硅烷因为带有刺激气息,配制时勿触及皮肤与衣服,使用时宜用棉球或海棉蘸擦,不要触及金属,若用于不镀膜和无刻线的光学零件,其使用浓度可进步到4%,因为乙基含氢二氯硅烷遇水或吸潮后冒烟起侵蚀作用,故应密封保管,谨防对玻璃与金属的侵蚀,配制溶液时要现配现用。除此之外,采用乙基含氢硅油和十二烷基三甲氧基硅烷防雾剂都能有效地起到防雾作用。2.2.2 用真空镀膜方法,镀聚全氟乙丙烯,这是一种惰性氟塑料,化学不乱性高,且具有耐热、耐寒、耐侵蚀性,与玻璃和金属都有较强的结协力,具有较好的防霉防雾机能。不仅能在一般玻璃表面化学镀膜,氟化膜层形成保护膜,而且可以在磷酸盐玻璃表面成膜,磷酸盐玻璃化学不乱性很差,很轻易生霉起雾,而且用一般的化学镀膜方法涂镀硅烷、硅油、硅氟材料等,都不能形成牢固的保护膜,真空镀膜方法,先在磷酸盐玻璃表面镀氟化镁,而后再镀聚金氟乙丙烯,对磷酸盐玻璃有良好的防霉防雾效果,多倍仪的绿色滤片,大部门是磷酸盐玻璃,用这种方法处理的滤光片,防霉防雾效果较好。2.2.3 采用非硫化硅橡胶密封腻子防雾光学仪器密封性好,对于防霉防雾都有重要作用,非硫化硅橡胶密封腻,是一种非硫化醚硅橡胶,加入填充剂、着色剂、结构控制剂所组成,其密封腻高、低温机能明显优于原来的密封蜡,其他指标均不低于密封蜡。2.3 设计使用中的防雾措施2.3.1 设计仪器时留意防雾,仪器结构应加强密封机能,保证仪器在高温或低温情况下不降低密封机能,以防止因漏气而引起的水性雾,设计职员应当充分留意选择化学不乱机能好的光学玻璃和材料,为防雾打下良好的基础。2.3.2 在制造和维修过程中留意整齐出产,装配和维修的工房须清洁,并严格遵守操纵规程,精心擦拭光学零件,严禁用手直接接触和拿取光学零件,夹持光学零件的工具须进行脱脂处理,擦光学零件所用的辅件,如棉光、布块、乙醇、碘以及与光学零件接触的有机垫片均须进行严格脱脂,控制含脂量,装光学零件的器皿和盛乙醇的瓶子,须常常清洗,保持清洁,这些都是减少油性雾的重要途径。2.3.3 减少仪器内部的水蒸气,防止水蒸气在玻璃表面上凝聚,尽可能在干燥的前提下进行装配或对装配好的仪器进行干燥处理,如充干燥氮气或空气以及放置干燥剂。仪器在使用和库存中,尽量控制使用环境和库房的相对湿度在6%左右,对于外业仪器在使用中不好控制湿度,用后应放在透风、旭日、干燥的地方,在仪器箱内放入干燥剂,并留意密封和及时更换烘干硅胶干燥剂,在湿润环境下,使用的内业仪器,如纠正仪、复照仪等,对于可取下来的镜头和精密的光学部件,用后及时取下来故人干燥缸内加以保护,并常常保持仪器清洁,减少结雾核心。2.3.4 公道选择和使用油脂,光学仪器上用的各种防尘脂、润油油脂必需是挥发度极低和化学不乱性好的材料,在光学仪器的金属零件上涂油脂时,首先要把零件清洗干净,让汽油挥发完后再涂油脂,并且要涂平均而不能过多,距光学件10-15mm的范围内,禁止涂润滑油脂和防尘脂,防止油脂扩散引起油性雾。2.3.5 进步光学玻璃表面的化学不乱性,利用化学镀膜或真空镀膜方法,在玻璃表面镀一层憎水膜,以进步玻璃的化学不乱性,增强玻璃的抗侵蚀能力,减少起雾,为了减轻水性雾对观察的影响,也可采用亲水材料,镀上一层透明的具有一定的物理机能伪亲水膜,使水雾能全部散开,平均的分散在膜层中,不影响观察,当大气干燥时,膜层中的水分天然地挥发到大气中。2.3.6 除霉,除雾光学仪器一旦生霉起雾,就造成了不良的影响,而且给修理工作带来良多麻烦,因此,要以防为主,从仪器设计、制造开始就留意搞好防霉防雾,仪器库存和使用中加强维护保养,是做好防霉防雾工作重要保证。而假如仪器已经生霉起雾,就应及时处理,以免造成更大损失。假如霜雾只在初期阶段,即在仪器生霉起雾后,很短的时间内,只在玻璃表面层附盖着而没有腐蚀玻璃和破坏膜层的时候,可以用混合液擦掉。仪器生雾起雾后应及时处理,否则时间长了,就会侵蚀光学零件的表面和镀膜,甚至于玻璃侵蚀,应及时用一般的混合液或用乙基含氢二氯硅烷溶液擦洗,这种溶液即防雾,又有一定的除雾除霉作用。多倍仪的绿色滤光片大部门是磷酸盐玻璃,很易起雾,而且很难擦净,可以用稀的氨水摈洗,而后用水洗净,再及时用混合液把滤光片表面擦干,但这种玻璃很不不乱,假如不用时,擦净放在干燥皿内,或及时作雾处理,否则还会生霉起雾。对硅酸盐玻璃尽量避免用碱性的物质去擦,由于碱对硅酸盐类有侵蚀作用。假如当光学零件严峻生霉起雾,并已侵蚀了玻璃,只有重新更换玻璃或重新把光学零件抛光。总之光学仪器要以防为主,发现霉雾要及时除掉,除霉雾后,要及时采取防雾防霉措施,才能保护仪器使之施展更大的作用。3 结语因为科学技术的飞速发展,以及世界经济发展的需要,新的科学技术成果不断应用于仪器设备,设备的现代化水平不断进步,现代化设备正朝着高速化,精密化自动化等方向发展,故要积极引进国外现代仪器设备治理的理论和方法,探索遇上国际提高前辈水平的途径,使光学仪器设备治理进人一个健康的现代治理阶段。(选自网络)

  • 【讨论】光学显微镜的分类

    [font=宋体][size=3][b]光学显微镜有多种分类方法:[/b][/size][/font][font=宋体][size=3] 按使用目镜的数目可分为双目和单目显微镜;[/size][/font][font=宋体][size=3] 按图像是否有立体感可分为立体视觉和非立体视觉显微镜;[/size][/font][font=宋体][size=3] 按观察对像可分为生物和金相显微镜等;[/size][/font][font=宋体][size=3] 按光学原理可分为偏光、相衬和微差干涉对比显微镜等;[/size][/font][font=宋体][size=3] 按光源类型可分为普通光、荧光、紫外光、红外光和激光显微镜等;[/size][/font][font=宋体][size=3] 按接收器类型可分为目视、数码(摄像)显微镜等。[/size][/font][font=宋体][size=3] 常用的显微镜有双目体视显微镜、金相显微镜、偏光显微镜、荧光显微镜等。[/size][/font][size=3][b][font=Times New Roman]1[/font][font=宋体].双目体视显微镜[/font][font=Times New Roman] [/font][/b][/size][size=3][font=宋体] 双目体视显微镜又称[/font][font=Times New Roman]"[/font][font=宋体]实体显微镜[/font][font=Times New Roman]"[/font][font=宋体]或[/font][font=Times New Roman]"[/font][font=宋体]解剖镜[/font][font=Times New Roman]"[/font][font=宋体],是一种具有正象立体感地目视仪器。在生物、医学领域广泛用于切片操作和显微外科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。它利用双通道光路,双目镜筒中的左右两光束不是平行,而是具有一定的夹角[/font][font=Times New Roman]--[/font][font=宋体]体视角(一般为[/font][font=Times New Roman]12[/font][font=宋体]度[/font][font=Times New Roman]--15[/font][font=宋体]度),为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。[/font][/size][size=3][font=宋体] 目前体视镜的光学结构是:由一个共用的初级物镜,对物体成象后的两光束被两组中间物镜[/font][font=Times New Roman]----[/font][font=宋体]变焦镜分开,并成一体视角再经各自的目镜成象,它的倍率变化是由改变中间镜组之间的距离而获得的,因此又称为[/font][font=Times New Roman]"[/font][font=宋体]连续变倍体视显微镜[/font][font=Times New Roman]"[/font][font=宋体]([/font][font=Times New Roman]Zoom-stereomicroscope[/font][font=宋体])。随着应用的要求,目前体视镜可选配丰富的选购附件,如荧光,照相,摄象,冷光源等等。[/font][font=Times New Roman] [/font][/size][size=3][b][font=Times New Roman]2[/font][font=宋体].金相显微镜[/font][font=Times New Roman] [/font][/b][/size][font=宋体][size=3] 金相显微镜是专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。这种反射照明方式也广泛用于集成电路硅片的检测工作。[/size][/font]

  • 金相显微镜用途及舜宇BH200正置金相显微镜介绍

    金相显微镜用途及舜宇BH200正置金相显微镜介绍

    金相显微镜的用途主要用来观察金相组织的专业仪器是专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射隔膜泵光照明。金相显微镜具有稳定性好、成像清晰、分辨率高、视场大而平坦的特点。舜宇BH200金相显微镜特点●光学系统:有限远色差校正光学系统,图像质量好●目镜及物镜: a)高眼点平场目镜PL10X,线视场数18mm,提供宽阔平坦的观察空间,可安装各类测微尺 b)长工作距离专业消色差金相物镜 c)无盖玻片设计,像质优良:●照明系统落射式柯拉照明,并设计防反射结构,有效防止反射光线的干扰,从而使成图像更清晰,视场衬度更好●采用自适应式宽电压90V一240V,6V30W卤素灯,灯丝中心可调,光强连续可调,照明更加充足,有效提高图像的质量●载物台:复合式机械移动平台,低手位同轴调节,并在机械平台上附设180mn×145mm的平板平台,便于放置较大尺寸的样品●附件: a)照明光路中可加入黄`绿、蓝、白四种滤色片,为观察各种样品提供不同色度的照明 b)照明光路中可加入起偏镜和检偏镜,实现偏光观察 c)起偏镜±25°可调,能有效调整正交态或视场衬度 物镜参数表http://img.china.alibaba.com/img/ibank/2014/426/185/1312581624_1333274521.jpg 目镜参数表http://img.china.alibaba.com/img/ibank/2014/791/881/1311188197_1333274521.jpghttp://ng1.17img.cn/bbsfiles/images/2014/08/201408201411_510943_1848148_3.jpg

  • 【求助】光学显微镜的装配图

    求光学显微镜的CAD图纸和SOLIDWORKS图纸,万分感谢啊。我刚刚从事光学显微镜,请大家多多指教。另外一个问题,为什么显微镜在XYZ方向进给时有杂音。我所认为的有装配的平行度与垂直度问题,磨损。另外还有可能是什么

  • 常用光学计量仪器分类

    [font=宋体]在实际应用中,尽管光学计量仪器多种多样,但它们的光学原理却[color=blue]都基于四种基本原[/color][/font][font=宋体][color=blue]理[/color][/font][font=宋体],它们是:[color=blue]望远光学原理、显微光学原理、投影光学原理、干涉光学原理。[/color][/font][font=宋体]基于应用不同的光学原理,光学计量仪器可分为[color=blue]:自准直类光学计量仪器、显微镜类光学计量仪器、投影类光学计量仪器、光干涉类光学计量仪器四大类。[/color][/font][font=宋体]望远系统主要性能是视角放大率,在观察时用来扩大眼睛对远处物体的视角,用以观察物体。在测量时常被用来产生平行光以进行各种用途的测量,应用此原理的光学计量仪器有:自准直光管、测角仪、立[/font]([font=宋体]卧[/font])[font=宋体]式光学计等。[/font][font=宋体]显微系统的主要性能是较高的放大率。它与放大镜相比,有较高的放大率和分辨本领。可清楚地观察和分辨微小物体和物体的细小部位。应用此原理的光学计量仪器有:工具显微镜、光学分度头、测长仪、测长机、双管显微镜等;[/font][font=宋体]投影系统的主要性能:是较高的、准确的横向放大率。[/font][font=宋体]被测量的形状复杂、细小的物体或物体表面缺陷等经强投射光或强反射光照射,再经投影物镜放大成像在影屏上后进行测量。应用此原理的光学计量仪器有:大、中、小型投影仪、专用的公差带投影仪等。[/font][font=宋体]光干涉系统主要性能是有很高的检测精度。它是以光波波长作:“尺子”,实现了对表面粗糙度、长度微小变化等几何量的高精度测量。应用此原理的光学计量仪器有平面平晶等厚干涉仪、接触式干涉仪、干涉显微镜等。[/font]

  • 关于光学仪器维护和保养措施

    1 必须重视仪器设备的管理和使用  仪器设备的高负荷使用,往往容易发生意外故障,特别是光学仪器若因维护和使用不当而起雾,就不能发挥仪器的正常作用,而带来工作上的障碍。所以高效的维护管理仪器设备已成为当今企事业单位有效降低成本,提高劳动生产率的有效手段。目前国内企业设备维护管理一般还停留在被动的抢修作业模式,即当仪器设备发生故障,无法继续使用时,维修人员才在最短时间内将故障排除,而当没有发生故障时,维修人员只是空闲,所以这样的管理模式是谈不上效率的,因此,仪器设备的管理也应做好计划,同样设备维护管理也需要把非计划性的工作转化为计划性的工作。  如果我们定期的检查保养来减低故障的发生,特别是做好仪器的"三防"工作,避免抢修工作,保证仪器随时能投入正常的作用,这就是一种主动的方式。2 注意测绘仪器的防雾  测绘仪器在使用和贮放中,除了有生霉现象外,往往还有光学零件的起雾,影响仪器的正常使用,故可针对光学信器起雾的主要因素,采取防止措施。  2.1 光学仪器起雾的原因及其危害  雾是指光学零件的抛光面上,呈现出"露水"似的物质,这些物质有的是油质点子构成的,称为油性雾,有的是由水珠或水与玻璃起化学反应形成堆积物构成的,称为水性雾:有的光学零件上,两种雾都有,叫做水油混合雾,一般的都以"露水"状或干的堆积物存在于玻璃表面上。油性雾通常分布在元形光学零件的边缘,并向中央伸延,有的则沿擦拭痕迹分布,油性雾的形成主要是油脂污染了玻璃表面,或是由于油脂的扩散,挥发在玻璃表面凝结而造成的,比如擦拭光学零件所用的辅料含脂量高,或者所用的工具带有油脂,用手指直接拿取和触及光学零件等,都会引起油性雾,或者是光学仪器上所用油脂的化学稳定性不好,产生扩散或使用方法不当涂油过多,油脂扩散到光学零件上而引起油性雾,或者是由于仪表油脂挥发性很大,会产生油质蒸气而形成油性雾,还有的是用汽油清洗金工零件时,没有让汽油充分发挥干净,就涂油装配。还有的用汽油稀释放尘脂涂在镜身内,随着时间的增长和温度的变化,这些汽油及所含的其它成份,逐渐挥发至光学零件上而形成油性雾。  水性雾是由于潮湿空气在温度变化下而形成,主要分布在零件的全面积上,产生原因主要是潮湿气体所致,但与仪器密封性能、光学玻璃的化学稳定性,以及玻璃表面的清洁程度有关,在较高的相对湿度下,霉菌易生长,有些霉菌生长状大后,便在菌丝体周围产生分泌物,这些分泌物有的是液状的,在液状分泌物外围便形成水性雾。  不管何种原因形成的雾,由于雾滴以曲率半径极小的球形分布于光学零件表面上、使入射光线产生散射现象,除了降低仪器的有效透光率外,并使成象质量差影响观测。有的光学零件因长期起雾,被腐蚀的玻璃表面形成很多微孔,严重的会使玻璃零件报废。  光学仪器起雾不仅在我国东南地区严重存在,就是较干燥的地区,由于温差变化,也会起雾,它比光学仪器生霉的影响范围更大,而且更难防止。

  • 光学仪器起雾的原因

    [font=&]雾是指光学零件的抛光面上,呈现出"露水"似的物质,这些物质有的是油质点子构成的,称为油性雾;[/font][font=&]有的是由水珠或水与玻璃起化学反应形成堆积物构成的,称为水性雾;[/font][font=&]有的光学零件上,两种雾都有,叫做水油混合雾,一般的都以"露水"状或干的堆积物存在于玻璃表面上。[/font][font=&]油性雾通常分布在元形光学零件的边缘,并向中央伸延,有的则沿擦拭痕迹分布,油性雾的形成主要是油脂污染了玻璃表面,或是由于油脂的扩散,挥发在玻璃表面凝结而造成的。[/font][font=&]比如擦拭光学零件所用的辅料含脂量高,或者所用的工具带有油脂,用手指直接拿取和触及光学零件等,都会引起油性雾,或者是光学仪器上所用油脂的化学稳定性不好,产生扩散或使用方法不当涂油过多,油脂扩散到光学零件上而引起油性雾,或者是由于仪表油脂挥发性很大,会产生油质蒸气而形成油性雾。[/font][font=&]水性雾是由于潮湿空气在温度变化下而形成,主要分布在零件的全面积上,产生原因主要是潮湿气体所致,但与仪器密封性能、光学玻璃的化学稳定性,以及玻璃表面的清洁程度有关,在较高的相对湿度下,霉菌易生长,有些霉菌生长状大后,便在菌丝体周围产生分泌物,这些分泌物有的是液状的,在液状分泌物外围便形成水性雾。[/font]

  • 光学仪器起雾的原因

    雾是指光学零件的抛光面上,呈现出"露水"似的物质,这些物质有的是油质点子构成的,称为油性雾;有的是由水珠或水与玻璃起化学反应形成堆积物构成的,称为水性雾;有的光学零件上,两种雾都有,叫做水油混合雾,一般的都以"露水"状或干的堆积物存在于玻璃表面上。油性雾通常分布在元形光学零件的边缘,并向中央伸延,有的则沿擦拭痕迹分布,油性雾的形成主要是油脂污染了玻璃表面,或是由于油脂的扩散,挥发在玻璃表面凝结而造成的。比如擦拭光学零件所用的辅料含脂量高,或者所用的工具带有油脂,用手指直接拿取和触及光学零件等,都会引起油性雾,或者是光学仪器上所用油脂的化学稳定性不好,产生扩散或使用方法不当涂油过多,油脂扩散到光学零件上而引起油性雾,或者是由于仪表油脂挥发性很大,会产生油质蒸气而形成油性雾。水性雾是由于潮湿空气在温度变化下而形成,主要分布在零件的全面积上,产生原因主要是潮湿气体所致,但与仪器密封性能、光学玻璃的化学稳定性,以及玻璃表面的清洁程度有关,在较高的相对湿度下,霉菌易生长,有些霉菌生长状大后,便在菌丝体周围产生分泌物,这些分泌物有的是液状的,在液状分泌物外围便形成水性雾。

  • 在光学仪器设计及使用时常见的防雾措施

    [font=微软雅黑]1设计仪器时注意防雾[/font][font=微软雅黑]仪器结构应加强密封性能,保证仪器在高温或低温情况下不降低密封性能,以防止因漏气而引起的水性雾,设计人员应当充分注意选择化学稳定性能好的光学玻璃和材料,为防雾打下良好的基础。[/font][font=微软雅黑][/font][font=微软雅黑]2注意整洁操作[/font][font=微软雅黑]装配和维修的工房须清洁,并严格遵守操作规程,精心擦拭光学零件,严禁用手直接接触和拿取光学零件,夹持光学零件的工具须进行脱脂处理,擦光学零件所用的辅件,如棉光、布块、乙醇、乙醚、碘以及与光学零件接触的有机垫片均须进行严格脱脂,控制含脂量,装光学零件的器皿和盛乙醇、乙醚的瓶子,须经常清洗,保持清洁,这些都是减少油性雾的途径。[/font][font=微软雅黑][/font][font=微软雅黑]3减少仪器内部的水蒸气[/font][font=微软雅黑][font=微软雅黑]防止水蒸气在玻璃表面上凝结,尽可能在干燥的条件下进行装配或对装配好的仪器进行干燥处理,如充干燥氮气或空气以及放置干燥剂。仪器在使用和库存中,尽量控制使用环境和库房的相对湿度在[/font]6%左右,对于纠正仪、复照仪等,对于可取下来的镜头和精密的光学部件,用后及时取下来放入干燥缸内加以保护,并经常保持仪器清洁,减少结雾核心。[/font][font=微软雅黑][/font][font=微软雅黑]4合理选择和使用油脂[/font][font=微软雅黑][font=微软雅黑]在光学仪器上用的各种防尘脂、润滑油脂必须是挥发极低和化学稳定性好的材料,在光学仪器的金属零件上涂油脂时,首先要把零件清洗干净,让汽油挥发完后再涂油脂,并且要均匀而不能过多,距光学件[/font]10-15mm的范围内,禁止涂润滑油脂和防尘脂,防止油脂扩散引起油性雾。[/font][font=微软雅黑][/font][font=微软雅黑]5提高化学稳定性[/font][font=微软雅黑]利用化学镀膜或真空镀膜方法,在玻璃表面镀一层憎水膜,以提高玻璃的化学稳定性,增强玻璃的抗腐蚀能力,减少起雾,为了减轻水性雾对观察的影响,也可采用亲水材料,镀上一层透明的具有一定的物理性能伪亲水膜,使水雾能全部散开,均匀的分散在膜层中,不影响观察,当大气干燥时,膜层中的水分自然地挥发到大气中。[/font][font=微软雅黑][/font][font=微软雅黑]6除霉,除雾[/font][font=微软雅黑]光学仪器一旦生霉起雾,就造成了不良的影响,而且给修理工作带来了很多麻烦,因此,要以防为主,从仪器设计、制造开始就注意搞好防霉防雾,仪器库存和使用中加强维护保养,是做好防霉防雾工作的重要保证。而如果仪器已经生霉起雾,就应及时处理,以免造成更大的损失。[/font]

  • 如何维护和保养光学测量仪器?

    光学测量仪器的正确使用和良好的维护保养,是保证仪器处于良好运行状态、保持其固有准确度、延长使用寿命的最有效措施。仪器的维护保养,除了避免机械撞击、误操作和保持仪器外表的清洁之外,主要是金属裸露表面的防锈和光学系统的光学元件的防霉、防雾维护。因此应注意以下几点:  1.首先,光学测量仪器应放在清洁干燥的室内,要尽量避免光学零件表面污损、金属零件生锈、尘埃杂物落入运动导轨,因为这样会影响仪器的性能。  2.在使用完毕后,工作面应随时擦拭干净,最好再罩上防尘套。  3.光学测量仪器的传动机构及运动导轨、应定期涂润滑油,使机构运动顺畅,保持良好的使用状态。  4.工作台玻璃及油漆表面脏了,可以用中性清洁剂与清水擦拭干净。  5.光学测量仪器的所有电气接插件、一般不要拔下,如果已经拔掉了,我们就必须按标记正确插回并拧紧螺。

  • 几何光学和光学设计

    【题名】: [b]几何光学和光学设计 王子余 著 浙江大学出版社 1989[/b]【链接】: https://www.qianqiantushu.com/ebook/449970.html

  • 说说仪器的光学平台

    说说仪器的光学平台

    不知大家注意过没有,有些光学仪器在移动或碰撞时,吸光度,透过率会发生改变。这是为什么?答案是:这些仪器的光学部件没有安装在光学平台上或者是质量不好的光学平台上。什么是光学平台?说的简单些,就是可以承载光学器件,例如光源,反射镜,单色器和检测器的一块平整,结实的金属台子。为了保证平稳,一般采用三个支撑柱来固定(三点形成一个面)。见下图所示:http://ng1.17img.cn/bbsfiles/images/2015/02/201502021620_533917_1602290_3.jpg这种平台的平板,在高级仪器里,是由铸铝锻压而成,这种工艺一方面可以加强台子的密度比重而不会产生形变,防止光路产生扭曲;另一方面,由于使用了铝制材料,则可以减轻仪器的自身重量。例如我下面所例如的仪器,是将4厘米厚的铝板材锻压成为2厘米厚的铝平台;这样集密度大及质量轻于一体。见下图:http://ng1.17img.cn/bbsfiles/images/2015/02/201502021627_533919_1602290_3.jpg大家从上图不难看出,包括光源,原子化器,单色器,检测器均安装在红色框框里的铝合金的光学平台上。如此,即使仪器不是安放在水平面很平的台面上,也不会影响光轴的走向,即光轴与平台保持平行状态。如此则保证了测试的精度。但是反观有些厂家的仪器,为了图省钱和省事,其仪器的光学平台就是用一圈角铁支撑着一块1,2毫米的铁板上而已。这种结构的平台是不能防震和移动时保证光轴不位移的要求的。因此,版友们在采购仪器时,一定要问清你们欲购买仪器的光学平台是什么结构的,以免上当。

  • 光学玻璃、光学仪器防霉技术解答

    光学玻璃、光学仪器防霉技术解答

    光学玻璃、光学仪器生产厂家在每年的5月开始就遇到头疼的玻璃发霉问题,通常空气相对湿度大于65%,玻璃就会长霉,要始终保持干燥,是不现实的,霉雨季节,刚磨好的玻璃,发霉的速度是20分钟。客户也反映,在使用一些市场上现有除霉产品时会腐蚀原有膜层,时间上也不理想。现有的玻璃真空镀膜是利用氟化物疏水特性,只是减少霉菌的水分供应,但是不具有主动杀伤霉菌的作用,因此现有镀膜的防霉效果很不理想。http://ng1.17img.cn/bbsfiles/images/2014/05/201405231622_500287_2704993_3.gif汉雄科技新型防霉镀膜技术,是选用特定结构的分子,采用自组装单分子膜技术,在光学玻璃的表面利用特定的化学键,让特定结构的分子按照一定的头尾一致的排列规则,以化学键的方式连接到玻璃上去,形成一层防水,抗菌,防霉,耐溶剂,耐摩擦,耐腐蚀,耐洗涤的单分子防霉菌镀膜层。膜层的厚度可以控制在几个纳米之间,不影响光线的通过,它和玻璃表层分子发生化学键接,使光学玻璃表面具有永久性的防霉菌特性,同时还可以增加玻璃表面的机械强度。镀膜层外侧的分子团,对单细胞生物具有杀伤作用,霉菌、细菌、藻类等单细胞生物无法在这层镀膜层上顺利繁殖。光学仪器发霉问题是个头疼的事情,由于各类仪器难免要置于潮湿多尘的恶劣环境中使用,工作繁忙时也难免疏忽保养,长霉就难以避免了。用户还是希望,光学仪器本身的抗霉菌性能更强些,防霉时间更长,最好是长效的。现有的技术,多是采用释放防霉挥发性气体的药包法,但是这种毒性气体的实际使用效果有缺陷,并且对人体健康不利。http://ng1.17img.cn/bbsfiles/images/2015/11/201511261608_575169_2704993_3.jpg在光学玻璃上做上一层永久性的防霉单分子膜层,不仅完全不影响光线通透,而且也可以耐酒精溶剂擦拭,这是最理想的办法了。同时对仪器的其它材料部分也采用防霉液涂覆,同样可以极大提高长效防霉效果。防霉液实际用于最易于长霉的家用冰箱门密封胶条缝隙,结果原来极端顽固的黑色霉菌,已经彻底不再出现了,这是非常理想的效果。过去冰箱门的密封胶条缝隙处,无论使用什么样的消毒剂擦拭,经过3个月的使用后,黑色的霉菌总会顽固的再次生长出来,而这次的防霉液实验表面,长效的防霉效果已经持续一年以上,根据防霉液的原理,胶条可以获得永久性的防霉特性。对于光学仪器来说,这个防霉液的效果会出乎意料的好,仪器的使用环境不会比家用冰箱门缝隙更加糟糕了吧。以上内容供大家参考,有需要样品试用的朋友,请给我留言

  • 使用防雾剂减少光学仪器起雾

    [font=微软雅黑]光学仪器的防雾材料,要求具有良好的防雾效果,又要不影响玻璃的光学性能,使用如下的憎水膜材料,可以起到很好的防雾作用。[/font][font=微软雅黑]使用防雾剂[/font][font=微软雅黑]采用乙基含氢二氯硅烷处理镀化学双透膜和不镀膜的光学玻璃零件,可以形成较牢固的膜层,具有憎水性能,有较好的防水雾性能,成膜容易,同时涂在光学零件表面,能改善玻璃的机械性能,在一定程度上保护玻璃表面不易擦伤,提高了光学玻璃表面的化学稳定性,利用它来清洁玻璃,去污能力较强,很容易去掉手指印,口水圈,提高了工效,这是一种很好的防雾剂。[/font]

  • 使用防雾剂去除光学仪器的水雾

    [font=微软雅黑]光学仪器的防雾材料,要求具有良好的防雾效果,又要不影响玻璃的光学性能,使用如下的憎水膜材料,可以起到很好的防雾作用。[/font][font=微软雅黑]1使用防雾剂[/font][font=微软雅黑]采用乙基含氢二氯硅烷处理镀化学双透膜和不镀膜的光学玻璃零件,可以形成较牢固的膜层,具有憎水性能,有较好的防水雾性能,成膜容易,同时涂在光学零件表面,能改善玻璃的机械性能,在一定程度上保护玻璃表面不易擦伤,提高了光学玻璃表面的化学稳定性,利用它来清洁玻璃,去污能力较强,很容易去掉手指印,口水圈,提高了工效,这是一种很好的防雾剂。[/font]

  • 光学名词中英文对照

    光圈(Iris):位于摄像机镜头内部的、可以调节的光学机械性阑孔,可用来控制通过镜头的光线的多少。   可变光圈(Iris diaphragm):镜头内部用来控制阑孔大小的机械装置。或指用来打开或关闭镜头阑孔,从而调节镜头的f-stop的装置。  隔离放大器(Isolation amplifier):输入和输出电路经过特殊设计,可以避免两者互相影响的放大器。  抖动(现象)(Jitter):由于机械干扰或电源电压、元器件特性等的变化所引起的信号不稳定,信号的不稳定可能是振幅上的或是相位上的,也可能两者兼有。  滞后(Lag):电视拾像管中,去除励磁后,两帧或多帧图像的电荷映像的短暂停留。  激光(Laser):Light amplification by stimulated emission of radiation 的缩写。激光器是一个光学谐振腔,两端装有平面镜或球面镜,中间装有光放大材料。它使用光学或电学的方法激发其中的材料,使材料的原子受激发产生一束亮光,亮光透过其一端的镜面发射出来。输出的光束是高度单色(纯色)和非扩散性的。  前缘(Leading edge):脉冲升高部分的主部,其位置一般位于总振幅的10-90%处。  镜头(Lens):由一片或多片弧面(通常为球面)光学玻璃组成的透明光学部件。它可以用来聚集或分散被摄物发出的光,从而生成被摄物的实像或虚像。  菲涅耳透镜(fresnel Lens):被切割成窄环状再打平的镜头。镜头上有一圈圈的窄同心圆或梯级,它们可以将(各个方向射来的)光线汇聚成图像。  镜头速度(Lens speed / f-number):镜头的透光能力。F值是焦距(FL)与镜头直径的比值。比较快的镜头的值可能是f / 1.4,而f / 8的镜头其速度就相当低了。f值越大,镜头的速度越慢。  透镜系统(Lens system):指两个或多个透镜的有机组合。光(Light):眼睛可以看到的电磁射线,波长在400nm(蓝色)到750 nm(红色)的范围内。  有限分辨率(Limiting resolution):分辨率的度量方法,通常用每幅电视图像中测试图样上可分辨的电视线的条数来表示。  线路放大器(Line amplifier):用于驱动传输线的音频或视频信号放大器。安装在主电缆的中间位置,用于减少损耗的放大器(通常为宽带型的)。  线性(Linearity):输出信号随输入信号的变化而直接或按比例变化的现象。  线对(Line pairs):定义电视清晰度所用的术语。一个电视线对一条黑线和一条白线组成。525线NTSC制的画面中共有485个线对。  负载(load):承受设备所输出的能量的部件。  损耗(loss):信号电平或强度的减少,通常用分贝表示。也指没有实际用途的功率耗散。 低频失真(Low-frequency disortion):低频率下发生的失真现象。电视系统中一般指15.75kHz以下的频率。  低照度摄像机,低照度电视(Low light level/LLL camera and television):可以在极其微弱的光照下工作的闭路电视摄像机。可以在低于正常视觉响应的光照情况下工作的闭路电视系统。  流明(Lumen / Im):光通量的单位。相当于一烛光的均匀点辐射源穿过一个立体角(球面)的通量,也相当于一烛光的均匀点辐射源等距的所有点所在的表面上的光通量。  照度(Luminance):从同一方向看,在给定方向上的任何表面的每单位投影面积上的光照强度(光度)。单位为英尺朗伯。 亮度信号(Luminance signal):NTSC彩色电视信号中涉及场景照度或亮度的那部分信号。  光通量(Luminous flux): 光通过的时率。  勒克斯(Lux):国际单位制中的照明单位,其中涉及到的长度单位为米。1勒克斯等于每平方米1流明。  磁聚焦(Magnetic focusing):利用磁场作用来使电子束会聚的方法。  放大倍数(Magnification):表示被摄物与图像之间的尺寸差异的数字。通常以焦距为1英寸镜头和靶面尺寸为1英寸的传感器为基准(放大倍数=M=1)。焦距为2英寸的镜头的放大倍数为M=2。  微分增益(Differential gain):当载有 3.58 -Mhz 彩色次载波的图像信号从消隐电平变成白色电平时,整个电路中彩色次载波振幅的变化。微分增益通常用dB或百分比来计量。  微分相位(Differential phase):当载有3.58-Mhz 彩色次载波的图像信号从消隐电平变成白色电平时,整个电路中彩色次载波相位的变化。微分相位通常以度为单位来计量。  屈光度(Diopter):描述镜头光学功率的术语。它的值是以米为单位的焦距值的倒数。例如,焦距为25cm(0.25cm)的透镜的光学功率为 4个屈光度。  电气失真(Distortion electrical):某信号与原信号相比时,出现的不希望发生的波形变化。 光学失真(Distortion,optical):用来描述图像不是物体的准确复制的一般术语。失真有多种不同的类型。  点条状信号发生器( Dot bar generator):产生特殊的点条信号的设备。一般用来测量电视摄像机和视频监视器的扫描线性和几何失真。   驱动脉冲( Drive pulses ):指同步脉冲和消隐脉冲。  动态范围( Dynamic range ):在电视系统中,指摄像机的实用照度范围。在这种情况下,被摄视场中同时存在强光区和阴影区,而所有细节均可看清。数量上一般以允许的最大照度水平与最小照度水平的电压差或功率差来衡量。  回波(Echo): 信号传输过程中从一个或多个点反射回来的信号。与原信号相比,具有明显的幅度和时间上的差异。回波可以比原信号超前或拖后,造成反射波或"重影"现象。  EIA接口标准(EIA interface):由电子工业协会的(EIA)规定的一系列标准信号特性,包括持续时间、波形、电压和电流等。  EIA同步信号(EIA sync signal):在电子工业协会的RS-170(单色图像)标准,RS-170A(彩色图像)标准、RS-312、RS330、RS-420及续后文件中规定的,用于使扫描同步的信号。  电磁聚集(Electromagnetic focusing):使用电子透镜系统中的一个或多少偏转线圈,通过电磁场的作用,将阴极射线束会聚成一点的过程。

  • 喷涂式平面光学镜头研制成功

    科技日报讯 据物理学家组织网近日报道,加拿大不列颠哥伦比亚大学(UBC)的工程师联合美国研究团队利用喷涂技术,在革新光学镜片的制造和使用方式上取得了突破性进展。此项关于平面镜头的研究成果发表在近日《自然》杂志上。 目前,无论是人眼中还是摄像头或显微镜中的几乎所有透镜都是弯曲的,从而限制了光圈(或光线进入量)。平面镜头的想法可追溯到上世纪60年代,当时俄罗斯物理学家曾提出过此方面的理论。但是,科学家一直以来都无法找到制作此类平面透镜的天然材料。 经过多年的研究和反复试验,UBC工程学院助理教授肯尼斯·周领导的研究小组发现了一种利用喷涂材料充当平面镜头的简易方法。他们开发出一种物质,并喷涂于载玻片表面,即可将其变成可用于生物标本紫外光成像的平面镜头。 周教授解释说,弯曲镜头总是具有有限的光圈,有了平面镜片,人们就可制作出具有任意光圈大小(可大如一个足球场)的镜头。喷涂式平面镜头技术是目前为止对平面镜头原始理论最为接近的验证,工艺简单且具有成本效益。该镜头还可改变相机和扫描仪等成像设备的设计方式。(冯卫东) 《科技日报》(2013-05-30 二版)

  • 光学透光率仪操作说明

    是采用紫外光源,红外光源和可见光源照射被测透明物质,感应器分别探测三种光源的入射光强和透过被测透明物质后的光强,透过光强与入射光强的比值即为透过率,用百分数表示。用于玻璃,镀膜材料,有机材料,涂料,太阳膜等透光物质的光学透过率测试。适用于单层玻璃,夹层玻璃(中空玻璃),贴膜玻璃,PMMA材料,PC材料等的光学性能测试

  • 【求助】X射线管光学元件

    请问多晶X射线衍射仪中X射线管都用到那些光学元件,具体的工作原理和用途是怎样的?如果想得到准单色X光荧光应如何让对光学元件进行改进?谢谢高手指导。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制